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Radiation from Ring Quasi-Arrays 
H. L. KNUDSENt 

Summary-The  present paper constitutes  a summary of inves- 
tigations of certain  antenna  systems  with rotational symmetq, so- 
called ring  arrays and ring quasi-mays, which  have turned out to 
be or can be supposed to become of practical  importance. 

Particular stress  has  been laid on an  investigation of the  field 
radiated from homogenous ring  arrays of axial dipoles  and  homoge- 
neous ring  quasi-arrays of tangential  and radial dipoles; i.e., 
systems of respectively  axial,  tangential,  and radial dipoles placed 
equidistantly along  a circle  and  carrying  currents of the  same 
numerical value but with  a  phase  that  increases uniformly along 
the circle. 

At first a  calculation has  been made of the radiated field in the 
case where the number of elements  in  the  antenna  system  is 
infinitely large. After that  the  influence of the fbite number of 
elements is accounted for  by the introduction of correction terms. 
Subsequently,  the radiation resistance  and  the gain have  been 
calculated  in  a  few  simple  cases. 

The  antenna  systems  described  above may  display  super-gain. 
On the  basis of the theory of super-gain an  estimate is made of the 
smallest  permissible  radius of these  antenna  systems. 

Further an  investigation is made of the  field from a directional 
ring array with a  linite number of elements  to  ascertain in particular 
the  influence on the  field of the finite number of elements. 

INTRODUCTION 

T HE  PURPOSE of a transmitting  antenna is to  
radiate  the  electromagnetic  energy  from  the 
transmitter in the required  manner  in  the  various 

directions of space. The  radiation  diagram  aimed a t  is 
often of such a kind tha t   i t  is impossible to obtain  the 
necessary current  distribution  by a single antenna fed 
at a single  point. The desired result  may  then  often 
be  obtained  by using a system of separately fed an- 
tennas.  For  practical reasons a system  of  identical  and 
identically  oriented  antennas, a so-called antenna  array, 
is  often used for this purpose. The  best known type of 
antenna  array is the linear array, i.e., an  antenna  array 
in which the  antennas  are placed  along a straight line, 
and  the  linear  array  that  has been  investigated  most 
thoroughly in the  literature is the homogeneous,  linear, 
array; i.e.,  a  linear array  with  equidistantly placed 
antennas  carrying  currents of the  same  numerical  value 
and  with a phase that increases  uniformly  along the 
array. 

Some  antennas  consist of  identical, but not neces- 
sarily  identically  oriented  antennas; such antenna sys- 
tems will be called quasi-arrays. The present  paper  deals 
with an investigation of the field radiated from  quasi- 
arrays  the  elements of which are placed  with rotational 
symmetry, so-called ring quasi-arrays; a  special  case 
among  them will be a ring array. In particular we shall 
be  interested in ring quasi-arrays  the  current  distribu- 
tion of which corresponds to  the  current  distribution on 
a homogeneous,  linear array, so-caIIed homogeneous 
ring quasi-arrays, i t  being our purpose to  ascertain if 

t The Technical University of Denmark,  Copenhagen,  Denmark. 

such  simple  ring quasi-arrays  have  radiated fields of 
such  a type  that  they  can find a  practical use as in the 
case with  the corresponding  linear arrays.  Further we 
shall investigate  the field from a ring quasi-array used 
as a  directional  beam-antenna  with a  principal  direction 
that can  be  altered  by  changing  the  current phases. 

We  are  only  interested in considering the field from 
ring quasi-arrays  with so many  elements  that  the field 
deviates  only a little  from  the field found  when the 
number of elements is infinitely  large. Therefore, in each 
case we shall start  by investigating the field for an infinite 
number of elements. The field existing  in the case of a 
finite number of elements will after  that be expressed 
as  the field occurring when the number  of  elements is 
infinitely  large  plus  correction  terms. 

The ring quasi-arrays  dealt  with here are supposed 
to be composed of linear  antennas.  However,  most of 
the  characteristic  features of these  quasi-arrays  are 
found  also  when the linear  antennas  are infinitely short; 
i.e., when the  elements of the ring quasi-arrays  are 
Hertz dipoles. For  this reason we start  by investigating 
quasi-arrays composed of Hertz dipoles and  then proceed 
to  investigate  quasi-arrays of linear  antennas of finite 
length. 

For homogeneous  ring quasi-arrays  the field  will have 
its  optimum  shape when the  radius of the  quasi-array 
is infinitely  small.  Therefore we shall  first  investigate 
the field from  infinitely  small  ring  quasi-arrays, and 
next we shall  see how the field is deformed when the  ra- 
dius of the  quasi-array increases.  Although the  optimum 
shape of the  radiation  diagram  is  obtained for an 
infinitely  small  value  of the  radius of the  quasi-array, i t  
will involve insurmountable,  practical difficulties to use 
a quasi-array  with a very small  radius.  These phe- 
nomena will be  elucidated on the basis of the  theory of 
super-gain,  and  by  applying  this  theory we shall find the 
smallest  radius  that  it  is  practically possible to  use in 
each  case. 

As it  appears  from  what  has been mentioned  above, 
i t  is  our  purpose  in the present  paper to consider the 
fields from  ring quasi-arrays  having  certain  known 
current  distributions,  it being our  desire to  investigate if 
quasi-arrays  with  current  distributions of this  kind 
have  radiated fields that make  such quasi-arrays useful 
in practice.  Hereby we shall  meet partly  with  antenna 
systems  that  are  already  known,  which, however, are 
here brought  under a general  and well-arranged  calcula- 
tional  point of view,  partly  with  antenna  systems,  that 
have  not been  utilized yet, some of which,  however, 
seem to be  promising  from  a  practical point of view. 

However,  instead of this we could have  formulated 
the problem  in an opposite  way, namely  for a given 
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ring quasi-array we might wish to find the  current 
distribution  that  produces a desired radiated field. 
This problem,  with which we shall  not  deal  here,  has 
been made  the  object of investigation by several  authors. 

In calculating  the  radiated field from, and  the radiation 
resistance  of,  certain  ring  quasi-arrays we shall find a 
use for  some  integrals containing Bessel functions. 
These  integrals  are expressed through known and  tabu- 
lated  functions  and  through  the  integral of a Bessel 
function.  A  table of the  integral of the Bessel function 
of nth order  has been calculated. 

The present  paper consists  mainly of extracts from 
the  author’s  treatise on antenna  systems  with  rotational 
symmetry,’ which has been published in Danish.  Parts 
of this  treatise  have been published in American jour- 
n a l ~ . ? - ~  Problems that  have bearing on the investigations 
described  here,  have been dealt  with in various  papers 
by  the  author.+* 

RING ARRAY 

Homogeneous Ring Array of Axial  Hertz Difioles 
Radiated  Field; The principle of feeding the  antennas 

in a ring array with  currents of the  same  numerical 
value,  but  with a  phase that increases  uniformly  along 
the circle; i.e. as a homogeneous  ring array,  seems  to 
have been  established  first  by C h i r e i ~ . ~  For such a ring 
array with  infinitely  many  elements  Chireix  has  calcu- 
lated  the  radiated field and  has  thereby shown that  this 
field to  an increasing  degree will concentrate  around  the 
horizontal  plane  with  increasing  increment  of the  current 
phase  per  revolution  along the circle. Apart  from  the 
particular case  where the increment of the  current  phase 
is zero, the ring array proposed by Chireix is therefore 
suited as a n  azimuthally  omnidirectional,  fading- 
reducing antenna. An antenna  array  similar  to  the  one 
described  here, but with  several  concentric  rings,  was 
later proposed  independently  by  Hansen  and  Wood- 
yardlo  and investigated  further  by  Hansen  and Hollings- 
worth.”  Another  type of azimuthally  omnidirectional 

he1 eller  delvis  rotationssymmetri,” I kommission  hos  Teknisk 
H. L. Knudsen,  “Bidrag  til  teorien  for  antennesystemer med 

Forlag,  Kldbenhavn; 1953. 
2 H. L. Knudsen,  “The necessary  number of elements  in a direc- 

tional  ring  aerial,” Jour. Appl.  Phys., vol.  22, pp. 1299-1306;  1951. 
H. L. Knudsen,  “The field radiated by a  ring  quasi-array of an 

infinite  number of tangential or radial  dipoles,” PROC. IRE, vol. 
41, pp. 781-789; June,,?953. 

quasi-array, hoc .  IRE, vol. 42,  pp. 68G695; April, 1954. 
‘H. L. ,Knudsen,  Radiation  resistance of homogeneous  ring 

beam antenna,” Trans.  Danish Acad. Tech. Sci., no.  8, p. 55;  1950. 
H. L. Knudsen, “The field from  a  circular  and  a  square helical 

antenna, Jour. Appl.  Phys., vol. 23, pp.  483-491; 1952. 
6 H .  f;.. Knudsen,  “Radiation field of a square,  helical  beam 

Tidsskr., vol. 64,  pp. 213-221;  1951. 
’I H. L. Knudsen,  “Superforstaerkning hos antenner,” Elektrotek. 

forstzrkning hos antenner,” Tek.  Tidsskr., vol.  82, pp.  1023-1030; 
H. L. Knudsen,  “Shannons  tidsopdelingssaetning og super- 

1952. 
H. Chireix,  “Antennes  a  rayonnement  zenithal  reduit,” Onde 

Elect., vol. 15, pp.  44&456;  1936. 
lo W .  W. Hansen  and J. R.  Woodyard, “A new principle  in 

directional antenna design,” PROC. IRE, vol. 26, pp. 333-345; 
March, 1938. 

shooting”  antenna  arrays,” PROC. IRE, vol. 27, pp. 137-143; 
l1 W .  W. Hansen  and L. IVI. Hollingsworth,  “Design of “flat- 

February, 1939. 

antenna  array  with reduced radiation at high  elevation 
angles  may be obtained  by feeding a ring array  with 
all currents in the  same  phase  and  adding at  the  center 
of the circle an  antenna carrying a current in phase 
opposition to  the  currents  in  the  outer  antennas.  This 
antenna  array  may  be considered a special  case of one 
of the  arrays  investigated  by  Hansen  and  Woodyard. 
The application of this  ring  antenna  as a fading-reducing 
antenna was  described by Bohm12 and  by  Harbich  and 
Hahnemann.13 

For a homogeneous  ring array  the discrepancy be- 
tween the  actual  array  characteristic  and  the  array 
characteristic which occurs  when the  number of elements 
is  infinitely  large,  has  already been touched  upon  by 
C h i r e i ~ , ~  Hansen  and  Woodyard,10  and  Hansen  and 
Hollingsworth,ll  and it  has  later been investigated in 
detail  by Page.14 

Carte+  has  investigated  an  antenna  system composed 
of a  finite  numbel- of axial,  tangential, or radial  dipoles 
placed around a  conducting  cylinder,  equidistantly  along 
a concentric circle and  carrying  currents  with  the  same 
numerical  value but with  a  phase that increases 27r 
during  one  revolution. In the case  where the  radius of 
the conducting  cylinder is zero the  antenna  system  with 
axial  dipoles constitutes a particular  example of a  ring 
array. In this case the expressions  for the  radiated field 
derived by  Carter  constitute special  cases of Page’s 
formulas. 

As in the following sections we shall have use for the 
expression for the  array  characteristic of a homogeneous 
ring array  with a finite number of elements  derived by 
Page,14 and  as  Page  has  not used the symbolic  method 
for handling fields with  harmonic  time  variation  (the 
-iw-method) that is used throughout  the following 
sections of this  paper, we shall  here  give, by using this 
method, a short  derivation of Page’s  results. The expres- 
sion for the  array  characteristic will here be given in a 
more elaborate form than  in Page’s  work. 

The homogeneous  ring array considered  here  is sup- 
posed to consist of s identical and identically  oriented 
antennas placed equidistantly  along a circle with  radius a. 
A  spherical  co-ordinate  system ( r ,  e, p) is  placed  with 
its origin at  the  center of the circle,  which we shall  here 
and in what follows assume to he horiznntal. The co- 
ordinate  system  is  supposed to  be oriented in such a way 
that  the co-ordinates of the  jth  antenna  are given by 
( a ,  ~ / 2 ,  ui), where 

u .  = - 2 7rj j = 1, 2, , s, 
S 

der  Steilstrahlung,” Telefunkenztg, vol. 13,  pp. 21-26; March, 1932. 
l2 0. Bohm,  “Rundfunk-Sendeantennen  mit  Unterdruckung 

des  Nahschwundes im Rundfunk  durch  Sendeantennengebilde 
l3  H. Harbich  and W. Hahnemann,  “Wirksame  Bekampfung 

bestimmter Fo‘;~,’’  E N T ,  vol. 9, pp. 361-376;  1932. 
H.  Page, Ring-aerial  systems.  Minimum  number of radiators 

required,” Wireless  Engr., vol. 25, pp. 308-315;  1948. 
P. S .  Carter,  “Antenna  arrays  around  cylinders,” PROC. IRE, 

vol. 31,  pp. 671-693; December, 1943. 
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(see Fig. 1). Calling the  current  in  the jth  antenna Ij , 
according to  the definition of a  homogeneous array, we 
can  then express I j  by 

1. = IeiHrdi 

where I is a constant  current,  and where H is an integer. 
The angle uj increasing 2n when j increases  from 0 to  s, 
this  equation expresses that  the  current phase  increases 
linearly  along the circle and jus t  H2n during  one revolu- 
tion. 

\ 
\ 
\ 
\ 
\ 
\ 

s-2 
Fig. 1-Ring array  with s elements  and  radius a. 

Using as a reference antenna  an  antenna placed at 
the center of the circle,  carrying the  current SI; i.e., 
a current  with  the  numerical  value  equal  to  the  sum 
of the numerical  values of the  currents in all of the s 
elements of the  array, we find by using the general 
expression for the  array  characteristic of an  antenna 
array  the following expression  for the  array  characteristic 
of the homogeneous  ring array  in  question, 

G = X - e  le 1 i ~ u .  -ik[acosuisinBcosO+osinIrfsinesio91 

j = 1  S 

= - 1 "  2 eilHuj-"cos (9-Uj)l  

S j = 1  
? 

where for the  sake of convenience we have  introduced 
the  parameter z thorugh the definition 

z = ka sin 8. 

The  parameter z should not be  mistaken for the co- 
ordinate z, which  does not occur in the  subsequent 
calculations. By using the following formula  known 
from the  theory of Bessel functions, 

eizms' = 5 (2 - Gon)inJn(z) cos xu, 
n=o 

the expression for the  array  characteristic  can be trans- 
formed into 

M . s  

where m denotes an integer.  Using  this  formula  and 
making the  assumption 

s > l H l l  
we  find after some rearrangement, 

G = 3 2 (2 - s o q ) [ ~ H + q e ( z ) e i ( ~ + ~ s ) ( O - r / ? )  
00 

q=o 
+ J-H+ns(~)e-i(-8+p8)('P+a/Z)]. 

By  multiplying  this  function  with  the field from  the 
reference antenna, we obtain  the field radiated  from  the 
antenna  array in question. 

Here  and in what follows we shall  express the electric 
field strength E ( r ,  0 ,  p) in the field radiated  from  an 
antenna  system  by 

e i k r  

I 
E(?, e, p) = KF(e, - I 

where k = w f i  is the  intrinsic  propagation  constant, 
K an  arbitrarily chosen constant  having  the dimension 
of a voltage,  and F ( 0 ,  p) a vector, being  uniquely  deter- 
mined through  the choice of K ,  which depends upon the 
direction (e, p), but  not upon the  distance r to  the field 
point. The component of F in the direction of the r-axis 
is zero;  consequently,  denoting  the  unitAvectors in the 
directions of the e- and  the y-axes by e and $-we can 
express F by F = FOB + F,p. We shall denote F as  the 
normalized  electric field strength  and K as the nor- 
malization  constant.  The field  will essentially  be  deter- 
mined by  the specification of K and F(0,  p). 

The field from the reference antenna supposed to  be a 
Hertz dipole having  the  length L,  carrying the  current 
SI, and placed at the  center of the ring array in  question, 
is expressed by the normalization  constant 

iksL{I 
4n 

K=-, 

where 5 = fi denotes  the  intrinsic  impedance of 
space,  and  the normalized,  electric field strength F, where 

Fo = -sin 8, 
F, = 0. 

With  the  normalization  constant_ chosen here the nor- 
malized,  electric field strength F of the ring array of 
Hertz dipoles in question will therefore  be  expressed by 

Fo = - - sin e 2 * (2 - Gop)[JH+pa(z)ei(B+ea)(*--P/2) 
2 q=o 

+ J_B+q,(z)e-i(--B+QE)(9+~/2)], Fp = 0. 

We  shall start  by considering the field in the case 
where the  number of elements  is  infinitely  large. Ac- 
cordingly we let s ---t at  the  same  time,  letting  the 
length L of the single  dipoles  converge towards  zero  in 
such  a way  that sL converges towards a finite  value. 
Hereby we find the following limiting  values of the com- 
ponents of the normalized,  electric field strength 

FB = -sin 8JH(z)eiH((0-x'2), 
F, = 0. 

This special result  was derived already by -Ch i re i~ .~  
T t  fnllnws from the exoression obtained  for F that   the Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on September 25, 2009 at 07:56 from IEEE Xplore.  Restrictions apply. 
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numerical  value of the field does not  depend on p. 

For I HI 2 1 points in the  horizontal  plane  having  the 
same  phase will be situated on an Archimedes’  spiral 
as  is  shown  in  Fig. 2 for  respectively H = 1 (full line) 
and H = - 1 (dotted  line).  SandemanI6  and  Granquist17 
have suggested  utilizing this  fact  for  navigational 
purposes. 

‘,Ha-? 
\ 
\ 

with H = fl. 
Fig.  2-Equi-phase  lines  for a homogeneous  ring quasi-array 

If the  radius of the ring array is  much  smaller than  the 
wavelength X divided  by 25r; i.e., if ka << 1, the Bessel 
function in the expression  given above  can be expressed 
with sufficient accuracy  by  the  first  term of its series 

F, = 0. 

In Fig.  3(a)-3(d) the numerical value of Fo is plotted 
as a function of 0 for  various  values of H. The figure 
shows that  the field, which everywhere  is  polarized  in 
the &direction, to  an increasing  degree will concentrate 
around  the  horizontal  plane when the  increment of the 
current  phase  per  revolution, as expressed by H ,  in- 
creases. As pointed out  by Chireix,  for I HI 2 1 the 
ring array described  here  is  therefore  suited as a fading- 
reducing  antenna for  broadcasting  purposes. The 
homogeneous  ring array  with H = 0; i.e., with all the 
currents in phase,  is  not  suited  as a  fading-reducing 
antenna,  this  array  having  the  same  polar  diagram  as a 
single  dipole.  However, as was  mentioned above, when 
combining it  with a center  antenna,  it is possible to  
obtain  an  antenna  array having  zero  radiation a t  a given 
elevation  angle and consequently  reduced  radiation at 
high elevation  angles.  Large  antenna  systems of this 
type  are at present  being  planned  by the Swedish 
Telegraph  Administration and  by Nordwestdeutscher 
Rundfunk in Western  Germany. 

If the  radius of the ring array is not infinitely  small, 
as  was  assumed  above, the field  will not assume the 
ideal shape shown in Fig.  3,  but  deviate  from  it  to  an 
increasing  degree as the  radius increases.  However, if 
we choose as small  a  radius as the consideration of 
avoiding  super-gain  permits,  the  polar  diagrams will 
deviate  only to  a  small  degree  from  those  shown in Fig. 3. 

26, pp. 96-105;  1949. 
ICE. K. Sandeman,  “Spiral-phase fields,” Wireless Engr., vol. 

l7 C. E.  Granquist,  “Radiofyr for a v s t h d  och riktning,”  Paper 
presented a t  the  Radiovetenskadiea Konferensen.  Stockholm: 1949. 

So far we have assumed that  the  number of elements  is 
infinitely  large.  However,  in  practice the  number of 
elements will be finite;  this implies that  the  antenna 
system will no longer be  exactly  azimuthally  omni- 
directional as in the case of infinitely many elements. 
Economical  considerations  usually  make it desirable to  
reduce the  number of elements as much as possible. I t  is 
therefore of interest  to  investigate  the influence of the 
number of elements  on the  shape of the  radiated field. 
In order that  the field from the homogeneous  ring array 
in question  with  a  finite  number of elements  may  be a 
fair  approximation to  the field from the corresponding 
array with  infinitely many  elements,  the  term corre- 
sponding to  q = 0, which, as shown above,  is  identical 
with  the field in the case of s = m ,  must  be  the  dominant 
term  in  the infinite  series. The  approximate  condition 
that  this will occur is that 

s > 2 1 4 ;  

a. H = 0 .  b. H =  I .  

C .  H = 2 .  d .  H = 9 .  

of axial  dipoles for various  values of H. 
Fig. 3-The  field radiated from  a  small,  homogeneous  ring array 

the Bessel function  occurring in the  term  corresponding 
to p = 0,  then,  is of a  smaller  order  than  any of the Bessel 
functions  appearing  in  the  correction  terms.  In  what 
follows we shall  assume that  this  inequality  is  satisfied, 
and  not  only  the less strong  inequality  introduced  above, 
s > I H I. Subsequently we shall  consider only such 
cases  where the correction  terms  are small as compared 
with the principal term;  apart from the main term  it 
will then be  necessary  in  general to  include  only the 
first  correction  term. The field is then  approximately 
expressed by 

Fo - N -sin e eiH+{ (-;)HJ*(z) + ( - i ) ~ [ ( - ~ ) ~ e ~ ~ + ~ ~ + , ( z )  
& (_ i \ -Hp-&Q T - _ _  fe)1 Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on September 25, 2009 at 07:56 from IEEE Xplore.  Restrictions apply. 
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Whereas  the  numerical  value of the  array  character- 
istic in the case of s = = is  independent of cp, as was 
mentioned  above,  the  characteristic for the  array con- 
sidered  here will oscillate  weakly  with cp for any fixed 
value of e. 

For a function f(cp) that oscillates  weakly  between  two 
boundaries f m i n  and f m  a x ;  i.e., 

fmin 5 f(P) 6 f m a x  9 

where 
2sf = fmax - f m i n  <<f(p), 

we shall  introduce  for use here  and in the following 
sections  a  parameter,  the so-called relative,  maximum 
variation Af, to describe the  relative  change of the func- 
tion 
Af = f m a x  - fmin - fmax - fmin - f m a x  - fmin 

( fmax + fmin) = 2fmax 
- - 

2fmi n 

In calculating the  relative,  maximum  variation 
A\ Fe I of the field radiated  from  the  ring  array in ques- 
tion we must  consider  the  cases H = 0 and I H I 2 1 
separately. 

H = 0. The  approximate expression  for the field 
derived  above  may  in the  present  case  be  written  as 
follows 

F, = -sin e[Jo(z )  + ( - i ) " 2 J S ( z )  cos sp]. 

Here we must  treat  the cases of s even and s odd  sepa- 
rately. 

s even. In  the case of s even the field may  be expressed 
with  advantage  by 

Fe E -sinB[J,(z) + ( - 1 ) a / 2 2 J s ( ~ )  COS sp]. 

This expression  shows that  the correction  term is in 
phase  with  or in phase  opposition to  the principal  term 
for any value of cp. From  this we find for the  relative, 
maximum  variation A I  Fe 1 ,  

N 

s odd. When s is odd,  it is  convenient  to  transform  the 
expression  for the field as follows, 

Fe = -sin O[J,(z) + i( - 1) *+1/22JS(z) cos scp]. 

This expression  shows that in the  present case the 
correction  term is in  phase  quadrature  with  the  principal 
term for any value of p. Therefore in the present case 
the  relative,  maximum  variation A I F, 1 ,  is  expressed by 

A I  FBI z-. N (Js(z))2 

By  comparing  the expressions  for A I F, I derived 
here  for the cases of s even  and s odd we see that for the 
same  ratio of the numerical  value of the correction 
term  to  the  numerical  value of the principal term,  the 
relative,  maximum  variation of the field is essentially 
smaller in the case of s odd than in the case of s even. 
This  fact  appears also  from  Fig. 4, where the relative, 
maximum  variation for a homogeneous  ring array with 
H = 0 ;  i.e., with  currents in the  same  phase, is plotted 
as a function of a / k  sin 8. The  curves show that  three 
antennas  produce a less wavy field than  four  antennas, 

five antennas a better field than six,  and  seven  antennas 
a better field than eight. This peculiar  and  practically 
important  fact, which has  not  always been taken  into 
account,  was  pointed  out  by Page.14 

1 H I 5 1. In  the case, H = 0, considered above  the 
numerical  values of the two correction  terms  containing 
J H + s ( ~ )  and J - H + ~ ( z )  were of the  same  magnitude,  for 
which reason both of them  had  to  be  taken  into  account. 

geneous ring array for H = 0. 
Fig. 4-The relative,  maximum  variation A I Fe I for a homo- 

However,  for H 2 1 i t  will generally hold  good that  the 
correction  term  containing  the  function J-H+~(Z)  will be 
much  larger than  the  term  containing J H + s ( ~ ) r  the 
numerical  value of a Bessel function  with a constant 
argument  decreasing fast though  not necessarily  mono- 
tonically  with  increasing  order.  Correspondingly, for 
N 5 - 1 it will generally  hold good that JHCs(z)  will be 
much  larger  than J--H+~(z) .  Thus we find the following 
approximate  expressions  for  the  normalized  electric field 
strength ; 
Fe 5 -sine[( 4 )  HeiHYJH(z) 

+ ( - i)' ZlfseT i ( F  E+ 8)vJ 
7 H + s ( Z ) ]  

-sin e( - i )HeiHv[JH(z)  + ( - l ) ~ ( - i ) ~ e e - i s ~ ~ _ H + s ( z ) ]  
for H = 1, 

-sin ~ ( - i ) ~ e ' ~ v [ ~ H ( z )  + ( - i ) a e i s a ~ H + s ( z ) ]  
for H = -1. 

From the expression  for the field derived  here we see 
that  the numerical  value of the  correction  term  is 
constant,  whereas  the  phase difference  between the 
principal  term  and  the  correction  term will increase 
linearly  with cp. The ploar  diagram of the numerical 
value of the field is an undulating line in the  shape of a 
circle  with one period  between  two  neighboring  antennas. 
The  extreme  values will occur in the  directions that  are 
~ / 2  behind  the  directions  towards  the  antennas  and 
in the  directions  halfway  between  these  directions. 
The relative,  maximum  variation is found t o  be 

= I  
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This expression being  valid  for an even as well as for an 
odd number of antennas,  it is seen that in the present 
case no systematic  advantage  can  be derived from using 
an odd  instead of an even number of elements as  was the 
case  for H = 0. The relative,  maximum  variation in the 
case of H = 4 is plotted in Fig. 5. 

AIFeI 
A IGl 

e slne 

Fig. 5-The relative,  maximum  variation A I Fa I for a homo- 
geneous ring  array for I H / = 4. 

Radiation  resistance. For a homogeneous  ring array 
of infinitely many  Hertz dipoles  Page has carried out a 
calculation of the radiation  resistance.ls  From the 
derived expression it  appears  that  the radiation  resistance 
increases  with  increasing radius a of the ring array,  and 
that  i t  decreases  with  increasing  increment of the  current 
phase  per  revolution; i.e.,  with  increasing H.  

Directional  Ring  Array 
Stenzel  has shown that a risg  array  may  be utilized 

for obtaining  an  antenna  system  with pronounced 
directional  properties.lg  By  giving the  currents of the 
antennas  in  the ring  a  phase distribution  such  that  there 
is  constructive  interference of the waves emitted  in  an 
arbitrary  direction  in  space,  hereafter called the principal 
direction, an  array characteristic is obtained  having a 
principal  lobe  in this  direction.  Stenzel considers  es- 
pecially the case  where the principal  direction  is  hori- 
zontal. If the principal  direction  is rotated  in  the hori- 
zontal  plane,  the  horizontal  diagram of the  array  char- 
acteristic will also rotate  and,  as a  consequence of the 

approximate  rotational  symmetry  of  the  ring  aerial, 
with its  shape  almost  unchanged.  For  the  ring  aerial 
mentioned  here,  Stenzel has  investigated  the  discrepancy 
between the  array  characteristic in the case of a finite, 
even number of elements and  the  characteristic  in  the 
case of infinitely many  elements,  apparently  assuming 
that  there is no essential difference between the case of 
an even number of elements and  that of an odd number of 
elements. This  assumption is explicitly stated  by 
Briickmann in his textbook on antennas  in  the  chapter 
dealing  with Stenzel’s theory.20 In the present  paper i t  
will be  investigated  whether  the  array  characteristic of 
the directional  ring  aerial  with an even number of 
antennas differs  essentially  from the  characteristic of the 
ring  aerial  with an odd  number of elements  as  was  the 
case with  the  ring  aerial  investigated  by Page.14 This 
investigation  is  based on Stenzel’s as well as on  Page’s 
theory. 

Let s identical and identically  oriented  antennas  be 
placed along a circle with a radius a as shown in Fig. 1, 
and  let  us  introduce a spherical  co-ordinate  system as  
described above  in connection  with this figure. The 
current I j  in the  jth  antenna is expressed by 

rj  = Ie i6 j  

where I is a constant,  whereas 6 j  denotes  the  current 
phase of thejth  antenna. Choosing as a reference antenna, 
an  antenna placed at the  center of the circle and  carry- 
ing  a  current SI we find by using the conventional ex- 
pression for  the  array  characteristic G(0, cp) of an  antenna 
array  the following expression for the  array  characteristic 
of the ring array considered here; 

G = - l S  2 ed6j-ka sin 8 cos (d-rrj)] ’ 
s j=1 

where, as above, k = wdzdenotes   the  intrinsic  propaga- 
tion constant of space. 

In  accordance  with  Stenzel’s  suggestion,lg the 
currents  in  the s antennas  are now given  such  phases 
that  the waves emitted  in  an  arbitrarily chosen direction 
(e, , (a,), the principal  direction, are in phase. This is 
obtained  by choosing 

6 j  = ka sin e, cos (p, - u j ) .  

By  this choice of the phases 6 j  the expression  for the 
array characteristics will be 
G = 1 2 eika[sin 8 ,  cos (o,-uj)-  sin 8 cos ( d - u i ) ]  

s j = 1  

Following  Stenzel in defining an angle  by  the  equation 

sin 6 cos Q - sin 8, cos (a, 
d(s in  e cos p - sin e,, cos p,)z + (sin e sin (a - sin e, sin po)z ’ 

cos 5 = 

and a parameter p by  the  equation 

E?zgr., VOI. 25, pp.,,102-109;  1948. 
18 H. Page,  “Radiation resistance of ring  aerials,” Wi’ireless 

19 H. Stenzel, Uber die  Richtkarakteristik von in einer  Ebene *o H.  Briickmann,  ‘‘Antennen. Ihre  Theorie  und  Technik,’ 
angeordneten  Strahlern,” EMT,vol. 6, pp.  165-181;  1929. Leipzig, p. 113; 1939. 
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we may now express  the  array  characteristic in the 
following way, 

This expression  is of a type similar to  the expression 
derived  above  for the  array  characteristic for a homo- 
geneous  ring array  with  antenna  currents  having  the 
same  phase; i.e., with H = 0. Using a similar  procedure 
to that  for the homogeneous ring array, we may  write 
the expression  derived  here 

03 

G = 2 (2 - 8 0 , ) ( - i ) ~ u J , , ( k p )  C O S ~ S ~ .  
q=o 

If the  number s of elements  is  infinitely  large,  the  array 
characteristic will be expressed by  the first term in this 
infinite  series 

G = J , ( k p ) .  
When  the  number of elements  is  finite,  the  remaining 
terms  in  the  series will express the  deviation of the 
array  characteristic  from  the  array  characteristic  apply- 
ing in the case of an infinite  number of elements. 

The  array  characteristic  in  the case of a finite  number 
of elements  may  be  transformed  with  advantage so that 
i t  clearly  appears which terms  are in phase  with  (or  in 
phase  opposition to),  and which are in phase quadrature 
with,  the  principal  term. In  so doing we must  distinguish 
between the cases  where the  number s of elements is 
even  and  those  where  it is odd. 
s even. 

G = J , ( k p )  + 2 2 J&P) cos (5  - t ) ~ .  

s odd. 

W 

q=1 

W 

G = J , ( k p )  + 2 2 J z q S ( k p )  cos (5  - I ) Z q s  
q= 1 

The expression  for the  array  characteristic for s even 
was  derived  by  Stenzel  approximately in the way  de- 
scribed  here. The correction  terms in the case of s even 
are seen to be  in  phase  with the principal  term. On the 
other  hand, in the case of s odd,  there  occur correction 
terms in phase  with,  as well as correction  terms in phase 
quadrature  with, the principal  term. Let us for a moment 
suppose that we have chosen s so large that  the correction 
terms  are  small  compared  with  the maximum value of 
the principal  term. The  array  characteristic  may  then 
be expressed  sufficiently accurately  by  the  principal 
term  and  the  first  term  in  each of the infinite  series  of 
correction  terms. 
s even. 

s odd. 

G E J , ( k p )  - i 2 J , ( k p )  sin (; - E).. 

2700 

a. t = 0.25. 

30° 210 

270° 

b. - I .  c .  p e 2 .  

directional  ring  array for various  values of a/h .  
Fig. &Horizontal  diagram of the  array  characteristic for a 

As the  most  important  correction  term in the case of s 
even  is in phase  with the principal  term,  whereas the 
most  important  correction  term in the  case of s odd  is  in 
phase quadrature with the principal  term,  the  latter  case 
must  be  assumed  to  be  more  favourable  than  the  former 
in regard to  the  approximation of the  array  characteristic 
to  the  array  characteristic valid for s = W .  This will be 
illustrated  later  by a numerical  example. 

When the principal  direction  is  vertical; i.e., when 
e o  = 0, the  array will constitute a homogeneous  ring 
array with  currents in the  same  phase. Tile expression 
for the  array  characteristic  derived  here will then  be 
reduced to  the expression  derived above for the  array 
characteristic for a homogeneous  ring array  with H = 0. 
In what follows  we shall  illustrate  the expression  for 
the  array  characteristic  by  investigating a ring  array 
with its principal  direction in the horizontal  plane. 

For a ring array  with a horizontal  principal  direction; 
Le.,  with 8, = a/2, we find,  confining the  investigation 
to the  field in the  horizontal  plane 0 = ~ / 2 ,  

- ( ? - P o  p = 2a a n  -~ . 
2 

For a  ring array  with  infinitely  many  elements  and  with 
the  quotient  between  the  radius  and  the  wavelenth 
a / h  = 0.25, 1, and 2 we hereby find the  horizontal 
patterns of the  array  characteristic  shown  in Fig. 
6(a)-6(c).  By  rotating the  distribution of current  phases 
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these  horizontal patterns will make a corresponding 
rotation in the horizontal  plane. If the  number of elements 
is  infinitely  large,  this  rotation will take place without 
any deformation of the horizontal pattern of the  array 
characteristic. On the  other  hand, if the  number of 
elements is finite, the  radiation  pattern will vary period- 
ically,  when the  distribution of current  phases is rotated. 

On the basis of the  exact expression  for the  array  char- 
acteristic,  the  array  characteristic  has been  calculated 
for a ring array  with a/A = 0.5 and  with  respectively 
5, 6, 7, and 8 elements  for  various  values of the  azimuth 
po of the principal  direction. The horizontal  patterns 
found  in  this  way  are  plotted  in Fig.  7(a)-7(h). In this 
figure the principal  direction is fixed, whereas the  an- 
tenna  system  rotates.  The figure  shows that for a  small 
number of antennas, s = 5 or 6, the  radiation  pattern 
deviates  considerably  from the  pattern valid  for s = co . 
However, it is seen that 5 antennas give  almost  as good 
an  approximation  to  the ideal pattern as 6, and 7 an- 
tennas  almost  as good an  approximation  as 8. This 
confirms the  assumption  that  an  odd  number of antennas 
is preferable to  an even  number.  The  advantage of using 
an  odd  number i s ,  however,  not so great here as in  the 
case of the homogeneous  ring array  dealt  with  above. 

HOMOGENEOUS RING QUASI-ARRAY OF 

TANGENTIAL AYTENNAS 

Homogeneous Ring  Quasi-Array of Tangential  Hertz 
Dipoles 

Radiated  Field; In a  preceding  section we have seen 
that  by using a homogeneous  ring array of axial Hertz 
dipoles we can  obtain  an  azimuthally  omnidirectional, 
horizontally  polarized field that is  concentrated  around 
the horizontal  plane.  During  recent  years FM and 
television have  aroused  an  interest  in  antennas  that 
radiate  horizontally polarized fields. I t  is therefore an 
obvious  thing in analogy to the investigation  made 
above of the field from  a  ring array of axial  dipoles to 
investigate  the field from  a  ring  quasi-array of equi- 
distant,  tangential  Hertz  dipoles  carrying  currents of 
the  same  numerical  value  and  with a phase that in- 
creases  uniformly  along  the circle. A ring array of this 
kind will be called a homogeneous  ring quasi-array.  In 
analogy  with  what was done in the case of the homo- 
geneous ring  array  the  increment of the  current  phase 
during  one  revolution will  be denoted  by H2n, where H 
is an integer. 

As mentioned  above, Carter  has carried  through  a 
calculation of the field from  a  ring array of a finite 
number of axial  dipoles  and  from a ring  quasi-array 
of a finite  number of tangential or radial  dipoles placed 
concentrically  around a conducting  cylinder  and  with 
H = 0 or H = l . 1 5  In  the case  where the  radius  of  the 
conducting  cylinder  is  equal  to  zero,  and  where  the 
current  phases  are  characterized  by H = 0 or H = 1, 
the  antenna  systems  treated  by  Carter  constitute 
special  cases of the  systems  investigated  here. 

The field from an  arbitrarily  large,  circular  frame 

a. s - 5 ,  

'Po = 0' 
b. s - 5 ,  

900 
70- 

C .  S ' 6 ,  
'Po= 00. 

e .  s = 7 ,  
'Po = 0' 

g .  s i e, 
'Po = 09 

directional  ring  array with a/k = 0.5 for various  values of the num- 
Fig. 7-Horizontal diagram of the  array  characteristic  for  a 

ber s of elements. 

aerial  with  constant  current (i.e., H = 0 )  has previously 
been investigated  by  Fosterz1  and  Moullin.z2  This field 
calculation is included in this  paper as a  special  case. 

IRE, VOI. 32. OD. 603-607: October. 1944. 
D. Foster, "Loop antennas with  uniform current," PROC. 

I .  E. E., Pt. 111, V O ~ .  93, pp. 34.5-351; 1946. 
26 E. B. LidulIin, diRa&atioi Lorn  large  circular ~oops"  our. 
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The homogeneous  ring quasi-array considered  here 
is  assumed to consist of s identical  and  identically 
oriented Hertz dipoles  having . the length L and being 
placed equidistantly  along  a circle  with radius a tan- 
gential  to  this circle, as shown in Fig. 8. A spherical 

2 

/ 
I 
I 
\ 
\ 

S * 

s -2 

y=c? 

Fig. 8-Ring quasi-array of s tangential dipoles. 

co-ordinate  system ( r ,  8, cp) is placed as shown  in the 
figure in the  same  way  as  the  co-ordinate  system  shopn 
in  Fig. 1 so that  the  co-ordinates of antenna j are given 
by (a, 7r/2, u j ) ,  where 

uj  = - 2 n j  j = 1, 2, , s. 
S 

I t  is assumed that  the  current I j  in the  j th  dipole is 
given by 

I. - IeiHu. 
J -  I7 

where I is  a constant  and H an integer, as mentioned 
above.  We  express the electric field strength E a t  the 
point ( r ,  8, cp) by using the  notation  introduced  above, 

- 
E(?, 8, 'PI = K R e ,  P) - I 

Y 

where K is  a  normalization  constant  and F" the  dimen- 
sion-free,  normalized  electric field strength. As in the 
investigation  of the homogeneous  ring array we choose 
here the normalization  constant 

iksLcI 
4n 

K=-. 

In  a  rectangular  co-ordinate  system placed in the usual 
way in relation to  the spherical  co-ordinate  system we 
find by  conventional  methods  the following expression 
for the  components of the normalized  electric field 
strength ; 

F ,  = - 5 ! e i [ N u . - k a ( c o s  u . s i n  t h o s  p + a i n  u .s in Osin +)Isin uj  , 

F ,  = 2 1 e i [ H u j - k a ( c o s  u.s in  Ocas p+sin u js in  Oainp)]COSUj , 
j = 1  s 

j = l  s 
F, = 0, 
or, by using the  short-hand  notation used above 

. s  

F ,  = 0. 

By  using the series  development  given  above, 

eiz C O B  v = 3 (2 - S o n ) i " J n ( z )  cos nu, 
n=o 

we may  express the  rectangular  components of F b y  

= - 2 (2 - S o n ) ( - i ) n J n ( z )  
I 

4s n=o 5 l e i n p [ e i ( H - - n + l ) u j  + e i (H--n- l )u .  ,I 
j =  1 

+ e - i n . p [ e i ( H + n + l ) u .  + e i ( H + n - l ) u ,  I l l *  
F ,  = 0. 

The  summations  with  respect  to j in the  above ex- 
pressions are all of the  type previously  described : 

=t  1 for m/s = p ,  where 

0 in any  other  case, 
p = 0,  * 1, 5 2 ,  , 

where m denotes  an  integer.  By using this  formula 
together  with  the following recursion formulas for Bessel 
functions, 

J n - l ( x )  + J n + l ( x )  = - Jn(x)t 
2n 
X 

J n - I ( x )  - Jn+l(x) = 2J,'(x), 
and  by  assuming that 

> IHI + 1, 
we find, after  some  manipulation, 
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e- - i ( - f r+qs) (P+=/?)  
1 1  

F ,  = 0. 
From  the expressions  for the  rectangular  components 
of the normalized  electric field strength  obtained  here we 
find the following expressions  for its spherical  com- 
ponents : 

Fo = F ,  cos 0 cos p + F ,  cos 0 sin p - F,  sin 0 

- -H + qs J_H+ga(Z)e-i(-Nfqs)(Qfa/2) 
1 1  

2 

F, = - F ,  sin cp + F ,  cos (a 
i m  
2 q = o  

- - - 2 ( 2  - a o q ) [ J ’ H + q s ( Z ) e  
i(H+qs)(+-a/2) 

+ J I - l r + 4 8 ( z ) e - i ( - H + q S ) ( Q + . / Z )  I .  
Let us first  consider the case  where the  number of 

elements is infinitely  large.  Any  other  term  in the  above 
expressions except  those  corresponding to p = u will 
then  be  zero,  and we find 

H FB = - J H ( z )  cos Be iH(.$--*/Z) 
I 

Z 
F = iJ’H(Z)eiH(C--a/2)a 

These expressions  show that in general  both the 0- and 
the  pcomponents of the electric field strength will be 
different  from  zero. Further,  as  they  are in  phase 
quadrature  with  each  other,  the  radiated field will in 
general  be  elliptically  polarized.  Only  in the case of 
H = 0 ;  i.e., for  a  circular  frame  aerial  with  a constant 
current,  the 0-component of the electric field strength 
is  zero in any  direction, so that  the field  will be hori- 
zontally  polarized  everywhere. For I H I 2 1, in the 
horizontal  plane,  points  having the  same  phase will 
be  situated on an Archimedes’ spiral  as  shown  in  Fig. 2 
for the case H = f 1. The numerical  values of the field 
components will be  independent of p. 

In  particular we shall  consider the case,  where the 
radius a of the  ring  quasi-array  is  much  smaller  than  the 
wavelength X divided  by 2n; Le., where ka << 1. The  fact 
is that  it  is appropriate  to  let  the  radius of the ring 
quasi-array  have so small  a  value that  the  polar  diagram 
of its  radiated field deviates  little  from  the  polar  diagram 
occurring in the case  of an infinitely  small  radius. The 
Bessel functions in the expressions  derived above  may 
then  approximately  be replaced by  the first term of 
their series development, so that we find 

for H = 0, 

The numerical  values of FB and F, are  plotted in Fig.  9(a) 
and ( G )  - (e) as functions of 0 for various  values of H.  For 
any  value of H the field will be  horizontally  polarized 
in  horizontal  directions.  For H = 0 we obtain  the well- 
known polar  diagram of the  radiated field from a small 
frame  aerial. In the case  where I H I = 1, and  in  this 
case  only,  the  radiation  in the direction of the  axis  is 
different  from  zero; in this case the field will be  circularly 

a. TANG. D I P O L E S .  

HSO. 

b. R A D .  D I P O L E S ,  

H r O .  

C. T A N G . A N D   R A D ,  DIPOLES. d.  TANS.  AND RAD. DIPOLES.  e . T A N G . A H D  R A D .  DIPOLES, 
H ‘ 1 .  H . 2 .  H . 9 .  

Fig.  %Polar  diagram of the  electric field strength for  a  small 
homogeneous  ring  quasi array of tangential  or  radial  dipoles  for 
various  values of H. 

polarized in this  direction.  For I HI 2 2 the field will 
have  the  same  character for any  value of H ;  however, 
the field concentrates  to  an  increasing  degree  around 
the  horizontal  plane for  increasing I H I .  The  quotient 
between the  maximum  values of the 0- and  the p-com- 
ponents of the electric field strength is expressed ap- 
proximately by 

I Fo l m a x  - 1 
K = - q H [  - 1)’ 

- 

where e is  the  base of the  natural  logarithms.  Accordingly, 
with  increasing I H I the field will to  an increasing  degree 
become purely  horizontally  polarized in any direction, 
as is  also  seen  from  Fig. 9. 

With  an  increasing  radius of the ring  quasi-array  the 
field will to   an increasing  degree deviate  from  the field 
occurring in the case of an infinitely  small  radius of the 
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quasi-array.  However,  even in the case of a radius so 
large as  the minimum  radius that can be chosen in order 
to  avoid  super-gain,  the  shape of the field  will deviate 
little from the  shape  occurringjn  the case  of an infinitely 
small  radius. 

In the  above  calculations we have  assumed that  the 
number of elements  is  infinitely  large;  the ring  quasi- 
array was then  exactly  azimuthally  omnidirectional. 
Apart  from  the  case of H = 0 and  a  very small  radius, 
i.e., a small  circular  frame  aerial  with a constant  current, 
the ring  quasi-array  must,  however,  in  practice  be 
composed of a  finite  number of elements. In order that  
the field from  such  a  homogeneous ring quasi-array  with a 
finite  number of elements  may  be a fairly good approxi- 
mation  to  the field from the corresponding  quasi-array 
with  infinitely  many  elements,  the  terms  corresponding 
to  q = 0 in  the expressions for Fe and F, must  be  the 
principal  terms in the infinite  series. The  approximate 
condition that  this will occur is that  

s > 2 1 H I .  
Assuming that  this  inequality  is  satisfied, we may 
generally  express the field with  a  sufficiently good ap- 
proximation  by  including the first  correction  term. So 
doing we find 

H Fo 21. COS S {  ( - i ) H  - JH(2) 
2 

+ ( - i ) s [ ( - i )  ~ i s g H + s J  e __ H + s  ( 2) 
. z  

- ( - i ) - H e - i S +  --N + s J - ~ + ~ ( z ) ]  1 eiH+, 
z 

F+ Z i f ( - i ) R J ’ ~ ( z )  + (-i)8[(-i)He‘s,J’H+a(z) 
+ (-i)-He--isgJ’-H+s(Z)] I e i H O .  

In  analogy  with  what we did in the case of the homo- 
geneous  ring array we shall  here  express the  irregularity 
introduced  into  the field as a  consequence of the  fact 
that  the  number of elements is finite, by  stating  the 
relative,  maximum  variation of Fe and F, . These rela- 
tive,  maximum  variations are calculated on the basis of 
the expressions  derived  here  analogously to  the  variations 
in the case of the homogeneous  ring array.  The descrip- 
tion of this  calculation is omitted  here.  The  relative, 
maximum  variation A I Fe I of the &component of the 
electric field strength for I H I = 4 is plotted in Fig. 10, 
and  the  relative,  maximum  variation A I F, I of the 
cp-component of the electric field strength  for H = 0, and 
I H I = 4 is  plotted in Fig. 1l;a) and l l (b) .  Also in the 
case of a homogeneous  ring quasi-array of tangential 
dipoles the case of H = 0 is seen to  exhibit  the  character- 
istic  feature  that‘3  antennas  give a better  polar  diagram 
than 4, and 5 antennas a better  diagram  than  6,  etc. 
Radiation  Resistance  and  Gain 

We  shall  here  calculate the  radiation  resistance  and 
the gain of a  homogeneous  ring quasi-array of tangential 
dipoles by using the  Poynting  vector  method. For the 
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sine a 

components for a homogeneous ring quasi-array of tangential di- 
Fig. 10-The relative, maximum variation of one of the field 

poles (A I Fe :) or radial dipoles (A I Fg 1) for I I1 I = 4. 

with the case  where the  number of dipoles is infinitely 
large; in practice,  the  result  obtained in this  way will 
apply  with  a good approximation also when the  number 
of dipoles  is  finite. 

Denoting the  intrinsic  impedance of space  by 4 = 
-v‘$ we may express the  Poynting  vector  for  an 
antenna  with  the  normalization  constant K and  the 
normalized  electric field strength F(6, p) by 

where i denotes a unit  vector  pointing in the direction 
of the y-axis, and  where  the  function m(e, p) is defined by 

m(0, = [ Fe l 2  + I F, 1 2 .  
The effect P radiated  through  a  spherical  surface  having 
its  center at   the origin and  the  radius r ,  is expressed by 

P = 1; /’“ Re(S.;)r2  sin 0 dB d p  = 2n7 I K I?hI , 
0 

where the  constant 144 is defined by 

If I Fe I and I F, 1 and  consequently  also m(0, cp) are 
independent of p, as is the case with  the  ring  quasi-array 
we are considering  here,  we have 

M = 1 /=m(t9, cp) sin Ode. 
2 0  

The  radiation  resistance R is defined as  the  resistance 
through which a certain reference current I’ must flow 
in order  that  an effect equal to  the  radiated  effect P 
may  be  developed, 

P = +R I I’ 1 2 .  
Consequently we find 

sake of simplicity we shall confine ourselves to dealing R = N M ,  
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Fig. 11-The relative,  maximum  variation of one of the field 

components  for  a  homogeneous  ring  quasi-array of tangential 
dipoles (A I F+ I )  or radial  dipoles (A I Fe I) for  (a) H = 0 and (b) 
[ H I  = 4 .  

where M = 1/8 [ A H - ~ ( ~ u )  + AH+l(ka) - 2Ba(ka)], 

The gain g(B, cp) of the  antenna in a certain  direction (e ,  cp) 
may  be expressed by  the  parameters defined above,  the 
function m(0, cp) and  the  constant 111. We find 

Accordingly, the radiation  resistance R as well as  the 
gain g(0, a)  of an  antenna  are determined  by  the con- 
stants N and M and  the function m(0, cp). 
As the reference current I’ for the homogeneous  ring 

quasi-array in question we shall use the  current I in 
one of the elements, no matter which of them.  The 
constant N is then defined by 

N = - .  (ksL) 2T 
4T 

The function m(0, cp) is  expressed by 

m(e, cp) = - J,(z) COS e + ~ ‘ ~ ( 2 )  (: ) z  ( ) 2 9  

whereas the  constant M calculated  by  the use of this 
expression  is  given by 

I t  may  be shown that  this  integral  may be expre_ssed by 
known,  tabulated  functions  and by  the function J,,(x) = 

1: J,(t) dt for any value of H. In the case of H = 0 

this was demonstrated  already  by  Foster.?’ Conse- 
quently, we confine ourselves to  carrying  through  the 
calculation  for [ H I 2 1. Through a simple  transforma- 
tion we find 

where the  functions A ,,(x) and B,,(x) are defined by 

A ,,(x) = Jn2(x sin e ) ( 2  - sin2B) sin ede, 

B,(x) = J,-l(x sin B)J,+l(x sin e) sin36dB. 

As shown  in an earlier  publication  these  integrals  may 
be expressed  in the following way1 

1: 
1: 

) JZ n(2x) 
8x3 

For  the case of n = 0 several  tables of the function 
yn(x) occurring  here  have  been  published;  the  most 
comprehensive of these  tables  seems to be the  one 
calculated by Lowan a n d   A b r a m o w i t ~ . ~ ~  On the basis of 
this  table  the  author  has  calculated a table of Jn(x) €or 
n = 1, 2 - . a ,  8 and  for x = 0 (0.01) 1 O . I  The values of 
the function are given to five places of decimals;  there 
is an inaccuracy of & 1 in the  last  decimal place. 

From  the expressions  for N, m(e, p), and M obtained 
here we can now easily  calculate the  radiation  resistance 
R and  the gain g(0, cp) of the homogeneous  ring  quasi- 
array of tangential dipoles. The  radiation  resistance R 

23 A. N. Lowan and M. Abramowitz, “Table of the integrals” 
j :  J,(t) dl and 1: Y,(t) df,” Jour. Muth. Phys., vol. 22, pp. 2-12; 
1943. 
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homogeneous  ring quasi-array of tangential  dipoles  as  a  function 
Fig. 1 2 - ( 2 ~ a / s L ) ~  multiplied by the  radiation  resistance of a 

of e/h for  various  values of H. 

multiplied by ( 2 ~ a / s L ) ~  is plotted in Fig. 12 as a  function 
of a /A  for various  values of H. The radiation  resistance 
is seen to  decrease  with  increasing  increment of the 
current  phase  and  to increase,  though not mono- 
tonically,  with  increasing  radius. In Fig. 13 is  plotted 
the gain g ( 8 ,  p) as a  function of a/A and for various 
values of H ,  partly for  horizontal  directions 0 = a/2 
and  partly for  vertical  directions e = 0 or K. Only the 
ring quasi-array  with I H I = 1 has in the vertical  direc- 
tion a gain that is different  from zero. 

Homogeneous  Ring  Quasi-Array of Tangential,  Linear 
Antennas with a Constant  Current. 

In dealing  with  the homogeneous  ring quasi-array of 
tangentially  oriented dipoles we have so far  assumed 
the elements to  be  Hertz  dipoles;  i.e., infinitely short 
dipoles. For  many  applications  this was a good approxi- 
mation,  and  it  made  the  mathematical  treatment  rather 
simple so that  in  such  cases  where this  approximation 
was  permissible, the principally  important  facts were 
emphasized  more than would have been the case if less 
idealizing assumptions  had been  made. In  practice, 
however, a ring quasi-array of the  type considered here 
must  be composed of antennas of finite  dimensions, 
e.g., of a number of linear wire antennas.  For  the simple 
case  where all currents  are  in  the  same  phase; i.e., for 
H = 0, such a design has been suggested by Moullin.22 
However, if the  current  distribution on the various 
antennas  is  known, i t  is possible to  carry  out a calcula- 
tion of the  radiated field along the  same lines as  we did 
above in calculating  the field from  a  homogeneous  ring 
quasi-array of Hertz dipoles. The field  will then  be 
expressed by a principal  term  that is independent of the 
azimuth,  in  addition  to correction terms  dependent  on 

the  azimuth  and  originating from the finite number of 
elements. As an example of such a field calculation we 
shall  here  give the expression  for the field from  a  homo- 

.-geneom  ring  quasi-array of linear wire antennas  with a 
constant  current. As a special  case of this we shall 

.obtain  the expression for the field from a polygonal frame 
aerial  with a constant  current. 

9" 
3 

2 

1 

0 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 dO.S - 

x 

homogeneous  ring  quasi-array of tangential  dipoles as a function of 
Fig. 13-The gain  in  horizontal and  vertical  directions for a 

a/A for  various  values of H. 

We consider a ring  quasi-array of s tangentially 
oriented,  linear  antennas  having  the  same  length 1. 
The mid-points of the  antennas  are assumed to  be placed 
equidistantly along the periphery  of a circle with  radius 
a,  as shown in Fig. 14. The  antenna j will thus coincide 

V = O  

nas of length 1. 
Fig. 14-Ring quasi-array of s tangentially  oriented  linear  anten- 

with the side j in a regular  s-angle, the inscribed circle 
of which is the said circle with  radius a. A spherical 
co-ordinate  system is introduced as  shown  in the figure 
so that  the mid-point of antenna j has  the  co-ordinates 
(a,  r / 2 ,  U j ) ,  where 

The  current I ,  in antenna j is  supposed to  be given by 
I j  = IeiEU. 

3' 
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In analogy  with the calculations  previously  carried 
out we introduce a normalizing constant K defined by 

4a 
the field  will then  be  determined  by  the specification of 
the normalized  electric field strength F(8, p) correspond- 
ing  to  this  constant. 

In order to  be able  to express F in a  simple way we 
define the following functions; 

1 
2a 

v o  = arc tg  - . 

I t  is  seen that  this expression may be derived  from the 
expression for the field from  a  homogeneous  ring  quasi- 
array of tangential  Hertz dipoles  given above  by re- 
placing n/zJ,(z) and J',(x) by P S ~ . ~ ~ ( X )  and Pdn,uO(x) 
respectively.  When the length 1 of the  antennas  con- 
verges towards zero, the expressions  for the field com- 
ponents derived  here  converge  towards the expressions 
for the field components of a corresponding  quasi-array 
of Hertz dipoles. 

In the case  where the  number s of the  elements is 
infinitely  large we  find from the expressions  given above 
the following expressions  for the field components, 

FB = cos BPsH,uo(Z)eiH(#-~/2), 
FQ = iPdH,.ao(z)eiH('-"'2). 

For a homogeneous  ring quasi-array of antennas  with 
a sine-shaped current  distribution  corresponding expres- 
sions  for the field may be  derived ; the functions which 
must be  introduced in this  case  are more  complicated 
than those  occurring  here. 

HOMOGENEOUS RING QUASI-ARRAY OF 

RADIAL ANTENNAS 

Homogeneous Ring Quasi-Array of Radial Hertz Dipoles 
Radiated  Field; In  the preceding  section we have seen 

that a  homogeneous  ring quasi-array of tangential 
antennas  radiates  an  essentially  horizontally polarized 

field which to  an increasing  degree  concentrates around 
the horizontal  plane  with  increasing  increment of the 
current  phase per revolution. I t  may  be  supposed  that a 
homogeneous  ring quasi-array of radial  dipoles radiates a 
field of a  similar  type. It'e shall  therefore carry out  an 
investigation of the field from  such an  antenna  system. 

Certain  types of homogeneous  ring quasi-array  have 
long  since  found  practical  application.  Bohm has sug- 
gested an  antenna with  reduced  radiation  for high 
elevation  angles, and which consists of a vertical  wire 
being  connected at its upper  end to  a system of radial 
wires of such  a  length that regard  has  to  be  taken of the 
radiation  from  these  wires.lZ The radiation  from the 
radial wires results  in  a  reduction of the field radiated a t  
high elevation  angles so that  the  antenna  may be used 
as a  fading-reducing  antenna.  Bohm24  has  calculated  the 
field radiated  by  the  radial wires on the  assumption  that 
the  number of wires is  infinitely  large, so that  they form 
a  disk,  and so that  the  total  current passing any circle 
concentric  with  the  periphery of the disk  is constant. 
Whereas  this  antenna  is composed of radial wires with 
currents in the  same  phase,  the  turnstile  antenna  in- 
vented  by  Brownz5  may be considered constructed  by 
radial wires with  currents  the  phase of which increases 
2a during  one  revolution.  Thus,  with  the  notation used 
above,  these  antennas correspond to  H = 0 and H = 1 
respectively. 

,4s the simplest  type of a homogeneous  ring  quasi- 
array of radial  antennas we shall  here  consider  such  a 
ring quasi-array of radial  Hertz dipoles. For  the special 
values of H,  H = 0 and I H I = 1, the field .from this 
quasi-array was  previously  calculated by  Carter.I5  We 
extend the investigation of the ring quasi-array in ques- 
tion to quasi-arrays  with an  arbitrary  value of H ,  so 
that  the possibility  of arriving at new,  usable  antenna 
systems of this  type  is explored. 

IVc shall  calculate the field from the ring  quasi-array 
shown in Fig. 1.5, of s radially  oriented  Hertz  dipoles 
of the  length L placed equidistantly along  a circle with 
radius a. A spherical  co-ordinate  system (7, e, p) is 
introduced so that  the co-ordinates of the  j th  dipole 
will be (a ,  a/2,  uj) ,  where 

2 aj u .  = - 
S 

j = 1, 2 ,  * . *  , s. 

The  current Ij in t he j th  dipole is assumed to  be 
I j  = IeiHUj. 

The calculation of the field is carried out in the  same 
manner  as  for a  homogeneous  ring quasi-array of tan- 
gential  dipoles. Introducing  the  normalization  constant 
K ,  defined by 

iksL3.I 
4s 

K = -  

2 4  0. Bohm, "Rundfunk-Sendeantennen mit vertikal gebiin- 
delter 4usstrahlung," Hochfreq. u. Elektroak., vol.  42, pp. 137-145; 
1933. 

48; April,  1936. 
25 G. H. Brown, "Turnstile aerials," Electronics, vol. 9, pp. 14-17, 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on September 25, 2009 at 07:56 from IEEE Xplore.  Restrictions apply. 



466 ELECTROMAGNETIC WA VE  THEORY  SYMP0SIU.M 

we  find the following expressions  for  the  components of 
the  normalized electric field strength 50, 4); 

m 

z -I 

where 
z = ka sin 8. 

93=0 

s-2 

Fig. 15-Ring quasi-array of s radial  dipoles. 

We  shall  first  consider  the field in the case  where  the 
number of elements is infinitely  large.  From the  above 
expression we find,  for s = a, 

Fe = LT’H(z) cos eeiH(+-r’z) , 

The  radiated field will thus in  general be elliptically 
polarized.  Only  for H = 0 the  pcomponent of the field 
strength is  zero  in every  direction so that the field is 
polarized  in the  direction  of  the @-axis. For I HI 2 1 
points in the  horizontal  plane  having  the  same  phase 
will be situated on an Archimedes’  spiral just as in the 
case of the homogeneous  ring  arrays  and ring quasi- 
arrays considered  earlier in this  paper. 

A general  idea of the  structure of the field for various 
values of H is best  obtained  by  investigating  the field for 
an infinitely  small radius of the ring quasi-array.  From 
the expressions  given  above we  find for ka << 1 

I-; $ cos e sin e for H = 0, 

(0  for H = 0, 

Fig. 9(b)  shows the field for H = 0. In  the case of 
I H I 2 1 the field from the ring quasi-array  considered 
here is seen to be identical  with  the field from  the ring 
quasi-array of tangential  Hertz dipoles  previously 
investigated.  For I H I = 1, 2, and  9  this field is plotted 
in Fig. 9(c)-9(e). The  comments  made on the ring 
quasi-array of tangential dipoles are  thus applicable  here, 
too. 

I t  is only for an infinitely  small radius  and for 1 H I 2 1 
that  the field from a homogeneous  ring  quasi-array of 
radial dipoles  is identical  with  the field from a corre- 
sponding  homogeneous  ring  quasi-array of tangential 
dipoles. With  an increasing radius of the ring quasi-array 
of radial dipoles  considered  here the  radiated field will 
deviate  to  an increasing  degree  from the ideal field shown 
in Fig. 9 as well as from the field radiated  from a cor- 
responding  ring  quasi-array  of  tangential  dipoles. 

So far we have  assumed that  the  number of elements 
is infinitely  large. In  practice,  however,  the  number will 
be finite, and we must  then use the  complete  expression 
for the field given  earlier.  We suppose that  the  number s 
of elements is larger than 2 I H 1, 

s > 2 ( H I .  
The  term  corresponding to q = 0 in the  expressions for 
Fe and F, will then  be  the  dominant  term,  and we may 
therefore  express  the field components  by  including  only 
one  extra  term in  each of the infinite  series 

Fe Z i COS e[JfH(~)eiE(+-r/2)  + J I H + a ( Z ) e  i (H+s)(+-u/2)  

+ J’--H+s(z)e --i(-E+s)(bfa/2) I ,  
F+ - [“ J~(~,~’H(+-=/~) I + J ~ + ~ ( ~ ) ~ ’ ( H + s ) ( + - ~ / ~ )  

Z 2 

-H $- s - J-H+,(z)e- i ( -H+s)(*/2) 

2 I- 
I t  appears  from  these  expressions that  the  relative 
maximum  variation A I Fe I and A I F, I for the  quasi- 
array  considered  here is equal  to A 1 F, I and A I Fe I 
respectively  for the corresponding  homogeneous  ring 
quasi-array of tangential dipoles  previously  dealt  with. 
Consequently Fig. 11 (a)  and 11 (b) show the  relative 
maximum  variation of the 8-component  for a homo- 
geneous  ring  quasi-array  with  radially  oriented  elements 
for H = 0 and I H I = 4, and Fig. 10 the relative, 
maximum  variation of the pcomponent for such an 
array for I H I  = 4. 

Radiation Resistance and Gain 
We  shall now calculate  the  radiation resistance and 

the gain  for a homogeneous  ring  quasi-array of infinitely 
many  Hertz dipoles. To a good approximation  the  results 
hereby  obtained will also be  applicable  to a ring  quasi- 
array with a finite number of elements  when  the  number 
of elements is as large as  the  considerations  to  be  taken 
for  obtaining a fair  approximation  to  an  azimuthally 
omnidirectional  antenna  system  permit.  The  calculation 
is made in close  analogy to  the corresponding  calculation 
for a  homogeneous  ring  quasi-array of tangential  Hertz 
dipoles. 
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I t  being  assumed that  the  radiation  resistance R is 
given by  the  current in an odd  dipole as a  reference 
current,  the  constant N previously  introduced will be 

4T 
Hereby  the  function m ( 0 ,  9) will be  expressed by 

whereas the  constant M calculated  from  this expression 
is  given  by 

We shall  here  confine  ourselves to giving the expression 
for the radiation  resistance  for 1 H I 2 1. I t  may  then 
be shown that  the expression for M may be  transformed 
into 

1 
8 

M = - [ A  H-l(ka) + AH+l(ka) + 2BH(ka)], 

where A n ( x )  and B , ( x )  are  the  functions defined in a 
preceding  section. From AT, m(8, p), and 144 we may now 
calculate the radiation  resistance and the gain. The 
radiation  resistance R multiplied by ( 2 ~ a / s L ) ~  is plotted 
in Fig. 16 as a  function of a / h  for the various  values of 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
a - 
x 

Fig. 16-(2?r~/sL)~ multiplied by the radiation  resistance of a 
homogeneous  ring  quasi-array of radial  dipoles as  a  function of 
a/A for  various  values of H. 

H ,  whereas the gain g(0, p) is plotted  in Fig. 17. The 
curves  showing the  radiation  resistance  and  the  gain 
of the ring  quasi-array  investigated  here  are seen to  have 
a shape  similar  to,  but  quantitatively  deviating  from, 
the corresponding curves for the ring quasi-array of 
tangentially  oriented dipoles  previously  investigated. 

Homogeneous Ring Quusi-Array of Radial, Linear An- 
tennas w i t h  a Sine-Shaped  Current 

In  the investigation  made  above of homogeneous  ring 
quasi-arrays of radially  oriented  dipoles we have so far 

assumed,  for the  matter of simplicity, that  the elements 
of the ring quasi-arrays were Hertz dipoles. In  practice, 
however, the  quasi-arrays will be  composed of linear 
antennas  having a finite  length. This applies to such 
antennas  as  the  disk  antenna suggested by BOhmz4 and 
the  turnstile  antenna suggested by  Brown,25  and i t  wilI 
apply also to ring  quasi-arrays  for  larger  values of I H I. 

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.e - a x 

homogeneous  ring quasi-array of radial  dipoles as a function of 
Fig. 17-The gain  in  horizontal  and  vertical  directions  for a 

u/A for  various  values of H. 

When the  current  distribution on the linear antennas is 
known, i t  is possible to  derive an expression for  the field 
similar to  the expression  derived above  for  the field 
from  a  ring quasi-array of radial  Hertz dipoles. 

Fig. 18-Eng  quasi-array of a  radially  oriented,  linear  antenna. 

By way of example we shall  here  give the field from a 
ring quasi-array of s linear  antennas of the  length b,  
placed as the spokes of a wheel, as shown  in  Fig. 18, and 
carrying sine-shaped currents Ij of the  same  numerical 
value. The phase of these  currents increases  from  one 
antenna  to  another so that  its increment  during  one 
revolution  amounts to H2r. With  the  notation  introduced 
in  Fig. 18 the  current Ij in the  current  maximum  (actual 
or virtual) of antenna j may  be expressed by 

I. = IeiHu. 
31 

where 

Uj = ~ 

2 Tj 
S 

j = 1, 2, - a -  , s. 
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Introducing a  spherical  co-ordinate  system ( r ,  e, p) in 
the usual  way and defining the normalization constant 

i k s b l l  
4n- 

we may express the components of the normalized 
electric field strength F(0, cp) by 

K = - ,  

z COS e * Fo I -- 2 (2 - 61,q)[PdH+qa,e(kb)e’(H+qS)(”-”/2) 
2 kb q=o 

+ pd-H+qs,dkb)e-  i ( -H+qs) (6+~/2)  1 ,  
1 .  m 

- Ps-H+qsle(kb)e - i (  -H+qs)(6+~/2)  

The functions p s , , ( x )  -and @,,(x) occurring  in  these 
expressions are defined by 

~ s n . o ( x )  = + [ P n - l t o ( x )  + ~ n + 1 , e ( x ) ] ,  
~ d n , o ( x )  = +[Pn-l,e(x> - ~ n + l , e ( ~ ) ] ,  

where 

P n , o ( x )  = /’sin (x  - t ) Jn ( t  sin e)  dt. 

I t  seems  impossible  generally to express this  function in 
a  simple way  by known  functions.  However, an exception 
is the  important case e = a/2 corresponding to  radiation 
in the horizontal  plane e = a/2. As shown by  the  author, 
we have 

0 

(- 1) n/2[n sin x - X J ~ ( X )  

described as a  homogeneous  ring quasi-array,  with 
H = 0, of  linear  antennas  that  are  perpendicular  to  the 
radius a t  their  center,  and  that form  a suitable  angle 
with the horizontal  plane,  this  angle  depending  on the 
radius of the circle. This  antenna  system  radiates  in 
horizontal  directions a circularly  polarized field that is 
independent of azimuth; for this reason i t  is  suited  for 
communication  between  a fixed station  and  an airplane. 

We  shall  here  generalize the investigation  made by 
Brown and  Woodward,  setting ourselves the  task of 
calculating the field from  a  homogeneous  ring  quasi- 
array  ,with  an  arbitrary H of an  arbitrary  number of 
dipoles  with an  arbitrary  orientation.  The  antenna 
system  treated  by Brown and Woodward will then be 
comprised as a  special  case by  this  investigation,  but 
the expression for the field will be  presented  here in a 
form  more suitable  as a basis  for the design. The homo- 
geneous  ring arrays  and ring quasi-arrays previously 
dealt  with in this  paper will also  be included as special 
cases in the following investigation. 

A 

I 4 2 - - 1  + X J l ( X )  + 2 2 ( -  l ) i + I  
j =  1 

(n - 2j)J&)] for n even. 
For H = 1,  s = 4, and b = X/4 the  above  formulas 

will express the field from an  ordinary  turnstile  antenna. 

HOMOGENOUS  RING  QUASI-ARRAY OF OBLIQUE 
ANTENNAS 

In  the investigations  made  until now of homogeneous 
ring  arrays  and ring quasi-arrays of dipoles we have 
assumed that the dipoles were axial, tangential, or 
radial; we have  hereby  obtained knowledge of and a 
basis  for the design of some useful types of antennas. 
However, i t  is  conceivable that some types of ring  quasi- 
arrays of obliquely  oriented  antennas  may also turn  out 
to be  useful  for  practical purposes. An antenna  system 
which in principle  is a special  case of such  a  ring  quasi- 
array,  is  the  antenna  system  invented  by  Lindenblad,26 
which has been further  investigated  by Brown and 
Woodward;27  with the  notation used here it  may be 

Empire State Television Station.  Part 2 ,  ”Communications, vol. 21, 
*6 N. E. Lindenblad,  “Antennas  and  transmission  lines at  the 

pp. 10-14,  24-26; April, 1941. 
*’G. H. Brown and 0. M. Woodward,  “Circularly-polarized 

omnidirectional  antenna,” RCA Rev., vol. 8, pp. 259-269;  1947. 

array of oblique  dipoles. 
Fig. 194r i en ta t ion  of a  dipole in a  homogeneous  ring  quasi- 

We  consider s Hertz dipoles of the length L that  are 
placed equidistantly  along a circle with  radius a ,  as  
shown in Fig. 1. The  antennas  are assumed to form the 
angles a, 8, and y with  the r - ,  e-, and p-axes, respec- 
tively, in a spherical  co-ordinate  system, as shown  in 
Fig. 19. The  current in the  j th  dipole is supposed to  
be given by 

where 
I j  = IeiHu. 

31 

ui = - 2 aj 
S 

j = 1, 2,  * . *  , s. 

With  the  normalization  constant K being defined by 

4n 
the normalized  electric field strength F ( 0 ,  cp) may now be 
expressed by 

Fe = - 2 (2 - 6 o q )  { [ ~ J ~ H + ~ ~ ( z )  cos e cos a 1 *  

2 q=o + JHtqs ( z )  sin 0 cos B 
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+ J-H+**(z) sin e cos p - + qs J--H+&) 
2 

The  terms corresponding to q = 0 in these expressions 
denote  the field corresponding to  an infinitely  large 
number of elements. Of the  many possible antenna 
systems  that  may result  from using different  values of 
a, p, 7 ,  and H we shall  only  give attention here to  the 
following two  important cases: a = n/2, H = 0, and 

a = n/2, H = 0. In  this case the dipoles are  tangents 
to a  circular  cylinder. They form the angle y with the 
horizontal  plane,  and  they  carry  currents  with  the  same 
phase. If we choose especially 

y = T/2, H = 3 .  

Jl(ka) 7 = f arc tg - 
Jo(ka)  ' 

the field components in the case of an  infinite  number of 
elements will be  expressed by 

The  antenna system  designed  in that way  is  seen to  be 
azimuthally  omnidirectional  and in horizontal  directions 
to  radiate a circularly  polarized field. In  the vertical 
direction the field is zero. The  quasi-array  dealt  with 
here  is the very  antenna  system  invented  by  Linden- 
bladZ6  and  further  investigated  by Brown and Wood- 
wardz7 discussed  previously. 

ka << 1, we find 
When the ring quasi-array  has  such a  small  radius that 

Fo Z k - sin e, ka . 
2 

F, = - z - sin e. - . ka 
2 

The field is  then seen to be circularly  polarized in any 
direction in space. The polar  diagram for each of the 
field components becomes identical  with the diagram 
shown in Fig. 3(a). 

From  the  general expression  given above for the field 
from a homogeneous  ring quasi-array of an  arbitrary 
number of oblique  elements we easily find the  relative, 
maximum variation of the  antenna  system considered 
here, when this  system  has a finite  number of elements. 

y = ~ / 2 ,  H = 1. In  this case the dipoles are placed 
along the edges of a pyramid;  they  make  the  angle a 
with  the  horizontal  plane,  and the  current  phases increase 

2n during  one  revolution. The  antenna  system is 
azimuthally  omnidirectional,  and  the field radiated  in 
the  vertical  direction is circularly  polarized. In hori- 
zontal  directions  the field  ill be  linearly  polarized. 
By choosing a suitable angle of inclination a for the 
antennas we may  obtain  that  the field radiated in 
horizontal  directions  forms an angle of 45 degrees  with 
the horizontal  plane.  We put 

1 
a = +arc tg -, 

ka 
and  obtain  hereby  the following expressions for the field 
components in the case of an infinitely  large number of 
antennas 

Fe = [iJ,'(z) cos 0 rt: - J l ( z )  sin e] cos(arc tg - )e 1 1 i ( , - r /2)  

ka ka 
1 

In the vertical  direction  this field is circularly  polarized. 
In horizontal  directions i t  is linearly  polarized, and  the 
electric field strength  extends  an  angle of +45 degrees 
with the horizontal  plane. 

A general  impression of the  character of the field is 
best  obtained  by considering  a  ring quasi-array of the 
type considered  here  with  such a small  radius  that 
ka << 1. We  then  have 

900 

Fig. 20-The electric field radiated  by a small  homogeneous 
ring  quasi-array of oblique  dipoles  with y = x /2  and H = 1. 

These field components are plotted in Fig. 20. For the 
polar  distances 0 = 0 degrees, 30 degrees, 60 degrees, 
and 90 degrees the full-drawn  line in Fig. 21 (a)-(d) shows 
the ellipse which is described by  the  vector,  the  electric 
field strength. 
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a , o = o  0 b. 0 = 30' 

I 

the field radiated  by  a  homogeneous  ring  quasi-array of oblique 
Fig. 21-The full-drawn  lines show the polarization  ellipses of 

grees, 30 degrees, 60 degrees, and 90 degrees. The  dotted lines  indi- 
dipoles  with y = 7r/2 and H = 1 for the pole distances 0 = 0 de- 

cate  the  voltage induced in a  linear antenna placed  in this field. 

oriented  in  the (e, +)-plane  as  indicated by the angle 21. 
Fig. 22-Linear antenna placed  in the direction (0, +) and 

If in the field of the ring  quasi-array placed at the 
origin we place  a  linear antenna as shown in Fig. 22,  
the voltage  induced in the linear antenna, will be  given 
as a function of the angle u for  various  values of the 
polar  distance B by  the  dotted  curves in Fig. 21. From 

this we see that for  most  placings  and  orientations of 
the linear  antenna tXe induced  voltage will be different 
from zero. However,  when the linear antenna  is placed 
in the horizontal  plane,  there will be a certain  direction 
of the  antenna for which no voltage is induced in the 
antenna. 

If the sequence of the  current  phase in the ring  quasi- 
array is inverted ; ix . ,  if we choose H = - 1 instead of 
H = 1, as  done  above,  the  diagrams  shown  in Fig. 
21(a)-(d) will be reflected in the &axis. If in any case 
we choose the sequence of the  current phase of the 
ring quasi-array giving the maximum  induced voltage 
in the linear antenna, we obtain  for e = 0 degrees, 
30 degrees, 60 degrees, and 90 degrees the  induced 
voltages in the linear antenna given by  the  curves in 
Fig.  23(a)-23(d). I t  appears from this figure that  the 
induced  voltage  varies  only to a  small  degree  with the 
placing and  the  orientation of the  antenna when  reversal 
of the  current  phase is applied. 
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ê  

a Q = O '  

a 

t 
2 

b 0 = 30' 

b 

C 8 = 60' d 0 = 90' 
Fig. 23-Induced voltage  in a linear  antenna placed  in the field 

and H = 1, when  reversal of the sequence of the  current  phase is 
of a  homogeneous  ring  quasi-array of oblique  dipoles  with y = ~ / 2  

allowed. 

As is  well known, i t  is not possible to design an iso- 
tropic antenna.28 Various attempts  have been made to 
design antennas  the  properties of which approximate 
those of an isotropic  antenna. However, for all of these 
antennas  it is true  that  at least  for  one  direction  in  space 
towards,  and for one  orientation of a linear  receiving 
antenna  they will induce the  voltage zero  in this  antenna. 
In  applications  where  reversal of the sequence of the 
current phase is permissible, the ring quasi-array 
described  here will be  a good substitute for an isotropic 
antenna. 

As a  practical  design of the ring quasi-array described 
here i t  will probably  be  expedient to use a turnstile 
antenna,  the four arms of which are  turned  upwards so 
that  they form  the  angle v with the vertical  direction, as 
shown  in Fig. 24. The field from such a "quadruped 
antenna" will to some  degree deviate from the field 
from the ring quasi-array considered  above.  By a 
suitable choice of the  length of the  arms of the  antenna 

H. F. Mathis, "A short proof that  an isotropic  antenna is 
impossible," PROC. IRE, vol. 39, p. 970; August, 1951. 

I 

47 1 

Fig. 24-Quadruped  antenna. 

and of the angle v i t  will, however,  be possible to  obtain 
a satisfactory  radiation  diagram. 

SUPER-GAIN 

In  the preceding  sections it  has been demonstrated 
that  the field radiated from a homogeneous  ring array 
or ring quasi-array will concentrate  the more around 
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the  horizontal  plane  the  larger  the  increment H2a of 
the  current  phase  during  one  revolution.  By  making H 
sufficiently  large, i t  is  possible  for  a  homogeneous  ring 
quasi-array  of  arbitraiily chosen  dimensions to  obtain 
an  arbitrarily  large  gain.  This  result  is  inconsistent  with 
the practical  experience  generally made  in  the  antenna 
theory  as  this  shows that for an  antenna of given 
dimension i t  is  practically impossible to  obtain a  gain 
that essentially  surpasses the gain  for a conventional 
antenna of the  same  diameter.  Since  the  early  forties, 
a phenomenon  such as  the  one described  here has 
aroused  considerable  interest  among antenna  theorists 
and  has  been  investigated  from  various  points of view 
under  the  name of “super-gain.”  As  for the  literature 
on this  subject, reference is made  to  an  earlier  paper,’ 
in which  a critical  investigation of the problem of super- 
gain  has been made,  and to  another  paper,8 in  which the 
connection  between the  theory of super-gain  and ill- 
formation  theory  is  treated. 

In a few words the solution to  the problem of super- 
gain  may  be  thus  formulated: i t  is certainly possible 
to  obtain a  gain that considerably  surpasses the gain 
that is  “natural”  to  the  antenna in question;  but  as a 
result  the  antenna will acquire a Q so large that  it  will be 
inapplicable in practice. 

For determining  the  approximate  minimum  value 
which a homogeneous  ring array or a  homogeneous  ring 
quasi-array  may  have, if super-gain  is  not t o  occur, 
we  shall  base  our  considerations  on a paper  by  Woodward 
and L a ~ s o n . ~ ~  In  this  paper  the  authors utilize the  fact 
that  the  current  distribution on a linear antenna  array 
and  the  array  characteristic  are  Laplace  transforms 
of each  other.  They  hereby  demonstrate that  in order 

to  avoid  super-gain  for  such an  antenna we must  demand 
that  the  greater  part of the produced field is  radiated 
at real,  and  not a t  imaginary, angles.  Similarly,  for 
the homogeneous  ring array  dealt  with  above we must 
demand  that  the  greater  part of the  array  characteristic 
G - JH(ka sin 6’) comes within  the real domain of e; 
i.e., for t = sin 6’ < 1. Consequently, we must  demand 
that  the function J ~ ( k a t )  decreases  rapidly  towards  zero 
for t > 1. In  order  that  this  may  apply we must  have 

Hx a > amin. = - . 
2T 

Accordingly,  for the  smallest  usuable  antenna  array 
the  phase of the  current  increases  just  as  much  per  unit 
of length as for a conventional  linear,  endfire  array. 

By a similar  argument  the  same  result is obtained 
for homogeneous  ring  quasi-arrays of tangential  and 
radial  dipoles. 
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hardtsmaier  and U. Finkbein,  “Kreisgruppenantennen 
als  Rund-  und  Richtstrahler,” Elektrotech., vol. 4, pp. 
239-244,  284-290; 1950. R. H. DuHamel,  “Pattern  syn- 
thesis  for antenna  arrays on circular,  elliptical,  and 
spherical  surfaces,”  N6-ori-71, Task XV, ONR  Project 
No. 076161, Tech.  Rep. No. 16; 1950. 
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