

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

 A NOVEL INTRUSION DETECTION SYSTEM (IDS)

ARCHITECTURE

ATTACK DETECTION BASED ON SNORT FOR MULTISTAGE

ATTACK SCENARIOS IN A MULTI-CORES ENVIRONMENT

JULES FERDINAND PAGNA DISSO DE MUILA

PhD

UNIVERSITY OF BRADFORD

2010

2

Abstract
Recent research has indicated that although security systems are developing,

illegal intrusion to computers is on the rise. The research conducted here

illustrates that improving intrusion detection and prevention methods is

fundamental for improving the overall security of systems.

This research includes the design of a novel Intrusion Detection System (IDS)

which identifies four levels of visibility of attacks. Two major areas of security

concern were identified: speed and volume of attacks; and complexity of

multistage attacks. Hence, the Multistage Intrusion Detection and Prevention

System (MIDaPS) that is designed here is made of two fundamental elements:

a multistage attack engine that heavily depends on attack trees and a Denial of

Service Engine. MIDaPS were tested and found to improve current intrusion

detection and processing performances.

After an intensive literature review, over 25 GB of data was collected on

honeynets. This was then used to analyse the complexity of attacks in a series

of experiments. Statistical and analytic methods were used to design the novel

MIDaPS.

Key findings indicate that an attack needs to be protected at 4 different levels.

Hence, MIDaPS is built with 4 levels of protection. As, recent attack vectors use

legitimate actions, MIDaPS uses a novel approach of attack trees to trace the

attacker’s actions. MIDaPS was tested and results suggest an improvement to

current system performance by 84% whilst detecting DDOS attacks within 10

minutes.

3

Acknowledgement

First things first, I would like to thank God for making this project come through.

I also would like to thank both my supervisors John Mellor and Andrea Cullen

for their great support as I was working through this research project. Great

thanks go to my direct family and in-laws who have been of a great moral,

financial support. I would like to mention my wife Jaigar, my daughter Jessie

and Mum and Dad, and my auntie Maguy Sardin.

To my colleagues at Syphan, I would like to say a big thank you as they have

provided an environment for me to learn and grow. On the same note, I would

like to thank all my friends who have contributed to the accomplishment of this

work by their direct or indirect input.

I will conclude this by thanking the University of Bradford who allowed me to

carry out my research despite the problems and I had over the course of this

work. In advance, I would like to thank the examination board (external and

internal) examiners for taking the time to examine my work.

Last but not least, a special thanks to Diana Sinclair, Anthony Fomuso, and

many other who has help minimising the number of typos and grammatical error

in this thesis.

To God be the Glory for His mercies endure forever.

4

Table of contents

Abstract ... 2

Acknowledgement ... 3

Table of figures ... 8

List of tables .. 13

1 Introduction ... 15

1.1 Terms and Expressions ... 15

1.2 Background .. 21

1.3 Motivations ... 26

1.4 Research Aim and objectives... 27

1.5 Research Methodologies ... 28

1.6 Identifying the state of the art ... 28

1.7 Dataset Sources... 30

1.8 Thesis original contribution .. 33

1.9 Outlines the rest of Thesis ... 34

Conclusion .. 35

2 Literature review ... 36

2.1 Intrusion detection System ... 36

2.2 Signature based IDS – the case of SNORT ... 36

2.3 Anomaly based IDS – the case of BRO ... 39

2.4 Intruvert Network .. 42

2.5 GRIDS - a graph based intrusion detection system for large networks 46

2.6 Sguil: The Analyst Console for Network Security Monitoring 47

5

2.7 Intrusion detection System and their current level of protection 47

2.8 Multi-core evolution .. 53

2.9 Related work .. 57

2.10 Conclusion ... 61

3 The problem ... 63

3.1 Introduction .. 63

3.2 Security trends: threats and attacks ... 64

3.3 Choosing the IDS ... 66

3.4 Snort overview ... 70

3.5 Testbed .. 71

3.6 Test under high speeds networks .. 71

3.7 Snort reaction to ICMP flood .. 78

3.8 Snort reaction to UDP Flood .. 83

3.9 Snort reaction to HTTP Flood .. 87

3.10 Snort reaction to multistage attacks ... 91

3.11 Analysis: ... 100

Conclusion .. 102

4 Modelling Multistage attacks for Intrusion Detection System 104

Introduction ... 104

4.1 Multistage attacks .. 105

4.2 Analysis strategy .. 105

4.3 Scenario Alpha ... 105

4.4 Scenario Beta .. 118

6

4.5 Scenario Charlie... 123

4.6 Modelling multistage attacks .. 131

4.7 Multistage attack detection and mitigation framework 153

4.8 U-Case ... 154

4.9 Conclusion ... 157

5 Distributed Denial of Service Attack (DDOS): Detection and Mitigation ... 158

5.1 Introduction .. 158

5.2 Threat analysis: real live capture of DDOS attacks revealed 159

5.3 Summary of DDOS attacks .. 173

5.4 Solution Architect ... 175

5.5 Countermeasures... 178

5.6 DDOS attack detectors: RADAR .. 179

5.7 Conclusion: .. 183

6 Multistage Intrusion Detection and Prevention System: MIDaPS 184

6.1 The V-BANI Framework ... 184

6.2 Comparing MIDaPS features to Snort features .. 187

6.3 The architecture ... 191

6.4 Attack modes ... 207

6.5 Additional experiment and results .. 208

6.6 False positive rate .. 216

6.7 Conclusion ... 217

7 Conclusions and future work .. 219

7.1 Thesis Contribution .. 219

7.2 Challenges and limitations ... 221

7

7.3 Recommendations and future work ... 224

References ... 226

8

Table of figures

FIGURE 1-1: TCP FLOW .. 17

FIGURE 1-2: EVOLUTION OF RESEARCH AREAS [13] .. 24

FIGURE 1-3: EXPERIMENT TESTBED FOR CDX 2009 .. 33

FIGURE 2-1 SNORT PROCESSING SCHEMA .. 38

FIGURE 2-2: BRO ARCHITECTURE [42] .. 41

FIGURE 2-3: INTRUVERT ARCHITECTURE [45] .. 44

FIGURE 2-4: ATTACK REPORTED BY HOSTEUR .. 46

FIGURE 2-5: NEW MALICIOUS CODE SIGNATURES [55] ... 48

FIGURE 2-6: ATTACK VECTORS [56] .. 49

FIGURE 2-7: ATTACKS BASED ON SPEED ([92]) .. 49

FIGURE 2-8: MOST CONCERNING THREATS [56] .. 50

FIGURE 2-9: SPEED IMPROVEMENT OF HARDWARE OVER SOFTWARE 51

FIGURE 2-10: BANDWIDTH USAGE GROWTH ... 52

FIGURE 2-11: INTEL MULTI-CORE ROAD MAP [63] .. 54

FIGURE 2-12: THE MOORE LAW ... 55

FIGURE 2-13: PERFORMANCE OVER POWER CONSUMPTION 56

FIGURE 2-14: PARALLEL EXECUTION OF NETWORK ANALYSIS [78] 59

FIGURE 3-1: ATTACK SIZE, ([92]) .. 64

FIGURE 3-2: THREATS PREDICTION FOR 2010 ([92]) ... 64

FIGURE 3-3: ICSA IPS COMPARISON FEATURES .. 67

FIGURE 3-4: SNORT COMMUNITY .. 69

FIGURE 3-5: BASIC SNORT ARCHITECTURE ... 70

FIGURE 3-6: SNORT PERFORMANCE UNDER CONTROLLED SPEEDS 72

9

FIGURE 3-7: SNORT PERFORMANCE BASED ON LOGS VARIABLE 73

FIGURE 3-8: SNORT PERFORMANCE BASED ON THE NUMBER IF IPS 74

FIGURE 3-9: IP LOST IN TRANSACTION PERFORMANCE STUDY 75

FIGURE 3-10: TIME REPARTITION FOR RULES ANALYSIS .. 77

FIGURE 3-11: EXPERIMENT 3.1 ... 79

FIGURE 3-12: ICMP DATA ANALYSIS 500KB/S ... 80

FIGURE 3-13: CPU UTILISATION - 100KB/S .. 80

FIGURE 3-14: ICMP DATA ANALYSIS 1000KB/S ... 81

FIGURE 3-15: ANALYSIS OF PACKET DROP AGAINST ICMP FLOOD 81

FIGURE 3-16: ANALYSIS OF CPU UTILISATION AGAINST ICMP FLOOD 82

FIGURE 3-17: CPU UTILIZATION WHEN SENDING 500KB/S UDP PACKETS 83

FIGURE 3-18: UDP DATA RATE TRANSFER ANALYSIS 500KB/S 85

FIGURE 3-19: CPU UTILIZATION 1000KB/S 30BOTS .. 85

FIGURE 3-20: CPU UTILIZATION FOR 1500KB/S .. 86

FIGURE 3-21: CPU UTILIZATION DATA RATE = 2000KB/S 86

FIGURE 3-22: UDP - SNORT PERFORMANCE ANALYSIS ... 87

FIGURE 3-23: HHTP BASED DDOS ATTACK VIEW BY SNORT 88

FIGURE 3-24: CPU UTILISATION 120BOTS .. 89

FIGURE 3-25: CPU UTILISATION 30-60BOTS .. 89

FIGURE 3-26: CPU MONITORING 30BOTS ... 90

FIGURE 3-27: ZOOM ON FIGURE 3-26 ... 90

FIGURE 3-28: SUSPICIOUS-TIME FILE INFORMATION .. 92

FIGURE 3-29: IP PARTICIPANT .. 93

FIGURE 3-30: IP 10.0.2.15 REGISTRATION .. 95

FIGURE 3-31: IP 10.0.3.15 REGISTRATION ... 95

10

FIGURE 3-32: ATTACK SCENARIO 1 .. 95

FIGURE 4-1: SICK-CLIENT.PCAP FILE INFORMATION ... 106

FIGURE 4-2: LIST OF OPERATING SYSTEM ... 107

FIGURE 4-3: OPEN CONNECTIONS ... 107

FIGURE 4-4: PORT 445 USAGE .. 107

FIGURE 4-5: PORT 139 USAGE .. 107

FIGURE 4-6: MATRIX OF COMMUNICATION BETWEEN ATTACKER AND VICTIMS PCS .. 112

FIGURE 4-7: ATTACKS STAGES: BOT INFECTED COMPUTER 116

FIGURE 4-8: ATTACK TREE 1 - BOT INFECTED .. 117

FIGURE 4-9: ATTACK TREE BOT INFECTED WITH PROXY ... 118

FIGURE 4-10: ATTACK-TRACE.PCAP FILE SUMMARY .. 119

FIGURE 4-11: CONVERSATION BETWEEN THE ATTACKER AND THE VICTIM PC 119

FIGURE 4-12: CONVERSATION 1 GRAPH ANALYSIS .. 121

FIGURE 4-13: BUFFER OVERFLOW AND SERVICE BINDING 121

FIGURE 4-14: COMMAND EXPLOITS (FTP) ... 122

FIGURE 4-15: FILE TRANSFER TO VICTIM SYSTEM ... 122

FIGURE 4-16: WINDOWS EXECUTABLE FILE IN TRAFFIC ... 122

FIGURE 4-17: FILE INFORMATION SCENARIO CHARLIE .. 124

FIGURE 4-18: OPERATING SYSTEM LIST - DAY1... 125

FIGURE 4-19: TCP TRANSACTIONS SUMMARY ... 126

FIGURE 4-20: SEQUENCE OF ATTACK SCAN28 ... 130

FIGURE 4-21: ATTACK BRANCHES ... 130

FIGURE 4-22: REMOTE CODE EXECUTION - JOOMLA SCENARIO 144

FIGURE 4-23: ATTACK TREE OBJECTS .. 148

FIGURE 4-24: MALWARE DOWNLOAD ... 149

11

FIGURE 4-25: ATTACK TREE - MALWARE DOWNLOAD ... 150

FIGURE 4-26: FUNCTIONAL DIAGRAM MULTISTAGE ATTACK DETECTION AND MITIGATION

FRAMEWORK... 154

FIGURE 4-27: DRIVE BY DOWNLOAD SCENARIO [153] ... 155

FIGURE 5-1: BOT ACTIVITY JUNE 2010 .. 159

FIGURE 5-2: IANA RECORD SHOWING PRIVATE ADDRESS RELATED INFORMATION ... 161

FIGURE 5-3: DDOS ATTACK USING IPV6 ... 164

FIGURE 5-4: DDOS ATTACK PATTERN IN IPV4 IDENTICAL TO PATTERN IN IPV6 164

FIGURE 5-5: IP REVOLVED TO ITS COUNTRY ... 169

FIGURE 5-6: VIRUS CAPTURED ... 171

FIGURE 5-7: NORMAL TRAFFIC PATTERN- TRAFFIC NOT UNDER ATTACK 172

FIGURE 5-8: PACKET PER SECOND UNDER MEDIUM UDP DDOS ATTACK 172

FIGURE 5-9: PACKET PER SECOND HTTP DDOS ATTACK 173

FIGURE 5-10: DDOS ATTACK CLASSIFICATION ... 173

FIGURE 5-11: DDOS PROTECTION ELEMENTS .. 176

FIGURE 5-12: IDS STATES ... 176

FIGURE 5-13: THE DDOS ARCHITECTURE ... 179

FIGURE 5-14: SERVER CHEETAH - NORMAL ACTIVITY STREAM - HTTP PERFORMANCES

 ... 180

FIGURE 5-15: HTTP OBSERVATION 3 DAYS ACTIVITIES ... 181

FIGURE 5-16: CHEETAH SERVER BEHAVIOUR 1 .. 182

FIGURE 5-17: LYNX SERVER BEHAVIOUR 1 .. 182

FIGURE 6-1: V-BANI FRAMEWORK.. 186

FIGURE 6-2: REMOTE AGENT ARCHITECTURE ... 191

FIGURE 6-3: MIDAPS ARCHITECTURE ... 192

12

FIGURE 6-4: TOP 10 APPLICATION PROTOCOL BASED ON [25] 197

FIGURE 6-5: TOP 10 APPLICATION PROTOCOL BASED ON A DDOS CAPTURE 197

FIGURE 6-6: TRAFFIC CLASSIFICATION - PACKET SIZE DISTRIBUTION 198

FIGURE 6-7: DDOS PATTERNS ... 199

FIGURE 6-8: TRAFFIC CLASSIFICATION - TCP CONNECTIONS 200

FIGURE 6-9: TRAFFIC CLASSIFICATION - TCP FLAGS .. 200

FIGURE 6-10: MONITORING SPECIFIC HARD DISK .. 203

FIGURE 6-11: MONITORING THE WHOLE SYSTEM .. 203

FIGURE 6-12: P2P TRAFFIC ... 205

FIGURE 6-13: ALGORITHM FOR COMPLEX TRAFFIC PATTERNS 206

FIGURE 6-14: SCORING ALGORITHM .. 207

FIGURE 6-15: MIDAPS MODES .. 208

FIGURE 6-16: TREE ATTACK DETECTION .. 209

FIGURE 6-17: ATTACKING IPS OCCURRENCE PER TREE PATH 210

FIGURE 6-18: ATTACKING IPS PER TREE NODE .. 212

FIGURE 6-19: ATTACK TREE VIEW FROM DESTINATION IP 215

FIGURE 6-20: ATTACKS VIEW FROM THE DESTINATION IPS 216

FIGURE 6-21: SNORT VS. MIDAPS FALSE POSITIVE ... 217

13

List of tables

TABLE 1: STATISTICS IP LOST IN TRANSACTION .. 75

TABLE 2: SNORT RULES PERFORMANCE SNAPSHOT .. 77

TABLE 3: LIST OF IP PARTICIPANTS ... 106

TABLE 4: REPEATED ICMP MESSAGES ... 108

TABLE 5: MALICIOUS IP ESTABLISHING CONNECTION ... 111

TABLE 6: STRANGE BEHAVIOUR IP ... 113

TABLE 7: RECONNAISSANCE PHASE ... 120

TABLE 8: SEQUENCE OF ATTACK ... 123

TABLE 9: LIST OF IPS DAY1 .. 125

TABLE 10: COMPROMISED PORT NUMBERS ... 127

TABLE 11: THREAT DESCRIPTION SAMPLE .. 153

TABLE 12: UDP TRAFFIC SHOWING DDOS ATTACK .. 160

TABLE 13: TABLE SHOWING UDP DDOS ATTACK - SAME PORT FOR MULTIPLE IPS . 162

TABLE 14: IP RESOLVED TO ITS COUNTRY .. 162

TABLE 15: RANDOMLY GENERATED IPS WITH IDENTICAL PACKET PATTERNS 165

TABLE 16: IP RESOLVED TO THEIR COUNTRY NAME ... 166

TABLE 17: VARIATION OF DDOS ATTACK .. 167

TABLE 18: DISTRIBUTION OF HOST TAKING PART IN THE ATTACK IN LESS THAN A

SECOND ... 167

TABLE 19: ICMP MESSAGE TRACKING ... 168

TABLE 20: IANA RESERVED IP USED FOR DDOS .. 170

TABLE 21: FEATURES COMPARISON BETWEEN SNORT AND MIDAPS 189

TABLE 22: TRAFFIC CLASSIFICATION - TOP 10 IPS .. 195

14

TABLE 23: APPLICATION PATTERNS [187] .. 196

TABLE 24: COMMON PROTOCOLS .. 196

TABLE 25: PATTERNS IDENTIFIED .. 205

TABLE 26: ATTACK TREE BREAKDOWN... 210

TABLE 27: ATTACKING IPS PER TREE NODES ... 213

TABLE 28: FALSE POSITIVE RESULT ... 217

15

1 Introduction

This chapter will start by defining the terms and expressions specific to the

thesis and by giving an account of the current state of Internet attacks. The

thesis will then look into some of the technological advances that Intrusion

Detection Systems (IDS) can benefit from i.e. multi-core processors. The

motivation, research aim and objectives will be presented. The research

methodologies used throughout the thesis will be explained to add meaning to

the results obtained. The original contributions of this thesis will be presented.

This chapter will conclude by presenting the outline of the whole thesis.

1.1 Terms and Expressions

1.1.1 Abbreviations

AMD: Advance Micro Devices

DDOS: Distributed Denial of Service

DMZ: Demilitarised Zone

IANA: Internet Assigned Numbers Authority

IDS: Intrusion Detection Systems

IPS: Intrusion Prevention

MIDaPS: Multistage Intrusion Detection and Prevention System

NIC: Network Interface Card

NIDS: Network Intrusion Detection Systems

16

1.1.2 Terms and expressions

Bot: a piece of software that is programmed to execute a number of predefined

tasks and usually await order of execution for a master computer.

Botnet: A botnet is a group of bot infected PCs that are all controlled by the

same "command and control centre". A botnet, also known as a zombie army, is

a computer connected to the Internet that has been set up to forward

transmissions (including spam or viruses) to other computers on the Internet,

without the knowledge of the computer owner.

Countermeasure: countermeasure is a process put into place to address a

vulnerability in order to reduce the probability of attacks hence reducing the

possible impact of a threat.

DDOS attacks: a DDOS attack is a distributed denial of service. It is a denial of

service that is performed in an orchestrated manner using multiple attackers

against one victim.

Denial of Service: a denial of service is an attempt to make computer

irresponsive so that they stop delivering the services they intended for to those

having right of access.

Distributed Denial of Service: it is an alternative way to call DDOS attack

False negative: We speak of false negative when an alert is not generated

when it was supposed to be generated. In fact the system is generally thinks it

is not attack when it is.

False positives: we speak of false positive when attack did not occurs but the

system generate an alert as if they was a security breach

17

Flood attacks: flood attacks refer to any attack that is perform against a

computer system by overloading the system resources. This can be a flood of

request, response, or unwanted messages. Flood attacks generally lead to

Denial of Service

Denial of Service: denial of service occurs when legitimate users are

prevented from accessing and using their resources. This is generally achieved

through DDOS, DOS, and flood attack.

Flow: a flow in an exchange of message between two host from the SYN to the

ACK after a FIN/AC as shown in Figure 1-1

Figure 1‐1: TCP Flow

Fragmentation Attack: it is also known as the overlapping fragment attack.

Fragmentation refers to the IP datagram broken down into smaller packets and

18

over the network via different types of network media. These smaller packets

are generally reassembled at the receiving end. They are different type of

fragmentation attacks: Ping O’ Death Fragmentation Attack, The Tiny Fragment

Attack, and The Teardrop Attack.

Hardware based IDS: is it an IDS that has been implemented on chip. Here the

IDS is embedded into the hardware.

Hybrid IDS: a Hybrid IDS is an IDS that works both as a Network IDS and a

Host IDS.

Intrusion Detection Systems: An Intrusion Detection System (IDS) is a

system, software or hardware that listens to incoming and outgoing traffic and

reports any evidence of attacks or policy violation. An extensive definition of IDS

is given in chapter two.

Intrusion Prevention System: it is an Intrusion Detection System with the

capability to react against malicious packets. The usual reaction is a simple

block of the malicious packet.

Multicore : multicore will generally be used as a short form of multicore

processors

multi-core processors : A multi-core processor is an integrated circuit (IC) to

which two or more processors have been attached for enhanced performance,

reduced power consumption, and more efficient simultaneous processing of

multiple tasks [1].

Multicore technologies : it refers to technologies that use multicore

processors.

19

Multistage attacks: a multistage attack is an attack that is performed in

multiple steps. For instance, the attack can start by the user clicking on a link

from an unknown email. From the link a malicious program will then be

downloaded unto the computer. The malicious program will then start to

communicate with the master attacker in order to open door to attacks

Parallel Programming: It is now common to have computers i.e. laptops or

desktops with two or four CPUs also called cores. Multiple cores are equivalent

to multiple CPUs. To take full advantage of this evolvement, the source code

can be parallelised and its execution distributed across all the available CPUs.

Not too long ago, concurrent programming was only possible from a low-level

manipulation of threads and locks. With the recent technology and tools like

visual studio 2010, it is possible to write codes that will be executed across the

different processors with very little effort. Multiple tasks are executed at the

same time

Pre-processor / Preprocessor: preprocessors are blocks of code organised in

a way that the block can be turned on or off. They are two major pre-

processors. One adds another layer of analysis to Snort. This layer of detection

is intended to do complex tasks when rules cannot be used to detect attacks.

When an attack cannot be expressed into a rules (based on a signature), a pre-

processor can be written for that purpose. In the other hand, pre-processor can

be used to shape the traffic to make it easy for the detection engine. For

instance, obfuscated URL go through a pre-processor to transform the URL into

regular URL so that matching can be done by the matching engine.

20

Regular expressions: Regular expressions are also known as regex, or

regexp. Regular expressions are expressions that are represented using a sort

of compression language to shorten many expressions into one using similar

groups of expression. For example, ab? Would match ab plus any single

character (aba, abc, abd, ab1, abe, etc.)

Sequential Implementation: a sequential implementation is an implementation

where instructions are executed one by one, one after the other one

Signature: Signature will always make reference to Intrusion Detection System

signature in this thesis. In that sense, a signature is a pattern, a string that was

written to match attack behaviour here identified as string in packets.

Single core application: a single core application is an application that has

been writing without taking on board more than one CPU. This type of

application can still be a parallel application by using threats and dead locks.

Social networking: social networking is a group of people with common

interested. In this thesis, social networking will refer to group of people coming

together with common interest using the Internet.

SPAMS: SPAMS refer to the use of email to send huge amount of unsolicited

emails.

TCP Conversation: TCP conversations represent a complete communication

between two ends during a full session. This communication can be broken into

multiple packets. One conversation is sometimes refers as one session.

Threats: it is the possibility to take advantage of vulnerability and turn it into

attack against the vulnerable system.

21

Trace file: it is a file in which activity related to a user or a program is recorded

Traffic generator: a computer program use to generate traffic with predefined

conditions.

Virus: computer program written with malicious intend to harm computer

system.

Vulnerabilities: A vulnerability is a flaw or weakness in system security

procedures, design, implementation, or internal controls that could be exercised

(accidentally triggered or intentionally exploited) and result in a security breach

or a violation of the system’s security policy. It is also considered as the

existence of a weakness, design, or implementation error that can lead to an

unexpected, undesirable event compromising the security of the computer

system, network, application, or protocol involved

Worms: a worm is a malicious piece of code, software, is able to replicate itself

without any human interaction and propagate itself across networks, using

email, share folders etc.

Zombies: a zombie is a computer who has been affected by a malicious

program and made part of a botnet.

1.2 Background

Without question, the Internet today influences almost every single aspect of

life. Social networking has proved to be a great tool in bringing the world

together: MySpace in 2003, Facebook in 2004, and Twitter in 2006 [2], [3] and

other similar social websites have seen unprecedented growth. However,

22

malicious users have taken the opportunity to create applications that have

been used to recruit computers (also called zombies) into an army of computers

controlled remotely to serve in an attack at a later stage: a Distributed Denial of

Service (DDOS) attack [4] . Almost every single possible opportunity has been

exploited by malicious users to gain illegal access to computers or to have

control over them. Recent events revealed that these types of attack, targeted

at social networking users, have been used against businesses and as a cyber-

war tool [5]. Important governmental and business websites have been forced

to close for hours, days or even months by attackers sending excessive

amounts of data to their servers causing them to stop delivering their intended

services. Not too long ago, Internet security was a concern mainly for business

users. In today’s world, Internet security has become a matter of National

Security, forcing governments to take active part in the game [6].

DDOS attacks are performed by exhausting resources of other computers

without the consent and knowledge of legitimate owners. Computers

participating in a DDOS attack are affected in speed and overall performance as

excessive unplanned resources are used. In order to attack others computers,

the attacking computer is force to use extra resources. This put the attacking

computer in the position of being victim of DDOS attack if its resource used for

the attack exceeds or approach the limit of resources needed for a normal

operation. DDOS, more than any other Internet attacks have raised a high level

of awareness in the world. A great deal is spent by governments to try and

solve the problem [7], [8]. In addition, research groups have had sponsorship to

dedicate more time researching ways and methods to stop malicious users and

their activities. A well know open source project, Emerging Threats, has

23

benefited from one of these grants. They have been carrying out research on

how best to secure computer systems using Snort IDS [9]. Our research work is

based around Snort. There is a great need to secure online activities as

demonstrated by the multiple actions and grants towards making the Internet

more secure [10].

IDS have been increasingly used by communities around the world to detect

and protect against attacks as they are free of charge and involve a wide

community of experts. However the increased speed of communications, the

pace at which attacks are performed and the sophistication of recent attacks

make detecting and mitigating them very difficult. Despite their popularity, IDS

have failed to offer a level of security that would protect against recent attacks

as they grow in speed, bandwidth and sophistication, hence a move towards

multi-core systems [11], [12]. As shown in Figure 1-2 there has been a

growing interest in multi-core technologies and a slight decrease in specialised

processors. From 2003 to 2007 there has been an increased interest in finding

an alternative to single core. This indicates that researchers have found that

converting existing single core applications is not efficient [13]. As shown in

Figure 1-2 research efforts in single core applications have been significantly

reduced to the benefit of research in other field such as multicore. This is an

indication that building an IDS that is capable of multicore is more relevant that

working on a single core.

24

Figure 1-2: Evolution of research areas [13]

Many studies around improving IDS have led to scrutinising how multi-core

technologies would benefit the implementation of such systems [14]. As

preliminary research results around this topic show, there is great potential in

performance improvement by using such systems but no system to date has

been successfully designed and implemented [10] . In addition, successful

implementations of network based applications around multi-cores technologies

need to be examined thoroughly. Some researchers argue that

“Parallelizing legacy code is widely viewed as a deadend, but building

compelling addons to existing applications that take advantage of multicore,

and then “bolting on” these features to legacy codes is possible” [13]

A successful implementation of IDS would be able to keep up with the

technological advancements and the level of sophistication of attacks. Lately

25

using multi-core processors to improve speed and performances of systems

has become a popular subject and has drawn a lot of attention [13]. There are

many benefits from using multi-core processors that have yet to be exploited.

However, producing a good parallel system from a traditional serial

implementation remains a challenge as well as redesigning existing systems so

that they could be compliant with multi-core system of today and in the future.

There have been a few attempts [15], [16], [14] but these researches generally

look at a particular aspect inside the very complex structure of IDS without

looking at the consequences that their partial solution could have on the whole

structure of IDS systems or they use parallelism to prove that systems can run

faster but with no indication of the improvement in attack detection. Other

researchers have looked at improving current IDS systems based on a

particular hardware that does not necessarily comply with the evolution of

processors as stated by Moore’s Law [17]. Others still have looked at parallel

IDS that do not address recent attacks. As a consequence such systems would

need to be readapted for new hardware requirements. In this research, the

author focuses first on identifying why IDS systems fail against the latest attacks

by looking at IDS components. The author then proposes a new IDS

architecture that is compliant with the current technological evolvement and that

would not need to be redesigned based on any particular hardware. The

architecture is targeted at using available hardware on the market without any

prior change to the hardware structure. In addition, the architecture of the new

IDS will partly focus on DDOS detection and mitigation as DDOS has been

identified as compulsory feature for a security system protection.

26

1.3 Motivations

 The motivation of this research came from the industrial challenges of

producing a security system that would ensure availability, confidentiality and

integrity in regards of the current state of Internet security. After several years of

industrial experience and while working on the design of a security system for a

10GB appliance, some interesting ideas raised few questions marks. A recent

move by innovators to hardware based IDS implies a high speed and millions of

packets processed at the same time. However, hardware based solutions have

limitations in their capabilities to execute particular software functions. For

instance, there is no regular expression system fully implemented in hardware.

Currently, Snort rules contain 65% of rules with regular expression. In addition,

hardware based IDS have a lot of memory problems as there is hardly any

dynamic memory allocation. While the hardware improves speed, the software

implementation of IDS has more features even though there are currently many

attacks that go undetected. Securing Internet systems is more and more

challenging. In addition, a good number of companies rely on IDS and IPS to

protect their systems [18].

After investigation, it appears that there is a gap to fill. Hardware based IDS

deliver speed but are very expensive; software solutions, even though they do

not offer the conviviality of speed offered by the hardware IDS, they are able to

support a wider range of functionalities. From these conclusions, the author

started working on a system that will not only increase the packet processing

rate but also offer deeper analysis in order to enable the maximum detection

and mitigation possible. This will be achieved by adding additional analysis

27

capabilities to what currently exist in Snort. Further discussions in the coming

chapters will go into details how this can be achieved.

On the other hand, the author has a strong interest in contributing to the open

source as it is an environment where experts meet, discuss and work together.

In that regard, some of our work has been published to the open source

community managed by Google [19] where the author has produced an HTTP

code generator intended to test IDS resistance against spam sources.

This work was started from the perspective of having a system that works i.e. a

system that is able to cope with recent attacks and technology advancement, a

system that will deliver granularity in analysis, a system that produces less false

positive while improving the detection rate.

1.4 Research Aim and objectives

This research aims at producing a new architecture design for Network Intrusion

Detection Systems that will not only take full advantage of multi-core processors

as they continue to evolve but moreover, an architecture that is able to stand

against the most dangerous attack faced by the Internet today i.e. Denial of

Service attacks (DDOS) and multistage attacks i.e. attacks distributed amongst

packets and flow. The new architecture aims to be a multi-dimensional parallel

framework that will use readily available components i.e. widely available

software and hardware.

In striving to produce such a system, the following objectives would be

achieved:

28

 Redesign IDS based on Snort using a multi-dimensional approach and

ready for multicores architecture

 Identify Snort specific engines component weaknesses

 Produce a system that will improve the detection rate whilst reducing the

false positive

 Design a multistage attack detection system

 Keep up to date with technological advancement by suggesting a parallel

implementation of our architecture.

 Extend rules format to enable flow tracking

 Contribute to the state of the art of Internet Security

1.5 Research Methodologies

Different methodological approaches have been used, but mainly an iterative

experimental approach has been followed. In this an idea has been developed

and then tested, the results of experimentation have been considered and used

to refine the idea or lead to the development of new approaches. Critical

evaluation of the stages and then ultimately of the overall system confirm its

novelty and expose areas for improvement.

1.6 Identifying the state of the art

A number of ongoing research studies have been identified by using the

literature review. The literature review which follows in the next chapter was

used as the starting point of our critical analysis which helped us to identify the

29

limits of current evolvement of Intrusion Detection Systems. Our literature

review was mainly based, but not limited to researches published in:

 Institute of Electrical and Electronics Engineers (IEEE) which is the

world's leading professional association for the advancement of

technology;

 Science Direct which is one of the most extensive sites that provides

online access to scientific and technical access.

 Association for Computing Machinery, the world’s largest educational

and scientific computing society which delivers resources that advance

computing as a science and a profession

 Google scholar and windows live academic which is a central point of

researching through various online academic databases

 Vern Paxson webpage. Vern is Associate Professor of Computer

Science at the University of California, Berkeley. His main active

research areas are Bro and CCIED (the NSF-sponsored Collaborative

Center for Internet Epidemiology and Defenses, a joint effort with UC

San Diego). The main topics of CCIED are botnets and Internet worms,

including their network telescope project which is also what they are

interested in. He has been awarded the Association for Computing

Machinery’s Grace Murray Hopper Award for his work in measuring and

characterising the Internet [20]. On various occasions, there have been

email exchanges with Vern to discuss some points related to his

publications. He is the founder of the second most popular IDS: BRO

IDS.

30

 The Intel® Parallel Programming and Multi-Core Community: The Intel®

Parallel Programming and Multi-Core Community have been very helpful

in providing good technical information on how to go about programming

for multi-core processors. Also, this thesis has gained from the later

community by learning how to avoid common errors and how to optimise

the code written to improve IDS

 OPENMP

 Microsoft Parallel Pages

1.7 Dataset Sources

Most of the experiments in this thesis have been performed offline. Data used in

our experiments have been collected in various ways and from different sources

to test the limit of Snort and to validate our model and architecture.

1.7.1 Evilfingers

Evilfingers is a community portal for information security. They make packets

i.e. recorded traffic from real events available that can be used for various

purposes. Some of the packets are tagged with a Snort signature and others

are not.

EVILFINGERS data were merged with the 2009 Inter-Service Academy Cyber

Defense Competition data to form the main source of data used in this

research. They organise their files in such a way that one file/capture target one

particular signature in Snort when a signature has already being identified.

Using Linux command line, all the files were merged together so that all the

attacks would run at the same time

 Mergecap –w *.pcap allpcap.pcap

31

1.7.2 PCAPR

PCAPR organises data by categories. Similarly to EvilFingers, the files are

organised in a way that each file will target one specific objective. Some of the

files captured important events worth analysing without necessarily being

attacks. In our research, this thesis has been mainly interested in files that were

capture from attacks.

1.7.3 The Metasploit Project

The Metasploit project is collection of proof of concepts that have been

packaged in order to help in penetration testing, IDS signature development,

and exploit research. It has been used in many other researches [21-24]. In this

research, Metasploit framework was used to generate attack traffic. Every time

a signature was triggered, the packets that triggered the signature were isolated

from the full packets capture file. At a later stage, all the files that were collected

after signatures were triggered were joined to form a bigger file used test Snort

resistance against recent attacks. Metasploit was used in conjunction with

Fragroute and Fragrouter.

1.7.4 Fragroute and Fragrouter

Fragroute and Fragrouter are two very similar programs that are used for attack

such as “Man in the middle attack”. They offer extensive fragmentation

capabilities.

32

1.7.5 FX-HTTP-TRAFFIC-GENERATOR

Fx-HTTP-Traffic generator is a program written during the course of this

research. It has been used to test IDS against their resistance to a well know

database of SPAM source: the URL blacklist service

1.7.6 URL blacklist service

This is a commercial URL Blacklist service. They are over 3165041 URL and

domain entries. The database is updated regularly and provides an efficient way

to block bad URLs and to write security policies. In the context of this research,

the URL blacklist service was used to generate HTTP traffic to test IDS against

their awareness and resistance for spam.

1.7.7 SSL Black List

Snort by default does not analyse encrypted traffic. Yet there are simple steps

that can be taken to offer a level of security against bad SSL traffic. The work

carried out in this research will use this list for the latter purpose.

1.7.8 “2009 Inter-Service Academy Cyber Defence Competition” [25]

This dataset was used in lieu of the DARPA dataset that have been long used

as the standard dataset for IDS. This dataset is the result of the Military Cyber

Defense Exercise between the National Security Agency (NSA) and all of the

different service academies. Many efforts were made to make this dataset as

accurate as possible by using state of the art attack tools such as Nessus,

WebScarab and Nikto while a skilled team of 30 people generated background

noise traffic by interaction each with three virtual stations. This interaction

included activities listed as, but not limited to, browsing the web, sending

emails, downloading and uploading files, and chat. The experimental testbed is

represented in Figure 1-3

33

Figure 1‐3: Experiment testbed for CDX 2009

1.8 Thesis original contribution

The contributions the author has made are as follows

1. The author has designed a new IDS architecture that improves the

overall performance of such systems. The core elements of our new

architectures are:

a. The multistage intrusion detection and prevention systems which

is an hybrid intrusion detection system i.e. a mixture of network

Intrusion Detection System and Host based Intrusion Detection

System

b. An extension to Snort rules to enhance the detection engine for all

patterns relevant to protect their system. This research led to an

increase of 84% on Snort performance.

34

c. A DDOS detection and mitigation engine that leverages an

exceptional level of mitigation and detection and is able to detect

attacks within twelve minutes

d. A four level framework of visibility of attacks

2. The IDS is designed following a uniquely extensive evaluation of current

security threats including thorough experimentation with real threat

scenario and data.

1.9 Outlines the rest of Thesis

Chapter 2 is about the literature related to the subject explored in this thesis.

Various subjects covered in this chapter are the background and state of the art

for IDS, Evolution of Intel cores, Botnets, Fragmentation attacks, parallel

programming, multi-core implementations and their related problems, high

speed networks.

In Chapter 3 the thesis focuses on performance analysis. It starts by stress

testing Snort. The thesis then moves on to test Snort against known

vulnerabilities. The tests aim at showing how well Snort resists attacks within

high speed networks and also how Snort protects against recent attacks.

Further tests will be performed to identify what component inside Snort is failing

during the tests and the reasons why those components are failing. This

chapter helps define the essence of the architecture that will be proposed as the

original contribution of this research. The nature of components inside Snort

that are failing and the reasons why they are failing would be vital information

required to build the new architecture.

35

Chapter 4 will present the novel multistage detection methodology that the

author has designed in order to reduce the false positive but to detect more

attacks and have a complete knowledge that will enable us to give more

meaning to the individual alerts.

Chapter 5: The proposed DDOS engine. This chapter will present the DDOS

engine as a complete unit that will later be integrated with the whole system.

Chapter 6: Our overall architecture. In this chapter, the author presents the

different parts of our research as a whole.

Chapter 7 will conclude with a description of the work achieved and make

recommendations for further research by addressing the extension to our work

to a multi-core architecture.

After the conclusion, the references will be presented.

Conclusion

This chapter has discussed the background information related to developing a

new IDS architecture that will take full advantage of multi-cores processors.

The research aim and objectives have been presented. In addition to

introducing the novel architecture, the research methodologies that have helped

achieving our objectives were discussed. This chapter ends by presenting an

overview of what will be discussed throughout the course of this research.

36

2 Literature review

2.1 Intrusion detection System

The work described in this thesis is based on Intrusion Detection Systems. An

Intrusion Detection System (IDS) is a system, software or hardware that listens

to incoming and outgoing traffic and reports any evidence of attacks [26], [27].

There are three major types of Intrusion Detection Systems: host based,

Network based IDS and hybrid IDS. The work conducted here will be focusing

on network based IDS. The author will be looking at Snort and Bro IDS. Snort is

a modern network security application that can be used to monitor, save and

report incidents as they happen on the network [28]. Bro is also a Network IDS

which differs from Snort in that Snort has based its architecture around static

keyword matching whereas the Bro architecture is based on events and

algorithms [29].

Intrusion Detection Systems can be organised either by the type of detection

they perform or by where they sit on the network.

2.2 Signature based IDS – the case of SNORT

Signature based IDSs perform intensive string comparison. Keywords used in

signatures are generally based on software vulnerabilities or on packet capture

of a suspicious behaviour, or on packet capture of a successful attack. The live

traffic, incoming and outgoing traffic is compared to a database of phrases that

have been previously used by an attack or phrases that can be used by

attackers based on vulnerability. The problem of signature based IDS is that

37

they rely in most cases on the fact that the attack has to happen at least once.

After analysis of the packets captured from attacks keywords are extracted from

the attack to make the signature. However, this approach could give enough

time for hackers to perform malicious activities between the time the

vulnerability is discovered and the time an appropriate signature is published

[30]. In order to defeat attackers honeypots are generally used to identify the

techniques used to perform attacks [31], [32]. Honeypots can be set to auto-

generate signatures based on the packets they have captured. Alternatively,

signatures would be manually written. In their work, [33] suggest a system to

auto generate signatures based on honeypot captures.

The use of regular expressions in IDS signatures have improved the potential

that signature matching systems offer as one regular expression can contain

numerous variations of an attack. However, with recent advancement of

network speed and a shift to hardware based IDS and IPS, improving keyword

identification remains a very engaging topic of research [34-37].

Snort has been used by millions of users and is the de facto standard of IDS.

Snort is built around keyword matching and its architecture is as follows.

As shown in Figure 2-1 the packet capture handles packets at the NIC level.

Snort uses an external library to capture packets. Snort uses WinPcap Under

Windows OS and Libpcap under unix systems. Once the packets have been

captured, they are sent to the packet decoder that will identify the different parts

of the packet headers; at this stage, the malformed packets can be dropped

depending on the configuration in the configuration file: snort.config. The pre-

processor will do a preliminary analysis of packets to detect any potential

38

packets. Again, the detection options depend on the settings made by a user.

One would chose to ignore scans and another user will chose to be alerted on

every possible alert. The packets are then passed to the detection engine that

will look into the packet headers and packet payloads in order to detect any

possible trace of attacks. Once the packets are analysed and depending on the

results of the analysis, an alert will be generated. Various alerts system can be

added to Snort by the means of plugins. Snort processing schema is

represented in Figure 2-1

Figure 2-1 Snort Processing Schema

39

The author introduces more layers of security and suggests a parallel

implementation rather than a sequential implementation as is the case for

Snort. For example, Snort is not configured by default to prevent IANA reserved

addresses to appear in the traffic. This is justified by the fact that Snort

generally sits inside the network. However, when Snort sits at the network

border, there is no security feature in place to control and prevent IANA

reserved addresses usage. Also, with the recent advancement in activities

aiming at fighting BOTNETs, up-to-date IPs that have been found to participate

in bot activities are available in a list format. This list will be used as part of the

first line of defence. This will reduce the load of the detection engine. Also,

during the routine rules analysis, Snort engines do not verify whether a rule is

relevant to the system being protected. If Snort was to classify and check only

rules that are relevant to the system in which it runs, the time spent to perform

string matching will be reduced by up to 84%. The author will demonstrate this

at a later stage through some experiments.

2.3 Anomaly based IDS – the case of BRO

Anomay IDS analyze every byte of traffic without in advance necessarily

expecting a specific attack [38]. However, when attacks are already known,

security features will be put in place accordingly. The anomaly based IDS needs

a certain knowledge of the system being protected. During the learning period,

the anomaly IDS will gather enough information to form the baselines, the

normal behavior. In addition to deep protocol analysis, a border line is then

defined as the normal behavior. When a network activity is detected and not

mapped to the normal behavior action is taken. This can sometimes generate

false alert indicating the false presence of attacks activities: false postive. In

40

contrast to Snort, Bro offers a complex detection mainly based on anomalies

rather than keywords. Keyword detections have their advantages that to some

extent the number of false positives does not change when a network behaviour

changes. As for anomaly based IDS, the detection mechanism needs to go

through a perpetual learning curve . Depending on the activities of the network

or of the time of year, or even the period of time during the day, activities can

vary significantly [39]. There is a need for well written algorithms that will adapt

to the changes without generating too many false positives.

One the biggest problems that anomaly based IDS faces is detecting attacks

that fall into the category of normal behavior. The directory transversal is a web

attack that does not breach any protocol definition or specification. This attack

can easly go undetected by anomaly based system as it is performed under

normal behaviour [40], [41].

In opposition to Snort, Bro was not built with the intention of being a system

ready out of the box. Rather, it was built for research purposes in the field of

IDS and traffic analysis(Paxson, 1999). Bro is built on events and its

architecture is as follows:

41

Figure 2-2: Bro Architecture [42]

As shown in Figure 2-2, Bro is built for real-time network analysis.

Fundamentally, Bro provides a real-time network. At the Bottom of its

architecture, Bro listens to network communication passively and sends a copy

of the network traffic as it been captured to the libpcap library that will parse the

traffic. Once the traffic has been organised, it is then sent to the event engine

that checks the packet integrity. Once packets have been certified as valid, a

hash key is created based on the flow information if not already in existance

[42]. The Event engine will then generate events based on the analysis done.

These events are then reviewed by the policy script interpreter. The appropriate

action is taken from the policy script interpreter. These actions vary and could

be as simple as logging an alert, sending an alert to an external system such as

syslog, or blocking the packets.

Research around Bro IDS has evolved and a new architecture for multicore

processors has been suggested. This architecture is discuss in more details in

2.9 below. One of the strengths of BRO IDS is that every single packet and flow

is analysed and has to get a go ahead before it is released [43]. By scrutenising

42

every single flow, the problem of packet fragmentation is very well addressed as

BRO IDS ensures that every single byte is analysed. However, with the

advancement of recent attacks, analysing flow independently is not proven to

be enough to detect multistage attacks. In the architecture designed in this

work, the author has introduced some flow management in order to corolate

information between flows.

It is virtually impossible to have a system that will ensure 100% detection rate

as well as 0% false positives. Combining the anomaly and signature based

intrusion detection system has proved to be much better. Bro integrates a

signature matching engine as well as maintaining an anomaly network system

analysis. The system proposed in a later stage of this research will integrate

both anomaly and signature to combine the power of signature for known

attacks and to detect unknown attacks – the zero day attack. This is generally

achieved by creating a baseline based on a “normal” behaviour that has been

recorded during a learning curve. Based on a history, a behaviour profile is then

defined. Anything that falls out of that behaviour would be considered as

anomaly.

2.4 Intruvert Network

Intuvert Network was created after a series of Denial of Services (DoS) hit

Yahoo and CNN and other websites in 2000. The objectives that Parveen Jain

and Ramest Gupta, creator of Intruvert Network, had was to provide a novel

approach that would provide a reliable protection to fight a wide range of

Network security problems. The product from Intruvert Network was then called

IntruShield. IntruShield performs a deep packet inspection on every packet that

43

crosses the network [44]. IntruShield claim to deliver cost-effective appliances

offering high-performance and reliability for various segments of network

independently of their location on the network. IntruShield is relatively simple to

use and to set up; a web based interface has been provided for its

management. IntruShield offers a reasonable performance over network with a

bandwidth up to 10 Gb. A number of security problems are addressed by

IntruShield such as zero-day, DoS, DDoS, SYN flood, and encrypted attacks,

and threats like spyware, VoIP vulnerabilities, botnets, malware, worms,

Trojans, phishing, and peer-to-peer tunneling. IntruShield detection system is

based on signature, shell-code detection algorithms, DDOS detection and

prevention [45] [46]. IntruShield is able to parse about 100 protocols with over

3,000 signatures.

2.4.1 Intruvert architecture

IntruShield architecture as represented below Figure 2-3

One of the key implementation of the deep packet analysis used by IntruShield

is based on packet reassembly. Packet reassembly could be problematic in

high speed network. The next section will address issue relating to Intruvert

Security performances.

44

Figure 2‐3: Intruvert Architecture [45]

2.4.2 Intruvert Security limits and problems

Intruvert clearly display a good range of security features Figure 2‐3. However,

Intruvert was not the choice of this research as it was not possible to have

access to the source code for a deeper analysis of the performance of each of

its components and suggest an improvement. For instance, one of the

drawbacks in Intruvert is that the signatures are not available to be changed.

The IntruShield appliances are based on a custom hardware platform yet. This

research aims at looking at systems that are widely available and not restricted

by a certain platform. Working on a hardware specific platform would mean that

anyone willing to use the results produced in this research will be forced to have

45

the same platform. While they use standard Intel processors for general

management, they include network processors, ASICs and FPGAs to speed-up

computing intensive tasks (e.g., signature matching and SSL-decoding) [47].

Unfortunately, McAfee does not provide concrete details about the system's

internals. From its architecture, it is not clear or rather non-existent the way

IntruShield will address multi-stage attacks.

In this thesis, Intruvert was not physically tested as the author could not afford

to acquire it as it is a commercial product and expensive. However, In the

recent attack (Figure 2‐4) that Hosteur [a French web hosting company] has

experimented, Cisco IDS and IPS security system was subject to a live test and

failed to prove its efficiency. The French company ended up blaming a client

who was running a game, Warez, on his web site. The French company has not

revealed the exact model of Cisco equipment they are using but they claim to

use one of the latest Cisco security device.

Intruvert is based on packet reassembly which would pose a number of issues

related to the performance. At 5GB, there is literally no time for packet

reassembly. The model that we propose later in this thesis will give a possible

solution to the problem of reassembly.

46

Figure 2‐4: attack reported by hosteur

2.5 GRIDS - a graph based intrusion detection system for large

networks

The concept presented by GRIDS is very interesting as it moves away from the

traditional detection methodology in that the detection and the reporting are

both based on a grap. One the great things of GRIDS is that it builds the

network architecture in which it is installed. However, GRIDS only runs on Unix

hosts connected by IP nets [48]. Also, this system assumes that the networks

belongs to single organisation which have autonomous departments. However,

departments in realality have many interdependences and generally share

resources. It is difficult to picture how this system would work in a modern

enterprise environment. Last but not least, this system assumes that no part of

the network is actively hostile. The author did not understand why an IDS would

would be designed to work in a non hostile environment. The paper that

presents this modele [48] was purely based on principle and no experiments

47

was done. No other work related to this IDS was identified. This system was not

consider as important in this research as the author belived that the design

wass not mature enough for further consideration.

2.6 Sguil: The Analyst Console for Network Security Monitoring

Sguil was writing a tcl/tk programming language [49]. This limits Sguil to linux

like systems. However, using a Unix like integrated environment for Windows

platform like Cygwin, Sguil is able to run on windows platform. Howeer, there

there will be communcation between the Unix like integrated environment and

the host Windows operating system. Sguil is an engine that is based on many

other tools to perform collection, analysis, and escalation of indications and

warnings to detect and respond to intrusions [50]. Sguil is based on Snort and

Snort rules to perform the detection. One of the differences between Snort and

Sguil is the graphical interface that Sguil offers. the later is very user friendly

and make the analysis easier. The auther did not feel this was the tool to

consider as it pure a management of many tools put together. Hence this

system was not considered for this thesis.

2.7 Intrusion detection System and their current level of protection

 Reports on the Internet show that the number of attacks is still very high

 [51-54] and continue to rise (Figure 2-5). Despite great efforts, secure

transactions and communications over Internet security is not guaranteed.

Being intrigued by the current state of Internet security and despite the many

efforts accomplished in making the Internet more secure, a decision was made

to investigate why intruders and malicious Internet users are still able to bypass

or to bring security systems down. Figure 2-5 shows that in 2008, Symantec

48

had created over 60% of their entire malicious signatures database to date.

There has been an increase of about 150% in malicious activities [55].

Figure 2-5: New malicious code signatures [55]

Our efforts started with a quick review of the current state of the Internet

regarding network IDS. Statistics reveals that Flood-Based attacks are the most

common vector attacks. Flood-Based attacks are aimed at overflowing the

network resources so that targeted systems become unavailable. They are also

known as Denial of Service Attacks (DOS) or Distributed Denial of Service

Attacks (DDOS).

49

Figure 2-6: Attack Vectors [56]

Looking at Figure 2-7, during the year 2008 there was a serious increase in the

speed at which attacks are performed. This implies that security systems have

to be able to perform at high speed. One of the biggest consequences of not

being able to perform at this pace would be that attacks will not be reported,

actions will not be taken hence the system protected will crash. In fact, most

traffic will go without being analysed causing many attacks not to be detected.

Figure 2-7: Attacks based on speed ([92])

Figure 2-7 confirms that the most serious threats are based on botnets which are

networks of infected computers ready to execute commands from a bot master,

the commanding computer. One of the largest botnets to date is evaluated at

50

1,5millions computers (Sanders, 2005). In regards to internet security, it is

possible to flood almost any network from such a powerful botnet by only

sending 1Mbs/host. Sending 1Mb/s per host or bot would mean sending 1.5

million Mb/s. Currently, there are very few systems that support 10Gb/s i.e.

10,000Mb/s. This shows that botnets can easily flood networks. Traditionally,

botnets have been used to send spam i.e. up to 3 billion spams per day [57].

Lately, they have been used not only to send spam but to install malware,

Trojans, delete data from computers and flood networks. Botnets have also

been recently used in cyber war [58]

Figure 2-8: Most Concerning Threats [56]

In an effort to fight recent attacks there has been a general tendency of moving

towards hardware based IDS instead of improving software based solutions.

This could be due to the rapid evolution of bandwidth and the speed at which

attacks are performed in today’s Internet. Figure 2-9 shows that IDS overall

speed could be improved about 28 times if solutions were implemented in

hardware.

51

Figure 2-9: speed improvement of hardware over software

This improvement is significant as the number of packets analysed can be

boosted considerably whilst the number of packets queuing to be analysed will

also be reduced. Later in this thesis the author demonstrates that Snort does

not perform well in a high speed environment. If Snort is able to process x

packets during a period of time using a software implementation, Snort would

be able to process 27.8 x more packets. The study will show that Snort does not

process many packets at high speed and instead drops them without analysing

them. When this happens the chances are that attacks will not be detected

hence there is a very high chance for these attacks to be successful. This

implies that all systems protected by Snort at high speed might be as

transparent to attacks as systems with no protection at all.

Speed definitely matters when it comes to securing Internet based systems.

Recent research as in Figure 2-10 [59] shows a serious increase in bandwidth

usage in the UK. In 2008, an estimate of 16.46 million UK households has been

using the Internet which represent 65 per cent of households and an increase of

1.23 million households since 2007 [60]. The current average download speed

of broadband in the UK is currently 3.6 Mbs [61]

52

Figure 2-10: Bandwidth usage growth

Internet security systems must keep up with the latest advancements in

technology. Research shows that attacks are performed at higher speed hence

using more bandwidth. Recent tests performed on Snort show that Snort has a

very weak ability at detecting attacks at high speed. Yet hardware based IDS

are expensive and are not in the reach of most companies or organisations.

Snort can take advantage of multi-core processors widely available in home

based computer systems. One of the tasks of this thesis is to investigate why

Snort components fail to perform under high speed, and how this situation can

be revoked. Snort can be improved in many ways. These include but are not

limited to: improving detection rate; improving the number of packets

processed; reducing false positive, etc. Each of these aspects could be

addressed differently. However, the improvements of each of these elements

separately would not necessarily ensure the overall performance as improving

one aspect could generate other issues. During our tests, Snort did not detect

all the attacks.

53

In recent years, multi-cores technologies have become more and more

common. Intel Corporation has modified Snort IDS to run on a multi-core

platform. As a result Snort processed the same number of packets 6 times

faster. This demonstration suggests that multi-core processors can be used to

speed up Snort. However, Intel Corporation did not make any changes on the

detection mechanism. As a consequence, even if Snort was to process packets

quicker, there would still be some unresolved issues. As discussed in our

section “related work”, current work on improving Snort is mostly based on the

processing speed. This research looks at improving the detection mechanism

as well as the processing speed.

2.8 Multi-core evolution

The constant evolvement of technology has resulted in the need for better

computers. Looking at home users, people need better systems to handle the

latest video and picture quality. In addition users will also need to download

bigger files. In general, they will need better systems to benefit from the latest

technological advancements. From an industrial perspective, there is a need to

better manage the work environment; a need to facilitate network sharing

resources; a need to collaborate with partners around the globe, and a need for

faster communications. The first response for these needs was the AMD64

processor architecture [62]. Since then it has been possible for Advanced Micro

Devices (AMD) to support multiple cores in one processor. The benefits are

listed, but not limited to: less power consumption; concurrently executing

54

programs that are processor intensive such as database searching, image

processing, ripping and burning audio and video CDs or DVDs and downloading

heavy files from the Internet. As for multi-threaded capabilities, computers have

been able to perform concurrently multiple tasks also called threads. Some of

these tasks include data mining, heavy mathematical calculations, and heavy

repetitive tasks. As shown in Figure 2-11, multi-core technologies have become

the standard for IntelTM processors as the single core processors could not

respond to the market demand and users expectations.

Figure 2-11: Intel Multi-core Road Map [63]

IntelTM has been developing processor micro architectures with the objective of

reducing the power consumption. For that reason, the processor’s clock speed

depends on 2 factors, the clock speed and the number of instructions per cycle

[63]. The performance can be computed by

55

[Performance] = [Clock speed] x [Number of instructions per cycle]

Another important indirect factor of the overall performance of CPU is the power

consumption. As predicted by Moore’s law, Figure 2-12, the number of

transistors has been growing.

In 1965, Moore stated that the number of transistors on a chip will double about

every two years. Intel has kept that pace for nearly 40 years. However much

was not said about on how the transistor power would scale.

Figure 2-12: The Moore Law

The processing power which is measured in millions of instructions per second

(MIPS), has steadily risen because of increased transistor counts. But Moore's

Law can also mean decreasing costs. As silicon-based technology gains in

56

performance, they becomes less expensive to produce, more plentiful and

powerful, and more seamlessly integrated into our daily lives

Figure 2-13 show that a better performance is reached when there is less power

consumption.

Figure 2-13: Performance Over Power Consumption

The formula for the power consumption would be:

 [Power consumption] = [Dynamic capacity] x [Voltage] x [Voltage] x

[Clock speed]

The multi-core technology clearly offers many advantages. However, changing

current implementation of network application is challenging. Few approaches

in the analysis of parallelising network application need to be considered:

Independent process on each core, pipelining which divides application into

various stages and the symmetric multi-processing which runs identical process

in parallel with a load balancer to equally share the tasks load amongst the

57

different cores [64]. These parallel approaches will be discussed further in the

architecture design and implementation.

The advancement in microchip has caused a shift to IDS hardware [65] away

from the traditional software.

2.9 Related work

In their work Wheeler, P. and E. Fulp [14] propose a framework to parallelise

Network Intrusion Detection Systems (NIDS). They suggest 3 levels at which

parallelism could occur: the node level, the component level and the sub-

component. For the node level, they suggest that multi identical systems to run

in parallel where rules are taken from their original group and spread across all

the running nodes. Snort organise rules into groups and each of these groups is

generally identified by its filename. For instance “pop.rules” will refer to all the

rules related to POP protocol, the Post Office Protocol. Incoming packets are

duplicated by a packets duplicator across all the nodes at the same time,

identical rules are sent to the different nodes. This suggests that one packet will

go through the same inspection many times. This method clearly suffers from

repetition. They also propose a variance for which when a packet is sent to a

node, the node will check if there is a rules in relation with that packet. Even

though Wheeler and Fulp [14] do not give details about how the check would be

done, the Author argues that there are many inconveniences with the Node

level. Firstly, the node level would work only if all communications are

considered to be stateless which is unrealistic with today’s attacks described by

[66-68]. Secondly, there are endless repetitions. In Addition, there is no

correlation between the packets sent in multiple frames. Also, this method does

58

not take into consideration fragmentation which is one of the latest techniques

used by malicious users to overflow systems as current IDS do not handle

fragmentation at high speed [69]. This has also been proven by some of our

results that show that Snort detection rate of fragmented packets will drop about

95% when speed changes from 0.1 Mb to 10 Mb refs. The architecture that

proposed in the work carry out in this research will consider dividing packets

without repeating them. Also, the author has introduced a flow correlation for

attacks spread over multiple flows. This will be presented under the shape of

context record management that will help correlate detection across the multiple

parallel processes.

At the component level, Wheeler and Fulp suggest that specific functions such

as defragmentation might be parallelised. This could be interesting. However,

there is not a clear definition on how this will fit into the overall system. There is

a risk of creating a bottleneck at this level if a top level classification is not done

in order to separate fragmented packets with complete packets.

Paxson et al [10]define an architecture that ignores keyword matching as they

argue that the level of sophistication of attacks have gone beyond the keyword

matching. The same idea is supported by many researches [70-72]. However,

not only that, there is still a lot of research trying to improve keyword matching

[73-76] Snort remains by far the most popular IDS due to its ease of use and

modification. It is commonly agreed that only keyword matching would not be

good enough to prevent against the latest attacks(Barman, et al., 2009). Having

said that keyword matching remains a great tool for detecting attacks [77]. The

architecture presented in this research will be based on keyword matching with

additional level of packet inspections. A correlation between different keywords

59

would be done before alerting as the author believes that a stateless keyword

matching is not efficient for recent polymorphic attacks. In their Model as shown

in Figure 2-14, they define three stages.

Figure 2-14: Parallel Execution of Network Analysis [78]

At the first stage, they perform all packets reassembly before proceeding to any

analysis. The author argues that this could be a major inconvenience for the

whole structure. An attacker could send millions of fragmented packets and that

will cause the analysis to be slow. Also, they argue that “Ideally, the front-end

ANI would retain each packet until all events to which the packet contributes in

any way” have fully processed. This has some inconveniences in packets

processing. There will certainly be a delay in communication and this may

require more buffers to handle big numbers of packets. The architecture the

author proposes will correct important missing features for a first stage parallel

architecture. A good number of security features can be implemented in the first

60

stage or layer of protection of IDS. Spoofing is generally used when an attacker

is trying to remain anonymous. For strong first layer of protection, the

architecture proposed in this research will eliminate all unnecessary traffic

present in the wire. The IANA reserved address should not appear in any

routing table. Hence at the first level of security, the author cleans any traffic

that should not be in the routing table.

At their second stage, they define a series of parallel processors based on

events. This approach is similar to what Wheeler and Fulp [14] describe in their

model but with more details of what is been processed in parallel.

Even though Paxson et al [10]aim at building a network IDS that will be used by

general-purpose commodity hardware, their work has been based on a

particular hardware the ANI device. This does not guarantee that other

hardware will support the architecture they implement. No specific limitation was

made as per the type of hardware supported.

In a white paper, Intel Corporation [15] claimed to have improved Snort

performance by a multiplication factor of 6 in the best case. They have adopted

3 approaches in improving Snort. The first approach runs five functional Snort

process in a single core. The five functional processes of Snort are known as

packet capture, packet decoder, preprocessors, detection engine and output

plug-ing [28]. In the second approach, Intel ran the five functional components

on each of the cores. This approach is referred to as the node parallelisation

level in other research [14]In the last approach used by Intel in these

experiments, the capture was executed in one core and all the other cores were

61

running in parallel. There has been a great achievement as claimed by Intel.

However, there has not been any security improvement over Snort architecture.

The current implementation of Intel certainly improves the speed of Snort but

does not provide any relation between flows enabling multi-stage attack

detection such as attacks identified by [79-84]. There are important limitations

on the accelerated implementation performed by Intel Corporation in regards to

recent attacks. For static attacks that are all contained in separate flow without

any relation to other flow, the implementation discussed here would be a very

good improvement of Snort. In addition, Intel does not give details on the

modification that they have made on Snort hence the difficulty to repeat their

experiments.

Even though Snort aims at offering an overall security, they are other valuable

research works that have been accomplished looking at application layer

security especially web services [85] [86] [87].

2.10 Conclusion

A great deal of work has been done in advancing the effectiveness of security

systems. Before parallel IDS were discussed, attacks that are split into different

stages have always been very difficult to analyse, detect and mitigate. With the

shift toward parallel IDS, multistage attacks would be even more difficult to

detect. The difficulty resides in the fact that there is no correlation between the

different cores that perform the analysis. The IDS will certainly improve in terms

of speed i.e. the number of packets processed per second and at the same

time, but when attacks are split into different flow, most current systems do not

correlate flows. In this research, the author adds that dimension to the existing

62

system. However, this would cause the IDS to be redesigned and that’s what

this research is all about.

63

3 The problem

3.1 Introduction

Snort is a Network Intrusion Detection (NIDS) that was considered to be a lightweight

Intrusion Detection System IDS [88]. However, technology has evolved and Snort has

been considerably improved [89]. Snort remains an open source network intrusion

prevention and detection. It is based on a language rule-driving used in combination

with signatures; signatures and protocol anomaly based inspection methods [90].

Despite the big improvement over the years, Snort stills struggle to keep up with the

fast growing network industry and attacks [91].

Many researches [91] report the inability of Snort to cope with current attacks. This

triggered the author to test Snort in order to see its limitation and propose applicable

solutions. In this chapter, the author will

 Review the trend of latest threats and attacks on the Internet

 Test Snort accordingly to these threats and attacks to study its ability to resist

current and future threats and attacks

o HTTP Complex multistage attacks.

 Obfuscated JavaScript

 Obfuscated HTML

o Flood attacks (ICMP, UDP, HTTP)

o Other not so well classified attacks

 Propose solutions to the problems identified

Solutions proposed in this chapter will be integrated in the design of our new IDS.

64

3.2 Security trends: threats and attacks

From analysis performed by Arbor Network Inc, the size of the attacks has

grown almost double from 2007 to 2008. In the course of last year, 2009, the

size of the attacks has continued to growth by over 22% [92] [93].

Figure 3-1: Attack size, ([92])

On another note, Arbor Network Inc, anticipated that the Link, Host or Services

DDOS as the single biggest attack on the Internet for 2009 as shown in Figure

3-2

Figure 3-2: threats prediction for 2010 ([92])

65

The above attack’s classification does not clarify what is really included in the

Link, Host or Services DDOS as these days hackers use every single

opportunity to make any computer a zombie. McAfee reports of threat

prediction for 2010 will go into more details by naming social networking sites

as one of the biggest threats for Internet security stability. The reason behind

social networking being the biggest threat is that more and more people have

joined social networks. For instance Facebook network is as big as 350 million

users with more than 350,000 applications as claimed by McAfee in their report.

As social networking is still relatively new, most people are inclined to be

curious. This attitude is not necessarily in favour of security as most people tend

to click on any link. In addition the Internet has seen the so called “tinyurl.com”

use to shorten Internet links. However, when using tinyurl.com, the user does

not know the real link and is more likely to click on the link [94].

Botnet activities are relentlessly increasing either by using malware or Trojan

through emails or by taking advantage of social networks both for mobile

devices as well as for PCs [95]. Botnets have been used mostly for SPAM but

recently a move toward cyberwarfare has become popular [96][97].

Search engines poisoning is yet another attack that has made victims of millions

[98]. Internet users, especially social community users, are tricked into thinking

that they are using a genuine search engine but yet they are redirected to

results (i.e. links) that, when opened, install malware and Trojans [99] [100].

In the light of these recent trends, the author chose to test Snort for its

resistance against

 Flood attacks (i.e. ICMP, UPD, HTTP/TCP),

66

 DDOS attacks

 High speed networks

 Malware intrusion

 Recognition of botnet traffic.

The above list of tests may cause confusion between DDOS attacks and flood

based attacks. DDOS attacks are typically any distributed effort to cause the

system to stop offering services it is intended for. However, flood based attacks

are a type of DOS or DDOS attacks are they generally cause the system to stop

responding and offering services. DDOS attacks can be performed either by

generating millions of small packets against a victim of generate only few jumbo

packets that will cause the same effect. In the latter case, there has not been

any flooding.

The objectives of the author here was to test Snort against attacks that are

current and attacks that are likely to affect system in the future. Traditional

attacks for which many solutions exist already or attacks that are very specific

to a system have not been given priority. These include attacks such as buffer

overflow, SQL injections.

3.3 Choosing the IDS

Even though snort is the most popular IDS, Bro is nevertheless one of the most

interesting IDS used for research purposes [43]. Various comparison have

been made comparing Snort to Bro. Most comparisons aim at guiding a

customer who is trying to purchase an IDS product. For instance, [101]

suggested a checklist of features that need to be met before purchasing any

IPS. These features are found Figure 3‐3.

67

Looking at the features identified by the ICSA, there is no concern as to how the

system is built. What is important in this case is the performance of the IPS

based on the identified criteria. For research purposes, it would be more

interesting to look at the different architecture, the programming languages, the

structures used when designing the IPS, the level of customisation possible,

and the support available for further research.

Figure 3‐3: ICSA IPS comparison features

Very little comparison in search for the best tool for research purposes have

been made between Snort and Bro. Bro is a Network Intrusion Detection

System (NIDS) which is highly customisable. The first purpose of Bro has

always been defined as a research tool that can be used to advance detection

technique against Intruders [102]. . Rather than being an "out of the box"

solution, Bro was geared at UNIX expert

68

Bro is designed for use by UNIX experts who place a premium

on the ability to extend an intrusion detection system with new

functionality as needed, which can greatly aid with tracking

evolving attacker techniques as well as inevitable changes to a

site's environment and security policy requirements. [103]

One of the major drawbacks that we found for the research carried in this thesis

was that Bro does not provide any default security feature. Bro has to be

tailored to the network in which he is installed [43]. Correlation of event is

important to ensure a good overall protection of the system. Bro provides a

better correlation of events that Snort in the fact that Bro uses syslog output as

an input to create a better picture of what is happening in the system. This

feature is nonexistent in Snort and will be considered as an addition if the work

carried in this research is based on Snort.

The author looked at the different communities related to Snort and Bro to

ensure that help could be provided when needed. Snort

Snort community represented in Figure 3-4 is estimated at 300,000 registered

users.

With nearly 4 million downloads and approximately 300,000 registered users

with more than 4 million download, with hundreds of universities actively using

Snort for research purposes or simply for tutorial [104]. As opposed to Bro,

there is no clear indication how many people are involved in the community.

[43] recognises that involving the community has not been a prime objective.

69

Figure 3‐4: Snort community

The author also looked at the number of tutorials available for both Bro and

Snort. A Google search returned 23,800 for “Bro IDS tutorial” and 438000 for

Snort. This means that Bro provides an equivalent of 5,434% support as

compared to Snort. At the time the author started this research, his knowledge

of UNIX system was very minimal.

Looking at the research platforms, Snort is supported for virtually any Operating

System (OS) yet Bro is only on UNIX like OS. In addition, the level required to

use Bro is of a UNIX expert.

Without a shadow of a doubt, the level of analysis that Bro provides is far

superior to the one that Snort provides. There are many limitations to keywords

based IDS which mainly rely on the fact that a previous attack was successfully

analysed and represented as rules. These rules are then used to detect future

identical attacks.

70

Snort is mainly based on C programming language, yet Bro is based on various

languages with specialised scripting language i.e. Bro custom language.

The criteria rating technique [105] was applied to make a decision on whether to

perform the test using BRO or Snort. Each of the factors identified were given a

weighting factor in the overall comparison based on literature review. The

following table was produced with a scoring mechanism ranging from 0 – 100;

the highest score representing the most favourable option.

3.4 Snort overview

The basic structure is represented in Figure 3-5. When a packet arrives at the

network, Snort listens and captures packets. The packet is then parsed and

sent to the appropriate preprocessor for more analysis such as the

“http_decode” responsible of normalizing HTTP traffic.; The minfrag

preprocessor is another example of pre-processor and it deals with mini (tiny)

fragments. Any tiny fragment found on the network is then sent to the minifrag

preprocessor for more analysis.

Figure 3-5: Basic Snort Architecture

71

The preprocessors are also referred to as plugins. There are currently three

types of plugins in Snort which are preprocessors plugins, detection plugins and

output plugins. Once the preprocessors job done, the packets are passed to

the detection engine that will cause Snort to either fire an alert, or log an alert in

the case of IDS or drop the packet in the case of IPS.

3.5 Testbed

The main testbed used for this experiment is represented in Figure 3-6

Figure 3‐6: testbed

3.6 Test under high speeds networks

Under Fedora, a Linux distribution, the author ran over 5 consecutive tests to

analyse the Snort performance using the number of packets received, the

72

number of packets analysed, the number of packets dropped, the number of

alerts and the number of logs as our parameters. For each of the tests, the

speed at which the packets were sent was increased. The tests started by

running [snort –r]. The author then used Tcpreplay to vary the speed at which

Snort received the packets. As a result, the author observed that Snort

analysed every single packets that reached the wire. The number of alerts

produced was optimal as Snort was controlling the speed at which each packet

was sent. The results are presented in Figure 3-7.

Figure 3-7: Snort performance under controlled speeds

Figure 3-7 shows that the number of packets received remained constant while

the number of packets analysed changed considerably. The number of packets

received was predefined to allow fair comparison between the different data

rate speeds. The author first observed a sudden drop in the number of packets

analysed which then remained constant over a certain speed then continued to

drop. As the speed increased, the number of packets dropped increased as

well. Similarly, Snort logging capabilities were reduced as the speed increased

73

as shown in Figure 3-8. Not only did the number of packets logged decreased,

the number of alerts also decreased.

Figure 3-8: Snort performance based on logs variable

 It is important to note that under different circumstances i.e. different computer

systems and network environments, Fedora could have performed differently,

whether better or worse. The results presented here are a representation of the

performance of Fedora under our systems.

More interestingly, the author has noticed that the number of IPs that Snort was

able to see decreased as the speed increased as shown in Figure 3-9 .

74

Figure 3-9: Snort performance based on the number if IPs

The latter graph shows that an attacker can take advantage of Snort

weaknesses by generating a lot of noise around the attack, using a tool like

“bonesi” [106] - a tool that generates up to 50k IPs addresses with up to

150,000packets per second. Our experiments show that Snort was only able to

see up to 26% of the IPs when the speed was increased. In this experiment the

author has used Tcpreplay to replay the traffic at various speeds. At 2000

packets per second, the number of unique source IP and unique destinations

IPs were recorded. The traffic speed was increased by 500 packets per second

three times. The third time, when packets were passing the network at 3500

packets per second, Snort was not able to analyse all the traffic. This resulted in

a drop of 74% of IP that were passing the network. This suggests that whatever

attacks these 74% of IPs were carrying did not get analyse. From 9088 IPs,

Snort did only analyse traffic for 2303 IPs. 6785 IPs traffic went undetected.

75

Figure 3‐10: IP lost in transaction performance study

Figure 3-10 show that the number of packets received was kept to the same

value for a fair analysis between the different speeds. The later graph show a

quick increase in packet drop which matches a quick decrease of the number of

packet analysed. Table 1 show that from 4933926 packets Snort only analysed

1560217 packets at the end. Hence the big loss noticed earlier.

Speeds snort 1500pps 2000pps 2500pps 3000pps 3500pps

Packets
Received 4933926 4933926 4933926 4933926 4933926 4933926

Packets
Analysed 4933926 3848739 2256913 2294284 2166329 1560217

Packets
Dropped 0 1085187 2677013 2639642 2767597 3373709

Alerts 54289 21565 13726 13209 12940 10643

Logs 62147 55426 47695 46498 38585 33896

Unique IPs Scr 9088 4722 3084 2964 2685 2303

Unique Ips Dest 10999 6522 4578 4589 3826 3697
Table 1: Statistics IP lost in transaction

76

There are serious implications to packet dropping. Many attacks simply go

undetected and the systems that should be protected become unprotected and

open to attacks. Preventing a system to alert has proved to be fatal. In 2008,

the computer system that was responsible of alerting fault in the plane during a

routine check before taking off, failed to report [107]. Believing that there was

not fault, the plane was allowed to take off. Later, the plane crashed causing

154 dead with 14 survivors. Dropping packets without prior analysis could have

similar fatal consequences depending on the environment that is being

protected.

In the quest of finding what could be the reasons behind that lack of good

performance, the research looked at how the rules are analysed by Snort, and

how they were performed. After running the “rules performance monitor”, a tool

that comes with Snort, the author observed that some of rules go through the

detection process many more times than others and yet, they did not generate

alerts.

SID GID Rev Checks Matches Alerts Microsecs Note: rules for …

11966 1 1 324257 0 0 1136496 Internet Explorer

11965 1 2 117045 0 0 1085734 HTTP SERVERS

3154 1 5 101123 0 0 595723 DNS traffic

11671 1 2 117045 0 0 533102 HTTP SERVERS

2660 1 8 117045 0 0 532240 HTTP SERVERS

16291 1 2 95534 0 0 438676 Mozilla Firefox

2329 1 10 70514 0 0 295143 SQL SERVERS

477 1 3 83173 0 0 219236 ICMP

473 1 5 83173 0 0 215193 ICMP

77

1838 1 10 37845 0 0 209482 Microsoft Windows

485 1 5 83173 1032 1032 166204 ICMP

13948 1 3 101217 0 0 158021 DNS, Windows

3059 1 5 8039 0 0 128357 HTTP SERVERS

1388 1 15 13225 0 0 127934 Microsoft Windows

2584 1 6 16091 0 0 117668 eMule, Windows

Table 2: Snort rules performance snapshot

In Table 2, for the purposed of presentation the top 15 results were selected

from the “rules performance monitor” ordered by the time Snort had spent

checking the rules. From the top 15 results, one could observed that only one of

the rules “sid:=485” returned an alert. All the other 14 rules were checked and

did not returned any alerts. Also, Figure 3-11 shows that the time spent to

check the top 15 rules was 39% of the full timing.

Figure 3-11: Time repartition for rules analysis

Looking further in Table 2 and having identified the category for each rule, the

author observed that the same rules are checked whether the work carry was

under Linux or Under Windows environment. Despite many rules related to

HTTP attacks being checked, the targeted server did not have an HTTP server.

Not only was extra time spent performing irrelevant tasks, but any match of

HTTP rules would be a false positive. This led us to conclude that Snort

78

performance is affected by performing unnecessary tasks such as checking

rules that are not relevant to the system being protected. By reducing the tasks

that Snort performs the time that Snort spends checking rules would certainly

be reduced.

3.7 Snort reaction to ICMP flood

In this section the research the focus will be on studying the behaviour of Snort

against ICMP flood. The objective here is to find out how well Snort performs

against flood attacks. Also, the victim system performance is also studied. One

of the objectives of the study is to establish at what particular time an alert

should be raised in order for Snort to go into “attack state”. Later in this work,

similar studies will be carried out studying Snort behaviour against UDP and

HTTP floods. This section of the study will help to finding common problems for

various situations in order to suggest a solution that will consider most

problems.

3.7.1 Experiment 1

Tools:

 Bonesi, a Bot net and DDOS attack simulator – Bonesi was used to

generate packet at an average rate of 500 packets per second, each

packet carrying 1024bytes , from up to 50K IPs addresses.

 Snort, an Intrusion detection System

 Ifstat , a tool to collect network statistics

 Sar, a tool to collect CPU utilisation

79

Figure 3-12: experiment 3.1

Based on Figure 3-12, the CPU utilisation has increased from an average of 20

to an average of 48. This study aims at looking at CPU variations when the

system is under attack. DDoS attacks, utilize all resources available in order to

prevent the Computer System to serve legitimate users. More studies have

been done to set the level at which the internal agent will notify the IDS of the

attack level hence changing the state of the IDS. Also, a fault can occur and

cause the CPU to become very busy. Even though this might not be caused by

an external attack, it is important to make sure that Computer Systems continue

to provide services for which they are intended. The IDS should be notified that

the correct system is not able to handle a lot of traffic. Actions should then be

taken to avoid Denial of Service.

80

Figure 3-13: ICMP data analysis 500KB/s

In this graph one will see that when the system was not under attack the

incoming traffic as well as to outgoing traffic was very low. However, the traffic

has increased by 500KBps.

3.7.2 Experiment 2

Traffic speed was set to an average of 100KB/s. When compared to the

behaviour in experiment one, the CPU utilization has not changed. However,

data speed rate has doubled. Again, one could notice that there are two peak

values when monitoring traffic. The same scenario was observed in the

second experiment Figure 3-14

Figure 3-14: CPU Utilisation - 100KB/s

81

This behaviour could be an indication that the IDS were dropping more and

more packets. In this experiment only 3% of packets were analysed.

Figure 3-15: ICMP data analysis 1000KB/s

The number of packets dropped was considerably higher when testing Snort

against ICMP flood

Figure 3-16: Analysis of packet drop against ICMP flood

82

Figure 3-17: Analysis of CPU Utilisation against ICMP Flood

When putting all ICMP results together, it appears that the CPU utilization has

not changed much even though the data rate has considerably changed over

the time, from 500Kps to 1500KBps. This implies that it could be a while before

an attack is detected. Therefore it is important to monitor the traffic and CPU

variations concurrently. Further studies are on the way, to identify the specific

characteristic of system changes when an attacker is happening. An algorithm

is to be defined taking into consideration the CPU utilization, the number of

packets sent and received, and the consistency of the changes.

In recent experiments, it has been interesting to note is that the number of

packets sent and a number of packets received where almost equal. When

ICMP packets are sent, the receiving system will reply whether the system is

alive or not. Even when the system is locked by administrator configuration,

there is always a reply; this will double the number of packets on the network.

ICMP messages can be blocked but this does not reduce the number of

packets in a system.

83

3.8 Snort reaction to UDP Flood

In this experiment, Snort was tested against UDP flood. The objective here is to

find out if Snort has the same behaviour or ideas with ICMP flood. Snort was

tested against UDP flood using the same conditions as in previous experiments.

A common prevention mechanism would apply to both.

3.8.1 Experiment 1

Tools:

 Bonesi, a Bot net and DDOS attack simulator – Bonesi was used to

generate packet at an average rate of 500 packets per second, each

packet carrying 1024bytes , from up to 50K IPs addresses.

 Snort, an Intrusion detection System

 Ifstat , a tool to collect network statistics

 Sar, a tool to collect CPU utilisation

Figure 3-18: CPU utilization when sending 500KB/s UDP packets

In this experiment, the CPU utilization jumped to an average just below 40%. In

comparison to Snort behaviour when tested against ICMP traffic under the

84

same conditions; the CPU concentration was above 40%. The number of

packets dropped when under ICMP flood was 11% yet with UDP flood, it was

13%. The main difference between the two was the number of outstanding

packets waiting to be analysed. When under ICMP flood, the number of

outstanding packet was jump 1 yet under UDP flood, the number of packet was

1339. There could be various reasons to justify this behaviour. UDP is more

complex than a simple ICMP packet; the number of checks Snort performs for

ICMP packets is much less than the number of checked performed by UDP.

Over all, the system was in a better state when under UDP flood than he was

when under ICMP flood.

Looking at Figure 3-13, throughout the course of the experiment, there was

hardly any difference between the number of packets sent and the number of

packets received. One would then note a very high number of packets send and

received. Yet, looking at Figure 3-19, there is a clear difference between the

number of packets sent and the number of packets received. Each ICMP packet

sent generates a response whereas UDP packets do not need a response.

Each response will cause more traffic hence a higher CPU utilization and a

slower performance. This explains further why Snort would handle UDP flood

better than ICMP flood.

85

Figure 3-19: UDP data rate transfer analysis 500KB/s

Further analyses were performed comparing Snort behaviour as data rate was

increased.

Figure 3-20: CPU utilization 1000KB/s 30bots

86

Figure 3-21: CPU Utilization for 1500KB/s

Figure 3-22: CPU utilization data rate = 2000KB/s

Looking at all the results from UDP flood attack, Figure 3-20, Figure 3-21, and

Figure 3-22, the CPU utilisation remained very constant. It is important to note

that the CPU utilisation remained high for many cycles. Further studies done at

a later stage in this research will design and implement a method for detecting

flooding back based on the network data rate variation, the CPU utilisation, and

the data rate

87

As the speed of data was increased, the number of packets dropped also

increased (Figure 3-23).

Figure 3-23: UDP - Snort performance analysis

To conclude this experiment, one could look at the variations of the CPU in

combination with the number of packets loss and the data rate. DDOS attacks

occur when the system under attack is not able to provide services any more to

the legitimate users. DDOS can be caused by either a then external element to

the system concerned by launching a specific attack; DDOS can also occur by a

fault in the system causing the system resources to be too low to provide any

service. Either way, an IDS should be able to detect that system resources are

low enough and either slow the packets down or take other appropriate action.

The architecture proposed later by this search will address this issue.

3.9 Snort reaction to HTTP Flood

Tools

88

 Bonesi, a Bot net and DDOS attack simulator – Bonesi was used to

generate packet at an average rate of 500 packets per second, each

packet carrying 1024bytes , from up to 50K IPs addresses.

 Snort, an Intrusion detection System

 Ifstat , a tool to collect network statistics

 Sar, a tool to collect CPU utilisation

 Apache with Joomla installed

The behaviour of Snort is once again analysed when the network is subject to

HTTP based DDOS attacks. Looking at Figure 3-24, Snort performance has not

been seriously affected by the number of botnets used. As seen on the latter

graph, the number of packets analysed was predefined for fair analysis and

comparison. Snort managed to analyse over 14% of traffic. Snort performed

better in handling HTTP traffic than handling UDP and ICMP traffic. At this

stage, there is no clear indicator that the system is under attack. After looking at

the internal performances of Snort, the CPU utilisation and the network

bandwidth rate were analysed.

Figure 3-24: HHTP based DDOS attack view by Snort

89

Figure 3-25: CPU Utilisation 120bots

Figure 3-26: CPU utilisation 30-60bots

90

Figure 3-27: CPU Monitoring 30bots

CPU utilisation in the case of HTTP presents different characteristics than those

observed when studying Snort under ICMP and UDP flood. In the case of ICMP

and UDP, the CPU utilisation raised and remained constant throughout the

attack. In this case, there are many variations. For a better view of the CPU

utilisation, a zoom on Figure 3-27 was realised.

Figure 3-28: Zoom on Figure 3-27

91

A close look at the zoomed in figure gives the impression of a mathematical

sinus function. One could easily think that a pattern is repeating. This could be

true and will be subject to mathematical calculation later in this research. At this

stage it is very difficult to determine what would signal of an attack. However,

the repetition of high peak of the CPU usage over a period of time could be a

very good indicator that an attack is taking place. Determining the accuracy of

the repetition will be subject to more tests and mathematical design.

When the variation 30-60bots were used, the CPU level remains constant for

sometimes before dropping and goes back to the previous high level. A possible

indicator of attack here would be the constancy of the CPU level when the

system is under attack.

The CPU pattern recorded when under 120bots is similar to the pattern

recorded for 30-60 in that when the CPU hit a peak, the value remains constant

for a moment before going down

3.10 Snort reaction to multistage attacks

This section will focus on analysing a modern HTTP attack reflecting the type of

attacks that are current nowadays.

The analysis in this section will be organised as follow:

 Summary of file information

 Percentage of participants IPs

 Summary of conversations

 Summary of protocols

 in depth analysis

92

The file used for this analysis was used the challenge 2 of the forensic

challenge 2010 – Browser under attack [108].

3.10.1 Summary of file information

Figure 3-29: Suspicious-time file information

This section is purely informative and does not carry any attack hint. However,

information such as the type file, the file size the data bit and data byte rate, can

give an indication as per what to expect in the file i.e. slow traffic, flood attack,

etc.

3.10.2 Percentage of participants IPs

This section gives good indication on the traffic behaviour and the number of IP

participant. For instance, a presence of closely related IPs could indicate a

scan. In this case, few IPs are above 10% of the overall traffic. It is important to

note at this stage that the traffic has been synthetized and foreign IPs have

been replace by 192.168.x.x. In this scenario, IPs 192.168.56.52 and

192.168.56.50 are the two external IPs with the most presence in the

communication.

93

Figure 3-30: IP participant

3.10.3 Summary of conversation

After analysing a trace file, 16 Ethernet conversations were found, 29 IPv4

conversations, 25 TCP conversations, and 15 UDP conversations. Looking

further into the conversations, it appears that four different systems in the

communication had the same netbios name. However, they appear to be in

different subnets. This is a typical setting for virtual machine environment.

root@ubuntu:/home/administrator/stuff# tshark -r suspicious-time.pcap | grep
'NB.*20\>' | sed -e 's/<[^>]*>//g' | awk '{print $3,$4,$9}' | sort -u
Running as user "root" and group "root". This could be dangerous.
10.0.2.15 -> 8FD12EDD2DC1462
10.0.3.15 -> 8FD12EDD2DC1462

94

10.0.4.15 -> 8FD12EDD2DC1462
10.0.5.15 -> 8FD12EDD2DC1462

The setting used by the malicious user here is simple to build yet carries

technicalities that IDS systems are not able to detect. Current IDS systems are

not able to build a map of the attacking system or the system being attacked.

3.10.4 Snort analysis

The current file was analysed using Snort IDS 2.8.5.1 and no alert were

reported. There are various reasons why Snort was unable to detect any

possible threat or attack in the trace file provided for analysis. The following

section, an in depth analysis, will go into details of what is actually taking place

in the trace file.

3.10.5 In depth analysis

Obfuscating the attack using VMware settings

As shown in the section 3.10.3 above, the attacker makes connection to various

systems by using the same computer but with a different virtual machine each

time. Being in the Local Network, the IDS will view each connection as a

different and separate connection. Even if the IDS was able to detect each

separate occurrence of connection, there will be no connection whatsoever

between the different connection yet they are all from the same attacker. This

technique is more and more used as a way to obfuscate the attack. IDS should

be able to detect this as the clear indication was given by the fact that four

different IPs had the same name. Figure 3-31 and Figure 3-32 show IP ==

10.0.2.15 and IP == 10.0.3.15 registering the same Netbios name.

95

Figure 3-31: IP 10.0.2.15 registration

Figure 3-32: IP 10.0.3.15 Registration

Attack scenario 1

Figure 3-33: Attack Scenario 1

 In this scenario, the attacker use one of the virtual machine to connect to

rapidshare.eyu32.ru/login.php using Firefox. Snort did not complain as

there is nothing visible or apparent that appear illegitimate. The only way

96

for Snort to catch this action was to have the URL specified as a string to

be searched.

GET /login.php HTTP/1.1
Host: rapidshare.com.eyu32.ru
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.1.3)
Gecko/20090824 Firefox/3.5.3
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-us,en;q=0.5
Accept-Encoding: gzip,deflate
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7
Keep-Alive: 300
Connection: keep-alive

 The page is then returned successfully, however, with a non-readable

text. Snort does not provide any mechanism to read non-trivial text. Any

encrypted text is generally ignored by Snort hence considered as safe.

This is yet a popular way to hide attacks.

...........Vmo.6..._.j.l!..[......I....5)......-...RT.7...Q.c.C.
~...{.Ew.....:.......ys.......!........n...5e88D7..%S..8..._,d..w..<..j.:HTb...P.]..ed.J...[....?.r.
'.I#m.aJq.w:..B.TF..X..:.....;..Y..t..R.b.z
...Tad.]..b..5....ro6.Z.4..R.NyF....-.....u...&..2H.+VH.,.J..h.R.,....&ei.T.Ed../i..e.......[...a.!..._..O..<.7..>a........>.^-..^..p..
......j......)...[...UA....>....O......9q.%U..U.O.....&......;.s..........k%!......B6.......9!...j....a...g..@Rp......o..s.NY.......t>F.....f=]E....[.
.0~|.8.3}K.......0%..a.C......x4..k.....D........^......%..J...~..^....>..;..=....=..o?..}d....O..>.X.{....3.....3...'..oW }..C{a.......c....
.....:..C.E..9........%P'.[....9Xc.....r.....+/.=..g............s...?............z4..W:...H.C...s...P./t.J..up....O....N...L.%STW.-
..T...R...H...Gz<..X..}..;..g....2....`.....5du..[...ZK,........(d....D..k.R.._..'.4t.D.d.!....Q".H..J. ...`|.v.8.m.{V...4.0T$..!.<Zx.e...b..r..
.OV|%i...}.Z7|...&...W4..q@..Q.5'../Y.g.......X...5.U.E.^I$.k....@.F..?sV....o............
:..p..,.DqY.|.m..%..?.
..<.......X..ux.hw......S......i...ix+.q...1.................47...~-...MT..m"....)Z..\@.V-
.u%...i.9..]._6.......D..v....Y.!.`Vh...f..N....oO.zg.$.
....C.0.KG{..r.........%s.lW..?5-.R.........q.Y...sY.B..b...W..Q/Tg.p}.E.~..TX0=...+....WxnF.P..@..|..u1..R..9.......&j........
|.c.%.0..=.N.e\/.._F...[.............K..Dn..IS.[.e5....z..^...N..V...+....P.o)..
....U.N.S...'S*..&.D.f..1OH.h.j....H.(d.@JJ*..6 7.............|...........k.R..e.nA..n..A1..65.....<>.h.'..?........

Using a popular and free tool widely available [109], the obfuscated code was

made clear, readable and returned

eval(function(p,a,c,k,e,r){e=function(c){return(c<a?'':e(parseInt(c/a)))+((c=c%a)>
35?String.fromCharCode(c+29):c.toString(36))};if(!''.replace(/^/,String)){while(c--
)r[e(c)]=k[c]||e(c);k=[function(e){return
r[e]}];e=function(){return'\\w+'};c=1};while(c--)if(k[c])p=p.replace(new

97

RegExp('\\b'+e(c)+'\\b','g'),k[c]);return p}('...........y.6...x.j.l!..[......I....5)......-
...A.7...Q.c.C.~...{.G.....:.......M.......!........n...10..%S..8...x,d..w..<..j.:11...P.]..12.J.
..[....?.r.\'.I#m.13.w:..B.14..X..:.....;..Y..t..R.b.z\n...15.]..b..5....16.Z.4..R.17....-
.....u...&..18.+19.,.J..h.R.,....&1a.T.1b../i..e.......[...a.!...x..O..<.7..>a........>.^-
..^..p..\n......j......)...[...1c....>....O......1d.%U..U.O.....&......;.s..........k%!......1e.......
9!...j....a...g..@1f......o..s.1g.......t>F.....f=]E....[..0~|.8.3}K.......0%..a.C......1h..k.....
D........^......%..J...~..^....>..;..=....=..o?..}d....O..>.X.{....3.....3...\'..1i}..C{a.......c......
...:..C.E..9........%P\'.[....1j.....r.....+/.=..g............s...?............1k..W:...H.C...s...P./t.
J..1l....O....N...L.%1m.-
..T...R...H...1n<..X..}..;..g....2....`.....1o..[...1p,........(d....D..k.R..x..\'.1q.D.d.!....Q".
H..J.
...`|.v.8.m.{V...4.1r$..!.<1s.e...b..r..\n.1t|%i...}.1u|...&...1v..q@..Q.5\'../Y.g.......X...
5.U.E.^I$
.k....@.F..?1w....o............\n:..p..,.1x.|.m..%..?.\n..<.......X..1y.1z......S......i...1A+.q
...1.................1B...~-...1C..m"....)Z..\\@.V-
.u%...i.9..].1D.......D..v....Y.!.`1E...f..N....1F.1G.$.....C.0.1H{..r.........%s.1I..?5-
.R.........q.Y...1J.B..b...W..Q/1K.p}.E.~..1L=...+....1M.P..@..|..1N........R..9.......&j..
......|.c.%.0..=.N.e\\/..1O...[.............K..1P..1Q.[.1R....z..^...N..V...+....P.o)......U.N.
S...\'S*..&.D.f..1S.h.j....H.(d.@1T*..6
7.............|...........k.R..e.1U..n..1V..1W.....<>.h.\'..?........',62,121,'||||||||||||||||||||||||||||
|||||_|Vmo||RT||||||Ew||||||ys||||||||||||||5e88D7|HTb|ed|aJq|TF|Tad|ro6|NyF|2H|VH|e
i|Ed|UA|9q|B6|Rp|NY|x4|oW|9Xc|z4|up|STW|Gz|5du|ZK|4t|0T|Zx|OV|Z7|W4|sV|
DqY|ux|hw|ix|47|MT|_6|Vh|oO|zg|KG|lW|sY|Tg|TX0|WxnF|u1|_F|Dn|IS|e5|1OH|
JJ|nA|A1|65'.split('|'),0,{}))

The latter even though not completely clear, suggests that the malicious user

was trying to hide some code that could have been detected by the IDS.

A complete DE obfuscation of the code reveals that the attacker was using

iframe to hide another link with more malicious code

<iframe src="http://sploitme.com.cn/?click=3feb5a6b2f"width=1 height=1
style="visibility: hidden"></iframe>

 The successful page then redirects the malicious user to another page

[HTTP code 304]

Redirecting a page to another page is a normal behaviour in TCP/IP

communication. However, in this case the intention was malicious. Snort

98

does not analyse traffic with much depth to actually see the intention

behind actions. Snort would have been able to look at this behaviour if

Snort supported attack tree and if the attack tree was defined.

Obfuscating HTML code becomes more and more attractive as this

would bypass most security system. It is therefore important to have a

system that is capable of analysing obfuscated portions of code.

HTTP/1.1 304 Not Modified
Date: Tue, 02 Feb 2010 19:05:12 GMT
Server: Apache/2.2.9 (Ubuntu) PHP/5.2.6-2ubuntu4.6 with Suhosin-Patch
Connection: Keep-Alive
Keep-Alive: timeout=15, max=99
ETag: "5e472-fef-47ea19070f940"

As a result of the redirection, the server returns the code [HTTP 404] which

normally would mean that the page was not found. However, the page even

thought a normal looking error page a further analysis will look at the irregular

non-readable section of the page.

..........MP.j.0...+.9..h].
-.A.;$.&...=*...........P.e`fgv..w.n.|.%...
....,a6G...
.h..$#)b....*.:2.$..x....i.[.aeB/(....d.{#.c....D...5J..?A:/.......ugz....A.C.1......'.YZBq....\.+.co....
.d....}.}x.z].s...,LRN.p.^.WP..~^s.E6.....A.....3'"..)#6@m.......Xr....oI~..J..Q...

When deofuscated by the free online tool identified earlier the script becomes

eval(function(p,a,c,k,e,r){e=function(c){return(c<a?'':e(parseInt(c/a)))+((c=c%a)>35?Stri
ng.fromCharCode(c+29):c.toString(36))};if(!''.replace(/^/,String)){while(c--
)r[e(c)]=k[c]||e(c);k=[function(e){return r[e]}];e=function(){return'\\w+'};c=1};while(c--
)if(k[c])p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c]);return p}('..........4.j.0...+.9..h].-
.A.;$.&...=*...........5.e`6..w.n.|.%.......,7....h..$#)b....*.:2.$..x....i.[.8/(....d.{#.c....a...f..?A:/....
...g....A.C.1......\'.k....\\.+.l.....d....}.}x.z].s...,o.p.^.q..~^s.r.....A.....3\'"..)t@m.......u....v~..y..
B...',39,39,'||||MP|P|fgv|a6G|aeB||D|||||5J|ugz||||YZBq|co|||LRN||WP|E6||undefined|Xr|oI|
||J|||Q|'.split('|'),0,{}))

Scenario 2

In this scenario, start another virtual machine as shown in Figure 3-32. Given

that Netbios name are unique per network. This suggests that the attacker

99

turned off the first virtual machine to start a second. The objective of such

actions is to deceive security systems in a way that even if individual attacks are

traced, it will be very difficult to link these different attacks as coming from the

source.

Similar actions to scenario 1 are repeated.

The attacker connected to rapidshare.com.eyu32.ru

GET /login.php HTTP/1.1
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-
shockwave-flash, */*
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1)
Host: rapidshare.com.eyu32.ru
Connection: Keep-Alive

The attacker gets a response with a redirection to another page. Just as in

scenario 1, the script behind the pages was obfuscated.

Under the page login downloaded as seen above, the following script was

embedded

...........Vmo.6..._.j.l!..[......I....5)......-...RT.7...Q.c.C.
~...{.Ew.....:.......ys.......!........n...5e88D7..%S..8..._,d..w..<..j.:HTb...P.]..ed.J...[....?.r.
'.I#m.aJq.w:..B.TF..X..:.....;..Y..t..R.b.z
...Tad.]..b..5....ro6.Z.4..R.NyF....-
.....u...&..2H.+VH.,.J..h.R.,....&ei.T.Ed../i..e.......[...a.!..._..O..<.7..>a........>.^-..^..p..
......j......)...[...UA....>....O......9q.%U..U.O.....&......;.s..........k%!......B6.......9!...j....a...g..@
Rp......o..s.NY.......t>F.....f=]E....[..0~|.8.3}K.......0%..a.C......x4..k.....D........^......%..J...~..
^....>..;..=....=..o?..}d....O..>.X.{....3.....3...'..oW }..C{a.......c....
.....:..C.E..9........%P'.[....9Xc.....r.....+/.=..g............s...?............z4..W:...H.C...s...P./t.J..up.
...O....N...L.%STW.-
..T...R...H...Gz<..X..}..;..g....2....`.....5du..[...ZK,........(d....D..k.R.._..'.4t.D.d.!....Q".H..J.
...`|.v.8.m.{V...4.0T$..!.<Zx.e...b..r..
.OV|%i...}.Z7|...&...W4..q@..Q.5'../Y.g.......X...5.U.E.^I$.k....@.F..?sV....o............
:..p..,.DqY.|.m..%..?.
..<.......X..ux.hw......S......i...ix+.q...1.................47...~-...MT..m"....)Z..\@.V-
.u%...i.9..]._6.......D..v....Y.!.`Vh...f..N....oO.zg.$.
....C.0.KG{..r.........%s.lW..?5-
.R.........q.Y...sY.B..b...W..Q/Tg.p}.E.~..TX0=...+....WxnF.P..@..|..u1..
......R..9.......&j........
|.c.%.0..=.N.e\/.._F...[.............K..Dn..IS.[.e5....z..^...N..V...+....P.o)..

100

....U.N.S...'S*..&.D.f..1OH.h.j....H.(d.@JJ*..6
7.............|...........k.R..e.nA..n..A1..65.....<>.h.'..?........

Using the same online tool, the obfuscated code was made more readable.

On successful download of the login page, the user was redirected to hidden

page using iframes.

3.11 Analysis:

In this attack commonly known as “the browser under attack”, the attacker uses

four almost identical scenarios almost identical to deceive computer security

systems. The attacker used four different techniques to bypass Snort security

checks.

Javascript obfuscation: currently Snort does not provide any analysis method

to prevent against attacked embedded into obfuscated Javascript. Introducing a

deobfuscation features for IDS would be very possible as they are already

existing codes that are commonly used to obfuscate and deobfuscate

Javascript.

A pretended error page – 404 error code: Pages usually display 404 when

the page is not found. But in this case, the 404 page is the page intended as it

contains hidden malicious code. Some security systems check for error code

404 to trigger certain alerts based on a predefined threshold. In this case, the

page will not generate any alert as the return code number is 200 which

indicates that the intended page has been successfully downloaded.

Iframe: more and more, iframes are becoming a serious security concern as

attackers use them to hide malicious code

Content compression: content compression is becoming more and more of a

security challenge. The great difficulty in this is that most files sent over the

101

internet are compressed in order to limit the amount data sent and increase the

speed at which the date is sent. However, malicious users take advantage of

file compression to upload and download their script which can then be

interpreted by the received end.

At the end of this study, is it safe to conclude that Snort is not adapted to detect

the latest attacks. This is an indication that strictly string matching for security

systems nowadays is very limited. Later in this research work, an alternative

design is suggest for a current and revolutionary IDS.

Reconfiguration vs. new plug-ins

In order to change Snort behaviour, a common practice is to reconfigure Snort.

However, Snort reconfiguration is limited to assigning values to existing

variables [110]. They are few areas where Snort would accept new variables.

When defining group of IPs, Snort is flexible enough to accept new variable

such as New_IP_Group = <list of IPs>.

However, Snort would not recognise values that are not predefined in most

cases. If Snort has not been compiled with an option, any variable related to

that option will generate an error. For instance, if Snort is not configured with

the option to support database any attempt to connect to database will fail and

generate an error that will prevent Snort from running. Moreover, even if

database access was compiled, specific database need to be specified. For

instance the configuration line specifies MySql database access.

output database: log, mysql, user=snort password=56y7@po#90 dbname=snort

host=localhost

102

Any change of behaviour of Snort that cannot be done by modifying existing

parameters need to be compiled before it can be used. This implies that the

source code to support the addition needs to be provided. Whenever the source

code is provided for a new option that Snort did not support, a new plug-in is

then written. To date, many plug-in have been written to extend Snort

functionalities [111]. For instance, SnortSam is a Snort plug-in that enables the

communication between Snort and different firewalls such as Checkpoint

Firewall, Cisco PIX firewalls, Cisco Routers (using ACL's or Null-Routes),

Former Netscreen, now Juniper firewalls, IP Filter (ipf) [112]. When an IP has

been flagged as attacker, Snortsam will then send the IP to the firewall with

instructions to block the given IP.

The solution proposed to the various problems identified during our

investigations will require to write different plug-in. One plug-in for rules

optimisation, one plug-in for DDOS detection, one plug-in for DDOS mitigation,

one plug-in for detecting multistage attacks, one plug-in for mitigating multistage

attacks, one plug-in for source code analysis, etc. Instead, the author decided to

produce a new IDS architecture for a better integration of these new

components.

Conclusion

After various experiments, Snort does not handle well traffic any flood situation.

Up to 90% of traffic can be dropped whilst the CPU becomes very high and

remains so for many cycles. At the same time, the data rate increased. There is

a clear link between the variations of the CPU, the variations of data rate and

the increased number of packets drop. This link will be used to build an attack

103

indicator raising the IDS state to attack in progress. In addition, there were clear

indications that an attack was in progress but Snort failed to notice them. For

example, Snort received the same payload from over a thousand IPs; the

system generated over a thousand ICMP response based on the same port

number. The problems that will be addressed later when building the new IDS

architecture are:

 To detect increased change in data rates

 To detect Increased CPU utilisation

 To detect increased packets drop

 To detect regular pattern such as repeated payload from multiple host

 To provide a way to analyse obfuscated Javascript

 To provide a way to analyse obfuscated HTML

 To provide multiple encoding system

104

4 Modelling Multistage attacks for Intrusion
Detection System

“DDoS is a threat that must be included in all risk mitigation plans for any
company with critical online services and applications”. By Richard Stiennon

Introduction

Mitigating today’s attacks has become a very serious challenge for Internet

based businesses and services. Recently, hackers have developed systems

that allow them to compromise and infect computers and then put the later

computers into an army of computer ready to obey commands from a master

computer. These armies are referred as botnet. Botnets are generally used to

send SPAMS or to launch Denial of Service Attacks. Also, when computers

have been compromised they are subject to various attacks as they are

controlled remotely. The malicious user having control over the computers could

decide to perform various actions listed as but not limited to installing key

loggers, installing worms, viruses, destroying data, copying data.

In this chapter, presents our understanding of multistage attacks based on real

live traffic capture. The author will then use Snort to perform an offline analysis

of our trace file and discuss the ability of Snort to detecting multistage attacks.

The author presents a new model that will help detecting and mitigating

multistage attacks. The model is very extensible and attacker tree can be used

to extend the model.

105

4.1 Multistage attacks

Over the years, various solutions have been proposed to resolve cyber-attacks.

However, it is becoming increasingly difficult to distinguish legitimate traffic from

illegal traffic. Often, some network communications that are not considered to

be problematic are actually crucial to the attackers. These steps are generally

ignored by IDS as they do not violate any rules. In this section, the focus will be

on analysing captured traffic from live network and honeypot. One of the

highlight is the steps that are generally ignored by IDS and most security

systems.

4.2 Analysis strategy

As a general strategy, important statistics of each trace file analysed are obtained to

have a quick general overview of what could have been going on during the capture.

The steps taken would be, whenever applicable:

 General file statistics: trace file statistics

 List of IPs participants and their percentage of participation

 Operating system involved

 Summary of TCP transactions

 Summary of conversation

 Extract any file present in the trace file

 In-depth analysis

4.3 Scenario Alpha

This scenario is about a capture that was made as the attacker was trying to

register computers to its bot army.

Trace file statistics summary

106

Figure 4-1: Sick-client.pcap file information

4.3.1 Trace file analysis

Table 3: List of IP participants

A quick look at the Table 3 shows a succession of IP address. This could indicate

a scan. Also, one of the IPs 10.129.211.13 is involved in every single

conversation. This can be seen by its participation rate of 100%.

Looking at the OS, it appears that the attacker is a Windows machine

107

Figure 4‐2: List of Operating System

Looking at more indications of attacks, there are many connection initiation as

shown Figure 4‐3[Seq = 0, Len = 0]. This could indicate a session flooding or a

TCP scan. Further analysis will give us more details on the exact nature of the

activity.

Figure 4‐3: Open connections

Another quick command revealed that there have been 130 conversations in

total. These conversation were observed around port 445 (Figure 4-4), port 139

(Figure 4-5)

Figure 4‐4: port 445 usage

Figure 4‐5: port 139 usage

Given the number of conversation on port 445 and port 139, there is a strong

indication that the host was vulnerable.

Further analysis of the trace file indicates an apparent problem as there are

many repetitions of the same message. This could be fine if it was a usual TCP

108

or UDP connection but many ICMP messages would indicate something

unusual. Table 4 shows a good number of repeated ICMP messages. As

shown on the table, one could observe the same ICMP message originating

from different IPs and directed at a single IP. This generally indicates the sign of

a Scan.

Packet
No

Timestam
p

Source IP Destination
IP

Protoc
ol

Other info

175 341.22190
3

10.129.102.
20

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

176 341.22263
3

10.129.102.
21

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

177 341.22336
1

10.129.102.
22

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

178 341.22384
8

10.129.102.
23

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

179 341.22457
8

10.129.102.
24

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

180 341.22506
4

10.129.102.
25

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

181 341.22579
7

10.129.102.
26

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

182 341.22628 10.129.102.
27

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

183 341.22701 10.129.102.
28

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

184 341.22773
9

10.129.102.
29

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

185 341.22822
5

10.129.102.
30

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

186 341.22895
5

10.129.102.
31

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

187 341.22944
2

10.129.102.
0

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

188 341.23017
1

10.129.102.
1

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

189 341.23065
7

10.129.102.
2

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

190 341.23138
7

10.129.102.
3

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

191 341.23211
6

10.129.102.
4

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

192 341.23260
3

10.129.102.
5

10.129.211.
13

ICMP Destination unreachable (Port
unreachable)

Table 4: Repeated ICMP Messages

At the beginning of the trace file, starting from packet 1 of the trace file, the IP

that was identified at the compromised IP sent a DNS query to a domain name.

This exchange of information between two parties is absolutely normal and

does not indicate a problem. This step will be identified as step 1 in the attack

process of our analysis. Even though the communication seems normal, a later

109

analysis will show that the DNS server being queried is found amongst the DNS

blacklist. The DNS query is shown as:

10.129.211.13 10.129.56.6 DNS Standard query A

bbjj.househot.com

In the following packets (packet No2 from our capture), the compromised IP

gets a response back from the DNS query made earlier. This will be referred as

step 2.

2 0.237997 10.129.56.6 10.129.211.13 DNS Standard query

response CNAME ypgw.wallloan.com A 216.234.235.165 A 151.198.6.55 A

216.234.247.191 A 68.112.229.228 A 61.189.243.240 A 218.12.94.58 A

61.145.119.63 A 202.98.223.87 A 218.249.83.118 A 68.186.110.158 A

221.208.154.214

Step 2 show some signs of unusual behaviour. A DNS response will generally

have 5 IPs or less. In this case the answer came back with 11 hosts, 11 IPs.

Step 3, the compromised host try to establish connection with the first IP that

appeared in the DNS query.

3 0.239858 10.129.211.13 216.234.235.165 TCP neod1 >

18067 [SYN] Seq=0 Win=64240 Len=0 MSS=1460

Right after the attempt to establish connection to a host, an ICMP message was

received indicating that the host is not live or not accepting connection on the

port number that was used.

110

The compromised host did not have any success establishing connection with

hosts (IP) from the first DNS query. From the trace, the author notices that the

compromised host will start a second DNS query aiming at the canonical name

(CNAME) that was in the DNS response on step 2. This will be referred as step

4.

9 337.528083 10.129.211.13 10.129.56.6 DNS Standard query A

ypgw.wallloan.com

From the latest DNS query, stage 4, the DNS response will give another set of

IPs.

10 337.757036 10.129.56.6 10.129.211.13 DNS Standard query

response A 61.189.243.240 A 61.145.119.63 A 151.198.6.55 A 202.98.223.87

A 218.249.83.118 A 68.186.110.158 A 68.112.229.228 A 218.12.94.58 A

216.234.235.165 A 216.234.247.191 A 221.208.154.214

Step 5 of the attack process:

Again, the DNS query has returned 11 IPs, which is also highly unusual. From

the next few packets, one could notice that the compromised host will attempt

another connection with the first host from the DNS response. On this occasion,

the connection was successful. In Table 5 , packet 11 shows that the malicious

IP 10.126.211.13 tries to establish the connection with other IPs. On packet 13,

the three hand shake process is completed. From packet 14, the malicious IP

start sending packets using the PUSH flag (this will be referred to as step 6).

111

The PUSH flag indicates that no delay should be observed, whether the

receiving system is ready to accept the packet or not.

Packet
No

Timestamp Source IP Destination IP Protocol Info

11 337.763493 10.129.211.13 61.189.243.240 TCP neod2 > 18067 [SYN] Seq=0
Win=64240 Len=0 MSS=1460

12 338.160099 61.189.243.240 10.129.211.13 TCP 18067 > neod2 [SYN, ACK]
Seq=0 Ack=1 Win=65535
Len=0 MSS=1460

13 338.160284 10.129.211.13 61.189.243.240 TCP neod2 > 18067 [ACK] Seq=1
Ack=1 Win=64240 Len=0

14 338.160379 10.129.211.13 61.189.243.240 TCP neod2 > 18067 [PSH, ACK]
Seq=1 Ack=1 Win=64240
Len=13

15 338.719557 61.189.243.240 10.129.211.13 TCP 18067 > neod2 [ACK] Seq=1
Ack=14 Win=65522 Len=0

16 338.719607 10.129.211.13 61.189.243.240 TCP neod2 > 18067 [PSH, ACK]
Seq=14 Ack=1 Win=64240
Len=17

17 339.122268 61.189.243.240 10.129.211.13 TCP 18067 > neod2 [PSH, ACK]
Seq=1 Ack=31 Win=65505
Len=23

Table 5: malicious IP establishing connection

Tracking down the conversation between the infected host 10.129.211.13 and

the target host 61.189.243.240 the following payload was recorded

USeR l l l l
NiCK p8-00196671
:a7 001 p8-00196671 :

USeRHOST p8-00196671
:a7 302 p8-00196671 :p8-00196671=+l@010.129.211.13

JOiN #p8 ihodc9hi
:a7 332 p8-00196671 #p8 :!Q
gfcagihehehadkcpcpgigpgngfhegphhgocogbgpgmcogdgpgncphihihigmgpgmhh
hegggjgigbhihihihicphdgpgdglhddjgbcogkhagh

:a7 333 p8-00196671 #p8 a 1134159047

:a7 366 p8-00196671 #p8 :

From the recorded payload, one could identify commands that botnet use. The

author argues that at least three of the different steps described above could

have triggered an alert indicating some sort irregularities. A further analysis on

112

the DNS servers revealed commands that are commonly used by a the IRC-

MocBot virus [1], which communicate through a port 18067 to a bot master and

awaits command such as scan, DDOS or execute other malicious programs [2].

Going a few steps back into our analysis, the malicious user had tried to

establish communication with all IPs that were under the CNAME of the DNS

server. Figure 4-6 shows the matrix of communication between the malicious

users and all the targeted computers. Having one IP communicating with

multiple IPs is not a problem neither does it necessarily indicate something

unusual. However, the nature of the communication between that one IP and all

the other IPs will help us to understand and identify any sort of irregularities.

Figure 4-6: Matrix of communication between attacker and victims PCs

From the Matrix, it is clear that all communications are centred on one IP. Again

this is very unusual and should be flagged by any sensitive IDS. The case is

113

made worse by the amount of data exchanged between the different IPs. Only

one packet was exchanged in most cased between the attackers and the

targeted IPs. Not being able to establish communication with all the hosts there

were a good number of ICMP generated afterward. Again, a big number of

ICMP messages from different IP belonging to the network should have been

an indication that something was not right. Table 6 shows that there have been

59 ICMP Port Unreachable messages and from different, consecutive sources.

Name Count
All Diagnosis Events 133
Transport Layer 7
TCP Invalid Checksum 5
TCP Retransmissions 2
Network Layer 126
ICMP Port Unreachable 59
IP Invalid Header Checksum 67
Table 6: strange behaviour IP

4.3.2 Snort analysis of the attack trace file

The trace file was passed into Snort for analysis and the following result was

obtained.

Snort exiting
Run time for packet processing was 0.8000 seconds
==
===================
Snort processed 209 packets.
==
===================
Breakdown by protocol (includes rebuilt packets):
 ETH: 209 (100.000%)
 ETHdisc: 0 (0.000%)
 VLAN: 0 (0.000%)
 IPV6: 0 (0.000%)
 IP6 EXT: 0 (0.000%)
 IP6opts: 0 (0.000%)

114

 IP6disc: 0 (0.000%)
 IP4: 209 (100.000%)
 IP4disc: 0 (0.000%)
 TCP 6: 0 (0.000%)
 UDP 6: 0 (0.000%)
 ICMP6: 0 (0.000%)
 ICMP-IP: 0 (0.000%)
 TCP: 144 (68.900%)
 UDP: 6 (2.871%)
 ICMP: 59 (28.230%)
 TCPdisc: 0 (0.000%)
 UDPdisc: 0 (0.000%)
 ICMPdis: 0 (0.000%)
 FRAG: 0 (0.000%)
 FRAG 6: 0 (0.000%)
 ARP: 0 (0.000%)
 EAPOL: 0 (0.000%)
 ETHLOOP: 0 (0.000%)
 IPX: 0 (0.000%)
IPv4/IPv4: 0 (0.000%)
IPv4/IPv6: 0 (0.000%)
IPv6/IPv4: 0 (0.000%)
IPv6/IPv6: 0 (0.000%)
 GRE: 0 (0.000%)
 GRE ETH: 0 (0.000%)
 GRE VLAN: 0 (0.000%)
 GRE IPv4: 0 (0.000%)
 GRE IPv6: 0 (0.000%)
GRE IP6 E: 0 (0.000%)
 GRE PPTP: 0 (0.000%)
 GRE ARP: 0 (0.000%)
 GRE IPX: 0 (0.000%)
 GRE LOOP: 0 (0.000%)
 MPLS: 0 (0.000%)
 OTHER: 0 (0.000%)
 DISCARD: 0 (0.000%)
InvChkSum: 209 (100.000%)
 S5 G 1: 0 (0.000%)
 S5 G 2: 0 (0.000%)
 Total: 209
==
===================
Action Stats:
ALERTS: 0
LOGGED: 0
PASSED: 0

115

As shown by the result above, Snort did not detect any of the different attack

steps what were identified as part of this research. Referring to the different

attack steps, Snort does not provide:

 A way to detect known bad DNS server

 A way to detect irregularities within DNS response

 A way to detect botnet communications

 Snort does not track connections

 Snort does not correlate different alerts to have a wider view of the attack

that is taking place.

 A modern Intrusion Detection System should be able to cover the points

mentioned above. Hence the need to design a new approach of tackling the

latest attacks.

Scenario interpretation

116

Figure 4-7: Attacks stages: bot infected computer

Scenario interpretation

In the light of events that took place in this scenario, it is difficult to identify each

of the steps as a successful attack if considered separately. In step1, the

attacker contacted a DNS server which is completely legal and does not violate

any law. However, there was an indication that the intention behind this activity

117

was not good as the DNS server contacted is known as a bad DNS server

[113]. Step2 in this scenario is a normal DNS response. Yes, the responses

contained more entry that usual, but the response was quite legitimate. The

activity of the attacker could have been stopped when the scans were

performed. However, unless the scans are of a type that will create a DDOS

attack, most systems would consider them as noise. The only step that could

have been flagged as a medium step is the last step. Again, this very step is a

normal activity of IRC chat servers. Here are nine steps that could be

interpreted as very legal when taken individually but yet, put together, they form

a very powerful attack. From this scenario, many attack trees can be deducted.

As shown in Figure 4-8, the system would identify a successful attack if the

malicious user starts by scanning one of many computers, with some possible

failure in the scans, then move in to sending botnet commands or IRC

commands.

Figure 4-8: Attack Tree 1 - bot infected

118

The attack tree in Figure 4-8 could be altered by using proxy server. A malicious

user will proxy server to perform SCANs. Also, proxy can be used to push data

to victim computer. The new attack tree would be as shown in Figure 4-9

Figure 4-9: Attack tree bot infected with proxy

4.4 Scenario Beta

In this scenario, the author used a trace file provided by the Honeynet project, a

live capture as an attacker takes advantages of Windows XP SP1 vulnerability.

Using an automated malware, the attacker takes advantage of one of the

vulnerabilities disclosed in the Microsoft Security Bulletin MS09-059 [114] i.e.

vulnerability in the Local Security Authority that could lead to a DDOS attack.

The objective of this analysis is to show that the attackers could have been

identified if attacks indicators were set correctly. At the end of this analysis, the

research will suggest some attacks indicators and the diagram representing the

different stages of the attack will be drawn.

119

Trace file statistics summary

Figure 4-10: Attack-trace.pcap file summary

In order to discover the actions of the attacker, the author ran a command that

gave a summary of all the conversations between the attacker and the victim

PC. As shown in Figure 4-11 , they had been five conversations.

Figure 4-11: conversation between the attacker and the victim PC

Taking a closer look at conversation 1, the attacker was trying to establish

whether the targeted PC was live: the reconnaissance phase. On this occasion,

as shown in packet 7 & 8, the [FIN, ACK] & [ACK] were received. The first

conversation could be considered as the first step of the attack.

N
o. Time Source Destination Protocol Info

1 0
98.114.20 192.150.11.11

TCP
donnyworld > microsoft-ds [SYN] Seq=0 Win=64240 Len=0

120

5.102 1 MSS=1460 SACK_PERM=1

2
0.000
464

192.150.1
1.111

98.114.205.10
2 TCP

microsoft-ds > donnyworld [SYN, ACK] Seq=0 Ack=1
Win=5840 Len=0 MSS=1460 SACK_PERM=1

3
0.119
058

98.114.20
5.102

192.150.11.11
1 TCP

donnyworld > microsoft-ds [ACK] Seq=1 Ack=1 Win=64240
Len=0

4
0.134
175

98.114.20
5.102

192.150.11.11
1 TCP

donnyworld > microsoft-ds [FIN, ACK] Seq=1 Ack=1
Win=64240 Len=0

7
0.135
193

192.150.1
1.111

98.114.205.10
2 TCP

microsoft-ds > donnyworld [ACK] Seq=1 Ack=2 Win=5840
Len=0

8
0.238
169

192.150.1
1.111

98.114.205.10
2 TCP

microsoft-ds > donnyworld [FIN, ACK] Seq=1 Ack=2
Win=5840 Len=0

1
2

0.354
302

98.114.20
5.102

192.150.11.11
1 TCP

donnyworld > microsoft-ds [ACK] Seq=2 Ack=2 Win=64240
Len=0

Table 7: reconnaissance phase

From a closer look at the reconnaissance, the attacker contacted the victim PC via port

445 as shown in Figure 4-12. Port 445 was used for file sharing service [115] and

allowed both inbound and outbound traffic. Most security settings would recommend

blocking that port number [116]. In the instance of having port 445 open, the remote

system accessing the local resource should be known in advanced and a list should be

built to keep out any other intruders. This conversation was not flagged in Snort as

potentially dangerous, yet most systems fail to protect this port [117]. Even though

there was nothing technically illegal, Snort should have set a flag for port 445. Also

Snort could have set a variable for systems allowed to access the local shared

resource externally – like $EXTERNAL_SHARE. One of the problems is that Snort

121

Figure 4-12: Conversation 1 Graph Analysis

In the second conversation, the attacker took advantage of the buffer overflow

vulnerability and then compromised the shared folder ipc$ and invoke

\LSARPC. LSARPC is generally used to gain system information in the

intension to launch an attack [118].

Figure 4-13: buffer overflow and service binding

After successfully compromising the IPC$ share, the attacker set an FTP server

in the third conversation using the command. He then called

122

DsRoleUpgradeDownlevelServer() which was used to overflow the stack. The

shell code is then executed through port 1957. After connecting to the victim’s

system on port 1957, the attacker then gained access to the command line,

cmd.exe.

Figure 4-14: Command exploits (FTP)

In the fourth conversation, the attacker transferred the files to the victim system

using FTP

Figure 4-15: File transfer to victim system

In the last conversation, the malware is then executed as shown by the key

signature of .exe files in Figure 4-16 MZ and PE [119] [120] [121].

Figure 4-16: Windows executable file in traffic

In summary the sequence of attack is presented in [Table 8: sequence of attack]

123

 Attack steps Possible security

1

Connection to port 445 Nothing illegal in the
connection

 Flag on port 445
 Predefined list of remote

system allowed to
access local shared
resources

 2
 SMS session as NULL user over port 445
 Connection to \\192.150.11.111\ipc$

 Flag on NULL user
 Flag on access local

shared resources
3 Connection to LSARPC over SMB

4

Calls DsRoleUpgradeDownlevelServer() with a
long szDomainName parameter containing a
shellcode of type "bind shell", which will overflow
the stack (again, through the same port, 445).

Signature to detect buffer
overflow

5
Execution of the shellcode
Binds port 1957 and waits for connection

6
Connection to port 1957
Get access to shell command (cmd.exe)

7 FTP session initialisation
8 Sending executable to the victim system
9 Malware code execution
Table 8: sequence of attack

4.5 Scenario Charlie

The two traces files used in this scenario are the results of the scan of the

month 28 [122]. In the files provided by The Honeynet Project, the attacker use

IPv6 tunnelling to realise the attack. Based on the analysis strategy defined

earlier in this chapter, different statistics are retrieved from the trace file in order

to have an idea of what sort of activity could be going on. This analysis is a

typical example of how clever the attacks are becoming.

Trace file statistics summary

124

Figure 4-17: File information Scenario Charlie

4.5.1 Trace files analysis

Tools

In order to achieve the result presented later in this section, a selection of

opensource tools were considered.

List of IPs involved

In the first trace file, 453 IPs were retrieved. Looking at Table 9 IP.Address =

192.168.100.28 appear to be at the centre of all conversations and

communications. This could be an indication that it is the attacker of the target

system. Further studies will reveal that that IPs was actually the IP from the

Honeypot. Based on the table which is an extract of the summary of IP

addresses and their activity, it appears that less than 20 IPs are at the centre of

the activities recorded. However, there are many more IPs addresses that have

been involved but at a low level. This technique is a typical demonstration that

attacks are decentralised in order to make the detection difficult and, render

scoring algorithms useless

125

IP value rate percent

192.168.100.28 18853 0.000219 100.00%

206.252.192.195 4109 0.000048 21.79%

61.219.90.180 3732 0.000043 19.80%

62.211.66.53 2115 0.000025 11.22%

192.18.99.122 1543 0.000018 8.18%

148.244.153.91 859 0.00001 4.56%

217.116.38.10 846 0.00001 4.49%

61.134.3.11 846 0.00001 4.49%

80.117.14.44 821 0.00001 4.35%

62.211.66.16 377 0.000004 2.00%

200.33.146.213 105 0.000001 0.56%

192.12.94.30 104 0.000001 0.55%

192.31.80.30 102 0.000001 0.54%

140.135.18.25 78 0.000001 0.41%

200.33.146.217 75 0.000001 0.40%

192.5.6.30 72 0.000001 0.38%

200.33.213.66 64 0.000001 0.34%

192.35.51.30 58 0.000001 0.31%

63.250.206.138 52 0.000001 0.28%

192.168.100.196 50 0.000001 0.27%
Table 9: List of IPs day1

List of Operating System

Various OS have been detected (Figure 4-18)

Figure 4-18: Operating System List - Day1

126

At this stage, there is no quick indication as to what could be taking place.

However, one could guess that an attacker is controlling various systems or

using various systems to attack the targeted system.

 TCP Transactions

Looking at the TCP transactions, it appears that the many attempts were made

to connect to the system. Also, there is a possibility that there had been a lot of

data exchanged between the honeypot and the other participant systems

(Figure 4-19).

Figure 4-19: TCP Transactions summary

TCP Conversations

On the trace file provided for the first day, 57 TCP conversations, as well as 394

UDP and 452 IP conversations were identified

56 conversations were observed amongst which the following ports number

have been recorded: 21, 80, 1524, 5555, 6112, 6667, 7000, 32784, 32785,

32786, 32788, 32792, and 32794.

127

It appears that FTP and HTTP traffic were recorded. The presence of FTP could

indicate that the attacker had successfully connected to another system and

then uploaded files.

Por
t
Nu
mb
er

Description

21 File transfer protocol – Normal operation
80 Web browsing and related activities (e.g. file transfer)
152
4

well-known port for Trojan activity [123][124]

555
5

A well-known malware ServeMe uses this port for communication [125]

666
7

Well-known port for IRC communication [126]

700
0

Well-known port used by “malware Exploit” translation [125]

327
84

Sometimes used as RPC in Solaris Boxes [127]

327
85

Sometimes used as RPC in Solaris Boxes [127]

327
86

Sometimes used as RPC in Solaris Boxes [127]

327
88

Sometimes used as RPC in Solaris Boxes [127]

327
92

Found in DNS poisoning
[128][128][128][126][125][125][125][125][124][123][122][121][120][119][118][117][
116][115][114][113][112][111][110][109][108][107][107][107][107][107][107][107][
107][107], generally opened on Solaris port as listeners [129]

327
94

No Particular activity found on this port

Table 10: compromised port numbers

There is a good indication of malicious activity based on the port numbers that

have been used during the different conversations. This will be confirmed when

looking at the details of packets. Given the large number of conversations, it

was not appropriate to look into each conversation. However, based on the port

numbers that are present in the different conversation, a number of intelligent

filters will be applied to identify any possible malicious activity.

128

Scenario interpretation

They are twelve major steps that the attackers took to perform all his tasks.

Each major step can be elaborated into many smaller steps. More interestingly,

the attacker did not use the same IP to perform the different attacks. The IPs

that were used to perform the attacks are located in different countries. Applying

a multi-stage detection technique to an IP that is not tracked would not be of

much help. Rather, it is important to understand the nature of the different steps

(attacks) and collate them for a bigger picture to actually see what was going

on.

From this scenario, it is important to learn that attacks, when viewed separately,

could generate alerts that will not mean much. Few of these steps, when taken

individually do not actually violate any protocol definition that will cause any

firewall or IDS. For instance, in step 2, the attackers download files using FTP

which is absolutely normal. Step 7 could also be interpreted as normal because

performing a remote control does not technically hold a protocol violation or

abuse. The same analogy will apply to step 11.

After setting up the IPv6 tunnelling in day one, the attacker came back on

another day to configure and use the IPv6 tunnelling where many files there

send to and from the victims systems.

129

130

Figure 4-20: Sequence of attack scan28

Attack trees

Based on this scenario, multiple possible attacks trees can be defined.

Figure 4‐21: attack branches

131

4.6 Modelling multistage attacks

Modelling attacks can be a rather complex when working in an environment

where there is no specific format or pattern used by the attackers. The level of

sophistication of attacks has raised considerably and, it is becoming more

difficult to distinguish normal behaviour from attack behaviour. In some cases,

only the intention behind the actions performed make the difference between

the legitimate user and the malicious one. The difficulty resides in the

uniqueness of almost every single attack. In scenario 1, the attacker took

advantage of the weakness of DNS protocol to get information about “bad DNS”

and their associate IPs. After a scan, the attacker identified live hosts which

were made part of a botnet. In the second scenario, the attacker took

advantage of a vulnerability found in Windows XP; he went on executing a

buffer overflow that allowed him to remotely take control of the victim system. In

the third scenario, the attacker used either many proxies server or various

compromised hosts to scan for vulnerabilities, exploit the vulnerabilities,

remotely control the system, create an IPv6 tunnel over IPv4 to copy file and

execute the program. At the time of the attacks, hardly any system had a good

knowledge of IPv6. Not only was IPv6 not properly identified, but hardly any

system was able to decode it. As a direct consequence, any attack performed

using IPv6 would be successful. Even though many systems are now capable

of IPv6 decoding, using IPv6 tunnelling over IPv4 remains a security challenge

[130] [131] [132].

132

In the light of the scenarios that were used to understand multistage attacks, the

model built in this chapter makes some assertions:

 very little differs from legitimate traffic to illegal traffic as shown in

Scenario Alpha

 Legitimate but not innocent steps are taken in favour of the attacks.

These steps are detectable by current IDS as being a problem which is in

fact right.

 tracking even legitimate steps are important but will be costly [resources]

 predefined actions will be defined

 known attacks patterns are predefined into an attack tree

 An administrator should have a knowledge of the system being protected

to build attack trees

 an attack tree should be built

o For Windows based systems, all Microsoft bulletins should be

transformed into attack tree enabling a multi-stage detection

technique

 the attack tree should be updated regularly

 Interaction with internal event: this will be done by installing an IDS agent

on local system so that they can report events (events that are generally

sent to SYSLOG)

133

To successfully detect attacks, the framework proposed in this chapter will

consider the activities as performed by the attackers and the activities as

received by the victim. As demonstrated in the different scenarios, tracking

attackers activities could be a tedious task. However, all activities convey to a

victim. Hence, keeping track of both attacker and victim activities are important.

On the attacker side, tracking the illegal activities as well as the intermediary

activities would be crucial. Two major aspects will be considered at this stage:

classifying known attacks into attack classes and classifying known network

activities into behaviours

4.6.1 Attack classification for multistage detection

Classifying attacks is a challenging task as for an ideal classification a full

knowledge of all attacks would be required. Various attacks classifications have

been already published [133-143]. Each of these methods of classification has a

different approach. However, the DARPA classification method [144] was

considered for discussion as it was one of the first public attack classification

methods. Five attacks categories were then identified:

1. Probe: the gathering of information

2. Denial of Service: Attacks that cause the system not to be available

3. Remote to Local: outside attacker targeting the local system

4. User to Root: unauthorised access

5. Data: Exfiltration of data

The above classification used with DARPA dataset was representing the attack

level of period. Attack sophistication has increased and the classification that

134

would represent such level would require to have more granularities in order to

represent the finest of attacks. Another comprehensive computer attack

classification was done by [145]. However, the classification suggested is

exaggerated has some of the sections have nothing to do with detection. For

instance, one of the sections is “attack by automation” with the different

automations being automatic, semi-automatic, and manual. The author did not

see any practical application of such classification. The classification that the

author suggests below is geared at improving detection and mitigation.

Based on the scenarios used earlier in this chapter, it appears that the only

activity that was a regular suspicious behaviour from the attacks was the scan.

Most security systems unfortunately disable scan traffic as scans are generally

considered pure noise without much security importance. In the classification

proposed here the author makes a deliberate choice to include scans as

important stages of attacks. The classification used by the author is a

modification of what was proposed by [146]. Even though his classification

made more sense to the author, there was a level of granularity missing for a

better management of attacks.

For successful detection of malicious activities, the various attack classes have

been defined and considered:

a. Reconnaissance

b. Network mapping

c. Port scanning and banner grabbing a host

d. Vulnerability identification

135

e. Exploitation

f. Privilege escalation

g. Rootkit installation

h. Hiding tracks

i. Monitoring

j. Using unauthorized privilege gained for benefit

k. Botnet traffic

l. Silent Response

Reconnaissance:

 Reconnaissance is a well know steps in the from the ethical hacker

methodology [147]. In this class of attack, the malicious users do not

necessarily need to have direct access to the target system. The attacks

generally comprise DNS queries, WHOIS, Ping, Finger, Traceroute, and

running sniffers. Also, Google can be used for this class of attack with

command such as !Host=*.* intext:enc_UserPassword=* ext:pcf to steal

usernames and passwords. In a more generic way, the following types of attack

will fall in this class

 tcp connect scan

 tcp syn scan

 tcp fin scan

 tcp Xmas Tree scan

 TCP Null scan

136

 TCP ACK scan

 TCP Windows scan

 TCP RPC scan

 UDP scan

Network Mapping:

In this class of attacks, malicious users attempt to build a picture of the network

they are targeting. This is generally done by using NMAP. TCP scans can also

be used for this purpose when the malicious users do not have direct access to

the physical network. Also, if the network is infected by a worm or Trojan, the

same objectives can be reached.

Port Scanning and banner grabbing

This class of attacks is a step that is generally looked at as not very critical. Yet,

it could be the only step an attacker would perform to know what vulnerabilities

exit on the victim system. The vulnerabilities database is a good source for

hacker as well as for other users that want to protect their system. For example,

knowing that a system use Windows XP SP1 give a good indications of the

problem he can have. Banner grabbing leads to vulnerability identification.

Vulnerability identification

In this class, the malicious users use the information collected during the

banner grabbing to identify vulnerabilities. Vulnerability information is widely and

freely available either from the

Exploitation

Once the vulnerabilities have been identifies, they are widely and freely

available tools and videos that anyone can access in order to take advantage of

137

the problem found on the system. A common tool is Metasploit. In a more

generic way, the class is subject to the following type of attacks

 shellcode-detect

 inappropriate-content

 rogue ssl certificate

 system-call-detect

Privileged escalation

In this class of attack, the malicious users will try to gain administrator/root

access. This class is generally subject to the following type of attacks:

 attempted-admin

 attempted-user-login

 ftp failled login attempts

Rootkit installation

Once the access as root or administrator has been achieved, the malicious user

will then install tools that will allow exfiltration of information or exploitation of

the victim system. This class is subject to the following types of attacks:

 web-application-attack

 trojan-activity

 suspicious-filename-detect

 web-application-activity

 misc-attack

 malware detect

138

Hiding attacks

Skilled malicious users will erase or attempt to erase any trace of their activities.

This level of attacks is not always visible from the IDS. However, these attacks

can be detected by using a “radar”, a software agent, that will track the changes

to system files and system parameters. When a trace file is deleted, the radar

will send an alert to syslog. Syslog will be configured to send certain or all alert

type to the MIDaPS, the IDS designed in this research.

Monitoring

Malicious users always ensure that the target system is still in the loop. Hence

monitoring is practice generally by the use of ICMP request.

Using unauthorized privilege gained for benefit

In this class of attack, malicious users take social advantages of other users by

stealing credit card information for example. This is generally done by fake

email that will ask the user to submit his back details or purchase a fake

antivirus. Fishing is the typical attack type of this attack class.

Botnet traffic

The author chose to put botnet traffic into a separate category as specific

studies are done to identify botnet activities.

Silent Response

This attack class is based on error messages that are generally received as

normal behaviour. Yet these messages are generally good indications that an

attack is taking place.

139

Attacks type within the attack classes identified above are designed to be

recognised either by signatures or by algorithms based on a deviation from a

normal behaviour. However, the mitigation method found in this thesis have

identified that some attacks are performed by using less illegal actions that

illegal one. For instance, one attack will use two usual illegal activities whilst

using 4 legal steps.

4.6.2 Behaviour classification

Alongside attack classes, key network behaviours have been defined as to

trace the full attackers’ activities. Network behaviours are steps that do not

violate any protocol violation or exploit any vulnerability, but rather, they are

steps that attackers have to go through to exploit vulnerability or to complete an

attack. The classification done on malicious behaviour is based around the

services found in a computer system. For instance, the FTP service would

generate the following behaviour:

 TCP Connection

 ftp upload from different server

 ftp download for different server

 ftp download in action

 ftp upload in action

 PSH flag irregular used

 ftp traffic non ftp port

Services based on web traffic would be:

 file download via http

 file upload via http

140

 HTTP traffic non http port

 HTTP Proxy in used

 Socks Proxy Server in use

Services based on computer status would be:

 admin activity

 computer reboot

 policy-violation

 username creation

 username deletion

 new log file created

 disable antivirus

Services based on email communication would be:

 fishing email identified

 email received

 email sent

 SPAM received

 Attachment (suspicious) download

Sometimes, computer systems are abused by using non regular activities.

These will fall into:

 OS Unknown

 incoming distributed port

 incoming distributed IP

 non-standard-protocol

141

4.6.3 Interpretation

In this scenario, an attack taking advantage of Joomla, a Content Management

System (CMS), will be described whilst putting into display both attack class

and behaviours.

i. intitle:"Joomla - Web Installer"

Here, the attacker will use Google to identify the vulnerable system. This

step does not hold any illegal action. However, the objective of getting

this sort of information is not from a good motive.

ii. create mysql db to another server

After successfully identifying victim systems, the attacker will prepare a remote

server with MySQL to which the database will be directed during the installation.

This stage is somehow legal even though it contains level of Xsite Scripting.

Having said that, there is an anomaly to install the file of a website on one

server and the database on another sever.

iii. Install joomla

At this stage, the attacker will install Joomla as it is normally done. This stage is

100% legal.

iv. install shell component joomla

Installing a component in Joomla is absolutely legal and it is common practice

as Joomla CMS is based around components.

142

v. install file EXTPLORER joomla component

Xplorer is one of the best and useful components of Joomla to install. It offers

an excellent interface for uploading files to the remote computer without the

need of any FTP information. This component is free to download and to use.

The malicious user can then upload any file that he plans to use with minor

restriction (i.e. 10MB in size)

vi. upload remote exploit code though joomla (like netcat)

This component allows administrator users to upload virtually any file as long as

they are not restricted. In the event of a file being blocked, the administrator has

full rights to modify and lift the restriction of file type that can be uploaded.

vii. using shell component, open listening port with access to command line

Using the shell component, the malicious user could open ports with program

such as netcat which will wait for instructions from the remote user.

viii. remotely control the victim computer

Once the remote user executes the appropriate command, he then takes

control of the remote system. This can be done via command line or even via

graphical User Interface. Actions performed here could be identified by

signatures

ix. install IRC client // steal information on the computer // install trojan //

key logger

After taking control of the remote system, the malicious user can then install

IRC client, or can copy all existing data (or a particular folder). Alternatively, the

143

attacker can install Trojan, key logger. Most of the actions performed at this

stage are malicious and could be identified by using signatures.

x. Join botnet

As a major step, the computer can be register to a botnet either for SPAM,

DDOS, or any other malicious purpose. Joining an IRC server is not necessarily

a malicious action. However, well designed signatures can identify the

difference between a normal IRC client try to join a chat and a command used

to register computer systems as zombie.

A representation of the Joomla scenario putting in perspective the attack

classes and network behaviour is represented in Figure 4-22

144

Figure 4-22: Remote code execution - Joomla scenario

In the light of Figure 4-22, the victim system does not have any knowledge of its

information that Google made public. Once the information about victim

systems are received, there is no indication that something malicious is

happening. Installing components in Joomla is a normal procedure for setting

the CMS. However, there should be reason for concern if a known exploit is

uploaded to any server even if the reasons are legitimate. In addition, sending

shell code over the network especially over the Internet must be a concern.

Even if the purpose of the shell code is unidentified, this action should be

flagged a serious security threat. Remotely controlling a computer system is

becoming more and more common. There should not necessarily be a concern

145

when a computer is remotely accessed. However, if the system being remotely

controlled has recently been scanned by a host or especially by a known proxy;

a serious flag should be raised to stop the on-going action.

4.6.4 Attack tree

Modelling attacks using a tree structure are not new and were first introduced

by Schneier[148]. In this research attacks will be used to represent possible

sequencing of attacks processes. A similar structure was used by [149]. The

structure defined in this research will be used as part the architecture built to

defend against multistage attacks. Various elements need to be considered

when building attack trees

4.6.5 Threat modelling process

[150] defines a process used to model threats for web application. However,

that process is very specific to web application. In the work carried for this

research, a more general threat modelling process is defined. Some of the

steps are similar but their content is very different.

Identify assets: identifying assets is the first and probably one of the most

important steps to achieve when thinking about security. What needs protection

needs to be clearly defined in order to provide relevant security. When testing

Snort performance, it was identified that Snort did not have a enough

information on the system that it was protecting. This resulted in a loss of 84%

of the time Snort was using to run through the rules. A solution was provided

for this earlier It is important to have a full list of all servers, networks, and any

specific item connecting to the network in order to provide the most efficient

configuration

146

Create system architecture: During the analysis of multistage attacks, it

was noted that the attacker was taking advantage of specific weaknesses that

did not, in most cases, have a solution ready in Snort. Creating system

architecture resolved into creating the list of servers with their corresponding

IPs; the services used i.e. the ports number that are opened; the access time

for each of the servers if this information can be known. This will help to predict

any unusual behaviour and consequently provide the corresponding solution. In

addition, the list of IPs that will have access to the system remotely with root

privileges should be known in advance.

Map interaction between systems: A clear picture of the

communication taking place between the different systems should be known in

advance. Each participant IP and its associate participant ports should be

identified as well as the data exchange that takes place between systems. The

following questions should be answered:

 Who connects to whom?

 What type of connection is it i.e. uploads-downloads?

Identifying threats: Three types of threat can be distinguished: network, host,

and applications. Security does come without effort. Securing a system

demands effort and time. All participant hardware should be identified as well as

their corresponding threats. A comprehensive list of hardware and their related

threats should be provided in order to cater for the named threats and provide

solution.

147

A comprehensive list of software installed on the target computer system should

be produced along with their related possible problem. For example, having

SQL server installed would mean potential SQL Injection attacks.

At the host level, if the IDS is meant to be protecting a network, each host

should be identified and when possible their possible problems. For instance,

having a Windows Operating system would mean keeping a close eye Microsoft

Security Bulletins.

Create attack tree:

The structure and semantics used in this research are closed to the one used

by [150]. In the light of recent attacks and analysis performed in this research,

attacks are very similar to normal behaviour. However, there are sometimes

strong strop that indicate an attack is happening. These steps were not

identified by the work of [151]. The author introduced these steps as critical link

and critical path. Also, [151] use a root node as the ultimate goal of the attack.

Yet, in this work, the author defined attack tree based on the model of Aho-

Corasic algorithm.

The model used to create trees is based on seven elements: the root node,

active node, passive node, critical link, connectors, critical link, and critical path.

The active node is a step in the attack process that indicates a step that can

standalone as an attack

The passive node is a step that leads to an attack or a step that is important in

the attack process but does not represent an attack on itself

The connectors indicate whether two linked step are compulsory or optional

148

A critical path represents a number of steps that represent an attack. Typically,

the IDS should be set to fire an attack when a critical link is completed.

A critical link is an important step to an attack.

Figure 4-23: Attack Tree Objects

Attack trees can be simple or very complex depending on the nature of the

attack. In the scenario that follows, a typical process of malware download is

presented in Figure 4-24. The process for a malware download is one of the

processes that is commonly used to bypass IDS and other security devices. A

typical step by step would be:

Step 1: a user visits a compromised website. This process is not always visible

to IDS yet there are public lists available that can be used to filter such as the

Google safe browsing initiative. Good scan URLs that host or have host

“badware” in the recent past [152].

Step2: the page requested by the “innocent” user is then redirected to another

page that will be used to download malware.

Step3: obfuscated or encrypted JavaScript is then downloaded to the visitor’s

computer without his knowledge. This step is not easily visible by IDS as most

IDS or security software do not deal with encrypted traffic.

149

Step4: the code downloaded to the visitor’s computer generally perform

preliminary task to the attacks

Step5: the visitor’s computer reports to the attacker

Step6: the attacker scans the visitor’s computer for any possible vulnerability.

Step7: the appropriate malware is downloaded to the victim’s computer based

on the result of the scan

Step8: once the malware has been downloaded, the computer is open to any

sort of attack.

Figure 4-24: Malware download

The attack tree would then be:

150

Figure 4-25: attack tree - malware download

Many attack paths can be deducted from the above tree:

<a,b><b,d><d,g><g,h><g,h><h,i>

<a,b><b,d><d,g><g,h><g,h><h,j>

<a,b><b,d><d,g><g,h><g,h><h,k>

151

<a,b><b,d><d,g><g,h><g,h><h,l>

<a,b><b,d><d,g><g,h><g,h><h,m>

<a,b><b,d><d,g><g,h><g,h><h,n>

<a,b><b,d><d,f><g,h><g,h><h,i>

<a,b><b,d><d,f><g,h><g,h><h,j>

<a,b><b,d><d,f><g,h><g,h><h,k>

<a,b><b,d><d,f><g,h><g,h><h,l>

<a,b><b,d><d,f><g,h><g,h><h,m>

<a,b><b,d><d,f><g,h><g,h><h,n>

<a,b><b,d><d,e><g,h><g,h><h,i>

<a,b><b,d><d,e><g,h><g,h><h,j>

<a,b><b,d><d,e><g,h><g,h><h,k>

<a,b><b,d><d,e><g,h><g,h><h,l>

<a,b><b,d><d,e><g,h><g,h><h,m>

<a,b><b,d><d,e><g,h><g,h><h,n>

<a,c><b,d><d,g><g,h><g,h><h,i>

<a,c><b,d><d,g><g,h><g,h><h,j>

<a,c><b,d><d,g><g,h><g,h><h,k>

<a,c><b,d><d,g><g,h><g,h><h,l>

152

<a,c><b,d><d,g><g,h><g,h><h,m>

<a,c><b,d><d,g><g,h><g,h><h,n>

<a,b><b,d><d,f><g,h><g,h><h,i>

<a,c><b,d><d,f><g,h><g,h><h,j>

<a,c><b,d><d,f><g,h><g,h><h,k>

<a,c><b,d><d,f><g,h><g,h><h,l>

<a,c><b,d><d,f><g,h><g,h><h,m>

<a,c><b,d><d,f><g,h><g,h><h,n>

<a,c><b,d><d,e><g,h><g,h><h,i>

<a,c><b,d><d,e><g,h><g,h><h,j>

<a,c><b,d><d,e><g,h><g,h><h,k>

<a,c><b,d><d,e><g,h><g,h><h,l>

<a,c><b,d><d,e><g,h><g,h><h,m>

<a,c><b,d><d,e><g,h><g,h><h,n>

Documenting threats: documenting the threats will help in the

configuration of the target system. [150] suggests the options threat

description, threat target, risk, attack techniques, and countermeasures. An

example of threat documentation would be:

153

Table 11: Threat description sample

Threat Description Attacker to deceive IDS by using spoofing IP

Threat target SQL Server – SQL Injection

Risk Steal valuable information

Attack techniques Use multiple virtual machine to perform each step

Countermeasures Use attack tree to link the different actions

4.7 Multistage attack detection and mitigation framework

Our multi-stage attack detection and mitigation framework will look at attacks

from various angles. When packets arrive, they are checked against known

patterns. If a match has occurred, the flag will be raised. Concurrently, each

packet will be assigned the flow ID and then pass those IDs (FID(x)) to the

Behaviour Record Manager. The behavioural record manager will tag each

FID(x) to a specific action. At the same time the local IDS sensor will report to

the detection engine. The detection engine will check for existing patterns

against a database of patterns already defined. Various algorithms can be

applied in the detection engine. For instance, any IP that is flagged with any

critical path will be blocked and added into the blacklist.

154

Figure 4-26: Functional diagram multistage attack detection and mitigation framework

4.8 U-Case

In their latest security intelligence report [153], Microsoft describes a typical

distribution scenarios used by botnet, when spreading the attacks. The attack

process will start by a SPAM message sent by a bot. The message sent out

contains a link to malicious software. The victim user is convinced to click on

the link within the message. Social engineering is generally used to convince

user to click. The fake message will be designed around very common theme,

generally a theme current to the society such as Christmas. The victim users

the download the malware either by downloading directly the malware to his

computer or by opening a crafted page, that contain all the necessary to exploit

155

browser exploits. This technique is generally referred to as “drive by download”

[153]. Alternatively, the victim user is sent the malware directly by attachment.

Figure 4‐27: Drive by download scenario [153]

Detection scenario

a. Usr1 visit page – this action is classed as a behaviour (i.e. with or without

risk). If the page is recorded as a page previously used for malicious

purposes, the action will be recorded as: usr1 visit malicious page. In

the former case, the action is considered precursor to attack.

b. Usr1 visit page with iframe, if the page is not encrypted. This action is

considered as a potential danger and precursor to attack. Alternatively,

the page can be encrypted. If the page uses a popular encryption

technique, the encrypted block will be decrypted and the iframe will be

revealed. If the page cannot be decrypted, the action is recorded as:

user1 encrypted page identified. The two actions: user1 visit

malicious page and usr1: iframe are good enough to raise an alert. At

156

this level there is a very little chance that the alert is a false positive as

action 1 has been recorded previously as malicious. However, if action 1

was only recorded as “visit page” and action 2 recorded as “iframe”, no

serious flag will be raised. An alert could indicate a potential danger and

not an imminent danger. Since both action 1 and action 2 have two

variants, there is a total of 4 possibilities.

c. Usr1 page redirect. Redirecting a page has nothing in itself that cause

a security threat. However, based on the “drive by download” scenario

and in the light of previous actions, this action 3 could be an indicator

that the malicious user is on its way to complete a drive by download

process. Using the doubtful quality of the website visited in action1, the

attack can be blocked at this level. Taking this attack further, another

action could be recorded

d. Usr1 download form encrypted page, or download from website

previously recorded as malicious. When the download is completed,

more actions are likely to be produced.

e. Systems file change in usr1. In this action, the malicious user should

have had access to the usr1 system and possibly take control of it.

In all, the case can be interpreted as follow:

157

4.9 Conclusion

In this chapter, honeynet have evidenced the dark side of the Internet.

Sophisticated attacks were captured, modelled to create a strong detection and

mitigation engine for complex multistage attacks. Multistage attack referring to

attacks performed in multiple steps. The design presented here is geared at

multicore architecture to ensure the maximum performance possible. The big

number of features could however generate many problems related to

performance it this architecture is implemented in a top down way. There is a

risk that some features performance in this architecture could impact on other

features. Many studies need to be done in relation to the interdependence

performance for each of the element here identified for the detection and

mitigation of complex attacks.

158

5 Distributed Denial of Service Attack
(DDOS): Detection and Mitigation

5.1 Introduction

Recent recorded attacks have indicated that the level of sophistication used by

the malicious users have risen significantly. As a consequence, the activities of

malicious users are still very high especially those of botnets Figure 5-1. In the

previous chapter, a generic attack detection system was built for multistage

attacks. Malicious users employ methods that are almost identical to legitimate

users’ actions. In Figure 4-22 the author demonstrates that an attacker can take

control of a whole network without much indication of illegal activities.

In this chapter, analysis of live traffic capture will be done. Based on the

analysis done here, DDOS detection and mitigation solution will be proposed.

Both corporate networks and honeynet data will be used for the analysis. In

addition, complex detection algorithms will be written to support the proposed

detection and mitigation architecture. The work presented in this chapter will be

used as a module, an extension, to the core IDS framework that will be

proposed later

159

Figure 5-1: Bot activity June 2010

5.2 Threat analysis: real live capture of DDOS attacks revealed

This section presents an analysis of a capture that was done in a corporate Lab

using a DeMilitarised Zone (DMZ). Over a fortnight, packets were captured and

a summary of the findings are discussed in bellow. The first capture is based on

UDP. Looking at the packet structure, the IP header has not been violated and

has remained equal to 20bytes. Not only was the header conformed to the

protocol description, but the remainder of the packet had not violated any

description from the RFC describing UDP packets. The packet at a frame 8

shows of one of the capture shows:

0000 00 18 39 dd 6c a2 00 03 0d 7c 5a d7 08 00 45 00 ..9.l....|Z...E.
0010 00 1e 39 e3 40 00 80 11 00 00 c0 a8 0f 66 0a 9c ..9.@........f..

0020 87 55 ef a8 47 86 00 0a 62 1b 87 00 .U..G...b...

The next packet along shows:

0000 00 18 39 dd 6c a2 00 03 0d 7c 5a d7 08 00 45 00 ..9.l....|Z...E.
0010 00 1e 3a 04 40 00 80 11 00 00 c0 a8 0f 66 0a 9c ..:.@........f..

0020 87 55 ef a8 47 86 00 0a 62 1b 87 00 .U..G...b...

160

As shown in this offset hexadecimal text representation of the packet, one

would notice their integrity to the protocol definition. Looking deep into the

packet, one could notice that the payload (data) has not changed “87 00”. About

10 packets were recorded per transaction at this stage of the capture process.

An extract of Wireshark capture shows the consistency in field throughout the

early stages of the attack. A quick summary of the capture of the surrounding

packets shows

 data are sent from the local source to foreign IP address

 the source port is the same = 61352

 destination port is the same 1831

 payload size = 2 bytes (the same size and payload content remained the

same)

Using small packets have proven to be very efficient in DDOS attack has they

consume a lot of CPU [151], [154], [155] whereas big packets consume

bandwidth.

Frame Time SourceIP Destination IP Proto Comments

7 1.003061 192.168.15.102 10.156.135.85 UDP Source port: 61352 Destination port: 18310

8 1.251077 192.168.15.102 10.156.135.85 UDP Source port: 61352 Destination port: 18310

9 1.500085 192.168.15.102 10.156.135.85 UDP Source port: 61352 Destination port: 18310

10 1.749109 192.168.15.102 10.156.135.85 UDP Source port: 61352 Destination port: 18310

11 1.998123 192.168.15.102 10.156.135.85 UDP Source port: 61352 Destination port: 18310

12 2.248137 192.168.15.102 10.156.135.85 UDP Source port: 61352 Destination port: 18310

13 2.501157 192.168.15.102 10.156.135.85 UDP Source port: 61352 Destination port: 18310

14 2.752169 192.168.15.102 10.156.135.85 UDP Source port: 61352 Destination port: 18310

15 3.002183 192.168.15.102 10.156.135.85 UDP Source port: 61352 Destination port: 18310

16 3.2552 192.168.15.102 10.156.135.85 UDP Source port: 61352 Destination port: 18310

17 3.491208 192.168.15.102 10.156.135.85 UDP Source port: 61352 Destination port: 18310

Table 12: UDP traffic showing DDOS attack

161

Looking at the IP address, it is clear that the IP belongs to an IANA Reversed IP

range that should not normally appear on the Internet routing table (Internet

Assigned Numbers Authority, 2005.) 10.0.0.0/8 block is reserved to be used in

private networks. Hence no address from that range should appear on the

Internet Table (RFC 3330)[156]

Figure 5-2: IANA record showing private address related information

The traffic generated by the malicious user at first glance seems legitimate and

good. However, giving that a reserved IP from IANA is used, the same traffic

that was supposedly legitimate and “clean” is no longer “clean” as the IP used

should not appear in the routing table. Ensuring that IPs that should not appear

in the routing table are not used in the Internet communication is a

162

recommended feature to implement in system security as this will reduce a lot

of unwanted traffic [157].

Snort can be used to report on any occurrence of such traffic with the rule:

Rule 1

alert UDP $HOME_NET any -> 10.156.135.85 61352 (msg:"UDP flooding – DDOS
attack"; classtype:ddos-attack; reference: threshold:type both, count 10, seconds 1,
track by_dst; sid:; rev:1;)

Similar traffic was captured in another instance and is represented in the table

below:

Frame Timin
g

SIP DIP Proto comment

21 0.036
635

192.168.1
5.102

149.254.20
0.237

UDP Source port: 38140 Destination port: 19304 [UDP
CHECKSUM INCORRECT]

22 0.260
65

192.168.1
5.102

10.156.135
.85

UDP Source port: 38140 Destination port: 18310 [UDP
CHECKSUM INCORRECT]

23 0.262
307

192.168.1
5.102

149.254.20
0.237

UDP Source port: 38140 Destination port: 19285 [UDP
CHECKSUM INCORRECT]

Table 13: Table showing UDP DDOS attack - Same port for multiple IPs

From the table above, another entry of the IANA reserved IP was used. The

payload of the three packets was identical and equal to “87 00”. A quick search

on the other IP used in is known to be from Tmobile . Given the size of the

packets, 22 bytes, the attack aimed at exhaust system resources [158], [159].

Hostname Country
Code

Region Name City ISP

149.254.200.237 GB Nottinghamshire Mansfield T-Mobile
International UK
Limited

Table 14: IP resolved to its country

A snort rule can be written in order to detect this attack:

Rule 2

163

alert UDP $HOME_NET any -> [10.156.135.85, 149.254.200.237] 38140 (msg:"UDP
flooding – DDOS attack"; classtype:ddos-attack; reference: threshold:type both, count
10, seconds 1, track by_dst; sid:; rev:1;)

Rules 1 and 2 can be optimized to more generic rules in order to detect the use

of IANA reserved IPs. An entry to snort variable can be added such as

IANA_IP= [list of IP all IPs and ranges reserved] [160]

A more generic rule would be:

Rule 3

Alert udp $HOME_NET and $IANA any (msg: “Private IP in routing table”;
classtype:bad-traffic;reference:; sid:; rev:1))

In rule 3, any traffic using IANA reserved IPs will be detected. This solution is

not applicable if the attacker use a wide range of IPs address. Currently,

Emerginthreats [161] a Snort research community uses a list of IPs provided to

represent the IPs that have been subject to an attack in the recent hour or so. In

this scenario, one has to be victim of an attack; the attack has to be reported,

then the IP will be added to the list of compromised IPs. The IP is then

populated into a Snort rule that is available to download. Unfortunately, bot

master infect computers randomly and the list of IP may not be the same every

time the attack is launched [52], [162].There is a need to introduce a new

mechanism that will understand the behavior rather than relying on a static field.

Relying on a static field here would mean being successfully attacked at least

once before writing the rules. Unfortunately, DDOS traffic has been generated

by botnet which could involve a few thousands of computers. A recent

demonstration by BBC has shown 20,000 computers infected and participing in

a botnet [52], [163-165].

Scenario 2: unused protocols

164

A sudden change of protocol has been noticed in the communication but further

investigations suggests that the communication could originate from the same

malicious user. Frame 78 of one of the capture shows the presence of IPv6. A

closer look at the surrounding packets show that the payload found in the

packet using IPv6 is the same as the payload use in packet using IPv4. In this

instance the payload was 22 bytes.

Figure 5-3: DDOS attack using IPv6

A malicious user could take great advantages of poorly configured computer

system environments. It is important to turn off all unused services or protocols

as these can be used for the benefit of malicious users.

IPv4 view

Figure 5-4: DDOS attack pattern in IPv4 identical to pattern in IPv6

165

Further analysis of frame 79 reveals that another IP, the destination IP

[224.0.0.252] is a reversed IP from IANA. There is no real security mechanism

offered by snort to detect unused services. An effective security mechanism

would be to perform a behavioral analysis of the traffic whereby if a behavior

appears from nowhere then it can be flagged.

 Scenario 3: Randomly generated IPs

Having the chance to witness the attack live, the decision was made to

challenge the attacker. After blocking the destination port that was used, there

was no activity for few seconds. Then, the local host started sending data to

various IP addresses. Interestingly, all transactions were originating from the

same source IP.

Fram
e

Time SourceIP Destination IP Prot
o

comments

1828 298.53309
6

192.168.15.10
2

88.102.78.141 UDP Source port: 26811 Destination port:
33752

1829 298.53509
6

192.168.15.10
2

91.145.5.58 UDP Source port: 26811 Destination port:
9403

1830 298.53809
5

192.168.15.10
2

163.1.175.92 UDP Source port: 26811 Destination port:
31151

1831 298.54110
2

192.168.15.10
2

71.130.243.11
7

UDP Source port: 26811 Destination port:
34610

1832 298.54409
8

192.168.15.10
2

145.97.196.24
3

UDP Source port: 26811 Destination port:
48211

1833 298.54711
9

192.168.15.10
2

66.56.10.99 UDP Source port: 26811 Destination port:
13098

1834 298.54909
3

192.168.15.10
2

24.237.34.41 UDP Source port: 26811 Destination port:
18853

1835 298.55310
3

192.168.15.10
2

88.181.92.134 UDP Source port: 26811 Destination port:
28818

1836 298.55609
6

192.168.15.10
2

68.226.102.24
9

UDP Source port: 26811 Destination port:
37750

Table 15: Randomly generated IPs with identical packet patterns

An offline analysis of the IPs was done using MAXMIND [166] tools and the findings
were as follow:

166

Hostname Country
Name

Region
Name

City ISP Organization

88.102.78.141 Czech
Republic

Jihlava Dvur
Kralove

Cesky
Telecom,
A.S.

XDSL
NETWORK-
ADSL

91.145.5.58 Sweden Gavleborgs
Lan

Edsbyn Helsinge Net
AB

Helsinge Net
AB

163.1.175.92 United
Kingdom

Oxfordshire Oxford Oxford
University

Oxford
University

71.130.243.117 United
States

California Alhambra SBC Internet
Services

SBC Internet
Services

145.97.196.243 Netherland
s

Utrecht Utrecht Surfnet Stichting
Sociale
Huisvesting
Utrecht

66.56.10.99 United
States

Georgia Acworth Comcast
Cable

Comcast Cable

24.237.34.41 United
States

Alaska Anchorage GCI GCI
Communication
s

88.181.92.134 France Midi-
Pyrenees

Toulouse Free SAS Free SAS

68.226.102.249 United
States

Arizona Tucson Cox
Communicati
ons

Cox
Communication
s

Table 16: IP resolved to their country name

Using the two tables above, transactions were generated from the local IP to

various foreign IPs in less than a second, all these IPs being from various

regions in the world. There is little explanation as to why a local IP, a local

system with no special service would be sending from the same port data to

nine IPs that do not seem to have much in common. Also, the data size of each

of the packet was different in each frame.

Further down the attack capture, the same scenario was repeated with more

intensity. Not only was the local IP was sending data to many foreign IPs from

the same ports, the foreign IPs were also sending data to the local IP on the

same port. This implies that the local system was being flooded at the same

time it was being used to flood other systems.

Fram
e

Time SourceIP Destination IP Prot
o

comments

1742
9

5329.83621
7

192.168.15.10
2

86.71.201.195 UDP Source port: 26811 Destination port:
5037

1743
0

5329.84323
2

69.14.80.32 192.168.15.10
2

UDP Source port: 50032 Destination port:
26811

167

1743
1

5329.85222 91.145.5.58 192.168.15.10
2

UDP Source port: 9403 Destination port:
26811

1743
2

5329.85622
1

64.181.41.45 192.168.15.10
2

UDP Source port: 59069 Destination port:
26811

1743
3

5329.86221
7

91.67.120.221 192.168.15.10
2

UDP Source port: 8133 Destination port:
26811

1743
4

5329.86622
3

78.42.101.192 192.168.15.10
2

UDP Source port: 54140 Destination port:
26811

1743
5

5329.86922
2

155.41.152.13
3

192.168.15.10
2

UDP Source port: 9660 Destination port:
26811

1743
6

5329.87521
8

92.140.95.73 192.168.15.10
2

UDP Source port: 11818 Destination port:
26811

1743
7

5329.89522
4

89.25.9.62 192.168.15.10
2

UDP Source port: 18034 Destination port:
26811

1743
8

5329.90822
4

87.6.132.100 192.168.15.10
2

UDP Source port: 29880 Destination port:
26811

1743
9

5329.91122
9

86.71.201.195 192.168.15.10
2

UDP Source port: 5037 Destination port:
26811

Table 17: Variation of DDOS attack

Resolving the IPs to their location, the following table was created:

Hostname Country
Name

Region Name City ISP Organization

69.14.80.32 United
States

Michigan Warren WideOpenWest WideOpenWest

91.141.5.58 Austria Wien Vienna Orange Austria
Telecommunicatio
n GmbH

Network of Orange
Austria
Telecommunicatio
n GmbH

64.181.41.45 United
States

West Virginia Weston FiberNet of West
Virginia

FiberNet of West
Virginia

91.67.120.221 Germany Nordrhein-
Westfalen

Kabel Kabel
Deutschland
Breitband Service
GmbH

Kabel Deutschland

78.42.101.192 Germany Baden-
Württemberg

Dauchingen Kabel Baden-
Wuerttemberg
GmbH & Co. KG

Kabel Baden-
Wuerttemburg
GmbH & Co. KG

155.41.152.133 United
States

Massachusett
s

Boston Boston University Boston University

92.140.95.73 France Ile-de-France Paris France Telecom France Telecom

89.25.9.62 Bulgaria Plovdiv Asenovgrad ITD Network SA Asenovgrad.net

87.6.132.100 Italy Toscana Florence Telecom Italia Telecom Italia
86.71.201.195 France Ile-de-France Paris Neuf Cegetel Neuf Cegetel

131.215.35.197 United
States

California Pasadena California Institute
of Technology

California Institute
of Technology

88.102.78.141 Czech
Republic

Jihlava Dvur Kralove Cesky Telecom,
A.S.

XDSL NETWORK-
ADSL

74.75.228.38 United
States

Maine Kennebunk Road Runner Road Runner

59.127.100.126 Taiwan T'ai-pei Taipei CHTD, Chunghwa
Telecom Co., Ltd.

Chunghwa
Telecom Data
Communication
Business Group

137.189.133.163 Hong
Kong

00 Central
District

CUHK CUHK

Table 18: Distribution of Host taking part in the attack in less than a Second

168

As shown by the table, the distribution of IPs by their geographical area make it

difficult to find a pattern under which “normal” and legal network transactions

will take place. The honeypot did not have any service running such as web

server, FTP server or any other type of service that would require many

connections from around the world in the same second.

 Scenario 4: Error Messages (Host Unreachable) – ICMP messages

Another important element has drawn attention in the capture. UDP packets

were sent using random ports. As a result, when trying to communicate with a

host that is not available an ICMP message was sent back to the local host.

Snort does not provide any mechanism to analyse ICMP error message yet

they carry a lot of meaningful message that could help improving security [167],

[168]. If the states of connections are kept, then a simple algorithm could

analyse the reason why the ICMP was generated [Table 19]. In this particular

case, such analysis would inform that there is a one way communication that is

taking place. Most importantly, the same scenario is repeated for many IPs.

Hence, a possible DDOS attack.

Fram
e

Time Source IP Destination IP Prot
o

comments

1488
3

4303.2944
7

192.168.15.10
2

125.224.103.2
43

UDP Source port: 26811 Destination port:
52749

1488
9

4303.6104
73

125.224.103.2
43

192.168.15.10
2

ICM
P

Destination unreachable (Port
unreachable)

Table 19: ICMP message tracking

Further investigations show that the host is real but communication on the port

that was used was not accepted. Hence an indication that something could be

169

wrong. Also, there is a tendency of systematically blocking ICMP packets yet

blocking ICMP removes the stateful nature of UDP connections.

Hostname Country
Name

Region
Name

City ISP Organization

125.224.103.243 Taiwan T'ai-pei Taipei CHTD, Chunghwa
Telecom Co., Ltd.

Chunghwa Telecom Data
Communication Business
Group

Figure 5-5: IP revolved to its country

Each error message is related to a particular system behavior. These behaviors

are generally known and each time one of them is encountered, an investigation

should be done as per why the message as occurred. In this case, the ICMP

message indicates that the system is talking to another system that is not live or

does not allow communication. After investigation, our local system has

received a message from the foreign system, yet the foreign system is not

accepting a message back. Looking at the issue further, the port used between

our local system and the foreign system has been in used by other systems IPs

during the attack.

Creating a snort rule that drops ICMP error messages at this level would help to

limit the traffic load. However, important information about the state of the

connection would be lost. Prior to dropping the packet, analysis of the state of

the connection should be done.

 Scenario 5: Terodo IPv6 over UDP tunneling IPv4

Some elements of the captured file reveals that the malicious user has

attempted to hide traffic using Terodo IPv6 over UDP tunneling. Further

analysis shows that protocol integrity was violated.

170

Table 20: IANA reserved IP used for DDOS

Hostname Country Name Region City ISP Organization
224.0.0.253 N/A N/A N/A

Classic tunneling methods envisaged for IPv6 transition operate by sending

IPv6 packets as payload of IPv4 packets [169];

Scenario 6: Malicious payload

Malicious users at times use a payload that could give a good indication of an

attack.

9l);"E&mHxplX-R own you bitch!

0000 00 18 39 dd 6c a2 00 0c 29 3b c9 22 08 00 45 00 ..9.l...);."..E.
0010 00 84 a5 2a 00 00 80 11 8e ff c0 a8 0f 6d 48 b1 ...*.........mH.
0020 ed 78 0c e0 0c 02 00 70 02 61 ff ff ff ff 58 2d .x.....p.a....X-
0030 52 20 6f 77 6e 20 79 6f 75 20 62 69 74 63 68 21 R own you bitch!
0040 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0050 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0060 01 01 01 01 01 01 01 01 01 00 01 01 01 01 01 01
0070 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0080 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
0090 01 01 ..

Retrieving the payload from the above packet will give "….X-R own you bitch!”.

In this attack, the malicious user was changing the source port number on every

171

single connection. A snort rule which can then be writen to stop this attack is the

following:

alert tcp $HOME_NET any -> $EXTERNAL_NET any: (msg:"ET TROJAN
Backdoor.Win32.VB.brg C&C DDoS Outbound"; flow:established,from_server;
dsize:>100; content:"|ff ff ff ff|"; depth:12; content:" own you bitch!"; within:25;
content:"|01 01 01 01 01 01 01 01 01 01 01 01 01|"; classtype:trojan-activity; threshold
gen_id 1, sig_id 1853, type both, track by_dst, count 100, seconds 3;reference:
VIRUS/TROJAN_Backdoor.Win32.VB; sid:; rev:1;)

Further analysis led to investigate what program was sending these packets.

Using netstat, the command netstat -aob -p UDP has help to identify the

program responsible of the damages. In this instance the attacking executable

were csrss.exe, mssrv32.exe and svohcst.exe. A scan of the system by

Comodo Antivirus has confirmed the same problem Figure 5-6: Virus Captured.

Figure 5-6: Virus Captured

Statistics and traffic pattern

Looking at traffic patterns, once could easily note that there is an excess of

packets when compare to the normal routine. Under normal circumstances (no

attacks) an average of 3.902 packets per second was recorded.

172

Figure 5-7: normal traffic pattern- traffic not under attack

Figure 5-8: packet per second under medium UDP DDOS attack

Under attacks, a medium DDOS attack, 2554.251packets per second on

average was going across the network Figure 5-7.

173

Figure 5-9: packet per second HTTP DDOS attack

Based on the traffic pattern, one could easily identify a misused or abuse of the

system. However, systems are not static and momentarily may have heavy load

due to a VOIP application or a video over the internet. Monitoring traffic requires

a lot of time and patience as the normal behavior of a system has to be built

over certain period of time. Once this normal behavior has been built, a range a

threshold values can then be set to alarm in case of any drastic change.

5.3 Summary of DDOS attacks

There are certainly known ways of launching a DDOS attack. However, the

techniques used by malicious users go beyond any classification. Based on the

knowledge of publicly available DDOS attacks recorded, an attempt to classify

DDOS attack was made.

Figure 5-10: DDOS attack classification

174

There are many types of DDOS attacks. Sometimes experts in the field will refer

to an attack by the name used to perform the attack such as the stacheldraht

[170].

In this classification, flooding attacks are considered as one type of attack in

opposition to logic attack. In the flooding attack, there is no specific need to

identify a vulnerability of the system. As long as a port number is open, a

malicious user can flood that particular port [171-176]. As long as a webserver

is running, a malicious user can request a large number of open connections, in

the hope of making the server very busy until it crashes. More recently, when

performing DDOS attacks, malicious users will request a page or series of

pages repeatedly from various sources (compromised IP) [177], [178]. The

requests whilst being syntactically correct, have a malicious intent. Due to their

nature, it has been very difficult to distinguish between the requests made with

good intention and those that are not.

Another class of DDOS attack is identified by the different attacks resultant from

a certain violation of Protocol behaviour. In this category, the protocol definition

is not violated but rather it is abused.

Another interesting group of DDOS attacks are attacks based on virus. The

behaviour of these attacks is not very predictable. However, when the virus is

identified, the problem can be rather easy to solve.

A more serious type of DDOS attack occurs when the hardware that has been

sold was modified leaving a bug that will then be used for attack or by updating

the firmware of the attack [179], [180]. This category or class of attack is very

difficult to identify. However, when such a problem is identified, it can be easily

175

fixed by replacing the faulty hardware. The work performed in this research will

not address that type of attack as it is out of the author’s competences. To the

best of the author’s knowledge there is no framework available or solution to

detect such attack.

5.4 Solution Architect

This section will discuss the design of the new architecture

5.4.1 DDOS features requirements

The number of features to be considered for an optimal DDOS protection is

important (Figure 5-11). These features have been organized into five main

categories:

 Static list: these are the lists that exist in the community but are not

currently fully considered for an IDS

 Dynamic elements: algorithmic based and flow management

 Analyzer: classic protocol analyser & flow management

 Mixed: features that have both static and dynamic elements

 Signature: classic Snort rules

For the purpose of this diagram, the static list and Signature will be represented

with the same colour.

176

Figure 5-11: DDOS Protection Elements

5.4.2 IDS States

During the course of its action, an IDS should be able to switch between simple

operation mode i.e. when there is no attack detected to attack mode where an

attack is detected, and to mitigation mode when trying to get rid of the attack.

As well as detecting, IDS should be able to react to attack, hence switch to IPS.

Three states are identified in this architecture Figure 5-12

Figure 5-12: IDS States

177

5.4.3 Normal state

During the normal state, the IDS runs without knowledge of DDOS attack. In

this state, the IDS can be subject to unlimited attack not classed as DDOS. The

core security engine will be dealing with those attacks. However, a number of

“radars” are activated to identify any potential DDOS activity. A radar is a

behavioural monitoring agent. The radar would generally sits on the protected

system sending regular updates to the IDS. The link between the radar and the

IDS would be protected by a layer of TLS to avoid any malicious user tampering

with the data being sent across. Radars that have been identified are known as:

5.4.3.1 Radar on Destination IP Address: R_DIP

The R_DIP is a radar that monitors the number of incoming request to the

server over a rolling period predetermined by configuration. Over a rolling

period of time Tx, if the number of IP participant go above the 80% percentile, a

trigger will be sent to the management station (IDS) to change the state. This is

considered as a hotspot.

5.4.3.2 Radar on Destination Port number: R_DPORT

The R_DPORT is a radar that monitors the number of incoming connections

and the amount of data sent through that port number. If over a rolling period Ty

configurable in the settings of the IDS is reached, a trigger will be sent to the

management console to request a change of state. This is also considered as a

hotspot.

5.4.3.3 Radar on resource monitoring

This radar monitors the overall performance of the protected system. On a

regular basic, over a period of time Tz, the radar will send the level of resources

178

available on the protected PC. A configurable range of resource level will

indicate various actions that the IDS will take, and change the state accordingly.

5.4.4 Server response time

At the management console, a radar querying the Server (the protected system)

would be installed. This will monitor the response time of the server and instruct

the IDS to take the appropriate action.

5.4.5 Attack state

When radars have sent triggers to the management console signalling the

presence of an attack, the IDS will enter the attack stage. Different levels of

attacks are set by the severity of the attack.

5.4.6 Mitigation state

The IDS will come into the mitigation state when an attack is detected, and

when that attack is rate critical. This is similar to a survival mode

5.5 Countermeasures

Mitigating DDOS attack is a very complicated task due to the nature of the

attack itself. The model designed in this chapter is a multi-layered mitigation

approach with three states Figure 5-13.

In the normal state, the number of features running as security measure is fairly

limited to Ingress traffic, ACLs, protocols analysers which include basic

threshold, and the resource monitoring agent. When an attack is detected and

the status is changed to “attack mode”, many other features are activated:

compromised host, Socks proxies, HTTP Proxies, non-supported protocols

rules, and advanced patterns recognition.. If the attack persists, more security

179

features are turn on. These are: country based filtering, corporate proxies, white

lists and scoring algorithms.

Figure 5‐13: the DDOS architecture

5.6 DDOS attack detectors: RADAR

In this section, a number of studies are performed in order to determine attack

indicators.

Based on the services provided and the number of participants, servers have

different loads. The level of detection of attack for each server would be

different depending on its normal activity curve. It is therefore important that the

server keeps a baseline of the services provided. In this series of experiments,

the baseline would be set and the appropriate security measure to detect attack

will be produced. Data analysed here were collected on a commercial server

from Vision Intel Ltd

180

Figure 5-14: Server Cheetah - normal activity stream - HTTP performances

An analysis of Figure 5-14 reveals the number of connections failures during the

capture. However, the reasons why there are so many connection failures are

unknown since the author did not have access to the log files or any traffic

capture to look into the problem. The trace file represents 34hours of web

activity. The number of connections established was relatively low.

Similar analyses were repeated many times and during normal activity, the

graphs of activities are very similar. Given that the patterns across the different

captures are very similar, the rest of the analysis will be based on the capture

that lasted three days. The latter file will then be compare to another capture

where an experimental server was attacked.

181

Figure 5-15: HTTP observation 3 days activities

In Figure 5-15: HTTP observation 3 days activities the patterns observed in

Figure 5-14 are very similar. However, during the second capture that lasted

three days, the servers seemed busier as the average of established

connection is higher than previously recorded. At the same time, the number of

connection failures was pretty high. Again, not having access to the trace files,

the reasons for the high number of connection failures remained unknown.

In this subsection, the two servers’ behaviours are compared with regards to

connections failures, segments and connections established.

Referring to Figure 5-16 and Figure 5-17 the ratio of connection failures is [0.01

/ 0.000001] which workouts to be 1 to 10000. There is clearly a significant

difference between the two behaviours.

182

Regarding the segments per seconds the ratio is 1 to 100 which again a

significant gap.

As to the connections established, the ratio is 1 to 10.

Very few reasons can justify this change of pattern when there is no attack. In

the recent events, the number of hit Google received significantly increased

when Michael Jackson passed away. However, this behaviour can be

expected from big companies. From small to medium companies, such a

change in behaviour would indicate anomalies. The question now that arise is

how to determine when to raise the alarm that an attack has started.

Figure 5-16: Cheetah Server behaviour 1

Figure 5-17: Lynx server behaviour 1

183

In order to find a point in time when an alert should be raised, this research

looked at the percentile. However the author changed the default behaviour of

the percentile. A rolling period was set over which the percentile would be

computed. For the first stage of attack, if the average of the radar over the

rolling period was more than 50% of the Xn percentile over n cycle an alert

would be raised as the first level of attack.

If the mean values of the radar was more than 70% or more of the Xn percentile,

the alert would be raised as attack level 2.

5.7 Conclusion:

In this chapter, the DDOS mitigation and detection framework is presented. One

of the unique features of the framework presented here is the multi-level

detection capabilities. Three levels were defined under which the framework will

have different behaviour. In addition, radars were introduced: attack detector

that alert in case of any system performance degradation. All the features

included in the DDOS framework could work as separate units and offer their

level of protection. This framework will be later integrated into the multistate

Intrusion detection and prevention. When the system protected is under severe

attack (DDOS), the DDOS framework would be the priority of the MIDaPS

framework.

184

6 Multistage Intrusion Detection and
Prevention System: MIDaPS

The work presented in this chapter is the result of extensive experiments based

on the problem found either by literature reviews or by personal experiments.

In this chapter, the comprehensive list of features of the MIDaPS is presented

here. The author identifies four levels of visibility of attacks around which the

new IDS will be built. The work presented in this chapter is a form of summary

of all the work that has been achieved in earlier chapters. The author goes on

presenting a new yet audacious Intrusion Detection and Protection architecture

that is built around the fact that most recent attacks are vectors and multistage

attacks that generally lead to a DDOS attack. The architecture presented here

is based on multistage attack detection scenarios as well as DDOS mitigation

and detection technique. In addition, all the functionalities have been designed

to be fully compatible with a multicore environment. The author stresses that

multicore is not the main focus in this chapter or of this thesis.

After defining the V-BANI framework, the chapter will compare the Snort

features to MIDaPS features. MIDaPs is designed as modular IDS. The rest of

the chapter will discuss the default modules that form the base of the IDS and

the reasons why these modules are important.

6.1 The V-BANI Framework

185

Intensive research has been carried so far to understand and model attacks in

order to build a solid detection and mitigation system. There are 4 different

categories that emerged from the different analyses done earlier when looking

at vector and multistage attacks and the kind of protection needed against these

attacks.

The first category of attacks is composed of attacks that are visible to network

security systems. These attacks can be detected and stopped by a well

configure detection and mitigation system. This could be a violation of protocol

definition, a protocol abuse, a known pattern used by malicious users in order to

disrupt, change, or stop any legitimate activity

The second category is composed of attacks or at least part of attacks that are

generally considered to be legitimate actions and therefore not a subject of

concern for security systems. For instance, a computer could be sending

information out to another computer. This is completely legitimate and it is the

basis of any communication. However, sending data from one computer to

another would stop been legitimate if the previous action was a brute force

attack on root passwords.

The third category is the type of attack that affects a system without any

physical contact to the system. For instance the command will return username

and password of website that use Frontpage extension. Even though the

password is encrypted, it can be unencrypted by “john the ripper” in few

minutes.

"# -FrontPage-" filetype:pwd inurl:(service | authors | administrators | users)

186

This is an excellent starting point for a malicious user. The victim system in this

case is not aware of the details that are made public and has no knowledge of

someone accessing them.

In the fourth category attacks are partially performed inside the local system.

Some rootkit or malware require rebooting after installation. Rebooting the

system can be visible within the local host and not on a network level. Also,

malwares generally perform modifications of system files. In order to have the

full picture of the attack, it is important to understand the changes that are made

on local systems. Depending on where the IDS is installed, there might not be

any direct communication within the systems protected and the IDS. A good

security system should consider investigating the critical changes on the

protected systems.

Figure 6-1: V-BANI framework

The V-BANI framework [Figure 6-1: V-BANI framework] takes its name from the

fact that four levels or categories of visibility of attacks. Current IDS or systems

187

tend to address one or two at most at a time yet the level of sophistication of

attacks is such that, if any level of visibility of attack is ignored, attack will go

undetected.

Based on the V-BANI framework a number of features that need to be

considered when designing IDS have been identified and compared to Snort

IDS.

6.2 Comparing MIDaPS features to Snort features

Features MIDaPS Snort Comment
Ingress traffic

 Filter incoming traffic based on
source and destination IP

 Filter incoming traffic based on
source and destination ports

Outgress traffic
 Filter outgoing traffic based on

source and destination IP
 Filter outgoing traffic based on

source and destination ports

Limit simultaneous communication
 Block many connections matching

a criteria

Logging
 Log traffic on request based on

matching condition

Existing in Snort
but not fully
functional

Grouping and naming of IPS
 Ability to group IPs by network

Grouping by ports number
 Ability to group traffic by services

Snort can block
traffic based on
port but have no
knowledge on the
type of services

Operating System identification
 Ability to filter traffic based on OS

Layer 2 filtering
 Ability to bridge interface and filter

traffic between them

Packet normalisation
 Normalising packet for protocol

analysis

188

Deep packet inspection
 Ability to look into packet content

Protocol Analyser
 Comprehensive interpretation of

protocol definition
 Comprehensive interpretation of

limitation

Full state management
 Flow manager
 Limit states per host
 Limit concurrent connection per

unit of time
 Limit concurrent response per unit

of time
 Synproxy state management

X-header analysis

Can be
implemented in
Snort as a
signature

Slow path
 In-depth packet analysis

This will be an in-
depth analysis

Compromised IP list
 Known list of IPs compromised

Exist in Snort as
rule

RBN
Russian Bot Network

Exist in Snort as
rule

DNS Blacklist
Privileged List

 Known IPs that access specific
services (admin access)

Very limited in
Snort but can be
implement with
some rules

MD5 rogue list
 Known list of server using

vulnerable SSL

Attack classification
Categorise attack by group of severity
Categorise attack by level of violation

Packet fragmentation handling
Baselines Exist as threshold
Packet obfuscation

Very limited in
Snort

Stream segmentation
RPC Fragmentation handling
URL Obfuscation
Remote sensor/Agent
HTML Obfuscation
URL filtering

Can be
implemented in
Snort as rules

Stateless capability

189

Raw packet processing
HTTP Load management
Slow path – packet decoding
Modular – Plugins
TCP Reset

Table 21: Features comparison between Snort and MIDaPS

There are clear differences between Snort and MIDaPS. There are many more

features in MIDaPS than they are in Snort. However, our experiments have

shown that the Snort did not handle perform well under high speed. This under

performance was due to the fact that Snort was performing unnecessary work.

This actually suggests that the number of tasks to perform when analysing the

traffic should be kept to minimum. Even though MIDaPS was built with many

more features that what Snort has, all the features are not to be used at the

same time. Also, the filtering mechanism introduced in MIDaPS is such that the

amount of traffic decrease as it goes down the chain of the IDS functionalities.

For instance, module1 is responsible of eliminating any unnecessary traffic that

comes into the system. The ingress traffic is the first level of filtering. In this

module, the traffic can be limited to a certain range of IPs. Also, depending on

policies, any unknown proxy traffic can be filtered. If any reserved IP is used, it

will be filtered at this level. Snort does not provide these facilities.

 Module 2 is another module that aims at reducing to workload of the IDS. By

using a multilayer of classification (by port, destination IP, service, flow) the

traffic is organised In such a way that packets related to the same flow are

directed toward the same core. However, the redirection of traffic is managed

by a load balancer which ensures that each core within the architecture

receives the same amount of work. This module takes into account the load

variation that may be cause either by the variability in the load or by the

190

computational power of the various nodes, or by the computation required for

each task (i.e. we use an iterative scheme to compute and the number of

iterations depends on the difficulties encountered to solve the problem).

Module 5 is another module that introduced traffic filtering. This module can

significantly reduce the traffic load by adding a protection over a number of IP

that do not need to be checked (corporate proxies) or by applying limits to a

range of IP address.

In module 6, when URL filtering is active, the traffic load will be great reduced.

By filtering by URL, the packets will be blocked and prevented from going any

further into the system. Depending on the options that need filtering, they could

be thousands or even millions of URL that could be affected. A company may

choose not to allow fashion website, gaming, sexual adult theme website, social

networking, and many more.

We argue that the number of features is not always an inconvenient when the

features are used appropriately. In their study, [181] argues that the number of

features will reduce the performance of the IDS and went on experimenting the

behaviour of the IDS with reduced features. From the empirical results they

obtain, it is seen that by using the hybrid model Normal, Probe and DOS could

be detected with 100% accuracy and U2R and R2L with 84% and 99.47%

accuracies, respectively. This shows that reducing the number of features is not

always an advantage.

6.2.1 Remote sensor/Agent

Depending on the settings of the network, the intrusion detection system will be

located in or at the border of the system being monitored. Remote sensors are

191

responsible for checking the changes that occurs on the system. Once changes

on system files or system parameters have occur, an alert will be sent to

SYSLOG who will then send another alert to MIDaPS as shown in Figure 6‐2.

Both system monitoring and syslog are on the remote system.

Figure 6‐2: remote agent architecture

6.3 The architecture

 The Multistage Detection & Prevention System is built around seven core

components and three functional modes: Normal operation mode, Attack mode

and Mitigation mode.

MIDaPS is design (Figure 6‐3) to change its operation mode depending on the

attack level. The overall architecture is presented in Figure 6‐3

MIDaPS is organised into modules, each module carrying a set of function.

However, the different functionalities of each module will be available

depending on the level of attack. The general description of modules is as

follow:

File Monitoring

System Parameters

monitoring

MIDaPSSYSLOG
Secure link

192

Figure 6‐3: MIDaPS architecture

6.3.1 Module 1: Ingress traffic filter

This module is responsible for determining what traffic is accepted into the

network. The Internet Assigned Numbers Authority (IANA) made public the list

of IP addresses that are not in used. When spoofing IPs, attackers generally

use this IPs to generate illegal traffic, causing the attack system to generate

many ICMP messages [182]. In addition, the range of local IPs that is allowed to

access the network is specified in this module. Depending on its position in the

network, the IDS will deal with both local IPs and External IPs. The checks are

193

performed on the IP header only. This eliminates the need of any other check

and reduces the load of all subsequent modules. [183] describe ingress filtering

as one of the most effective way of protecting against spoofing IP addresses

This feature is not is not implemented in Snort. However, it is possible to write

rules that will perform the ingress filtering. The drawback of using rules for this

purpose is that the spoofed IP will go through all the checks right up to the

security engines before stopping any traffic originating from a spoof IP. The

method of implementing ingress traffic in MIDaPS is therefore more effective

that using Snort rules.

The algorithm for filtering ingress traffic would be:

var
IANA_RESEVED_IP = {list of IP range reserved by the IANA}
HOME_NET = {List of IPs currently in used in the network}

ingress_traffic(SIP)
 {
 // SIP = Source IP
 if (SIP exist in IANA_RESEVED_IP) AND (not In HOME_NET)
 terminateflow() // this function will terminate (kill) all traffic related to the
SIP
 else
 Proceed with packet
 }

6.3.2 Module 2: traffic classifier and its associate elements.

Module 2 is composed of 3 core elements: The traffic classifier, the flow

manager and the stream manager.

6.3.2.1 The traffic classifier:

Network traffic is heterogeneous and can be categorised in many ways

depending on the objectives. The IDS proposed in this research uses three

modes of operations: Normal, Attack, and Mitigation. The Normal mode is the

194

operations in which the IDS check for irregularities in the traffic as well as

checking any indication of serious attack. In this research, DDOS is considered

to be a serious attack. All other attacks will be dealt with during the normal

operation mode. DDOS attacks can be performed a many ways. For instance,

attackers can target one particular port or service (one or many ports numbers),

or a protocol (P2P). In such scenarios, a traffic filter is part of the mitigation

method. It is important to detect attacks before they become very severe. The

objective of setting various statistics is to apply an algorithm that will detect any

irregularity in the traffic pattern. Each network has its own unique pattern. In

order for the IDS to recognise a significant change, the IDS should learn to

recognise the traffic pattern: It’s only then that anomalies could be detected.

The intelligent threshold imposed on the traffic is not used as a defence tool but

rather as a detection of possible attack.

Different traffic classification methods and their impact were studied:

 Payload

 Application

 Protocol

 Port number

 Statistical methods

Classification by payload

In regards to payload, traffic group by tuples (flow) i.e. source IP and destination

IP, source IP + destination IP + source Port + destination Port, TCP options

(SYN, PSH, ACK, RST, etc.) [184], [185]

195

Name Percentage Inbound Percentage Outbound Bytes Packets

10.2.195.247 36.232%

0.001% 331.859 MB 1,198,957

10.2.20.30 0.000%

35.556% 325.657 MB 1,179,984

10.2.20.5 0.000%

23.441% 214.700 MB 232,376

10.2.198.238 20.180%

0.005% 184.869 MB 171,288

10.2.20.40 0.000%

15.939% 145.986 MB 137,561

10.2.197.251 9.506%

0.003% 87.093 MB 65,948

cdx.portal 1.903%

3.151% 46.291 MB 113,558

10.2.192.251 4.513%

0.000% 41.338 MB 44,483

www.usmma.bluenet 0.000%

4.111% 37.651 MB 156,712

10.2.200.254 3.260%

0.003% 29.884 MB 68,766

Table 22: traffic classification - Top 10 IPs

Based the information provided by Table 22: traffic classification - Top 10 IPs an

administrator is able to make the decision to turn off any communication to or

from that host. An IDS should be able to provide live statistics on the network

traffic. The objective of classifying traffic by payload enables the IDS to identify

the level at which each IP is involved in the different communications. Based on

intelligent threshold (dynamic threshold), the IDS will identify IP who have

significantly changed their behaviour. A profile will be built for each IP. When

there is a significant change, the IDS will flag that IP.

Classification by application:

Most applications can have a signature that can be used to identify the

presence in the network. Traffic classification is often used in deep packet

analysis [186]. Classification by application enables the administrator to have to

power to decide to block a particular application. For instance, all P2P

application traffic can be stopped if an administrator wishes to do so. This will

reduce the flow of traffic coming into the network as well as reducing the

amount of traffic subject to checks. An overview of patterns used to filter traffic

is given in Table 23

196

Application Name Patterns

Apple Juice - P2P filesharing
^ajprot\x0d\x0a

Jabber (XMPP) - open instant
messenger protocol - RFC 3920

<stream:stream[\x09-\x0d][-~]*[\x09-
\x0d]xmlns=['"]jabber

GTalk, a Jabber (XMPP) client ^<stream:stream to="gmail\.com"

HTTP by Download Accelerator
Plus

User-Agent: DA [678]\.[0-9]

VNC - Virtual Network
Computing. Also known as RFB

- Remote Frame Buffer

^rfb 00[1-9]\.00[0-9]\x0a$

SSH Secure shell
^ssh-[12]\.[0-9]

Table 23: Application patterns [187]

Classification by protocol

Each network would have fairly standard proportions of traffic. If the patterns

generally observed change significantly, an alert should be raised. The most

common protocols are:

Protocol ID Protocol ID
ICMP 1 ESP 50
IGMP 2 AH 51
TCP 6 EIGRP 88
ICMP 1 OSPF 89
EGP 8 PIM 103
UDP 17 VRRP 112
IPv6 41 L2TP 115
RSVP 46 Other 0-255
GRE 47

Table 24: common protocols

Classification by port number

Classification by port number is fairly common. However, grouping traffic by port

number alone is not efficient enough as there are no physical limitations on

197

which port number an application can use. The classification used here will

allow the IDS to track any irregular activities.

Figure 6-4: Top 10 application protocol based on [25]

An efficient way to detect a DDOS attack would be the change in regular

patterns. For a given network, if TCP connections are over 80% of the traffic

observed in the network and UDP less than 1%, an increase of UDP traffic over

10% or a decrease of TCP traffic to 50% would indicate a serious anomaly. This

change of behaviour should be flagged and monitored. In general, any protocol

that goes beyond its normal usage should be subject to inspection.

Figure 6-5: Top 10 application protocol based on a DDOS capture

Looking at Figure 6-4 and Figure 6-5 one could easily notice the big difference

between the two traffic patterns. In the first case, the traffic can be considered

fairly normal, but for the second case, DNS traffic is as high as TCP traffic

which is a very rare pattern on normal behaviour. Port 139 [Netbios] is very

popular amongst DDOS attacks. An increase of traffic on port 139 would

198

indicate serious irregularities. Once an alert is fired, the IDS will change its

mode of operation to a more defensive mode.

Classification by statistical method

Based on the analysis done earlier in this research, one would notice that

different IPs had the same payload content and hence the same payload length;

the frequency of packets sent was similar; the number of bytes downloaded was

similar. In this section, any metric could be computed

The following graphs (Figure 6-6, Figure 6-8, and Figure 6-9) are based on the

“2009 Inter-Service Academy Cyber Defence Competition” [25]

Figure 6-6: traffic classification - packet size distribution

In this scenario, most packet send are bigger or equal to 1518bytes. During an

attack, if the problem is found to be the amount of data sent, Figure 6-6 gives

enough information to make an informed decision. Blocking all traffic for which

the packet Len >= 1518 will considerably reduce data flow. The packet

distribution size is a good way to identify DDOS attacks. Most script kiddies do

199

not use intelligent packets size distribution during the attack. Looking at Figure

6‐7, it is fairly easy to notice that the attacker was using different source port

against one destination port. More interestingly, the payload_Len (data size) did

not change during the course of the attacks. Classifying the traffic by payload

helps to identify such attack and stop them.

Figure 6‐7: DDOS patterns

Classifying the traffic using TCP flags are one improves the detection of SYN flood attacks. At

any given time, the administrator will be able to see how many IP have opened a connection

without activity. When too many connections are open, the resources are used and the system

runs out of resources causing the system to crash. A baseline should be defined per system in

order to ensure that the threshold set reflects the environment in which the IDS is installed.

200

Figure 6-8: traffic classification - TCP connections

Figure 6-9: Traffic classification - TCP Flags

The average number connections per seconds Figure 6-8 and the average

number of packet per seconds Figure 6-9 can be used as indicators as to a

201

serious change in the pattern distributions. A SYN Flood attack is considered

to be in progress if the number of unanswered SYN/ACK’s sent by the receiving

host (half-opened TCP connections) exceeds the threshold set in “Flood rate

until attack logged (unanswered SYN|ACKs per second”; on average the

default value is 25, the minimum is 5, and the maximum is 999). However, this

threshold is protocol dependant and application dependant. In a P2P scenario,

dozens or hundreds of connections can be opened at the same time. The

threshold set above is mainly for HTTP connections.

Flow manager

In this research the author considers a flow as being the source IP, source port,

destination IP, and destination Port. The flow manager as defined by this

research will have the following functionalities:

 Organise traffic by flow: tuples of the same nature will be analysed by

threat or within the same core (referring to a multicore architecture)

unless the threat becomes saturated. In that case, the flow manager

would:

 Manage load balancing: MIDaPS is an architecture that is aimed at

multicore environment. In a multicore framework, if the load is not well

balanced, one core would perform more tasks than order defying the real

purpose of multicore. It is important that a balance is kept amongst the

flow the ensure maximum performance

 Flow threshold management: In a DDOS scenario, script kiddies usually

keep the same tuple in the course of a flooding attack. A load balancing

algorithm will continually direct (in the best case) the same tuple to the

same threat. This behaviour could result in creating a bottleneck in the

202

thread. As a solution, the flow manager keeps basic threshold values to

ensure that a threat is not overloaded by data

 SYN flood attacks generate infinite number of flow per source IP. The

flow manager keeps threshold value regulating the number of

simultaneous flow that can be open by a single source IP. In this case,

the flow manager would consider a limit of flows in which a source IP can

be found.

6.3.3 Module 3: the remote monitory agent

This feature does not exist in Snort. The remote external agent acts as a host

intrusion detection system. Based on the analysis done previously in this

research, it is very important to have knowledge of what is happening in the

victim system as well as knowledge of what is happening at the network level.

Many of the recent attacks are performed with such sophistication that any IDS

will not alert. It is only the combination of all the actions that would indicate the

presence of an attack. The remote agent will be responsible for

 Monitoring local shell i.e. file and directory changes

 Monitory CPU usage – this section has been fully discussed in the

previous chapter.

File monitor agent

The list of files to monitor will be specified in a configuration file. Few options

are presented. The user can choose to monitor specific hard (Figure 6-10) or

choose to monitor the whole system (Figure 6-11)

203

Figure 6-10: Monitoring Specific Hard Disk

Figure 6-11: Monitoring the whole system

6.3.4 Module 4: Protocol analyser

The protocol analyser is responsible for checking the integrity the traffic making

sure that the protocol definition is not violated. Besides checking the integrity of

protocols, most protocol analysers do not report when this occurred. Various

204

protocol analysers have already been implemented. The idea in this thesis is

not to recreate what is already existent, but rather extend the current

capabilities.

6.3.5 Module 5: special features

 This module has a fairly limited set of functionalities.

 Whitelists: a set of IPs that have unmonitored access. However, a

threshold monitoring will be applied to any of these IP to prevent abuse

from the system. Also, whitelists are set IPs that will be allowed to use

the system under heavy attacks.

 Corporate proxies: some companies route the internet traffic of their

users via proxies or Network Address Translators. By so doing,

companies prevent their users to be targeted directly by an external

malicious user. However, securing against proxy traffic, especially

corporate traffic is very difficult as the actions of users cannot be

individually identified.

 Non supported feature: in the occurrence of a non-supported feature,

and unless defined in a specific algorithm, a basic threshold will be

applied.

6.3.6 Module 6: Dynamic algorithms

This module is responsible of handling the difficult scenarios. For instance, from

the different attacks scenarios of DDOS and multistage attacks discussed in the

previous chapter, various patterns were identified.

205

Table 25: Patterns Identified

SIP SPORT DIP DPORT PROTO
Data
length

Data content
hash

note

One One Many Many UDP identical identical

many many one one UDP identical identical

The patterns identified were clear and simple to understand. However, further

investigations were made to avoid blocking legitimate transactions. The patterns

identified are similar to those find in P2P conversations Figure 6-12.

Figure 6-12: P2P traffic

There are important differences between the traffic recorded during the attack

and the traffic recorded during P2P conversations.

 Attack used UPD and P2P used TCP

 Some of the packets have the same Len but investigations revealed that

the payload content are different

 The traffic is not unidirectional

Algorithms

In this algorithm, the system will compare the values that do not change

between two packets based on the variances presented in Table 25. When a

match is found, the IDS will enter the attack stage, which will then turn the IDS

into an IPS.

206

Various actions can be taken from the moment an attack is detected. For

instance, every single IP found matching the rules, and block the port number

related to the attack. Blocking the port number will stop all subsequent

communication to that port.

Figure 6‐13: Algorithm for complex traffic patterns

6.3.7 Module7: Attack trees

207

In this work, attacks are organised into attack trees which represents the

different ways an attack can occur. This section was developed earlier in

“Multistage attack detection and mitigation framework”.

6.3.8 Module 7: scoring algorithm

A scoring algorithm is introduced to prioritise the traffic during the recovery or

mitigation period. Based on a configuration file, the administrator will decide

which host will have access to the network. Each packet that arrives in the

network is analysed and passed through the attack tree system. The participant

host will score +1 when there have been no matches with any critical path or

active nodes.

Figure 6-14: Scoring algorithm

6.4 Attack modes

There are three different modes of functioning of our IDS: a default mode

(normal) where the IDS is not subject to particular challenges. During the

default mode, a DDOS attack could be detected by an external agent i.e. a

malicious attack such as a botnet attack or it could simply be a malfunctioning

program that is causing the computer system to freeze. Either way, the DDOS

attack should be prevented and stopped. MIDaPS is built to change its

behaviour depending on the level of attack.

208

Figure 6-15: MIDaPS Modes

6.5 Additional experiment and results

In this section, results from testing the MIDaPS architecture will be presented.

One of the difficulties in testing multistage detection is the availability of data.

The logging facilities that exist in current systems are generally triggered when

an alert is raised. Unfortunately, this does not represent the full picture of the

attack and does not allow a good offline analysis. Most offline analyses are

based on alert rather than related traffic.

During the hacking conference context named DEFCON 17, data were capture

and made public for purposes such as this theses [188].

Objectives of tests:

The MIDaPS architecture has been implemented and, the efficiency of its

detection mechanism tested as long with the effectiveness of using attack tree

in a multistage environment. In addition, the number of false positive tested and

compared with Snort.

209

Data: the results presented here have been tested using the 7.5GB of data

provided by DEF CON 17.

Test 1: in this first series of tests, the analysis is based

on the source IP.

Figure 6-16: Tree attack detection

In this test Figure 6-16, an analysis of how often an attack IP appears in a tree.

This literally represents the number of steps taken by a particular attacker. For

instance, IP = 10.31.6.100 was found to match fives nodes of attacks when

attacking IP = 10.31.4.2. The different steps are given in [Table 26: Attack tree

breakdown]

Attack Occurrences Start time End time

Portscan - TCP Portscan 116 2009-08-01 2009-08-02

210

00:05:23 21:47:59

Portscan - Open Port 18330 2009-08-01
00:00:26

2009-08-02
21:59:38

portscan TCP Decoy
Portscan

65 2009-08-01
22:27:22

2009-08-02
21:02:54

portscan TCP Portsweep 113 2009-08-01
00:00:24

2009-08-02
21:59:28

portscan TCP Distributed
Portscan

3 2009-08-01
01:50:19

2009-08-02
04:26:08

Table 26: Attack tree breakdown

IP = 10.31.6.100, was found in six different nodes. However, each attack step

was performed many times as represented in Figure 6-17. During the completion

at which the data used here was collected, they was no security IDS installed

on the system.

Figure 6-17: attacking IPs occurrence per tree path

211

However, the data was replayed in Snort during an offline analysis and

compared with the result obtain in MIDaPS

Comparing Snort to MIDaPS is rather interesting as the two system aim at

protecting computer system but they are actually very different in their

operations. The objective of MIDaPS is not to generate a security alert for each

step of the attack. Rather, attacks are synchronised in an intelligent way to

reduce the output as much as possible. It was noted that some of the IP

performed exactly the same sequence of attacks to various IPs. This is where

there is an important difference between Snort and MIDaPS. Snort does not

keep any record of what has happened, Snort does not keep any history of the

different IPs activities. In MIDaPS, each IP activity is logged. The logged

information then becomes valuable information for future actions by the same

IP. Snort looks at identifying each attack or occurrence of partial attack as a

separate alert. In MIDaPS, attacks are analysed as they go through the tree

structure. When an attacker has been found on at least one active node, then

the alert is generated and the attacker is stopped. Alternatively, if there is no

active node, the attacker would need to reach a level of the tree marked as

critical. An alert will then be generated.

Most attacks were found to in at least five different nodes Figure 6-18. This is

another clear indication that if an IP is blocked after two attempts, the system

will save on resources as they will be no need for further check on the same IP.

212

Figure 6-18: Attacking IPs per tree node

Attacking IPs Total occurrence in tree Tree level
 10.31.8.2 79 7
 10.31.6.100 155974 6
 10.31.1.2 3862 5
 10.31.2.3 26273 5
 10.31.2.100 1363 5
 10.31.3.103 147071 5
 10.31.3.110 87112 5
 10.31.3.129 77955 5
 10.31.3.130 76224 5
 10.31.3.140 7889 5
 10.31.3.172 143212 5
 10.31.3.175 16170 5
 10.31.4.99 4357 5
 10.31.4.152 34284 5
 10.31.5.3 16806 5
 10.31.7.99 3295 5
 10.31.8.22 701 5
 10.31.8.40 142 5

213

 10.31.8.90 7251 5
 10.31.9.2 572 5
 10.31.10.3 12964 5
 10.31.3.160 53967 4
 10.31.4.254 3132 4
 10.31.5.2 18 4
 10.31.5.5 339 4
 10.31.7.28 40 4
 10.31.7.199 1177 4
 10.31.8.51 25 4
 10.31.10.2 411 4
 10.31.3.141 57 3
 10.31.3.153 141 3
 10.31.4.2 1549 3
 10.31.4.123 82 3
 10.31.4.201 9 3
 10.31.7.2 3 3
 10.31.7.156 11 3
 10.31.8.20 142 3
 10.31.8.50 16 3
 10.31.8.74 7 3
 10.31.8.87 45 3
 10.31.8.91 119 3
 10.31.10.10 1898 3
 10.31.3.109 314 2
 10.31.4.13 22 2
 10.31.4.36 5 2
 10.31.6.2 15 2
 10.31.6.11 4 2
 10.31.8.21 20 2
 10.31.8.30 8 2
 10.31.8.33 5 2
 10.31.8.79 25 2
 10.31.8.142 3 2
 10.31.9.17 7 2
 10.31.10.9 8 2
 10.31.6.218 5 1
 10.31.8.10 1 1
 10.31.9.6 3 1
 10.31.9.10 7 1
Table 27: Attacking IPs per tree nodes

Interpretation

214

In this experiment, the author has been able to identify 58 unique occurrences

of attack paths. However, each of these attack paths have been repeated a

number of time. The largest number of attacks found had five branches which

in order terms represent five stages in attacks. There is a tendency that when

an IP is found using a port scan technique, that it appears many times at the

same node level in the tree architecture. It is important that threshold values

should be set in order to avoid a large number of false positive. Blacklisting

appears to be an efficient method of reduce the number of attack occurrences

by the same IP. Once the IP is blacklisted, all subsequent attacks from the

same IP will not exist.

From these results, one would learn that an IP can be stopped before damage

is done in most case when using attack trees. Attack detection rate really relies

on the efficiency of the nature of the attack tree. The more elaborate an attack

tree is, the more attacks will be detected. However, it is important to define

critical paths as the model defined here uses active nodes and passive nodes.

Test 2: In this second series of tests, the analysis is based on the destination

IP. The rationale behind analysing traffic based on the destination IP is that the

number of destination IPs is generally known as compared to the number of

source IP that can be unlimited. The results are as follow:

215

Figure 6-19: attack tree view from destination IP

From the receiving point, we look at how often an IP was hit by an attack. as

shown in Figure 6-19, each IP was hit at least one by a type of attack and at

most by 6 types of different attacks. The reason why this research looks at book

the attacker and the victim is that attacker can easily obfuscate their identity by

using a proxy server or by using a combination of virtual machines installed on

the same host. Each virtual machine installed on a host will have its own IP

address but they will all have the same netbios name. if the attacking IP is hit by

a number of attacks that match a certain path in the attack tree, all subsequent

attack attempts will be blocked immediately. In addition, the overall level of

attack can be raised.

216

Figure 6-20: attacks view from the destination IPs

Interpretation

Looking at attacks from a destination IP, each IP was the most attacks in 6

stages. Compared to looking at attacks from source IPs, there is clearly less

effort to look at destination address as the number of destination IP is generally

very limited. The trees visible by each destination address are different from the

trees viewed by source IPs. A source IP may attempt to attack multiple

destination addresses. However, one destination IP will not have any

knowledge of the activities (attacks) taking place at other destination address.

Also, the number of attempts per source is much higher that the number of

attempts received by each destination IP. Protecting against attacks by

protecting destination IP rather than tracking source IP is definitely more

efficient.

6.6 False positive rate

The number of alert between Snort and MIDaPS was compared. For the same

subset of data, Snort raised 411170 alerts whereas MIDaPS fired only 278861

alert. The difference is due to the fact Snort does not keep any history of IP

217

activities. When an IP is found to repeat the same attack at most twice, the later

IP is suspended and further activities are blocked.

Snort MIDaPS

451170 278861

Table 28: False positive result

0

100000

200000

300000

400000

500000

Snort MIDaPS

Figure 6‐21: Snort vs. MIDaPS false positive

As shown in Figure 6-21 and Table 28, MIDaPS produced 38.19% less alerts

than Snort

6.7 Conclusion

This chapter summarises the different efforts made to design a multistage

detection and mitigation intrusion detection system. The author argue that with

the level of attacks encountered in recent months and years, any security

system should provide preventive and defensive capabilities. This research

defined a four level visibility of attacks around which the MIDaPS framework

218

was built: the V-BANI framework. The author argues that any good system

should be able to provide those four levels of visibility. Also, the author

assembles the different parts of this research into a novel and highly effective

solution: MIDaPS which is a multistage Intrusion Detection and Prevention

System. MIDaPS is built around 3 main modes of functioning: default, attack

and mitigation. Experiments performed in this research show that IDS are more

likely to drop packets without analysing them when the speed of packets

increased. This is generally the case with DDOS attack. This research then

defined a different mode of functioning for our architecture depending on the

level of severity of the attack to ensure that legitimate users can continue using

their services.

Tests of MIDaPS were performed based on the detection system. During the

tests, results identified 58 attack trees that repeated many times. Based on this

detection, alerts can be reduced and IPs can be blacklisted to avoid the same

IPs causing the same repetitive attacks. A great deal of research still need to be

done to have a fully system ready off the shelves but the author strongly

believes that the work achieved in this will set the ground for future research.

219

7 Conclusions and future work

This chapter will start by summarising the outcomes that have been

accomplished and the make recommendations accordingly for future work at a

higher level.

7.1 Thesis Contribution

In this research, the current design and implementation of Snort IDS was

challenged. Numerous vulnerabilities were found from which the most important

are discussed below.

Snort weakness in handling fast traffic for any protocol. The level of packet drop

was very high when the traffic was above 1.5mbps. Snort was not able to detect

up to 26% of IPs when the traffic was accelerated. An attacker could look a

network with a lot of noise to perform attacks. When packets are dropped at the

IDS, they traverse the network without any prior analysis. Hence, the network is

exposed to any sort of attack that such packets will carry. This weakness was

address by adding another dimension to Snort rules.

Snort displayed an inability to detect HTTP DDOS attack when many IPs are

used. Snort was able to detect repetition for an attack using 150 IPs or less; yet,

current implementations of botnet use thousands, hundreds of thousands and

up to, in some cases, few millions of IPs all at once. The consequence of this

weakness is that Snort will not protect or detect any recent DDOS attacks.

220

Damages caused by DDOS attacks can be tragic if the target system is a

Critical National Infrastructure (CNI). MIDaPS is designed to stop such attacks.

Snort does not provide any mechanism of securing against encrypted attack.

Even though they are well known encryption algorithm used by attackers, Snort

does not provide any mechanism for analysis encrypted attacks. MIDaPS, the

novel IDS introduced source code analysis. Many patterns of encryption

coupled with the attacker activity can be used to identify attacks. Hence the new

approach of attack tree with passive nodes. Attackers use the latter technique

to steal information.

Snort remained blind to JavaScript encrypted attack. Yet, attacker use

commonly used tools to obfuscate their script for which de-obfuscator are also

available. The author suggested in the novel IDS to use a slow path for analysis

of ambiguous source code.

In a multistage scenario, Snort was only able to detect very little indication that

an attack was taking place. MIDaPS was designed with attack radar to indicate

an early stage of attacks. This new feature could be a life saver for critical

business who can then take actions before any serious damage is done.

Snort rules are not optimized for performance and this causes the system to be

less efficient in detecting attacks. When checking the rules, Snort spent a lot of

time checking rules that are not relevant to the system protected. As part of the

new architecture, the author designed and tested a new rules extension that

ensured that only rules relevant to the system being monitored are checked.

Snort performance was greatly improved allowing more packets to be checked

before they are passed into the network.

221

Snort architecture is built with sequential implementation. Yet, hardware is more

capable of handling heavy process by using concurrent processing. This clearly

indicates the need for a parallel IDS implementation. MIDaPS is designed with

multicore capabilities. This feature will improve the IDS performance.

The ultimate aim of this research was to produce a new IDS architecture

capable of multistage attacks whilst working in a multicore framework. The

architecture was presented and named MIDaPs. Within the overall architecture

a few distinct elements can be noted

 An extension to Snort rules that enable the IDS to only search through

the rules relevant to the protected system. An improvement of 84% was

achieved with our system compared to the current performance of Snort

 A multistage detection architecture capable of analysing stealthy attack.

Also, the architecture presented is capable of behaviour analysis

 A DDOS framework capable of detecting most DDOS attacks with a

record of detecting flooding attack within 10 minutes of the start of the

attack. It is important to note that the DDOS engine can be implemented

as a separate complete unit.

 A new IDS architecture capable of detecting multistage attacks and

DDOS attacks while compatible with multicore parallel programming.

 A four level of attack visibility framework that maps every single attack

7.2 Challenges and limitations

222

Throughout the research the author has looked at designing a new Intrusion

Detection System. The journey has certainly not been an easy one. There have

been many constraints the author have faced. Some of these constraints are

discussed below.

The wide range of elements to consider when designing a new IDS.

Unfortunately, the expertise the author had was somewhat limited. A team of

people with different and strong skills would be required to design and

implement an IDS. In the design presented in this thesis, a strong emphasis

was put on the security aspect. Not much consideration was giving to the

physical limitations of computer systems. As noted, there are a good number of

elements to integrate into MIDaPs to ensure maximum security. Some of these

elements will require the system to decode traffic before it is analyzed. This

could have a serious impact on the performance. More studies need to look at

the performance implications of decoding traffic during live traffic analysis.

Hardware knowledge: the hardware knowledge that the author has is limited

in the sense that a full understanding is needed on how the components

integrate together in a computer. During an industrial experience, as I designed

the security framework for a 10GB IDS appliance, there were frequent clashes

between the design and the hardware capabilities. Even though the design

presented in this work is not for hardware, a full understanding and a full study

of multicore systems needs to be done for the best integration of the different

component that were suggested during the design.

Ability to fully test the system: The range of tests performed in this research

was limited as the full system has not yet been implemented. Individual tests

223

may well be successful, but do not guarantee that once all the components are

all integrated together, the same level of success will be achieved.

Lack of data: Even though there are some data available, there is not, to be

best of the Author knowledge, a set of data available that leverages the level of

technicalities seen in recent attacks. However, this research has made intensive

use of data capture at honeynet and on site while working as a consultant. More

studies need to be done on how to use honeynet to generate attack patterns.

Manually writing attack patterns and attack tree is a tedious task and this may

not allow the security community to keep up with malicious users.

Time: the time has been a serious issue. Ideally, each of the processes

suggested should have been fully tested. Vern Paxon and his research group

have been working for over four years now to come up with the best

implementation of IDS into multicore. Even though the security specifications

are ready, it is another matter to implement it. Intel Corporation performed a

quick modification of Snort to prove the point of their multicore device. However

no technical improvement was brought to Snort. Yet, Snort on itself was found

vulnerable at different levels during our studies. Each process should have

been full tested with various approaches and algorithms. In addition, a full study

of the cost of adding each of the features should be done in order to have a

realistic implementation where security does not interfere with performance or

at least to an acceptable level.

Lab equipment: At the time of doing the research, the lab equipment available

was fairly basic. However, even though more equipment was added to the lab,

224

there was not enough time to repeat all the experiments with more sophisticated

material.

The transition between classic research and applied research: Most

research is based on theoretical model that generally do not end in a lab for

production. In this work, the author aimed at presenting a piece of work that,

with some improvement, will be able to go to production.

Finance: the availability of finance has been a major problem during the course

of this research. The work had to be interrupted on so many occasions because

of the lack of finance. Fortunately, opportunities allowed the Author to not only

gain a lot of practical experience within the industry but also, gave him enough

funding to complete his work for which he is extremely grateful.

The DDOS framework that was designed does not take into consideration the

analysis of traffic generated by human users against the traffic generated by a

bot army. More studies that would probably require a very complex

mathematical model would be needed. The Author does not have the

mathematical knowledge required for such analysis. This section would require

some strong mathematical computations.

7.3 Recommendations and future work

The nature of this work in itself is a challenge which has generated many other

challenges which can serve as full research projects. These projects could be:

 Consequence analysis of interdependencies and potential cascading

effects across related processes within the MIDaPs framework.

225

 Develop and execute a coordinated research to fully utilize the potential

of honeypot, honeynet and honeyfarm to capture and analyse attacks

trends; to generate complex detection algorithms; to build attacks tree

and attack patterns; and to predict possible new attack patterns

 Design and implementation of a parallel implementation of libnet, the

default packet used for packet capture.

 Design and develop an attack tree capable of a full integration for a

multicore environment.

 Develop and execute a coordinated research to model strictly legitimate

traffic against HTTP flooding whereby an attack will launch an army of

bots to download various pages on the websites.

226

References

[1] TechTarget, “What is multi-core processor? - Definition from Whatis.com,”

2004. [Online]. Available:

http://searchdatacenter.techtarget.com/definition/multi-core-processor.

[Accessed: 10-Nov-2009].

[2] B. Howard, “Analyzing online social networks,” Commun. ACM, vol. 51,

no. 11, pp. 14-16, 2008.

[3] E. Zheleva, L. Getoor, J. Golbeck, and U. Kuter, “Workshop on Social

Network Mining and Analysis,” The 13th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD 2008), 2008.

.

[4] S. Mansfield-Devine, “Anti-social networking: exploiting the trusting

environment of Web 2.0,” Network Security, vol. 2008, no. 11, pp. 4-7,

2008.

[5] J. Richards, “Cyber-War--the Way of the Future? Times Online (UK)

(05/17/07),” ACM TechNews, 2007.

[6] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,

“Inferring Internet denial-of-service activity,” ACM Trans. Comput. Syst.,

vol. 24, no. 2, pp. 115-139, 2006.

[7] R. Bajcsy et al., “Cyber defense technology networking and evaluation,”

Commun. ACM, vol. 47, no. 3, pp. 58-61, 2004.

[8] J. Yen, “Introduction,” Commun. ACM, vol. 47, no. 3, pp. 32-35, 2004.

[9] M. Jonkman, “Working Group Kick Off,” Open Information Security

227

Foundation, 2009. [Online]. Available:

http://www.openinfosecfoundation.org/.

[10] V. Paxson, R. Sommer, and N. Weaver, “An architecture for exploiting

multi-core processors to parallelize network intrusion prevention,” 2009.

[Online]. Available: http://www.icir.org/vern/papers/multicore-

sarnoff07.pdf.

[11] Y. Xiang and W. Zhou, “Using Multi-Core Processors to Support Network

Security Applications,” Proceedings of the 2008 12th IEEE International

Workshop on Future Trends of Distributed Computing Systems, 2008. .

[12] E. Ramraj and A. S. Rajan, “Using Multi-core Processor to Support

Network Parallel Image Processing Applications,” 2009 International

Conference on Signal Processing Systems, 2009. [Online]. Available:

http://ieeexplore.ieee.org/iel5/5166727/5166728/05166782.pdf?isnumber=

5166728&arnumber=5166782.

[13] M. Oskin, “How changes in computer architecture are about to impact

everyone in the IT business,” Communications of the ACM, vol. 51, no. 7,

pp. 70-78, 2009.

[14] P. Wheeler and E. Fulp, “A taxonomy of parallel techniques for intrusion

detection,” Proceedings of the 45th annual southeast regional conference,

2007. .

[15] Intel Corporation, “Supra-linear Packet Processing Performance with

IntelÂ® Multi-core Processors,” White Paper, 2006. [Online]. Available:

http://www.intel.com/technology/advanced_comm/311566.htm.

[16] P. D. Ungsunan, L. Chuang, W. Yang, and G. Yi, “Network processing

performability evaluation on heterogeneous reliability multicore

228

processors using SRN model,” Parallel & Distributed Processing, 2009.

IPDPS 2009. IEEE International Symposium on, pp. 1-6, 2009.

[17] E. Mollick, “Establishing Moore's Law,” Annals of the History of

Computing, IEEE, vol. 28, no. 3, pp. 62-75, 2006.

[18] A. Valdes and D. Zamboni, Recent advances in intrusion detection : 8th

international symposium, RAID 2005, Seattle, WA., USA, September 7-9,

2005 : revised papers. Berlin ; New York: Springer, 2006.

[19] J. Pagna Disso, fx-http-traffic-generator - http traffic generator. google,

2008.

[20] J. Bashor, “Berkeley Labâ€™s Vern Paxson Honored for Research

Characterizing the Internet,” Research News Berkerly Lab, 2008.

[21] H. Berghel, “Hiding data, forensics, and anti-forensics,” Commun. ACM,

vol. 50, no. 4, pp. 15-20, 2007.

[22] E. Casey, “Investigating sophisticated security breaches,” Commun. ACM,

vol. 49, no. 2, pp. 48-55, 2006.

[23] D. Maynor and K. K. Mookhey, “Metasploit Framework and Advanced

Environment Configurations,” in Metasploit Toolkit for Penetration Testing,

Exploit Development, and Vulnerability Research, Burlington: Syngress,

2007, pp. 77-83.

[24] D. Maynor and K. K. Mookhey, “Introduction to Metasploit,” in Metasploit

Toolkit for Penetration Testing, Exploit Development, and Vulnerability

Research, Burlington: Syngress, 2007, pp. 1-64.

[25] ITOC, “ITOC Research: CDX Datasets,” 2009. [Online]. Available:

http://www.itoc.usma.edu/research/dataset/index.html. [Accessed: 13-

May-2010].

229

[26] R. G. Bace, Intrusion detection. Indianapolis, IN: Macmillan Technical

Publishing, 2000.

[27] P. P. Purpura, Security and loss prevention : an introduction. Oxford:

Elsevier Butterworth-Heinemann, 2008.

[28] A. R. Baker, B. Caswell, and M. Poor, Snort 2.1 intrusion detection.

Rockland, Mass. ; [Great Britain]: Syngress, 2004.

[29] R. Sommer and V. Paxson, “Enhancing byte-level network intrusion

detection signatures with context,” Proceedings of the 10th ACM

conference on Computer and communications security, 2003. .

[30] H. F. Tipton and M. Krause, Information security management handbook.

Boca Raton, Fl ; London : Auerbach, 2003-, 2005.

[31] P. Fan and H. Shen, Parallel and Distributed Computing, Applications and

Technologies : PDCAT'2003 : proceedings : [August 27-29, 2003,

Chengdu, China. Piscataway, New Jersey: IEEE, 2003.

[32] J. K. Jones and G. W. Romney, “Honeynets: an educational resource for

IT security,” Proceedings of the 5th conference on Information technology

education, 2004. .

[33] C. Kreibich and J. Crowcroft, “Honeycomb: creating intrusion detection

signatures using honeypots,” SIGCOMM Comput. Commun. Rev., vol. 34,

no. 1, pp. 51-56, 2004.

[34] M. Becchi and P. Crowley, “Extending finite automata to efficiently match

Perl-compatible regular expressions,” Proceedings of the 2008 ACM

CoNEXT Conference, 2008. .

[35] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A Scalable Architecture For

High-Throughput Regular-Expression Pattern Matching,” Proceedings of

230

the 33rd annual international symposium on Computer Architecture, 2006.

.

[36] A. Mitra, W. Najjar, and L. Bhuyan, “Compiling PCRE to FPGA for

accelerating SNORT IDS,” Proceedings of the 3rd ACM/IEEE Symposium

on Architecture for networking and communications systems, 2007. .

[37] J. Moscola, J. W. Lockwood, and Y. H. Cho, “Reconfigurable content-

based router using hardware-accelerated language parser,” ACM Trans.

Des. Autom. Electron. Syst., vol. 13, no. 2, pp. 1-25, 2008.

[38] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system call

detection,” ACM Trans. Inf. Syst. Secur., vol. 9, no. 1, pp. 61-93, 2006.

[39] Y. Chen and Y. Chen, “Combining incremental Hidden Markov Model and

Adaboost algorithm for anomaly intrusion detection,” Proceedings of the

ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics,

2009. .

[40] C. Kruegel and G. Vigna, “Anomaly detection of web-based attacks,” in

Proceedings of the 10th ACM conference on Computer and

communications security, pp. 251-261, 2003.

[41] C. Kruegel, G. Vigna, and W. Robertson, “A multi-model approach to the

detection of web-based attacks,” Computer Networks, vol. 48, no. 5, pp.

717-738, 2005.

[42] V. Paxson, “Bro: a system for detecting network intruders in real-time,”

Computer Networks, vol. 31, no. 23, pp. 2435-2463, 1999.

[43] V. Paxson, “Bro Intrusion Detection System Hands-On Workshop: Bro

Futures,” 2007. [Online]. Available: http://www.bro-ids.org/bro-workshop-

2007/slides/Overview.pdf.

231

[44] E. Messmer, “Intruvert Inspects high-speed IP traffic,” Network World, vol.

9, no. 36, p. 84, 2002.

[45] J. Goldman, “ISP-Planet - Value-Added Services - Intrusion Detection

Systems - IntruVert Networks,” ISP-Planet, 2002. [Online]. Available:

http://www.isp-planet.com/services/ids/intruvert.html. [Accessed: 04-Nov-

2010].

[46] McAfee, “Data Sheet | McAfee Network Protection Solutions,” McAfee,

2006.

[47] Check Piont, “IntruVert Networks Inc.: IntruShield IDS,” OPSEC Partners,

2010. [Online]. Available:

http://www.opsec.com/solutions/partners/intruvert.html. [Accessed: 04-

Nov-2010].

[48] S. Staniford-chen et al., “GrIDS - A Graph Based Intrusion Detection

System For Large Networks,” IN PROCEEDINGS OF THE 19TH

NATIONAL INFORMATION SYSTEMS SECURITY CONFERENCE, vol.

1, pp. 361--370, 1996.

[49] V. Bamm, “Sguil - Open Source Network Security Monitoring,” Sguil,

2007. [Online]. Available: http://sguil.sourceforge.net/. [Accessed: 04-Nov-

2010].

[50] NSM, “Sguil on RedHat HOWTO - NSMWiki,” 2008. [Online]. Available:

http://nsmwiki.org/Sguil_on_RedHat_HOWTO. [Accessed: 04-Nov-2010].

[51] Interoute, “Internet Barometer,” 2009. [Online]. Available:

http://barometer.interoute.com/barom_main.php.

[52] T. Sanders, “Botnet operation controlled 1.5m PCs,” Hacking, 2005.

[Online]. Available: http://www.v3.co.uk/vnunet/news/2144375/botnet-

232

operation-ruled-million.

[53] Team-Cymru Research, “Monitoring Graphs,” 2009. [Online]. Available:

http://www.team-cymru.org/Monitoring/Graphs/.

[54] O. Fletcher, “DNS Attack Downs Internet in Parts of China,” PC World,

2009. [Online]. Available:

http://www.pcworld.com/businesscenter/article/165319/dns_attack_downs

_internet_in_parts_of_china.html.

[55] Symantec Global Internet, “Security Threat Report Trends for 2008,”

Security Threat Report, 2008. .

[56] Arbor Network Inc,, “Network Infrastructure Security Research Report |

Arbor Networks,” 2008. [Online]. Available:

http://www.arbornetworks.com/report. [Accessed: 19-May-2010].

[57] M86 Security, “M86security Security Labs Report Jul 2009-Dec 2009

Recap,” 2010. [Online]. Available:

http://www.m86security.com/newsimages/trace/M86_Labs_Report_Jan20

10.pdf. [Accessed: 13-Mar-2010].

[58] M. Lesk, “The New Front Line: Estonia under Cyberassault,” IEEE

Security and Privacy, vol. 5, no. 4, pp. 76-79, 2007.

[59] TeleGeography Research, “Overview: Global Bandwidth: Research

Products,” 2008. [Online]. Available:

http://www.telegeography.com/products/gb/.

[60] Office For National Statistics, “Internet Access Household and

Individuals,” National Statistics, 2008. [Online]. Available:

http://www.statistics.gov.uk/pdfdir/iahi0808.pdf.

[61] Ofcom, “Ofcom reveals UK's average broadband speed,” 2009. [Online].

233

Available: http://www.ofcom.org.uk/media/features/brspeeds.

[62] I. Advanced Micro Devices, “MULTI-CORE PROCESSORS â€” THE

NEXT EVOLUTION IN COMPUTING,” White Paper, 2005. [Online].

Available: http://multicore.amd.com/Resources/33211A_Multi-

Core_WP_en.pdf.

[63] V. Romanchenko, “Evolution of the multi-core processor architecture Intel

Core: Conroe, Kentsfield,” CPU & Memory, 2006. [Online]. Available:

http://www.digital-daily.com/cpu/new_core_conroe/.

[64] G. Seibert, “Scaling networking applications to multiple cores,” MontaVista

Vision 2008 Embedded Linux Developers Conference, 2008. .

[65] M. Marino, “L2-Cache Hierarchical Organizations for Multi-core

Architectures,” 2006, pp. 74-83.

[66] T. Gamer, “Distributed detection of large-scale attacks in the internet,”

Proceedings of the 2008 ACM CoNEXT Conference, 2008. .

[67] J. Hernandez-Herrero and J. A. Solworth, “The need for a multi-

perspective approach to solve the DDos problem,” Bell Labs Technical

Journal, vol. 12, no. 3, pp. 121-130, 2007.

[68] S. A. Shaikh, H. Chivers, P. Nobles, J. A. Clark, and H. Chen, “Towards

scalable intrusion detection,” Network Security, vol. 2009, no. 6, pp. 12-

16, 2009.

[69] N. Ierace, C. Urrutia, and R. Bassett, “Intrusion Prevention Systems,”

Ubiquity, vol. 6, no. 19, 2006.

[70] D. Barman, J. Chandrashekar, M. Faloutsos, L. Huang, N. Taft, and F.

Giroire, “Impact of IT Monoculture on Behavioral End Host Intrusion

Detection,” An ACM SIGCOMM 2009 workshop, 2009. .

234

[71] K. Leung and C. Leckie, “Unsupervised anomaly detection in network

intrusion detection using clusters,” Proceedings of the Twenty-eighth

Australasian conference on Computer Science - Volume 38, 2005. .

[72] H. Qiao, J. Peng, C. Feng, and J. W. Rozenblit, “Behavior Analysis-Based

Learning Framework for Host Level Intrusion Detection,” Proceedings of

the 14th Annual IEEE International Conference and Workshops on the

Engineering of Computer-Based Systems, 2007. .

[73] Y. Chi, “A consumer-centric design approach to develop comprehensive

knowledge-based systems for keyword discovery,” Expert Systems with

Applications, vol. 36, no. 2, pp. 2481-2493, 2009.

[74] K. Kumar, R. Joshi, and K. Singh, “An ISP level Distributed Approach to

Detect DDoS Attacks,” 2007, pp. 235-240.

[75] G. Li, C. Li, J. Feng, and L. Zhou, “SAIL: Structure-aware indexing for

effective and progressive top-k keyword search over XML documents,”

Information Sciences, vol. 179, no. 21, pp. 3745-3762, 2009.

[76] Y. Lin, K. Tseng, T. Lee, Y. Lin, C. Hung, and Y. Lai, “A platform-based

SoC design and implementation of scalable automaton matching for deep

packet inspection,” Journal of Systems Architecture, vol. 53, no. 12, pp.

937-950, 2007.

[77] T. N. HINH, S. KITTITORNKUN, and S. TOMIYAMA, “PAMELA: Pattern

Matching Engine with Limited-Time Update for NIDS/NIPS,” IEICE

TRANSACTIONS on Information and Systems, vol. 92, no. 5, pp.

pp.1049-1061, 2009.

[78] Robin Sommer, Vern Paxson, and Nicholas Weaver, “An architecture for

exploiting multi-core processors to parallelize network intrusion

235

prevention,” Concurrency and Computation: Practice and Experience, vol.

21, no. 10, pp. 1255-1279, 2009.

[79] N. Carey, G. Mohay, and A. Clark, “Attack Signature Matching and

Discovery in Systems Employing Heterogeneous IDS,” Proceedings of the

19th Annual Computer Security Applications Conference, 2003. .

[80] W. Li, L. Zhi-tang, and W. Qi-hong, “A novel technique of recognizing

multi-stage attack behaviour,” Proceedings of the 2006 International

Workshop on Networking, Architecture, and Storages, 2006. .

[81] Z. Li, A. Zhang, D. Li, and L. Wang, “Discovering Novel Multistage Attack

Strategies,” Proceedings of the 3rd international conference on Advanced

Data Mining and Applications, 2007. .

[82] S. Mathew, R. Giomundo, S. Upadhyaya, M. Sudit, and A. Stotz,

“Understanding multistage attacks by attack-track based visualization of

heterogeneous event streams,” Proceedings of the 3rd international

workshop on Visualization for computer security, 2006. .

[83] S. J. Yang, A. Stotz, J. Holsopple, M. Sudit, and M. Kuhl, “High level

information fusion for tracking and projection of multistage cyber attacks,”

Inf. Fusion, vol. 10, no. 1, pp. 107-121, 2009.

[84] W. T. Strayer, C. E. Jones, and B. I. Schwartz, “Architecture for Multi-

Stage Network Attack Traceback,” Proceedings of the The IEEE

Conference on Local Computer Networks 30th Anniversary, 2005. .

[85] A. Sargeant, D. Webster, K. Djemame, and J. Xu, “Testing the

Effectiveness of Dynamic Binding in Web Services,” in Computer and

Information Technology, International Conference on, vol. 0, pp. 1263-

1268, 2010.

236

[86] J. Arshad, P. Townend, and J. Xu, “Quantification of Security for Compute

Intensive Workloads in Clouds,” in Proceedings of the 2009 15th

International Conference on Parallel and Distributed Systems, pp. 479-

486, 2009.

[87] D. J. Russell, L. Liu, Z. Luo, C. C. Venters, D. E. Webster, and J. Xu,

“Realizing Network Enabled Capability Through Dependable Dynamic

Systems Integration,” in Computer and Information Technology,

International Conference on, vol. 0, pp. 1269-1274, 2010.

[88] C. Peikari, Security warrior, 1st ed. Beijing ;;Sebastopol CA: O'Reilly &

Associates Inc., 2004.

[89] J. Beale, Snort : IDS and IPS toolkit. Burlington MA: Syngress, 2007.

[90] R. Bragg and M. Rhodes-Ousley, NETWORK SECURITY. Strassberg:

Mass Market Paperback, McGraw-Hill, 2004.

[91] F. Alserhani, M. Akhlaq, I. U. Awan, J. Mellor, A. J. Cullen, and P.

Mirchandani, “Multi-tier Evaluation of Network Intrusion Detection

Systems,” Journal of Information Assurance and Security, vol. 5, no. 1,

pp. 301-310, 2010.

[92] Arbor Network Inc,, “Network Infrastructure Security Research Report |

Arbor Networks,” 2009. [Online]. Available:

http://www.arbornetworks.com/report. [Accessed: 19-May-2010].

[93] D. McPherson, “Cybercrime - A game of cat and mouse in 2009,” Network

Security, vol. 2010, no. 2, pp. 15-18, Feb. 2010.

[94] McAfee, “McAfee® - threat_center - McAfee Labs Technical White

Papers,” 2009. [Online]. Available:

http://www.mcafee.com/us/threat_center/white_paper.html. [Accessed:

237

19-May-2010].

[95] A. Zeichick, “Reality of botnet cyberwarfare,” netWorker, vol. 13, no. 3, pp.

5-9, 2009.

[96] S. M. Furnell and M. J. Warren, “Computer hacking and cyber terrorism:

the real threats in the new millennium?,” Computers & Security, vol. 18,

no. 1, pp. 28-34, 1999.

[97] N. Kshetri, “Pattern of global cyber war and crime: A conceptual

framework,” Journal of International Management, vol. 11, no. 4, pp. 541-

562, Dec. 2005.

[98] B. Baskin and ScienceDirect (Online service), Combating spyware in the

enterprise. Rockland, MA :: Syngress,, 2006.

[99] SearchSecurityAsia Editors, “Search engine poisoning continues |

Security Asia,” 2010. [Online]. Available:

http://security.networksasia.net/content/search-engine-poisoning-

continues. [Accessed: 19-May-2010].

[100] J. B. Ullrich, “Search Engine Poisoning: Chile Earthquake,” 2010. [Online].

Available: http://isc.sans.org/diary.html?storyid=8317. [Accessed: 19-May-

2010].

[101] ICSALabs, “How to select a network IPS,” Verizon, 2010.

[102] M. A. Moya, “Analysis and evaluation of the Snort and Bro network

intrusion detection systems,” Intrusion Detection System, Universidad

Pontificia Comillas.

[103] Lawrence Berkeley National Laboratory, “Bro Intrusion Detection System -

Bro Overview,” 2010. [Online]. Available: http://bro-ids.org/. [Accessed:

05-Nov-2010].

238

[104] Sourcefire, “Snort :: Community,” 2010. [Online]. Available:

http://www.snort.org/community. [Accessed: 05-Nov-2010].

[105] H. Hasenauer, Sustainable forest management : growth models for

Europe. Berlin ;;London: Springer, 2006.

[106] IUPR Research Lab, “bonesi - Project Hosting on Google Code,” 2008.

[Online]. Available: http://code.google.com/p/bonesi/. [Accessed: 13-May-

2010].

[107] Computer Security, “Spanish Plane Crash Caused In Part By Malware |

Computer Security Articles,” 2010. [Online]. Available:

http://www.computersecurityarticles.info/security/spanish-plane-crash-

caused-in-part-by-malware/. [Accessed: 14-Nov-2010].

[108] Honeynet Project., “Challenge 2 of the Forensic Challenge 2010 -

browsers under attack | The Honeynet Project,” 2010. [Online]. Available:

http://www.honeynet.org/challenges/2010_2_browsers_under_attack.

[Accessed: 11-Jul-2010].

[109] D. Edward, “/packer/,” 2010. [Online]. Available:

http://dean.edwards.name/packer/. [Accessed: 11-Jul-2010].

[110] Snort, “Snort manual 2_8_6,” 2010.

[111] Snort, “Snort :: Additional Downloads,” Snort, 2010. [Online]. Available:

http://www.snort.org/snort-downloads/additional-downloads#zeroshell.

[Accessed: 05-Nov-2010].

[112] F. Knobbe, “About SnortSam,” SnortSam, 2010. [Online]. Available:

http://www.snortsam.net/. [Accessed: 05-Nov-2010].

[113] Cisco Systems Inc., “SpamCop.net - Beware of cheap imitations,” 2009.

[Online]. Available: http://www.spamcop.net/. [Accessed: 17-Jun-2010].

239

[114] Microsoft Technet, “Microsoft Security Bulletin MS09-059 - Important:

Vulnerability in Local Security Authority Subsystem Service Could Allow

Denial of Service (975467),” 2009. [Online]. Available:

http://www.microsoft.com/technet/security/bulletin/ms09-059.mspx.

[Accessed: 01-Jun-2010].

[115] Microsoft, “Securing Your Network with Firewalls and Ports,” 2007.

[Online]. Available: http://msdn.microsoft.com/en-

us/library/ms960403(CS.70).aspx. [Accessed: 02-Jun-2010].

[116] S. McClure, Hacking exposed 6 : network security secrets & solutions,

10th ed. New York: McGraw-Hill, 2009.

[117] C. McNab, Network security assessment, 2nd ed. Sebastopol Calif.:

O'Reilly Media, 2007.

[118] CISCO, “Security Intelligence Operations - Cisco Systems,” 2007.

[Online]. Available:

https://tools.cisco.com/security/center/viewIpsSignature.x?signatureId=33

08&signatureSubId=0&softwareVersion=6.0&releaseVersion=S268.

[Accessed: 02-Jun-2010].

[119] P. C̆ervĕn, Crackproof your software the best ways to protect your

software against crackers. San Francisco :: No Starch Press,, 2002.

[120] P. Villani, Programming Win32 under the API. Lawrence Kan.: CMP

Books, 2001.

[121] R. Lippmann, Recent advances in intrusion detection 11th international

symposium, RAID 2008, Cambridge, MA, USA, September 15-17, 2008 :

proceedings. Berlin ;;New York :: Springer,, 2008.

[122] The Honeynet Project, “Scan 28,” 2003. [Online]. Available:

240

http://old.honeynet.org/scans/scan28/. [Accessed: 11-Jun-2010].

[123] J. Burton and ScienceDirect (Online service), Cisco security professional's

guide to secure intrusion detection systems. Rockland, MA :: Syngress

Pub.,, 2003.

[124] Honeynet Project., Know your enemy : revealing the security tools,

tactics, and motives of the blackhat community. Boston MA: Addison-

Wesley, 2001.

[125] J. V. Braun, “SANS: Intrusion Detection FAQ: What port numbers do well-

known trojan horses use?,” 2010. [Online]. Available:

http://www.sans.org/security-resources/idfaq/oddports.php. [Accessed:

15-Jun-2010].

[126] M. Brown, Using Netscape 3, Special ed. Indianapolis Ind.: Que, 1996.

[127] Ports.My-Addr.com, “tcp port 32784,udp port 32784,udp tcp 32784

description,biggest ports library database,” 2010. [Online]. Available:

http://ports.my-addr.com/tcp_port-udp_port-application-and-

description.php?port=32784. [Accessed: 15-Jun-2010].

[128] “DNS Poisoning | SANS Internet Storm Center; Cooperative Network

Security Community - Internet Security.”

[129] R. Rehman, Solaris 8 training guide (310-043) : network administrator.

Indianapolis Ind. ;Hemel Hempstead: New Riders ;;Prentice Hall, 2001.

[130] W. Cheswick, Firewalls and Internet security : repelling the wily hacker,

2nd ed. Boston: Addison-Wesley, 2003.

[131] P. Hoagland, “The Teredo Protocol: Tunneling Past Network Security and

Other Security Implications,” 2007. [Online]. Available:

http://www.symantec.com/avcenter/reference/Teredo_Security.pdf.

241

[Accessed: 20-Jun-2010].

[132] X. Leng, J. Bi, and M. Zhang, “Study on High Performance IPv4/IPv6

Transition and Access Service,” Parallel and Distributed Processing and

Applications, 2006. [Online]. Available:

http://dx.doi.org/10.1007/11946441_21.

[133] H. Langweg and E. Snekkenes, “A classification of malicious software

attacks,” in IEEE International Conference on Performance, Computing,

and Communications, 2004, pp. 827-832.

[134] M. Xiao and D. Xiao, “Alert Verification Based on Attack Classification in

Collaborative Intrusion Detection,” in Eighth ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking,

and Parallel/Distributed Computing (SNPD 2007), pp. 739-744, 2007.

[135] A. R. Roozbahani, R. Nassiri, and G. Latif-Shabgahi, “Attacks

Classification to Improve the Power of Snorts,” in 2009 International

Forum on Computer Science-Technology and Applications, pp. 3-6, 2009.

[136] L. DeLooze, “Classification of computer attacks using a self organizing

map,” in Proceedings from the Fifth Annual IEEE SMC Information

Assurance Workshop, 2004., pp. 365-369.

[137] L. DeLooze, “Classification of computer attacks using a self organizing

map,” in Proceedings from the Fifth Annual IEEE SMC Information

Assurance Workshop, 2004., pp. 365-369.

[138] S. Yanhang and Z. Zhou, “Cooperative Control for Target Search,

Classification and Attack for AUAVs(Attack Uninhabited Air Vehicles),” in

2007 Chinese Control Conference, pp. 99-102, 2006.

[139] C. Douligeris and A. Mitrokotsa, “DDoS attacks and defense mechanisms:

242

a classification,” in Proceedings of the 3rd IEEE International Symposium

on Signal Processing and Information Technology (IEEE Cat.

No.03EX795), pp. 190-193.

[140] F. Haddadi, S. Khanchi, M. Shetabi, and V. Derhami, “Intrusion Detection

and Attack Classification Using Feed-Forward Neural Network,” in 2010

Second International Conference on Computer and Network Technology,

pp. 262-266, 2010.

[141] Zheng Zhang and C. Manikopoulos, “Investigation of neural network

classification of computer network attacks,” in International Conference on

Information Technology: Research and Education, 2003. Proceedings.

ITRE2003., pp. 590-594.

[142] Yao Shuping and Gu Yingyan, “Network security situation quantitative

evaluation based on the classification of attacks in attack-defense

confrontation environment,” in 2009 Chinese Control and Decision

Conference, pp. 6014-6019, 2009.

[143] J. Bi, P. Hu, and P. Li, “Study on Classification and Characteristics of

Source Address Spoofing Attacks in the Internet,” in 2010 Ninth

International Conference on Networks, pp. 226-230, 2010.

[144] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999

DARPA off-line intrusion detection evaluation,” Computer Networks, vol.

34, no. 4, pp. 579-595, Oct. 2000.

[145] N. Paulauskas and E. Garsva, “Computer System Attack Classification,”

vol. 2, no. 66, pp. 84-87, 2006.

[146] P. Wright, “Oracle Internals - Ten Stages of a Network Attack - Rootkit

installation,” 2010. [Online]. Available: http://www.dba-

243

oracle.com/forensics/t_forensics_network_attack.htm. [Accessed: 07-Nov-

2009].

[147] K. Beaver, Hacking for dummies, 3rd ed. Hoboken NJ: Wiley Pub., 2010.

[148] B. Schneier, Secrets and lies : digital security in a networked world. New

York: John Wiley, 2000.

[149] A. Moore, R. Ellison, and R. Linger, “Attack Modeling for Information

Security and Survivability,” Software Engineering Institute | Carnegie

University, 2001. [Online]. Available:

http://www.sei.cmu.edu/library/abstracts/reports/01tn001.cfm. [Accessed:

01-Aug-2010].

[150] J. Meier and Microsoft Corporation., Improving Web application security :

threats and countermeasures. [Redmond Wash.?]: Microsoft, 2003.

[151] J. Mirkovic et al., “Automating DDoS experimentation,” in Proceedings of

the DETER Community Workshop on Cyber Security Experimentation

and Test on DETER Community Workshop on Cyber Security

Experimentation and Test 2007, pp. 4-4, 2007.

[152] StopBadware, “StopBadware - This isn't an attack site... or is it?,” 2010.

[Online]. Available:

http://www.stopbadware.org/firefox#how_does_firefox_determine.

[Accessed: 25-Jan-2010].

[153] Microsoft, “Featured Intelligence,” Security Inteligence Report, 2010.

[Online]. Available:

http://www.microsoft.com/security/sir/story/default.aspx#section_2_3_7.

[Accessed: 14-Nov-2010].

[154] S. Young and D. Aitel, The hacker's handbook : the strategy behind

244

breaking into and defending networks. Boca Raton, Fla. ; London:

Auerbach, 2004.

[155] S. Malik, Network security principles and practices. Indianapolis Ind.

;[Great Britain]: Cisco, 2003.

[156] C. Zou, D. Towsley, Weibo Gong, and S. Cai, “Routing worm: a fast,

selective attack worm based on IP address information,” in Principles of

Advanced and Distributed Simulation, 2005. PADS 2005. Workshop on,

pp. 199-206, 2005.

[157] S. Castro, D. Wessels, M. Fomenkov, and K. Claffy, “A day at the root of

the internet,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 5, pp. 41-

46, 2008.

[158] J. Kang, Y. Zhang, and J. Ju, “Detecting DDoS Attacks Based on Multi-

stream Fused HMM in Source-End Network,” in Cryptology and Network

Security, 2006, pp. 342-353.

[159] J. Chang-Han and S. Shiuh-Pyng, “Detecting Distributed DoS/Scanning

by Anomaly Distribution of Packet Fields,” 2006. .

[160] IANA, “IANA IPv4 Address Space Registry,” 2010. [Online]. Available:

http://www.iana.org/assignments/ipv4-address-space/ipv4-address-

space.xml. [Accessed: 23-Jun-2010].

[161] EmergingThreats, “Emerging Threats,” 2008. [Online]. Available:

http://emergingthreats.net/. [Accessed: 05-Aug-2010].

[162] P. Wang, L. Wu, B. Aslam, and C. C. Zou, “A Systematic Study on Peer-

to-Peer Botnets.”

[163] W. Strayer, R. Walsh, C. Livadas, and D. Lapsley, “Detecting Botnets with

Tight Command and Control,” in Proceedings. 2006 31st IEEE

245

Conference on Local Computer Networks, pp. 195-202, 2006.

[164] R. Walsh, D. Lapsley, and W. T. Strayer, “Effective Flow Filtering for

Botnet Search Space Reduction.”

[165] N. Provos and T. Holz, Virtual honeypots : from botnet tracking to

intrusion detection. Upper Saddle River, NJ: Addison-Wesley, 2008.

[166] Maxmind, Inc, “Geolocation and Online Fraud Prevention from MaxMind,”

2010. [Online]. Available: http://www.maxmind.com/. [Accessed: 05-Aug-

2010].

[167] T. Crothers, CIW master administrator certification kit. San Francisco

Calif. ;;London: SYBEX, 2002.

[168] S. Convery, Network security architectures. Indianapolis IN: Cisco Press,

2004.

[169] rfc4380, “rfc4380,” 2006. [Online]. Available:

http://www.ietf.org/rfc/rfc4380.txt. [Accessed: 05-Aug-2010].

[170] D. Dittrich, “The "stacheldraht" distributed denial of service attack tool,”

1999. [Online]. Available:

http://staff.washington.edu/dittrich/misc/stacheldraht.analysis.txt.

[Accessed: 23-Jun-2010].

[171] C. Sun, J. Fan, and B. Liu, “A Robust Scheme to Detect SYN Flooding

Attacks,” 2007.

[172] B. Xiao, W. Chen, Y. He, and E. H. -. Sha, “An active detecting method

against SYN flooding attack,” IN: PROC. OF THE 11TH IEEE INT’L

CONF. ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL.1, 2005.

[173] V. A. Siris and F. Papagalou, “Application of anomaly detection algorithms

for detecting SYN flooding attacks,” IN PROCEEDINGS OF IEEE

246

GLOBECOM, 2004.

[174] H. W. Danlu, “Detecting SYN Flooding Attacks,” 2002.

[175] H. Wang, D. Zhang, and K. G. Shin, “Detecting SYN Flooding Attacks,” IN

PROCEEDINGS OF THE IEEE INFOCOM, 2002.

[176] J. Yuan and K. Mills, “Monitoring the macroscopic effect of DDoS flooding

attacks,” IEEE TRANSACTIONS ON SECURE AND DEPENDABLE

COMPUTING, 2004.

[177] H. S. Casner, “RTP: A Transport Protocol for Real-Time Applications.”

[178] S. Ranjan, “DDoS resilient scheduling to counter application layer attacks

under imperfect detection,” IN PROCEEDINGS OF IEEE INFOCOM,

2006.

[179] Q. Li, H. Goe, B. Xu, and Z. Jiao, “Hardware Threat: The Challenge of

Information Security,” presented at the Proceedings : International

Symposium on Computer Science and Computational Technology

ISCSCT 2008 Shanghai, China, 20-22 December 2008, Los Alamitos

Calif., 2008.

[180] K. Higgins, “Permanent Denial-of-Service Attack Sabotages Hardware -

Security/Management - DarkReading,” 2008. [Online]. Available:

http://www.darkreading.com/security/management/showArticle.jhtml?articl

eID=211201088. [Accessed: 05-Aug-2009].

[181] S. Chebrolu, A. Abraham, and J. Thomas, “Feature Deduction and

Ensemble Design of Intrusion Detection Systems,” Computers and

Security, vol. 24, no. 4, pp. 295-307, 2005.

[182] M. Gregg, Hack the stack : using snort and ethereal to master the 8 layers

of an insecure network. Rockland MA: Syngress Pub., 2006.

247

[183] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating Denial of

Service Attacks which employ IP Source Address Spoofing,” 2000.

[Online]. Available: http://www.ietf.org/rfc/rfc2827.txt. [Accessed: 15-Jan-

2009].

[184] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel

Traffic Classification in the Dark,” IN PROCEEDINGS OF ACM

SIGCOMM, 2005.

[185] H. Kim, D. Barman, M. Faloutsos, M. Fomenkov, and K. Lee, “Internet

Traffic Classification Demystified: The Myths, Caveats and Best

Practices,” IN PROC. ACM CONEXT, 2008.

[186] S. Zanero, “Analyzing TCP Traffic Patterns Using Self Organizing Maps,”

in Image Analysis and Processing – ICIAP 2005, vol. 3617, Springer

Berlin / Heidelberg, 2005, pp. 83-90.

[187] L7-Filter, “L7-filter Supported Protocols.” [Online]. Available: http://l7-

filter.sourceforge.net/protocols. [Accessed: 07-Nov-2010].

[188] DEF CON Communications, Inc.#, “DEF CON® Hacking Conference -

The Hacker Community's Foremost Social Network.,” 2009. [Online].

Available: http://www.defcon.org/. [Accessed: 31-Jan-2010].

	cover_sheet_thesis
	University of Bradford eThesis

	PhD thesis - viva printer ready

