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PHYSICAL REVIEW B

VOLUME 25, NUMBER 2
Influence of fluctuating strain on exciton reflection spectra

T. Skettrup
Physics Laboratory 111, Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 11 February 1981)

The influence of an internal distribution of strain on the exciton reflection spectra is in-
vestigated. The resulting fluctuating optical constants give rise to a fluctuating phase of re-
flectivity. The standard deviation o of these phase fluctuations is the quantity which can be
observed, for example, between crossed polarizers or from ellipsometric measurements.
Assuming the phase fluctuations to obey a Gaussian distribution, o can be expressed in a
simple way in terms of the degree of polarization or the depolarization of the reflected
light. o is then derived in terms of the standard deviations of the fluctuating strain com-
ponents for wurtzite-structure crystals. To do this it is necessary to find the behavior of
the six independent (complex) photoelastic coefficients in the excitonic resonance region. A
simple approximation makes it possible to obtain these. Furthermore, it is necessary to
derive the dependence of the phase of reflectivity on the direction of the fluctuating optical
axis. The results obtained for o are compared with the experimental depolarization spectra
of ZnO. The only fitting parameter is the common standard deviation of the strain com-
ponents. It is found that the fluctuating strain can reproduce the positions and relative
magnitudes of the resonant depolarization peaks, but fails to reproduce the background lev-
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el of depolarization and the magnitude of the A peak in one geometry.

INTRODUCTION

Optical spectra like exciton spectra are usually
computed for ideal and perfect crystals. In real
crystals, however, there are several mechanisms
causing nonideal behavior. These include vacancies,
interstitials, dislocations, impurities and other imper-
fections like clusters, twins, etc. Furthermore, the
surface is never completely planar, no matter how
well it is polished or etched. In addition to these
statical defects there exists the dynamical disorder
due to lattice vibrations, important even at zero tem-
perature.

One of the main effects of these imperfections is
an internal distribution of local strains all over the
crystal volume. The purpose of the present work is
to investigate the influence of this local strain distri-
bution on the exciton reflection spectra.

DEPOLARIZATION TECHNIQUE

The result of the internal strain distribution is that
the optical constants are fluctuating in the crystal.
This implies a reduced degree of coherence and an
increased depolarization of the light that has in-
teracted with the crystal. Since the depolarization is
easier to measure than the degree of coherence, we
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shall concentrate on depolarization spectra in the
present work. In Fig. 1 a typical ellipsometer setup
is shown. If the incoming field has the magnitude
E, the outgoing field has, before passing the
analyzer 4, the magnitude

= i(0,+6)) .
E; = EylcosBae * '%

x(9y+92)j)\) : (1)
where X and J are unit vectors, 3 is the angle
between the polarizer and the xz plane, and axet
and ayeley are complex reflection (or transmission)
coefficients. If the crystal is uniaxial its optical axis
is directed along the y axis. If the crystal is isotro-
pic, then a, = a, and 0, = 0, in average, but they
are fluctuating independently. 6, and 0, are the
phase delays introduced by the compensator.

+ sinfBaye

x

FIG. 1. Principle of ellipsometer. 1 Polarizer, 2 com-
pensator, 3 sample, and 4 analyzer.
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Introducing now the coherency matrix! we obtain

<E3xE;x > <E3xE;y >

J =
<E3yE;x ) <E3yE;y >
1 6-02/2
= Eja’ , 2
0% le—2 4 )
where { ) denotes the time average over long
]
a Aa
(EE3) = E§a0xa0y< 1+ — |1+ —L|e
aox aOy

where only the fluctuating quantities contribute to
the time average. In (5) we have

A6::y = 0y — Oox — (9y - 90y)
= A, — A9, . ()

The time average of Aa, and Aag, must be zero,
since it appears in first order in (5) and the ampli-
tude is expected to fluctuate around the average am-
plitudes a, and ao,. Hence, only the phase fluc-
tuations contribute in (5). The actual distribution
function is unknown. However, in view of the large
number of fluctuations assumed to be present, it
seems reasonable to apply a Gaussian distribution

(6 — 6,)?

P(8) = 2mo?)~2exp|— >
20

) (7

where o and 6, are standard deviation and average
value of the fluctuating phase. Hence, the time
average of (5) is equivalent to the average obtained
by means of the distribution (7):

@y = [ PO %d0, =7 @
Then as shown in (2) we obtain

(EsE3) = Eda%e~"", )
where

02=03+0y2, (10)

since (8) is independent of the sign of A6.
The coherency matrix (2) can always be divided
up into two matrices':

1. 1to 1 Ly
J:E-Id[OI)—I-?IPL/, ll, (11)

iA6.

times,! and

a = a,cosf} = a,sinf (3)
and

0, — 6, =6, — 6, @)

when the ellipsometer is adjusted for minimum
transmitted light through the analyzer 4. The
evaluation of the averages of (2) proceeds as follows:

i(8gy — By — 0, +6,) .
"’>e 0x TPy T2 cosBsing (5)

where the first matrix describes completely unpolar-
ized (depolarized) light with intensity I;, and the
second matrix describes completely polarized light
with intensity 7, when |y | = 1. Decomposing (2)
according to (11) yields

I; =2E3aX1 — e~ 7?), (12)
I, = 2Ega% =" . (13)

Then the degrees of polarization of the light leaving
the crystal in Fig. 1 is

I
P — =02, (14)

P: =
I, + 1,

It is also convenient to introduce the depolarization
(D) of the light as
Iy 1—e—o2

a _l1—e "7 2
Ip_ o ~0°/2, (15)

D =
which is particularly useful when 0% << 1.

Hence, by measuring the amount I; of depolar-
ized light (i.e., the amount of light transmitted
through the analyzer 4 in Fig. 1 when the ellipsom-
eter is adjusted for minimum light transmission), the
standard deviations of the fluctuating phases can be
determined. In uniaxial crystals o, and o, usually
have different spectral dependences so that it is pos-
sible to determine them separately.

STRAIN FLUCTUATIONS

In this section we shall derive ¢ in terms of the
standard deviations of the fluctuating strain com-
ponents. To be more specific, we consider wurtzite
structure since experimental results exist for ZnO.

It is convenient to use the photoelastic coefficients in
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this derivation since these yield the changes in the
dielectric constant induced by the strain component,
and the dielectric constant determines the phase of
reflected or transmitted light.

The photoelastic tensor is defined by the follow-
ing relationship:

Ale™) =p-e, (16)

where ¢ is the tensor of the dielectric constant and e
is the tensor of the applied strain. In the coordinate
system where € is diagonal (without applied strain)
the components of the dielectric tensor can be writ-
ten as’

A€ = —€€5 3, pyale - 17
ki

It is customary to introduce an abbreviated notation,
since many of the elements are zero or equal.? In
this notation

1 d €;j

(1 + 84, (18)
2€i,'€jj aekl Kt

Pmn = —

where m and n represent ij and kl according to the
rules 11 —-1,22—-2,33—-3,23 >4, 135,
12— 6. In wurtzite structure only six independent
photoelastic coefficients exist: py; =p1z, P12 =P21»
P13 = P23, P31 = P32, P33, Pas = Pss; and ps

= 5(p1; — p12); the remaining p coefficients are
zero. From the induced change in € given by (17)
or (18) the change in phase can be computed,

a6 30 J¢€;

d €xl ij d eij d €kl

_ 360 | —2€ii€jiPmn (19)
ij d 6,']' ( 1 -+ 8k1 )
For small fluctuations we then have
oS ot |20 ’
— o' —
Kl | dey
e, ae, |
2 x y
= — 20
% %o |3 ey dey 20

where Tey, is the standard deviation of the strain
component e, and (6) is applied. The problem of

Depolarization (%)

Depolarization (%)

344
E(ev)

FIG. 2. Depolarization spectra for the reflected light
in the exciton region of ZnO at 77 K. The experimental
spectra (dots) are taken from Ref. 4. The solid lines are
spectra computed for K L¢ and o, = 8.83 X 10~ (a) and
for K || c and o, = 6.88 X 10~ (b). In (b) the experi-
mental spectrum from (a) is also shown (dashed line).

determining o” is thus reduced to calculating the
derivative 0 /0 €;; and the photoelastic coefficients
Pmn- The computations of these are discussed in
Appendixes A and B. The resulting expressions for
d6/0d ey are also given in Appendix B.

COMPARISON WITH
EXPERIMENTAL RESULTS

Experimental depolarization spectra for reflec-
tivity due to excitations in ZnO have been meas-
ured by Filinski and Skettrup* at 77 K. In Fig. 2
the depolari_z’ation4 defined in (15) is shown for
geometries k L ¢ and K || ¢ where X is the wave
vector of the incoming light and ¢ is the direction
of the optical axis in ZnO (wurtzite structure). It
is seen that the depolarization turns out to be most
pronounced close to the minima of reflectivity.
The crystals were selected to yield the smallest
depolarization. The level of maximum depolariza-
tion of the crystals is only about 1% (correspond-
ing to o = 8°), and the expansion of (15) is thus
valid. (In transmission spectra, however, up to ten
times more depolarized than polarized light can be
obtained in the spectral range of the Urbach ab-
sorption.>)

Letting the ¢ axis go along the z direction and as-
suming all of the strain components to have the
same standard deviation o,, we obtain from (15)
and (20)
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2

0_2_0_3[ {aex 3, |° [ae, e,
2 2 0y, Oy de,, dey,
e, a6, > (a6 |
+ de,, N de,, dey,
and
o2 oi[[oe. 86, |° (a6, a6,
2 2 ||Ben Qe de, Qe
1
=120 |Im |—=———(K ¢5 + 2CsF¢5)
e Vel _e) 66 sFe6

The derivatives are obtained from Appendix B. For
k || c the three terms in (22) are similar, and the
result is therefore expressed explicitly in terms of
the quantities from Appendix B.

In order to compute the depolarization spectra
(21) and (22) it is necessary to know the spectral
behavior of the photoelastic coefficients in the exci-
ton region. This has never been measured in that
spectral range, and p,,, must then be computed
from the expressions given in Appendix B. Howev-
er, only p44 and p¢¢ can be computed, since the K
constants except for K 44 and K ¢¢ are unknown.
This means that only the spectrum (22) and the last
two terms of (21) can be computed with known
parameters. However, as described in Appendix C,
it is possible to make a rough estimate of the other
K values so the remaining p coefficients can be ob-
tained. In this way all the photoelastic coefficients
of ZnO can be computed throughout the whole ex-
citon region. Hence, any question concerning the
strain dependence of the exciton spectra of ZnO
can, in principle, be answered.

The depolarization spectra obtained in this way
from (21) and (22) are shown in Fig. 2. It is seen
that a relatively good agreement with the experi-
mental spectra is obtained. The relative magnitudes
of the peaks, their positions and shapes, fit well with
the experimental spectra. However, the strong peak
near 3.37 eV for k || ¢ is not possible to reproduce
with this theory of strain fluctuations. Also, the
general background level of depolarization cannot
be reproduced. Furthermore, the sharp minima of
the theoretical curves are not seen in the experimen-
tal spectra. It can thus be concluded that there
must be additional effects that cause depolarization.
The strain distribution, however, implies spectra that
reproduce the essential features, and such a distribu-
tion of local strain throughout the crystal volume

96, 96,
de, Qe
2

96 -

= for k Lc 1)
dey

a6, a6, |’

dey, N dey,
for K ||c . (22)

[

are, therefore, likely to be one of the main reasons
for the depolarization spectra obtained by Filinski
and Skettrup.* There is only one adjustable param-
eter in Fig. 2, the standard deviation o2 which just
yields a shift along the D axis. This value is ob-
tained by shifting the spectra vertically to obtain fit-
ting at the maximum at 3.39 eV. This procedure
yields

6.88 X 105 for K || c

T 1883 x 10~ 5for k Lc . 23)

Ue
These values are, as expected, almost equal. They
are of the order 10> — 10 times less than strains
necessary for breaking the crystals. These relatively
small values are thus sufficient to give depolariza-
tion levels up to 1% (8° of standard deviation) in the
region of excitonic resonance.
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APPENDIX A

We wish to obtain d 6/3 ¢;; for reflection spectra.
Since the reflectivity can be written

. 1— (E )1/2
rae19a= .1.._;_(_‘1."‘_)17 , (A1)
€aq

the phase is given by

1— (eaa)l/z

In|—————
1+ (€4q)"?

0, =Im

} ) (A2)
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where Im means imaginary part. Hence the deriva-
tive is given by

0
@ Imlo—L 1 (A3

T (€)1 — €49)

deg,

where a represents either x, y, or z.

The derivatives with respect to off-axis elements
of the dielectric tensor are more involved, since
these imply not only changes in reflectivity, but also
a change in the optical-axis direction for anisotropic
crystals. We shall consider here the uniaxial case
and only deal with the cases where the light pro-
pagates parallel (k || ¢) or perpendicular (k lc) to
the optic axis, corresponding to the experimental
spectra shown in Fig. 2. We shall not go into detail
with the computations of (A3) for off-axis elements.
The method consists in diagonalizing the dielectric
tensor by turning the coordinate system, the angle
a, given by

T. SKETTRUP 25

where the reflectivities are found from (A1) with the
eigenvalues of € substituted for €,,. It is then possi-
ble to obtain the derivative of the phase of reflectivi-
ty with respect to a. After lengthy but straightfor-
ward computations one finds

do ¥
—% = Zsin(6, — 6,)
da r,
and (A6)
dé ¥
Z = Zsin(6, — 6,)
da Ty

when the light propagates along the y direction.

The off-axis element €3 is caused by the strain
component e 3 [see Eq. (17)]. It turns out that there
is a first-order dependence on « (and a second-order
dependence on strain in the eigenvalues). Going
through the computations outlined above yields the
result (to first order)

: 2€;; do
tan2q = . (A4) ‘ i -
. = sin(8; — 63), A7
€;i 6” d€13 rj(€11—€33) ( ! 3) ( )
The reflected light then be written as Lo e
 reflected light can then be w which is relevant for k Lec.
i, The off-axis element €;, is caused by the strain
E, cosa —sina | |71€ 0 component e,. It turns out that a = 45°. There is
E,; sing cosa 0o - ei9z now a first-order dependence on strain in the eigen-
2 values, but no angular dependence. The effect of
this induced birefringence is that a phase change ap-
cosa sina | [Ex pears between two light beams reflected with polari-
x ) ' , (A5) zation along the two main directions. The deriva-
—sina cosa | |Ej; tive of this induced phase is
|
do; do; di; _ .
—t _ | = |Im __ 1 (—1)+!
depy |ep=0 dA; deyy |e,=0 VAT —A) €,=0
—Im|——1 (1)t (A8)
Venll —epy)
APPENDIX B

We wish to compute 9 /0 e,; by means of (19) in order to obtain the standard deviation of the phase fluc-
tuations in (20). It is then necessary to find 0 6/d €;; and p,,,. 0 6/0d¢€; is derived in Appendix A. The
behavior of the photoelastic coefficients p,,, of wurtzite structure close to the excitonic region has been dis-
cussed and derived by Berkowicz and Skettrup.” We use their results here. In the notation of Ref. 7 (Appen-
dix C) and using the results of Appendix A, we then obtain

26, 36, 2o,

de, (—53)1’11 = Im

der, Dey,

1
Ve (1 —¢€,)

(K11 + 2CsFg — 2C4F + C,G, + C4Gy )|, (B
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== = — €. =m|—- f— —
dey, dey Je€, * P12 \/e—,(l—ex) 2 6 e o
99 90, 89’( 2) I 1 (K31 4+ 2C4F3 + CG, + C,G,) (B3)
— _ —€ =1m/|—-"

ey, aeyy de, z D31 \/e,(l—ez) 31 3 20 40z ) |,
86”,_69,((_62)1) — Im 1 (K13 — 2C3F; + C1G. + C;G.) (B4)
—aez, _aex x /P13 _‘——“\/_5:(1——6,,) 13 30 1Yx 3Yx ’
a0, 892( 2) I 1 (K 33+ 2C3F3 + CG, + C3G,) (BS)
_— = —€ =m |——: + + ’
deg  de, PB Vig(l—g) 2783
30,, a6,, ) 2
—X (el e= 5Im |———— (K¢ + 2C5Fee) |, (B6)
aexy aexy x P66 = + \/e_x(l —e) 66 sF 66
a0

z =0, (B7)
deyy,
LX) 96 r Kyu+C 272

A = ("‘2€x€z)p44= _2_X_ Sin(ox _ez)Re “ 6F44/ ’ (B8)
de, 06y r, (&x — €;)
36 ’ Ku+C 2V2

Z — 2% sin(6, — 6, Re | —2 '/ (B9)
de,, Ty (ex — €;)

Here the indices 1, 2, and 3 were replaced by x,
», and z. The derivatives with respect to e,, are
found from (B8) and (B9) by replacing x with y.
The real part of p4/(€, — €;) must be used in (B8)
and (B9), since the imaginary part of p 44 will only
contribute when multiplied with 0 (Inr)/d e,, which
is of second order and hence neglected.

APPENDIX C

We wish to make an estimate of the K values of
Egs. (B1)—(B9) since only K 44 and K ¢ are known
from experiments.7 In order to do so, we use the
fact that both py, and pgg vanish at the same
wavelength [4328 A or 2.864 eV at room tempera-
ture for ZnO (Ref. 7)]. This means that off-
diagonal elements of the dielectric tensor are in-
dependent of strain at this wavelength. Further-
more, pyy = pge Which is valid also for cubic sym-
metry. Hence, we apply the approximation of cu-
bic symmetry at this wavelength. This implies
that for A = 4328 A,

Pu3=PisPs1=Pi3=P12>

1 (C1)
Pu=DPes= 7P11—P12) -

Further, since p44 = p¢s = 0, we have

Pu="rPn. (C2)

In this approximation there is then only one in-
dependent p value at 4328 A. That this approxima-
tion is relatively crude can be seen from the position
(3945 A) of the isotropic point for birefringence,
which is not the same as that where pyy = pgs = 0.
Since the hexagonal crystal can be approximated by
a quasicubic crystal with uniaxial stress along the
[111] direction,® the two isotropic points mentioned
above are expected to be positioned at the same
wavelength.

For the present purpose of computing 3 terms in
(21), the p values estimated need not be very accu-
rate, so we apply the approximation (C1) and (C2).

TABLE I. Parameters used in calculations of photo-
elastic coefficients of ZnO. The values are taken from
Ref. 7, except for the energies and damping, which are
valid for T'= 77 K and derived by fitting to experimental
reflectivity spectra.

E.; V) 33695 Iy =T (meV) 5.50
E,; (eV) 33752 A (meV) 41

E,; (eV) 3.4160 A (meV) —29
K.\PL €v?) 0.5 E, (V) 3.4295
K ,\PL (eV?) 0.30 K,P2 (eV?) 2.704
K P2 (V?) 0.0 K,P? (eV?) 3.153
K.\P. eV?) 00 €. l(f«:ic) 2.642
K\P3 (€V?) 037 ew“(ﬁHc) 2.524
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TABLE II. Deformation potentials and K values for ZnO, taken from (a) Langer et al.
(Ref. 10), (b) Rowe et al. (Ref. 11), and (c) Berkowicz and Skettrup (Ref. 7).

Cl C2 C3 C4 C5 C6 K44 K66
(eV) (eV) (eV) (eV) (eV) (eV)
Ref. a —3.8 —3.8 —0.8 + 1.4 —12 —-2.0
Ref. b -39 —4.0 —1.2 —0.9
Ref. ¢ —0.86 —2.64 —5.612 —1.757
Introducing (C1) and (C2) into the expressions for and
Ref. 7) at A = 4328 A, btain f ua-
Pmn (Ref. 7) a we obtain four eq Ky~ Ky~ 193 ©3)

tions for the five unknown K values. The remaining
equation can be obtained from experimental results
of Yu and Cardona® on the “Q coefficients” which
are combinations of the p,,, values.

In Ref. 9 there are two sets of measurements
(Q33 — Q3) and Q; — Q3) that can be used. It
turns out that one obtains K ;; = — 174 from the
(Q33 — Q43) value and K {; = 198 from the other.
These values only deviate by 12%, but the two
values have different signs. This is surprising be-
cause the approximations used above are not expect-
ed to be so bad that sign problems should arise.

We have not found it worthwhile for the present
purpose to pursue this sign problem further, but
choose the positive sign since this keeps the p values
at the numerical lowest values in the exciton spec-
tral range. We then get

K“ﬁKlzﬁan 186

where the average value of the two K ; values (with
positive sign) have been used, and where (€;/€, )?

= 1.0373 at 4328 A is applied (value taken from Yu
and Cardona®). Since K ¢ = 5(K 11 — K1), K
and K , should deviate by 2K ¢ = — 3.5, or 2%.
Hence this discrepancy is not of importance for the
present purpose.

There is then sufficient information to compute
the expected spectra of the photoelastic coefficients
in the exciton region. The parameters of Tables I
and II and Eq. (C3) are used. In Table II, C,, C,,
Cj3, and C,4 from Ref. a are chosen, since these are
consistent with the signs expected from a quasi-
cubic model (see, e.g., Berkowicz and Skettrup7).
Cs, Cg and K 44,K 46 are taken from Ref. c, since
these have been determined directly from fits to p 44
and p ¢ at room temperature.
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