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Rotationally symmetric numerical solutions to the sine-Gordon equation
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(Received 15 August 1980)

We examine numerically the properties of solutions to the spherically symmetric sine-Gordon equation given an
initial profile which coincides with the one-dimensional breather solution and refer to such solutions as ring waves.
Expanding ring waves either exhibit a return effect or expand towards infinity. This can be explained by means of a
perturbation approach. For a moderate initial radius of the shrinking ring wave we find an evolution of pulson
modes. The ring waves are shown to survive the interaction between other ring waves.

I. INTRODUCTION

In recent years the sine-Gordon equation (SGE)
has attracted considerable interest. The use of
the one-dimensional SGE to model various phy-
sical phenomena,® e.g., the propagation of fluxons
on Josephson transmission lines, the propagation
of crystal dislocations, and the propagation of
ultrashort optical pulses is well known. The
spherically-symmetric SGE has been considered
as a model for nonlinear field theory as has been
discussed by Derrick.? If dissipative effects are
neglected the spherically symmetric SGE is given
by

Gpp + [(m=1)/7] ¢, — ¢y = sing . (1.1)

Here m is the number of spatial dimensions. Equa-
tion (1.1) is a conservative, nonlinear, dispersive
wave equation. For m =1 Eq. (1.1) possesses the
remarkable soliton and antisoliton solutions (27 -
kink solutions). The one-dimensional equation
also has the so-called breather solution which can
be viewed as a bound state of a soliton and an anti-
soliton. The breather solution itself is a soliton.
Unlike the 27-kink solutions, the breather solution
need not require an activation energy, because

its rest energy can range from 0 to 2E,, where

E, is the rest energy of the kinks or antikinks.
Further, breather solutions have an internal oscil-
latory degree of freedom which increases their
physical potential.

The perturbed one-dimensional SGE, where the
perturbing terms represent dissipative effects,
energy input, and various kinds of impurities has
been analyzed by McLaughlin and Scott® by means
of a Greens function technique. Specific analyses
of breather solutions to the perturbed SGE’s can
be found in papers by Scott,* Inoue and Chung,
and Inoue.’ Experiments in numero on 2m-kink
solutions to the one-dimensional perturbed SGE
have been reported in various papers.®

No analytical solutions have been found to the
three-dimensional spherically-symmetric SGE

[7 =3 in (1.1)] but Christiansen and Olsen’ have
investigated symmetric solitary wave solutions
(27 kinks) to Eq. (1.1) withm =2, 3 by means of
numerical computations. They referred to such
solutions as ring waves and found that an expand-
ing ring wave reaches a maximum size, depending
on the initial condition, and then shrinks. This
phenomenon was called a return effect and ex-
plained by Samuelsen® who applied an energy ap-
proach. The behavior of the ring waves in the
vicinity of » =0 has been examined by Bogolubskii
and Makhankov,® and Bogolubskii'® who found pul-
sating solutions. They named the solutions pul-
sons and studied their collapse in time. In Ref. 7
the interaction between two ring waves were in-
vestigated numerically. The ring waves were
shown to behave as single waves before and after
the interaction. Thus the waves were referred to
as quasisolitons. ‘

A preliminary investigation of breatherlike so-
lutions to Eq. (1.1) withm =3 has been performed
by Olsen and Samuelsen.'! Expanding ring waves
given an initial profile which coincides with the
one-dimensional breather solution were shown to
either exhibit a return effect or to expand towards
infinity.

In the present paper a detailed numerical in-
vestigation of breatherlike solutions to the three-
dimensional SGE (1.1) withm =3 is reported. The
perturbation analysis in Ref. 3 is applied to explain
the behavior of the various solutions. For moder-
ate values of the initial radius of the ring wave
we find that the wave after a period of radiation
developes a new pulson mode. The light pulson
mode found by Bogolubsky'? is also observed.
Finally we investigate the interaction between
breatherlike ring waves. The ring waves are
shown to be essentially unchanged by the inter-
action.

The paper is structured as follows: Sec. II
presents a numerical investigation of breatherlike
ring waves. In Sec. III the perturbation approach
is applied. The behavior of the ring waves in the
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vicinity of » =0 is examined in Sec. IV, while Sec.
V contains results concerning the interaction
between ring waves. Finally, in Se¢. VI the re-
sults are discussed.

II. NUMERICAL RESULTS FOR A SINGLE
RING WAVE

In this section we consider an initial-value pro-
blem for the SGE in spherical symmetry [Eq. (1.1)
with 7 =3] imposing the initial conditions

¢lr, 0 =30, 0), (2.1a)
and

D¢, 0) =9, (r,0), (2.1p)
where

sinly (v) cos 9t —=vr —1,)] >

IP(Y’ t)=4arctan (tano cosh[y (0) sin6r —R)]

(2.2a)
y@)= (1 -02)71/2, (2.2b)
R =vt+7,, (2.2¢)
and

tang = S_l_-gf_)ﬁ . (2.2d)

w

We have chosen the initial conditions (2.1)-(2.2)
so that they coincide with the one-dimensional
breather solution, in which v may be conveniently
interpreted as the initial velocity, ¢ being the time
variable, and ¢, a phase constant. The parameter
f determines the initial amplitude and the terms
v(v)sing and y (v)cos § determine the initial width
and frequency of oscillation, respectively. Thus
we may interpret the solution of (1.1)~(2.2) as a
ring wave with the initial radius 7.

The numerical results are obtained by means
of a computer program based on the method of
characteristics. In Fig. 1 we display the re-

FIG, 2. The function ¢, (r,¢ ) obtained by numerical
solution of the initial-value problem (1.1), (2.1), and
(2.2) for m=3, 7ry=30, tan =1, and » =0. The results
are displayed for 5< <45 and 0 <¢ <40.5. The ring
wave oscillates several times before dissociating.

sults obtained by numerical solution of the initial-
value problem (1.1), (2.1), and (2.2) in terms of
the radial derivative ¢, with »,= 30, tang = 5,

and v =0. Thus the ring wave is intially at rest.
As time increases the ring wave shrinks. After
one half-period of oscillation it dissociates into
two individual ring waves, a kink from 0 to 27
being followed by an antikink from 27 to 0.

Next, we have solved (1.1), (2.1), and (2.2) with
7,=30, tang =1, and v =0. Also in this case the
ring wave initially is at rest, but compared to
the first example the energy is smaller (see the
next sections). In Fig. 2 the results are again
displayed in terms of ¢,. The ring wave now
oscillates several times over a longer period of
time before its starts shrinking and finally splits
into two individual ring waves.

Figure 3 shows the results when we choose 7,
=30, tanh =0.4, and v =0 in (1.1), (2.1), and (2.2).
These parameter values correspond to a smaller
initial energy than in the former examples. The
ring wave, initially at rest, oscillates for a long
time but starts shrinking and will eventually dis-

FIG. 1. The function ¢, (7,t) obtained by numerical
solution of the initial-value problem (1.1), (2.1), and
(2.2) for m=3, 74,=30, tan 6=5, and v =0. The results
are displayed for 10 < 7<40 and 0<¢<24. The ring
wave dissociates into two ring waves.

FIG. 3. The function ¢, (7, t) obtained by numerical
solution of the initial-value problem (1.1), (2.1), and
(2.2) for m=3, r;=30, tan6=0.4, and v =0. The results
are displayed for 5< ¥ <45 and 0 <¢<40,5. The ring
wave oscillates and will eventually shrink.
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sociate into two individual ring waves.

The behavior of the ring waves with zero initial
velocity is explained in the next section by means
of a perturbation approach.

Now, we consider ring waves given an initial

outward velocity. In Fig. 4 we show the solution of-

(1.1), (2.1), and (2.2) in terms of ¢,. The para-
meter values are 7,=30, tan6 =5, and v = 0.5,
corresponding to Fig. 1 but with a nonzero initial
velocity. At early times the oscillating ring wave
expands but the radial velocity decreases such
that a maximum radius for the ring wave is.
reached and the ring wave exhibits a return effect.
Then the ring wave starts shrinking towards the
center in the manner shown in the previous fig-
ures. :

In Fig. 5 the parameter values in (1.1), (2.1),
and (2.2) are »,=30, tang =1, and v =0,5, In this
case we find that the outward ring wave expands
towards infinity at a constant velocity. The fre-
quency of oscillation increases towards unity.

Finally in this section we show another example
of an expanding ring wave. In Fig. 6 we have
chosen the parameter values in (1.1), (2.1), and
(2.2) to be v,= 15, tang =1, and v =0.8. We ob-
serve the same qualitative behavior as observed
in Fig. 5. The expansion of ring waves towards
infinity can also be explained by the perturbation
approach given in the next section.

III. PERTURBATION ANALYSIS

The qualitative behavior of the numerical solu-
tions to the SGE obtained in the previous section
can be understood by application of the perturba-
tion method of McLaughlin and Scott,® and Scott.*
The idea is to consider the term [(m -1)/r]¢, in
Eq. (1.1) as a perturbation of the one-dimensional
SGE. The expression Eq. (2.2a) is an exact solu-
tion of the one-dimensional SGE with the energy*

FIG. 5. The function ¢, (r,¢) obtained by numerical
solution of the initial-value problem (1.1), (2.1), and
(2.2) for m=3, 7¢=30, tan §=1, and v =0.5, The re-
sults are displayed for 20<# < 60 and 0 <¢< 35. The
ring wave expands towards infinity.

H = 16(1 - ?)1/2y(p) (b=1%), (3.1)
and momentum?
P =16(1 = 0?)2 yy (), (3.2)

where w, v, and R now are the instantaneous fre-
quency parameter, velocity, and position (radius)
of the breather solution. From Ref. 4 it then fol-
lows that the time evolution of H and P due to the
perturbing term [z - 1)/7] ¢, is given by

fz:em-l)f L0t gy

am—};'l f ¢,¢,d'r=—7—nk;l P, (3.3)
and

13‘=-(m-1)f i:;:dr

w2 [ gy, (3.4)

FIG. 4. The function ¢, (,¢) obtained by numerical
solution of the initial-value problem (1.1), (2.1), and (2.2)
for m=3, (=30, tanf=5, and v =0,5. The results are
displayed for 10 <7 <40 and 0<¢ <40. The ring wave
exhibits a return effect and dissociates.

FIG. 6. The function ¢, (r,t) obtainedbynumerical so-
lution of the initial-value problem (1.1), (2.1), and (2.2)
for m =3, (=15, tan6=1, and v =0.8. The results are
displayed for 5 < » <45 and 0 <¢<30. The ring wave
expands towards infinity. '
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both valid for R > 1. Thus (3.3), (3.1), and (3.2)
(P = vH) yields

HR™ '= constant. (3.5)

The simple energy consideration in Ref. 8 gives
the same result. On the other hand the perturba-
tion method used here will for a single soliton
with the appropriate expressions for the energy H
and momentum P, yield exactly the results of Ref.
8 giving good confidence in the method.

In order to determine the time evolution of R and
w it is necessary to calculate the integral in Eq.
(3.4). This has not been performed but generally
it will be a function of ¢, R, v, w and periodic in
time with the frequency 2w/27y(v). Intwo special
cases, however, the integral has been calculated.
For w-1 and v>>(1-w?)? , corresponding to a
very tight binding of the two solitons, the result is

| f¢3d1’ = 16(1 - w?) 22y (v) =0 P. (3.6)
From P =vH we get

y P H

> =1—) T (3.7

Inserting Eq. (3.3) and Eq. (3.4) with Eq. (3.6)
into Eq. (3.7) yields

v=0. (3.8)

Thus the velocity v is a constant. This corre-
sponds to the behavior seen in Figs. 5 and 6.
The second case is for v=0. Then the integral

becomes
2 2. _ — w2)1/2 - 2Z )
[ 62ar = 1601 -0%) (1 2Z), 69
where
w2)1
Z= sinh'l((1+) sinw(t—to)) . (3.10)

This result can be used to calculate v and @ for
small velocities. From Eq. (3.7) it follows that

. m-1 2Z
YSTTR (1‘ sinhzz) ’ @.11)
while Eq. (3.1) yields
— w2
b=pp=l) (-0 22 (3.12)

R w sinh2Z °

For smaller values of Z, i.e., smaller values of
tand [w~1, see Eq. (2.2)] 2Z/sinh 2 Z will be
closer to but still smaller than one. Therefore
from (3.11) and (3.12) it follows that the changes
in velocity and frequency will be slower for small-
er values of tanfd. This behavior can be seen in
Figs. 1, 2, and 3 where the value of tanf is de-
creasing with increasing figure number corre-

sponding to increasing values of w. For smaller
values of tan § the ring wave oscillates several
times and for a longer time before it starts shrink-
ing and finally splits into individual ring waves.

One can get a more quantitative check of the
description of this behavior by expanding Eq.
(8.11). If tang =(1 - w?)'2/w <1 Eq. (3.11) be-
comes

m=-1

¥ =———2 tan?g sin®[w(t - 25)].

7 (3.13)

As long as v is small it follows from Eq. (3.12)
that w remains constant. For large ¢ only the
mean value of the squared sine will contribute to
Eq. (3.13). Therefore the deviation of v from r,
A7 is given by

_ m=-1 tan?p ,
AT———R—-—G—t . (3.14)
We have compared the value of ~A#/¢? calculated
from Eq. (3.14) with the value determined from
Figs. 1, 2, and 3 by calculating the ratios between
the two values obtained. For tand =0.4 (Fig. 3)
we find 1.02, for tang =1 (Fig. 2) 1.23, and for
tang =5 (Fig. 1) 11.3. It is seen that the agree-
ment is good for small tang values.

It is difficult to use the perturbation analysis
described here except for the two special cases
we have considered (w~1 and v~ 0). This is
first due to the complicated nature of the integral
itself and second to the fact that the parameters
that determine the breather solution (especially w)
in most cases vary rapidly, even within a single
period. Another difficulty is that to the extent the
initial phase constant ¢, enters the results, the
time variation of ¢, should be included.

In this section we have (to some extent) ex-
plained the two different kinds of solutions, the
ever expanding ring wave and the returning ring
wave. Finally we remark that besides the initial
radius 7,, velocity v, and frequency parameter
tan g the resulting ring wave depends on the initial
phase constant {,. For instance the two sets of

_initial values, both for »,=30, v =0.5, tan6 =1, and

v =0.7, tang =5 yield returning ring waves or even
expanding ring waves depending on the value of £,.

" IV. EVOLUTION OF RING WAVES
INTO PULSON MODES

In order to study the behavior of the ring waves
in the vicinity of » =0 we choose the condition

$,(0,£)=0. (4.1)

The presence of the factor ¢z —1)/r in Eq. (1.1)
forces the condition (4.1) to be fulfilled if ¢ is
to be regular. Insertion of a power series ex-
pansion of ¢ in7 into (1.1) shows this. Further-
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40 L
$(0t)
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20

0 100 200 300 400 500 600

FIG. 7. The function ¢(0, ¢) obtained by numerical so-
lution of the initial-value problem (1.1), (2.1), and (2.2)
with the condition (4.1) for m= 3, » =0, tan6=1, 7, =6
and ¢y=0. At =100, ¢(0,¢) enters a light pulson mode,
oscillating around 0. The pulson collapses at¢ =~ 350.

more, this condition prevents the point » =0 from
being either a source or a drain. This can be
seen by calculating the energy flux, @, through a
sphere of radius 7:

QW) ==41r2 0, . 4.2)

We solve the initial-value problem (1.1), (2.1),
and (2.2) with the condition (4.1) where v =0, tang
=1,7,=6, and t,=0 [in order to satisfy (4.1) for
t =0].® In Fig. 7 the results are displayed in
terms of ¢(0,%). For { =80 we find that approxi-
mately half of the energy

E= f - [302 +3¢2+ (1 —cos ¢)] 4nriar (4.3)
]

of the initial ring wave is radiated towards infin-
ity. The value of 7, in Eq. (4.3) is set equal to
24, At t~ 100 a light pulson mode is formed. The
pulson mode is modulated and slightly radiating.
At #=~ 350 the pulson is destroyed because of the
radiation and the rest of the energy is radiated
towards infinity. Similar results have been found
for other parameter values (e.g., v =0, tang =1,
7,=8, 10, 12, and £,=0). The same qualitative
behavior has been observed when the initial con-
ditions are chosen as a kink from zero in the
‘vicinity of » =0 to 27 for » > 1.°

$(0t)

30

20

10

0 1@ 200 300 400 500 600

FIG. 8. The function ¢(0,¢) obtained by numerical so-
lution of the initial-value problem (1.1), (2.1), and (2.2)
with the condition (4.1) for m= 3, v =0, tan6=0.2,
79=6, and £,=0. A modulated mode is observed.

Next we solve the initial-value problem (1.1),
(2.1), and (2.2) with the condition (4.1) where v =0,
tang =0.2, v,=6, and ¢,=0.

The results are shown in Fig. 8 and are again
displayed in terms of ¢(0, #). The initial energy
in this case is less than half of the initial energy
of the former case. Immediately a modulated
mode is formed. At ¢=300 only one third of the
initial energy is radiated towards infinity. The
energy is slowly radiated while the modulated
wave expands, reaches a maximum extent and then
returns. Finally the wave reaches the linear limit
and propagates towards infinity. For other initial-
value problems we find similar results, e.g., for
v =0, tang =0.25 (0.5), 7,=6, and ¢,=0. An explana-
tion of why we find the evolution of different modes
is found in the fact that for small initial energies
no dissociation into a kink and an antikink takes
place before the collapse at » =0.

We have not been able to explain these phenomena
by any analytic approximations. The method ap-
plied by Bogolubsky'® for the ¢* model does not
work because the amplitudes are too large.

Whether such oscillating solutions are of in-
terest as models of mesons is still an open ques-
tion.

V. INTERACTION BETWEEN RING WAVES

The question of stability of the ring waves for » > 1 is examined in this section by means of numerical
computations. We solve the initial-value problem (1.1) and (2.1) with

B sinly (v;) cos 9, —vr —t,.)] ‘ ‘
P, t)=4 ; arctan (tane,- coch [;/(v‘) si;w‘('r ‘_R‘)‘]" ) , (5.1a)
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FIG. 9. The function ¢,(7,¢) obtained by numerical
solution of the initial-value problem (1.1), (2.1), and
(6.1) for m=3, ryq =15, tan6=1, v4 =0.8, 7y, =30,
tan §,=1, andv,=0. Collision of expanding and shrink-
ing ring wave. The ring waves survive the collision‘.

where
y@;)= (1-22)"12, (5.1b)
R;=vit +7, (5.1c)
and
- 1/2
tang, = Q—;“’Q——- (5.1d)
i

Initially, we have two ring waves, separated for

¥ 2 >7 o, > 1, which coincide with one-dimensional
breather solutions. The parameter v; may be
interpreted as the initial velocity while the para-
meter 6; determines the initial amplitude, width,
and frequency of oscillation for the ith ring wave.

In Fig. 9 the interaction between the ring waves
shown in Figs. 6 and 2 is displayed again in terms
of ¢,. Thus the parameter values in (5.1) are
7o, =15, tand, =1, v,=0.8, r, =30, tang, =1, and
v,=0. It is seen that the two waves retain their
identity after the collision. The ocutward wave
continues to expand while the other wave oscil-
lates before it shrinks. Both waves develop as
single waves. As a result of the collision we ob-
serve small phase jumps in the propagation di-
rections.

A second numerical experiment is shown in
Fig. 10. The ring wave from Fig. 6 interacts with
the ring wave from Fig. 3. The parameter values
in (5.1) are ry, =15, tang, =1, v, =0,8, r,, =30,
tang =0.4, and v, =0. Also in this case the col-
liding ring waves survive the interaction. The

FIG. 10. The function ¢,(v,¢) obtained by numerical
solution of the initial-value problem (1.1), (2.1), and
(6.1) for m=3, ryq =15, tan 6; =1, v =0.8, 7y, =30,
tan 6,=0.4, and v,=0. Collision of expanding and
shrinking ring wave. The ring waves survive the col-
lision.

contracting ring wave eventually dissociates.
Again small phase jumps in the propagation direc-
tions are observed.

VI. DISCUSSION

In this paper we have examined ring-wave so-
lutions to the sine-Gordon equation in three di-
mensions by means of numerical computations.
Ring waves with an initial profile which coincides
with the one-dimensional breather solution ex-
hibit either a return effect, eventually dissociating
into individual ring waves, or expand towards in-
finity. Similar results have been found in two
dimensions. The dissociation is due to the fact
that the energy per unit area increases during
the shrinking process. The behavior of the ring
waves expanding towards infinity and the ring
waves with zero initial velocity can be well under-
stood qualitatively by a simple perturbation ap-
proach. We have not been able to treat these highly
nonlinear problems quantitatively.

In the vicinity of » =0 we find that the ring waves
collapse into pulson modes. The light pulson mode
discovered by Bogolubsky is found. Furthermore,
we have observed a new modulated mode. Whether
these modes are of any physical importance is an
open question.

The ring waves are shown to preserve their
identity after a mutual collision. This indicates
the minor importance of the term [¢n ~1)/7]¢,
for » > 1. In this limit the problem is essentially
one dimensional. :
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Denmark.
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