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The use of symmetrized valence and relative motion
coordinates for crystal potentials
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Symmetrized valence coordinates are linear combinations of conventional valence coordinates which
display the symmetry of a set of atoms bound by the valence bonds. Relative motion cocrdinates are
relative translations, or relative rotations, of two or more strongly bonded groups of atoms among which
relatively weak forces act. They are useful for expressing interactions between molecules in molecular
crystals and should be chosen, also, to reflect the symmetry of the interacting groups. Since coordinates
defined by these procedures possess elements of symmetry in common with the bonding electron
distributions, the force constants in the potential should be more amenable to calculation in terms of
energy changes in the electronic ground state which accompany displacements of the atoms from
equilibrium. It is easier to determine force constants for fitting experimental data because interaction
constants coupling coordinates of unlike symmetry with regard to the crystal point group are necessarily
zero. They may be small, also, for ccordinates which belong to different representations of the local
symmetry when this is not the same as for the crystal. Procedures are given for defining the coordinates,
and for assuring that the potential energy is invariant to crystal translations and rotations. The secular
equation is derived by expressing the kinetic and potential energies in terms of components of mass
adjusted basis vectors which are chosen so that high and low frequency modes can be separated
approximately. The necessity to remove redundancies among the coordinates in the potential is avoided.

(. INTRODUCTION
A. General ideas

This work is the outgrowth of efforts to express crys-
tal potentials in terms of coordinates which are directly,
or closely, related to the symmetry of the crystals.

The idea was that the force constants would be more
amenable to interpretation in terms of changes in the
energies of the bonding electron distributions which ac-
company distortions associated with the excitations of
the coordinates. It was desired, also, to achieve some
practical advantages. Coordinates which behave differ-
ently under symmetry operations of the crystal cannot
interact, and coordinates which behave differently under
symmetry operations appropriate only to the atoms in-
volved in the coordinates may still be small. Further,
the equations expressing experimental data in terms of
force constants are easier to apply in determining trial
values. Finally, a diagonal force matrix will fit the
data as well as a force matrix with diagonal and off
diagonal elements using conventional coordinates.

Initially, the use of symmetrical combinations of va-
lence coordinates was studied in applications to trigo-
nal selenium. However, the idea emerged that the weak
forces between the adjacent spiral chains might be ex-
pressed better by using relative rotations and relative
translations of the atoms in primitive cells on adjacent
spirals as coordinates. It was clear that such relative
motion coordinates would be suited for expressing in-
teractions between molecules in molecular crystals.

) present address: Department of Physics, Idaho State Uni-
versity, Pocatello, Idaho 83209.
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It is easy to define the relative motion coordinates so
that translational invariance of the potential energy is
achieved. However, rotational invariance requires
either the use of properly defined linear combinations
of some relative motion coordinates, or the introduction
of properly selected interaction force constants between
some of the coordinates. We experimented first by us-
ing rotationally invariant linear combinations of coordi-
nates to make the trigonal selenium potential invariant.
However, the procedure was rather cumbersome and
the physical significances of some of the force con-
stants was obscured. The idea of neglecting rotational
invariance was then explored. It was possible to show
that for a finite crystal the spurious terms which ex-
press couplings of the overall crystal rotations to the
internal motions in the secular equation are negligible.
However, the reviewer of an earlier manuscript on this
subject pointed to other reasons why this procedure is
not physically acceptable. In particular, the normal
modes can be shown to be incorrect, and the force field
which they imply must be wrong.

At this point methods for achieving rotational invari-
ance by coupling selected noninvariant coordinates were
studied. Quite simple procedures for doing this were
developed and their application to trigonal selenium, as
reported in the accompanying paper, met with success.

A method was also developed for obtaining the secular
equation without the necessity of removing redundant po-
tential coordinates while retaining the utility of having
coordinates which permit approximate separation of high
and low frequency modes. To do this the kinetic and po-
tential energies are expressed in terms of components
of mass adjusted basis vectors chosen so that some ap-
proximate displacement patterns are associated with

© 1980 American Institute of Physics
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high frequency normal modes and others low frequency
normal modes. These coordinates can be normalized
and made orthonormal and the secular equation is then
diagonal in the part arising from the kinetic energy. It
is not necessary to remove redundancies as long as the
usual approximation which ignores any quadratic depen-
dences of the potential energy coordinates on Cartesian
displacements is used.®

B. Related work

There have been many adaptations of the Wilson FG
method for molecules® to molecular crystals and to
polymeric chains with regular repeat units. Higgs®
gave an application to helical chains which is useful for
biological polymers. Shimanouchi and co-workers have
applied the FG method to crystals with special emphasis
to the case of zero wave vector.* Their procedures are
suited to calculating optically active vibrations and have
been widely used, sometimes with adaptations.® Piseri
and Zerbi have outlined a more general method suited
to all wave vectors. ®

In the FG method the kinetic energy is expressed us-
ing the same coordinates as are used to express the po-
tential energy. These are chosen so that some coordi-
nates take large force constants and others small. They
are well suited to obtaining a secular equation that can
be approximately factored into blocks giving high and low
frequency normal modes, respectively. The disadvan-
tages are that the kinetic energy matrix is not diagonal
and redundancies must be removed if the potential en-
ergy coordinates are linearly dependent. In addition,
the G matrix which arises from the kinetic energy is
wave vector dependent. Further, if several coordinate
models are being investigated in a search for the best
force field a new G matrix must be obtzined for each
trial set.

Apparently the use of symmetrized valence coordinates
has not been employed in crystal dynamics. A number
of treatments of molecular crystals express the inter-
molecular potential in terms of translations and rota-
tions of individual molecules.” This is an extension of
the usual Born approach.® This procedure requires
satisfying both translational and rotational invariance
by proper selection of interaction force constants based
on the symmetry operations of the crystal. The proce-
dures to be described eliminate much of this work, and
reduce the rest.

C. Special procedures

This work has led to significant computer automation
which greatly speeded the final determination of the force
field for trigonal selenium.® This work is limited to de-
termining only a “basis” set of potential energy coordi-
nates which are not transformed into each other by op-
erations of the point group appropriate to the crystal
(nonprimitive translation operations are included for
nonsymmorphic crystals). All coordinates equivalent
to these are determined by the computer. The force
constants expressing interactions between coordinates
in the basis set also apply to every set equivalent to this
by symmetry. The computer program sets up force ma-
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trices which allow for the most general interactions.
Finally, projection techniques are used to generate co-
ordinates from an original mass adjusted basis set
which serve to block diagonalize the secular equation
according to the group of the wave vector.

11. SYMMETRIZED VALENCE COORDINATES
A. Coordinate definitions

Wilson et al.? have given procedures for calculating
changes in bond distances, interbond angles, dihedral
angles and all other valence coordinates likely to be of
interest, in terms of the Cartesian displacements of the
atoms bonded by the coordinates. The definitions insure
that the coordinates are not excited by pure translations,
or rotations, of the molecule containing the interacting
atoms. The equation for the excitation H; of a coordi-
nate due to arbitrary displacements of the atoms in a
molecule is

H,=b,ar=) byAr, . (2.1

v

where b; is a row vector containing three elements for
each atom in the molecule which operate on the compo-
nents of that atom’s displacement. All components in
b, are zero except those that pertain to the atoms whose
displacements can excite the coordinate. These are the
by, in the sum in Eq. {2.1), each b,, being a row of
three elements. The Ar and Ar, in Eq. (2.1) are column
vectors containing as elements the displacements of the

atoms. Thus,
ar, ]
Ar,

Ax,

ar=| ° |, ar,=| ay, (2.2)

Ar

. v Az,
Arn_

The first step in defining symmetrized valence coordi-
nates for use in the crystal potential is to obtain a con-
ventional set of coordinates which express the binding
of a symmetrical group of atoms which are either in a
single primitive cell, or in that cell and one or more
neighbors. It is necessary that the coordinates belong
to one, and only one, primitive cell.!® The row vectors
by, which will be referred to as projection operators,
are then determined by the Wilson procedures. Then
each of the projectors is operated on by the operations
of the symmetry group appropriate to the local sym-
metry to produce projection operators which define co-
ordinates belonging to the irreducible representations
of the local symmetry group. The usual methods of
group theory are employed for this purpose.!*'? This
process is easily visualized because each b, defines a
displacement pattern of the atoms within the group and
the group theory operations produce new vectors b,
which are linear combinations of the original set and
define symmetrical displacement patterns.

J. Chem. Phys., Vol. 72, No. 10, 15 May 1980
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The triangular X,Y molecules of C,, symmetry suf-
fices to illustrate what this means. If the X atoms are
numbered 1, 2 and the Y atom is number 3, the C,, op-
erations applied to the stretch Ar(1, 3) between atoms 1
and 3 gives two coordinates belonging to the A, and B,
representations which are, respectively, symmetric

and antisymmetric under the C, operations. They are
Ay H,,,,, =07(1,3) +5r(2,3)
=[b(1, 3) +b(2, 3)] Ar , (2. 3a)

By: H,, .. =47(1,3) -Ar(2,3) =[b(1,3) -b(2,3)] Ar .

(2. 3b)
It is readily seen that the operation C, moves the dis-
placement pattern described by b(1, 3) into the pattern
for b(2, 3). The operator for the X-Y-X angle bend
goes into itseif under all C,, operations so this coordi-
nate already has the group symmetry. The complete
set is then

Ay H,, o =07(1,3) + A7(2, 3) =[b(1, 3) +b(2, 3)] Ar ,
By: H,,,, =047r(1,3) -87(2,3)=[b(1,3) -b(2,3)] ar ,

Ay H,=A9(1,3,2)=b(1,3,2)Ar . (2.4)

If a triangular group of atoms with this symmetry is
embedded in a crystal which pcssesses the C, operation
there can be no interaction force constant between the
coordinates of unlike symmetry. In more general cases
there will be coordinates which belong to different rep-
resentations of the local symmetry group, but belong
to the same representation of the crystal group. Such
coordinates can interact because the crystal symmetry
prevails in determining which interactions are absolute-
ly forbidden. However, even in these cases it may be
reasonable to assume the interactions forbidden by local
symmetry are small enough to neglect. This will happen
if the electron distribution binding the interacting atoms
conforms closely to the local symmetry.

In general the group of atoms for which the symme-
trized coordinates are defined employ axes x, y, 2 which
are inclined to the set X, ¥, Z for the crystal. The pro-
jectors defined in terms of components along x, vy, 2
must be converted to projectors valid for the X, Y, Z
system. This is easily accomlished. Leti, j, and k
be unit vectors along x, v, and z, respectively, and I,

J, and K be unit vectors along X, Y, and Z. Then

i J x]=[1J K}A, (2.5a)
I-i I-j I-k
A=|J-i J-§j J-k (2. 5b)
K-i K-j K-k
and
ar,=AT AR, , (2.6a)
ar ={AT} AR . (2. 6b)

In Egs. (2.6a) and (2.6b), AR, is defined as in Eq. (2.2)
with displacements AX,, AY,, and AZ, along X, Y, and
Z being used. The {A”} in Eq. (2.6b) denotes a matrix
with AT repeated n times down the diagonal, once for
each atom in the group. Using Eq. (2.6b) the equation
for a symmetrized coordinate H; becomes

H. L. McMurry and F. Y. Hansen: Symmetrized valence and relative motion coordinates

H; =b, Ar=b;{AT} AR =B, AR , 2.7

B, =b,{AT} . (2.8)

If AR, denotes a column vector containing the AR,
for all the atoms in all the primitive cells of the crystal

the equation which calculates the excitation of a specific
coordinate H,(l) belonging to just one cell (J) is

H()=[0, 0,o¢+,---B;>++,0,°++ | AR s » (2.9)
where each 0 denotes a row vector for a cell that does
not involve H; (1) and contains three zero elements for
each atom in the primitive cell. The only nonzero ele-
ments are contained in - -+ B; - - - and these are posi-
tioned so they operate on the atoms in the cells which
contribute to H,(l).

B. Relation of force constants for symmetrized and
conventjonal coordinates

A potential energy containing only diagonal force con-
stants for symmetrized coordinates is equivalent to one
containing diagonal and off diagonal force constants when
conventional coordinates are used. An off diagonal force
constant for the symmetrized set will correspond to
more than one off diagonal constant in the conventional
coordinate set. Usually, the first step in a force con-
stant fitting procedure is to approximate the diagonal
force constants. Therefore, the fitting procedure may
be more rapid when symmetrized coordinates are used.
The force constants may also have clearer physical
significances.

The relations between the symmetrized and unsym-
metrized force constants are easily established by
writing the potential using both sets of coordinates and
then expanding the terms in the symmetrized function
so it is expressed in the conventional coordinates. The
X,Y example shows how this is accomplished. The po-
tential function in terms of conventional and symmetrized
coordinates is given by

conventional:
V=% {F'[Ar(l, 3)2+ A’V(Z, 3)2] +F0 Ad)z
+2f,, A0 [ a7(1, 3) + 87(2, 3)]

+2f,, 87(1,3) Ar(2, 3)} ; (2.10)
symmetrized:
V=i {F,,a[a7(1,3)+Ar(2, 3)]*+ F, 803
+ Foy sl A7(1,3) - ar(2, 3)]?
+ 2,0 AD[87(1,3) + A7 (2,3)]} . (2.11)

When the terms in Eq. (2.11) are expanded and compared
with those in Eq. (2.10) the result is

Fsvut=% (Fr+frr) ’
Fuut =% (Fr_frr) ’ Fuy-u—Fu:at =frr ’
Favo=fro +

1. RELATIVE MOTION COORDINATES

Fs)'rat + Fl.lllf =FY »

(2.12)

A. General procedures

Relative motion coordinates bind groups of strongly
bonded atoms which are connected by relatively weak

J. Chem. Phys., Vol. 72, No. 10, 15 May 1980
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forces. They are defined in terms of relative transla-
tional, and relative rotational displacements of the in-
teracting groups.

If there are N groups interacting there will be 3N
linearly independent translation coordinates, However,
three of these correspond to pure translations of the
entire set of interacting groups along each of the Car-
tesian axes for the set. They are excluded from the
coordinates used in the potential energy. The remain-
ing 3N - 3 relative translation coordinates can be chosen
so that their projection operators are orthogonal to those
forthe pure translations. In this way the coordinates
contribute terms to the potential energy which are trans-
lationally invariant.

The number of relative rotation coordinates depends
on the structures of the individual groups. If every
group contains atoms in nonlinear configurations so that
rotations about all axes can be defined there will be 3N
relative rotation coordinates. If some groups contain
linear atom configurations rotations about these lines can
not occur. This reduces the number of relative rota-
tion coordinates below 3N. Finally, if all groups are
in a line one relative rotation coordinate will correspond
to a pure rotation about this line and will be excluded.

These situations cause no problems in determining
sets of coordinates. However, of the 3N - 3 relative
translation coordinates there will be three (two if the
groups are in a line) which correspond to displacement
patterns generated by rotational displacements of the
entire set about the x, y, and z axes. In addition, there
is a one to one correspondence between these coordi-
nates and three (two if there is a linear array of groups)
relative rotation coordinates about these axes. None of
these relative rotation or relative translations is, by it-
self, orthogonal to pure crystal rotations. However,
they can be coupled in pairs in the potential energy to
satisfy rotational invariance.

All of the remaining coordinates may be defined so
they are orthogonal to pure translations and rotations
of the groups. They then ensure an invariant potential.

B. Coordinate definitions and projection operators
1. Coordinates and operators for individual groups

The operators which project out the relative motion
coordinates from arbitrary displacements of all the
atoms in the set of interacting groups are defined in
terms of operators which project translational and ro-
tational displacements of individual groups from arbi-
trary displacements of the atoms in the groups. The
expressions for these operators are obtained in terms
of axes x, ¥, and z within each group which are parallel
to the axes for the entire set. To ensure that the oper-
ators for the group translations and rotations are orthog-
onal, the axes within each group are located at an origin
chosen to satisfy the conditions

ny=0, 2o%=0, > z,=0.
1 14

where x,, y,, and z, are the positions of atom v in the
group. It is useful to begin by determining the opera-

(3.1)
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tors which project out translations along, and rotations
about, arbitrary directions. The translation operator
is easily obtained. Let t denote a translation of the en-
tire group

t=t[if, +j,+ki,] . (3.2)

Let (Ar),, denote a column vector containing the dis-
placements of all the atoms which are induced by the
group translation t. Since all atoms experience the
same translation t, (Ar),. may be written

i Ar,_w

.
Al

"

ha b}
—
w

ane=| et - .3)

-

)

Ar,

L n Jdtr

where the subscript tr denotes displacements generated
by a pure translation, and [t] denotes a column matrix
in which the three element column matrix f appears n
times, once for each atom in the group. The elements
in t are seen from Eq. (3.2) to be the components of the
unit vector t along t, while ¢ is the magnitude of t.

To obtain the projector for (Ar),, we note that an
arbitrary displacement of all the atoms in the group can
be expressed as the sum of orthogonal contributions
from pure translations, pure rotations, and internal
displacements. Then

Ar =(Ar), .+ (Ar) + (AT, (3.4)

where Ar denotes a column vector like that in Eq. (2.2)
in which the elements are the arbitrary displacements
of the atoms in the group. The subscripted terms on
the right-hand side give the contributions from the
translational, rotational, and internal displacements,
respectively. If Eq. (3.3) is used to express (Ar),,

the result is

Ar=t[t]+(Ar),, +(Ar),, - (3.5)

If Eq. (3.5) is operated on from the left by [ E]" and ac-
count is taken of the orthogonalities to the rotational
and internal displacements the result is

[t)]TAar=nt ,
where n is the number of atoms in the group. Finally,
(1/m)[t]T ar=¢ . (3.6)

From Eq. (3.6) it is seen that the operator which pro-
jects t out of the arbitrary displacements of the atoms
in the group is

b, =(1/m)[t]" (3.7

The projector for a pure rotation is found by consid-
ering the equation for (Ar),,. Let @ denote a rotational
displacement of the group about an axis through the ori-
gin of the group axes and directed along the vector 8,

6 =0[i6,+36,+Kk5,] . (3.8)

The rotation € induces a displacement Ar, of atom v

J. Chem. Phys., Vol. 72, No. 10, 16 May 1980
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given by
Ar, =0Xr,=-1,X0 . (3.9)
The matrix form for Eq. (3.9) is
Ax,
ar,=| ay, | =6r,6, (3.10)
Az, Jrot
0 2z - 6,
r,=|-2, 0 % |, 6={8 1. (3.11)
Yo -x 0 6,

The equation for the displacements experienced by all
the atoms due to the rotation is

(Ar),, =618 , (3.12)
[ 1]
Ty
= : (3. 13)
rV
R

When Eq. (3.12) is used in Eq. (3.5) the result is

ar=t[t]+6rd+(ar),, . (3.14)

If the atoms in the group are not all in a line r’r has
an inverse. Then Eq. (3.14) can be operated on from
the left first by [rTr]™ r” and then by 67 to yield

67 (2T ) rT AT =6 . (3.15)

This result holds because r” is orthogonal to [ t] by vir-
tue of Eq. (3.1) and because the (ar),, term is a dis-
placement pattern orthogonal to the first two terms in
Eq. (3.4). The operator which projects 6 out of Ar is
then

b, =67 (xT ) r” . (3.186)

If the atoms in the group are on one line r’r is a

3X 3 singular matrix because rotations about this line
are not defined. In this case & must be restricted to
directions in the plane normal to the line of nuclei and r
will be restricted to the two columns associated with ro-
tations about the two axes normal to the internuclear
line. Then r¥ r is a 2X 2 matrix which can be inverted
so that with this understanding Eq. (3.186) still applies.

In this work Eq. (3. 16) is used to define the operators
for relative rotation coordinates which are orthogonal
to the pure translations. Equation (3.16) has been de-
rived on the assumption that these coordinates are to be
defined in terms of rotations about axes parallel to those
for the entire set of interacting groups. Cases may oc-
cur, however, where a better choice is to use group ro-
tations about axes appropriate to the group symmetry
which may be inclined to the axes for the entire set.
When the final set of symmetrized coordinates is de-
fined using these relative rotations the operators can
be converted into operators appropriate to the axes for

H. L. McMurry and F. Y. Hansen: Symmetrized valence and relative motion coordinates

the entire set by using equations analogous to Eq. (2.8)
to resolve the components for each group along the axes
for the set. This means employing a different projec-
tion matrix for each group in the analog to the A matrix
in Eq. (2.5b).

The illustrative application in Sec. V, and the applica-
tion to trigonal selenium in the accompanying paper,
employ only relative rotations about axes parallel to
those for the set. This appears to be a common possi-
bility in practice and these applications display the es-
sential features of our method quite simply.

2. Operators for relative motion coordinates

a. General comments. The projectors for those rel-
ative translation and relative rotation coordinates which
are not orthogonal to pure rotations of the interacting
groups are obtained from the expressions for displace-
ments induced by rotations of the groups considered as
a rigid unit. It is useful to begin by expressing the
arbitrary displacements of all the atoms in all the
groups in the form

(Ar)ut = (Al‘)‘,," + (Ar)',rnt + (Ar),, ot + (ar) it (3.17)

where (Ar)m denotes a column vector with the displace-
ments of all the atoms as components. It may be sub-
divided conveniently in the form

[CAar(1) ]

ar) |, (3.18)

(Ar)aot =

L_Ax:(N)_

where ar(i) is a column vector containing the displace-
ments of the atoms in group i as elements. The (Ar),, .,
and (Ar),, ¢ in Eq. (3. 17) are column vectors containing
the displacements of the atoms which are induced by a
pure translation of the entire set, and a pure rotation

of the set, respectively. If the axes for the set have
their origin located to satisfy constraints analogous to
those in Eq. (3.1), the (Ar),, 4 Will be orthogonal to

(ar),, ;.- The consstraints are

S ali)=0, 2 yt)=0, z‘:z(i)=0,

i i

(3.19)

where x(i), y(i), and z(i) are the positions of the origin
of the axes in group { relative to the origin of the axes
for the set.

The third term in Eq. (3.17), (Ar),, ., is made up of
displacements induced by translations and rotations of
the individual groups treated as rigid units. These can
always be constructed so that (Ar),, ., is orthogonal to
the first two terms. Finally, the last term is composed
of displacements of the atoms within the groups which
are chosen so they are orthogonal to (Ar),, ,, and, there-
fore, to the first two terms also.

It is clear that (Ar),,,, can be expressed by

(ar),,..=t[t], , (3.20)

J. Chem. Phys., Vol. 72, No. 10, 15 May 1980

Downloaded 11 Sep 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



H. L. McMurry and F. Y. Hansen: Symmetrized valence and relative motion coordinates

where [ t], contains the [ t(i)] for each group i defined
as in Eq. (3.3) all in a2 column. However, in Eq. (3.20)
the t is the same for every group because they all move
in the same direction.

The equation for (Ar),, .. is obtained by considering
the equation for the displacement [Ar,(1)],, o; Of atom v
in group ¢ which is induced by a rigid rotation of the en-
tire set:

ar, (i) =0x[a(i) +1,()] . (3.21)

Equation (3. 21) is like Eq. (3.9) except that the vector

a(i) from the origin of the set to the origin of the group
i appears. When Eq. (3.21) is put into matrix form the
result is

[Ar, ()], ror =ORE) + (1)) 8 ,

where r, (i) is defined for atom v in group { as in Eq.
(3.11). R({) is defined in the same way as r, in Eq.
(3.11):

(3.22)

0 z(i)  —y(i)
- 2(i) 0 x(1)
y(i) =x(i) 0

R(i) = (3.23)

Finally, if[Aar(4)],, .. denotes the displacements of all
the atoms in group { due to the pure rotation

[Ar(D)],, 0 =0 (RG] + () 8 ,

where r(f) is the same as in Eq. (3.13) and [R(¢)] de-
notes a column of the R(#) matrices which appears once
for each atom in group i. With these ideas in mind the
equation for (ar),, ., becomes

(8r),, e =6[R], 6 +6[r]6 , (3. 25)

where [R], denotes a column containing the [R()] from
Eq. (3.24) and [r] denotes a column of r{i).

(3.24)

b. Projection operators for relative translation co-
ordinates. The projectors for the three (or two) rela-
tive translation coordinates which are not orthogonal to
pure rotations can be expressed in terms of the ele-
ments in [R],. First the operator which projects @ out
of (ar),,, is determined in such a form that it is orthogo-
nal to[t], in Eq. (3.20). The form is

bRn -_—[bﬂs(l), ceey bno(i), sy bRs (N)] ,
-, -1 Alr
bye(i) =9T(ZI:RT(J') R(j)) [R()]

n(i)
In Eq. (3.27), n(i) denotes the number of atoms in
group 7 and the other symbols are defined in Eq. (3.24).

(3.26)

(3.27)

Using the definitions in Eqs. (3.26) and (3. 27) to-
gether with the conditions in Egs. (3.1) and (3.19), it
is seen that

bg,(AT)gq¢ =bg, [R]: be
- (( ; R(j)T R( j))-l)(z R()T R(i)) fo=6.

Using Eq. (3.26), it is possible to define three (or two)
operators which project out the three {or two) relative
translation coordinates which are not orthogonal to pure
rotations about the x, vy, or z axes. Denoting x, y, or
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2 by «, and the unit vectors i, j, and k by a, these be-
come

bro=[Pra(l), ooy brali), ..oy br ()], (3. 28)
N A . W [R@IT
bga(z)_ar(;n(;)fn)])) r (3. 20)

In Eq. (3.28), a denotes x, y, or z and @7 denotes
[1,0,0], [0,1,0], or[0,0,1] for x, v, or z, respective-
ly.

If the operator in Eq. (3.28) is applied to (Ar),,,, the
result is

b o{AT), o =bg,[R], 86 =627 6 . (3. 30)

The operators bg (i) have identical elements for every
atom in the group. If they are looked on as defining dis-
placements of the atoms it is seen that bg ,(f) corre-
sponds to a pure group translation. Therefore, bg,
are projectors of relative translation coordinates. If
the groups are all in line there are only two coordinates
since by, is not defined for the direction which coincides
with the axis of rotation.

The remaining 3N -6 (3N -5 for a linear array of
groups) projectors for relative translation coordinates
are conveniently determined by choosing symmetrized
stretch coordinates derived by considering translational
displacements of the groups along the lines connecting
their origins. This is exactly the same procedure as
is used for obtaining symmetrized valence coordinates
based on interatomic stretches. The projectors for
these coordinates are obtained using Eq. (3.7) with §
chosen so that £ points along the line between the groups
for which the stretch projector is to be defined. The
procedure for doing this is illustrated in Sec. V and in
the accompanying paper on trigonal selenium.

c. Projectors for relative rotation coordinates. The
b,, for the relative rotation coordinates which are not
orthogonal to pure rotations can be found by the same
procedure as for the bg,. The operators are

bya=(b,q(1), ..., b,o(d), ..., b, (N)) , (3.31)

b, (&) =a%([r)" e e ()T . (3.32)

Equations (3. 31) and (3. 32) are such that the constraints
in Eq. (3.1) yield

b,o(Ar), =b,,[r]86 =647 6 . (3. 33)
If all the groups are in one line the b,, for a along
this line corresponds to a pure rotation. This coordi-
nate is not used in the potential. The corresponding

bg, vanishes.

The remaining relative rotation coordinates are ob-
tained by using Eq. (3. 16) to define operators for rota-
tions of adjacent groups about parallel axes in opposite
directions of rotation. Such coordinates will be orthogo-
nal to those defined by the projectors in Eqs. (3.28) and
(3.31). Symmetrized relative rotations may be obtained
by applying group theory projection techniques to coordi-
nates defined in this way. This is illustrated in what
follows and in the application to trigonal selenium.
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IV. ROTATIONAL INVARIANCE CONDITIONS

The only coordinates which do not satisfy rotational
invariance are those with the projectors bg, and b,,.
The contribution of each « pair to the potential is

V=% (Fera+FRquzta+zfra.RaHraHRa) . (4'1)
Equation (3. 30) expressed the excitation Hg, by arbi-
trary atom displacements and Eq. (3.33) gives the exci-
tation H,,. When these are used in Eq. (4.1) the result
is
AV=% 92[&1‘ 9]2 (Frm+FRa+ Zfrayﬂa) .

Rotational invariance is assured if
=—3 (F,u+Fro) - (4.2)

Couplings of coordinates Hp, H,, with 8# a must be ex-
cluded if Eq. (4.2) is to apply.

fra.Ra

V. ILLUSTRATIVE EXAMPLE FOR RELATIVE
MOTION COORDINATES

The accompanying paper on trigonal selenium derives
relative motion coordinates for the simple, but impor-
tant, specialcaseof two interacting groups. To illus-
trate a more general possibility coordinates for three
interacting groups disposed in a nonlinear array are
given here. We emphasize that these coordinates give
only that part of the potential associated with interac-
tions among the groups. This means, for example, that
if the three groups were all in the same primitive cell
of a crystal the coordinates would not suffice for ex-
plaining the crystal potential. Additional coordinates
would be needed to express interactions between groups
(or atoms) in adjacent primitive cells.

The groups will be assumed to have C,, symmetry

with group 3 being at the apex of a triangle and groups

1 and 2 located at the corners. The z axis is the sym-
metry axis and is directed out from the triangle. The
y axis is the plane of the groups and is directed parallel
to the vector from group 2 to group 1. Groups 1 and 2
will contain two atoms and group 3, three atoms. The
positions are

group 1: x(1)= v (1) =+¢c, 2,(1)=0,
x2(1)=0’ ya(1)=—0, 22(1) 0;
group 2: x,(2)=0, y(2)=~c, 2,(2)=0,
xz(z) =0, y2(2) =+c, ( )= 0,
group 3: x,(3)=d, w(3)=0, z,(3)=0,
%(8)=—d, .(3)=0, 2,(3)=0,
x3(3) =0, y3(3) =0, 23(3) 0.

The positions of the groups are
x(1)=0, y(1)=D, =z(1)=-3%
x(2)=0, y(2)=-D, z(2)=-3%
x(3)=0, y(3)=0, 2(3)=

Using these data the matrices in Eqs. (3.11) and (3.23)
are

00 -¢ ry(2)=-r,(1),
r1(1)= 00 O s ra(l)——rl(l)- r2(2)=1‘1(1)3
c0 0

H. L. McMurry and F. Y. Hansen: Symmetrized valence and relative motion coordinates

0 0 0 000
r3)=|0 0 d|, r3)=-1,), rg(3=| 00 0];
c

6 -d 0 000
0 -3C -D 0 -3C D
R()=|3C 0 o |, R@={34Cc o o0},
LD o0 o -D 0 0

0 C 0
R(3)=]-C 0 0
L0 00

The bg, (i) defined in Eq. (3.29) are
br,(1) =Cg,3 [0,2C, D, 0,3 C, D],
b, (2) =Cr,3 [0,3C, -D, 0,3C, -D];
bg.(3)=Cg, 3 [0, -C, 0,0, -C, 0,0, -C,0],
Cr,=1/G C?+2D% ;
bpy(1)=Cryz[-3C, 0,0, -3C, 0, 0],

b, (2) =bg,(1) ;

b, (3)=Cg, 3(C, 0,0,C, 0,0, C, 0, 0], Cp,=2/3C%;
be,(1)=Cg,3[-D, 0,0, =D, 0, 0], bg,(2) =~bg,(1) ;
be,(3)=[0, 0,0, 0, 0, 0, 0, 0, 0], Cg,=1/2D%.

It is clear that the by, constructed according to Eq.
(3.28) using these definitions are orthogonal to the [t],
in Eq. (3.20) and, because of Eq. (3.1) to the [r] in Eq.
(3. 25).

Three symmetrized relative translation coordinates
with b,, projectors orthogonal to the bg, and to[t], re-
main to be defined. They can be obtained by following
procedures exactly like those used for obtaining sym-
metric stretch coordinates among atoms. In this case
two coordinates can be the symmetric and antisymmetric
stretches involving all three groups and the third can be
the stretch between groups 1 and 2. These coordinates
can be defined using appropriate forms for the operators
in Eq. (3.7). To obtain the symmetric and antisymmet-
ric stretches the stretch between groups 1 and 3 can be
projected. The stretch between groups 1 and 3 uses t7
given by

t7 =[0, sing, - cos¢] .
Here ¢ is half the apex angle of the triangle of groups.
The operator for this stretch is

bl.ss[b1.3(1)3 0, “b1,3(3)] y
where 0 is a row vector with six zero elements, and
by,o(1) =3[ 7,71,
by,s(3) =37, 87, 17] .
Projection leads to the two coordinates
By, ot =[b1,3(1), bz, 5(2), = (by,5(3) +1g,5(3))]
Byg, st =[P1,3(1), = bg,5(2), = (by,5(3) — bz, 5(3))] .

The by, 3(2) and by, 5(3) are like by,5(1) and by,5(3), re-
spectively, except for using

J. Chem. Phys., Vol. 72, No. 10, 15 May 1980

Downloaded 11 Sep 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



H. L. McMurry and F. Y. Hansen: Symmetrized valence and relative motion coordinates 5647

tT=[0, - sing, -cosy] .
The remaining coordinate uses the projector
by, 2 =[by,2(1), —by,(2), 0],

where 0 is a row vector with nine zero elements. In
these projectors t7 is just

tT =[0’ 1: 0] )
bl.a(1)=%[0, 1, 0,0, 1, 0], b1.2(2)=b1.z(1) .

The three b,, projectors defined using Eqs. (3.31) and
(3.32) are easily obtained

- =(1/4¢%[0,0,¢,0,0, -¢,0,0, —¢,0,0,c,0,0,
0,0,0,0,0,0,0],
b,, = (1/24%10,0,0,0,0,0,0,0,0,0,0,0,0,0,
-d,0,0,d,0,0,0],
b, =[1/(4c?+24%)](-¢,0,0,¢,0,0,¢,0,0, - ¢,0,0,0,d,
0,0, -d,0,0,0,0] .

There remain three coordinates involving relative rota-
tions to determine. The projectors must be orthogonal
to the b,, projectors. They can be found by analogous
procedures to those used for obtaining the final relative
translation coordinates. The operators in Eq. (3.16)
are used for this purpose. We begin by defining a coor-
dinate in which groups 1 and 3 rotate by equal and op-
posite amounts about the z direction. To avoid a too
cumbersome notation this coordinate will be simply
designated as b,. Then

b, =[b,(1), 0, ~b,(3)] ,
b,(1)=(1/2¢%{-¢,0,0,¢,0,0],
b,(3)=(1/24%[0,4d,0,0, -d,0,0,0,0] .

Projection yields the symmetrized rotations
b,,s,=[b,(1), b(2), - 2b,(3)] ,
b,,.s =[b,(1), -Db,(2), 0],

where 0 is a row vector with nine zero elements, and
b,(2)=(1/2¢*{¢c, 0,0, -¢,0,0] .

The third coordinate is the counter rotation of groups
1 and 2 about their x axes. Denoting it by b,;, the pro-
jector is '

b,3=[b,s(1), -b,4(2), 0] ,

0 is a row yector with nine zero elements, and
b,s(1) =(1/2¢%[0, 0, ¢, 0, 0, - ],
b,s(2) =(1/2¢%)[0, 0, —¢, 0, 0, c] .

With these definitions it is seen that b, ,,, b,,.., and b,g
are all orthogonal to the b,,.

The coordinates belong to the representations of C,,
in the following ways:

A by, gy b2
Azt bg,, b, b, ;
By: Dbgy, by, Dy byss

B;: bg,, b

The projectors of B, symmetry are symmetric under
reflection in the yz plane.

ry’ bfvl.! -

The three pure translations along x, y, and z are not
included as coordinates. These motions do not induce
changes in the geometric configuration of the groups
and, therefore, cannot produce a change in potential en-
ergy due to intergroup interaction.

Vi. SECULAR EQUATION: GENERAL COMMENTS

The Born-von Karman treatment of crystal dynamics
expresses the normal modes of the entire crystal in
terms of modes for a single primitive cell. The atoms
in every other cell vibrate in exactly the same patterns,
the motions differing only in phase from cell to cell.
The phases are determined by the wave vector ¥ which
is defined in terms of the usual reciprocal vectors by,
b,, and b; by

k=21(fiby+ foaba+ f3bg) .

The b; are related to the primitive translation vectors
a;, &y and as by

b‘ =(aj><ag)/(a‘ ° ajxak) )

where i, j, k denote indices 1, 2, 3 which go in cyclic or-
der. The f; can take on continuous values in the range

0sfi;=1

Any triplet of values f;, f,, f; defines a particular x and
3n normal modes can be found for this K (» is the num-
ber of atoms in a primitive cell). During any normal
mode the atoms in the primitive cell at

R(l) =l131+lza2+l33'3
move in such a way that
AR(v, 1, t) =AR(v, 0, t) exp[ix* R()] .

In these relations AR(v, [, {) denctes the displacement of
atom v in cell  at time ¢ and AR(v, 0,¢) is the displace-
ment of the same atom in the origin cell at time 2.

It is convenient to derive the secular equation by ex-
pressing displacements in mass adjusted coordinates
q, =m,’2AR,. The next step is to express the column
vector 4, which contains the q,, as a linear combina-
tion of mass adjusted basis vectors which belong to the
group of the wave vector k. Thus, if a primitive cell
contains »n atoms it is possible to express the vector q
in the form

q=2ﬁiw‘=ﬁw
i

where each ﬁ, denotes a normalized column vector with
3n elements, three for each atom. The w, are the com-
ponents of q in the basis L. The basis vector L, may
be obtained by applying the group theory projection op-
erators appropriate to the group of the wave vector to
the displacements of individual atoms, or combinations
of atom displacements.

6.1)

In the case of molecular crystals it is useful to begin
by defining a set of basis vectors for each molecule in
the primitive cell. These may then be subjected to the
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group theory projection operators to produce a basis

set for the group of the wave vector. It is possible to
define the basis vectors for each molecule so that three
vectors are associated with pure translations, three with
pure rotations and the remaining with internal displace-
ment patterns. One of the writers has used this proce-
dure for calculating normal modes of large molecules.'®

With this in mind the basis vectors for a single mole-
cule are written in the form

f:':[f‘-f(’ f‘}y f‘;; f‘riv I:rT’y I':'r_z, f‘l; f'z, L] I:3n-6] . (62)

The I3, L3, and L3, are obtained by converting the col-
umn vector developed from pure translations along X,

Y, and Z to mass adjusted components. Similarly, the
displacements generated by pure rotations are mass ad-
justed to obtain the L3, etc. Inthe case of the rotation-
al displacements it is necessary that the axes in the
molecule have their origin at the center of mass | hence
the bars in the X, etc., in Eq. (6.2)]. They are taken
parallel to the crystal axes. The remaining basis vec-
tors can be obtained by considering internal displace-
ment patterns which are linearly independent. If, as is
true in many hydrocarbons, some displacement patterns
are resisted by strong forces and others by relatively
weak forces, the basis vectors can be chosen to express
these situations. This assists in approximations which
include couplings between low frequency intramolecular
modes and modes involving relative molecular motions
in the crystal. These displacement patterns are mass
adjusted and the entire set is subjected to a Schmidt
orthogonalization process beginning with the first three
and proceeding on in such a way that the internal vec-
tors are orthogonalized last. This ensures that the first
six vectors are associated with pure translational and
rotational motions of the molecule considered as a rigid
body.

Again, if @ denotes X, ¥, or Z the forms of the first
six vectors in Eq. (6.2) are
L,

Lral 1

, Lg=I3"3 La |,

Lz=M13 Lg (6.3)

14

| L3, | | L, |
where M is the molecular mass and /5 is the moment of
intertia around @:

1 0 0
Ly, =m)/?[0 |, Ly, =m/? 1}, Lz, =m'*| 0|,
0 0 1
0 Z,
Lz =m'*| -Z,| , La=m/% 0 |,

- —a,1/2 kT,
Ler_mv/ Xv
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In these equations the bars over the symbols denotes
that coordinates are measured from an origin at the cen-
ter of mass of the molecule. Then ‘_X-v, Y,, and —Z‘, de~
note the position of atom v relative to the center of mass
of the molecule.

The basis vectors for the entire set of molecules may
be written by placing the vectors for the molecules suc-
cessively down the diagonal of a large matrix. Thus,

L(1)

L(2)

l:eeu: (6'4)

Lim)
These vectors may be subjected to the group theory pro-
jection process to produce a set which will block diago-
nalizes the secular equation. In some cases the vectors
may have complex components, but it can be made Her-
mitean. It will be assumed in what follows that L_,,;, has
been formed in this manner.

The kinetic energy contributed by the atoms in one
primitive cell is just

3a0Ta) =TQ ,
q(?) =q(0) exp(ix - R(1)) = Lwexp[ik - R(D)] ,
L4 4(0) =w°T LT Lt =W°TEWr

where E is the identity matrix. The kinetic energy for
the entire crystal is then

T=3NWwTEw , (6.5)

N is the number of primitive cells in the crystal.

To obtain the potential energy the excitations of the
coordinates for each cell must be calculated. Let B de-
note a matrix composed of all the row vectors B; which
project the coordinates for a particular cell. Since each
cell has the same coordinates the matrix B is the same
for all cells. For those coordinates which express in-
ter-cell interactions the B; vectors will have elements
which act on displacements of atoms in the cell [ for
which the coordinates are associated, together with
displacements of atoms in one or more adjacent cells.
If H(]) denotes a column vector containing as elements
the excitations H,(I) of all the coordinates for cell [,
H(l) can be expressed by

H(l) = Z B(T)AR(+7)= Z B(7) AR(0) exp[ix - R{I+T)]
=0 T

=B(x) AR(0) exp[ix - R(2)] , (6.6)
B(k) = )_ B(r) exp[ik -R(7)] . 6.7
T=0

In these equations AR(!+ T) denotes a column vector con-
taining the displacements of all the atoms in the cell at
R{I+7). We now write

B(k) AR(0) = B(k) m™*/2q(0) =D(x) Lw . (6.8)

Here m™'/? denotes a diagonal matrix in which each of
the m;” % appears three times in the proper location to
be acted on by the components of B(k) associated with

atom v.
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The potential energy is given by

V= % 2 H(0)T Fy,, H(j)
i

X ger £57 D(x)*" F(x) D(x) T (6.9)
F(k) =2 Fy,explix - R(j)] - (6. 10)
]
The secular equation is
|AE -M(x)| =0, M) =LTDk)TFK)DK)L . (6.11)

VIil. DISCUSSION

The symmetry group for a set of valence symmetry
or relative motion coordinates may not be the same as
for the crystal. However, there will usually be oper-
ations in common to both symmetry groups. Coordinates
which behave differently under the common operations
cannot interact in the potential. Coordinates which
transform in the same way under the common opera-
tions can interact in the potential even if they belong to
different representations of the local group for the in-
teracting atoms. However, if the bonding electron dis-
tributions have symmetries closely like the local sym-
metry these interactions should be small. It is reason-
able to neglect interactions between coordinates belong-
 ing to different representations of the local symmetry
group in fitting force constants.

An example of this situation is provided by the set of
coordinates used for trigonal selenium in the accom-
panying paper. The interacting groups have C,, sym-
metry and the C; operation is the only one in common
with the crystal operations. There are three B; and
three B, coordinates all of which are antisymmetric
under the C, operation. However, interactions between
the B, and B, coordinates are not considered in the force
constant fitting.

The secular equation is obtained without the necessity
of removing redundant coordinates because the kinetic
energy is expressed in terms of coordinates (linearly
independent) which are convenient for the kinetic energy,
and not vice versa as in the FG method. In addition,
none of the coordinates for the kinetic energy involves
displacements of atoms outside of one primitive cell.
Therefore, the kinetic energy matrix does not depend on
k. These are very practical properties for simplifying
calculations.

The basis vectors in Eq. (6.4) (or the vectors derived
from them which belong to the group of the wave vector)
are useful for finding a secular equation which gives ap-
proximate normal modes and frequencies for those
modes in molecular crystals which can be described in
terms of translations and rotations of the molecules.
This is done by using only the basis vectors Ly, ..., L,z
as defined in Eqs. (6.2) and (6.3) for each molecule in
forming the L,,, matrix in Eq. (6.4). This procedure
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will work regardless of how the intermolecular poten-
tials are expressed.

It should be noted that the relative motion coordinates
are given in terms of axes within the groups with origins
determined by Eq. (3.1), and for origins of interacting
groups constrained by Eq. (3.19). These origins may
not be at the centers of mass of the groups, or of the
interacting set. The relative motion coordinates are
essentially different in this respect from the coordinates
used to express the kinetic energy as defined in Egs.
(6.2)-(6.4).
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