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Normal mode calculations of trigonal selenium
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The phonon dispersion relations for trigonal selenium have been calculated on the basis of a short
range potential field model. Electrostatic long range forces have not been included. The force field is
defined in terms of symmetrized coordinates which reflect partly the symmetry of the space group. With
such coordinates a potential energy, calculated with only a diagonal force matrix, is equivalent to one
calculated with both off diagonal and diagonal elements when conventional coordinates are used. Another
advantage is that often some force constants may be determined directly from frequencies at points of
high symmetry. The intrachain force field is projected from a valence type field including a bond stretch,
angle bend, and dihedral torsion. With these coordinates we obtain the strong dispersion of the upper
optic modes as observed by neutron scattering, where other models have failed and give flat bands. The
interchain force field is projected from relative rotations and translations of groups of atoms in adjacent
chains. This type of coordinate is very well adopted to describing interactions between groups of
nonbonded atoms as found in molecular crystals, and they also seem to apply very well for this crystal.
In this way we have eliminated the ambiguity in the choice of valence coordinates, which has been a
problem in previous models which used valence type interactions. Calculated sound velocities and elastic

moduli are also given.

1. INTRODUCTION

In this paper we analyze the dynamics of trigonal
selenium based on the recent rather complete neutron
scattering data in various symmetry directions. 1,2
These data provide a good basis for a thorough test of
force models.

The first attempt to set up a force model for trigonal
selenium was done by Hulin.® This work was later ex-
tended by Geick et al., 4 who proposed a Born-von
Kdrmdn force constant model with general forces in the
chain and a central force between close neighbors on
adjacent chains. At that time only two elastic con-
stants and optic data at the zone center I' were available
and this severely limited tests of the models. However,
even without data these models were seen to have a
serious defect at the zone boundary [3, 3, 0], where one
of the K, frequencies collapsed to zero. If symmetry
coordinates which block diagonalize the secular equation
are used it becomes clear that the restriction to central
forces between nearest neighbors on adjacent chains will
always produce this collapse. This shows at once that
a more elaborate force field is a physical requirement
in crystals of the trigonal selenium structure. Geick
et al.* suggested introducing a central force between
fourth neighbors. Wendel ef al. tried this® and, while
the collapse could be avoided, the calculated dispersion
relations differed considerably from the experimental
results. In the process of improving the fit to the
experimental results, they found that the formal
Born-von Kirman force constants were extremely dif-
ficult to handle, since the parameters seemed to be
correlated in a nontransparent way. Nakayama and
Odajima® used a simple valence force model for all in-

a)present address: Department of Physics, Idaho State Uni-
versity, Pocatello, ID 83209.
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teractions. The interchain interactions used bond
stretches between nearest neighbors and bending of the
angles between such bonds. The interspiral interac-
tions used bond stretches between closest neighbors

in adjacent cells. They obtained good results for the
T frequencies apart from the T', frequency. Their cal-
culation necessarily had the collapse of the K, frequen-
cy. In a later paper7 this was eliminated by the intro-
duction of one more stretch coordinate between next-
nearest atoms in adjacent cells (equivalent to interac-
tions between fourth nearest atoms). The upper optical
modes were flat.

Martin et al. ® extended the valence force picture of
Nakayama ef al. by including angle bend coordinates
in the interchain force field. This eliminates the col-
lapse of the K, frequency in a more physically reason-
able way. The difficulty in the method used by Martin
et al. lies in the fact that there are several angles of
different magnitude to consider, and they neglect some
angles and use the same force constants for angles of
different sizes. They obtain good results for the acous-
tic and low optical modes, whereas the upper optical
modes are flat in contradiction to the experimental re-
sults. Wendel ef al.® treated the problem in another
way. They worked with a combined valence force field
and a Keating potential® field, which gave them the capac-
ity to recognize the different angles without using the
same force constants for them and at the same time
keeping the number of force constants at a manageable
level. They obtained good results for the acoustical and
low optical modes, but the upper optic modes were flat.
To improve this deficiency of their model, they investi-
gated various shell models for the Coulombic forces,
which are present in selenium. They noted some im-
provement but not to the degree demanded by the ex-
perimental results.

The potential field used here differs in two essential

© 1980 American Institute of Physics
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FIG. 1. Phase diagram of selenium.

ways from the fields just discussed. We follow the pro-
cedures developed in the accompanying paper“’ (here-
after referred to as I) and use symmetrized valence co-
ordinates for the intrachain interactions (including di-
hedral torsions) and symmetrized relative motion coor-
dinates for the interchain interactions. The symme-
trized intrachain dihedral torsions prove to be neces-
sary to give the dispersion of the upper optic modes in
directions along the screw axis and have not been in-
cluded before.

We prefer the relative motion coordinates over inter-

chain valence coordinates for two reasons. First, valence

coordinates are usually employed to express interactions
among atoms which are rather strongly bonded by orbit-
als which can be described, at least conceptually, in
terms of atomic orbitals of the interacting atoms
(LCAO-MO’s). This concept does not appear to be so
precise for expressing the relatively weak interactions
between strongly bonded atoms within adjacent spirals
in selenium (or between adjacent molecules in a molecu-
lar crystal). Second, as has been noted above, the in-
interchain valence models have all resorted to rather
arbitrary selections among a rather large number of
contending valence coordinates. The relative motion
coordinates we use avoid the ambiguity. They can be
shown to involve linear combinations of all of the inter-
chain valence coordinates.

Il. STRUCTURE

There exist three crystalline modifications of seleni-
um namely the @ and the 8 monoclinic forms and the
trigonal form. The latter is the thermodynamically
stable form at all temperatures below the melting point
at about 217°C. The monoclinic forms are thermody-
namically unstable, and special measures have to be
taken in order to produce those forms. The trigonal
form is obtained by slowly cooling the melt, whereas
the amorphous form is produced if rapid cooling is ap-
plied. The structure of the latter has been studied by
one of us. ! In the temperature range 100-150°C the
transformation of the thermodynamically unstable forms
of selenium to the stable trigonal form takes place with

a notable velocity. In the phase diagram in Fig. 1, the
lines for @ and B8 monoclinic Se are only qualitative be-
cause the vapor pressure12 is very low at temperatures
where they exist for a long time, so an experimental in-
vestigation is very difficult.

The monoclinic forms consist of eight membered
puckered rings like those known from sulfur, and the
binding inside the ring seems to have a strong covalent
character, while the inter-ring interactions are weaker.
Martin et al. ® have made a comparison between the vi-
bration frequencies found in the trigonal form with
those calculated for a ring structure as described by
Scott et al. *®

In this paper we only consider the trigonal form,
where the atoms are arranged in long spirals with tri-
gonal symmetry. The chains are arranged in a hexag-
onal pattern, so the Bravais lattice is hexagonal, The
crystal belongs to the trigonal system, the space group
being either D} for a left-handed screw axis or Dg for a
right-handed screw axis as determined originally by
Bradley. 4 Since the symmetry of the spiral is trigonal
the period of the chain is completed for every third
atom, so the unit cell contains three atoms. The struc-
ture is shown in Fig. 2 and the atomic positions are
given in Table I for a right-handed screw axis. The
symmetry elements of the Dg space group are shown in
Table II.

Selenium has six valence electrons in the N shell. It
is assumed that an s orbital and the two p orbitals in the
plane of the three atoms in a unit cell form three hy-
bridized orbitals in such a way that two orbitals point
towards the two nearest neighbors along the chain giving
rise to a strong covalent bonding between the atoms along
the chain. These bonding orbitals contain two electrons
leaving four electrons in the nonbonding orbitals, the p
orbital at right angles to the plane of the three atoms
and a hybridized orbital, which is mainly of s type. It
is clear that the interaction of the electrons in the non-
bonding states are very important for the whole struc-
ture and packing of the chains. Even for the chain
structure these interactions seem to be very important,
because the chain structure is destroyed when the crys-
tal melts, and the melt contains only very small chain
fragments and eight membered puckering rings. It

FIG. 2. Structure of trigonal selenium (D§ space group). The
lattice vectors (8, @;, 8;), the reciprocal lattice vectors (by,
b,, by), and the central Cartesian coordinates system (I,J,K)
are shown.
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TABLE 1. Lattice vectors and atomic positions in trigonal selenium. The data from Ref. 26

have been used.

Atomic positions in the unit cell
represented in the lattice basis
system (@, @, a;)

Room temperature lattice parameters Atom No. Position Ref.
181 =lal la;l Ref. 1 ( x, 0, -%
() A) 2 (0, x, 0
—X, — 1
4.3662 4.9536 25 3 =% -x 3
4.35517 4.94945 26 x=0.217 26
4.3712 4.9539 27 x=0.2254 28

seems also plausible that the mutual repulsion between
electrons in the p orbitals of adjacent atoms gives rise
to a dihedral torsion force field with a two-fold symme-
try. Judging from information from various disulfides
and diselenides the barrier is probably of the order of
10 kcal/mole. '* Based on these considerations it seems
reasonable to use valence-type coordinates from which
the symmetrized intrachain coordinates are projected.

It is interesting to note that the trigonal structure may
be considered as a degeneration of a hexagonal or even
a cubic structure. Martin et al. ® show that if the param-
eter x=v/la,l, where v is the radius of the chain, be-
comes equal to 3, the structure ceases to be trigonal and
becomes simply hexagonal (x=0. 217 for trigonal sele-
nium), This means that the nearest-neighbor distance
along the chain becomes equal to the nearest-neighbor
distance between atoms in different chains. This transi-
tion may in fact be realized, when trigonal Se in put un-
der high pressure. '®!" When x=3% and lagl/| a;l = yT
the structure is cubic.

We have already defined the lattice vectors a,, a,, a3
as shown in Fig. 2. In the same figure a Cartesian co-
ordinate system (I, J, K) is defined, which we call the
central Cartesian coordinate system. It is used to de-
fine absolute positions in the crystal. From Fig. 2 is
seen that the two systems are related by

\31[ ‘%Iatf 0
(a, 25,85)=(LJ,K) | 0  3V3 |ay] 0 | . (@1
0 0 |2,

The reciprocal lattice vectors by, b,, bs are defined in
the usual way:

b,- a,=2u8,,, (2.2)

and given in terms of the central Cartesian coordinate
system by

2n/|a,| 0 0
(by, by, by)=(1,J, K)| 27/V3 |a,| 47/V3 |ay] 0
0 0 27/ | ag]
(2.3)

The three atoms within a primitive cell possess C,,
symmetry and it will be convenient to use the opera-
tions of this group to project the symmetrized coordi-
nates. Therefore, Cartesian axes i, j, k are fixed with-

in the primitive cell, with i being the axis of symmetry,
j normal to this and in the plane of the atoms, and k is
perpendicular to the plane. The unit vectors i, j, k are
relded to the I, J, K axes by

[

2u/d ¢/2V3d

1,j,k)=01,J,K) |-3v3 V3v/d c/6d |, (2.4)
0 -¢/3d $Y3v/d
(iw j’ k) = (I’ J, K)A . (2- 5)

The matrix A which appears in Eq. (2. 5) is the same as
the one which appears in Eq. (2.5b) of I. In Eq. (2.4),

v is the spiral radius (0. 9451 A in this work), c= | as|

(4. 9539 A), and d=7rsing, where ¢ is half the angle
between the bonds from one atom to its nearest neighbors
(52. 4°) and # is the near-neighbor distance (2. 3252 A).

The positions ry, r,, r; of the atoms in the cell are
given by

1 1
v —v  3U
(r, vy rs)=(1,3,k | 4 0 -d ,
0 0 0
v -3 -3
(ry,ro,r)=0I,K | 0 33v -3V3v|. (2.6)
1 1
- 3C 0 3c

TABLE II. Symmetry operations of the D
point group from Kovalev (Ref. 22). The ro-
tation axes are represented in the skew lattice
vector coordinate system.

D space group

(hy10) identity

(h31@3/3) 120° rotation around (0,0, 1)
(s | 2a3/3) 240° rotation around (0,0, 1)
(hy 1 0} 180° rotation around (0, 1, 0)
(hy | @3/3) 180° rotation around (1,0, 0)
(hyy| 233/3) 180° rotation around (1,1, 0)

J. Chem. Phys., Vol. 72, No. 10, 15 May 1980
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I1l. COORDINATES FOR THE POTENTIAL ENERGY
A. introduction

We follow the procedures described in I to define a
set of symmetrized valence coordinates for expressing
the intraspiral interactions, and a set of symmetrized
relative motion coordinates for the interchain interac-
tions. It is only necessary to obtain one set of coordi-
nates which are not transformed into each other under
the operations of the Dg symmetry group which applies
to trigonal selenium. All coordinates equivalent to these
may be found by operating on the members of this set
with the D§ operations. One of the authors has developed
a very general computer program which does this, and
also sets up a very general force constant matrices. '8

In generating the symmetrized coordinates it it useful
to employ group theory techniques for projecting dis-
placement patterns having the symmetry of an interact-

ing group of atoms from arbitrary trial patterns. The
operators are given by’
- 1 -
Pi‘;’z—&i xrs " (RORy (3.1)
8 i=t
where ﬁ, the ith operation of the group, ,‘;’* is the com-~

plex conjugate of the (7, s) element of the representation
matrix of K, from the uth irreducible representation,
1, is the dimension of the representation, and g is the
order of the group.

Due to the covalent character of the bonding along the
chain it is natural to project the intrachain coordinates
from valence coordinates such as nearest neighbor bond
stretch, angle bend between joining near-neighbor bonds
and dihedral torsion around a near-neighbor bond.

Symmetric and antisymmetric stretch coordinates
like those illustrated in Sec. II of I are obtained by ap-
plying Eq. (3. 1) to the operator b(2, 1) which projects
out the stretch between atoms 2 and 1 in the primitive
cell from arbitrary displacements of the atoms. 1t is
sufficient to use the representation table for the C,
group to accomplish this.

The projection operator b(2, 1) is expressed using
components of a unit vector along the line from atom 2
to atom 1 according to the usual Wilson method. 2 Fol-
lowing I these components are written as a row vector

(3.2)

where ¢ is half the angle between the bonds from atom
2 to atom 1, and from 2 to 3. Then b(2, 1) is given by

t7(2,1)=[cos@, sing, 0],

0 00 0 0 0\ /0 0 O

1 2 3 (3.3)

—ET(Z,I), 0]:

11,13,
v

b2, 1)=[¥(2,1),

where the designations ( ') denote the cell indices
{all 7, =0 for the origin cell) and the atom v involved.
The 0 in Eq. (3. 3) denotes a row of three zero elements.

__The operation of 180° rotation about a, converts
t7(2,1) into t7(2, 3) which is

t7(2, 3)=[cos®, - sing, 0] . (3.4)

5553

Application of Eq. (3.1) using the A and B representa-
tions of C, leads to the operators b, and b, which pro-
ject the symmetric and antisymmetric stretches

0 0 O 0 0 0O 0 0 O
1 \ 2 3
by=[17@, 1), -[t(2, 1)+ £(2,3)]7, t7(2,3)], (3.5)
0 0 0 0 0 0 0 0 0
1 2 3
b, =[17(2,1), - [t(2, 1) -t (2, 3)]7, -7(2, 3)] . (3. 6)

The factor 1/g=1 in Eq. (3.1) has been omitted in these
equations.

The operator for the angle bend coordinate is given in
terms of unit vectors which are in the plane of the three
atoms and are normal to the 2-1 and 2-3 bonds. They
are directed outward from atoms 1 and 3 so as to open
the angle between the bonds. We will denote the row
vectors made up of the components of these unit vectors
by t7(y, 1) and t7(¥, 3). Then?®

?:T(w, 1)=[-sing,cos9,0], 1t7(y,3)=[-sing, -cose,0].

The projector for the angle bend, which belongs to the
A representation of C,, (or the A representation of C,)
is

0 0 0 0 0 0 0 0O
1 2 3

by=(1/7)[7(3, 1), - [t7(v, 1) +17(1,3),17(2,3)] . (3.7)

The symmetrized dihedral torsion projectors are ob-
tained from the projector B,(1-2) for a conventional
torsion about the 1-2 bond. The notation B,(1-2) is
used because it is easiest to obtain this projector direct-
ly in terms of components along I, J, K [Eq. (2. 8) of

1. The elements can be obtained from components of
vectors B(’ } *!) and B(" } °) defined as by Wilson® for
the end atoms, and using the equations for the interior
atom vectors as corrected by Herman. ?! The B(® § -)
and B(" ) are

0 -
r( 90 08-)yp@ 90 000
rsin®(2¢) ’

B(§ )= (3.8)

000
(30 P90y, 000 000
7 sin®(2¢)

B("%= (3.9)

The B(" § °) and B(° § °) may be written?®!

g0 0 0\_ )ygfo 0 -1
1 3
veoste[Bf® © O\_gf0 © -1 ’
3 3

(3.10)

J. Chem. Phys., Vol. 72, No. 10, 16 May 1980
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B(O 0 0 gB 0 0 0) where 0 denotes a row of three zeros and

2 3 0 0 0\ 1[v8 ¢ Lc 33
B N LA A AN (3.13)

00 -1 000 3 plL2 v'20° 2

+cos’y | B -B .
3 3

(3.11) B 0 0 -1 :l[o c -—3\/?] 3. 14
In Eqs. (3.8)and (3.9), #(°2° %% ) is a unit vector 3 DL7 v’ 2 ’ 6.14)

from atom v in the origin cell toward atom v’ in the cell

‘at 0,0,7;, where [3=~1or 0. .
where ¢ = lag| (4. 9539 A), v is the spiral radius (0. 9451

The projector B,(1-2) is then written using the com- }’\), and
ponents of the B(* ¢ '3) to form the row vectors in the

following projector: D=7sin®2¢)[3+ (c/3v)*]=13.2 A.

B.(1-2)=|0,B 0 0 O B 0 0 0 B 00 O When the displacement pattern defined by B,(1-2) is
LAl 3 ’ 9 ’ 1 ’ operated on by a 180° rotation about a,, a projector
B.(2-3) for a torsion about the bond between atoms 2

o 1 and 3 is obtained. Application of Eq. (3. 1) using the C,
B R (3.12) group leads to projectors B, and B; for the symmetric

w o

and antisymmetric dihedral torsions given by

[ fo 0 1 0 0 0 0 0 0 00 0 0 0 -1
B,=| By » By » By » By » By ; (3.15)
L 1 3 2 1 3 i
" fo 0 1 0 0 0 0 0 0 00 0 0 0 —1\]
B;=| B; » Bs » Bs » Bs » Bs ; (3.16)
i 1 3 2 1 3 /]
B _1_[_25_”_ lc ?E.]
4 “DLwv 2 290’ 2 ’
- 2
B, [‘/gv ¢ EE%S__Q, 3\/?cos2¢:| , (3.17)

[fi}_ ccos’¢ 3 ccos’e O]

2 v 2 v

= O N O W O - O

1 V3 c(1+c082¢v) c 3 - cosp\ CN 2 ]
=5[_T_—T—_’_v (-————2 ) , =3V3 cos’e| ;

T o o

00
3 D 2
B0 O N\L[Ze, e o]
5 1 =D 2 U’—Z ’U,— 2 ’
2
B5<0 00 :15 [0, M@’:h/é_(l_cosz(p)] R
3 v
2 2
B0 0 © :%[—ﬁ<1-°°;¢)f, —(1—%&)5,—3\/?(1—2c082¢)], (3.18)
2 v v
2 2
sf0 © ozl_[_@ (l—cos¢)c’_gc(l—cosqb),35(1_005%)]’
1 DL 2 v 2 v

_3«?]

o
o
P
(=)
w o
|
-
See—
1}
ol
—
k=)
SIS
1)
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As in Eq. (3. 6) the factor 1/g =7 is omitted in obtain- Two other coordinates are counter rotation about these
ing Egs. (3.17) and (3.18). axes and the fifth one is a counter rotation about {.

The projectors for these coordinates are defined from
B. Intercell relative motion coordinates Egs. (3.16) and (3. 31) of I using the atom positions in
The basis set of relative motion coordinates for ex- the i, J, k systems given by Eq. (2.4). Thus

pressing the interspiral interactions are given in terms 0 0 -d

of relative translations and relative rotations of the L

atoms in the origin cell and the cell at (0,1,0). The r=r2)=0 0 v '

axes within each group are the same as those used for Ld —-3v O

coordinates 1-3 as expressed in Eq. (2.4). Axes 00 0

parallel to these with origin midway between the two (

groups along a, are used to define the matrices R(1) and ry(1)=ry,(2)=[{0 0 -v , (3.19)

R(2) of Eq. (3.23) of I, which are used in Eqs. (3. 26)

and (3. 27) of I to define the relative translation coordi- L0 v 0
nates which are generated from displacements accom- [0 0 d
panying pure rotations. ry(1)=r5(2)=| 0 0 1,
There are five relative rotation coordinates. Two are A
given by Egs. (3.31) and (3. 32) of I with &”=[0, 1,0] and ~-d -z 0
[0,0,1]. They correspond to cases where both groups Equation (3. 32) of I with @” = [0, 1, 0] leads to the pro-

rotate in the same sense about j and k, respectively. jector

bg=b,,=(1/32)[0,0,-3, o0,0,1, 0,0,-3 0,0,-% 0,0,1, 0,0,-4%], (3.20)
The counter rotation about j as defined using Eq. (3.16) of I is

0 0 0\/O 0 O\ /0 O O\ /O 1 O\ /0 1 O\/0 1 0O
1 2 3 1 2 3

b'I: (2/30) I.O, 07 _%’ 0, Oa 19 0, 09 -_;-n 0’ 0’ %’ 0, 07 - 1’ 0’ 0’ %] . (3- 21)

Similarly the projectors for the parallel and antiparallel rotation about k are

1 2 3 2
bg_x[;—d,%,o, 0,-1,0 %,%,o, —vi,%,o, -1,0 %,%,o] , 3. 22)
o 0oo0\/o oo\ /oo o o1 0\/0 10
1 2 ( 2 3
b9=2x[_v—d,%,0, 0,-1,0, %,%,o, %,—2—1,0, 0, 1,0, _L1~2—1,o] : 3. 23)

where x=[3v(1 + 4d%/30%)]"!

Finally, the projector for the counter rotation about 1 is given by using Eq. (3. 16) of I with 6T = (1,0,0],

0 0 0\ /0 0 O\ /O O O\ /JO 1 O\ /0 1 O\ /O 1 0O
1 2 3 1 2 3

b10= (I/Zd) [0; 0: 1: O,Oa 0’ 0, Or - 19 0, 01 - 1’ 0: 01 0: 09 0, 1] . (3' 24)
There are three rela}ive translation coordinates. One is a counter translation along i and its projector is given
by Eq. (3.7) of I using ¢T=(1,0,0). Thus

J. Chem, Phys., Vol. 72, No. 10, 15 May 1980
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0 0 0\ Jo o o\ /o 0 0\ & 1 0\/O0O 1 0\ /0o 1 0
1 2 3 1 2 3
b, =3[1,0,0, -1,0,0, 1,0,0, -1,0,0, 1,0,0, -1,0,0]. (3.25)

The final two relative translations are obtained from Eqgs. (3.26) and (3. 27) of I with "= [0, 1, 0] and (0,0, 1].
They are defined using R(1) and R(2) from Eq. (3.23) of I with

X(I):%az, x(2)= “%(lz ’
y(1)=3(2)=2(1)=2(2)=0.
Then

0 0 o0
0 0 1|, R@=-RQ),
¢ -1 ¢

0 0 0\ /0
1

giving
0 0 0 0 01 o0

0 01 0\f/o 10
2 3 1 2 3
0,1

by, =bg,=(-1/3a,)(0,0, 1, 0, , 0,0,1, 0,0,-1, 0,0,-1, 0,0,-1], (3. 26)
0 0 6\/o o o\ /0 0 0\ /o 1t 0\ /0o 1 0\/0 1 0
1 2 3 1 2 3
by =bg, =(1/3a,)[0,1, 0, 0, 1,0, 0,1, 0, 0,-1,0, 0,-1,0, 0,-1,0]. (3.27)

Tables III and 1V summarize the coordinates and give their symmetries and the force constants used in calculat-
ing the dispersion curves in Figs. 4 and 5. The interaction constants f;,1; and fg, 13 are calculated from Eq. (4.2)
of I and ensure that the potential energy is rotationally invariant.

The projector operators for coordinates 1-3 and 6-13 must be operated on by the matrix AT obtained from Eq.
{2.4) and used as in Eq. (2.8)of L

The coordinates in Tables III and IV form a nonequivalent set. Coordinates equivalent to these take the same
force constants and were obtained using a computer code!® which carries out the necessary transformations using
the operations of DS appropriate to trigonal selenium. This provided the full set of coordinates needed to define the
potential.

V. SECULAR EQUATION

Following 1 the secular equation is expressed in terms

r-A-H-K-T-M-L-A,

and at 77 K in the acoustical and lower optical range in

of mass adjusted coordinates suited to simplifying the
kinetic energy. These coordinates are components of
mass adjusted basis vectors which transform according
to the group of the wave vector. They can be derived by
applying Eq. (3.1) to selected displacement patterns of
the atoms in the origin cell. Since trigonal selenium

is a nonsymmorphic crystal it is necessary to use
multiplier representations of the space group rather than
ordinary point group representation. 19 The relevant
basis vectors L (in the notation of I) are given in Tables
VI-IX and the labeling of the points in the Brillouin

zone are as given in Fig. 3 where (&, £, £3) are along
the reciprocal vectors b, b,, and bs. Table V gives

the group of the wave vector associated with Tables Vi-
IX.

V. EXPERIMENTAL RESULTS

The first measurements of the phonon dispersion re-
lations for trigonal selenium were reported by Hamil-
ton ef al. ! in 1974. They performed measurements in
the acoustical regime at 300 K in the directions

the directions

r-A, TI'-K, andT-M.

The attempts to study the upper optical modes failed,
however. Later the high optical modes were measured
by Teuchert et al., % where also the phonon dispersion
relations in the acoustical and middle optical range
were included. The latter were, within the experimen-

b,

FIG. 3. Labeling of various directions in the Brillouin zone
after Koster (Ref. 23).

J. Chem. Phys., Vol. 72, No. 10, 15 May 1980
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TABLE II. Intrachain coordinates, their symmetries and force constants.
Intrachain coordinates Force
Coordinate Cyy C, constant
No. Description symmetry symmetry (mdyn/A)
1 Symmetrized nearest- Ay A ‘ 0.660
neighbor bond stretch
[Eq. (3.3))
2 Antisymmetrized nearest- By B 0.152
neighbor bond stretch
[Eq. (3.8)]
3 Angle bend between adjacent Ay A 0.847
nearest neighbor
[Eq. (3.7]
4 Symmetrized dihedral oo A 0.0377
torsion [Eq. (3.15)]
5 Antisymmetrized dihedral .. B 0.0663
torsion {Eq. (3.16)]
Cross terms:
f1,3 Ay A 0.435
S e A 0.0641
Says oo B 0.0488
S3,4 e A 0.111

tal error, in agreement with Hamilton’s results.

At

Grenoble’ the measurements were performed at 300 K
for the directions

T~A-H-K-T-M-K.
Comparison between the lower optical modes at 77 and

300 K indicates that the frequencies are increased by

(5-10)% due to anharmonic effects, when the tempera-
ture is lowered from 300 to 77 K. A remarkable result
is the strong dispersion and splitting of the upper opti-
cal modes, especially in the a; direction.

At the center of the Brillouin zone, ir, and Raman

data are given by Ref. 4 and elasticity data and sound

velocities are given by Ref. 28.

n

{0021

(g %]
S, + b
A, lsﬁz Hy
bR, —4—#\—1-&{2
S:

[ 8]

VI. DETERMINATION OF FORCE CONSTANTS

Since there does not exist a computation of the poten-
tial energy surface for a selenium crystal, which would
enable a direct calculation of the force constants asso-
ciated with the various coordinates, we have determined
the force constants from a least-squares fit to the ob-
served frequencies of Teuchert et al. ?

From the definition of the coordinates it is clear that
the intrachain coordinates determine the dispersion re-
lations in directions along the screw axes, whereas in-
terchain coordinates determine the dispersion in direc-
tions at right angles to the screw axis. This, in fact,
greatly simplifies the determination of the force con-

(:3.0]
THz
W 9
T, T
r
T, 71y

FIG. 4. Calculated phonon

1ls dispersion relations for
selenium. Experimental points
are shown by dots.

fa

a)
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TABLE IV. Interchain coordinates, their symmetries and force constants.

Interchain coordinates

Symmet Force
Coordinate y ry constant
No. Description Cy C, {(mdyn/A)
6 Rigid rotation of unit cell B, B 0.496
atoms in adjacent chains
around j in the same sense
[Eq. (3.20))
7 Rigid rotation of unit cell By B 0.036
atoms in adjacent chains
around j in the opposite sense
[Eq. (3.21)]
8 Rigid rotation of unit cell atoms By B 0.620
in adjacent chains around k
in the same sense [Eq. (3.22)]
9 Rigid rotation of unit cell atoms By B 0.0451
in adjacent chains around k in
opposite sense [Eq. (3.23)]
10 Rigid rotation of unit cell atoms A, A 0.534
in adjacent chains around { in
opposite sense [Eq. (3.24)]
11 Relative translation of unit cell Ay A 0.059

atoms in adjacent chains along
1 [Eq. (3.25)]

12 Relative translation of unit cell B, B . 0.524
atoms in adjacent chains along
k [Eq. (3.26)]

13 Relative translation of unit B, B 0.171
cell atoms in adjacent chains
along § [Eq. (3.27)]

Cross terms:

fo,12 [EqQ. (4.2) of 1] B, B —0.510

Sa,13 [Eq. (4.2) of T By B -0.396
stants. The frequency data in the I' -~ A direction have THz THz
been used to evaluate the force constants associated o} [%.00] 1‘ b B0-20)0] 4y
with the intrachain coordinates, and frequency data in
the I - K direction have been used for the determina- L L e T 4
tion of force constants for the interchain coordinates. r ' :1 .'r" K,
The symmetry properties of the coordinates also pro- o7 ! M;-::"T_‘I,:_WK:;

vide the basis for another simpliciation, as already 2

mentioned. We only consider couplings between coor- - 5
dinates of like symmetry according to the local C,, (or
C,) symmetry. Still, there is a limitation to that rule. 5} -5
It is simple to show that once the constraint equations

s R . . I
have been set up to insure rotational invariance of the 3 -N"" M f} Ks
2

potential energy, any additional couplings between coor- r, L
dinates both of which are noninvariant, are not ad- 3 ﬁ\\ , 2k
missible. If such interactions are introduced the invari- 3 Mzﬂ Ez K,
ance is destroyed. The results in Tables III and IV re- - . "t I 7 «
flect these rules. 3
The use of symmetry coordinates (Tables VI, VII, . K2
VIII, and IX) to block the dynamical matrix is also of r: ™
great help in the determination of force constants. At 0.0 05 05 , 1’43
T, for example, the nonzero I', frequency is determined J M (T
by only two force constants f; ¢ and fg5. At A it was FIG. 5. Calculated phonon dispersion relations for selenium.

found that only coordinate 3 made a contribution to the Experimental points are shown by dots.
J. Chem. Phys., Vol. 72, No. 10, 156 May 1980
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TABLE V. Group of various wave vectors k for trigonal selenium. The numerals 1, 3, 5, 7,
9, 11 in the top rows signify the operations hy, h3, hs, etc., in Table II and the last column gives
the number of basis vectors, which span the various irreducible representations. € =exp(}i 2,

€*=exp(— 3z 27,

K: k=13, %, 0
I‘: E=[07 0’ 0]

I, K 1 3 5 7 9 11 No. of patterns spanned
Iy, Ky 1 1 1 1 1 1 1
Iy, Ko 1 1 1 -1 -1 -1 2
10 € €*x 0 01 0 € 0 €*
3x2=6
T3, K3 01 0 ex 0 € 10 €x 0 €0
A: =[0, 0, £]; 0<£<0.5
P: kE=1}, 3, £]; 0<£<0.5
A, P 1 3 5 No, of patterns spanned
Ay, Py 1 1 1 3
Ay, Py 1 € €* 3
Ay, Py 1 €* € 3
A: k=[0, 0, 0.5]
H: k=[%, 3, 0.5]
A, H 1 5 3 7 11 9 No. of patterns spanned
Ayg, Hy 1 € €* 1 € €* 1
Az, H, 1 € €%* -1 -€ —€* 2
10 €* 0 €0 01 0 e* 0 €

3x2=6

Az Hy 01 0 1 01 10 10 10

T: k=[£, &, 0); 0<£<}

T 1 11 No. of patterns spanned
T, 1 1 4
T, 1 -1 5

S: k=[t, £, 0.5); 0<£<}

hy hyq No. of patterns spanned
SI 1 € 4
S, 1 —€ 5

T': k=[f, (1~2£), 0]
M: E=[0.5, 0, 0]

M, T hy hq No. of patterns spanned
My, T{ 1 1 4

M,, T{ 1 -1 5

A frequency. From the A, block is seen that only co-
ordinates 2, 5, 6, and 8 make contributions. At K, the
lower K, frequency is determined by coordinates 12 and
13, whereas the high K, frequency is determined by co-
ordinates 6, 7, 8, and 9. On this background it is fair-
ly easy to set up a reasonable trial set of force con-
stants, and let the normal mode programs optimize the
set. The results are given in Tables III and IV.

Vil. ELASTICITY MODULI AND SOUND VELOCITIES

The stress -strain relation for elastic solids is given
according to

Ollz:lz)‘lklm“lm ’ (7. 1)
»m

where oy, is the stress tensor, y,;, is the strain tensor,
and A, is the stiffness or elasticity tensor. The in-
dices i, k, I, m indicate the various Cartesian compo-
nents and in the ordinary Voigt notation

ik=11 22 33 23 13 12
y=1 2 3 4 5 &6

jl~x, 2~y, 3~z,

Eq. (7.1) may be written in matrix form o=cp,

J. Chem. Phys., Vol. 72, No. 10, 15 May 1980
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TABLE VI. Symmetry coordinate matrix for the I'~ A~ A direction. The first three elements in the jth column show

the displacements of atom 1 for the jth symmetry coordinate, etc. The symmetries are shown by crosses. f,=

=exp(3i k- 28y), f=exp(hi k+g;), e =exp(}i 2m). A superscript * indicates the complex conjugate.

'—A—A
V3 V3 ¥3
—_ O —_— —_—
3 0 3 0 0 3 ¢ 4]
/3 Yl 73
0 e _ —
3 0 0 3 0 0 3 0
0 0 @ 0 0 E 0 0 [2
3 3 3
V3 3 V3
-5 2 -3 12 0 =7 fa€* ~} fre* 0 —g f2€ -3 /i€ 0
V3
3 f2 -3 2 Y 5 fre* —=fie* 0 i€ ‘gfze 0
V3 V3 V3
0 = pAS * ha-d
0 3 0 0 3 fr€ 0 0 3 fa€
V3 V3 3
-5 N h 0 -5 fi€ $f1€ 0 ~ 75 fie* $fiex 0
V3 YE) 3
7 B PR -} fr€ ~5 fie 0 4 frex ~Sfier o
V3 V3 E)
0 0 EX 0 0 ?fie 0 0 E—fii*
Ay X X X
Ay X X X
Ag X X X
P1 X
T, X X
I X X x X X X
A1 X
A2 X X
A; X X X X X X
o1} [Cn Cia Cis] [ 11 7]
0y Ciy Cx Ca 5
03 8]
o | Hq
05 |- Mg
Los— Lciﬁ ........... CGGJ _‘J'G i

The symmetry properties of selenium reduce the number of independent matrix elements in C from 21 to 6

according to

[C14 Ci

Cu Cu

c_|Cn Cis
Cy -Cuy

0 0

Ry 0

Ci3

Cis

Cs3
0
0
0

Ci 0 0

—Cy O 0
0 0 0
Cu 0 0
0 Cus Cis
0 C14

z(Cyy -Ctz)J

(7.2)

(7.3)

The equation of motion for the crystal in the x— 0 limit leads to 3 X3 secular equations from which the squared fre-
quencies v? may be determined. The coefficient matrix for the strains p, may conveniently be written, following

Nakayama and Odajima,

J. Chem. Phys., Vol. 72, No. 10, 15 May 1980
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TABLE VII. Symmetry coordinate matrix for the '~ T'— K direction.

I'—T—K
V3 V6 2
T 0 0 5 5 0 ] 0 0
V2 B /8
0 5 0 0 0 3 0 5 0
V2 V3 6
0 0 > 0 0 0 3 0 A
B @ 0 E _2 -3 0 _Q 0
s 1 12 4 2 4
% ‘f_i 1} Q _.__6_ _@ 0 _ﬁ 0
4 4 4 6 12
2 3 V6
0 0 -5 (] 0 0 3 0 6
] {8 . 2
_-6— 0 0 6 0 3 0 -3 0
-3 (] 0 g -? ] ‘é—g 0
V3 V6
0 ] ] 0 0 0 3 0 -3
Ty X X X X
Ty X X X X X
1"1 X
r, X X
Ty X X X X X X
Ky X
K, X X
K, X X X X X X
p— . - 2 -
(1,1) Cyy 2(C11-Cr) Cu Cu 0 0 [ 4
(2,2) | 2(Cyy - Cyy) Cit Cu -Cy 0 0 x5
(3, 3) C44 C44 C33 0 0 0 K2'
(2,3) Cy -Cy 0 3(Cy3+Cy) 0 0 26,4,
1,3) 0 0 0 0 3(Cia+Cu) Cy 2K,k
(1, 2) 0 0 0 0 Cy $(Cyy+ Cyp) 26K,
|
We obtain essentially the same results as Nakayama with two identical roots corresponding to two degenerate
et al. aside from apparently two typographical errors transverse modes and a single root corresponding to a
in their work. The indices (i, j) to the left of each row longitudinal mode. Our calculations show that below £
in the matrix indicates that the number obtained by =0. 02 the two lower modes merge together in agree-
multiplying the respective row in the matrix with the ment with the statement above. From the degenerate
column vector to the right is the (¢, j)’ the matrix ele- roots we find
ment of the secular determinant, which is obtained by _ 12
subtracting p4n?v? from the diagonal elements. p is the (v/€)g-0=2.8x 10 cps .
macroscopic density of the solid. We may now proceed With |azl =4.95 A and p=4.8 g/cm®, we finally find
and calculate the frequencies in any direction k and from Cyy=0.92 dyn/cm? as compared to the observed value
this determine the elastic moduli., As we shall see, the 1.82x10'! dyn/cm?. From the single root we find
results depend critically on the results obtained from the 12
.3=9. 1
directions along bs and by +b,. For x=£&by;=(27/1ag! )k (v/8)-9=9. 4x 10% cps,
=k.K it is seen that the secular determinant is diagonal which gives Cy; = 10. 4x 10! dyn/cm? as compared to the

J. Chem. Phys., Vol. 72, No. 10, 15 May 1980
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TABLE VIII. Symmetry coordinate matrix for the 4 —S— H direction.

A—S—H
V3 V8 2
3 0 0 6 5 0 0 0 0
V2 V3 3
0 - 0 0 - —
2 0 3 0 5 0
0 0 7z 0 0 0 /3 0 g
2 3 6
V3 V& VB V2 N V2
ry e 0 T = 3 0 —= 0
6 4 12 4 4
) z o, /z R S g,
4 4 4 6 12
V2 V3 V6
0 0 -5 0 0 - L2
2 0 3 0 3
V3 V6 K JZ
-5 0 0 ra 0 3 0 - 0
V2 V3 V6
_1 _— —_— o———
z 0 0 2 0 R 0 5 0
0 0 0 0 0 0 3 0 _[6-
3 3
Sy X X X X
Sy X X X X X
AI X
Ay X X
A; X b4 X X X X
H; X
Hy X X
Hjy X X X X X X

observed value 8. 2x10!! dyn/cm? 8 The Cy, is in fair
agreement with experiments, but C, is much too low.
We have not found it possible to adjust force constants
to improve this situation without seriously reducing the
rather good agreement for the optical branches. It
seems that the force model of Wendel et al.® also would
have this problem. The slopes estimated from their
acoustical branches along « = &by are roughly

(V/E)gq=2.Tx10"% cps and (v/£),.,~T.4x10" cps ,
which leads, respectively, to,
Cyq ~0.86x10" dyn/em® and Cs3 ~6.5x10" dyn/cm? .

The poor value of Cy makes it impossible to calculate
good values for the other C;; by considering other direc-
tions. For example, when k =£(b;+b,) a 3x3 secular
determinant is obtained. It can be block diagonalized
into a 1x1 and a 2 x2 block by a similarity transfor-
mation. The branch with the highest root yields

(v/E)pg=9.12x10% cps ,

which gives Cy1=1.91 x 10" o:lyn/cm2 as compared to the
observed value 1. 91x10'" dyn/cm? The 2x2 block in
the secular equation yields 3(Cy; ~ Cy,) through the equa-
tion

. glayi? [y Ay
2(Cy1 = Cip)= :1 [(V?)e~o+ (%‘){_0] = Cy s

where v* and v™ are for the middle and lowest branches,
respectively, along (£, £,0). Our calculations give

(v*/£);.0=6.20x10" cps ,
(V/E)yg=3.94%x10" cps ,
which result in $(Cy; ~ Cy,) =0. 25x10"! dyn/cm? as com-

pared to the observed value 0. 82x10!! dyn/cm?®. The
Cy4 constant may be obtained from

la; 1 ¥\(v* v}
Cl=3(Cy; - C1y)Cy ‘(B—41_><? ?)!'0 ’

which yields an imaginary value for Cy.. The problem
arises because the value determined for %(C“ -Cy,) and
Cy4 are too small compared with experiments.

Finally, the sound velocities for various directions
are given in Table X,

Vill. RESULTS AND DISCUSSION

The calculated dispersion relations are shown in
Figs. 4 and 5 where the experimental results also are
shown. The symmtries are those found in the computa-

J. Chem. Phys,, Vol. 72, No. 10, 15 May 1980
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TABLE IX. Symmetry coordinate matrix for the K—T’'—M direction.

K—~T'—M
V3 3 V2
— — — 0 0 0
3 0 0 6 2 0
2 V3 6
0 5 0 0 0 3 0 6 0
2 3 V6
0 0 > 0 0 0 3 0 6
V3 VB L 2
_6— 0 0 6_ 0 -3 0 3 0
V2 V3 V6
1 _Yya _Ye yo
3 0 0 > 0 5 0 o 0
V3 V3
0 0 0 0 0 0 3 0 -8
‘/_§ @ 0 _@ ‘/_E. 1 0 ‘/_E 0
6 T4 12 2 2 4
1 vz 6 z &z, &
T2 4 T4 4 2 12
V2 V3 3
0 0 -5 0 0 0 3 0 6
T{ X X X X
Ty X b4 X X X
K1 X
K, X X
K; X X x X X b4
M,y X X b4 X
M, X X X X X

tions, and they agree with those of Teuchert et al. 2 As
the modes are arranged in three bands, let us comment
them briefly separately.

A. Upper optical band

In general our results are seen to be in agreement with
experimental results. Other models have failed in this
region and just give flat bands. Wendel et al.® tried to
improve their combined valence potential-Keating poten-
tial model by introducing long range Coulombic forces,
but obtained only relatively little improvement of their
results. Along A and P the dispersion is solely deter-
mined by intrachain forces. As mentioned in Sec. II
only the introduction of the symmetrized dihedral tor-
sion coordinates made it possible to obtain a satisfac-
tory dispersion of the upper modes. Physically, this
probably means that due to the lone pairs of electrons
along the chain, one has to use more complex coordi-
nates than the simple valence coordinates, which work
well for covalent bonded atoms. We have to include
interactions between the rather distant atoms, here be-
tween five atoms along the chain. This is in fact what
both Martin et al. ® and Wendel® suggest for a possible
improvement of their results.

Besides the intrachain coordinates themselves, the
coupling terms between 1 and 3 and between 1 and 4

proved to be important for these modes, while the other
coupling terms had no influence there. An analysis
showed that the dispersion of the upper optic modes in
directions at right angles to the screw axis primarily

is due to coordinates 10 and 11.

B. Lower optical modes

This band is also fairly well described, although de-
viations from experimental results are noticed. The
I'y~T,-~K, branch is determined by coordinates 6, 7,

TABLE X. Sound velocities.

K (p/Elggx 107 cpsd v3x10% em/s  ,x 107 (obs)™P

00¢ 9.38 4.65 4.14
2.80 1.39 1.95

£EEQ 9.12 1.99 1.98
6.20 1.36 1.94
3.94 0.86 0.745

2See Table I, Ref. 2.

bTeuchert et al. (Ref. 2) deduce the existence of three slopes
along (0, 0, £) from their experimental data. The theory
shows that two branches should merge at small £ along bs.
Evidently, their data are not precise enough to establish this
behavior.

J. Chem. Phys., Vol. 72, No. 10, 15 May 1980

Downloaded 11 Sep 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



5564

and 8. The branch emerging from I', in the A direction
is determined in a complicated way by the different force
constants as is the other branches in this band. The
couplings between coordinates 3 and 4 and between 2 and
5 are essential for the branches in this band.

C. Acoustical modes

We made an interesting observation concerning the
acoustical modes in the A direction. It is easy to see
from the symmetry coordinates that the A, and Aj
branches correspond to transverse acoustic modes. It
became apparent that these modes could not be accounted
for by the intrachain coordinates especially at small
wave vectors. The sound velocities were too small.
Decisive for these branches are the excitation of coor-
dinate 8, and this indicates that the transverse acoustic
phonons along A to a large extent are due to interchain
interactions rather than to intrachain interactions.

IX. CONCLUSION

The objective of this work has been twofold. First
we have applied a method where the symmetry of the
problem is introduced into the definition of the force
field as symmetrized coordinates. These have been
projected from ordinary valence coordinates for the co-
valent bonded atoms, and from relative rotation and
translation coordinates developed to describe interac-
tions between nonbonded groups of atoms. Secondly,
we have shown that these types of coordinates are well
suited for the dynamics of trigonal selenium, where we
treat the interactions between atoms in different chains
as between atoms in different molecules in molecular
crystals. In particular we were able to obtain the dis-
persion of the upper optic moles very easily, a feature
it would have been difficult to obtain with an ordinary set
of valence coordinates. Although the symmetry argu-
ments for eliminating coupling terms are indisputable
if the coordinates are projected from the full space
group of the crystal, one should be careful not to end up
with unphysical coordinates if this is done, In the case
of selenium, which is a nonsymmorphic crystal, such
coordinates involved interactions between very distant
atoms. Since the forces are short ranged, a reasonable
compromise is to base the arguments on the local sym-
metry, as we have done. The complicated interchain
interactions are very difficult to handle in terms of
valence force models, since so many angle bends and
bond stretches are involved. The relative rotation and
translation coordinates are much easier to apprehend
and physically more appealing. When combined with the
local symmetry of the groups, the constraint equations
are easy and simple to set up. They seem to apply well
in this problem.

F. Y. Hansen and H. L. McMurry: Normal mode calculations of trigohal selenium
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