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Dislocationlike Structures in a Simulated Liquid

R. M. J. Cotterill
Department of Stvuctuval Propevties of Matevials, The Technical University of Denmavk,
DK -2800 Lyngby, Denmark

(Received 1 March 1979)

The free-volume distribution in a simulated Lennard-Jones liquid is heterogeneous.
Chains of holes, appearing as segments rather than a continuous network, have lifetimes
that are brief compared with the mean vibration period of the atoms. Larger isolated
holes persist for longer times. If the chains are interpreted as dislocation cores, the ob-
served dislocation density is 1.0x10'* cm™?, but the actual density is probably higher.

The melting transition has become the object
of considerable attention.!” Experimental meth-
ods have emerged for studying the melting of two-
dimensional (2D) systems,’*® and theoretical ad-
vances have endorsed the view that melting pro-
ceeds via a sudden proliferation of dislocations.
This was first observed in a 2D computer simu-
lation,” while a subsequent analysis by Koster-
litz and Thouless®'® generalized the dislocation
model to include magnetic and superfluid transi-
tions in two dimensions. The development of
these ideas'®'!! led to predictions of the effect of
analogous excitations (vortices) on the superfluid
density in a “He film, and experimental verifica-
tion'2:!® provided further implicit support for the
dislocation theory. Progress with 3D systems
has been slower, but here too there is evidence,
from computer simulation'* and electron micros-
copy,' that dislocations are involved in melting.

A two-phase dislocation theory of melting im-
plies acceptance of the view that a liquid can be
described in terms of dislocations, and Shockley’s
calculation® of liquid viscosity was a notable suc-
cess for this approach. Interpretations of how the
defect is to be incorporated into a liquid model
range from the Mott-Gurney picture!” of a micro-
crystalline array, and the dislocation-saturated
crystal as variously advocated by Ookawa,'® Miz-
ushima,® Siol,*° and Kuhlmann-Wilsdorf,? to the
more nebulous idea that in a liquid only the dis-
location cores survive.?? A dislocation core is a
region of dilatation, and this facilitates atomic
motion because of the local increase in inter-
atomic distances and hence lowering of energy
barriers. In a liquid such cores would be expect-
ed to produce a network of locally dilated regions,
the individual segments appearing as chains of
holes. This communication reports the first ob-
servation of such structures in a simulated lig-
uid.

The Lennard-Jones liquid, simulated by molec-
ular dynamics, comprised 336 atoms in the ir-
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reducible cell of a system made pseudoinfinite

by periodic boundary conditions. Reduced varia-
bles were employed for computational efficiency.*
The energy and distance parameters, € and ¢, in
the interaction potential V(r)=€[(0/7)*? - 2(c /7 )]
were set at unity. With mass and time, and Boltz-
mann’s constant, similarly reduced, the melting
temperature was T =0.72. The liquid was equil-
ibrated for ten thousand computation cycles at

T =0.76 and analyzed at various times during a
continuation of the simulation at constant temper-
ature and pressure.

The analysis consisted of constructing a three-
dimensional grid of test points, filling the irre-
ducible cell, with a mesh size of 0,05 atomic
diameters, i.e., several thousand test points per
atom. If a test point lay inside an atom, it was
rejected. For all the remaining test points the
shortest distance to the surface of the nearest
atom was computed, the atoms being regarded as
hard spheres with diameter equal to the distance
of the first peak of the pair distribution function.
This produced a distribution of spherical test
holes with an upper cutoff radius of 0.30. (The
vacancy radius in the equivalent close-packed
crystal at zero temperature would be 0.50.) The
complete set of test holes naturally displayed
considerable interpenetration because of the small
mesh size, and graphical display of every hole
would have been confusing. Instead, the holes
were arranged in decreasing order of size and
plotted sequentially in that order. Moreover,
before any hole was plotted, its position was
checked against every larger hole already plotted,
and rejected if the distance between it and the
nearest plotted hole was less than half the sum
of their radii. The plotting was terminated at a
hole radius of 0.19. This is 10% less than the
radius of the largest spherical hole in the cor-
responding close-packed crystal at zero temper-
ature: the inscribed sphere of the octahedral
cavity (radius =0.21) in the face-centered cubic
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structure. The extra 10% allowed for the vibra-
tional amplitude at the melting point, as given

by the Lindemann rule.?® To facilitate 3D display,
all the retained test holes were plotted in stereo
pairs.

Figure 1(a) shows such a stereo pair, the rec-
tangular box indicating the periodic boundaries.
With a stereo viewer in correct adjustment the
legends appear to lie in the median plane. To re-
duce plotting time, a standard octagonal symbol
was used, the circumscribed circle of which has
a radius equal to that of the test hole in question.
It was found that chains of test holes could be de-
tected by eye, and these were drawn in on the
original plots as lines, which were in general
slightly curved. For clarity, the lines corre-
sponding to Fig. 1(a) are presented on a separate
stereo pair in Fig. 1(b). The observed chains
varied in length, the longest comprising seven
holes and almost spanning the width of the irre-
ducible cell. Figures 2(a) and 2(b) are similar
plots corresponding to a time ten computational
time steps after Fig. 1, and Figs. 3(a) and 3(b)
show the situation after a further ten steps. (The
mean atomic vibration period in the correspond-
ing crystal was approximately fifty computational
time steps, i.e., about 10”'% sec). Several points
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FIG. 1. (a) Stereo view of the distribution of test
holes having a radius larger than 0.19, at one instant
during the simulation of the atomic motions in a liquid.
The legends, which should appear to lie in the median
plane of the figure, indicate the diameters of an atom
and the inscribed sphere of the octahedral hole in the
fce structure. The box marks the periodic boundaries.
(b) Stereo view of the positions of well-defined chains
of holes seen in (a). Note that they appear as isolated
segments rather than as a continuous network.
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emerged from a study of many plots of this type.
The largest holes are not the most mobile, in
contradistinction to what is expected if a vacancy-
type motion is operative; these holes are rela-
tively stationary and undergo a sort of breathing
mode due to the vibrations of surrounding atoms.
Some small holes pop into and out of view at iso-
lated locations, probably a result of size fluctua-
tions of holes whose mean size is below the cut-
off value. The main observation is the hetero-
geneity of the spatial distribution of the holes.
This is apparent from a cursory inspection of
Figs. 1(a), 2(a), and 3(a), while 3D viewing re-
veals several hole-free regions roughly three
atomic diameters across. The arrangement of
the chains of holes changes very rapidly, a time
interval corresponding to one mean vibrational
period in the crystalline state being sufficient to
permit relaxation to a totally new configuration.
During the vriefer time intervals between the
figures, some of the chains appear to be relatively
stationary while others vanish abruptly.

Two remarks are necessary regarding the sig-
nificance of the claimed positional correlations
of test holes. Firstly, no statistical test was
applied to the actual observations, and it is not
clear how this could have been carried out since
the observed chains of holes were not straight
lines, and did not form a continuous network.
Instead, a bogus plot was produced by generat-
ing test holes with random positions and diam-
eters (with the same size distribution as in the
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FIG. 2. (a) The distribution of test holes, ten com-
putational time steps after Fig. 1(a). (b) The positions
of well-defined chains of holes as seen in (a).
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molecular-dynamics runs). Where these holes
overlapped, they were subjected to the same re-
jection criterion that applied to Figs. 1(a), 2(a),
and 3(a). Figure 4 shows such a plot, and 3D
viewing reveals no extended chains of test holes.
Secondly, a continuous network of holes must be
seen if the plotting limit is small enough. In the
present simulations, such a network is present
for a radius limit of 0.13, but the number of net-
work junctions is then comparable to the number
of atoms, and the implied situation with every
atom dislocated seems physically unreasonable.

Of the two types of defect conjecturally linked
with the liquid state, the present results appear
to rule out the vacancy® as a viable candidate.
The largest test hole observed during the simu-
lation had a radius of 0.30, which is 40% less
than that of a vacancy in the close-packed crystal
at zero temperature. This conflicts with the re-
ported observation of vacancies in simulated
liquid rubidium,?® but supports, admittedly in-
directly, the conclusion that vacancies play no
part in melting.®

If the observed chains of holes are to be inter-
preted as dislocation cores, the dislocation den-
sity corresponding to Figs. 1(a), 2(a), and 3(a) is
approximately 0.11 per atomic area [i.e., approx-
imately 1.0X10™ e¢m™2, taking the first peak of
the pair distribution function of a Lennard-Jones
liquid to lie at 3.7 A (Ref. 27)]. This is of the
same order of magnitude as, but somewhat small-
er than, the saturation dislocation density pre-
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FIG. 8. (a) The distribution of test holes, ten compu-
tational time steps after Fig. 2(a). (b) The positions of
well-defined chains of holes as seen in (a).

dicted for the liquid state.?® To this apparent dis-
crepancy must be added the seemingly more ser-
ious shortcoming that the present observations
reveal only isolated chain segments rather than a
fully connected network. Dislocations in crystals
cannot end abruptly but must either link up with
other dislocations or terminate at a surface.
There are, however, at least two reasons why a
network would not be seen in the simulated liq-
uid. The rigorous constraint of constancy of
Burgers vector, and hence of core diameter,
might be relaxed in the noncrystalline state,?8+2°
permitting some of the associated test holes to
fall below the plotting limit and thus cause an ap-
parent break in an otherwise continuous chain.
Moreover, the dislocations in a liquid must be in
continuous motion.

Consider the observation of test holes at a dis-
location moving in a crystal. The discrete nature
of the crystal lattice forces the dislocation to
make quantum jumps, of distance equal to the
Burgers vector, that carry it from one minimum
of potential energy to an adjacent minimum.
These minima correspond to the greatest local
concentration of free volume, and each gives rise
to a chain of holes along the core. During a jump,
the holes will disappear at one site and reappear
at a site about one atomic diameter away. Iden-
tification of a dislocation by detection of a con-
catenation of test holes is thus possible only when
the dislocation is not actually making a jump.

The same is true for a liquid; similar quantum
jumps would have to be made by the moving dis-
location, because although the liquid state is
noncrystalline, it is nevertheless composed of
discrete entities. (Complications arise because
the dislocation concentration in a liquid must be
high, and the movement of one dislocation will
alter the environments of those nearby.) The
dislocation cores in a liquid might form a proper-
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FIG. 4. The distribution of test holes generated at
random. Chains of holes are not observed.
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ly connected network, but those segments which
are in motion at the instant of observation will
not be detectable. An evaluation of the disloca-
tion density in the liquid, based on instantaneous
observation of only a fraction of the dislocation
cores, must produce an underestimate. No at-
tempt was made to calculate what fraction of the
total dislocation content is invisible at any one
time, but a reliable measure of this number might
enable one to estimate the height of the Peierls-
Nabarro barrier.*® This, in turn, would lead to
a numerical value for the viscosity. It would
thus appear that there is much to be gained by
repeating the present study for the corresponding
supercooled liquid. In that glassy state there
would presumably be more dislocations visible;
possibly even a continuous network.
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with Masao Doyama, Toshiyuki Ninomiya, Hideji
Suzuki, Jeffery Tallon, and Tyoichi Yamamoto
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Sir Sam Edwards for sending me a preprint of a
paper, co-authored with M. Warner, on disloca-
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