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Generation of symmetry coordinates for crystals using multiplier
representations of the space groups

Flemrﬁing Yssing Hansen
Fysisk-Kemisk Institut, The Technical University of Denmark, DK 2800 Lyngby, Denmark
(Received 27 April 1977)

Symmetry coordinates play an important role in the normal-mode calculations of crystals. It is therefore of
great importance to have a general method, which may be applied for any crystal at any wave vector, to
generate these. The multiplier representations of the space groups as given by Kovalev and the projection-
operator technique provide a basis for such a method. The method is illustrated for the nonsymmorphic D §
space group, and the theoretical background for the representations of space groups in general is reviewed
and illustrated on the example above. It is desirable to perform the projection of symmetry coordinates in
such a way that they may be used for as many wave vectors as possible. We discuss how to achieve this goal.
The detailed illustrations should make it simple to apply the theory in any other case.

I. INTRODUCTION

Group-theoretical arguments are of great impor-
tance within the field of lattice-dynamical calcula-
tions and have been applied for many years.

If the potential energy of a crystal is expressed
in terms of symmetry coordinates, which are dis-
placement patterns of the constituent atoms span-
ning the group of the wave vectors, then the dy-
namical matrix will be on block form, as symme-
try coordinates of different symmetry do not cou-
ple. ‘The group of the wave vector is the space
group, whose purely rotational elements leave the
wave vector invariant (modulo 27 times a transla-
tion vector of the reciprocal space). This may be
used to check if the dynamical matrix is of the cor-
rect symmetry, because a wrong blocking will in-
dicate that there are some mistakes in the setup of
the problem. To avoid these problems in normal-
mode calculations, we have written a computer
code,' which automatically on the basis of group-
theoretical arguments generates a dynamical ma-
trix of the correct symmetry from an arbitrary in-
put of coordinates and force constants for any lat-
tice-vibrational problem. The block diagonaliza-
tion of the dynamical matrix is often of great im-
portance in the analysis of the effects of the vari-
ous force constants in the model, especially when
so-called symmetry-adapted coordinates® are used
in the definition of the force field. Also, the eval-
uation of the symmetry of the eigenvectors is sim-
ple and of great importance, for instance, when
various branches are crossing and selection rules
may be established.?

Recent excellent review articles by Maradudin
and Vosko* and Warren® discuss the subject and
give a survey of the historic development within the
field. They show that the use of the so-called mul-
tiplier or ray representations of the 32 crystallo-
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graphic point groups provides a general basis for
the description of the symmetry coordinates. This
can be used as easily when the wave vector is in-
side the Brillouin zone, or when it is on the sur-
face of the Brillouin zone, for symmorphic as well
as for nonsymmorphic crystals. The method is,
therefore, superior to previous methods®* which
were problematic, in particular, for wave vectors
at the Brillouin-zone boundary for crystals belong-
ing to the nonsymmorphic space groups, that is to
space groups among whose elements screw ax-

es and/or glide planes are found. Kovalev seems
to have been the first one to apply the multiplier
representations of space groups and has published
a book” in which are tabulated the irreducible mul-
tiplier representations of the 230 space groups for
many directions in the Brillouin zones. These ta-
bles are very useful and have made the application
‘of multiplier representations practical for the.con-
struction of symmetry coordinates. v

Hurley® has also published a complete set of rep-
resentations of the space groups based on multi-
plier representations of the point groups, but these
are not found to be as easy to use as the ones given
by Kovalev, although as pointed out by Warren,®
some mistakes may be found in the tables. of the
latter.

Owing to the importance of knowing the symmetry
coordinates for a given crystal at any wave vector
E, it is of great value to have a general method
which may be applied without modifications to gen-
erate these. The multiplier representations of the
space groups as tabulated by Kovalev provide a ba-
sis for such a method which is simple to apply. It
was felt that a general presentation of the back-
ground for the method was highly desirable and
useful so the outline of the paper is as follows. In
Sec. II we present the theoretical background for
the representations of the space groups. Our

4015
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treatment differs somewhat from those cited
above®® and it is based on the one given by Koster,?
extended to include a natural introduction of multi-
plier representations of the point groups. A dis-
cussion of the basis sets which span these repre-
sentations is also given. The developments in this
section suppose a basic knowledge of group theory,
which may be obtained from many sources, for in-
stance Refs. 9-11. In Sec. Il we illustrate in de-
tail the development given in Sec. II using as an ex-
ample the nonsymmorphic space group D$ of tri-
gonal selenium. The section is divided into three
parts. In Sec. III A we illustrate the representation
of the space-group elements for various wave vec-
tors. In Sec. IIIB we show how a multiplier repre-
sentation is obtained from an ordinary point-group
representation. This is of importance since Kova-
lev’s tables are not complete and suffer from mis-
prints and errors. In Sec. IIIC we illustrate the
generation of symmetry coordinates for different
wave vectors and discuss how the projection ought
to be done in order to obtain symmetry coordinates
which may be used for as many points in recipro-
cal space as possible. From this example it should
be a simple matter to consider any other crystal at
any wave vector.

II. BASIC THEORY

The atoms in an infinite crystal are arranged in
a regular pattern. This means, that there is a fi-
nite region in space (the unit cell), which is re-
peated in all directions. One may say, that the at-
oms span a lattice in space. Call the basis vectors
of such a lattice &,d,,4,. Then a primitive trans-
lation

- .
T (), @y, @y are integers)

(2.1)

> > >
@= QA + 02, +0a,

takes the space into itself, and the group of all
primitive translations constitutes according to the
defiinition® a group 7. T is an example of a

space group, whose representation is particularly
simple, since all irreducible representations are
one dimensional, as we will see in a moment. In
the Koster® notation, an element of this group is
[€IT,], where € (the rotational part of the opera-
tion) is the identity and T, is given by Eq. (2.1). T
is an infinite group, because there is an infinite

number of translations (2.1). Also; T is an Abelian
group,® as

[€]T o 1[€ [Tur] =[€ |€T g To ) =[€ [Foe+ T ]
=[e|T,1[€]T,1, 2.2)

which again implies that all irreducible represen-
tations are one dimensional, because only in that
case the order of the symmetry operations like in
(2.2) is immaterial. We are going to deal with fi-
nite groups, so in order to make the translation
group T finite, we use the following expedient. It
consists of imposing periodic boundary conditions,
i.e., we put '

[€]2,17=[e|4,]V=[¢|&,]"=[< 0] (2.3)

for some large but finite N. This means that we
consider a space filled with exactly the same crys-
tals, each with N3 unit cells. In practice we al-
ways consider finite crystals, so there will never
be an infinite number of translations leaving the
crystal invariant. However, when N is large
enough the boundary effects will be unimportant.
The representations of the finite translation group
are now easy to obtain. Firstly, we remember,
that the representation matrices are one dimen-
sional. This means that [¢|D]=1. Secondly, Eq.
(2.3) gives

[D([]E,]N]1V=1, . 2.4)

where D([€|d, ]) denotes the representation matrix
of the operation [€|d,], which here is a (1 X 1) ma-
trix. There are N roots of Eq. (2.4), and they are

D([¢|3,]) = exp(inp,/N),

$,=0,1,2,...,N-1. (2.5a)

For translations along &, and &, one finds, as in
(2.5a),
D([€|2,]) =exp(2inp,/N),
p25051""’N—1’
D([e |4,]) = exp(2imp,/N),
ps=0,1,...,N-1.

(2.5b)

From (2.2) and (2.5a) we now deduce, that the rep-
resentation of a given primitive transldtion opera-
tion T, is given by

_D_( [e ‘Ta D =2([€ |a151])2( [e | 0’252])2([E ] (1353]) =2([€ '51])a12([€ 152 ])%2([E |§3])t¥3

~ 2z'1rploz1> (Zinpzaz)
=exp (———N exp(—%

exp(2i1r11\>,3a3) =exp[2i1r(&0!1+?‘2a2+&°’3 ] . (2.6)

N N N
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When we define the reciprocal-lattice vectors b
bz,b in the usual way

b,-q,=2m5,,, 4,j=1,2,3" 2.7

we see from (2.6) that

D([e|T,]) =exp(ik-T,), (2.8)
where
E:‘%El+%252+%53=k151+k252+k353. 2.9)

The representations are of course irreducible, be-
cause they are one dimensional. Thus, from (2.5a)
and (2.5b) and (2.8) we see that there is one irreduci-
ble representation for each value ofl?, atotal of N®in
all As Nbecomes very large, the allowed values of
k flll out the parallelepiped spanned by the vectors

bl, bz, b3, except for the surfaces k=1, k,=1, and
k,=1. Any reciprocal vector k may be expressed
as

k=k,+K, (2.10)

where Eo is inside the fundamental parallelepiped
or on the surface 2,=0, k,=0, or 2,=0. K is zero
or given by

K=¢,b,+¢,0,+¢.,, (2.11)

where (q,,4,, q3) are integers, and this is a lattice
vector in reciprocal space. From (2.8), (2.10),
and (2.11) it is clear, that a k vector outside the
fundamental parallelepiped does not give rise to
any new irreducible representations, because

exp(ik - T,) = exp[i(k, +K) - T, ]

= exp(ik, - '—I"a) , (2.12)

which is one of the N % already known representa-
tions. The fundamental parallelepiped is no more
than the well-known Brillouin zone in reciprocal
space.

Consider now a space group G, which besides the
translation operations includes elements with rota-
tional operations and eventually also fractional
translations. An element from such a group is
written [S; IE], where S; is the rotation operation
and E is a translation vector (primitive or fraction-
al) given in direct space.

It is easy to show, that the translation group 7 is
an invariant subgroup of the group G. For any ele-
ment [€| T, ] of the translation group and for any
element [S; 1T, ] of the space group G, we find for
the conjugate elements to the elements of the group
T

[S: |61 €| TR 1S |6 ] =[5t | -S: T 1[S: B + T )
=[e]s? t;+sz To-Si'ti]
=[e]|si'Tal=[e|Ts]

for all [S; It,] because the rotation of a lattlce vec-
tor T generates another lattice vector Ta We
have thus shown that all operations, which are con-
jugated to any primitive translation operation, are
themselves primitive translation operations. This
is just the criteria for T being an invariant sub-
group of G. G may therefore be decomposed into
cosets® ¥ of T:

G=T+g,T+8,T+* - g1, T

=T+Tg,+ * TG, (2.13)
g; being a shorthand notation for the elements
[S;!T;], where S; is the rotational part of the opera-
tion; 't', is a fractional translation or zero and is
the number of operations whose rotational parts
are different from the identity. The last relation in
(2.13) holds, because T is an invariant subgroup,
so the left and right cosets are identical.

A matrix representation of symmetry operations
depends, of course, on the basis which is chosen
for the representation. This basis may be vectors,
displacement patterns of atoms in a crystal, or
functions. In the following let us consider an n-di-
mensional vepresentation, and let us designate a
basis for this representation (4,,...,#,). It is for
this purpose immaterial whether the basis is vec-
tors, displacements, or functions, and we will re-
turn to the problem of how to find a -suitable set. In

" the following we will see that there exists some re-

lations between the members of the basis set, and
we will stress them as they are deduced.

We have seen that all irreducible representations
of the translation group T are one dimensional,
which means that unless z is equal to one, the ma-
trices D([¢|T,]) are reducible. This means again
that there exists a basis set, so D([€IT D is a di-
agonal matrix. We assume that this is the case for
our basis.

Proposition 1. The representation matrices for
the pure translation operations are diagonal ma-
trices.

We may represent any “function” # in the space
spanned by our basis set by its components s; of
each member of the basis set:

—~
Sy

b=y P

=ZS,~¢,~.

s.s’l

The representation matrix D( [SIF]) of the opera-
tion [SIT ] is now defined according to
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[SIE]1=@y.. ., 4 D(S[T]

S

N (I

To illustrate the fact that the matrices D([SIF])
depend on the basis set chosen, let us choose an-
other basis set according to

@) =@y, 9,)Q (2.13a)

where the @ matrix relates the two basis sets.
Then
(1) (s

.

P=@ )| - =@, 909

’

’
CSnJ LSn_J

f'SIT

=Wy )

LS" -
and

~
sI7)

[SIE1w=@L, ..., 9D ([SED| -

“TnJ

s

=y .-, 8IQD([SITDQY - |,

SO

D([s[tD=0D'([s[TDQ*. (2.13b)
This is the relation between the representation ma-
trices in the two different basis sets (¥, ..., ¥,)
and (¥2,...,9,). The effect of a primitive transla-
tion on a member of the basis, say ¥,, is found to
be

r-OT

[e|To 0=y, ..., ) D([e|T, D] 1

o)
=Du([€ |¥a]) Xy,
=exp(ik, - T,) X ¥,

because D([€| T,]) is diagonal. We also have as-
sumed that the (Z,7)th element of D([¢|T,]) corre-
sponds to the irreducible representation of the
translation group characterized by the reciprocal
vector k;. Let us then study the effect of [¢|T, ] on
the “function” ¥, =[SIt Jp,. We find
[e |Ta]‘/’1'=[€ !Tm] (s |t 1%,

=[s[T1e|s Tolus,

or written out,

[€|Tm]lpl'=(¢1" ..

- (2.14)

,¥)D([€]T,])

™07

xQ([S[F]) 1

-0
=(lp1, MR z?bn)g([e |’—I"a])
D,,([SIT]D)

L Da([S[ED
exP(iE1 * '-fa)Du([S |F]) h

=(¢19'-"¢n) : : ’

> -

exp(z kn ¢ Ta)Dnl([s IF]) -
(2.15)

where we have called the diagonal elements of
D([eIT,]), e*1'Ta: . .« ef*n'Ta, Some of the k; vec-
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tors may be identical, as we will see in a moment.
From the second relation in (2.14), we find

[e |"fa]l[),,=(d)“ cee ‘l’n)g_([s |F])
™)
0

xD([e|sT,] | 1

Lo
" Dy,([S[EDT)

=(w19' ',zp’.) .

Dnl([s IF]) -
X exp[ik;- (ST ,)]
(exp[i(SK,)-T,]

D([S|ED7

=(¢1"’-’¢n) . .

_exp[i(SK,) - T, 1 D([SIE])

GENERATION OF SYMMETRY COORDINATES FOR CRYSTALS...
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From Eqs. (2.15) and (2. 16) we may draw two im-
portant conclusions.

Proposition 2. Since at least one of the elements
Dy,, say D, ,;, has to be different from zero (be-
cause we have assumed our irreducible represen-
tation to be n dimensional), we see that if one of
the diagonal elements in D([eIT ]) is exp(zk, T o)
then the element exp[i(Sk,) T, ] also has to appear
once somewhere along the dxagonal of D([€ 1T, ).
Furthermore, if exp(i k, T ») appears d txmes along
the diagonal of D([€IT ]), then exp[i(Sk,)- T o] al-
so has to appear d times. This is true for all ele-
ments of the group. (We do not consider the pure
translational operations in this connection, of
course.) .

Proposition 3. The element D,,([SIt]) must be
zero unless

exp(ik, - T,)=exp[i(Sk,) - T,]
or
k, =Sk, +K,,

where ﬁq either is zero or a primitive vector in
reciprocal space.

According to proposition 2 we may order the ele-
ments along the diagonal of D([e|T,]) indxd
blocks, where the diagonal elements in a block all
are identical, and the different blocks are charac-
terized by essential different k vectors. This or-
dering in blocks is, of course, equivalent to an or-
dering of the basis set in such.a way, that the first
d members in the set transform like El say, the
next d members transform like Ez, etc., under a
primitive translation operation. Written out it
looks like

(2.16)
as
k,-(s'T,)=(sk)-T,.
J
B o1 Ta
0
[€ ITu]‘p: (lpn L] d)d’ z/)du, . ’ szd’ ¢2d+1’ ey l/)n)
.

The number of blocks s =n/d has to be an integer,

of course, and we see that anyone of the first d
members of the basis set transform like e**1"Ta,
anyone member of the next d members of the basis
set transform like e'*>'Te  etc. d greater than one
means according to proposition 2 that there are

0 o I (s,
* ok T,
. s |- (2.17)
0 efeTa 0 .
T ik T,
0 e'ts J [sn

L
elemeits in the group, whose rotational part S has
the property

ei (K Ty

=e‘il';a (2.18)

or



4020 FLEMMING YSSING HANSEN 18

-

Sk, =k, '*‘I_Eq ) ﬁq =(¢,b, ""qzsz +q333)

(91,4, 9, are integers).
The collection of such elements is said to form the
group of KI. To distinguish these elements from
others, let us designate members of the group of
k, as

[Ri If‘f ] ’
where

R; El =E1 +Eq‘.

It is easy to show that the elements [R;|¥;] in fact
form a group, a subgroup of G. We find for any
two elements of the group of k,, Gy :

[lefj][Rclfi]z[R/Rt IRJ Ft+fj]=[Rp,fp] ’

where

-

R}klz’l +qu s R1E1=k1+in .

[R,IT,] is an element of Gi because

R,k =R,R,K, =R,(k,+K,)

=E1+KQI+R,§”=§,+K%.
This means that we may decompose G in, for ex-
ample, left cosets of the group G;l as

G=Gi +[P,|B, 1G5+« *[P[B,]G;,,  (2.19)

where [ P;|$5,] denotes those operations in G,
whose rotational elements rotate the k, vector into
a vector essentially different from k,, that is, re-
lation (2.18) does not hold for these elements. We
know from (2.17) that there exists just s operations
[P;1B;] as [ P,ID,]=[€!0]. To make the notation
clear, [R;I¥;], i=1,d denotes elements of the
group of k,:
Ril-;x:i;l +Ka;;
[P,1D;], i=1,s denotes elements characterized by
Pk, =k,.

The set of vectors

> >

K, ky, ... ;Es

is also called the star of l?l, and the members of
the star may be generated by the process

P,k =k;, i=1,...,s.

According to (2.19) we may characterize any ele-
ment of G as belonging to a particular coset of G;‘.
Thus, any element of the group G, [S;t;], may be
written ‘

[s:|&:1=[P,|8,1[R,IF,1, (2.20)

where

S,-=Pij, EszFj+§m

determines m and j unambiguously.

We have seen in (2.17) that our basis set
(¥,,...,9,) may be divided into sets, which are
characterized by different transformation proper-
ties under the translation group. In order to em-
phasize this, we will from now on use two indices
on the members of the basis set like §,,. The first
index v indicates that the member transforms like
e™Ta under T, while the second index indicates
which member of the vth set we consider. Thus we
may write

[e |Ta]¢’1u =eXp(iE1 : Ta)lﬁm, p=1,...,d;
so for any element [R;|¥,;] of Gi, we find

Zlblll- =[Ri I Fi ]‘pw
and
[€ |Ta]w{1 =[€ ITa][Ri IF;]Z[)“,,
=[R;|%;1[e|RP T, 19y
=[R5|F;’] eXP[i(Riﬁx)' Tm]‘l’m
=exp(ik, - To)yy. (2.21)
The relation (2.21) holds of course for all . This
result may also be expressed by saying that the
subspace which transforms accovding to El under
T, is invaviant under G;,- In this space any func-

tion, which transforms according to Kl, may be
represented in the usual way:

o
Sy

¢=(ll)u, ey ll)m)

=Z¢1lsi-

\._Sd.J

Due to the invariance of the subspace, the function
Y'=[R;I¥,;]¢, therefore, also transforms according
to El under T. This means, that ¥’ also may be
represented in terms of the set (,,,...,¥,) as

7 )
S

ltb’:(l»bu"""pm) *

’
S J

The fact that both ¥ and ¥’ can be represented in the
same space, means that the representation of
[R;IT;] in this space is given in the usual way
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V'=[R, l-fi]‘p:(d’u’ (R zpld)ﬁ([Ri |fi ])

. SaJ
(2.22)

Note that the representation of [R,;IT;] is denoted
by S([R;I¥]). This is.done in order to stress the
fact that we have %ot yet found the wanted repre-
sentation of [R; | ¥,], which is called D([R,|¥,]) x
S([R,|F,]) is thus a dxd matrix, while
D([R;1%,]) is a n Xn matrix, so we have only found
the representation of [R;|¥,] in the space spanned
by (by,y...,¥4). This is an important result which
we are going to make use of in a moment.

Let us next investigate, how the function {j de-
fined according to

b =[Py|BJdy,, p=1,...,d
transforms under 7. We find
(e [T, 10 =[] To1 [Ps D],
=[P |B:][e ‘P?Ta]‘l’l,.
=[P, |B;] x exp [k, « (PPT )],
=exp[i(PK) - T,1 [Py |B .y,
=exp[iPK,) T v,

that is, in (2.23) we generate a “function” which
transforms according to E, under T. In contrary
to the result found above, we see that i cannot be
represented in the space of (¥,,,...,¥,,).

It is now remembered, that the basis “functions”
in the ith block of our basis set (3,,...,,) just
transform according to K, under T. Therefore
we may generate the basis functions in the ith
block from the basis in the first block by applica-
tion of the operation [P, |{;]:

(2.23)

wiu=[Pil§i]w1u’ l"-'-‘l,...,S, “=19"')d° (2'24)
Let us assume that the members in our basis set
(#,,...,9,) satisfy this relation.

Finally, we are now in the position to deduce the
form of the representation matrices of any opera-
tion [S|F] in the space of (¢, ...,¥,). Let [S|E]

. work on ¥,, and we find

[s |.t.]zl),u =[s lﬂ [P, ‘51]4’)4‘
= [Pm ‘ﬁm] [R.I |Y‘j]¢1u ’
where we have used (2.24) and the fact that any

element of G, [S|¥][P,|5,], belongs to a particular
coset of Gy , here the mth [(2.20)].

(2.25)

From (2.22) we now know that .
0

[Ry|%, 10, = (s - - -, 0 ISR, [F,D| 1
0
= Z’- 1S, ([Rj l.f:]),
i

SO

[s |F]wtu =[Pm !ﬁm]g Zplisiu([RJ |t-.J])

= Z d)misiu(Rilfj)’
i
p=1,...,d, i=1,...,d, (2.26)

where we have used (2.24).
To make the results in Eq. (2.26) clear, let us

write ¥’ =[S |F]y,, in the space of (y,, A E
D (Is1i1)
m 1
vl T TT] of | [e] 2.27
m «| | 5] 227
ol ||e]
ol |[e]
° [%]1
o |l
where

Wy gl Wy Wy e 1 gy )
shows the block structure of the basis, and the
component matrix

shows the same block structure. The representa-
tion matrix for the symmetry operation therefore
also has a block structure as shown, where the di-
mension of each block is dXd. It is of course of
no significance that we use six blocks in (2.27).
The situation in (2.26) does now correspond to the
case, where just the uth element in the /th block
of the component matrix is one. The rest of the
matrix elements are zero. This is shown in
(2.27) by a cross and by zeros. Then according
to (2.26), all elements in the Ith column of blocks
in D([S|t]) are zero, besides in the mth row of
blocks of D([S|t]), where elements different from
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zero occur. This block is also shown with a cross,
while the rest of the blocks are zero. As we let

1 go from 1 to d, we see that the d X d matrix at
the place of the cross in D([Slt ]) just is the ma-
trix S([R,|r, ). In this way we may deduce the
structure of D([S |T]) letting =1,

Irreducible vepresentations of S([R |r, ). In
order to find the irreducible representations of a
space group associated with a reciprocal vector
I'Zl, we have to find the irreducible representations
of S([R;|F,]) in the space of ({y,,--.,¥s). We will
pu;sue this topic here. The rotational elements
S of a space group, whose elements are [S|],
form one of the 32 point groups G°. Also, the
rotational elements of Gk, form a point group,
which is a subgroup of G°. We have seen that,
as K, wanders over the interior and the surface
of the Brillouin zone, we may obtain all irreducible
representations of G by finding the irreducible
representations of the group of the El vector in
question in the space of (§;,,...,¥,).

Let us first study points in the intevior of the
Brillowin zone. For an element [R;|T,] of the
group of kl, we know in general that R k k +K
In this case, where we consider vectors in the
interior of the Brillouin zone, we have I'('qi=0, so

R, -E,. (2.28)

Any element of Gj , [R;|¥;], may be written
[R:[Fi]=[€|T, ][R: | %], (2.29)

where T, is a fractional (nonprimitive) transla-
tion vector (occurs for at least one element if

Gy 1is one of the 157 nonsymmorphic groups) or
zero (all elements in the 73 symmorphic groups),
while T, ; 1s a primitive translation. Therefore
we may rewrite (2.29) as follows:

§([Ri I.fi]) =exp(iE1 ° Tri)g([Ri |-r.R i])
=exp ik, (T, + Tz )IL(R,]),
which defines T'([R;]). The representation of

[R; ]YRi] in the space of (¥,,,...,¥,,) is thus given
by

§([Ri I.fRi]) =eXp(iE1" ?Ri)z([Ri])'

Note that ¥, is a nonprimitive translational vec-
tor or zero, and I'([R;]) depends only on the rota-
tional part of the Bperation.

. We will show that the matrix I'([R,]) defined above
simply is the irreducible repregentation matrix

of the point group GS . To see this we have to prove
that for any two elements of Gi, we have

[, ) [7 )

Inserting our representation of the operations,
we find

(2.30)

=[RiR.i|RiY‘Rj+.fR,-]'

[R; |75 JIR, [Tz ,) =exp(iE, « T, ) exp(E, - T, )

XT([RDT(R,)
=exp[ik, - (T5, + Tz )] C([RDL((R,))
(2.31)
and
[RiR,|RFg,+Tp ]
=exp[ik, - (R g, +T5 )IT([R; Ry])
=exp{i[(R'K,) - Fp +K,  Tp IT([R:R,])
?Ri)]z([R,R,]), (2.32)
where we have used (2.28). We see that the right-

hand side of Egs. (2.31) and (2.32) are identical
if and only if

E([Ri])z([Ri]) =£([R,~R,‘]),

and we know from ordinary point-group theory that
this is the case if I'([R;]) and I'([R;]) are the irre-
ducible representations of the point group G°

To conclude, we have seen that

S([R;|Fz,]) =exp(k, - F5 )L (R,)),

where ]."([R ]) is the irreducible representation of
the point group G. , constitutes a representation of
[R,;|¥&;] in the space of (¥, ... ,¥;,) for both sym-
movphic and nonsymmorphic groups, if k, is any
vector inside the Bvillouin zone. From this it

is easy to construct the irreducible representations
for all elements in the space group, as we have
seen, (2.27).

E on the suvfaces of the Bvillouin zone. The
equatlon correspondlng to (2.28) now has the form
R; k k +K,7 ., where K is aprimitive vector inre-
c1proca1 space dszevent from zevo. The equations
analogous to (2.31) and (2.32) are

[R;|%e ][R, (T ]
=exp[K, » (F5, + Tz )IC(RIT(R,]) (2.33)

=exp [k, « (Fg, +

and
[RiR;|R;Tq, +Te,]
=exp[ik, « (RiFp, + Tz )IL(R:R,])
=exp{i[(R'K,) Tz, +K - T2 JT(R; R,])
.ij) exp[ik, * (?Rj+?Ri)]£([R,.R,.]),
(2.34)

=exp(ie ffq,

where Kq, is different from zero and given by

R;'k, =k, +K,. (2.35)
This result is in geneval different from the result
in the preceding case. The multiplication rules for
the matrices I'([R;]) are here found to be
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_r_([Ri])E([RJ])=exp(i§a'.FRj)E([RiRJ]) ,
or from (2.35)
D([R; DT([R;])
=exp[ik,* (R; T5, - T )IT([R;R;]). (2.36)

This shows, that I'([ R;]) is not an irreducible rep-
resentation matrix in the ordinary sense, due to
the exponential factors. The matrices I'([R,]) are
said to form a multiplier representation of the
point group Gk In the special case, where we
consider a symmorphlc group all ¥y =0 and there-
fore all exponential factors will be equal to 1,

which means that T'([R;]) in this case is an ordz-
nary representation of the point group. Also, if k
is in the interior of the Brillouin zone, we have

exp[iE1 . (RiFRj - FRj)] = exp[z'l?1 . (FRJ - FRJ)] =1,
which again means that the factor system is equal
to 1,,s0 T([R;]) again is an ordinary representa-

tion. Only in the case where we consider k on the
surface of the Brillouin zone, and conszder non-

symmovphic groups, do we have to know the multi-

plier representations of the point group G% . We
may say that the multiplication scheme in t2.36) in-
cludes all possibilities.

Summary. The dimension of the representation
matrices depends on the vector El considered. If
the star of El includes s k vectors, the matrices
are s X s block matrices (2.27). The structure of
the matrices is such, that only one block in each
column and row of blocks is different from the null
matrix. The blocks, which are different from the
null matrix, are the (m,I) blocks, where m and 1
are given by (2.25):

[SIE1[P|B: 1= P, |B.1[R;|F,]1, (2.37)

when we consider the representation of the [SIT ]
operation. The nonzero blocks are given by the
matrices

S([R; |#;]) = exp[ik, - (T, + T IT([R,;]), (2.38)

where Tj is zero or a primitive translation given by
T;= T,+rR er is a nonprimitive translation or
zero. The T'([R;]) matrices are the multiplier
representations of the point group G;l with the mul-
tiplication rule
I([R,DL([R;])
=exp[iE1-(R,-'f'Rj—FRj)]E([R{R,]). (2.39)

In certain cases the I'([ R;]) matrices reduce to

ordinary point-group representation matrices. The

different cases are (i) if 1.21 is an interior vector of
the Brillouin zone, the I'([ R;]) matrices are ordi-
nary point-group representations; (ii) if we consid-
er a symmorphic group, the I‘_([R, ]) matrices are

ordinary point-group representations; (iii) if k, is
on the surface of the Brillouin zone, and we con-
sider a nonsymmorphic group, the I'([R;]) ma-
trices are multiplier representations of the group.
The basic assumption for the representations of
[SIF] as given above was that we considered a ba-
sis set (¢, .- ., ¥14), Which spanned the subspace and
transformed according to k under T'. There will
be such a set for each of the 1rreduc1ble represen-
tations found in the point group le The complete
basis set, which spans the representation of G was
found from (2.24) by

[P; !ﬁ W=y, =1, ""ﬁ" .

where the [ P;|15;] are the operatlons used to pro-
duce the members of the star of k If the dimen-
sion of the representation is =, then it was found

that n=sd.

Multzplze'r representations. We have seen that
only for Kk vectors on the surface of the Brillouin
zone and for nonsymmorphic groups, the multiplier
representations of the point groups of the K vector
are different from ordinary representations.

In Kovalev’s book” one may find the multiplier
representations for various point groups 'G%l asso-
ciated with a space group G. All space groups are
covered in that way. In order to be able to check
the representations for misprints and other possi-
ble errors, it is useful to know how to construct
these representations.

To do so one has just to construct the multiplica-
tion table of the rotational elements in Ggl accord-
ing to (2.39). From this it is possible to obtain the
multiplier representations. The method is demon-
strated later in an example (see Sec. IIIB). The
representations may alsobe obtained by the computer
code of Worlton and Warren.'2

In order to avoid future confusion it is stressed,
that the equation corresponding to (2.39) in Kova-
lev’s book” has the form

TR DT([R;])
=exp[-ik, -

p=1,...,d,

(R;Tg,-Tp)]T([R,R;]). (2.40)

The minus sign in the exponential is, of course, a
reflection of the fact that he has defined his I'([R;])
matrices according to

S([R;|Tg, ]) = exp(~iK, - )T([R;]), 2.41)

where we have used (2.38):
S([R; [T, ] “Tp )T([R;].

When we consider the group of El, then it is equi-
valent in the formalism of Kovalev to consider the
group of —El. These differences are of no practical
importance, as the groups of k, and -k, include the
same set of symmetry operations.

=exp(ik,
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Generation of a basis set for the space group G.
In order to find a basis set, which spans the group
G, we have seen that for any k vector k,, we have
to find a set ¢,,,..., ¥, for each of the 1rreduc1b1e
representations found in the point group le The
complete set is then generated using (2.24) for
every set of ¥,,,...,¥%,,. To find the set §,,,...,¥,4
we use the projection-operator technique. The
projection operator is defined according to® 011,13

-~ l -
D= RI(R [T, ),

where [, is the dimension of the Ath irreducible
representation, g is the number of operations in
le, xM*(R,) the complex conjugate of the (7, 7)th
element in the irreducible representation matrix
for the Ath irreducible representation, and
[R;1%5,] is the ith operation in. the group of k,, G¢,.
X (R;) is found in Kovalev’s tables of the mul-
tiplier representations of the point group Gﬁl, and

[R;|Tr;] is represented by
M([R,|Tp,])=exp(ik, - T2 )L([R;]).

In order to stress the fact that the representation
of [R;IT,, ], in general, is given in a basis set dif-
ferent from the ones we have considered until now,
other letters (M and L) have been used to designate
the representation matrices. In which basis do we
now represent [ R;|Fg;]? That depends completely
on the problem. In the case of lattice vibrations,
where we want to project out a set of displacement
patterns (symmetry coordinates), which transform
under Gy, as prescribed by the matrices of the ir-
reducible representations of G;l, we usually ex-
press the symmetry coordinates in terms of Car-
tesian displacements of the atoms in the unit cell.
Therefore, in this case, the answer to the ques-
tion raised above is that [ R;|Tg, ] is represented in
the basis used to describe the displacements of the
atoms in the unit cell. Usually these are simple
local Cartesian unit vectors with origins at the
equilibrium positions of the atoms in the unit cell,
and oriented in the same way. If there are n atoms
in the unit cell, our basis for [ R;|¥,, ] will be the

(2.42)

(2.43)

3n Cartesian unit vectors, and the dimension of the
representations is 3n X 3xn.

Letting the projection operators work on any dis-
placement pattern given in this space, we will gen-
erate symmetry coordinates, which span the Ath
irreducible representation and transform as the
7th row in the irreducible-representation matrices.
Having this displacement pattern, we may let the
projection operator

et (2.44)
work on this displacement pattern in order to ob-
tain its partners, which transform according to the
sth row of the irreducible-representation matrix.
We will not give the proof of these important rela-
tions here, just note that the relations are all con-

sequences of the “great orthogonality theorem,”
which is also valid for multiplier representations.

III. EXAMPLE

Let us-try to apply the theory developed above on
a specific example. We consider in the following
crystalline trigonal selenium. The crystal class is
the DS group, and the symmetry'operations are ta-
ken from Kovalev’s book and listed in Table I. The
structure of Se is shown in Fig. 1.

Kovalev calls the rotational part of a symmetry
operation %;. In the following we will use S;, with
the same i as Kovalev, to facilitate the identifica-
tion of the operation. The section is divided into
three parts. In Sec. III A we give the representa-
tions of G for various k vectors, and in Sec. IIIB
we show how to generate the multiplier representa-
tions of the point groups, so one may check the re-
sults in Kovalev’s tables for misprints and other
possible errors. In Sec. IIIC we illustrate the gen-
eration of symmetry coordinates in a lattice-dy-
namical problem on selenium.

A. Generation of the irreducible representations of the D3 group

For the analysis, it will be convenient to have a
multiplication table for the rotational part of the
operations as shown in Table II.

TABLE I. Symmetry operations for the D§ space group from Kovalev (Ref. 7).

Kovalev, Df

(| 0):  identity

(hs|333):  120° rotation around (0,0,1) All components are
(h5|53;):  240° rotation around (0,0,1) given in terms of
(ql 3)- 180° rotation around (0,1,0) the skew coordinate
(n] 3a3) 180° rotation around (1,0,0) system (&;,3,,33).

(on }aﬁ): 180° rotation around (1, 1,0)
primitive translation T, = d, + 0,8, + a3

See Fig 1.
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FIG. 1. Structure of trigonal selenium. The atoms
are arranged in spiral chains, which are arranged in
a hexagonal pattern. The lattice basis vectors @,,%,,
4,), the Cartesian coordinate system_.ﬁ, j, k), and the
reciprocal-lattice basis vectors (E,,b2,33) are also
. shown. The angle between %, and %, is 120°, between
4, and &, is 90°, and between &, and &, is 90°.

Let us consider the wave vector k, given by

i

for various values of pu.
1 u=0

The group of the wave vector G; =G for k,=0.
Also, as we consider a point inside the Brillouin
zone the I'([ R;]) matrices are the ordinary point-
group matrices for the various irreducible repre-
sentations of the point group D,. The character-
table for the D, point group is shown in Table III.

As all elements of the group belong to the group
of the wave vector k,, s is equal to 1, so the rep-
resentation matrices only have one block [see Eq.
(2.27)]. Therefore, we have

D([s; [t D=1xT([s;]).

TABLE II. Multiplication table of the rotational part
of the symmetry elements of the Dg space group.

Sy S3 Ss Sy Sy Si
Sy Sy S3 S5 S Sy S
S3 S Ss Sy Sy Sy Sy
Ss Ss Sy S3 Sy Sy Sy
Sy Sy Sy Sy Sy Ss S3
Sy Sy Sz Sy S3 Sy S5
S St Sy Sy Sg S3 St

From the charactertable for D, we see, that for the
T, and the T, representations, the I'([S;]) matrices
are one dimensional (that is d=1) and for the T,
representation the I'([S;]) matrices are two dimen-
sional (that is d=2). The matrices are given in
Table III for D,.

2 K =p 3, (0<p<a/1&,1)

This is a point inside the Brillouin zone. From
the definition of the symmetry operations it is easy
to see that the group of the wave vector consists of
the elements

GEI: [5119_]» [Ssl%is]’ [S5|‘§‘§3],

and therefore
G =Gg1+[s7|2]G;l. . (3.1)

As the elements [S,10], [S,15d,], and [S,,128,] all
turn k, - ~K,, we only have to consider one of these
elements in the coset development. It is also very
easily verified, thatthe development in (3.1) includes
all elements of G, as it should. (Remember that T
is a subgroup of Gl'q') Thus, we see that s=2, so
the representation matrices are 2 X 2 block ma-
trices [see (2.27)]. Let us systematize our analy-
sis. The first step is to rewrite Eq. (2.37) in the
form

[P, |8, 1 [S: |5 1[ P |3, 1=[R,|T,]. (3.2)

We perform the multiplications on the left-hand
side in two steps. Firstly, we write a multiplica-
tion table for

[Pmlﬁm]-l[si'?t]’ i=1""!6’ m=1’2'
(3.2a)

Secondly, when we want to find the representation
of the ith symmetry operation [S; If;], we take the
elements in the 7th column of the multiplication ta-
ble just generated, and make a new multiplication
table for the multiplication of the ith column with
the elements [ P,IP,]. Then according to Eq. (3.2)
we should find just one element from Gz, in each

TABLE II. Character table for the D; point group
[from Kovalev (Ref. 7)].

Dy | S S3 Ss Sy Sy Sy
Iy 1 1 1 1 1 1
T, 1 1 1 -1 -1 -1

10 €20 e*% 01 0 e Oc*
01 0 e* 0 € 10 €* 0 €0

2¢ =exp(Zim).
be* = exp(~2 im).
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column and row of this multiplication table. The
row (m) and column (I) in which this element is

found corresponds to the block in the representation

matrix, (2.27), which has to be different from ze-

ro, and the block is given according to Eq. (2.38).

It may seem difficult, so let us see how it works.
According to our notation we have

[R, 1F2]= [Ss I éas] s

15, 51][5.10)  [S,]54,]
1P, |51 i1 2

[R1 '?1]= [‘Sl Ia]’

[s,24,] [s,]0]

[Rs|T51=[Ss] 3 851
[P,1$,1=5,10), [P,B.1=[S:I0],
[P, |B,]" =[S, |O}; [P.|B,]" = [5;|O].
We have used
[P;|B: 1" =[P;*|-P;Bi].

From these definitions we find, using Table II,

% [Sol53,] [S.34,]
3 4 5 6

[Sl |5] 1 [Sl IB] [S |3 aa
[s,]o] 2

The representation of the symmetry elements of
the D¢ group are then found to be

[s,10] or [€]0]: X )
[P, |B,1|[s.]0] [S,[0]

1 column ml 1 2
(.o 1 |(s,]0] [s,10]

5,10 2 |is,]0] [s,]0]
=>2<[s115]>='<5‘[51” ° >;
0 (s,]
[S,1%d,]
(2151 (5,10 [,10]
2 column m 1 2
[S.]33,] 1 [S,134,] [S,]52
[S.]-%8,] 2 [S,,]-%8,] [S,]-34,]
-->D(S[32LS
_ (e B T(s, ) 0
( 0 e"El°53/3£([SS])> ’

and so on. Let us just list the results for the other
operations:

[S133,]

D([S,[34,])
) (eiil-zaalsz([ss]) 0 > )
0 e'ii1'2;3/3£([33])

0 I( [s1]>>;
I(s,) o

[s, Ia]

Q([87151)=<

0 (8,138, [S:0] [S,]34,] [Sul3d]
[37,0] [sul"?i_is] [ssl"%is] [sl|0] [s5|-§§3] [33]—%2—{3

r

[Ssl%ia]:

. 0 eiil-i:,./sr([s ])>
D((s, saa]>=( g s Dy,
= [ ‘ e-ikloaalsz([ss ]) 0

[su|%53]:
2([511 |‘:2s‘§3 D

) < 0 e'.‘-‘l'zaiilaf_([ss])) .
e-iil-zis/zz([ss]) 0

© 3 FI =u %, u=n/l3;l
This is a point at the surface of the Brillouin
zone. From the definition of the symmetry opera-
tions it is easy to see that no operation changes I'El
in an essential way, that is Gz, =G. Therefore s
=1, so the representation matrices are 1X 1 block
matrices (2.27), and they are given according to

D([s;|GD =e i T([s,]). (3.3)

As we are at the surface of the Brillouin zone, the
T([S;]) matrices are no longer the point-group rep-
Tresentation matrices. This is easily seen by a con-
sideration of the multiplication rules for the I'([S;])
matrices. Consider, for example, -

[57 IO] [Su l% 53] =[S, I— 53] [Ss 3 53] .
Inserting the representation matrices (3.3), we find
r([s, ])eiﬁl-zig/ sT([S,,]) = e-iil-ziala'z( [S,]).
From this we deduce the multiplication rule
£( [S, ])E_( [S.D= exp{i El -[8,(38,-34))] }_1:_( [S:])
=exp[ik, - ()44, IT([S.]),

which shows that the I'([S,;]) matrices are the mul-
tiplier representations of the point group D, [com-
pare with Eq. (2.39)].
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4. k , in a general position (no symmetry direction)

Then we have Gi, =T, the translation group, and we have

[R1IF1] =[31|6] )

[P,15,1=[5,10], [P,[B.)"=[5,10), [P.IB,1=[S,]34,], [P,]5,]"=[s,]-44,],
[P3Iﬁ3]=[35‘—23-53], [P3|§3]-1=[53|—§53], [P4|§4]=[S710], [P4|54]~1=[S716]’
[P5|§a]=[sgl%§3]’ [Psiﬁs]q:[ssléia]’ V[P6]§6]=[SIII%§3]’ [P6|§6]-1=[Su|%§3]1

that is, our representation matrices are 6 X 6 block matrices. The procedure for finding the represen-

tations are exactly the same as already described.

We will not repeat that here, but just give the representation for one operation, say [S5|—§—§3]. We find

—

0 £1(s,) 0
0 0 £ T(S,)
([s, 35, )=| TSP 0 0
0 0 0
0 0 0
L o 0 0

where f,=exp(ik,-3,), f}=exp(-ik,-d,), and
(s, )=1.

Before we close this subsection, let us for a mo-
ment stop and ask what we have accomplished, and
what all these matrices really mean.

We have seen that the dimension (the number of
blocks) of the representation matrices depends on
the vector k,. The I'([S,]) matrices ought to be in-
dexed as I'([S;]);, where the subscript j denotes
which irreducible representation we consider. For
example, in the case p=0, we saw that the point

. |

Y15+ -5y transforms according to k, under T,

Ya1s- - -5 ¥sq: transforms according to P,k, under T,

Ys1s -+ -5 ¥ transforms according to P, Kk, under T,
where

V=[P, |8, 1%, v=1,5 and p=1,d.

d is the dimension of a block. As with the I'([S,])
matrices, this basis set also ought to be indexed to
tell which irreducible representations they span.
The basis sets will of course differ when they span
different representations. We have not used the in-

(s, 0 J

-

0 0

0 0

0 0

0 FIT(s.)

0 0 I

™ @ @ o o

)

o

group D, had two one-dimensional and one two-di-
mensional irreducible representations. In the ex-
pression for the representation matrices we should
therefore have indexed the I'([S;]) matrix as
T([SiDr,» T([SiDr,s T([SiDr,, respectively. We
have omitted this index, because it is rather ob-
vious that it has to be so, and also in order not to
drown in indices.

It should be remembered that, if there are s
blocks, then the matrices above are represented in
a basis set like

dex in the development above for the same reasons
as mentioned before.

Let us assume that we know a “function” ¥, which
transforms according to El under T. In order to
find how this function is transformed under, say
[S,!15d,], we have to find the representation matrix
for the operation. Suppose k, = ud, (0< p<w/i,),
which is one of the cases already analyzed, then we
immediately may write the result:
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[SQP%is]d):[wu’ cos Vs Vars e oo s Vogs Yogayy - - - ,Z/)"] (
e

B. Generation of the multiplier representation of point group D,

We have seen that the I'([ R;]) matrices for k,
=7/ 13,l, which is on the Brillouin-zone surface,
are multiplier representations of D,. For each op-
eration in D, we therefore have to find an appropri-
ate phase factor, which has to be multiplied with
all the representation matrices of that operation
known from the ordinary representation of D,.

The phase factors are found using the multiplica-
tion table for the rotational elements of D, and a
multiplication table generated from (2.39). We will
work with the full symmetrical one-dimensional
representation, since we have

T([R,])=1 (3.4)
for all j. Then I'([R;]) may generally be written

E([R,])=e”’!. (3.5)
In order to have a shorthand notation for the
_E([R,]) matrix, we write

T([R,D~T;. (3.6)

We have already generated the multiplication table
for the rotational elements of D,; now let us gener-
ate the other multiplication table needed, using our
shorthand notation (3.6). The result is shown in
Table IV.

From Table IV we see

r,T,=T,=1=T,=1,
r,r,=T =1=T=T;, [,=T%,
1"31"3=1"5=1'"3"

or using (3.5)
ez ¥ =09 =2rn, [,=e'2/3,
r,r,=I,1=ry=r,=T,,
I,T,=TI2=T, =T, =T2,

To decide which value of » we are going to use,

Sa

0 6‘21'53/3_]:([R3])
-iil-is”g(.[ns]) 0

L0

r

consider the following:
r,T,= 1 X gi2mn/3_ gmior/3 T,

=grizn/3 iamn/3

From this we may determine #,

Zrn=4mn-27 3.7

or n=1. The phase factors which have to be multi-
plied against the ordinary representation matrices
of D, are, according to the analysis given above,

1-\1:1, r3=elzw/3’ r5=e-12l/3,
- —pter/3 = p-iar/3
r,=1, I';=e , I =e .

This gives the multiplier representation of D, as
shown in Table V. This is just the same table as
found in Kovalev.” Yet, the results are not quite
identical, because everywhere that we have €, he
has €* and vice versa. This has no physical impli-
cations and as already pointed out, the differences
are due to the definitions (2.40) and (2.41). If we
had used the same sign as Kovalev, then Eq. (3.7)
would have been

2 -4 2
FTN=3TN+3T,

which gives n=~1 and we would have obtained Ko-
valev’s results.

TABLE IV. Multiplication table for the Dg' space group
based on Eq. (2.39). T); is a shorthand notation for the
matrices T'([R;]). ky= (/]33] )3;.

Ty T3 Ty Ty Ty Ty
T Iy T Ts Iy Ty Ty
Ty Ty T Ty Ty Ty Ty
Ty | Is Ty T3 Iy I Ty
I, | It IyA® Dk® T Tsfi Tif
Ty Ly, InA Ty fe Ty iy Tsh
Ty | Tu DA Tufe Ts i Tify

A= exP(—”';Et * §§3) .
b fo=exp(-ik * $3,).
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TABLE V. Multiplier representation of the D; point
group.

Dy S S3 S5 Sy Sy Sy
I, 1 €? exb 1 € €*
T, 1 € e* -1 —€ —€*

10 €e*x 0 €0 01 0e* O¢
T3

01 01 01 10 10 .10

2 pi2n/3
bex - gmi2n/3

C. Generation of symmetry coordination for trigonal selenium

The symmetry coordinates are displacement pat-
terns of the atoms in the unit cell of a certain sym-
metry. They play an important role in lattice-dy-
namical calculations. Thus the dynamical matrix
will be on a simple block form and therefore very
often easier to analyze, if symmetry coordinates
are used to express the potential energy instead of
simple Cartesian displacements of the atoms; one
may assign the proper symmetry to the various
frequencies, a feature of great importance in cases
where branches are crossing.

The symmetry coordinates are found by letting
the projection operator (2.42) work on arbitrary
displacement patterns of the atoms in the unit cell.
The result of this operation will be either no dis-
placements of any atom or a displacement pattern
of the right symmetry.

Let us digress for a moment and briefly discuss
the structure of trigonal selenium. The structure
is shown in Fig. 1, where also are shown the lattice
basis vectors (&,,d,,4,), a Cartesian-coordinate
system (1, ], k) used to define absolute atomic posi-
tions, and the lattice vectors of the reciprocal lat-
tice (b,,b,,b;). The atomic positions in the unit
cell are shown in Table VI. The relation between
the lattice basis vectors (&,,d,,d,) and the Carte~-
sian basis vector (i, ], k) is

c, -3¢, 0
#,%,3,)=0,7,k| 0$v3¢c,0 |,
0 0 c,

¢,=4.3712, ¢,=4.953899. (3.8)

It is seen that trigonal selenium consists of long
spiral chains arranged in a hexagonal pattern, so
the Bravais lattice becomes hexagonal. In Table I
we have already listed the symmetry operations.
The small atomic displacements from the equilib-
rium positions are represented in local Cartesian-

coordinate systems oriented in the same way as the.

@, 7, k) system, and with origins at the various
equilibrium positions of the atoms. To describe

TABLE VI. Atomic positions in the unit cell of tri-
gonal selenium represented in the lattice basis vector
system, &,,3,,3;.

Position [represented in

Atom No. the @,3,,4;) system]
1 (x,0,-3)?
2 0,%,0)
3 (%, ~x,3)
2 x=0.2254.

the displacements of the three atoms in the unit
cell, we thus need nine coordinate axis, namely,

(Tli.lEl’ TZLKZ’.I;-T]:E:!) * (3'9)
We now have to represent the matrices M and L
[Eq. (2.43)] in this basis-coordinate system. The
dimension of the matrices becomes 9x 9, and they
are constructed in such a way that they give the re-

sult of the operation of [S|T ] on an arbitrary dis-
placement pattern ¥V according to

M([S[E])
r-vlﬁ
[SlElv=@,...,k) -+ |, 3.10)
\..119.4

where v; are the components of V. We are now in
the position to write a reducible representation of
all symmetry operations of the group in the basis

set (3.9). From (2.43) we see that the M matrix is
given by -

M([S|T]) =exp(k-T)L([S]), (3.11)
where L is a matrix just depending on the rotation-
al part of the symmetry operation, and k is a wave
vector. L is a 3 x 3 block matrix [Eq. (3.10)],
where each block is a 3 X 3 matrix, which either is
the zero matrix or the representation matrix of the
rotational part of the operation in the basis set of
(3.9). These are very easy to obtain (see below).

If atom 1 is brought into the position of atom 2 by
a symmetry operation, then the displacement of at-
om 1 is rotated as prescribed by the operation and
transferred to the position of atom 2, the so-called
active point of view.'* That means, according to
Eq. (3.10), that the (2, 1) block of the representa-
tion matrix is different from the zero matrix and
equal to the rotation matrix for the operation,
while all other blocks in the first-column and the
second-row blocks are zero matrices. It may also
happen that a symmetry operation brings the dis-
placement of an atom into the position of an atom
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outside the unit cell. From Fig. 1 we see that, for
instance, the [S,|%&,] operation takes the displace-
ment of atom 3 into the position of atom 1 in the
cell above the unit cell going along the chain. If we
call the displacement of atom 1 in the cell with po-
sition vector ﬁhk, for V,,;, then we may represent
Vs in terms of basis set (3.9), Vg, making use of
the representation of a primitive translation from

- the appropriate cell to the unit cell. We find

Vier = Voo @Xp(i K+ Ryey) - (3.12)
i’
[s, |0]:
(100 B
010 0 0
001
0
0 01 0 , Tr=9;
001
100
0 0 010
L 00 1]
[Ss] 58, ):
g -4 -4/3
0 0 V3 -3
0o o0
-3 -3V3 0
W3 -z 0|f, 0 0
0 0 1
-3 -3V3 0
0 W3 -3 0|f, 0
g 0 o0 1
[Ss]34,):
8 -+ W30
0 [-éx/? -z O |f} 0
0 0 1
-3 33
0 0 -3V/3 -3
0 0
-3 V3 0
-3V3 -3 0]f 0 0
Lo o 1

FLEMMING YSSING HANSEN

L = =]

- O O

18
Therefore, if a symmetry operation brings the dis-
placement of an atom inside the unit cell into the
position of an atom outside the unit cell, we just

- have to multiply the particular rotation matrix with

the proper phase factor, before we fill out the rel-
evant block in L. When all atoms have been in-
vestigated, we finally multiply the L matrix with
the phase factor in (3.11) and obtain M.

It is now a simple matter to write the represen-
tation matrices for the six symmetry operations in
the basis set (3.9); they are

.
1
, Tr=0;
-
-
f¥|, Tr=0
-
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[s, [0]: ,
[ 3 -53F 0
0 0 -3 3 0
0 o0 -1
-z -zV3 0
0 -3 3 0 0 , Tr=-1;
0 0 -1
-z -2V3 0
-3 i o0 0 0
Lo o -1 ]
[S, | 33,]:
(10 o 7
l:o -1 0 |fr 0 0
00 -1
10 0
0 0 0 -1 0|f|, Tr=-rx
00 -1
10 0
0 -1 0]y 0
L 0 0 -1 J
[S,, %3,
g -4 W3 o0 A
0 +3V3 3 0 |f: 0
0 0 -1
-3 +2V3 0 y Tr=-f;
+3V3 3 0| f* 0 0
0 0 -1
-3 +3V3 0
0 0 +3V3 3 0 |f,
L o 0o -1

fi=exp(2ik - 33)),
fz=em(iﬁ’%%) .

A superscript * indicates the complex conjugate.
Before applying the projection-operator approach
the wave vector K to be considered must be chosen
and its group determined. Wave-vector groups are
found in Kovalev’s book” for a number of symmetry
directions for all groups. In Table VII we have
listed the various directions considered here, to-
gether with the character tables found in Kovalev’s

book. Note that the wave vectors k are represented
in the reciprocal-lattice basis system (b,, b,, b,)
(see Fig. 1).

To each character table we have added a column
giving the number of symmetry coordinates, which
span the various irreducible representations. This
number is easily deduced from a well-known rela-
tion in ordinary point-group theory®: %
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TABLE VII. Character table for the group of the wave vector 1'2, for various directions in
reciprocal space represented in the by,b,,b; coordinate system (from Kovalev).

K: k=¢,%,0)

r: k=(0,0,0)
K hy hg hg by hy m Spanned by S; patterns
LK, 1 1 1 1 T 1 T
I'y,K, 1 1 1 -1 -1 -1 2
10 €20 €*P o 01 0 € 0e*
Tsls 1 01 0 e* 0 € 10 e*0 <o 3x2=6
A: k=(0,0,£); 0<£<0.5
P: k=6,%,£); 0<£<0.5
AP hy k3 hs Spanned by s; patterns
AL, P 1 1 1
Ay, P, 1 € e* 3
Ag, Py 1 e* € 3
A: k=(0,0,0.5)
H: k=(4,%,0.5)
AH hy kg h3 hq hyy hg Spanned by s; patterns
Ay, Hy 1 € e* 1 € €* 1
Ay, H, 1 € €* -1 —€ —-€* 2
10 €*0 €0 01 0e* 0e
A48 | o3 01 01 10 10 10 3x2=6

T: k=(£,£,0); 0<i<}

T hy hyy Spanned by s; patterns
Ty 1 1 4

T, 1 -1 5

S: k=(t,£,0.5); 0<t<%

S hy hyy Spanned by s; patterns
Sl 1 € 4

Sz 1 -—€ 5

T':k=(¢,1-2¢,0)

M: k=(0.5,0,0)

M, T hy hq Spanned by s; patterns
M, T | 1 1 4
M, Ty | 1 -1 5
e =exp(im).
be* = exp(-3 im).
1 & * giving the number of times »; the uth irreducible
=2 ) . i
S g ;X (RX(R), (3.13) representation is contained in the Ath irreducible

where g is the number of symmetry operations in
the group of k, X(R;) is the trace of the reducible-
representation matrix for the jth operation, and
Xx¥*(R;) is the complex conjugate of the trace (or
character) found in the ith irreducible representa-
tion of the jth operation. s; is then the number of
sets of symmetry coordinates, which span the ir-
reducible representation.

The compatibility relations are obtained from a
similar well-known relation®1°

1
;: XM RXMR,),

n;= =

z (3.14)

representation corresponding to another symmetry
direction in K space. x*(R,) is the complex
conjugate of the character for the uth irreducible
representation of the jth operation, and x*¥(R,) is
the character of the Ath irreducible representation
of the jth operation.

From Eq. (3.14) and the character tables, we
have found the compatibility relations listed in
Table VIII.

Now it would be natural to ask if it was possible
in some ingenious way to express the symmetry
coordinates as analytical functions of the wave
vector K in such a form that the same set may be
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TABLE VIII. Compatibility relations for various directions in reciprocal space of tri-

gonal selenium.

(T',K)—~(QA,P)—~(A,H) I'—T,—K A—S—H K—~T'—~M
'Ky APy AgHy L, T, K 4 5 H K T M
T,,Ky, APy AgHy L, T, K 4, S H K, Ty M,
TypKy APy Ay Hy I, T, K A, S, Hy K, T, M
T3, K, Ay, P,y Ag,Hy Y Ty K, Aq Sq Hy K3 T{ M,
Ty,K, APy AGH, T, T, K A, S,. H K T, M
T3,Ky Ay, Py Azl Iy Ty K A3 Sy Hy Ky T{ M
T3,K;  A3,P3 Ay Hy Iy T, K Ay S, Hy Ky T; M
T3, Ky A, Py Ay, Hy Iy Ty Ky Ay S H Ky, T{ M
T3,Ky A3, Py Ay H, 'y T, K Ay S, H Ky Ty M,

used for ail Kk vectors considered above. This
would certainly be of great practical importance,
as one only has to apply the projection approach
once instead of performing the projection opera-
tion for each K vector analyzed. Such a set would
also be easy to use in normal mode calculations
providing a blocking of the dynamical matrix and
a characterization of the symmetry properties of
the modes for each E, and it would display how
symmetry coordinates of different symmetry
merge into each other as K varies.

It turned out to be impossible to construct an
analytical form for the symmetry coordinates valid
for all considered directions. The most we could
do was to construct sets, which may be used in
each of the four directions listed in Table VIII.
The sets from each direction are not convertible
to each other. An equivalent conclusion was ob-
tained from a study of the diamond structure.

In order to understand this, and in order to see
how the projection should be performed to include
as many k vectors as possible, let us for a mo-
ment return to the development given in Sec. II,
Egs. (2.13a) and (2.13b). There it was concluded
that an n-dimensional matrix representing a sym-
metry operation in one basis in general is different
from the matrix representing the same operation
in another basis, generated from the first through
linear combinations. However, if n=1 it is obvious
that there is only one form of the “matrix” repre-
senting the operation. Therefore, a symmetry
coordinate projected from a given displacement
pattern of the atoms in the unit cell, will be given
unambigously. For multidimensional representa-
tions there are a great deal of possibilities, as
one may always change the representation matrices
by any similarity transformation. Also, if a one-
dimensional representation is spanned by more
than one symmetry coordinate, one may.choose
any linear combination of these to span the repre-
sentation.

Suppose the objective is to construct symmetry

coordinates for a given direction of the wave vector
k, then the projection should be done at a |k|,
where most of the irreducible representations are
one dimensional. Symmetry coordinates spanning
the one-dimensional representations will then be
given unambigously, if the represeritations are

- spanned by only one coordinate. Coordinates span-

ning either multidimensional representations or
the same one-dimensional representation are not

s s . . . o B
given uniquely. However, going to other |k| in the

" given direction, other symmetries may occur

(e.g., at the Brillouin zone or at the center of the
Brillouin zone). It may now be possible to use the
projected symmetry coordinates also at wave vec-
tors of a symmetry different from the one consid-
ered by the projection, if suitable linear combina-
tions of the coordinates, which were not determined
unambigously, are consideréd. These linear com-
binations may be found from the compatibility rela-
tions, which display the transformation of the var-
ious symmetries, and the form of the symmetry
coordinates at the particular |K|, as determined

by the projection-operator approach. Again, only
in the presence of one-dimensional representa-
tions at the particular wave vector, one may have
to consider specific linear combinations of the’
projected symmetry coordinates; it is therefore

“only necessary to project those symmetry coordin-

ates, which span the one-dimensional representa-
tions at the new [E| in, order to find the proper
linear combinations. In this way symmetry coor-
dinates for the four different directions listed in
Table VIII were constructed. It turned out to be
impossible to find a single form, which could be
used for all directions simultaneously. Thus, for
the directions ' ~A—~A and I' = T, - K it was im-
possible to find a common form of the symmetry
coordinates due to a change in the coordinates,
which span the two-dimensijonal I'; representa-
tions, in going from the one ‘direction to the other.
Let us illustrate the procedure for the direction
I'~A~A and just list the results for the other



4034 FLEMMING YSSING HANSEN 18

three directions. projection operator P for the three’representa-
According to the recipe, we start at A, where tions A, A,, and A, are obtained from (2.42), the
we have three one-dimensional representations representation of the symmetry operations and the
each spanned by three symmetry coordinates. The character table. We find
[ 1 0 o -4 W30 (-4 -vE 6] )
0 1 0 -3 -t o|fr |&F -1 ofrF
0 0 1 0 0 1 Lo 0 1
(-4 -4V310) 1 0 0 [-% 3 0
Py=| &3 -4 ol 0 1 0 VI -3 olf |
_ 0 0 1 o -0 1 L0 0 1
(-1 3 0 1 W30 1 0 o0
-3V3 -3 O|fi |23 -2 %fz o 1 0
L L0 o 1 0 0 1 o o 1 |
(1 0 o -t W3 0 5 30 )
0 1 0 -3V3 -3 Off¥e |3V3 -3 Offfe*
0 0 1 0 0 1 0 0 1
-1 /30 1 0 o -3 33 0
Py = W3 - Olfex 0 1 0 -3 - ofpe|
0 0 1 0 0 1 0 0 1
-z 33 0 -+ W30 1 0 o
-ivy3 -1 0} fie |33 -% 0|f,e* 0 1 0
L Lo 0 1 0 0 1 0 0 1 _J
" 0o o e -1 &3 0] )
0 1 0 -3V8 -3 O|fixe* |3V -3 0| fi*e
0 [ 0 0 1 0 0 1
F-f _1/T 0 1 0 o -t 3 0
B, = +53 -t 0lse 0 1 0 W3 L 0] frex
L0 0 1 0 0o 1 0 0 1
(-4 3 0] -3 -3 0 1 0 o0
-3 -1 o|fe* |&3 -1 0] fe 0 1 0
L Lo 0 1 0 0 1 0 0 1 B
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TABLE IX. Cartesian components of the linear-independent symmetry coordinates of
selenium at A arranged in columns. Below each column the symmetry is indicated by a

Cross.
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
~5fy =33, 0 —3fEe*  3Bfe* 0 -3fe  -3Bfe 0
23f =3fr 0 3VBfe* ~3fex 0 3V8fre —dfe 0
0 0 fa 0 0 foe* 0 0 fr€
%A 3V3fi 0 —3fie :8fe 0 —3fie* 3V3fiex 0
-Bfi —2fi 0 -3V3fie —ifie 0 —3BfiEe* —FhRex 0
0 0 fi 0 0 fi€ 0 0 fie*
Ay X X X
A, X X X
Ay X X X

To find a symmetry coordinate we let the projection Since the set (V},..«, V;) is arbitrary, we let in
operator B work on any display pattern V of the turn V;=1, V=0 (4,5=1, ..., 9). Tpen it is seen
atoms in the unit cell, that is that the elements in each column of P may be con-
sidered as the components of the symmetry coor-
dinates of the corresponding symmetry in the basis
set of (3.9). The fact that there are more columns
P k) (v‘> (3.15) than symmetry coordinates simply means that

o>

o>
<
W

-

]

some of the projected symmetry coordinates are
linear combinations of others. From (3.13) we

TABLE X. Cartesian component of the normalized symmetry coordinates of Table IX ar-
ranged in columns. Below each column the symmetry is given at I', A, and A.

r—A—A
V3 0 0 V3 0 0 LY 0 0
0 3 0 0 T 0 0 3 0
0 0 33 0 0 3 0 0 V3
-1B8%h -if 0 —LEfe*x -Lfex 0 -1iBRe  —3fe 0
1
ih -iBKR 0 3 fre* -iV3fhex 0 B e ~ V31 0
0 0 V37, 0 0 $V3he* 0 0 $V3fe
~-1Bfi  3A 0 —LiV8fe 3 fi€ 0 - +V3fe* 3 fie* 0
-3fi =3B 0 3fie -Lv3je 0  —3fie* -1Bfex 0
0 0 34 0 0 V3 fie 0 0 V3 fre*
Ay X X X
A, X X P
Ag X X X
Iy X
T, X x
Ty X X X X X X
A‘ X
A, X X
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TABLE XI. Caressian components of the symmetry coordinates for the wave-vector
direction I'=T—K arranged as in Table X,

Ir'—-T—K
3 o0 0 e vz 0 0 0 0
0 vz 0 0 0 V3 0 & 0
0 0 3V 0 0 0 V3 0 ivE
-3 1E 0 -£6 12 -3 0 32 0
1 vz o DT a6 -LE 0 -AE o
0 0 —3V2 0 0 0 V3 0 i
-3 o 0 e 0 3 0 =32 0
- 0 0 Wz o -i#& 0 16 0
0 0 0 0 0 0 V3 0 -31\/6_
T1 X X 'x X
T, X X X X X
Ty x
T, X X
Ty X X X X x X
K4 X
Ky X X
K3 X X X X X X

TABLE XII. Cartesian components of the symmetry, coordinates for the wave-vector
direction A— S—H arranged as in Table X.

A—S—H
33 0 0 16 V2 0 0 0 0
0 2 0 0 0 V3 0 3 0
0 0 20 0 0 V3 0 L
i3 46 0 $E -2 3 0 2 0
-3 -2 0 32 /6 L 0 /6 0
0 o 22 o 0 0 =48 0 -¢F
A 0 & 0 3 0 —3V2 0
- 0 0 3z 0 -ii 0 PRV 0
2 G G
0 0 0 0 0 3% 0 -5V6
Sy X X X X
Sy X X X X X
Ay X
A, X PN
Ag X X X X X X
Hi X
H, X X
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TABLE XIII. Cartesian components of the symmetry coordinates for the wave-vector

direction K— T’ —M arranged as in Table X.

K—~T'—M
V3 0 0 e 32 0 0 0 0
0 2 0 0 0 330 ivE 0
0 0 V2 0 0 0 V3 0 1vE
-3 o0 0 i [ 0 32 0
1 0 0 -3V 0 =18 0 16 0
0 0 0 0 0 0 3 0 -6
- JG.J'E —5V6 0 - 1_12 & 2 3 0 V2 0
-3 20 2 1 =i 0 - 16 0
0 0 V2 0 0 30 L
T X X X X
T% X X X X X
K; X
K, X X
K, X X X X X X
M, X X X X
M, X X X X X

know that there should be three linear independent
symmetry coordinates of each symmetry, and they
are easily found and listed in Table IX. This set
of symmetry coordinates works at A and the ques-
tion is whether it also will work at I" and A. From
the compatibility relations is seen that A, -T',, and
since I', is a one-dimensional representation span-
ned by only one symmetry coordinate, we have to
choose a specific linear combination of the pro-
jected A, symmetry coordinates, as the I'; coor-
dinate is given unambigously. The same situation
exists with respect to the A, ~ A, compatibility re-
lation. As all A, symmetries merge into the two-
dimensional A, and I'; representations, there is

no guide for choosing a specific linear combination
of the A, symmetry coordinates, so they can be
used as they are. To find the specific linear com-
binations of the A, symmetry coordinates, we just
project the I', coordinate in the same way as be-
fore, and from that deduce which combination to
consider.

It turns out that the A, coordinate in the first
column just has the I', symmetry at I while the
A, coordinate in the seventh column just has the
A, symmetry at A, so we need not consider any
linear combination of the coordinates; they will
work as they are. In other cases one hasto con-
sider linear combinations in order to achieve the
desired result. This is for example the case for
the other directions, but we will just list the re-
sults in Tables X-XIII. These results may be
checked against the results of Teuchert ef al.'®
who also have generated symmetry coordinates
of trigonal selenium.
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