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Abstract 15 

The functional response of whiting (Merlangius merlangus L.) to clupeid and 

gadoid prey was determined from estimates of food intake and prey density at five 

locations in the North Sea. The intake of most prey types was well described by a type 

II (decelerating) response, although in some cases a type III (sigmoid) response 

provided a slightly better fit. Though a saturation level was reached for all types of 20 

fish prey, none of the levels corresponded to the maximum digestive capacity of the 

predator. This was not caused by ingestion of other prey as the amount of other food 

and fish prey ingested were not negatively correlated. An investigation of the 

occurrence of fresh fish in the stomachs revealed that fish was ingested almost 
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exclusively during dawn and dusk and the lack of negative correlation between the 25 

intake of fish and other prey may thus be a result of the limited time in which fish 

prey was vulnerable to predation. No aggregative response of the predators was 

detected towards any of the prey and catches of prey and predators were slightly 

negatively correlated. There was evidence of an increase in mortality with density at 

low clupeid densities, but mortality decreased to virtually zero at high densities. 30 

Whiting seem therefore unlikely to impose a regulatory effect on their fish prey 

outside a narrow range of prey densities. 
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Introduction 

The relationship between the food intake of predators and the density of their 

prey is one of the classical topics in ecology. Holling (1959) classified the relationship 40 

into three different types of functional responses. Common to these responses is zero 

consumption at low prey density and saturation at high density. Saturation is either 

reached when food intake equals the maximum digestive capacity of the predator or 

when the predator spends all its time capturing and handling the prey (Holling, 1959; 

Jeschke et al., 2002). The three functional responses differ only in the rate at which 45 

the saturation level is approached: the increase in consumption is linear in the type I 

response, decelerating in type II and sigmoid in type III. In the absence of additional 

responses to prey density such as changes in predator growth and aggregation only 

predators conforming to a type III response have the ability to stabilise the population 
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size of their prey (Murdoch and Oaten, 1975). The shape of the functional response 50 

can therefore have profound effects on the stability of interacting prey and predator 

populations. 

Several examples of aquatic predators conforming to one of the basic 

functional response types have been reported from laboratory experiments (Krylov, 

1992; Buckel and Stoner, 2000; Wennhage, 2002). However, investigations of the 55 

response of marine fish in their natural habitats remain scarce (i.e. Abrams and 

Ginzburg, 2000). Laboratory experiments where the predator is offered one particular 

prey type in an artificial environment can unfortunately not readily be generalised to a 

heterogeneous natural environment (Colton, 1987; Krylov, 1992; Abrams and 

Ginzburg, 2000; Buckel and Stoner, 2000; Wennhage, 2002). There are furthermore 60 

numerous examples of changes from one type of functional response to another as 

experimental conditions change (Townsend and Risebrow, 1982; Lipcius and Hines, 

1986; Anderson, 2001; Koski and Johnson, 2002). Even when the type of functional 

response remains the same, the initial rate of increase in intake at low prey densities, 

saturation level or both may change. High patchiness of prey decreases the initial rate 65 

of increase, but should in theory not affect the saturation level (Essington et al., 2000). 

Decreased prey detectability may affect both the initial rate of increase and the 

saturation level (Townsend and Risebrow, 1982; Lipcius and Hines, 1986). The 

presence of prey refuges has been shown to decrease the saturation level of bluefish 

(Pomatomus saltatrix L.) (Buckel and Stoner, 2000), and may partly explain the lack 70 

of correspondence between digestive capacity and saturation level of fish predators in 

their natural environment (Essington et al., 2000). It is also possible that diel changes 

in prey availability impose an upper limit to the food intake by restricting the time 

available to capture the prey. Diel cycles in the intake of different prey types by 
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whiting (Merlangius merlangus L.) have been observed for benthic prey (Rindorf, 75 

2003), whereas dawn and dusk have been reported as important feeding periods for 

other piscivorous predators (Hobson, 1968; Gordon, 1977; Major, 1977; Hobson, 

1986). Alternatively, if individual predators specialize on different prey types, the 

predator population will appear to be saturated when the prey specialists are saturated 

rather than when all predator individuals are saturated (Chesson, 1984). 80 

The functional response of the individual predator is not the sole determinant of 

the mortality a predator can impose on its prey. If predators tend to aggregate in areas 

with high prey densities (an aggregative response), prey mortality may increase with 

density even when the mortality induced by the individual predator has reached a 

plateau in these areas (Holling, 1959; Murdoch and Oaten, 1975). As prey are likely 85 

to attempt to avoid areas of high predator concentrations, the effect of the aggregative 

response will be a balance resulting from the actions of the predator and the prey 

(Anderson, 2001). It is the combination of the functional response of the predator and 

the changes in spatial overlap of the predator and prey that determines whether the 

mortality imposed by the predator increases with overall prey density (positive density 90 

dependence), decreases with overall prey density (inverse density dependence) or is 

independent of overall prey density (density independence). Several authors have 

concluded that positive density dependence is necessary to stabilize interacting 

predator and prey populations (Murdoch, 1994; Pelletier, 2000). 

This study presents an investigation of the functional and aggregative response 95 

of North Sea whiting (Merlangius merlangus) feeding on sprat (Sprattus sprattus L.), 

herring (Clupea harengus L.) and juvenile gadoids (gadidae) in a natural environment. 

Whiting is a major fish predator in the North Sea ecosystem and annually consumes 

an amount of herring equal to as much as 30% of the standing stock (ICES, 1997). 
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The data used here consisted of whiting stomach contents and relative fish densities 100 

obtained by trawling at five locations in the North Sea. The first objective of the study 

was to investigate whether the intake of sprat, herring and juvenile gadoids by whiting 

reached a saturation level at high prey densities and whether this level was determined 

by the digestive capacity of the predator. The extent to which diel changes in fish 

consumption were present and the possibility that only part of the whiting population 105 

was engaged in fish feeding were also investigated. A second objective was to 

determine the short term population effects of adult whiting on the three prey species. 

This was done by estimating a mortality index for each prey and relating this index to 

prey density. 

 110 

Methods 

Data 

Fish were caught by bottom trawl at five locations in the North Sea in early 

September (Fig. 1). The locations were chosen from prior knowledge of fish 

distributions to assure that a reasonable amount of whiting was caught and to 115 

represent areas of different prey densities. Both depth and temperature differed 

between locations (Table 1). The sampling procedure has been described in detail 

elsewhere as has the estimation of the occurrence and weight of different prey items 

in the whiting stomachs collected (Rindorf, 2002; 2003; 2004). Briefly, trawl hauls 

were performed at four hour intervals for a total of 48 to 72 hours. The catch of fish 120 

was sorted to species, counted and measured to the nearest cm below. Large whiting 

were divided into 5 cm length categories: 20 to 24.9 cm, 25 to 29.9 cm and 30 to 34.9 

cm. Their stomach contents were examined individually and prey were determined to 

species, counted and weighed individually. Prey found in the buccal cavity was 
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discarded from the data as such prey was assumed to have been eaten in the trawl. 125 

Prey found in the stomachs was assigned one of the digestion categories ‘very fresh’ 

(prey in pristine condition) ‘fresh’ (whole prey) and ‘old’ (prey in more advanced 

stages of digestion). Prey recorded as ‘very fresh’ was excluded from the estimation 

of consumption as they may have been eaten in the trawl. 

 130 

Food intake 

The analyses of functional response focussed on sprat, herring and juvenile 

whiting as these occurred in the diet of whiting at 4 or 5 of the locations and were 

caught by the trawl at all locations. In addition, the prey species haddock 

(Melanogrammus aeglefinus L.) and Norway pout (Trisopterus esmarki L.) were 135 

examined. These two species were eaten at one location only, and their functional 

response could therefore not be determined. However, they were included in analyses 

of the functional response to total gadoid (whiting, haddock and Norway pout) prey 

density.  

The average daily food intake of whiting was estimated by combining estimates 140 

of average stomach content with literature estimates of stomach evacuation rates. The 

estimation was based on the stomach evacuation model of Andersen (1998, 2001) in 

which evacuation is a function of the square root of the weight of the stomach content, 

energy density of the prey, temperature and predator size. The average hourly intake 

of species i, Wi, by each predator size group at each location was calculated over a 48 145 

hour period as 
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where


jiS ,  is the average content of species i in the stomachs in sample j,


jiS ,  is the 

average square root of the contents, 13 is the number of samples taken in 48 hours 

(including both endpoints) and 48 is the number of hours in the sampling interval 150 

(Rindorf and Lewy, in press.). The data was limited to 48 hours at all locations to 

make the estimates of food intake at different locations directly comparable. The 

details of the calculations are given in the appendix.  

The intake of each prey was calculated relative to the maximum food intake of 

the predator (Arrhenius and Hansson, 1994; Essington et al., 2000). This procedure 155 

has several advantages. First of all, digestive capacity is affected by temperature and 

predator size and the maximum intake in g/day therefore varies between locations and 

size groups. By measuring the number of prey ingested per day relative to the 

maximum number which can be ingested, Pi, the saturation level can be compared 

directly with digestive capacity and is furthermore comparable both between locations 160 

and size groups. Pi can be expressed as: 

 

 

where ni is the number of prey ingested per day, nmax,i is the maximum number of prey 

i that can be ingested daily, Wmax is the maximum weight that can be ingested daily 165 

and wi is the average weight of prey at ingestion. The estimation of the maximum 

daily food intake is described in the appendix. As maximum food intake depends on 

temperature and predator size (appendix), one estimate of Wmax was estimated for 

each predator size group at each location. 

Apart from the fish species considered here, the diet consisted of crustaceans, 170 

krill, benthic invertebrates and juvenile flatfish (Rindorf, 2003). Due to lack of 

information on their abundance, the functional response to these prey groups could 
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not be determined. However, the total consumption of other prey was calculated and 

compared to the total intake of fish other than flatfish to determine if the presence of 

other food was likely to constrain the intake of fish prey. 175 

 

Density of fish prey  

The density of fish prey was estimated from trawl catches. The trawl catch of 

species i, Ti, was assumed to be proportional to the local density, Ni (Hilborn and 

Walters, 1992):  180 

iii NqT       (2) 

where qi is a species specific catchability coefficient. The average trawl catch of all 

possible prey of the five species was calculated by first estimating the total catch of 

each prey for each time of day. The proportion of the total catch of each species that 

consisted of possible prey, , was then calculated by estimating the proportion of the 185 

catch that was of a length less than or equal to the maximum prey size observed in the 

whiting stomachs, Lc. The average catch at each location was calculated as the 

average of the catch of possible prey over the course of the diel cycle: 
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where k denotes time of day (4-hour sampling intervals), p̂ is the proportion of all 190 

hauls taken at the location which contained the species and k̂ the geometric average 

number of fish of this species caught at time k in trawl hauls where the species 

occurred (Pennington, 1983). The calculation of the variance of the estimated trawl 

catch is described in the appendix. 

 195 

Functional response 
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Type II and type III functional responses were fitted to the amount of prey 

ingested relative to the maximum by estimating the parameters in the general 

functional response model for each combination of prey species and predator length 

group (Real, 1979; Wennhage, 2002): 200 





 N

NK
P


     (4) 

 is an exponent that describes the form of the functional response curve (=1: type 

II, >1: type III), K corresponds to the saturation level relative to maximum digestive 

capacity (0K1) and is the density of fish which allows the predator to reach half 

the saturation level. K can be transformed to the absolute saturation level by 205 

multiplication with the maximum number of prey eaten per day. Inserting (2) in (4), 

the relationship between the amount of food ingested and the trawl catch becomes: 

  



 Tq

KT
P


     (5) 

Note that K can be estimated directly whereas  can only be estimated as the trawl 

catch corresponding to half saturation, q. The parameters in (5) were estimated by 210 

minimising the squared difference between the natural log to the observed food intake 

and the natural log to the intake predicted by equation (5). Logged values were used 

as the variance of both the trawl catch and the estimated consumption increased as a 

function of the mean. The locations at which no prey of the particular species had 

been eaten were excluded from the estimation, as the variance of zero consumption 215 

could not be estimated. The Marquardt algorithm for non-linear minimization in 

SAS version 8 for Windows was used to estimate the parameters. 

The type II response was fitted by fixing the parameter  to 1. As the number 

of parameters is high relative to the number of different prey densities, the residual 
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degrees of freedom never exceeded 2 and this is likely to render the results of any test 220 

of the fit of a type II relative to a type III questionable. Further, as neither the variance 

of the trawl catch nor the variance of the consumption were negligible, traditional 

regression techniques can not be applied (Kendall and Stuart, 1961). Instead of 

performing tests, both the type II and type III relationship was therefore fitted and 

plotted in cases where the prey was eaten at all five locations.  225 

It is often difficult to discriminate visually between a type II response and a 

type III response (Fig. 2A). However, if both axis are logarithmic, the difference 

between the two becomes much clearer, in particular in the case where several 

observations below  are made (Fig. 2B). Taking the log on both sides of (5) gives 

 
T

Tq

K
P lnlnln 
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and hence lnP is approximately a linear function of lnT with slopefor qT   

(Fig. 2). This transformation makes even moderate values of  easily discernable. In 

the cases where the prey was eaten at less than 5 locations, only the type II 

relationship was fitted to avoid estimates based on only one residual degree of 

freedom. 235 

Apart from the species-specific functional response, the response to the prey 

groups clupeids (herring and sprat) and gadoids (whiting, haddock and Norway pout) 

was estimated. The first group represented schooling prey whereas the latter group 

consisted of non-schooling, more demersal prey (Bailey, 1975; Bromley and Kell, 

1995). The grouping of species is only valid if the parameters in the functional 240 

response model of all prey species in the group are similar. As the catchability of 

demersal juvenile gadoids is likely to be higher than that of pelagic clupeids, it was 

not attempted to fit one common functional response to all fish prey. 
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Single species and prey group functional responses may not be accurate in the 

presence of varying amounts of other prey (Krylov, 1992; Mattila and Bonsdorff, 245 

1998). Murdoch (1973) therefore suggested using a multispecies type II functional 

response, where the intake rate of prey i, ni, is given by 
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where '
ia and '

it is the attack rate and handling time, respectively, for prey i, m denotes 

prey type and M is the number of types. Dividing by the maximum intake and 250 

inserting (2), the model becomes 
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where 1
max,

1'  iiii nqaa  and iii ntt max,
' . The parameters are directly related to the 

parameters in the single species type II responses as formulated in (5) as 1 ii tK  and 

11  iiii taq  . The parameters in this multispecies functional response model were 255 

estimated by minimising the sum of squared deviations between the natural log to 

observed and predicted intake relative to the maximum. The Marquardt algorithm for 

non-linear minimization in SAS version 8 for Windows was used. One observation 

corresponded to the intake of one prey species at one location. As the species haddock 

and Norway pout were only consumed at one location, they were joined with whiting 260 

in a gadoid prey group. The model was fitted for the two larger predator groups only 

as fish consumption of the smallest predator group was low at several locations. 

 

Diel cycles in fish consumption 
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In the analyses of functional response, prey classified as ‘very fresh’ were 265 

assumed to have been eaten in the trawl (Main and Sangster, 1981) and discarded. 

This led to the conclusion that newly ingested prey was virtually absent from the 

stomachs at the location where fish consumption was highest. This seemed unrealistic. 

Including ‘very fresh’ prey when analysing diel cycles in food intake may positively 

bias the pattern, but the bias should enhance the diel pattern rather than alter it, if 270 

feeding in the trawl is governed by the same mechanism as feeding in the wild (e.g. 

light levels). In contrast, discarding ‘very fresh’ prey will lead to underestimation of 

the amount of newly ingested food in the periods of intense feeding on this prey and 

thereby dampen the diel changes. Based on these considerations, it was decided to 

combine ‘very fresh’ and ‘fresh’ prey and include all prey found in the stomachs in 275 

the investigation of diel feeding cycles and predator specialisation. 

To determine if a diel cycle in the intake of fish prey could be detected, the 

occurrence of ‘very fresh’ and ‘fresh’ fish in the stomachs was examined. Diel 

changes were investigated by calculating the proportion of prey at each location and 

time of day which was classified as ‘very fresh’ or ‘fresh’, nfresh,i/( nfresh,i +nold,i), where 280 

nfresh,i is the number of prey of species i recorded as ‘very fresh’ or ‘fresh’ and nold,i is 

the number of more digested prey i, both in the stomachs sampled at the particular 

time and location. An increase in the proportion of ‘very fresh’ or ‘fresh’ fish from 

one time of day to the next should correspond to ingestion of prey. The interpretation 

of a decrease in the proportion is less clear, as this could be caused by digestion alone 285 

or by a combination of digestion and a low rate of ingestion. All predator length 

groups were considered together, as diel patterns in availability of the prey are likely 

to have a similar effect on all predators. The diel pattern in the intake of other prey in 

whiting stomachs has previously been shown not to vary between predator length 
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groups (Rindorf, 2003). To make the diel pattern in the occurrence of ‘very fresh’ or 290 

‘fresh’ fish prey directly comparable between locations, occurrence of ‘very fresh’ or 

‘fresh’ prey i at a location was calculated relative to the average occurrence of ‘very 

fresh’ or ‘fresh’ prey i at the location: 
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where k denotes time of day (4 hour sampling intervals) and 6 is the number of 4-hour 295 

intervals during 24 hours. Only locations where a minimum of five prey were 

recorded as ‘very fresh’ or ‘fresh’ were examined. This left sprat at location 1, herring 

at locations 1 and 3, whiting at location 3 and 5 and Norway pout and haddock at 

location 5. The length group 20 to 24.9 cm was only included for whiting prey as 

consumption of other fish by this group was low. A total of 633 fish prey were found 300 

in this subset of data and of these, 135 were classified as ‘very fresh’ or ‘fresh’. 

 

Specialised predators 

A saturation level of the predator population which is below the digestive 

capacity could theoretically be due to full saturation of ‘fish’ specialists and no 305 

feeding on fish by the other individuals if some whiting specialise in eating fish 

(Chesson, 1984). Such prey specialisation should lead to a higher occurrence of ‘old’ 

fish relative to that of other prey in stomachs containing ‘very fresh’ or ‘fresh’ fish 

than is found in stomachs without ‘very fresh’ or ‘fresh’ fish. This was examined by 

dividing the occurrence of ‘old’ fish with the occurrence of other prey to obtain the 310 

relative occurrence of fish, RO, in stomachs with and without ‘very fresh’ or ‘fresh’ 

fish: 
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where of is the occurrence ‘old’ fish prey and oot is that of other ‘old’ prey.  This 315 

relative occurrence was calculated for each predator length group at each location for 

both stomachs with and without ‘very fresh’ or ‘fresh’ fish in the cases where at least 

5 stomachs in a length group at a given location contained both fish categorised as 

‘very fresh’ or ‘fresh’ and more digested prey. 

 320 

Aggregative response and density dependent mortality 

The average catch of predators in each length group was estimated by first 

calculating the geometric average catch at each time of day and then the diel average 

as the mean of the catches at different times of day. Assuming the same catchability 

for all three size groups of whiting, an index of the total mortality of sprat, herring and 325 

juvenile whiting, MIi, was calculated as: 
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where Tpd,l is the trawl catch of predators of length group l, Ti denotes trawl catch of 

prey i and ni,l is the number of prey i eaten per day by a predator of length group l.  ni,l 

was estimated as the weight of prey consumed divided by the mean weight of ‘fresh’ 330 

prey in the stomachs. This mortality index is proportional to the per cent mortality 

induced by whiting on the prey as 
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where qpd and qi is the catchability of the predator and prey species i, respectively. The 

relationship between this mortality index and predator and prey catch was investigated 335 

graphically.  

 

Results 

Food intake  

The maximum daily intake in wet weight corresponded to 4.3 to 6.2% body 340 

weight (largest and smallest length group, respectively) at the warmest location and 

around 3.1% body weight at the coldest. The weight of the total food intake was 

highly correlated to temperature (correlations= 0.86 to 0.95, P>0=0.02 to 0.04, Fig. 

3C and F). This effect was caused by an increase in consumption by weight of other 

food with temperature (correlations= 0.84 to 0.95, P>0=0.01 to 0.08, Fig. 3B), 345 

whereby the predators maintained an intake of other food between 8 to 22%, 10 to 

20% and 8 to 17% of maximum daily ration for predators of length 20 to 24.9 cm, 25 

to 29.9 cm and 30 to 34.9 cm, respectively (Fig. 3E). In contrast, the intake of fish 

was not significantly correlated to temperature neither when expressed by weight nor 

when expressed in percent of maximum intake (correlations=-0.47 to 0.80, P>0=0.10 350 

to 0.67, Fig. 3A and D). The fish intake in per cent of maximum varied between 

locations by a factor 36, 29 and 17 for the three length groups, respectively, whereas 

the intake of other food varied by no more than a factor 3. There was no significant 

correlation between the intake of fish and other prey in either weight or percentage of 

maximum ration (correlations= -0.30 to 0.73, P>0=0.16 to 0.81). 355 

  

Density of fish prey 
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The maximum length of fish in the stomachs (Lc) was 11 cm for gadoids and 

14 cm for clupeids. Prey density varied greatly between locations (Fig. 4). Locations 1 

and 3 were characterised by high sprat and herring density, respectively, whereas 360 

whiting catches were highest at locations 3 and 5. Haddock and Norway pout were 

caught in significant numbers at location 5 only. Location 4 was characterised by low 

catches of all prey species. 

 

Functional response 365 

The functional response to herring appeared to follow a type III response closely but 

the value of  was quite low (≤1.8) and the response was only slightly different from 

a type II response (Fig. 5, Table 2). Sprat consumption was more erratic, but a fair fit 

was achieved by a type II response (Fig. 5, Table 2). As the low sprat consumption at 

location 3 was compensated for by high consumption of herring, total clupeid 370 

consumption showed a smooth response (Fig. 6, Table 2). Only minor improvements 

of the fit were obtained by fitting a type III rather than a type II response to total 

clupeid intake. However, whereas the type II response did not fall within the 95% 

confidence limits of all data points, the type III did. Whiting consumption increased 

with density but no clear plateau was reached. Nevertheless, total gadoid consumption 375 

was well described by a type II response (Fig. 6, Table 2). The consumption of 

gadoids was characterised by a much higher half saturation constant (q≥514) than 

the consumption of clupeids (20≤q≤159). The saturation level did not correspond to 

maximum intake rate for any of the species and the intake of the individual prey 

groups in no case exceeded 20% of maximum daily ration (Fig. 5, 100%*K in Table 380 

3).  
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The multispecies functional response provided very poor fits to the 

consumption of both larger predator groups (Fig. 7, Table 3). This was linked 

primarily to two events: A high gadoid intake at location 3, where herring density was 

so high, that few other prey should have been consumed according to the model, and a 385 

high herring intake compared to that of sprat at location 1, where the high density of 

the latter should have led to a higher intake of sprat than herring. 

 

Diel cycles in fish consumption 

All prey species but Norway pout showed two diel peaks in ingestion, one in 390 

the morning and one in the afternoon (Fig. 8). The location of the morning and 

afternoon peak corresponded closely to the period around dawn and sunset, 

respectively (Table 1). The ingestion around midday was low, though sprat appeared 

to be continually ingested from sometime around sunrise to later in the morning 

hours. The intake of herring and haddock was slightly higher in the afternoon than in 395 

the morning whereas the opposite was true for sprat and whiting. However, the 

difference between the two peaks was minor, and as the number of observations was 

limited, it may be caused by random effects rather than actual differences between 

species. Norway pout showed only one peak around 15.00 hours, and thus differed 

from the other prey species. Ingestion during darkness was low for all species but 400 

whiting at location 5. At this location, the afternoon peak in ingestion continued some 

hours after sunset. 

 

Specialised predators 

At the combinations of predator size and location where the minimum number 405 

of 5 stomachs containing both ‘very fresh’ or ‘fresh’ fish and old food were obtained, 
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the relative ‘old’ fish occurrence was higher in stomachs containing ‘very fresh’ or 

‘fresh’ fish than in stomachs without ‘very fresh’ or ‘fresh’ fish in 2 cases, whereas 

the opposite was true in the remaining 4 cases. ‘Old’ other prey were not completely 

absent from stomachs containing ‘very fresh’ or ‘fresh’ fish in any case. No tendency 410 

for predators to specialize on fish could thus be detected. 

 

Aggregative response and density dependent mortality 

The natural log to the catch of prey was negatively correlated to that of the 

predator for all combinations of prey and predator size group but two (Fig. 9). 415 

However, only the correlation between herring and whiting of length 25 to 29.9 cm 

(correlation -0.92, P=0.03) was significant. As the probability of achieving one 

significant correlation in 9 by type II error is 0.30, this result may be caused by 

chance effects. The mortality index of clupeids increased initially with density but 

then declined again to very low values.  Mortality of whiting decreased slightly with 420 

density, but the pattern was highly erratic. The mortality index was negatively 

correlated to prey density for all prey and predator combinations (Fig. 9), but none of 

these correlations were significant at the 5% level. There was thus some indication of 

negatively density dependent mortality of the prey caused by a combination of an 

inverse numerical response and a saturation of individual predators, but the results 425 

were not conclusive. 

 

Discussion 

Consumption of clupeids by whiting was saturated around a total intake of 10 

and 17% of maximum daily ration for predators of size 25 to 29.9 cm and 30 to 34.9 430 

cm, respectively, whereas gadoid consumption saturated around 6% of maximum 
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daily ration for these two length groups. The predator population was thus never 

limited by gastric processing rate even though prey density was very high at some 

locations. The lack of saturation was not linked to high intake rates of other prey as 

the intake of these was uncorrelated with that of fish. Neither did it appear to be 435 

caused by the division of the population into ‘fish’- and ‘other food’-specialists as no 

indication was found in the stomach contents that individual predators foraged 

consistently on one prey type. As fish prey were predominantly eaten around dawn 

and dusk, the length of the twilight period may have eliminated the direct choice 

between fish and other prey, providing an explanation for the lack of negative 440 

correlation between the two. The total intake of fish prey was not enhanced by a 

consistent aggregative response and density dependent mortality occurred only at 

moderate densities of clupeids. No positive density dependence was found for 

juvenile whiting.  

The discrepancy between the digestive capacity and saturation level may have 445 

several explanations though a number of them are unlikely to apply to the present 

study. First of all, the uncertainty about whether to include or exclude prey in pristine 

condition from the stomach content is a potential source of error in this study. If ‘very 

fresh’ prey are included, the estimated consumption is on average increased by 0.04% 

of the maximum daily ration compared to the estimate excluding ‘very fresh’ prey. 450 

The largest effect was found on the intake of gadoids in the largest predator group 

where intake was increased by 1% of maximum daily intake at location 3. There was 

no effect on the estimated half saturation density and the effect on the intake of the 

remaining prey-predator combinations was negligible. However, the problem does 

stress the need to clarify the extent of trawl feeding. The estimation of the digestive 455 

saturation level of the predator is obviously highly dependent on the estimated 
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maximum daily ration. Literature values of daily intake of whiting in the wild range 

from 1.42 to 3.82% (Malyshev, 1980; Patterson, 1985), and a daily intake of 3.4% of 

body weight at a temperature of 14oC of whiting fed ad libitum in aquaria has been 

reported (Seyhan and Grove, 1998). The maximum daily intake rates used here 460 

correspond to 2.7% to 6.1 % body weight, with an average of 3.3% and hence 

correspond well with reports from other studies. 

Schooling fish are extremely patchy in their distribution, and patchiness of prey 

has been shown to decrease the slope of the initial increase of a type II response 

(Essington et al., 2000). Though no evidence of a direct effect of patchiness on 465 

saturation level was found in the study of Essington et al. (2000), this may be an 

effect of the assumption of spatial overlap between predator and prey. If prey are 

patchily distributed over the trawled area and the predator does not show a local 

aggregative response, predators caught in one part of the trawl haul may not have 

overlapped spatially with the prey and may thus have been unable to feed on it. Such 470 

an effect would lead to an apparent saturation well below the physiological maximum 

as the predators which overlapped with the prey became saturated while predators in 

other areas fed on other prey. This effect would further explain the high intake of 

gadoids at the location where the predators were supposed to be saturated with 

clupeids according to the multispecies functional response.  475 

The estimation of the functional response relies on the assumption that the trawl 

catch is proportional to the density of the prey. A violation of this assumption will 

introduce variation around the relationship, but this variation only leads to bias if the 

proportionality factor increases with prey density (density dependent catchability). In 

this case, the apparent saturation of the predators may be caused by an overestimation 480 

of prey density when trawl catches are large. There are indications that catchability of 
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larger gadoids may increase with density (Godø et al., 1999). However, to produce the 

functional response recorded here, an average catch of 20 herring (the lowest catch at 

which saturation was reached) would have to correspond to the same ambient density 

as a catch of more than 9000 herring (the catch at the location with highest catches of 485 

herring, also corresponding to a saturated intake). Density dependent effects on 

catchability of this magnitude greatly exceed those reported by Godø et al. (1999). 

Further, the catchability of juvenile gadoids may actually decrease with density (Godø 

and Wespestad, 1993). However, even if the trawl reflects the density in the trawled 

volume accurately, this density is not necessarily equal to the density experienced by 490 

the predators. If the pelagic density of prey varies independently of that near the 

bottom, the predators may have experienced a different density than that reflected by 

the trawl. Though this may be a problem, it does not explain the lack of digestive 

saturation at high clupeid catch rates. To achieve this result, the predators should 

migrate vertically out of the high density area near the bottom to feed in layers of 495 

lower density. It was also assumed that all prey below the critical length were equally 

accessible to the predators. This assumption may not hold in all cases, but in the data 

at hand, the modal length of fish prey in the stomachs corresponded closely to the 

modal lengths observed in the trawl (12 to 14 cm for clupeids, 7 to 10 cm for 

gadoids). Lastly, though the analyses obviously were hampered by the low number of 500 

locations sampled, this effect was partially alleviated by the high precision of the 

observed prey densities and consumption rates. This precision rendered the 

conclusions more credible than if they had been based on a large number of 

observations for which the variance of the estimates was unknown (Kendal and Stuart 

1961). 505 
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Lack of digestive saturation with one prey was also seen in a study of 

largemouth bass (Micropterus salmoides Lacepède), which consumed only 50% of 

maximum daily ration in their natural environment though prey density was very high 

(Essington et al., 2000). The lack of digestive saturation may thus be a generally 

occurring phenomenon in piscivores. It is interesting to note the remarkable constancy 510 

of the intake of other food (Fig. 3). As the density of other food was not determined, it 

is not possible to link the intake to prey density and it remains unresolved whether the 

approximately constant intake was caused by saturation of the predator preying on a 

relatively unlimited resource at all locations or by a non-saturated predator feeding on 

approximately equal prey densities at all locations.  515 

The functional responses were generally well described by type II relationships 

though there was a slight tendency towards a type III shaped response. The type III 

response has previously been suggested to be linked to either learning by the predator 

or to a limited number of prey refuges (Murdoch, 1973). Though juvenile gadoids 

may utilise natural shelters on the bottom (Gotceitas et al., 1995), both herring and 520 

sprat are obligate schoolers and thus unlikely to have a limited number of refuges. 

These species rely on the protective value of the school and this increases with school 

size (Major, 1978; Parrish, 1992). Schooling should hence lead to a decrease in 

vulnerability of the individual prey with prey density and a type II rather than a type 

III response. The intake of both clupeids and gadoids were well described by a 525 

common functional response for each prey group. However, the trawl catch of 

gadoids at which 50% of the saturation level was reached was much higher than for 

clupeids (Table 2). Due to the unknown catchabilities it is not possible to conclude 

whether this was caused by actual differences in density of gadoids and clupeids at 

half-saturation. 530 
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The diel pattern in intake was remarkably similar for all the five fish species as 

judged from the occurrence of ‘very fresh’ and ‘fresh’ prey. Peak feeding took place 

around dawn and dusk. It may therefore have been more relevant to compare the 

consumption directly to the density of prey at these times of day. However, the 

differences in feeding is probably related to increased vulnerability of the prey at 535 

moderate light levels (Hobson, 1986; Pitcher and Turner, 1986), and not necessarily to 

changes in density. Hence comparing dawn or dusk catches to consumption is 

unlikely to provide a more appropriate functional response. Unfortunately, data did 

not allow the duration of the non-feeding periods to be estimated, as it is not known 

for how long a prey would be categories as ‘very fresh’ or ‘fresh’ after ingestion.  540 

No evidence was found to support a division of the predators into ‘fish’ and 

‘other food’ specialists, neither by this study, nor by Rindorf (2003) using a different 

method. However, the strength of the applied tests was probably inadequate to refute 

the hypothesis completely. If the predators tend to specialise on e.g. clupeids or 

gadoids, this could potentially explain the poor fit of the multispecies functional 545 

response: though the predators could supposedly have been saturated with herring at 

location 3, they were observed to be feeding to a large extent on whiting. Thus the 

high availability of one prey did not affect the intake of the other. Such a pattern 

would naturally occur if the predatory whiting were divided into clupeid and gadoid 

specialists.  550 

Whether predator specialisation or lack of spatial overlap with the prey is the 

explanation of the lack of saturation at the population level, it does not alter the 

conclusions regarding the effect of the predator population on prey mortality. Clupeid 

intake by the largest predators followed a slightly sigmoid (type III) response and 

these prey could potentially be regulated by whiting. However, as a consistent 555 
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aggregative response was absent, mortality of clupeids peaked at intermediate 

densities (corresponding to q) and then decreased to virtually zero at high densities. 

The clupeid prey thus rapidly escaped predator control and whiting predation was 

unlikely to have a direct regulatory effect at high densities. In comparison, the 

mortality of juvenile whiting was less variable with no clear trend. Note that the 560 

mortality index is proportional to prey catchability and therefore not readily 

comparable between species. However, as sprat and herring are likely to have 

approximately equal catchabilities (Sparholt, 1990) the mortality imposed on herring 

seems generally to exceed that imposed on sprat. This indicates either a higher 

encounter rate with herring than sprat, a preference for herring over sprat or a 565 

combination of the two. As the mortality imposed by whiting on clupeids was 

virtually zero at high densities, it is clear that if whiting predation was the sole source 

of mortality, evolution should favour a strong aggregative response of clupeids. 

However, the beneficial effect of prey aggregation would be severely diminished if 

the predator also concentrated in areas of high prey density (Anderson, 2001). 570 

Whether the negative correlation between herring and large whiting was achieved by 

the prey actively evading high predator densities or by other factors remains to be 

determined.  

Though density dependence was not achieved directly from the combined 

aggregative and functional responses, density dependence could arise if high prey 575 

density increased predator growth (Murdoch, 1973). Enhanced predator growth at 

high prey densities combined with increased attack rate and saturation level of larger 

predators could result in density dependent mortality after some time. While 

saturation level did not increase with predator size for gadoids (Table 2), both attack 

rate and saturation level increased with predator size for clupeids, and for clupeids 580 
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density dependent mortality can therefore potentially be introduced indirectly over a 

greater range of densities than indicated by the mortality index.  

This study has demonstrated the error committed by assuming that the predator 

population is presented with a direct choice between numerous prey types, each of 

which potentially could constitute the entire diet of the predator. Such assumptions are 585 

common in population models (Murdoch, 1973; Gislason and Helgason, 1985; 

Abrams, 1999; Post et al., 2000) and most models neglect predator specialisation and 

diel changes in prey availability. A predator experiencing a temporal segregation of 

the prey may maintain a high predation rate on a particular prey regardless of the 

density of the alternative prey. Transient mutualism (Holt, 1977), where a prey 590 

species benefit from a high density of alternative prey, need not exist in such a 

system. Rather, the effect of alternative food on fish consumption may be the adverse 

as the predator population may be able to maintain a high density on the alternative 

food alone (apparent competition, Holt, 1977; Abrams and Matsuda, 1993). This 

effect may lead to high predation rates even after several years of low fish prey 595 

density, keeping the prey at a low level. Such an effect may be present in some marine 

ecosystems, where low prey densities have been known to be sustained for a decade 

or more in locations that previously supported large densities (Collie and DeLong, 

1999). 

 600 
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Appendix 

 

Estimation of food intake 

The average hourly intake of species i, Wi, by each predator size group at each 760 

location was calculated over a 48 hour period as 
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The estimation of average hourly intake of species i by eq. 1 requires an 

estimate of prey species specific evacuation rate, i
’. This evacuation rate was 765 

corrected for the effect of other food in the stomach on the evacuation of prey i by 

estimating i
’ as 

  resiiiii   1'  

where i is the proportion of the contents which consists of species i in the stomachs 

where i is found, i is the evacuation rate of species i, and res is the evacuation rate of 770 

the remaining stomach contents (Rindorf and Lewy, in press.). Evacuation rates for 

the five prey species are given in Table 1A. The estimated evacuation rates of the 

remaining contents are given in Rindorf and Lewy (in press.) for the size group 25 to 

29.9 cm and the estimates for the adjacent groups were calculated by the same method 

as the estimates for 25 to 29.9 cm whiting. Food intake was estimated separately for 775 

each predator length group and the estimation of 


jiS , and 


jiS ,  followed the 

description given in Rindorf and Lewy (in press.). Briefly, the average content of prey 

i at a given time and location was estimated as the product of the proportion of 

stomachs that contained prey i and the mean weight of prey i present in the stomachs 

where prey i occurred. Both occurrence and mean weight of each prey species were 780 

estimated by using generalised linear models to evaluate the effect of time of day, 

predator length and location and to reveal if trends over the sampling period were 

present (Rindorf, 2003; 2004). Insignificant effects were removed from the models 

and the reduced models used to estimate occurrence and mean weight. Thus, if the 

occurrence of a prey did not differ between samples, a common occurrence was 785 

estimated for all samples taken from the given predator length group and location. 

The procedure is described in detail elsewhere (Rindorf, 2003; 2004; Rindorf and 
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Lewy, in press.). It provides more precise estimates than a simple sample average but 

complicates the calculation of confidence limits of the estimated consumption. These 

were therefore estimated by parametric bootstrap as described in the appendix. 790 

 

Estimation of variance of estimated trawl catch and food intake 

The variance of the estimated consumption was calculated by parametric 

bootstrap (Davison and Hinkley, 1997). This was performed by simulating a new data 

set containing the same number of hauls and stomachs collected within each haul as 795 

the original data set. Each simulated stomach had a probability of containing the 

particular prey equal to the occurrence of this prey (Rindorf, 2003). If the prey was 

present in the simulated stomach, the mean weight was simulated from a gamma 

distribution with the shape and scale parameters estimated from the original data 

(Rindorf, 2004). A set of stomach contents were simulated for each prey at each 800 

location. The simulated stomachs were then used to estimate consumption by the 

exact same procedure as was used analysing the original data, i.e. by first fitting 

generalised linear models to the food composition as described by Rindorf (2003; 

2004) and then estimating consumption by (2). This estimation of consumption from 

simulated data was performed 500 times and the results were used to calculate the 805 

variance of the estimated consumption.  

The variance of the average trawl catch was estimated in a similar way. A new 

data set was simulated containing the same number of hauls as the original data set. 

Each haul had a probability of containing the particular prey equal to the proportion of 

hauls in which the prey was found in the original data from the location. If a simulated 810 

haul contained the prey, the total number caught was simulated from a gamma 

distribution with the scale parameter equal to the estimated parameter at the given 
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location and time. The shape parameter (and hence the coefficient of variation) was 

set to the common shape of all hauls in the observed data. The proportion of the catch 

which consisted of possible prey was simulated from the observed number of fish 815 

measured and the proportion of these which were below Lc at the given location and 

time of day. From this simulated series of hauls, an estimated trawl catch was 

calculated for each location and prey by (3). The procedure was performed 500 times 

for each prey and the variance of the estimated catch calculated as the variance of the 

estimated trawl catches in the simulated data.  820 

 

Estimation of maximum daily ration of whiting 

The maximum daily intake of whiting has been estimated by recording the 

voluntary intake of sandeel by fish in aquaria (Andersen and Riis-Vestergaard, 2003). 

However, as other experiments indicate that the factor limiting food intake is stomach 825 

fullness (Grove and Crawford, 1980; Sims et al., 1996; Hossain et al., 1998; Seyhan et 

al., 1998) and as stomach fullness depends on both intake rate and stomach evacuation 

rate, evacuation rate and maximum food intake are intrinsically linked. The results 

from the study of Andersen and Riis-Vestergaard (2003) can hence not be used 

directly in the present study, as the whiting in the present study had a varied diet 830 

consisting of both rapidly and slowly evacuated prey. Instead, the maximum 

maintained amount of food in the stomach, Smax, can be estimated and used to 

estimate maximum daily ration.  

The maximum food intake in gram sandeel, Wmax,sandeel of whiting can be 

described by the relationship 835 

temp
sandeel eLW 076.028.2

max, 00122.0   A1 
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where L is total length of the predator and temp is temperature in oC (Andersen and 

Riis-Vestergaard, 2003). As 

maxmax, 24 SW sandeelsandeel   

 where  840 

temp
sandeel eL 078.044.1000271.0   A3 

is the temperature and predator size dependent evacuation rate of sandeel with an 

energy density of 6.08 KJ/g (Pennington, 1985; Andersen, 2001), this corresponds to 

a sustained stomach content of 

2

max
max 24 










sandeel

W
S


   A2 845 

Inserting A1 and A3 in A2, the maximum sustainable stomach content becomes 

tempeLS 004.068.1
max 0352.0   

The maximum daily food intake can then be calculated directly from Smax as 

maxmax 24 SW tot  

wheretot is the temperature and predator size dependent evacuation rate of the total 850 

stomach content (Pennington, 1985). tot was calculated by using the relationship 

between evacuation rate, predator length and temperature given by Andersen (1998) 

and is described in detail in Rindorf and Lewy (in press). The estimation resulted in 

an estimate of the maximum wet weight consumed by each predator size group at 

each location. 855 
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Table 1. Depth, bottom temperature, sunrise and sunset and civil twilight (dawn/dusk) 

at the five locations 

Location 1 2 3 4 5

Bottom depth (m) 44 46 53 73 137

Bottom temperature (o C) 16.7 13.7 10.6 8.2 8.6

Sunrise 4.55 4.44 4.42 5.01 5.1

Sunset 18.17 18.27 18.32 18.33 18.37

Civil twilight (dawn) 4.18 4.06 4.03 4.23 4.32

Civil twilight (dusk) 18.54 19.05 19.12 19.11 19.17  

 860 
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Table 2. Parameter estimates of functional response curves. Parameters are given 

when a plateau in consumption was reached. r2 was calculated in the cases where the 

prey was consumed at 4 or more locations. 

Prey 
Predator 
length Type K q  r2 

Sprat 20-24.9 II 0.0032 46 1 - 
  25-29.9 II 0.019 9.5 1 0.76b 
  30-34.9 II 0.020 11 1 0.59b 
              
Herring 20-24.9 II 0.013 17 1 - 
  25-29.9 II 0.085 36 1 0.87 
  25-29.9 III 0.082 15 1.5 0.92 
  30-34.9 II 0.17 57 1 0.88 
  30-34.9 III 0.16 14 1.8 0.98 
              
Whiting 20-24.9 II - - 1 0.70 
 20-24.9 III - - 1.7 0.70 
 25-29.9 II - - 1 0.65 
 25-29.9 III 0.089 1586 1.3 0.66 
 30-34.9 IIa 0.022 243 1 0.37 
       
Clupeids 20-24.9 II 0.014 159 1 - 
  25-29.9 II 0.10 59 1 0.95 
  25-29.9 III 0.095 24 1.4 0.97 
  30-34.9 II 0.17 95 1 0.93 
  30-34.9 III 0.16 20 1.8 0.99 
       
Gadoids 20-24.9 II  - - 1 0.85 
  20-24.9 III - - 1.5 0.85 
  25-29.9 II  0.12 2907 1 0.90 
  25-29.9 III 0.055 514 1.7 0.93 
  30-34.9 IIa 0.063 965 1 0.79 
 865 
a Type III was identical to type II 

b Only 4 locations included  
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Table 3. Summary of the multispecies functional response for the two larger predator 870 

groups.  

Prey 

Predator 

length ai aiti Ki qii r2 

              

Sprat   0.386 0.83 0.47 1.21   

Herring 25-29.9 0.585 0.57 1.03 1.75 0.27 

Gadoids   0.029 1.63 0.018 0.61   

              

Sprat   0.315 0.71 0.32 1.42   

Herring 30-34.9 0.656 0.59 1.12 1.70 0.45 

Gadoids   0.029 1.19 0.025 0.84   
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Table 1A. Estimation of evacuation rates. The evacuation rate of prey i in predators of 

size L caught at a location with temperature temp was estimated as i= 875 

LT,iL1.44e0.078temp (Andersen, 1999). LT,i was calculated from the relationship 

LT,i=0.00128Ei
-0.86 (Andersen, 2001), where Ei is energy density of the prey in kJ/g 

taken from Pedersen and Hislop (2001).  

 

Prey group Ei 103LT,i 

Haddock 3.9 0.397 

Herring 4.3 0.368 

Norway pout 4.7 0.338 

Sprat 6.5 0.256 

Whiting 3.7 0.415 

 880 
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Fig. 1. Map of sampling locations. 

 

Fig. 2. Theoretical type II (‑‑‑) and III () responses. A: Arithmetic scale. B: 

Logarithmic scale. Parameter values: type II: q=20, =1, K=100, type III: q=20, 885 

=3, K=100. Notice how clear the difference between the lower part of the curves is 

on B compared to A. 

 

Fig. 3. The amount of fish (clupeids and gadoids) (A and D), other food (B and E) and 

fish and other food together (C and F) consumed per predator per day as a function of 890 

temperature. A, B and C: consumption in g. D, E and F: consumption in per cent of 

maximum daily ration. Predator size 20 to 24.9 cm (), 25 to 29.9 cm () and 30 to 

34.9 cm (). 

 

Fig. 4. Average number of fish smaller than Lc caught per trawl hour of each species. 895 

Sprat (), herring (), whiting (), haddock () and Norway pout ( ). Bars 

indicate 95% confidence limits of the mean. 

 

Fig. 5. Amount of prey consumed per predator per day divided by maximum daily 

ration as a function of number of prey caught per trawl hour. A, B and C: Sprat, D, E 900 

and F: Herring. G, H and I: Whiting. Predator size 20 to 24.9 cm (left panel), 25 to 

29.9 cm (middle panel) and 30 to 34.9 cm (right panel). Bars indicate 95% confidence 

limits of the estimate. ‑‑‑: Fitted type II response. ———: Fitted type III response. 

 

Fig. 6. Amount of each prey group consumed relative to maximum daily ration as a 905 

function of number of prey caught per trawl hour. A, B and C: Clupeids (sprat and 
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herring), D, E and F: Gadoids (whiting, haddock and Norway pout). G, H and I: All 

fish prey. Predator size 20 to 24.9 cm (left panel), 25 to 29.9 cm (middle panel) and 

30 to 34.9 cm (right panel). Bars indicate 95% confidence limits of the estimate. ‑‑‑: 

Fitted type II response. ———: Fitted type III response. 910 

Fig. 7. Fit of the multispecies functional response to consumption. Intake of sprat (A 

and D), herring (B and E) and whiting (C and F). Observed: . Bars indicate 95% 

confidence intervals of the intake. Predicted by multispecies model: . Predator 

length 25 to 29.9 cm (A, B and C) and 30 to 34.9 cm (D, E and F). 

 915 

Fig. 8. The proportion of prey found in the stomachs classified as ‘fresh’ relative to 

the average proportion for the given prey and location as a function of time of day. A: 

Sprat. B: Herring. C: Whiting. D: Haddock. E: Norway pout. Location 1 (), 3() 

and 5 (). Open symbols indicate times where less than 5 prey were present for 

classification. Shaded areas indicate period of darkness. 920 

 

Fig. 9. Number of predatory whiting caught and mortality index induced by these 

whiting on each prey as a function of number of prey caught. A and D: Sprat. B and 

E: Herring. C and F: Whiting. Predator size 20 to 24.9 cm (), 25 to 29.9 cm (), 30 

to 34.9 cm () and all predator length together (). Symbols placed directly on the 925 

horizontal axis indicate zero mortality. 
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