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The compound pendulum in intermediate laboratories and

demonstrations

N. F. Pedersen and O. Hoffmann Soerensen

Physics Laboratory I, The Technical University of Denmark, DK-2800 Lyngby, Denmark

(Received 25 March 1975; revised 17 April 1975)

A student laboratory course on the motion of the compound pendulum is described. The
course is suited for physics and engineering students in their first year and requires a
background in mechanics and mathematics corresponding to a one-semester course in these
disciplines. The purpose of this course is to present a system to the students which can be
approached experimentally and to some extent theoretically using elementary methods, and
hence allow the students to practice their newly acquired knowledge. All the experimental
results presented here are obtained by the students using a simple and readily fabricated

version of the compound pendulum.

I. INTRODUCTION

The problem of describing rotating bodies within the
framework of classical mechanics usuaily presents dif-
ficulties to the physics or engineering student in his fresh-
man year. Although the description is simple and
straightforward the student is often unfamiliar with con-
cepts as torque, angular momentum, and moment of inertia.
What he needs in order to familiarize himself with these
concepts is to get the opportunity to gain his own experience.
We have designed a laboratory course where the students,
by combining experiments with a theoretical approach,
discover how the various quantities are interrelated in de-
termining the motion of the system.

There are several reasons why it was decided to consider
the compound pendulum in this laboratory course. First,
the equation of motion in the gravitational field, with
damping and externally applied torque included, cannot be
solved analytically, but it is quite easy to examine the system
by experimental methods. Second, many systems of great
practical importance are described by the same nonlinear,
second-order differential equation, e.g., the Josephson
junction (the compound pendulum as a mechanical analog
to the Josephson junction has been discussed in this journal
earlier’-2), the phase-locked loop,? and the synchronous
motor.* This makes it valuable to acquire experience as to
how such a system reacts to parameter changes. Third, the
physical pendulum used here is a very simple system which
is readily fabricated in any mechanical workshop, and yet
it possesses an almost inexhaustible variety of modes of
operation.

The laboratory course, the contents of which are de-
scribed in detail below, was aimed at students of engineering
in their freshman year and followed one semester of courses
in classical mechanics and in mathematics. A total number
of 22 students, divided into four groups, participated. Each
team worked independently with its own experimental
setup. The students worked full time for three weeks, and
it is estimated that they spent half their time on experiments
and the other half on theory, data analysis, etc.

II. EXPERIMENTAL EQUIPMENT

The compound pendulum is shown in Fig. 1. The pen-
dulum stand carries a rigid stainless-steel shaft (diam 3 mm,
length 110 mm) mounted in virtually frictionless ball
bearings. On the shaft are mounted two aluminum disks
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(diam 170 mm, thickness 1.25 mm) and two pendulums
(weight 8 g, length 70 mm). The angle between the pen-
dulum arms and their lengths are adjustable.

One of the two aluminum discs may be dismounted, thus
allowing a change of the total moment of inertia. The other
is an indispensable part of the system, because it, in addition
to being a second “fly-wheel,” has four auxiliary func-
tions:

(1) The pendulum is driven by an external torque which
is applied by blowing compressed air (from the laboratory
supply) tangentially on to a sheet of sandpaper glued to the
disk. A water-filled manometer (length ~1000 mm) con-
nected as indicated in Fig. 1 was used to monitor the air
pressure and hence the applied torque.

(2) The motion of the pendulum is damped due to the
eddy currents induced in the aluminum disk by means of
an electromagnet (4000 turns of 0.7-mm diam copper wire
on a 10-mm diameter soft iron core). ‘

(3) When the pendulum oscillates, the deflections is
measured by means of a fixed pointer and a sheet of polar
graph paper glued to the disk. The period of oscillation is
in this case determined by means of a stop watch.

(4) Finally, when the pendulum rotates the angular ve-
locity is determined as follows: two 1 mm holes about 20
mm apart are drilled near the periphery of the disc (shown
in Fig. 1). A small light bulb is mounted in front of the disc
and a photodiode connected to a pulse shaping circuit is
mounted behind the disc. When the disc rotates, the time
average of the angular velocity is determined from the time
lapse between each set of double pulses from the photo-
diode, whereas the instantaneous angular velocity is de-
termined from the time lapse between the individual pulses
of a pair.

III. EXPERIMENTAL AND THEORETICAL
APPROACH

The pendulum equation is
10 + k& + D sinf = H, (1)

where 0 is the angle measured from vertical down (the dot
means taking the derivative with respect to time), 7 is the
moment of inertia, k is the damping coefficient, D is the
maximum gravitational torque, and H the applied external
torque. The solutions fall naturally into two categories
corresponding to the time average of the angular velocity
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Aluminum

Fig. 1. The compound pendulum.

being zero or nonzero. We will use the terms oscillating and
rotating solutions, respectively.

The pendulum equation, Eq. (1), has no known general
analytical solution. However, during the course the students
did solve the equation in a number of limiting cases as
theoretical exercises, and compared the predictions to the
corresponding experimental results.

In the following, the contents of the course will be pre-
sented. The general approach was that the experimental
program and the theoretical problems were formulated in
a few survey lectures at regular intervals, which also served
the purpose of setting the pace.

A. Oscillating solutions

1. Small amplitude oscillations. k ~ 0, H =0

The period of oscillation, Ty was measured (average of
10 periods) for various values of /7 (1 and 2 disks) and D
(different pendulum lengths). Following careful measure-
ments of geometrical dimensions and masses of the various
parts of the pendulum, the period of oscillation was calcu-
lated from

To = 2= (I/D)'/2 ()

and the calculations were compared to the experimental
results. Agreement was usually within a few percent.

2. Large amplitude oscillations. k ~ 0, H =0

Using a particular set of values for 7 and D the period of
oscillation Ty, for large amplitude, undamped oscillations
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Fig. 2. Large amplitude oscillations Ty, /T as a function of starting angle
6;. (a) Equation (3) to second order in a; (b) Equation (3) to fourth order
in a; and (c) elliptic integral Eq. (4).

995  Am. J. Phys., Vol. 45, No. 10, October 1977

Too/To—

1
A
T
3

0 60
©¢(Degrees} —=

Fig. 3. Small amplitude oscillations Ty, /T as a function of the equilib-
rium angle 6. Full curve Ty, /T = (cosfi)~'/2.

was measured as a function of the starting angle, 8;. A set
of experimental values for the quantity Ty, /T is shown in
Fig. 2 as a function of 8. For large amplitudes the period
of oscillation can be expressed as’ 7
Ty, = 2 (I/D) V2 [1 + %az + %a" + } 3)

where a = sin (8,/2).

The full expression for Ty, is given in terms of the com-
plete elliptic integral of first king K(m) as

To_ 2, ) _ 2 (h___db
To WK(m) 1rj(; (1 — msin2¢)"/2" )

Here, m = sin? (6,/2). The elliptic integral is tabulated in
Ref. 6. The theoretical results are also shown in Fig. 2.

3. Small amplitude oscillations. k ~ 0, H # 0

The period of oscillation Ty, for small amplitude, un-
damped oscillations around an equilibrium angle 8y > 0 was
measured as a function of an applied constant torque, H <.
D. The results are shown in Fig. 3, where Ty, /T is plotted!
as a function 8.

Assuming, in this case; a solution to Eq. (1) of the
form

0(r) = 0o+ 0,(1), (61K 1),

one finds after a first order expansion in the small quantity,
6y, that 89 = sin~! (H/D) and that 6, has a period of oscil-
lation given by

Toy/To = (cosby)~1/2. (5)
This dependence is also shown in Fig. 3.
4. Calibration of the external torque, H

In Sect. III B which deals with the rotating pendulum,
it becomes necessary to know the actual value of the ex-
ternal torque H. That is, the relation between the air pres-
sure—measured by the water manometer—and the exerted
torque must be established. This calibration is most con-
veniently made using the results already obtained in Sec.
III A 3. It follows directly from Eq. (1) that for =0

H = D sind,. (6)

Hence, a measurement of the equilibrium angle 8 corre-
sponding to a particular air pressure p permits H to be de-
termined from Eq. (6). Experimentally, it is found that H
is directly proportional to p.
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Fig. 4. Damping constant k as a function of magnet current I, determined
from damped harmonic oscillations, Eq. (7) (squares) and uniform rota-
tion, Eq. (9) (circles). A smooth curve has been fitted to the data.

5. Small amplitude oscillations. k # 0, H =0

The damping coefficient k was determined as a function
of the current applied to the electromagnet /,,, by measuring
the decay rate of small amplitude, damped oscillations. In
this limit the pendulum performs damped harmonic oscil-
lations given by the expression 6(z) = 6, exp(~ k/2I)
cos(2t/T + ¢), where T is the period of oscillation and ¢
is a phase angle. Introducing 6, where

6= (1/n) In [6(2)/6(t + nTy)], )]
the following relation is readily derived
k = 2I8/T,. (8)

From Eq. (8) and measured values of the quantities, &
and T, the damping coefficient is determined. The obtained

L 48 4
24
80 )
0 1 PR T RS L o
0 0

<z>=k<6 >1'/D

Fig. 5. Normalized average angular velocity (z) as a function of nor-
malized torque k for different values of 8 = DI/k2. Smooth curves have
been fitted to the data.

996 Am. J. Phys., Vol. 45, No. 10, October 1977

1000r

100

1 | | 1 |
0 02 04 06 08 10
azHpin/0—>
Fig. 6. The experimentally observed a-3 relationship compared to the
numerical calculation from Ref. 8. « is the minimum value of the nor-
malized torque which can sustain rotation.

results are plotted as a function of the magnetization current
in Fig. 4 (squares).

B. Rotating Solutions

‘1. Uniform rotation. D=0, H # 0, k # 0

By removing the pendulum bobs or by placing the pen-
dulums in opposition the condition D = 0 could be satisfied.
For this case the steady state solution to Eq. (1) is

0 = Hik. (%)

For a given value of the magnet current and a constant
torque H, (determined as discussed in Sec. 111 A 4), the
steady state angular velocity 6 was measured and k deter-
mined from Eq. (9). These results are also shown in Fig. 4
(circles).

As is evident from Fig. 4 the two methods of determining
k are consistent within experimental error.”

2. Now-uniform rotation. D # 0, H = 0, k = 0

When the maximum gravitional torque D is nonzero, the
rotation becomes nonuniform, i.e., the angular velocity 6
depends on the angle 6. Hence, the time average of the an-
gular velocity (#) for different combinations of the pa-
rameters I, D, and k was measured as a function of the
applied torque H. )

By introducing the substitution z = k6/D the pendulum
equation (1) may be transformed into the two first-order
differential equations

IDz dz

ZEE 4+ sind = H/D

2 4o (10a)

and

z = ké/D. (10b)

N. F. Pedersen and O. H. Soerensen 996



Accordingly, in normalized units, the solution to Egs. (10)
may be expressed in terms of only two parameters, 3 =
ID/k? and h = H/D. In Fig. 5 the measured normalized
angular velocity (z) is plotted as a function of the nor-
malized torque A with 8 as a parameter.

It is observed from Fig. 5 that two solutions for (z) exist
for h between one and a minimum value & which depends
only on the parameter 8. Thus, starting from zero torque
{0) remains zero up to H = D, where {(#) will switchtoa
finite value. Upon decreasing the torque from there the
pendulum will still rotate until H reaches the value H;,
= aD, where the pendulum will come to a stop going
through damped oscillations around the equilibrium posi-
tion 8 = sin~! (H yin/ D).

A computer calculation® of the relation between o and
(3 is shown in Fig. 6 where typical experimental results ob-
tained in this course are also plotted.

3. Nonuniform rotation: § versus 8

The nonuniformity of the rotation was determined by
measuring the angular velocity 8 as a function of the angle
8. Figure 7 shows the experimental results with 8 = 8.71 and
h =1.22,0.85, and 0.49, respectively. This experiment was
made by measuring the time lapse between the individual
pulses of the double pulse as described in Sec. I1. The angle
6 was changed by adjusting the angle between the pendulum
arm and the double holes in the aluminum disk. (The 8
versus 6 plane is often referred to as the phase plane.) A
comparison with theory could be made in one of two ways:
An approximate solution to Eq. (1) valid for small nonun-
iformity may conveniently be expressed as

T T T T T " T %

6{Rad/sec)—»

w

I U R SR B
% 80 120 180 240 300 360
6 (Degrees} —»

Fig. 7. Experimental and theoretical results for # as a function of 8 with
I=311X10"%kgm? D =363 X 107N m, k = 3.6 X 10-*N m/s, and
B=28.71.(a) h = 1.22,(b) h = 0.85, and (c) & = 0.49. Upper curve; Eq.
(11). Lower curve; graphical integration of Eq. (12).
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Fig. 8. Anexample of a computer calculation of the pendulum decay in
the phase plane [Eq. (12)].

9=%+21—ccos (—I!t)

HI “* \% an
o=t O G (ﬁz>
kT H Mk

derived under the assumptions Dk%/IH? <« 1 and k%/HI «

1. Considering the time ¢ as a parameter, the 8 versus

curve could be calculated. An example is shown as the upper
curve of Fig. 7.
Another approach was to rearrange Eq. (10a) to give
dz _h—sinf_1 (12)
do gz B
and perform the integration graphically. Starting with a line
element (8,z) = [fo, 2(fo)] the slope is calculated from Eq.
(12) and the tangent is constructed. A new line element on
the tangent is chosen and the procedure is repeated a suf-
ficient number of times to produce a reasonable fit. An
example is shown as the lower curve of Fig. 7.
If the laboratory has easy access to a computer facility,
a different approach would be to solve Eq. (12) numerically.
This permits the calculation of arbitrary trajectories in the
phase plane. The resuit of such a calculation describing the
decay of the pendulum is shown in Fig. 8.

CONCLUSION

The rather extensive program described here provides
the students with a good opportunity to study a single sys-
tem in great detail and it also brings a welcomed variety to
the mainly theoretical courses in the early stages of their
studies. Furthermore, the system we have studied above is
conceptually simple, and yet the behavior is sufficiently
complex to supply many challenging problems which cover
a broad spectrum of recently acquired knowledge. In ad-
dition, new concepts such as elliptic integrals, nonlinear
differential equations, phase plane, hysteresis, etc. are in-
troduced. Finally, judging from the enthusiasm and the
amazing pace which the students maintained throughout
the course and from the quality of the reports they wrote,?
we believe that the course presented here meets a demand
for experimental work closely related to the textbook ma-
terial.
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