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A general quantum mechanical description of exothermic electron transfer reactions is formulated by
treating such reactions as the nonradiative decay of a “supermolecule” consisting of the electron donor, the
electron acceptor, and the polar solvent. In particular, the role of the high-frequency intramolecular

degrees of feedom on the free energy relationship for series of closely related reactions was investigated for
various model systems involving displacement of potential energy surfaces, frequency shift, and
anharmonicity effects. The free energy plots are generally found to pass through a maximum and to be
asymmetric with a slower decrease in the transition probability with increasing energy of reaction. For high-
frequency intramolecular modes this provides a rationalization of the experimental observation of
“activationless” regions. Isotope effects are discussed as also are the oscillatory free energy relationships,
predicted for low temperatures and high frequencies, and which are analogous to the vibrational structure

in optical transitions.

I. INTRODUCTION

It is possible to provide a general conceptual frame-
work for any chemical reaction in terms of the decay of
a metastable state, i.e., a resonance or a set of reso-
nances, and to evaluate the time evolution of the system
to obtain the branching into product channels. Such a
general approach has already been applied to photophys-
ical processes in excited electronic states, such as
electronic relaxation! and molecular photofragmenta-
tion, # unimolecular decomposition reactions, * and ther-
mal electron transfer processes in solution.* In the
latter case, outer sphere electron transfer reactions
can be conceptualized in terms of a decay process be-
tween the vibronic levels

lav) = ¥, x,,( Q) (1.1)

and

|bw) = ¥, %,,(Q) 1.1

which correspond to two different electronic states ¥,
and ¥,, characterized by the nuclear wavefunctions
¥(Q) and ¥,(Q), respectively. Q denotes all the nuclear
coordinates of the system. Provided that it is sufficient
to consider a two electronic level system, disregarding
off-resonance coupling with other electronic states, the
transition probability W,, for the electron transfer (ET)
process |av)—{lbw)} can be expressed by first order
perturbation theory®

Wav=%1,V(R)IzEI(Xalebw>|26(Eav_Ebw) ’ (L 2)

where V(R) is the electron exchange matrix element be-
tween the electron donor and acceptor, separated by
the distance R, and E,, and E,,, are the (zero order)
energies of the vibronic levels | av) and |bw), respec-
tively. When interference effects between resonances
can be disregarded, the reaction is nonadiabatic, and
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the thermally averaged ET probability W, from the ini-
tial manifold {| av)} to the final manifold {| bw)} is

W, :Z"Z exp(- BE,)W,, , (1.3)

where
Z=) exp(-PE,) and B=(kyT)".

W, depends explicitly on the separation R via V(R). The
bimolecular ET rate constant, k, can be approximated
in the form

k=f;d3R exp[- BUR) W (R) , (1.4)

where R is the minimum (outer sphere) contact radius
of the electron donor and the electron acceptor (in the
initial state |a)), characterized by the charges Z,e and
Zqe, respectively, while U(R)=leze2/De“R —with D,
being a (loosely defined) effective dielectric constant—
represents the donor-acceptor interaction potential.
From Egs. (I.3) and (I.4), we obtain

k=AB , (1.5)

where

A=(2n/Z) 2 exp(=BE ) [Xao | Xpu) |2 8(Ee, = E,,w)( |
v w 1.6

and
B=fw | V(R)|2 exp[~ BUR)]d°R . (1.7
7

Thus, the rate constant can be recast in terms of a
product of an electronic contribution B and a term A4,
which is determined by the nuclear configuration. Both
terms depend on the temperature, and the activation
energy E,, for the ET process is

Copyright © 1975 American institute of Physics
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E,=-d(ln k)/dB=EA -d(InB)/d8 , (1. 8)

where

E,=d(inA)/dg .

An estimate of the magnitude of the electronic term may
be obtained® by maximizing the integral (1. 7), that is,
taking the integral at R =R,, where its value is a max-
imum in the range*® R>R, so that

B=~|V(R,)|%(R%/3) exp(~ BZ,Z,€?/DosRy) - (I.T)

The contribution of this term to E, is then approximate-
ly 2,2, €%/D s R,,, which in polar solvents can be ex-
pected to be of the order 2-5 kcal mol™'. When studying
the effects of nuclear modes on a given class of “closely
related” ET reactions, we can consider the B term to
be approximately constant and then refrain from eval-
uating it. We shall therefore only consider the nuclear
term A, i.e., the transition probability normalized by
the electronic matrix element.

Equations (I. 3)—(I.7) constitute a complete theory of
nonadiabatic ET, which bears a formal analogy to the
calculations of multiphonon electronic and vibrational
molecular relaxation processes, ! nonradiative electron
capture, and thermal ionization of impurity centers in
solids.%* Furthermore, both the physical and the tech-
nical aspects of this quantum mechanical approach
practically coincide with Holstein’s treatment of the
mobility of small polarons®® in the nonadiabatic limit. In
all the cases mentioned above, the nonradiative transi-
tion probability is determined by a generalized line
shape function, which in turn is determined by Franck—
Condon vibrational overlap factors between the nuclear
wavefunctions, which correspond to the electronic con-
figurations. The expressions for the ET are general, in-
volving all nuclear vibrational modes. The problem is
reduced to the specification of the potential energy sur-
faces, and to the evaluation of the composite density
of states at zero energy, weighted by the vibrational
overlap factors.

In the following we shall consider ET processes in
solution, where the reactants can be either solvated
ions or large organic molecules (or organic radical
ions). We are interested in the ET probability between
two electronic configurations of a “supermolecule, ”
which consists of the donor—acceptor pair and the en-
tire solvent. The molecular structural aspects of the
problem will be incorporated for the electron donor and
acceptor centers, whereas the medium outside the or-
ganic molecule or the first coordination shell of the
solvated ion will be taken as a continuous dielectric.

It is then convenient to separate the vibrational modes
of the system into two categories:

(a) discrete, high-frequency modes characterized by
the nuclear coordinates @, and the vibrational frequen-
cies w,. These modes do not necessarily have the same
equilibrium configurations nor the same frequencies in
the two electronic states. Furthermore, these modes
are not necessarily adequately represented (for the
purpose of calculating A) within the framework of the
harmonic approximation, and anharmonicity effects
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may be important in determining the ET rate. The high-
frequency modes correspond either to metal-ligand
vibrations in the first coordination mayer of the solvated
ions, having Zw,~ 300-500 cm™, or to the C-C (%w,

= 1000-1500 cm™) and C-H (%w,~ 3000 cm™) modes

of organic molecules. Thus, at room temperature,
Fw,>kyT, and the modes can be adequately classified

as quantum modes of the physical system.

(b) low frequency modes of the outer medium, which
are characterized by the normal modes ¢, and the cor-
responding frequencies w,. These are the optical pho-
non modes of the system and can be adequately described
in the harmonic approximation and reasonably well ap-
proximated neglecting frequency dispersion effects.

The weighted average frequency of these modes is’
{wy=~1 cm™!, so that under most experimental condi-
tions kpT > 7{w,); these modes can then be treated with-
in the framework of the classical approximation, and
they will therefore be referred to as the classical modes
of the system.

When the equilibrium nuclear configuration and the
frequencies of the quantum modes are identical in the
initial and final states, the structural aspects of the
problem can be disregarded, and the transfer probabil-
ity is determined by the classical modes only. Levich
and Dogonadze have shown®® how the quantum mechan-
ical treatment for this case results in the well known
Gau?sian line shape

A=(n/n?E kT 2 expl- B(AE - E)?/4E,] ,

where AFE is the energy gap between the minimum of the
initial and final potential surfaces. At finite tempera-
tures AF corresponds to the free energy of reaction for
the ET process. E, is the solvent reorganization ener-
gy, resulting from the response of the outer medium to
the change in the charge distribution between the initial
and final states. Equation (I.9) was originally derived
by Marcus, ? using a purely classical approach, and it
gives a simple quadratic free energy relationship

E,~(QE-E)*/4E, , (1. 10)

(1. 9)

which is found to be well obeyed for a number of sys-
tems for which AE<0, and |AE|<«< E 101!

When configurational changes within the nuclear struc-
ture of the reactants are appreciable, the influence of
quantum modes will be manifested via the following ef-
fects:

(1) The experimental activation energy will be higher
than that obtained from Eq. (I.10) with E, calculated
from Marcus’ relation® for the changes in the charging
energy in rigid conductors in a dielectrie, including
corrections for reduction of polarization effects in the
space occupied by the reactants.®'®* Marcus has pro-
vided an extension of his classical treatment to account
for this effect, ! and semiclassical or quantum treat-
ment of the configurational changes of intramolecular
modes have also recently been incorporated by Voro-
tyntsev, Dogonadze, and Kuznetsov'®!® and by Kestner,
Logan, and Jortner* for outer sphere ET, by Dogonadze,
Ulstrup, and Kharkats'” for inner sphere ET, and by
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German and Dogonadze'®*® for ligand substitution reac-
tions, in which a charge redistribution also occurs, and
quite extensive comparisons with experimental data have
been made.

(2) The activation energy should exhibit a marked
temperature dependence. The theory of this effect was
worked out by Kestner et al.* and by Schmickler, 2° but
so far no experimental data pertaining to this point are
available.

(3) The free energy relation (I.10) should be modified
to include the role of quantum modes. It could be
argued that the solvent recrganization energy E, in Eq.
(1. 10) should be replaced by a medium reorganization
energy E, including contributions from both classical
and quantum modes, so that E,>E,. For strongly exo-
thermic reactions when AE >0, the activation energy is
then expected to be reduced by the effect of the quantum
modes. This would be correct only when kg7 > fiw,,
and the quantum modes could be treated classically.
However, under real physical conditions when fiw > kgT
this formulation has to be grossly modified. In this con-
text, Efrima and Bixon have recently suggested?! that
vibrational excitation of quantum modes may result in
an activationsless ET process for strongly exothermic
reactions. A similar effect was proposed by Vorotynt-
sev, Dogonadze, and Kuznetsov.'*''® In an experimental
study, Rehm and Weller have reported?:that in the fluo-
rescence quenching of large organic molecules in solu-
tion, which occurs by ET, the rate constant agsumes a
maximum value and is independent of AE for strongly

exothermic reactions (10 keal mol™ £ AES 60 keal mol™).

Fischer? and Van Duyne®* have recently studied a num-
ber of radical ion recombination reactions involving
organic and inorganic systems. It was found that part
of the over-all annihilation rate for large free energy
changes could be ascribed to an ET reaction channel,
for which an almost linear dependence between the free
energy of activation and free energy of reaction was
found.

Thus, there is at present some evidence for serious
deviations from the free energy relationship (I.10),
giving a lowering of the activation energy with AF for
sufficiently large values of the latter. Provided that AE
is still not large enough to induce electronic excitations,
the detailed role of the quantum modes must therefore
be considered. In the present work we utilize a general
theory of nondiabatic ET processes involving both quan-
tum and classical modes.? The general line shape func-
tion (I. 6) will be recast in terms of a convolution of sep-
arate contributions originating from the classical and
from quantum modes. Adopting various models for the
quantum subsystem we were able to elucidate the role of
the quantum modes in modifying the free energy rela-
tionships for strongly exothermic ET processes.

1. QUANTUM MODES IN ELECTRON TRANSFER
REACTIONS

The potential energy surfaces of the initial state
U,(Q) and final state U,(Q) are separated into the addi-
tive contributions from the intramolecular donor Q2

or Q2 and acceptor quantum modes Q2 or Q# and from
the solvent modes @5 and Q5. The subscripts ¢ and b
refer to the appropriate electronic state. Then,

U Q) = 2@+ F2Q4 + g3@Q%),
U Q) =f2@Q)+f3@Q1)+ g:Q3) - (IL. 1)

The solvent contribution can be recast in the harmonic
approximation, neglecting dispersion effects,

£5QD=rlw) 2 a% ,

5@ =25Q%) - 1wy g, A +Eg . (IL. 2)
K

The reduced solvent modes are g, = (i, w,/#)''2 QS for

each mode, and E,, which appeared at first in equation

(1.10), is

Es=mw)d a2,

A, represents the reduced displacements for the solvent
coordinate k between the origins of the two potential sur-
faces. We now factorize the vibrational wavefunction
(I.1) into the products

Xa@2, Q4,Q5) =x2Q; )X QL ) x: Q7 v)
Xow(@7,Q%5,Q5) =x3(QF; ) x5 Q75 € xy @3, wd)

where x7, x2, and x5 {i =a or b) represents the nuclear
wavefunction of the donor, the acceptor, and the solvent,
respectively. The vibrational energy levels of the donor
are labeled by €?, those of the acceptor by €, and the
solvent energy levels are given by €5 =3.(v, + 57 {w,),
and €} =3, (w,+3){w,) in the states a and b, respectively
The total potential energies in the initial and final states
are then

(1. 3)

(I1.4)

Eav‘_‘Ef+€?+Z(Ux+"§)ﬁ<wx>+AE s
K

Ebw:€f+€f+2(wk+%)h’<w.¢> . (1. 5)
K

The nuclear contribution to the ET probability is

A=(ZpZ,Z4) lzzzzz‘gexp[ Bl + €t 1 €)]

e? e Ef e? eA eb

®SD(€Q’€D)SA(€‘1’ €b)ss(€a,€ )

@62 — €D +eh —ep+ €5 — €5 +AE), (IL. 6)

where Z2,,Z2,, and Z; are the partition functions. Also,

Zy= Z exp(- Bel)

<

I1=D,A,S (1.7
for the nuclear energy levels. The Franck-Condon vi-
brational overlap terms between the two electronic
states are

Si(el, €)= [ (@5 D) | x3(Qus €] I=D,A,S. (IL. 8)
Equation (II. 6) can be recast in the form
A= [ axFoWFHAE-5), (1L.9)
0
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where we have defined the auxiliary functions

Fo0)=(Zp2,0 3.0 02 expl- B(el + e2)]

D D A
e 4 o of

®Sp(el; €D) Su(ed; €)o(el — €D + € ~ € +x)

a
(11. 10)
and

Fs(AE —x)=(Z)h D0 exp(-pef) Ssled; €5)d(ed — €5 +1)
€S €S
g (11. 11)

which correspond to energy-dependent line shape func-
tions, or transition probabilities for the quantum modes
(@) and for the classical solvent modes (g). The line
shape function for the low frequency solvent modes can
be expressed in the classical approximation (for 7w,
K kgT)as

FAE —x)=(n/MPEgkyTY 2 exp[- BAE — Eg — x)?/4E kT

(I1. 12)
which is a generalization of Eq. (I.10). Equations
(IL. 10) and (1. 12) give the final form of the ET prob-
ability,

A=(n/RREgksTV?(Z,Z,)1 Y. 3,2 2 expl- Bl + )]
2 of of of

®exp[- BAE~Eg+€l - €D+ e - e22/4E,]

®Sp(e2; €7)S, (€2 €2) . (11. 13)

In many systems of physical interest the quantum modes
are expected to be “frozen,” i.e., kT < hw, for all the
donor and acceptor frequencies of the initial state. In
such cases we can set €2 =€2=0, and Eq. (II. 13) sim-
plifies to

A =(n/REgkT)/? EDZ ZA: exp[- B(AE - Eg - €2 — €A)?/4E,)

b b

®5,(0,€P)S,(0,¢f) . (11.13)

Equation (II. 13) together with Eqs. (I.5) and (L. 7) pro-
vide us with a working theory for nondiabatic ET pro-
cesses. These general results rest on the harmonic
approximation for the classical modes, which is entirely
justified. The quantum modes are deconvoluted and
otherwise are of a general form. Therefore, such fac-
tors as frequency changes, anharmonicity effects, etc.
in these modes can be accounted for in the present for-
malism. Furthermore, Eq. (II. 13) provides a general
framework for the quantitative interpretation of the
three effects of quantum modes listed previously.

In the following we shall focus attention on the free
energy relationships predicted by Eqs. (II.13) and
(I1.13’). In the present theory the nuclear contribution
to the ET rate constant is recast in terms of converging
sums, in which each term involves products of a Gauss-
ian type function for the classical modes and Franck—
Condon vibrational overlap factors for the quantum
modes. In view of the voluminous literature available
in the field of molecular spectroscopy, concerning the
evaluation of the latter terms for a variety of model
systems, we can directly proceed to the application of

these results for our problem.

1. FREE ENERGY RELATIONSHIPS FOR MODEL
SYSTEMS

The problem of the quantitative determination of the
dependence of the ET rate constant on AE now reduces
to the specification of the nuclear potential surfaces in
the initial and in the final state, followed by the evalua-
tion of the Franck-Condon vibrational overlap factors

SPA=5,(eD; €2) S, (e2; €f) (1. 1)
for the quantum modes in Egs. (II.11) and (II. 13).

In view of the low frequency of the solvent modes
(Fw,~1 cm™), these modes are always treated classi-
cally (in the high temperature limit), as is evident from
Eq. (I1.13). Regarding the quantum modes of the sys-
tem we can consider three cases: (a) the low tempera-
ture range, k,T <<7%w,, where the quantum modes are
frozen and the “intramolecular” vibrational overlap fac-
tor is

SoA=5,(0,€0)S,(0, € ; (IIL. 1)

(b) the intermediate temperature range where kT <hw,,
and where mode-rate excitation of quantum modes pre-
vails. In this range, Eq. (III. 1) has to be utilized in
the sums of (II.13). (c) The high temperature range
kyT>Hw, where again Eq. (III. 1) has to be adopted and
where in the limit of extremely high temperatures the
rate constant reduces to a Gaussian line shape function
analogous to Eq. (I.10), with a modified value of E;.
As we have already noted, from a practical point of
view, cases (a) and (b) are of interest a priori, and
numerical calculations show that case (c) can also be
achieved for frequencies for which %Zw,_ are only slightly
smaller than 2;T. We shall now proceed to consider
free energy relationships for model systems.

A. Displaced potential surfaces

The simplest model involves a system characterized
by displaced harmonic nuclear potential surfaces for
the quantum modes i =1,2,...,N, where the frequencies
%w,; for each mode are identical in the initial and in the
final states. The minimum of the potential surfaces are
displaced by A@Q; for the ith vibrational mode, the cor-
responding reduced displacement being 4, = (1 w,,/
7)'/2AQ;. The Franck-Condon vibrational overlap fac-
tors in the harmonic approximation are well known. *4
The vibrational overlap factors (III. 1) can thus be rep-
resented in terms of a product

N
A DA
Sfb = Hsab (vis wy)

i=1

(II1. 17*)

where sDf(v;, w;) is the square of the vibrational over-
lap integral for the ith mode, which is characterized by
the quantum number v; in the initial state and w, in the
final state. The sets of initial {»,} and final {w,} vibra-
tional quantum numbers are determined by the relations

L N
2vfw,=€2 et and > wihw, =€l +ef+ AE .
i=1 i=1
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The vibrational overlap factors for the single modes are
given byl+% 425

set (v, wy) — et :—)‘—:(AE,/z)'"’“”*'[LL;"""*'(AE{/Z)]Z )
i
(I11. 2)

where L%®(x) is the Laguerre polynomial. In the low
temperature limit for the quantum modes [case (a)],

© =

Eq. (IIL. 2) reduces to the well known form
Az /2)(82,/2) /w,! . (I11. 3)

Calculations of the nonradiative transition probabilities
utilizing Eqs. (I.5), (II.13), and (III. 2) or (III. 3) can be
readily performed by the generating function method!r 3
we shall just quote the pertinent final results. The nu-
clear contribution A |Eq. (I.6)] to the rate constant is?

Sa (0, w;) = exp(-

s :<%ESkBT>1/2exp(—% é; Az, tanh(%Bﬁwc,)@Z Z i: i i i exp[- B(AE-ES- i ;- ki)ﬁwc¢>2/4EsJ

A% exp( Bh'wd/Z)

ty=0 &y=0

(I11. 4)

1

This result is valid at all temperatures.
limiting form of Eq. (IIL.4) is*?

N o
A =(1/F*E kpT)/? exp(—% ZAZ)@ 22
i=1 =00

wy = Wy ===

Finally, in the low temperature limit [case (a)] one gets

11=0 &1=0 13=0 k2=0
=1

®H[Z llk 1

itk
4smh(/sm.) /—> eXp(l,-Bﬁwc,-/Z)] .

At sufficiently low temperatures, when ghw,; <1 [case (b)], an important

o N
> 1w, 1)@z, /2t

R

i=1

®e ( i ; 3 2 (111. 4")
xp(- B (w;+ |w; l)h’wci/Z) expl - B(AE -E, ~ Zwiﬁwci)/élEs .
i=1 i=1
N 2
exp(— ﬁ(AE -E,~ ?_,: w,-h’wc,-> /4Es). (11 4")

N
A=/E g en(-2 S at)e o 5 s T T
i=1

It is worthwhile to notice that for the present model sys-
tem each term in the sum which determines the rate
constant is given by a product of a Gaussian function and
a member of a Poisson distribution.

We have performed a series of model computer cal-
culations of the relationship between A and AE, as given
by Eq. (III.4) and its intermediate temperature limit
(IT11.47). The frequencies of the quantum modes were
selected in the range fAw,; = 200-3000 cm™. The lower
values fiw,; = 200-600 cm™ correspond to the vibrational
frequencies of the ligands in transition metal complexes,
while the range of high frequencies %w,; = 1000~3000 cm™
represent the skeleton and the C—H modes of aromatic
hydrocarbons. The (reduced) potential displacement
parameters were chosen in the range 4,;=1-10. Dis-
placement for quantum modes in outer sphere ET reac-
tions are often quite small (A,;=1).%17-1% In other reac-
tions, e.g., those of some Co(IIl) complexes, 112® and
in particular for proton transfer reactions, % the dis-
placements may be substantial (A; 210). The medium
rearrangement energy was chosen to be®®® E =1 eV.
We have used the free energy interval A =0-4 eV noting
that for higher values of AE (2 3 eV, or so) excited elec-
tronic states are expected to participate. The tempera-
ture range covered was 30-300 K, which for most cases
corresponds to the low temperature [case (a)] situation,
although for the lowest frequencies and the highest tem-
peratures employed the intermediate temperature limit
prevails [case (b)]. In Figs. 1 and 2 we portray the re-
sults of such model calculations for a system charac-
terized by a single displaced quantum mode. Inspection
of Equation (III. 4) and the numerical calculation reveal
that even for the high values of Zw, considered herein,

wy=0 wp=0 wy=0 i=1

several vibrational levels yield comparable contributions
to A, and in the relevant AE interval quite high values

of the vibrational quantum numbers have to be incorpo-
rated (up to w= 10 for Zw,=2000 cm™ and A4,=10). Thus,
the effect of vibrational excitation of quantum modes in
the ET process is appreciable. The numerical data

also reveal the following quantum effects:

(a) In general, a maximum in the free energy relation-
ship is exhibited, which for the classical system is lo-

iF v I 3 1
N p'y v
\ ' Y
\ , '9/ \ :
-1op . z
<t
-20r /
T |
-30t I ,
g
I
0 2 4
AE (eV)
FIG. 1, Free energy plots for displacement of one quantum

mode of constant frequency. Low temperature approximation
[Eq. (II.4°)], and T=30°K, The four families of curves refer
to (from left to right) A_=1, 2,5, 5, and 7,5, and the origins
of the latter three are shifted by 3 eV, 6 eV, and 9 eV along the
AFE axis. Within each family, the Roman numerals refer to
different frequencies of the quantum mode: 1: classical (1 e.,
no quantum modes); II: #w,=206 cm™; III: #w,=514 cm

IV: fw,=1029 em™; Vi Hw,=1543 cm", VI: h’w =2058 cm 1.
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AE (eV)

Free energy plots for displacement of one quantum

FIG. 2.
mode of constant frequency. Finite temperature formula

[Eq. (I 4)], and T=298°K, The four families of curves and
the Roman numerals correspond to those of Fig, 1, where the
appropriate values of A, and #w, are given.

cated at AE = E,, whereas quantum effects result in a
shift of this maximum by roughly AZ%w,/2 towards high-
er AFE values.

(o) The free energy relationships are asymmetric
about the value of AE=AE, , corresponding to the
maximum value, A_ .., of A. Incorporation of a quan-
tum mode results in a slower decrease of InA with .in-
creasing AF for AER E_ .., i.e., beyond the maximum.

(c) At sufficiently low temperatures, an oscillatory
dependence of InA on AE is revealed for high values of
fiw.. We shall show in Sec. 1V that this effect is exhib-
ited provided that 2(E,k;T)*/? <%w, and provided that it
is not smeared out by frequency congestion effects,
when several modes of different frequencies and finite
values of A; contribute to the ET rate. At higher tem-
peratures these interesting oscillations are smeared
out.

(d) Increasing the temperature for constant A, and
7iw, results in broadening of the ball-shaped curve that
represents the free energy relationship; the broadening
is roughly proportional to T'/2, as is the situation for
the classical case, Eq. (I.9).

(e) For higher frequencies, i.e., fw,~2000-3000 cm™,
and for intermediate values of A % 2-5, the free energy
relationship at room temperature exhibits a broad flat
maximum. Thus, for example, for A, =2.5 and %#w,
~ 2000 em™ (Fig. 2) InA varies weakly in the range
AF=1.2-2.2 eV. An activationless region is not pre-
dicted for the simple model system which involves a
single quantum mode; however, the dependence of A on
AE is considerably weaker over a broad AE range than
for a purely classical system. This effect will be most
pronounced when high frequency modes prevail, such
as in the case of ET involving aromatic hydrocarbons
and their radical ions.

(f) Interesting isotope effects are expected to be re-
vealed when the role of quantum modes is important.
For AE<AE,,,, the ET rate constant will increase with
decreasing frequency of the quantum modes (i.e., an

inverse isotope effect); whereas for AE >AE,,,,a normal
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isotope effect will be exhibited, i.e., the ET rate con-
stant will decrease with decreasing Zw,.

Further numerical calculations were performed for a
model system with two displaced modes, which are
characterized either by equal or by different frequencies.
These two modes may correspond, for example, to the
totally symmetric A,, breathing frequencies of the donor
and acceptor in ET reactions involving octahedral com-
plexes. The resulting free energy relationships (Figs.
3 and 4) are qualitatively similar to those obtained for
a single displaced mode. However, the asymmetry is
more pronounced with increasing number of quantum
modes and with increasing 7w, (1=1,2). We expect that
for intermediate values of & ~A ,~ 2.5, a flat portion
of the InA vs AFE curve will be exhibited over quite a
broad AE range. As expected, the oscillatory behavior
revealed at low temperatures for a single quantum mode
is largely eroded when two displaced modes with differ-
ent frequencies are involved.
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FIG. 3. (a) Free energy plots for displacement of two guantum
modes of constant frequencies, (A,4=A_,=1), Low tempera-
ture approximation [Eq. (I, 4')], and T=30°K. The four
families of curves (from left to right) refer to Fwy =514 em™;
fiwy =1029 em™; Fwy =1543 em™; and Auw,y =2058 cm™, and
the origins of the latter three are shifted by 3 eV, 6 eV, and

9 eV along the AE axis. Within each family, the curves listed
in the order of increasing asymmetry are classical; one dis-
placed quantum mode; two displaced quantum modes Fwy
=0.7 Ewy); and two displaced quantum modes (fw,, =fw,).,

() Free energy plots for displacement of two quantum modes
of constant frequencies (A4=A,=2.5), Low temperature
approximation [Eq. (I, 4')], and T=30°K., The frequencies
and the arrangement of the plots are the same as in Fig, 3(a),
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FIG. 4. (a) Free energy plots for displacement of two quantum
modes of constant frequencies (A, =A,=1), Finite tempera-
ture formula [Eq. (III.4)], and T=298°K, The frequencies and
the arrangement of the plots are the same as in Figs. 3(a) and
3(b). (b) Free energy plots for displacement of two quantum
modes of constant frequencies (A, =A,=2.5). Finite tem~
perature formula (Eq. (III,4)], and T=298°K, The frequencies
and the arrangement of the plots are the same as in Figs. 3(a),
3(b), and 4(a).

B. Effects of frequency changes

ET reactions are usually accompanied by changes of
the intramolecular vibrational frequencies of the react-
ing species. Furthermore, these changes are some-
times known experimentally. It is therefore of consider-
able importance to investigate the effect of frequency
changes on the over-all transition probability.

General expressions for the transition probability, in-
cluding frequency shifts, have been developed by several
authors. 116212 However, in most cases the resulting
equations are complicated and rather difficult to apply.
In what follows we shall use a simpler analysis of the
Franck-Condon factors in order to obtain a general
form of the free energy relationship for large AE.

For a single mode which undergoes both displacement
and frequency change, the Franck-—Condon factor for
transition from the ground vibrational level of the initial
state to the wth vibrational level of the final state can

be written?®3¢

SPA(0, w) = F(0)(3£)” | H,(ix) |2/w! |

where

(I1L. 5)

J. Ulstrup and J. Jortner: Electron transfer reactions

Flo)=(1-£)'2 exp(-a%/2)

£ = (W = W) /(Wgy + wgy)

a%/2= (K- 2 (@4 ~ Qoo MW+ wgy)
x=[Akw,s/ 2wy — w )R =[A%1 - £)/4E]2

k' and k¥ are the force constants of the particular mode
in the initial and final state, respectively, and @,, and
@, are the equilibrium values of the coordinate (no
change in normal modes is assumed in the analysis).
w,; and w,, are the frequencies in the initial and final
state, and H,(ix) is the Hermite polynomial of an imag-
inary argument, i.e.,

w2
H,(ix) = (- 1)*w! i [ (= D7(2ix)*?"/(w-27)17!] . (IIL.6)

It can be shown that for £ -0, corresponding to a pure
displacement with no frequency change, Eq. (III.5)
takes the form previocusly obtained, i.e., Eq. (IIL 3):

S2A(0, w) = exp(A2/2)(A%/2)*/w! . (II1.7)

For a purely distorted mode (i.e., involving frequency
changes) with no displacement, Eq. (IIL. 5) takes the
form

1Xx3X%5¢+(w~-1)

DA _ A2\ 2w
SP4 o, w) = (1 - £8)V 3¢ TXAXE 1 for w even
. (111. 8)
824 (0, w) =0 for w odd .

Using this result, the ET probability for a process in-
volving distortion in a single mode, but no displacement,
becomes

= 1X3X5>«(w-1)
_ 1/2 2\1/2 w
A=(n/BEgkyT)'/3(1 - £?) £ IXARB 1w

even

® expl~ BAE - Eg - whw,,)?/4Eg] , (I1.9)
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FIG. 5. Free energy plots for frequency shifts without dis-
placement in one quantum mode, T=30°K. The three families
of curves (from left to right) refer to £=0,1, 0,2, and 0.4,
The origins of the latter two are shifted by 3 eV and 6 eV along
the AE axis, Within each family, the Roman numerals refer
to different frequencies of the quantum mode in the initial state:
I: classical; II: Kw, =206 em™; II: fiw,=514 em™; IV: Fiw,
=1029 em™; V: Fw,=2058 cm™,

J. Chem. Phys., Vol. 63, No. 10, 15 November 1975

Downloaded 25 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Ulstrup and J. Jortner: Electron transfer reactions 4365

2
AE (ev)
FIG. 6, Free energy plots for frequency shifts without dis-
placement in ope quantum mode, 7T=298°K, The ¢ and fre-
quency values and the arrangement of the plots are the same
as in Fig, 5.

where AE is the energy gap containing the difference in
zero point energies of the initial and final states, i.e.,
BE=AE + 3w, — w,;). Equation (III. 7) shows that A is
the same for positive and negative £. Since, further-
more, the ratio of the factorials in (III. 7) is a slowly
varying function of w, the dominating factors in the free
energy relationship are

£* exp[- B(AE - Eg — whw,,)*/4Es] .

In all cases 0=|£1<1. The limiting value | £l=1 cor-
responds to complete bond breaking or establishment of
a new bond. Typically |£l« 1, e.g., for many coordi-
nation compounds, in which the oxidized and reduced
form of the metal ion differ by one charge unit, £= 0.1~
0.2. In many cases " therefore decreases rapidly
with increasing w, and the sum in Eq. (III.7) should
therefore converge rapidly after having passed through
a maximum value for some value of AE. It should be
noted that when 7w, is sufficiently large compared with
2(EgksT)'/%, both Eqs. (III.4) and (III. 9) predict an
oscillatory relationship between InA and AE. This ef-
fect is seen in Figs. 5 and 6, but most clearly at 30 °K,
where the Gaussian funetions are narrow compared with
fw,.

For distortions without displacement in N identical
modes, such as a group of metal-ligand stretching
modes, the Franck-Condor factors are?®

A =(1/T*EskpT)(1 - £2)*/2 exp(-A%/2) i w![aQ - g)/2]*

weo

®

Figures 5 and 6 show free energy plots for a pure dis-
tortion in the low temperature limit [Eq. (II. 9)] for

various values of £ and %iw,. The “asymmetry” of the
plots is more pronounced for higher £ and 7w., and so

2IN+4) - (N+uw* -2)
2X4X G wt b4

(111. 10)
where ' =3,w;, and provided that all the w,’s, i.e.,
the vibrational quantum numbers of the various modes,
are even. A particularly simple form is obtained for
N=2,

SPA(0, w) = (1 — E3)M/2gw* |

Since again the factorials are slowly varying functions
of w' (or even a constant =1 for N=2), it is seen that
the same qualitative form of the free energy plot is ob-
tained as for a single mode, i.e., InA goes through a
maximum for increasing values of AE.

Sg#(oy W) = (1 - gz)lfagw‘ N(N+

(111. 10)

In most real systems undergoing a distortion, a dis-
placement accompanies the frequency change. It is
therefore necessary to consider also the full expression
[Eq. (II1.5)] including both factors. This form is phys-
ically less transparent, and the qualitative behavior of
the free energy plot is not immediately obvious. How-
ever, the Franck-Condon factor can be rewritten in the
following way:

S22 0, w) = (1 - £)1/2 exp(- A2/2)

1/ 2 2
X(£/2)*w! ‘:(Zx)”'zf/(w-zﬂlrsl . (II1.11)

It can be shown that
2

(£/2)"w!

w/&
i (2x)*27/(w - 27) 1!

« (53(12;5))" w0l %(M).rwz’/rl * L wLi2)

r=0 5

Since [A%(1 - £)/2][A%(1 - £)/¢£] <1 for all £ and A,
S24(0, w) converges if

w/2 2
B(w)= E w*/2r!| /w! {I11.13)
=0
converges. For large w,
w /2 2
P(w)=e*|> wf™*/r! (I11. 137)
r=o

Since w= 2y, P(w) increases substantially more slowly
with increasing w than e*. The product of S2A(0, w) and
the Gaussian function of w from the activational factor
therefore decreases rapidly with increasing w, and the
summations over w and » in Eq. (III. 14) below are con-
vergent. IlnA again goes through a maximum for in-
creasing AE, the explicit expression for 4 being

] .
i (8201 - 5/6 1"/ w2011 expl- BAE - Es - who,)/4E] . (1L 14)

|

is the expected oscillatory behavior, due to the low half-
widths 2(E gk5T)'/2 of the Gaussian functions at this tem-
perature. Analogous calculations were performed for
higher temperatures [but still for gfiw,<<1, case (a)],
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FIG. 7. Free energy plots for frequency shifts without dis-
placement in two quantum modes. T=30°K, and £=0.2. The
three families of curves (from left to right) refer to #w, =206
em™, 514 em™, and 2058 cm™!, and the origins of the latter
two are shifted by 3 eV and 6 eV along the AE axis, Within
each family, the different lines refer to the following cases:
(=) (more symmetric): classical; (—) (less symmetric): fre-
guency shift in one mode; (-+:): frequency shift in two modes,
for which %w, =0,7 Fwg; (--~): frequency shift in two modes
for which iwy, =%wy .

and for two modes with equal and different frequencies.
As expected, under these conditions the oscillatory be-
havior is “smoothed out, ” as seen for the plots with dis-
tortions in two modes in Fig. 7.

C. Effects of anharmonicities

Up to this point we have adopted the conventional ap-
proach of solid state physics® utilizing the harmonic ap-
proximation both for the low-frequency solvent modes
and for the high-frequency quantum modes, The har-
monic approximation is definitely adequate for the sol-
vent modes, however, for the quantum modes anhar-
monicity effects may considerably affect the value of
the transition probability. We are interested in highly
exothermic electron transfer processes where AE/fw,,
is fairly large. It is now well known from the studies
of nonradiative electronic relaxation phenomena in large

i

Sett = (Xow | Xao? |* = [cosh(an /21 [(1 ~ Zw/pﬂ(fo)‘@[g (- D7 [3(1+e29)F (p ;w) (,, ] 1)1 (wﬂz '

organic molecules? and in impurity centers in crystals®!
that anharmonicity effects do drastically modify the non-
radiative transition probability for a large energy gap.
In what follows we shall explore the role of diagonal
anharmonicity effects on ET processes.

In order to investigate this matter, the Franck—Con-
don factors were calculated by means of wavefunctions
corresponding to Morse potentials in the initial and final
states.3'=% The general form of the potential surfaces

for a single quantum mode in the initial and final states
are

U Q) =D[1 —exp(-a@)F ,

U(@)=D{1 - exp[-a(@ + 8 )P+ AE, (111 15)

where D is the dissociation energy, A, the displacement
of the coordinate @, and ¢ the anharmonicity constant.
For the sake of simplicity, it is assumed that D and a
(and the vibration frequency) are the same in the two
states. The total energy of the anharmonic mode is

B = T (w + 3) — SHiw, a®(w + 5)? . (I11. 16)

The general form of the overlap integral for this mode
between the ground vibrational level of the initial state

Xao 2nd the wth level of the final state y,, can be written
23233

<walk—40>_ w P 12 qF(P—O') w
STy =1 (1—2w/p)< > ;(—1) —_(1“(17) 0)

w
-——————;{;ﬁ; l__ww_) ) 2(1+e™%)° (111 17)
and
(Koo | Xgo? = 27 £41/21980 (1 4 go8e)* | (I1L. 18)

where p=2a"2 - 1. Rearranging Eqs. (III. 17) and (III. 18
gives for transition to the lowest vibrational levels

{Xbo! Xao’ = [cosh(aa /2) ] (I1I. 18a)
(o1 Xae) = lcosh(as /2) 1P §(p - 201 - e™2%)2 ., (IIL. 19b)

For transition to the wth final vibrational level, the

Franck-~Condon factor can be written in the compact
form

(11. 20)

[ (04

The transition probability for this mode then becomes, for a system which involves displacement in a single anhar-

monic mode in the low temperature limit

A =(n/mEsksT)!? [cosh(as /2)% :ZO {a- 2w/p)]<§) ) ® [i; (-1)°[z(1+ e'“Ac)]“(P - W) (P - 1>-1 (W)]

& exp{- BlAE - Eg - hiw (w+3) +3hw, a*(w+3)?]} .

In order to investigate the physical effect of the an-

harmonicity, it should first be noted that for typical mo-

(o2 e

(1. 21)

r
lecular dissociation energies, ! 2= 0,1, and p= 10%,
For the hypothetical case of transitions involving the
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ground vibrational levels of the quantum mode, Eq.

(III. 19a), the effect of anharmonicity is to increase the
value of the transition probability as compared to the
harmonic value, due to an increased value of the pre-
exponential Franck—Condon factor, since [cosh(aa,/2)]™®
> exp(—AZ/2) for a finite value of A,. This effect can be
very pronounced; for example, when A = 1-2, the two
factors are very close to each other, both being of the
order of unity, whereas for 4,% 10 they are about 1075
for the anharmonic case and 1072 for the harmonic case.
The increased transition probability is again related to
the decreased barrier height and width for the “tunneling”
of the quantum mode, as compared with the harmonic
model.

When higher vibronic levels contribute considerably
to the reaction rate, the transition probability is deter-
mined not only by the numerical value of A  but also by
its sign. This is reflected by the factors [3(1 + ¢ %)
in Eq. (III.21). Thus, when anharmonicity effects are
important, one has to specify carefully whether the sit-
uation corresponds to stretching (A.>0) or compression
(2.<0) of a quantum mode. It can be shown by inspec-
tion of Eq. (III.21) that when excited vibrational states
participate in the reaction, positive displacements
(A.>0) result in an increased value of A, as compared
to the value A, obtained from the harmonic approxima-
tion with the same value of A ; whereas for 4, <9,

A <Ay Thus, for the model system involving a single
quantum mode, the ET transition probability can be
either enhanced (4,>0) or retarded (A, <0) relative to
the result of the harmonic model, depending on the ab-
solute sign of A .

In the treatment of outer sphere ET reactions, one
cannot get away with the simple model system involving
a single displaced quantum mode, and one has to con-
sider at least displacements in two quantum modes
which correspond to the symmetrical stretching and
compression of the metal-ligand bonds of the electron
acceptor and of the electron donor, respectively. Fur-
thermore, we accept that in general the displacements
A,, and & will be of opposite signs. Since the contri-
bution of anharmonicity effects to the exponential tem-
perature dependent factors is considerably smaller than
to the pre-exponential terms in Eq. (III.21), the major
anharmonicity effect on A originates from the vibrational
overlap integrals. When Franck-Condon factors for two
modes characterized by opposite signs of the displace-
ments are incorporated in Eq. (III.21), the anharmoni-
city effects will cancel to a considerable extent.

We thus expect that for a system characterized by two
displacements of opposite signs in anharmonic modes,
the value of A will be close to A,,.. Cancellation of an-
harmonic effects by displacements of different signs
may provide a rationalization for the surprisingly good
agreement® obtained between experimental data for ET
reactions and the theoretical data calculated within the
framework of the harmonic approximation.

IV. CONCLUDING REMARKS

We have advanced a general quantum mechanical for-
malism for the role of quantum modes on outer sphere

4367

ET processes. The electron donor—electron acceptor
pair together with the entire polar solvent are envisioned
as a “supermolecule” undergoing a nonradiative decay
process. We have explicitly shown how the contributions
of the quantum modes and of the “classical” solvent
modes can be segregated. The ET rate constant was
finally recast in the form of sums of products, where
each term involves a product of a Franck—Condon vibra-
tional overlap term for the quantum modes and a Gauss-
ian function exp(- y?/¥%), where y=AFE - Eg +(€? +€2)

— (€ + €2) and y = 2(EgkpT)!/23, for the solvent polar
modes. We note in passing that energy conservation is
insured for each of these terms. In view of our current
ignorance of the details of the potential energy surfaces
for the electron donor and acceptor quantum modes, i.e.,
displacements of origins, frequency changes, and an-
harmonicity constants, we have proceeded to consider
several simple model systems. We were able to ex-
plore the effects of quantum modes on the free energy
relationships. Three interesting effects emerge in this
context. First, the asymmetry in the free energy re-
lation resulting in the slow decrease of InA (and conse-
quently of Ink) with increasing AE for strongly exother-
mic ET processes, characterized by large values of

7w, and of &, provides a rationalization for the experi-
mental observation of an “activationless” region for exo-
thermic ET reactions involving large electronically ex-
cited organic molecules® and radical ion recombina-
tion.?* These systems that were experimentally studied
involve high-frequency intramolecular modes which are
distorted between different valence states. Thus the
conditions for attaining a flat portion of the Ink vs AE
dependence for —AE <0 are met. Second, we have ob-
served the pronounced isotope effects originating from
the role of quantum modes on the ET transition prob-
ability. This effect bears a close analogy to the deu-
terium isotope effects exhibited in nonradiative electron-
ic relaxation processes in large molecules‘; however,

in the case of ET processes, both normal and inverse
isotope effects can be exhibited, whereas in the case of
electronic relaxation the common state of affairs in-
volves a normal deuterium isotope effect. Third, for
the case of a high-frequency mode Zw, =~ 2000-3000 cm™!
undergoing either displacement or frequency change,

we have observed an oscillatory dependence in the free
energy relationship at low temperature, the spacing be-
tween the maxima being ~ #w,. This interesting quantum
effect is analogous to the vibrational structure in optical
spectroscopy.

If we consider for the moment an optical transition
between the states |qv) and | bw), Eq. (I.1), the radia-
tive transition probability T'(zv) (for a dipole allowed
transition) at the photon energy hv is®

() =22 (g4 122 33 expgE,,)

X |<Xav| wa> |z®6(Eav"Ebw+AEi hV) b (IV- 1)

where p is the electronic transition moment, handled
within the framework of the Condon approximation, while
the minus and the plus signs in the delta function refer
to photon emission and absorption, respectively. As we
are interested in the case AE>0, emission processes
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are relevant, Comparing Eq. (IV.1) with the nuclear
contribution Eq. (I.8) to the ET rate, two points be-
come apparent. First, we note that I'(0)/I {y,ln 1y 12 =A
and, as we have already stated, the nonradiative ET
process is formally analogous to the radiative emission
process at zero energy. Second, and most important,
the functional dependence of I'(hv) [or rather of
T(AE - kv)] on (AE - hy) for the emission process is
identical to the dependence of A on AE. Thus, the op-
tical line shape for emission is formally analogous to
the free energy relationship for ET, provided that the
variation of I’ with AE — kv in the former case is re-
placed by the variation of A with changing AE in the lat-
ter case. On the basis of this formal analogy we con-
clude that monitoring the free energy relationship for
a class of “closely related” ET reactions can be con-
sidered as an experiment in “chemical type spectros-
copy” where the photon energy in an ordinary spectro-
scopic measurement is replaced by the variation of the
free energy. Pursuing this interesting analogy between
conventional optical spectroscopy and chemical type
spectroscopy, we realize that the optical line shape of
a large molecule in solution can be handled by consider-
ing Eq. (IV.1), incorporating both solvent (low frequen-
¢y, but not necessarily polar) modes and the intramo-
lecular quantum modes and adopting the treatment out-
lined in Sec. II. of the present paper. The vibrational
structure of optical electronic transitions in large organ-
ic molecules in solution exhibit broad bands, exhibiting
vibrational progressions which correspond to high-fre-
quency totally symmetric modes, which are displaced
between the two electronic configurations. The oscil-
latory dependence of A on AE at low temperatures (for
high %w,) reflects the vibrational structure due to a
quantum mode in the free energy relationship. What
remains now is to establish quantitative conditions for
the observation of the “oscillatory” behavior in the free
energy relationship. From the general structure of
Eq. (I1.13) we assert that structure in the A vs AE
curve will be exhibited provided that the spacing be-
tween the quantum states will exceed the width
y=2(Egk BT)“ 2 of the Gaussian term, whereupon
el €l _ef>2EskyT)VE . (Iv.2)
For reasonable values of Eg=~1 eV, y =800 cm™ at 30°K
and ¥ = 2560 cm™ at 300 °K, so that even for a single
active quantum mode all structure will be smoothed out
at room temperature. For real systems this structure
will be further blurred by frequency shifts and by dis-
placements of several modes characterized by different
frequencies. Nevertheless, the predicted oscillatory
behavior of the free energy relationship may be amen-
able to experimental observation for some selected sys-
tems at sufficiently low temperatures (~4 °K). This ef-
fect provides, in addition to the temperature dependence
of the activation energy, * a new and interesting quantum
phenomenon, which may yield direct information con-
cerning the nature of quantum modes participating in
ET processes.

: Electron transfer reactions
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