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Discrete breathers~nonlinear localized modes! have been shown to exist in various nonlinear
Hamiltonian lattice systems. This paper is devoted to the investigation of a classicald-dimensional
ferromagnetic lattice with easy plane anisotropy. Its dynamics is described via the Heisenberg
model. Discrete breathers exist in such a model and represent excitations with locally tilted
magnetization. They possess energy thresholds and have no analogs in the continuum limit. We are
going to review the previous results on such solutions and also to report new results. Among the new
results we show the existence of a big variety of these breather solutions, depending on the
respective orientation of the tilted spins. Floquet stability analysis has been used to classify the
stable solutions depending on their spatial structure, their frequency, and other system parameters,
such as exchange interaction and local~single-ion! anisotropy. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1573611#

The problem of energy localization in spatially distrib-
uted systems in condensed matter and biology is an im-
portant topic of modern physics. A lot of attention in the
last several decades has been devoted to the phenomenon
of localization due to spatial disorder. In particular, it is
a well-known fact that lattice vibrations can localize
themselves on impurities„creating so-called impurity lo-
calized modes…. In this paper we deal with the relatively
new concept ofintrinsic localized modes„discrete breath-
ers…. These objects are spatially localized time-periodic
lattice vibrations and their existence intranslationally in-
variant „homogeneous… lattices has been proven rigor-
ously. This remarkable phenomenon occurs innonlinear
lattices „lattices, governed by nonlinear equations of mo-
tion… and is based on the fact that the spectrum of the
linear waves of the system under investigation is bounded
and all possible resonances with the linear spectrum can
be avoided. In this paper we are going to report on dis-
crete breathers in classical ferromagnetic lattices with the
easy-plane anisotropy. We are going to focus on the new
type of solutions which have no continuum„soliton… ana-
logs. Discrete breathers here have interesting spatial
structure, consisting of a core of several spins, precessing
around the hard axis and of tails, consisting of spins pre-
cessing with small amplitudes in the easy plane. These
solutions possess energy thresholds so that their energy is
separated from the energy of the ferromagnetic ground

state by a gap. We also study linear stability of these
excitations and how it depends on the spatial structure of
the breather.

I. INTRODUCTION

The phenomenon of dynamical localization has been a
subject of intense theoretical research. It is well known that
classical Hamiltonian lattices possess periodic in time and
localized in space solutions called discrete breathers~DB! or
intrinsic localized modes~ILM !. These are time-periodic and
spatially localized coherent structures. A recent explosion of
interest to discrete breathers has occurred due to the fact that
they may exist in lattice models of interactingidentical par-
ticles. Breathers in integrable continuum models~like, for
example, the well known sine-Gordon equation! exist only
due to high symmetry of the system, and are solitons. It has
been proven rigorously1 that in continuum nonintegrable sys-
tems likef4 breathers do not exist because their higher har-
monics resonate with the linear spectrum. Discrete breathers
are generic solutions of nonlinear lattice equations due to the
fact that in discrete systems the linear spectrum is bounded
from above and all possible resonances with the respective
small-amplitude waves can be avoided.2,3 A rigorous exis-
tence proof for discrete breathers has been given by MacKay
and Aubry.4 Several cases of experimental observation of
discrete breathers have been reported~in Josephson junction
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arrays,5 arrays of weakly coupled waveguides,6 low-
dimensional crystals,7 proteins,8 and proteinlike crystals9!.

Magnetic systems are ubiquitous in condensed matter.
Due to spatial periodicity, the lattices of interacting spins are
ideal candidates to observe discrete breathers. Here, we will
concentrate on large spins, which may be described classi-
cally. Nonlinear waves in magnetic systems have extensively
been studied during the last three decades.10 The results of
these studies provide a lot of information about the proper-
ties of solitary waves~particularly, breathers! in magnets,
since it is possible in many cases to obtain explicit solutions
to them. However, neglecting discreteness effects may lead
to losing important features of nonlinear wave dynamics.

For instance, since only high symmetry continuous sys-
tems possess breather solutions, the area of potentially inter-
esting models is artificially reduced. Another drawback of
continuous systems is that the consideration of nontopologi-
cal localized excitations is typically restricted to one-
dimensional space.

An additional motivation for studying essentially dis-
crete localized objects comes from the existence of materials
with the exchange interaction of the order, or even much
weaker than the single-ion anisotropy. As an example, these
are quasi-one-dimensional magnets@(CH3)3NH#NiCl3
•2H2O and (C9H7NH)NiCl3•1.5H2O ~Ref. 11! or
layered antiferromagnets (CH2)n(NH3)2MnCl4 ,
(CnH2n11NH3)2MnCl7 .12

In the last decade, a number of papers has appeared,
where localized modes in magnets were treated as essentially
discrete objects13–16~also, the attempt of experimental obser-
vation of discrete breathers in antiferromagnets has been
made recently17!.

A new approach, based on the concept of theanticon-
tinuum limit, has been applied to spin systems. It was used to
prove breather existence rigorously for easy-axis
ferromagnets.18,19 Also, Zolotaryuk and co-workers18 have
used this approach to find numerically a new type of breather
solution in easy-plane ferromagnets which have no con-
tinuum analog. These solutions consist of a core of spins
precessing around the hard~single-ion anisotropy! axis and
tails of spins precessing in the easy plane. The aim of this
work is to present breather excitations for spin lattices, for
which the symmetries will not allow for a similar mode con-
struction in spatially continuous cases. We review the previ-
ous results18 on existence and properties of these breathers
and also show new results on their linear stability.

This paper is organized as follows: The next section pre-
sents the model Hamiltonian and the equations of motion. In
Sec. III, we review the main properties of discrete breather
solutions. In Sec. IV, we study their linear stability. Section
V presents discrete breathers on a two-dimensional spin lat-
tice. Discussions and conclusions are given in Sec. VI.

II. THE MODEL

Consider a lattice of classical spins described by the
Hamiltonian with isotropic Heisenberg exchange interaction
and single-ion anisotropy,

H52
J

2 (
nÞn8

(
a5(x,y,z)

Sn
aSn8

a
2D(

n
Sn

z2. ~1!

HereSn
x ,Sn

y ,Sn
z are thenth spin components~n labels lattice

sites! that satisfy the normalization condition,

Sn
x21Sn

y21Sn
z25S2. ~2!

For simplicity, the total spin magnitude can be normalized to
unity: S51. The constantJ is the exchange integral andD is
the on-site anisotropy constant. We focus on the ferromag-
netic caseJ.0 ~if J,0 we would have an antiferromagnet!.
It is assumed here that spinSn is rather large and the lattice
can be treated classically.

The equations of motion for the spin components in the
d-dimensional spin chain with nearest-neighbor interactions
are the discrete version of the well known Landau–Lifshitz
equations,

Ṡn5@Sn3Hn
eff#, Hn

eff52¹Sn
H. ~3!

If D.0 the spin lattice has an easy-axis anisotropy with
Z being an easy axis. This means that the ground state of the
chain corresponds to the case when all spins are aligned
along the easy axis. We are interested in the case of an easy-
plane anisotropy, i.e.,D,0. In this case the ground state of
the lattice corresponds to spins lying in the easy plane, which
is XY. Note that the ground state is degenerate, so that the
spins can be oriented arbitrarily in theXY plane, but they
must stay parallel to each other. Without loss of generality,
the ground state of the one-dimensional lattice can be as-
sumed to be

Sn
x51, Sn

y5Sn
z50. ~4!

Linearizing the equations of motion in the vicinity of
this ground state, we obtain the following dispersion law:

V2~q!5J2~12cosq!212JuDu~12cosq!,

V0
25V2~0!50, Vp

2 5V2~p!54J~J1uDu!. ~5!

In Fig. 1 the dispersion laws for the easy-axis@panel~a!# and
easy-plane@panel~b!# ferromagnets are shown. The spectrum
of the easy-axis system has a gap while the easy-plane case
is gapless, similarly to phonon spectrum of ‘‘acoustic’’ lat-
tices ~Fermi–Pasta–Ulam, for example!.

A necessary condition for the existence of discrete
breathers is nonresonance of the breather frequencyvb or
any of its multiples with the magnon band,

nvbÞV~q!, n50,1,2, . . . . ~6!

FIG. 1. Magnon dispersion laws for the easy-axis~a! and easy-plane~b!
ferromagnetic chains.
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In the easy-axis case the breather frequency lies in the gap,
so one must make sure that higher multiples of breather fre-
quency, i.e., 2vb ,3vb , . . . , will not appear in the magnon
spectrum@see Fig. 1~a!#. There is no gap in the easy-plane
spectrum, therefore the breather frequencies should lie above
its upper edge@see Fig. 1~b!#.

One must note that in the previously studied easy-axis
cases~both ferro- and antiferromagnetic! breathers can be
viewed as localized spin excitations with the spins precess-
ing around the easy axis, so that the effective radius of this
precession decreases to zero asn→6`. Since exchange is
isotropic, theSz-component is conserved in the solution, and
therefore the separation of the time and the space variables of
the form,

Sn
65Sn

x6 iSn
y5Ane6 ivbt ~7!

is possible in the Landau–Lifshitz equations. Thus, a
breather in this case has only one harmonic and can be called
monochromatic. A similar situation occurs in the easy-plane
ferromagnet under the strong magnetic field directed parallel
to the Z axis, studied by Wallis and co-workers.14 Strong
magnetic field in this case turns the system effectively into
an easy-axis one. In the monochromatic case there is only
one resonance to be avoided, namely, the resonance of the
main breather frequency with the magnon band, i.e.,vb

ÞV(q). This is not the case when the symmetry of the
system in XY is broken, for example, by exchange
anisotropy18 or by biaxial single-ion anisotropy.15 The case
we are going to consider below will also include nonmono-
chromatic breathers.

III. PROPERTIES OF BREATHER SOLUTIONS

In this section we give a review of the properties of the
discrete breather solutions, obtained by Zolotaryuk and
co-workers.18 Following MacKay and Aubry,4 the concept of
the anticontinuum~AC! limit has been applied18 to discrete
breathers in the easy-plane ferromagnetic lattices. The main
idea of the AC limit consists in decoupling the lattice sites
and exciting only one or a small number of them,nr , keep-
ing all the other sites in the ground state. Then, upon switch-
ing on the interaction, the persistence of the localized solu-
tion is shown. As a prerequisite for the successful existence
proof and continuation of the breather solution, the initial
‘‘decoupled’’ periodic orbit must be anharmonic and the
breather frequency and all its multiples should not resonate
with the magnon band. The implementation of the AC limit
can be achieved by settingJ50 and exciting one or several
spins, so that they should start to precess around the hard
axis with the frequencyvb . Solving discrete Landau–
Lifshitz equations~3! in the AC limit yield the precessing
frequencyvb52uDuS0 with S0 being thez-projection of the
precessing spin. If the nonresonance conditionvbÞVp50
is satisfied, the breather solution can be continued.

For nonzeroJ, initially nonexcited spins start to precess
with small amplitudes around theX-axis, while the plane of
precession of the ‘‘out-of-plane’’ spin is no longer parallel to
the easy plane, being slightly tilted~as shown schematically
in Fig. 2!.

It is possible to create different breather configurations
depending on respective orientation of the ‘‘excited’’~out-
of-plane! spins. We will classify the possible breather solu-
tions depending on their anticontinuum~AC! configuration
with the help of the following coding sequences. A precess-
ing spin turned upwards (Sn

z.0) will be represented by↑,
the spin directed downwards (Sn

z,0) will be represented by
↓. Zeros correspond to spins in the ground state. Respective
orientation of spins in theX direction can also be incorpo-
rated in the coding sequence:1 will stand for Sn

x.0 and2
will stand for Sn

x,0. With one ‘‘out-of-plane’’ precessing
spin (nr51), there are two equivalent breather configura-
tions, ~¯000↑000̄ ! and ~¯000↓000̄ !. Now we discuss
the possible breather configurations with two precessing
‘‘out-of-plane’’ spins (nr52) with numbersn0 andn011. A
breather configuration with two parallel spins directed up-
wards Sn0

5Sn011 , will be represented by the coding se-
quence~¯000↑↑000̄ !. If there is a phase shiftp between
precession of these spins, so thatSn0

x 52Sn011
x and Sn0

y

52Sn011
y , this configuration will be denoted as

(¯000↑1↑2000̄ ). Reflections of the above configuration
with respect to breather center or with respect to the easy
plane do not change it, thus, configurations
(¯000↑2↑1000̄ ), (¯000↓2↓1000̄ ), and
(¯000↓1↓2000̄ ) are equivalent to the original one. If
spins are antiparallel (Sn0

z .0,Sn011
z ,0) there are two pos-

sible nontrivial configurations:Sn0

x 52Sn011
x , Sn0

y 5Sn011
y

configuration will be represented as (̄000↑1↓2000̄ )
and Sn0

x 5Sn011
x and Sn0

y 52Sn011
y will be denoted as

(¯000↑↓000̄ ). This coding sequence can be easily gen-
eralized on the arbitrary number of the out-of-plane spins.
For example, a breather with six out-of-plane spins at sites
n0 ,n011, . . . ,n015 with first three spins havingSn

z.0 and
last three Sn

z,0 and, also, Sn0

x 5Sn011
x 5Sn012

x , Sn013
x

52Sn012
x , Sn013

x 5Sn014
x 5Sn015

x will be denoted as

(¯000↑1↑1↑1↓2↓2↓2000̄ ).

A. Computation of breathers

For numerical simulations it is convenient to use stereo-
graphic coordinates. The new coordinates incorporate the
normalization condition and reduce the problem with three
unknown real functionsSn

x , Sn
y , andSn

z per site to the prob-
lem with one unknown complex functionjn per site,

jn5
Sn

x1 iSn
y

11Sn
z . ~8!

FIG. 2. Schematic representation of the discrete breather with one ‘‘out-of-
plane’’ spin in the easy-plane ferromagnet.
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The inverse transform is given by

Sn
x5

jn1jn*

11ujnu2 , Sn
y5

1

i

jn2jn*

11ujnu2 , Sn
z5

12ujnu2

11ujnu2
. ~9!

In these new coordinates the discrete Landau–Lifshitz equa-
tions take the form,

i j̇n5
J

2 Fjn212jn
2jn21*

11ujn21u2
1

jn112jn
2jn11*

11ujn11u2

2jnS 12ujn21u2

11ujn21u2
1

12ujn11u2

11ujn11u2D G22Djn

12ujnu2

11ujnu2 .

~10!

The computation of the discrete breathers is done, using the
Newton method.2 Discrete breather periodic orbits are zeroes
of the Newton map,

F5u2 Î Tu, u5$Rejn ,Im jn%. ~11!

Here the operatorÎ T stands for integration of the Landau–
Lifshitz equations ~10! with initial conditions u
5$Rejn ,Im jn% over the breather periodT52p/vb . As an
example, in Fig. 3 we show the profiles of the~↑↑! ~Ref. 20!
breather as a function of the exchange integralJ. They have
been computed in the chain ofN530 spins starting from the
AC limit. Panels~a!, ~b!, and~c! show the snapshots of the
Sx, Sy, and Sz components of the spin, respectively. Panel
~d! shows the structure of the breather forJ50.1. We de-
scribe the dynamics of the spins during one breather period
with circles.

B. Breather behavior as a function of frequency and
system parameters

Depending on its frequency, the breather width changes.
When the frequency approaches the upper edge of the linear
band from above, the breather becomes more delocalized.
However, this does not qualitatively influence its core struc-
ture, i.e., the effective precession axis of the central spin is
not continuously tilted toward theX-axis upon lowering the

breather frequency down to the linear band edge. The central
spin~s! dynamics can be viewed as a periodic~closed! orbit
of a point confined to the unit sphere. Let theXY plane be
the equatorial one. Then, for high breather frequencies, the
point performs small circles around the north~or south! pole.
Lowering the breather frequency does not change the fact
that the loop still encircles theZ-axis. Thus, the breather
solution cannot be deformed into a slightly perturbed and
weakly localized magnon, and, thus, the easy-plane ferro-
magnet lattice supports the breather solutions with a local
magnetization tilt that have no continuum analogs. This
gives us a reason to believe that there exists an energy
threshold~gap! which separates the energy of the discrete
breather from the ground state.18 This fact can be easily un-
derstood: since there is a finite number of spins precessing
around the hard axis no matter what the breather frequency,
their energy is always nonzero.

Energy thresholds have been estimated analytically18 in
the limit of small exchangeJ. Ignoring the displacements of
all in-plane spins, the threshold energy~normalized to the
ground state energy! for the breather withnr out-of-plane
precessing spins has been obtained:

E'2nr uDuS0
z2. ~12!

HereS0
z5vb/2uDu is theZ-component of the precessing spin

in the AC limit. The factor 2 stems from the fact that we
should take into account the contribution of the breather
tails.

Increase of the frequency leads to decrease of the pre-
cession radius of the central spin. In the AC limit, the upper
bound for the breather frequency is determined byvb52D
that corresponds to the central~precessing! spin being paral-
lel to the Z-axis. This bound continues to exist when the
exchange is switched on. After reaching this frequency
threshold, the breather becomes a stationary~time-
independent! solution. The existence of such a solution has
been verified numerically by solving the time-independent
Landau–Lifshitz equations.

Thus, in the frequency domain breather solutions are
limited from below by the upper edge of the magnon band
and from above by the valuevb.2uDu. In Fig. 4 we show

FIG. 3. Profiles of the spin components of the~↑↑! breather as a function of
the exchangeJ @panels~a!, ~b!, and~c!#. Panel~d! shows the breather profile
at J50.1. Other parameters areD521, v51.4.

FIG. 4. Breather existence diagram forD521. The dashed line shows the
border of parametric resonance,vb/25Vp .
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the breather existence diagram in the plane (J,vb) with D
521. Breather solutions exist in the segment encircled by
the linesvb52uDu and vb5Vp5A4J(J1uDu). Maximal
value of exchangeJ for which breathers exist can be easily
determined for each frequency from the above equation.
Thus,Jmax(vb ,D)5@AD21vb

22uDu#/2. For the highest pos-
sible frequency, vb52uDu, Jmax(2uDu,D)5(A521)uDu/2.
The border of the parametric resonance (vb/25Vp) equals
Jparam5@A4D21vb

222uDu#/4, so breathers are expected to
be stable within the interval 0,J,Jparam. However, in order
to check the implication of different resonances one should
investigate breather stability in a more systematic way.

IV. STABILITY OF BREATHER SOLUTIONS AND
THEIR ASYMPTOTIC PROPERTIES

The linear stability analysis of the discrete breathers is
based on Floquet theory~more details can be found in the
review by Aubry3!. Suppose$jn

(0)(t)% is the breather periodic
orbit for a lattice ofN spins. Then we linearize Eq.~10!
around it:jn(t)5jn

(0)(t)1«n(t) and find the Floquet~mono-
dromy! matrix M̂, which satisfies the following equation:

FRe«n~T!

Im «n~T!G5M̂FRe«n~0!

Im «n~0!G . ~13!

There are 2N eigenvaluesln of this matrix. If all of them are
found to be located on the unit circle of the complex plane,
then according to the Floquet theorem, the periodic orbit is
stable, otherwise it is unstable. If one looks at the corre-
sponding eigenvectors of the Floquet matrix, there are both
spatially delocalized vectors, corresponding to the linear
magnon spectrum and spatially localized vectors, whose ori-
gin is localized nature of the breather itself.

The simulations have been performed with different
boundary conditions: free ends, fixed ends@S15(1,0,0), SN
5(1,0,0)] and one end of the chain fixed@S15(1,0,0)# and
the other one is free. No principal differences have been
observed since the size of the chain is considerably larger
then the breather characteristic size. All the results reported
below are for the fixed ends unless stated otherwise.

A. Breather stability as a function of exchange

Consider first the stability properties of the breather so-
lutions at the fixed frequencyv51.4. In Fig. 5 we show how
the eigenvalues of the one spin (↑) breather periodic orbit
change while the exchange interactionJ is increased. We see
that it is stable in the small segment in the vicinity ofJ50
and later on an instability develops. The structure of the Flo-
quet spectrum is the following: there is a band of delocalized
modes associated with the magnon spectrum, and the internal
mode which lies between the lowest delocalized mode and
the phase shift mode at11.

Upon increasing the exchangeJ this internal mode
moves down and collides with itself on the real axis at11
@see insets of Fig. 5~a!#. This happens at rather small ex-
changes (J50.054, as for the case ofN550 shown in Fig.
5!. Once lost, stability is never recovered. The shape of the
internal mode is shown in Figs. 5~c!–5~e!. The main direc-
tion of instability is in theSy component, and it favors for-

mation of a torsional displacement on the breather inXY
plane. In order to understand better the nature of the insta-
bility of the (↑) breather, we have investigated more closely
the behavior of its Floquet eigenvalues in the neighborhood
of J50. The internal mode lies under the lowest delocalized
mode. However, the Floquet spectrum is discrete due to the
fact thatN is finite. As N increases, the spectrum becomes
more and more dense and, eventually, becomes continuous
as N→`. Thus, the internal mode is squeezed in between
the lowest delocalized mode and real axis~Arg l50!. Thus,
collision of the eigenvalue associated with the internal mode
at 11 will take place closer and closer toJ50 as long asN
is increased, as shown in Fig. 6. Therefore we can conclude
that for realistic systems whereN is large,~↑! breathers are
unstable.

Now we turn our attention to the case of two out-of-
plane spins. Four different breather configurations are pos-
sible: ~↑↑!, (↑1↑2), ~↑↓!, and (↑1↓2). We start with the
simplest configuration,~↑↑!. The stability picture is shown of
Fig. 7. Careful inspection of the evolution of the Floquet
eigenvalues withJ first reveals very weak instabilities which
start to develop atJparam5@A4D21vb

222uDu#/45(A5.96

FIG. 5. Eigenvalues~a!, ~b! and eigenvectors~c!–~e! of the breather peri-
odic orbit ~↑! as a function ofJ at a frequency ofvb51.4 and forN550.
Panels~a! and~b! correspond to the absolute value and its argument, respec-
tively. The left and right insets in panel~a! show the positions of the Floquet
eigenvalues on the unit circle forJ50.04 andJ50.2, respectively. Panels
~c!, ~d!, and~e! show thex, y, andz components of the unstable eigenvector
at J50.1 for free~1! and fixed~s! boundaries.
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22)/4.0.11. These instabilities are caused by the delocal-
ized eigenvalues colliding with their complex-conjugate
counterparts at21 on the unit circle. Therefore they can be
referred to as ‘‘parametric’’ instabilities~caused by the para-
metric resonance!.

It has been shown21 that these instabilities decay as the
size of the lattice increases and disappear asN→`. Even for
N550 they are too small to be seen in Fig. 7~a!. Thus, the
parametric instabilities are of limited interest. The more
prominent Hopf-type instability starts to grow atJ50.181
@the ‘‘bubbles’’ in Fig. 7~a!# due to a collision of an internal
mode with the leading edge of the magnon band. The inter-
nal mode can be easily spotted in Fig. 7~b! since it is not
parallel to the lines corresponding to the delocalized mode.
This mode is not completely localized since it lies in the
magnon spectrum. It is rather ‘‘quasilocalized,’’ as one can
see from Figs. 7~c!–7~e!. Collision of this mode with its
counterpart at21 on the unit circle atJ'0.27 triggers the
instability which does not recover any longer whileJ is in-
creased. The unstable eigenvectors are antisymmetric and the
direction in which the instability is most pronounced is the
Sy direction. The eigenvector is antisymmetric with respect
to the breather center. As the exchangeJ increases the pre-
cessing spins interact stronger and stronger with their neigh-
boring ‘‘in-plane’’ spins. The shape of the eigenvector shows
that ‘‘in-plane’’ spins pull the ‘‘out-of-plane’’ precessing
spins so that the latter can eventually fall into the easy plane
destroying the breather.

Now we turn our attention to the next breather type,
namely (↑1↑2). Here both ‘‘out-of-plane’’ spins are parallel
but precess with a phase differencep so that theirSx com-
ponents have opposite values. In Fig. 8 we show how the
Floquet eigenvalues develop as exchangeJ is increased. This
configuration is unstable for all values ofJ due to the un-
stable internal mode whose eigenvalue lies on the positive
part of the real axis of the unit circle@see the inset of Fig.
8~a!#. The asymmetric shape of the mode@see panels~c!–~e!
of Fig. 8# suggests the instability wants to ‘‘correct’’ the
existing phase lag between precession of the two out-of-
plane spins. This is understood from the general physical
argument—if the exchange is ferromagnetic, thus parallel
alignment of spins is the most favorable one energetically.

The next configuration,~↑↓! also develops an instability
starting from the AC limit as it can be seen in Fig. 9. The
instability is caused by the internal mode, which, similarly to
the case (↑1↑2), also has an eigenvalue moving from11
along the real axis of the unit circle. The shape of the un-
stable internal mode~eigenvector! is shown in panels~c!–~e!
of Fig. 9. It suggests that the instability has a nature, similar
to the (↑1↑2) case. The ferromagnetic interaction tends to
align spins in the energetically most favorable position.

Finally we consider the last configuration, (↑1↓2),
which in some sense can be considered as a ‘‘combination’’

FIG. 6. Zoomed Fig. 5~b! for N530 ~a!, 50 ~b!, and 100~c!. Ripples appear
due to computational error.

FIG. 7. The same as Fig. 5 for the~↑↑! breather. The eigenvectors of the
unstable mode~see text for details! are given forJ50.17 (* ) andJ50.28
~s!.
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of the previous two, (↑1↑2) and~↑↓!. However, as shown in
Fig. 10, this configuration appears to be stable. As the ex-
changeJ is increased, parametric instabilities start to appear,
however, as we have mentioned before, they will not affect
significantly breather dynamics asN→`.

For the breathers with three out-of-plane spins it has
been found that the configuration~↑↑↑! is stable starting
from the AC limit up to some critical value ofJ. The Floquet
spectrum of this periodic orbit possesses two internal modes
@note there was only one such a mode in the~↑↑! configura-
tion# which are positioned in between the delocalized modes.
The instability is triggered when the respective eigenvalues
collide at21 on the unit circle. The other stable configura-
tion is (↑1↑1↓2). Further investigation of the breather sta-
bility has shown that addition of a parallel spin to the stable
breather does not destroy its stability. In other words, since
~↑↑! is stable,~↑↑↑! is also stable as well as any configura-
tion of this type~↑¯↑↑! with an arbitrary number of parallel
out-of-plane spins. Similarly, since (↑1↓2) is stable, we
have checked that (↑1↑1↓2), (↑1↑1↑1↓2),
(↑1↑1↓2↓2), (↑1↑1↑1↑1↓2), (↑1↑1↑1↓2↓2), and any
configuration which can be obtained by adding a parallel
spin to the edge of the cluster, are stable.

Another class of stable solutions for higher number of
out-of-plane spins contains the configurations that consist of
clusters of parallel spins@for example,~↑↑↑! or ~↓↓!#: ~↑↑↓↓!,
~↑↑↑↓↓!, ~↑↑↑↓↓↓!. Thus, any superpositions of stable con-

FIG. 8. The same as Fig. 5 for the (↑1↑2) breather. The eigenvalues in the
inset and the eigenvectors are shown forJ50.03.

FIG. 9. The same as Fig. 5 for the~↑↓! breather. The eigenvalues in the inset
are forJ50.15 and the eigenvectors are shown forJ50.1.

FIG. 10. The same as Fig. 5 for the (↑1↓2) breather. Panels~c!–~e! show
the lowest lying eigenvector forJ50.1.
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figurations with parallel spins are stable for the case of the
intercluster boundaries of the type~¯↑↓¯!. Note that
breather configurations~↑↑↓! or ~↑↑↑↓! are unstable since a
one-spin breather~↑! is unstable. To summarize, in Table I
we show the possible stable configurations for a different
number of ‘‘out-of-plane’’ spins. Fornr54,5,6 we have not
shown all possible stable configurations, since the number of
possible breather configurations grows sharply asnr in-
creases.

In Fig. 11 we show the dependence of Floquet eigenval-
ues on the exchangeJ. It is interesting to note that while the
‘‘bubbles’’ associated with the Hopf-type instabilities due to
collision of the internal mode with the linear delocalized
modes appear at about the sameJ, the significant instabilities
driven by the excursion of the internal modes along the real
axis after collision with their counterparts at21 appear at
larger J as long asnr is increased. The more out-of-plane
spins present in the breather solution, the more internal

modes it possesses. As a result, the excursion of one internal
mode out of the unit circle becomes shorter, and the corre-
sponding instability becomes less pronounced. Furthermore,
the most significant instability is associated with the lowest
lying internal mode, so this instability appears at a larger
exchange for increasednr . Another interesting feature asso-
ciated with the breather symmetry is a somewhat different
instability picture for even@Figs. 7~a!, 11~b!, 11~d!# and odd
@Figs. 11~a!, 11~c!# number of out-of-plane spins. The case of
the evennr is characterized with the higher respective insta-
bility than the case of the oddnr .

Physically, the decrease of the instability for the breath-
ers with largenr can be explained by the fact that with the
larger number of ‘‘out-of-plane’’ spins the energy gap that
separates breathers from the magnons is larger and it is much
harder for the exchange interaction to bring the precessing
spins back into the easy plane.

B. Breather stability as a function of its frequency

It is interesting to investigate how breather stability de-
pends on its frequency. It has been shown that breathers exist
within the following frequency domain:Vp5A4J(J1uDu)
,vb,2uDu. In Fig. 12 we show how breather stability for
the configuration (↑↑) changes as the exchange is increased
starting from the AC limit. We have taken different values of
breather frequency:vb50.7,1.4,1.6,1.8,1.98.

The figure clearly shows that the higher the frequency
the more stable is the breather solution. This can be easily
explained with the help of Fig. 4. Breather instabilities are

FIG. 11. Dependence of the absolute value of the Floquet eigenvalues on
the exchange integralJ for different breather configurations:~↑↑↑! ~a!,
~↑↑↑↑! ~b!, ~↑↑↑↑↑! ~c!, ~↑↑↑↑↑↑! ~d!. The breather frequency isvb51.4.

FIG. 12. Dependence of the absolute value of the Floquet eigenvalues of the
~↑↑! breather on exchangeJ for different frequencies:~a! vb50.7, ~b! vb

51.4, ~c! vb51.6, ~d! vb51.8, and~e! vb51.98.

TABLE I. List of stable breather configurations. Because there are too many
possible breather configurations fornr.3 we have plotted only several of
the stable ones. See text for details.

nr Stable configurations

1 ¯

2 ~↑↑!, (↑1↓2)
3 ~↑↑↑!, (↑1↑1↓2)
4 Not complete;~↑↑↑↑!, ~↑↑↓↓!, (↑1↑1↑1↓2),

(↑1↑1↓2↓2),
(↑1↓2↓2↑1), (↑1↑1↓1↑2)

5 Not complete;~↑↑↑↑↑!, ~↑↑↑↓↓!, (↑1↑1↑1↑1↓2),
(↑1↑1↑1↓2↓2)

6 Not complete;~↑↑↑↑↑↑!, ~↑↑↑↓↓↓!, ~↑↑↓↓↑↑!,
(↑1↑1↑1↓2↓2↓2)
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caused by parametric resonances~collisions of Floquet ei-
genvalues at21! either of delocalized modes or of internal
modes. Therefore, the parametric resonance takes place at
largerJ’s if vb is increased.

We also investigate the breather behavior as its fre-
quency is decreased,vb→Vp . As it has been discussed in
the previous section, when approaching to the upper bond of
the magnon spectrum, the breather does not change into a
weakly localized magnon but preserves its localized nature,
and it is separated by an energy gap~threshold! from the
delocalized states~magnons!. In Fig. 13 we show how
breather stability changes as a function of the detuning pa-
rameter Dv5vb2Vp . In panel ~a! we show how the
breather energyE ~normalized to the energy of the ferromag-
netic ground state! depends on the detuning. The energy
threshold is clearly seen as it is the minimum of the function
E(Dv). Panels~b! and ~c! show the development of the
Floquet eigenvalues. It can be clearly seen that the breather
becomes unstable long before the magnon upper edge is
reached. The instability is caused by parametric resonances
of magnons first, and by parametric resonance of the internal
mode later. Additional bifurcation occurs whenE attains its
minimum.

V. TWO-DIMENSIONAL LATTICE WITH EASY-PLANE
ANISOTROPY

Finally, we briefly review results18 on a two-dimensional
easy-plane ferromagnet with nearest-neighbor exchange in-
teractions. Numerical simulations of the discrete Landau–
Lifshitz equations~3! with n5$n,m% using the fourth-order
Runge–Kutta scheme with various initial spin configurations
have been carried out. The results to some extent are similar
to the one-dimensional problem. In Fig. 14 the simplest pos-
sible configurations of the breathers that involve four ‘‘out-
of-plane’’ precessing spins are shown. No stable breathers
with one precessing spin are possible, similar to the one-
dimensional model. Also, there are no stable breathers with
two or three precessing spins~at least, in the limit of small
J). Among the three possible stable configurations shown in
Fig. 14, the first one@see panel~a!# corresponds to four spins
precessing being parallel to each other and in-phase, similar
to its one-dimensional counterpart. The second two configu-
rations do not have direct analogs in the one-dimensional
case, but they can be considered as a two-dimensional com-
bination of the~↑↓! solution with the~↑↓! ~b! or ~↑↑! ~c!
solution. The cases shown in Figs. 14~b! and 14~c! represent
the breathers with two spins precessing around theZ-axis in

FIG. 13. Breather behavior as a function of detuningDv5vb2Vp for J
50.1: ~a! dependence of the normalized breather energyE5H2J(N
21)/2; ~b!, ~c! behavior of the Floquet eigenvalues. FIG. 14. Schematical representation of some possible configurations of dis-

crete breathers with four precessing spins.
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the positive direction~marked by dots! and two spins pre-
cessing around the negative direction~marked by crosses!.
The simulations have been performed on a lattice of 150
3150 spins withJ50.11 andD521.

VI. SUMMARY AND DISCUSSIONS

We have presented a review of the previous results and
some new results on the discrete breathers in the easy-plane
ferromagnetic lattices. We have focused on the essentially
discrete solutions which have no continuum analogs. This is
due to the fact that the spins in the center of the excitation
precess around a tilted axis leading to a local tilt of the mag-
netization. As a result, this class of discrete breathers pos-
sesses energy thresholds~gaps!. Note that for lattices of in-
teracting scalar degrees of freedom, the discrete breathers
have typically zero lower energy bounds in spatial dimension
d51 and become nonzero22 only for d52,3. The energy of
the thresholds depends on the number of precessing ‘‘out-of-
plane’’ spins. This class of discrete breathers is analogous to
rotobreathers which exist in arrays of Josephson junctions.5

Such energy thresholds may be very important as they show
up in contributions to thermodynamic quantities that depend
exponentially on temperature. The system supports a rich
variety of breather solutions, depending on the number of the
precessing spins and their respective orientation. These solu-
tions have been classified and categorized according to their
internal structure, and their linear stability have been studied.
We find some general rules on how to create stable breathers
with the desired structure. In particular, arbitrary sequences
of pairs of parallel spins@~↑↑! and ~↓↓!# can be created. If
such solutions are to be observed experimentally, they can be
used to store information.
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