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Nonlinear Alfvén Waves in a Vlasov Plasma

T. F. BELL

Tonosphere Laboratory, Technical University of Denmark, Lyngby, Denmark
(Received 26 April 1965)

Stationary sclutions to the nonlinear Vlasov—-Boltzmann equations are considered which represent
one-dimensional electromagnetic waves in a hot magnetoplasma. These solutions appear in arbitrary
reference frames as circularly polarized, sinusoidal waves of unlimited amplitude, i.e., as nonlinear
Alfvén waves. Solutions are found implicitly by deriving a set of integral dispersion relations which
link the wave characteristics with the particle distribution functions. A physical discussion is given
of the way in which the Alfvén waves can trap particles, and it is shown that the presence of “cyclo-
tron-trapped’’ particles introduces a boundary condition which no set of isotropic distribution func-
tions can satisfy. An application of these solutions to theories of very low frequency emissions is

briefly discussed.

I. INTRODUCTION

N the present paper we wish to show how solutions
to the nonlinear Vlasov—Boltzmann equations
can be constructed which represent sinusoidal, cir-
cularly polarized plane electromagnetic waves prop-
agating parallel to the direction of a constant mag-
netic field in a hot plasma. This plasma is infinite
and free from collisions and consists entirely of
electrons and various kinds of ions. The nonlinear
waves can be thought of as Alfvén or whistler mode'
waves of arbitrary amplitude since in the limit of the
linear theory they correspond to the characteristic
modes of propagation known variously as the Alfvén
or whistler modes.

We limit ourselves to finding solutions which
appear stationary in a particular frame of reference,
i.e., we assume that there exists a rest frame for
the wave. In this rest frame we construct “solutions”
to the nonlinear Vlasov—Boltzmann equations in the
sense that we derive a set of “‘dispersion” relations,
involving the particle distribution functions, which
implicitly define those sets of particle distribution
functions which will satisfy the nonlinear Vlasov—
Boltzmann equations. These integral relations are
given in a form which does not involve any spatial
variables and in which, given a particular set of
distribution functions, all integrals may be directly
evaluated. The generality of the wave types we
consider is restricted ; the dispersion relations apply
only to sinusoidal Alfvén waves. Nevertheless, these
nonlinear solutions are important in at least two
respects:

(1) They allow an investigation of the effects of
trapped particles upon an electromagnetic wave of
arbitrary amplitude in a Vlasov plasma.

(2) They represent an extension into the non-

LT, H. Stix, The Theory of Plasma Waves (McGraw-Hill
Book Company, Inc., New York, 1962), Chap. 9.

linear regime of a mode of electromagnetic wave
propagation which in the linear theory is a charac-
teristic mode of propagation, i.e., the Alfvén or
whistler mode.

Nonlinear Alfvén waves in a cold plasma have
been discussed previously by a number of workers.”
However, these cold plasma nonlinear solutions can-
not take proper account of particle trapping, and in
addition, their usefulness in extending the linear
theory of the Vlasov plasma is limited. It must be
remarked, however, that these cold plasma solutions
have the virtue of simplicity and are also applicable
to a wide variety of wave forms; these are two ad-
vantages over the solution given here.

A method of constructing stationary nonlinear
solutions to the Vlagsov—Boltzmann equations has
been outlined by Bernstein.’ This method involves
first determining the constants of the motion of the
individual particle trajectories under the influence
of the static fields and then determining those dis-
tribution functions which, when expressed in terms
of the constants of the motions, satisfy the Maxwell
equations, as well as appropriate subsidiary con-
ditions. The main point to this development is that
the distribution functions, when expressed in terms
of the particle constants of the motion, automatically
satisfy the Boltzmann equation in the wave rest
frame.’* Once a solution is obtained in the rest
frame then the solution in any other frame may be
obtained by means of a simple Galilean or Lorentz
transformation. This method has been used by a

2 See, for example, V. C. A. Ferrarro, Proc. Roy. Soc.
(London) A233, 310 (1955), or D. C. Montgomery, Phys.
Fluids 2, 585 (1959).

31. B. Bernstein, in Radiation and Waves in Plasmas,
edited by M. Mitchner (Stanford University Press, Stanford,
Califorma, 1961), p. 19.

4 8. Chandrasekhar, Plasma Physics, notes compiled by
?(:);;Iér)ehan (The University of Chicago Press, Chicago, Illinois,
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number of workers to construet stationary nonlinear
solutions which represent one-dimensional plasma
oscillations.®

In the present paper we consider a one-dimen-
sional situation involving electromagnetic waves, a
case which is somewhat more complex than that
of the plasma oscillations. In Sec. II the general
dispersion relations for the particle distribution func-
tions are developed, and in Sec. IIT the physical
nature of the particle trapping by the Alfvén wave
is discussed. Section IV is devoted to a phase analysis
of the particle trajectories and to the statement of
the boundary conditions which the presence of gyro-
resonant trapped particles impresses upon the dis-
tribution functions. A brief discussion of the results
follows in Sec. V.

II. ANALYSIS

Consider a plane electromagnetic wave which is
propagating parallel to a static magnetic field in
an infinite plasma consisting of electrons and various
kinds of ions. Let the static magnetic field B, point
along the positive z axis in a right-handed Cartesian
coordinate system, and let the field components
of the wave be functions of z alone. Given now that
a wave rest frame exists and that this frame trans-
lates in the laboratory system with a velocity less
than that of light, the only nonzero components
of the fields in this frame will be

Ea = E,(Z), B: = BOy
Bz = Bz(z)r Bu = B,,(Z),

where B, is the component of B along the z axis
in the rest frame, etc. In general the presence of
the longitudinal electric field will couple the electro-
magnetic wave to the longitudinal plasma oscilla-
tions, and this is a complication which it is wished
to avoid. Therefore, we take E, = 0, a restriction
which means that in the laboratory frame the wave
will appear purely transverse.

In the rest frame the distribution funection for
the 7th type of particle f*° must satisfy the sta-
tionary collisionless Boltzmann equation.

@V + 9(vxB)-V.f? =0, (2.1)

where B is the total magnetic field in the rest frame,
n; is the ratio of charge to mass for #th type of
particle, and V, V, are the Laplacian operators
in coordinate and velocity space, respectively.

The Maxwell set can be written®
-;_I.T.lgernstein, J. M. Greene, and M. D. Kruskal, Phys.

Rev. 108, 546 (1957); also, see the paper by D. Bohm and
E. P. Gross, Phys. Rev. 75, 1851 (1949).

T. F. BELL

"a—% - T f 0/ dv, 2.2)
ifz—v - —w T4 [ s av, 2.3)
jo=0= Z 0 f 0. dv, (2.4)
p=0=q [1a, @.5)

where j, is the z component of the total current
density, p is the total charge density, ¢; is the charge
of the sth type of particle, dv = dv.dv,dv,, and the
integrals are to be taken over the whole of velocity
space.

The problem is now to determine those sets of
distribution functions {* which will satisfy Egs.
(2.1)-(2.5), along with the subsidiary conditions,
introduced for physical reasons, that there be no
particles of negative number density, that f**’ be
normalizable, and that the momentum and energy
density of the particles be finite, i.e.,

19 >0, (2.6)

[ 19 it av < m, @7)
wherej = z,y,2, m =0,1,2 and M is some finite
number. It can be demonstrated that any function
(sufficiently smooth) which depends only upon the
constants of the motion of the particle trajectories
in the rest frame will satisfy Eq. (2.1). Our pro-
cedure is to determine these constants of the motion,
express the {’ in terms of the constants, and then
to establish under what conditions these f*’ will
satisfy the Maxwell set, as well as Eqgs. (2.6) and
2.7).

We determine the appropriate constants of the
particle motion by solving the equations of motion
of a particle of charge to mass ratio 5, under the
influence of the static fields.

These equations are given by the Lorentz law:

(2.8)

where the dot indicates a total time derivative. We
restrict our attention to waves which appear in the
laboratory frame as sinusoidally varying, circularly
polarized waves. In this case in the rest frame the
transverse magnetic field B, will have the form

B, = B,[e, cos k(z — 2,) = e,sin k(z — 2,)], (2.9)
where B, is the amplitude of the rotating variable

magnetic field, &£ is the wavenumber of the static
field, e., e, are unit vectors in the x and y direction,

Vv = g [vxB],
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NONLINEAR ALFVEN WAVES IN VLASOV PLASMA

and z, is some constant. For explicitness we chose
the positive sign in Eq. (2.9), but the choice of the
minus sign would represent no difficulty in the
development to follow. [Note that the substitution
kE' = —k is equivalent to a change of sign in Eq.
(2.9).]

The derivation of the relevant constants of the
motion from Eq. (2.8) is best performed in a coor-
dinate system described by the triple (v,, vy, ¢).
Here v, is the particle velocity in the z direction,
v, is the magnitude of the particle velocity per-
pendicular to the z axis, and ¢ is the angle between
B, and v, measured in a positive sense from B,
to v, so that

B, xv, = e, [B,| |[v.]sin¢,
B,-v, = |B,| [v.] cos ¢

(see Fig. 1). In this coordinate system the equations
of motion (2.8) have the following representation:

9, = —n;B,v, sin ¢,
v, = 9,B.v,sin ¢, (2.10)
(i) = —kvz - 77"[Bo - Bw(vz/vl) cos ¢]'

Two constants of the motion can be obtained from
the above set of equations:

vl 40t = EY, (2.11)
v} + 2VE%, + 2V, cos¢ = FP, (2.12)
where
Vi = —(9:Bo/k) and V.) = —(n.B./k).

[From this point on, the superscript (7) will be
suppressed with respect to E, F, V, and V,,.] Equa-~
tion (2.11) is just an expression of the conservation
of kinetic energy in the rest frame; (2.12) has the
characteristics of angular momentum conservation.
The deduction of these two constants is sufficient
to enable us to find »,(t), v, (), or ¢(z).

It is wished to express the velocity integrals in
Egs. (2.2)-(2.5) in terms of these constants of the
motion. The third variable of integration will be
somewhat arbitrary since we have only two con-
stants of the motion. Choose the third variable
of integration as the angle ¢. The coordinate trans-
formation (v., v,, v,) — (E, F, ¢) relatesthe dif-
ferential volume elements in the two spaces through
the Jacobian J of the transformation

dE dF d¢ = J dv, dv, dv,, (2.13)

where
J =93, F,$)/@., vy, 0.).

1831
y

F1a. 1. Display of nor-
mal and Cartesian coordi-
nates for an arbitrary par- Y . BHH
ticle. The position vector -
of the particle in the (z, y)
plane has the value r,.
The angle y is defined by ¥
v = k(z — zo).

all

(As in the case of the quantities E and F, it should
be borne in mind in what follows that the quantity
J will in general be different for each particle
species.)

The quantities », and v, may be expressed in
terms of v, and ¢ through the relations

vy cos (¢ + kz — kz,),

UI

(2.14)
v, =v, sin (¢ + kz — kz),
and the Jacobian above has the explicit value
J = 4(/k), (2.15)

where ¢ is given as in Egs. (2.10). Formally, a
typical integral in Eq. (2.2), for instance, will now
appear as

1= [ap f ar [ o.@, 7, 91, N2 (@i

There are two immediate difficulties with Eq. (2.16)
which must be dealt with. First, the transformation
leading to Eq. (2.13) is not one-to-one, and con-
sequently, in order to properly preserve phase space
volume, Eq. (2.13) must be interpreted as applying
separately to each real branch of ¢ = ¢(E, F, ¢).
It can be shown from Eq. (2.11), Eq. (2.12), and
the last of Eqgs. (2.10) that there may be as many
as four real branches of ¢. In these cases the integrals
involving J, such as Eq. (2.16), must be interpreted
as being taken over all the real branches of ¢ in
order to preserve phase space volume. For our pur-
poses it is convenient to perform formally all in-
tegrations over ¢ which appear in expressions such
as Eq. (2.16) and in the future we indicate symbol-
ically, by the subscript s below the integrals, the
particular branch of ¢ along which the integration
is to be performed.

The second point of difficulty with Eq. (2.16)
rests with the distribution function 7. Each real
branch of ¢ will correspond to a different region
of the (v., v,, v,) space [as can be seen by the last
of Egs. (2.10)], and the value of > need not be the
same in each of these regions. This fact we indicate

Downloaded 10 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp
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by the subscript s attached to f*. Equation (2.16)
is now properly written

I = ‘Z‘/‘dE’de/;v,,ﬁ“f—l;—’:- @2.17).

The last point we make with regard to these integrals
is that, by convention, we interpret all integrals as
being taken in a positive sense and consider the
Jacobian as always positive. '

With the above considerations in mind, we can
use Egs. (2.9), (2.13), and (2.14) in order to trans-
form Egs. (2.2) and (2.3) into the following two
equations which do not depend explicitly upon any
space variables:

:f;liw - ;dedefﬁ”ul cosqbgng:, (2.18)

0= ;de’deffj“vlsin¢%%-

It is possible to show that Eq. (2.19) is always
satisfied no matter what form the distribution func-
tions possess. To see this, note that the integral
over ¢ may be performed first, with E and F fixed.
But from Eq. (2.12) it can be seen that the curves
describing the particle motion for fixed £ and F
are symmetric about ¢ = 0. Thus on these curves,
v.(¢) = v.(—9), v.(¢) = v.(—¢), and consequently,
any branch of ¢ will be symmetric about ¢ = 0.
But v, sin ¢ is odd about ¢ = 0. Thus,

fvlsiruﬁ% =0

(2.19)

for all s,

and Eq. (2.19) is satisfied no matter what form the
distribution functions possess.

Equations (2.4) and (2.5) may be transformed
in a manner similar to Eq. (2.10), and if, in addition,
we formally carry out the integrals in ¢, the entire
set can be written

4=3 qif GO1Y dE 4R, (2.20)
0= % o [[ HORO apar,  (@21)
0=>q ff T dE dF,  (2.22)
where
A= —kBu/uo, G¥ = fva cos ¢ dT, (2.23)
HY = fv, ar, TP = f,dT, T = d o/J..

T. F. BELL

The equations given above are the desired dispersion
formulas relating the “wave’” amplitude to the dis-
tribution functions, and it can be stated that in
general nonlinear sinusoidal, Alfvén waves will exist
in the Vlasov plasma given that the particle dis-
tribution functions satisfy Eqs. (2.20)-(2.22), (2.6),
and (2.7). However, this statement has little meaning
until the limits of the integrals in Egs. (2.20)-(2.22)
are defined and the various domains of the f{* are
determined. These questions are clarified in Sec. III
by means of a phase plane study of the particle
trajectories, but we first proceed to a brief physical
discussion of the way in which particles are trapped
by the Alfvén wave.

III. PARTICLE TRAPPING

Most of the interesting and unusual properties
of the system (2.20)-(2.22) stem from the fact that
it is possible for particles to be trapped by the field
structure of the Alfvén wave. This trapping by
Alfvén waves is affected by means of a velocity-
dependent potential and possesses some novel fea-
tures which are in contrast to the trapping that takes
place in the longitudinal plasma wave.® In the case
of the longitudinal waves, the trapping is accom-
plished by the action of the longitudinal electric
field, and the trapped particles are bunched in space.
In the case of Alfvén waves, the trapping is accom-
plished by the action of the transverse magnetic
field of the wave, and the particles are not bunched
in space, but the transverse velocity vectors of the
particles are bunched with respect to their phase
about the static magnetic field lines. In both cases
trapping is dependent upon modulation of the par-
ticle velocity parallel to the constant magnetic field
B,, but for the longitudinal waves the average
parallel velocity of the trapped particle in the wave
rest frame is zero, while for the Alfvén waves the
average parallel velocity of the trapped particles in
the wave rest frame is in general not zero.

The main features of the trapped particle char-
acteristics can be brought out by the consideration
of the motion of an electron in the combined fields
of the constant magnetic field and the Alfvén wave.
It is well known® that the general motion of a charged
particle in a constant magnetic field consists of a
helical motion of constant pitch about some par-
ticular field line. In the normal coordinate system
defined in Sec. II, for example, and in the absence
of the Alfvén wave, an electron of initial parallel
velocity », and transverse velocity »/ would move

° H. Alfvén, Cosmical Electrodynamics (Oxford University
Press, London, 1950), Chap. 2.
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with constant velocity v/ in the z direction while
rotating about a particular field line of B, with an
angular velocity w, equal to the electron cyclotron
frequency, w, = eB,/m. The sense of this rotation
would be such that the angular momentum vector
agsociated with the electron rotation would be
directed along the z axis. The pitch of the helix
¢ would be given by the relation ¢ = tan™" (v//v?).
In the combined fields of the Alfvén wave and the
constant magnetic field, it is also possible for the
electron to move in a helical path of constant pitch
about a particular field line of B,. This can be seen
in the following way. First assume that the electron
is observed at some instant of time at which it has
the (nonzero) velocity components v, parallel to B,
and »/ perpendicular to B,. In this case there are
two forces on the electron in a plane perpendicular
to B,. One of these is due to the action of the con-
stant magnetic field B, and has the form

F, = —e(vl xBy), (3.1)

while the second is due to the action of the wave
magnetic field B, and has the form

F, = —e(v, xB,). 3.2)

In addition there is a third force which acts along
the z direction and which has the form

F, = —e(v. xB,). 3.3

Uniform helical motion of the electron is possible
only if the magnitudes of the velocity components
remain constant. A necessary condition for this is
F, = 0. Note that this implies that v/ and B,, are
either parallel or antiparallel, and consequently, F,
must be perpendicular to v/. But F, is always per-
pendicular to v/, and when F, also is, we may find
the instantaneous angular velocity of the electron
w about B, by equating the centripetal and centrif-
ugal forces:

mwv) = e@, B, & v!B,), (3.4)

where the =+ arises from the fact that v/ and B,
may be either parallel or antiparallel. Furthermore,
as a result of its velocity along the z axis, the electron
will see the transverse magnetic field B, appear to
rotate in the z, y plane at the angular Doppler
frequency

(3.5)

The sense of this rotation will be the same as that
of the electron’s rotation about B, as long as both w
and w, have the same sign. Given that F, is initially
zero, it is clear that F, will remain zero so long as

wy = kv:.

1833

wy and the phase between B, and v, remains
constant. But as long as F, is zero, », will not change
from its initial value v, and w,; will remain constant.
In addition, as long as ¥, is zero, F, will remain
perpendicular to »,, there will be no forces parallel
to v, the magnitude of v, will remain at its initial
value v/, and w will remain constant. But the condi-
tion w = w, ensures that F, will remain zero, and
thus, the entire configuration will have no tendency
to change with time. The conditions for uniform
helical motion are then just that at any time:

w =

w = wy4, Vi wa = 0,

or equivalently
e/m|B, & (v./v.)B,] = kv,, (3.6)

where ¢ is the angle between v, and B,, as defined
in Sec. IT. It will be noted that the above relations
are equivalent to those that can be derived from
Eqgs. (2.10) by requiring that #, = 9, = ¢ = 0.
Thus uniform helical motion is the motion deter-
mined by the singular points of (2.10) and is the
fundamental “‘average” motion of any particle trap-
ped by the Alfvén wave. The deviations from the
uniform helical motion can be expressed in terms
of the angle ¢ between v, and B,. The trapped
particles are marked by the fact that, for their
motion, the variation in ¢ is bounded, |¢| < ,
and the transverse velocity vectors of these particles
tend to be bunched with respect to phase about B,.
Thus, we have the important point that in any
plane perpendicular to B, the velocity vectors of
the trapped particles will be in approximately the
same direction, and these particles will act as a
coherent ecurrent source.

It may be noted that for fixed B, and B,, Eq.
(3.6) appears to be satisfied by an infinite range
of values of », and v, ; however, it must be borne in
mind that the initial kinetic energy of any single
particle is a definite quantity and », and », must
satisfly the relationship v{ + »? = const. Taking
this fact into account, it can be shown that there
are at most four ways to satisfy Eq. (3.6) for a
given value of kinetic energy. It is instructive to
list briefly the possibilities according to their qualita-
tive features.

(i) The quantity o = |0,B,/v,B,| is large, and
v, is negative. Here the motion is controlled mainly
by B,,, which actually reverses the sense of rotation
of the electron about B,.

(ii) « is large, and », is large and positive. Here
B. controls again, causing a large increase in w
above w,.

sing = 0,
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(iii) e is small, and v, = w./k + ¢ where ¢ has
two values, one small and negative, and one small
and positive. Here the motion is controlled mainly
by the field B,, and the particle rotates about B,
at approximately its unperturbed cyclotron fre-
quency w,.

Since (iil) requires that v, have a certain minimum
value, the conditions there cannot be satisfied for
all values of kinetic energy. However, given that

some one value of kinetic energy is high enough

to satisfy (iii), any higher value of kinetic energy
can also satisfy (iii), and thus this trapping region
can affect particles over a wide range of energy.

It is instructive to note that in the limit of the
linear theory as B, — 0, the two values of v, in
(iii) tend to one, v, — w,/k. But this is just the
condition in the linear theory (applied to the rest
frame) that the particle be in eyclotron resonance
with the Alfvén wave. In view of this correspond-
ence with the linear theory, we choose to label the
trapping characterized by the conditions of (iii) as
cyclotron trapping. In Sec. IV it is brought out
that the presence of cyclotron-trapped particles in-
troduces certain boundary conditions which restrict
the form of the allowable particle distribution
functions.

IV. INTERPRETATION OF INTEGRALS

In this section we wish to define the limits of the
integrals in Egs. (2.20)—(2.22) and to determine the
domains of the distribution functions f{*, as well
as any boundary conditions on £ which might be
appropriate. In order to achieve these ends, we need
to know the limits of the (E, F) parameter space,
the distribution of the branches of ¢, and the location
of the singular points of Egs. (2.10). This information
can be obtained by means of a phase plane study
of the particle motions, which we outline briefly

below.
A, Phase Plane Study

Our phase plane study is in essence a study of
that family of integral curves which is defined by
the intersection of Egs. (2.11) and (2.12). Since
Eq. (2.11) is just the equation of a sphere of radius
E*in a Cartesian velocity space, the integral curves
will lie upon the surface of this sphere and can be
represented conveniently in spherical coordinates in
velocity space. In order to transform into the spher-
jcal coordinate system, we introduce the colatitudinal
coordinate 6 defined so that

v, = B' cos #,

0L o6<m
v, = B sin 4,

T. F. BELL

and we let the angle ¢ go over into a longitudinal
angle on the sphere. We also introduce the dimen-
sionless parameters

r = B,/By,

= |n (57-‘)_1 = =xI,
N =E V.,

c = FV]?

and the dimensionless “time,” dt = Bgyy.dt.
In terms of these new quantities, Egs. (2.10) be-
come
6= —%r sin o,
¢=1-—2 6 — ér cot 8 cos ¢, (4.1)

(the dot denotes d/dt) with the constant of the
motion

COs

AAsin® 6 + 2 cos 6 + 26rsin 0 cos¢] = 0. (4.2)

Given r and ¢ fixed, Eq. (4.2) represents a two-
parameter (o, A) family of curves. Given also ¢, and
A fixed, then Eq. (4.2) describes all the possible
real motions available to any particle characterized
by the given values of ¢ and A. It is possible to
show that the real particle motions governed by
Eq. (4.1) and satisfying Eq. (4.2) will correspond
to curves which are either closed on the surface
of the velocity space sphere or else consist of a
single point on this surface. Let us define each of
these closed curves (or single points) as a trajectory.
Since Eq. (4.1) obeys a Lipschitz condition,” these
trajectories will be unique and each will correspond
to an entire physical motion of a particle.® Through
geometrical arguments, it can be demonstrated that
there will be at most two real trajectories for any
given ¢ and A, and thus at most two entire physical
motions in the velocity space.

As discussed in See. IT1, the motions characteristic
of trapped particles will be those for which ¢ is
bounded, |¢| < . In this regard, the phase space
(6, ¢) can be divided into those regions which con-
tain trapped particle trajectories and those which
do not. The singular points of Egs. (4.1) will define
some of the limits of these trapping regions. Inspec-
tion of Eqgs. (4.1) shows that the singular points
are defined by the relations

¢s = nw, 1714[ = Oy 1, 2: M ] (4‘3)

_TE. A. Coddington and N. Levinson, Theory of Ordinary
Differential Equations (McGraw-Hill Book Company, Inc.,
New York, 1955).

¢ N. Minorsky, Nonlinear Oscillations (D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1962).
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0=1—X cos 6, — or(—1)" cot 6, (4.4)
06, < (by definition). (4.5)

As a result of Eq. (4.5), the real values of ¢, which
satisfy Eq. (4.4) will be unambiguously defined if
cos 6, is known. The real values of cos 8, which
satisfy (4.4) also satisfy the polynomial relation
divided from (4.4)

PX) = (O — X)(1 — X)* —°X* =0, (4.6)

in which X = A cos 6,.

The following properties of P(X) may be readily
shown assuming that A and » are real and nonzero:

(A) P(X) possesses a unique real negative root
X, and at least one positive real root X, for all
A>0.

(B) Define A, = [1 + r']& For x < A, P(X)
possesses only two real roots X; and X,. For A 2> A,
P(X) possesses four real roots, which we order
X, <0< X, < X; <X, The condition X; = X,
applies only when A = A,.

(C) Each distinet real root of P(X) defines the
6 coordinate of a distinct singular point.

Since Egs. (4.1) admit an integral of the motion,
Eq. (4.2), the singular points defined by Eqgs. (4.1),
are either centers or saddle points or points which
represent the confluence of a center and saddle
point.® For present purposes we refer to the centers
as stable points and to the saddle points as unstable
points.

Let us define the values of 6, which correspond
to the real roots X, of P(X) as 6,, i.e,,

cos™t (X ATY, 4.

where the X, are given as in (B) above. We denote
by the symbol ¢, the principal value of ¢, appropriate
to the singular point whose 6, value is ;. Analysis
of Eqgs. (4.1) through the variational method® of
Poincaré shows that the singular points (6., ¢;) have
the following properties as functions of \:

(a) A< A

Here there are two singular points defined by Egs.
(4.3)-(4.5), both of which are stable. The values
of 6, for these points are defined through Eq. (4.7)
and (B). The values of ¢; for these two singular
points are ¢; = 3w (1l + 8), ¢, = 3w(1 — 9).

(b) A=A

There are two stable singular points for which 8;
is defined by Eq. (4.7), the X; referring to the
negative root and the smallest positive root of P(X)
lie., X, and X, in (B) above]. There is also a

8, =
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singular point, (s, ¢s) corresponding to the double
root X; = X,, which represents the confluence of
a center and a saddle point. This higher order
singular point does not represent a stable particle
motion. In these three cases, ¢, are as in (a) above,
while ¢3 = ¢,.

(c) A > A

There are three stable singular points for which 8,
is defined by Eq. (4.7), the X, referring to the
negative root and the smallest and largest positive
roots of P(X) [ie., X;, X, and X, in (B) above].
There is also one unstable singular point (6;, ¢s)
corresponding to X,. The associated points ¢, for
12 =1, 2 are as in (a) above; also ¢ = ¢4 = ¢;.

The stable singular points will be enclosed by
trajectories for which the variation of ¢ is bounded
and these curves fill out certain portions of the
(6, ¢) phase plane, portions which we refer to as
the trapping regions. Each of the trapping regions
is bounded by a separatrix which is the limiting
curve separating the trapped orbits from the un-
trapped. (A separatrix is not itself a trapped orbit,
and it may not connect the unstable singular points.)
For a fixed value of A the separatrix for each of the
possible trapping regions may be defined in terms
of a value of ¢ through Eq. (4.2).

Let us denote the value of ¢ at any of the singular
points (8;, ¢.) as o; = o;(A). Let us also denote
the region of trapping in the (6, ¢) plane about the
stable singular points (z = 1, 2, 4) as R;. Finally,
let us denote as A\, the value of A defined implicitly
through the relations o;(A) = 2x; A > A,. Given
these definitions, the following statements may be
made with regard to the limits of the regions R;:

(1) Region R, is bounded by the separatrix
o(8, ¢) = —2\, where o(0, ¢) represents the left-hand
side of Eq. (4.2). The trapping region consists of
all orbits characterized by a value of ¢ in the interval
o1 < ¢ < —2\. This is true for all A.

(2) Region R, is bounded by the separatrix
o(8, ) = 2, for values of X in the interval 0 <
A < Aq while for A > A, the region is bounded
by the separatrix ¢(8, ¢) = 3. The trapping region
consists of all orbits characterized by a value of o
in the interval:

2N < o L oy
o3 < ¢ < 0g;

OS)\S)‘dv
A > A

(3) Region R, exists only for A > A,. For values
of N in the interval A, < A < A, this region is
bounded by the separatrix ¢(8, ¢) = o3, while for
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F1a. 2. Sketch of typical phase plane trajectories for A < ..
- The particle density on any of these trajectories for a_given
species can be described by a single distribution function fr.

A > Ay the region is bounded by the separatrix
o(f, ) = 2x. The trapping region consists of all
orbits characterized by a value of ¢ in the interval:

Ae <A Ay,
A > Ag

0'4SO'<0'3;
g L o < 2);

The above statements comprise the essential points
of the phase plane study and can be made to apply
explicitly to any particular particle species by mak-
ing the trivial transformation back to the (E, F)
representation. Note that in defining the separatrixes
in the (6, ¢} space, we have in effect defined the
partition of the (¢, A\) parameter space into regions
which do or do not allow trapping. However, all
values of ¢ and A do not correspond to real trajec-
tories. It can be shown that for a given A, the range
of values of ¢ for which can be found real solutions
to Eq. (4.2) is ¢, < ¢ < 05. This condition determines
the limits of integration of F in Egs. (2.20)—(2.22).
[The limits of E are obviously (0, =) as the integrals
are written.] With the thought of making the fore-
going study a little more transparent, we show in
Figs. 24, some of the main features of the par-
ticle trajectories in the (#, ¢) plane for various
values of ¢ and \. In these figures the various trap-
ping regions are marked, as well as the separatrixes.
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Fi1a. 3. Sketch of typical phase plane trajectories for A > A..
The particle density on any of these trajectories for a given
species can be described by two independent distribution
functions f1; and fiy;.
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F1a. 4. Typical phase plane trajectories for Aa > A > A, and
r large. For these values of the parameters, the trapping
region R, is no longer simply connected.

Figure 4 is included primarily to show the form
of the trajectories for large values of r.

Figure 2 shows a typical display of the particle
trajectories in the phase plane for those cases where
A < A,. Here the individual particle species may be
described by a single distribution function f;.

Figure 3 is typical of those cases where A > A..
Here the individual particle species are described
by two independent distribution functions f;; and
firr. The domains of these functions are indicated
in the figure by cross-hatching. (The definition of
the distribution functions is given in the following
subsection.)

Figure 4 represents those cases where \; > A.> A,
and the ratio r is large. Here the point of interest
is that the region R, is no longer simply connected
and each of the two functions f;; and fi;; describe
a portion of this region.

In each of Figs. 24, the separatrixes are denoted
by the letter S, and the trajectories are numbered
in increasing order, 1, 2, 3, etc., corresponding to
increasing values of the parameter o.

B. The Distribution Functions

In Eqgs. (2.20)-(2.23), we have allowed for the
fact that the particle distribution functions f”
may vary over the branches of ¢ by introducing
the subfunctions ¢’ and taking the integrals sep-
arately for each branch of ¢. However, there is a
constraint upon® f which will connect some of these
subfunctions and which arises because we require
the f to be time independent in the rest frame.
This constraint is just that the f must be constant
along a trajectory. The validity of this condition
is made clear by considering that the physical
motion of the particles described by a given f and
initially located upon a given trajectory will cause
them to circulate around the trajectory as time

In what follows, the superscript (7) attached to f(9 is
understood.
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progresses, and consequently, the initial values of f
along the trajectory must also “‘circulate.” Thus,
the value of f on any particular section of the tra-
jeetory can remain constant in time only if the
initial values of f on all portions of the trajectory
are equal.

Since the distribution functions will be constant
over a trajectory, we need only apply the subscript
s with regard to these functions in order to dif-
ferentiate between trajectories rather than between
branches of ¢. However, note that this simplification
can be made to apply also to the integrals in ¢
defined in Egs. (2.23). From Eqgs. (2.11) and (2.12)
and the last of Eqgs. (2.10), it is evident that the
branches of ¢ are defined by the branches ofv,(E, F, ¢),
and clearly, each trajectory will be made up of an
integral number of branches of . But {*” is constant
on any trajectory, so we may combine those integrals
in ¢ which are to be taken over the branches of ¢
into a single integral which is to be taken over all
the branches of ¢ which exist on the given trajectory.
In this case, then, the subscript s attached to these
integrals need also only differentiate between tra-
jectories rather than branches, and henceforth, with-
out loss of generality, we consider that the subscript
s as used in Eqgs. (2.20)—(2.23) applies to quantities
defined over different trajectories.

As mentioned at the start of Sec. IVA, there are
at most two trajectories for given values of A and o,
and thus, it is necessary to specify at most two
independent distribution functions f, for any A and .
It is convenient to define these independent dis-
tribution functions in the following way as functions
of A and o:

fi: Define f; to be the single distribution function
in the phase space region 0 < A <A, 02 = 0 = a,.
In this range there exists only one trajectory for
each A and o.

fir and fir: In the interval A, < A < o, define
fir to be a distribution function for ¢, > ¢ 2> g,
and fy;; to be an independent distribution function
for o3 > ¢ > o,. In the interval of common definition
o3 > o > oy, let fi; describe the simply connected
phase space area which includes the trapping region
R,. (For A\, < A < Ay fur will describe only the
region R, plus separatrix, in the interval of common
definition; but for A> A4, fir will describe in addition
to R, a region of nontrapped particle motion. See
Fig. 3.)

In addition, we define each of these three distribu-
tion functions to be identically equal to zero for
values of A and ¢ outside of the particular ranges
listed above.
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The above three distribution functions suffice to
desecribe the system; however, in general they will
not be completely independent. In most cases of
physical interest, we would expect that the over-all
distribution of particles would be continuous in A
and o for physically meaningful values of ¢. In
addition to this requirement, it must also be de-
manded physically that the population of particles
at the unstable singular point (5, ¢5) be zero. Thus,
we arrive at the following set of boundary conditions
on the distribution functions:

D) i, 0) = fu@e, 0), 02 2 0 2 oy,

fIII()\cy 0), 0,20 2 Oy

(2) fn()\y 0'3) = fIII()‘y 0'3) = 0: A < )\VS © . (4-9)

Equation (4.9) is just the statement that the popula-
tion of the unstable singular point is zero and is
interesting in that it implies that if there are any
cyclotron-trapped particles, the distribution function

4.8)

" cannot be written as the product of two independent

distributions in A and o, ie., f(A, o) = ¢.(N)g:(a).
In order to see this let us suppose that the distribu-
tion function can be written in product form as
above. In this case'® ¢,(¢) must satisfy Eq. (4.9), i.e.,

g2(os) = 0, A SN . (4.10)

But this boundary condition can be satisfied only if
g is identically zero over the entire range of values
of ¢ that ¢; may take on as A varies between (A,, «).
However, it can be shown from the results of the
phase plane analysis that ¢; is a continuous, mono-
tonically increasing function of A, for A > A, which
has the limit from the right ¢, = o;(A\,) and which
varies as A’ for large A. Thus the range of o5 is
(s.,, =) as A varies between (\,, «) and g, must
satisfy

g:(0) =0, o, <0< =, (4.11)

But the phase plane analysis also shows that the
cyclotron trapped particles will possess values of o
only in the range ¢, > 0> a3, and thus, any cyclotron
trapped particle will possess a value of « which is
greater than ¢,. Consequently, the presence of any
cyclotron-trapped particles means that g,(s) # 0
for some ¢ > o,, and this violates Eq. (4.11). This
contradiction implies that the distribution function
cannot be written as the product of two independent
distributions in ¢ and A if there are any cyclotron
trapped particles in the system. As a corollary of
this result, it can be stated that in general the only
" 10 The same type of argument as used here will apply if a

part, or all, of the burden of satisfying Eq. (4.9) is shifted
upon the function g,.
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isotropic distribution funections, i.e., f(o, A) = fQA) =
f(®), which satisfy the boundary conditions are those
which vanish for A > A,.

C. Integrals over ¢

It remains to discuss the form of the integrals
over ¢ in Kqgs. (2.23). These integrals represent in
essence a time weighting of the various integrands,
and in view of the fact that each of the distribution
functions will be constant along any trajectory
which lies within their domain, this time weighting
may always be taken over an entire trajectory, as
discussed previously. From Egs. (2.11) and (2.22),
it can be seen that it is possible to express the
quantity v, cos ¢ in terms of a second degree
polynomial in »,, and consequently, each set of 7'{",
H, G for fixed s and 7 will involve only linear
combinations of the time weighted values of (v,)”
along a given trajectory, where p = 0, 1, 2.

It is convenient to carry out the time weightings
in terms of a normalized variable rather than ¢.
Let us introduce the variable ¥ = »,V,'. Over a
trajectory the differential relation holds

dr = d¢/d = dv,/s, = dY/Y,
where dr is a differential time element along the
trajectory and, by convention, is to be considered
a positive quantity. Utilizing the first of Eqgs. (2.10)
in addition to Egs. (2.11) and (2.12), it is possible
to find ¥ in terms of Y alone, and dr may be expressed

dr = 2m, {4\ — Y] ~ [y + (1 — Y)’P}HdY
= 2m[P(V)]?, 4.12)

where

e = (m:By)™".

It is wished to evaluate integrals of the sort

I, =f,("=)p%=k_1%55 Y"dr=%ﬂff Y dr,

where the full, or half, circle indicate that the
integration is to be taken along the full, or half,
trajectory. The last equality follows because accord-
ing to Eq. (2.12) every trajectory will be symmetric
in ¢ about ¢ = 0 and x. The end points of this
half-trajectory will be appropriate values of ¥ at
¢ = 0 and/or =. It can be shown from Eq. (4.12)
and Eqgs. (2.10) that dr/dY is a single-valued func-
tion of ¥ on the half-trajectory (excluding end
points) and that the end points of the trajectory
are adjacent real zeros of P(Y). Consequently, I,
may be written

'y=0'—)\2—1,

I, = V.V f " yp(n Y, (4.13)

T. F. BELL

where

Pn) = P(m) = 0, n > m.

(The absolute value of V, arises because dr is taken
in a positive sense.)

The polynomial P(Y) is a quartic in ¥, and the
integrals I, may, consequently, be expressed in terms
of the complete elliptic functions of the first and
second kinds and the Heuman lambda funetion.'
These functions are well known and have been exten-
sively tabulated. We do not give here the exact
form of I, in terms of these complete elliptic func-
tions since this representation may be obtained from
standard handbooks.’* We merely indicate below
the proper limits of integration (m, n) for the I,
in the various domains of the particle distribution
functions f,, 8§ = I, II, III:

Domain I: P(Y) possesses only two real roots
for 0 < X < A,. Let these be a > b; then m, n = b, a.
For A = X, ais a triple root of P at ¢ = o3, but the
limits of integration remain the same.

Domain II: Here A > A,. For oy > ¢ > a3,
P has only two real roots b > ¢, and m, n = ¢, b.
For e, £ ¢ £ a5, Phasfourrealrootsa > b >c¢ > d,
and m, n = b, a.

Domain III: Here A > A,. Tor o, < ¢ < o3,
P has four rootsa > b > ¢ > d,and m, n = d, c.
For ¢, < ¢ < o, P has two real roots ¢ > d and
m,n = d, c.

Since the roots of P(Y) depend upon A and o, the
I, will be functions of A and o, also. However, the
dependence of I, upon the explicit values of charge
or mass of any particular particle species will enter
only through the multiplying factor which precedes
the integral in ¥ in Eq. (4.13).
D. Final Integral Equations
With the results given thus far in this section,
it would now be possible to express Eqgs. (2.20)—(2.23)
fully in terms of the quantities £ and F and ¢.
However, it is convenient to remain in the (A, o, Y)
representation since in this representation the orig-
inal system of integral equations may be written
in a more compact form. For the final equations
we introduce the following functions:
17 = 2 e |Vl 170\, o),

M, = ; le.| VDR, o),

1 G, Heuman, J. Math. Phys. 20, 127 (1941).

12 See, for example, P. F. Byrd and M. D. Friedman, Die
Grundlehren der Mathematischen Wissenschaften, of Hand~
book of Elliptic Integrals for Engineers and Physicists (Springer—
Verlag, Berlin, 1954), Vol. 67.
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T(m, n) = f [P(V)]? 47,
H(m, n) = f YR dY,

Gm,m) = [ by + (1 = YYIPY) Y,

where ¢; is defined by ¢; = e¢, ¢ is the magnitude
of the electronic charge, and m and n are adjacent
roots of P(Y) as described in Sec. IVC.

In terms of the above quantities, Eq. (2.20) takes
the final and explicit form

Ae g
K= fo xdxfn do M,G(b, 0)
+ [ 2 { / " do MuGle, b)
)c L£]
+ f ' do [MIIG(bv a) + MIIIG(dy C)]

+ f " do MG, c)},

where

(4.14)

K = kBy/euoBo.

For the sake of brevity we do not write Eqs. (2.21)
and (2.22) out in full; however, Eq. (2.21) may be
obtained in explicit form from Eq. (4.14) by setting
K equal to zero and replacing the quantity G(m, n),
wherever it occurs, by the quantity H(m, n). Equa-
tion (2.22) may be obtained in explicit form from
Eq. (4.14) by setting K equal to zero and replacing
the quantity M,G(m, n), wherever it occurs, by the
quantity T (m, n).

In symbolic notation Eqgs. (2.20)-(2.22) now have
the final form:

K = fxd)\fda Mo, NG(m, ),

0 = [ [ do Mo, NH(m,m),  (4.15)

0 = f)\d}\fda e, NT(m, n),

with the boundary conditions
M ()\: 0-3) = O,
f“’O\, o) = 0.

V. DISCUSSION

A2,

At the present time a program of numerical and
theoretical investigation of Egs. (4.15) is being
carried out at the Ionosphere Laboratory of the
Technical University of Denmark with the aim of
obtaining some general ideas of the effects that the
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cyclotron-trapped particles have upon nonlinear
whistler mode waves. This study has applications
to certain theories'''* of very low frequency emis-
sions’® in which it proposed that the emissions are
generated through a plasma instability involving
cyclotron trapped particles. A question arises in
these theories as to the number of particles that
a given whistler mode wave can trap, and while
our study cannot answer this question directly, it
should serve to give a better estimate of this number
than has been previously available from the non-
linear cold plasma theory. However, our study has
not been completed to date, and we have no final
numerical results to present in this paper. Our main
thought in presenting here the analytical develop-
ment of the dispersion relations is that these rela-
tions might prove of interest to other workers.

Two questions which certainly warrant further
investigation are that dealing with the general
method of inversion of Eqgs. (4.15) in order to find
the distribution functions explicitly and that deal-
ing with the stability of the solutions to Egs. (4.15).
The question of stability seems the more complex
one since the stability of the nonlinear longitudinal
plasma oscillations has not been conclusively shown, '
although these waves represent a simpler system
than ours.

In closing, it should be remarked that the domains
of the distribution functions as given in Sec. IV
were chosen solely for convenience in studying the
cyclotron-trapped particles and will not necessarily
be appropriate if it is wished to study some other
trapping region. Nevertheless, a boundary condition
similar to that of Eq. (4.9) must apply no matter
how the domains of the distribution functions are
chosen, and it will remain the case that the presence
of cyclotron trapped particles imposes important
constraints as to the form of the distribution func-
tions which will satisfy Eqs. (4.15).
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