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Early bifurcation in rotating fluid flow with free surface studied
by axisymmetric numerical simulations

M. B. L. Santosa) and J. N. So”rensenb)
Department of Fluid Mechanics, Technical University of Denmark, DK-2800 Lyngby, Denmark

~Received 19 May 1995; accepted 29 July 1996!

Simulations of a fluid rotating inside a partially open cylindrical cavity, performed by numerical
solution of the unsteady axisymmetric Navier–Stokes equations, are presented. The configuration
consists of a cylindrical vessel holding the fluid, which is entrained into motion by a rotating lid.
This one is a coaxial disk in contact with the fluid surface but without covering it entirely. The study
focuses on the occurrence of time-dependent flow, more specifically, the first transition to
unsteadiness, by considering cavity cases with different amounts of free surface, for a fixed aspect
ratio. By following the time evolution of a few arbitrarily chosen dynamical variables as a function
of the Reynolds number, the location of this first Hopf bifurcation is obtained for a collection of
cavity cases. Results show a rather strong influence of the free surface both on the onset of the
unsteadiness and on the dynamical features of the flow. ©1996 American Institute of Physics.
@S1070-6631~96!02411-7#

I. INTRODUCTION

The classical problem of a viscous fluid rotating inside a
closed cylindrical cavity attracts a renewed interest in recent
years. A common motivation among these experimental1,2

and numerical simulations3,4 is the suitability of the driven
cavity as a model system to explore the routes to chaos and
turbulence.

A closely related system is a fluid rotating within a par-
tially open cylindrical cavity of radiusRc . Figure 1 illus-
trates a particular configuration. Here the fluid, which fills
the cavity up to the heightH, is driven by a cover lid, or
rotating ‘‘disk’’ of radiusR0, usually smaller thanRc ~that
is, the case of the closed cavity appears as a particular one,
for which R05Rc!. The disk rotates at a rateV0 and barely
dips the fluid surface, which is taken as flat.

From the viewpoint of applications, this is an important
configuration, as it represents an idealized model for the
Czochralski crystal puller. As the Czochralski method is the
preferred one for growing silicon, obvious industrial interests
have motivated a vast literature on this, so-called, bulk flow
model ~see, for example, the review article by Langlois5!.

In a recent survey by one of us,6 some main aspects
reflecting the state-of-art of this subject were emphasized,
three which are worth mentioning here:~1! 2-D
simulations7–9which detail the effects on the flow due to the
crystal rotation, the crucible rotation, and the temperature;
~2! experimental simulations, featuring the appearance of
nonaxisymmetric flow,10,11 with some qualitative informa-
tion about the transition to unsteady flow;~3! 3-D simula-
tions, mostly regarding the appearance of symmetry breaking
patterns.12–14

Nevertheless, we remark that the approaches used in the
Czochralski literature tend to be those of the CFD exclu-
sively. In comparison with the literature on the related prob-

lem of the driven~closed! cavity, the use of concepts and
techniques of the modern theory of dynamical systems and
chaos in Czochralski flow studies remains scarce. As an ex-
ample of such bifurcation theory approach, we quote a study
of Bottaro and Zebib,14,15 about thermal convection.

The present paper, in contrast, deals with forced convec-
tion, due to disk rotation only. That is, the temperature is
considered the same everywhere. In order to simulate the
flow numerically, a previously developed16 high-order,
finite-difference discretization code to solve the axisymmet-
ric Navier–Stokes equations was employed. The computa-
tions were carried out on a Cray C92A machine at the
UNI-C, DTU. In the case of the closed cavity, visualization
experiments by Escudier1 have shown that even well into the
unsteady domain the flow presents only negligible departure
from axisymmetry. As mentioned above, the experimental
knowledge on the partially open cavity is limited. It is
known, however, that experiments on a totally open cavity,17

driven by the bottom, also confirm this feature. Therefore,
the use of a 2-D code in this context appears to be fairly
justifiable.

Specifically, the article aims to characterize the early
transition to unsteadiness, which is generally toward an os-
cillatory, harmonic solution, as a function of the Reynolds
number defined on the basis of the radius of the disk, i.e.,
Re5V0R0

2/n, with n being the kinematic viscosity of the
fluid. The computations were carried out for a fixed aspect
ratio ~l5H/Rc52!, by considering different values of the
radius ratio, defined to be the ratioz between the disk radius
and the cylinder radius, that is,z5R0/Rc . This allows to
study the effect of the free surface on the critical Reynolds
number associated with the bifurcation.

Only a few mentions are made in the paper to further
unsteady solutions~double harmonics, etc.!. It is expected
that this study contributes as a first step for future investiga-
tions aiming to characterize the routes to chaos in these
Czochralski-like flow systems.
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II. PHYSICAL CONSIDERATIONS

A. Flow mechanism

In all situations considered in this paper, the rotating
disk is the only force driving the flow. Although the role
played by the free surface should not be underestimated, the
basic flow mechanism remains essentially like that for the
closed cavity situation, and may be summarized as follows
~see So”rensen and Christensen4 for a more detailed descrip-
tion!. The viscous liquid adheres to the rotating disk~no-slip
condition! producing a tangential fluid motion. This primary
flow is subjected to centrifugal forces, which cause an up-
ward secondary flow. The path is continued adjacently to the
cylinder walls down to the bottom, where the radial pressure
gradient~that usually tends to balance the centrifugal force!
makes the flow converge toward the central axis. Briefly, the
rotating lid acts like a fan sucking the stream up.

One important aspect to emphasize here is the boundary
layer structure of the flow. In a simplified view the thickness
d of the layer of fluid ‘‘carried’’ by the disk can be estimated
by18,19

d;A n

V0
, ~1!

and the radial and tangential velocity components have sig-
nificant values only in a thin layer of thickness of order ofd.
The physical origin of the secondary flow is the centrifugal
forces acting on that portion of the fluid confined in the
rotating boundary layer~the Ekman layer!. Although the
above description is, strictly speaking, applicable to an infi-

nite disk only, one may use the same results for a finite disk,
provided that its radius is large compared with the thickness
~;d! of the boundary layer.

B. Early bifurcation

In a computational study on the driven~closed! cavity
problem, Daube and So”rensen20 show that the transition from
steady to periodic flow is consistent with the assumption of a
supercritical Hopf bifurcation. Then, the amplitude modulus
uAf u of the fluctuating part of a functionf (t) ~or orbital ra-
dius, in a phase space diagram of two functions, say,f andg,
the time taken as a parameter! of any relevant flow variable,
could be approximated18 by

uAf u}ARe2Recr1O~Re2Recr!,

which gives, sufficiently close to Recr ,

uAf u2}~Re2Recr!. ~2!

This linear relationship means that it is sufficient to compute
uAf u

2 for at least three values of Re slightly higher than the
critical one. If the points are aligned, the extrapolation to
zero of the corresponding straight line will give an estimate
of the critical Reynolds number. In Sec. IV we shall use the
same method to investigate the early transition for different
cavity cases defined by the radius ratioz.

III. VALIDATION OF THE NUMERICAL CODE

The flow is studied numerically by solving the axisym-
metric Navier–Stokes equations in terms of stream function-
swirl-vorticity variables~c, G, v!. The employed code was
developed at LIMSI/CNRS in France~see, e.g., Daube
et al.21 or So”rensen and Ta Phuoc16! and has been tested
against experimental observations in different situations~al-
ways for closed cavity!, which we mention briefly, for refer-
ence. Steady-state stream function isolines have been com-
pared with visualization experiments of Escudier.1 For
example, at Re51854 andl52, it was found16 that a dis-
cretization of 91371 was acceptably accurate. In addition,
calculated velocity profiles have shown to be in good agree-
ment with LDA measurements of Michelsen.22 Further vali-
dations of the code in the unsteady regime were made by
So”rensen and Christensen4 by direct comparison of calcu-
lated structures due to particle injection and visualizations of
So”rensen.23 Agreement is good at least up to Re53000, but
comparisons become difficult for higher Reynolds number.

In the present study, tests were performed with different
meshes, all having uniform spacing withNr3Nz node points
covering the calculation domain. Table I displays their char-
acteristics. Most of the data have been obtained using a 100
3200 nodes mesh. Let us assign to this mesh a unity density,

FIG. 1. Side-view sketch of an idealized Czochralski growth device: The
rotating crystal~or ‘‘disk,’’ of radius R0! only dips the surface of the liquid,
which is held by the cylindrical container~radiusRc!; 1,2,3: locations of the
monitor points used for probing the time series.

TABLE I. Features of the meshes used in the computations.

Mesh
designation

Number of nodes
(Nr3Nz) Density

LD 1003200 1
HD 2003400 2
SD 2503500 2.5
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d51. Test computations~and part of the final results! have
been performed on more dense meshes: 2003400, 2503500;
or, in terms of node densities,d52 and 2.5. Hereafter, the
meshes used shall be referred by the acronyms LD, HD, and
SD ~which stand for ‘‘low,’’ ‘‘high,’’ and ‘‘super’’ densities,
respectively!.

The CPU time necessary to obtain a stable solution var-
ies according to the regime, type of solution and the proxim-
ity of the critical point. For the LD mesh, typical figures in
the machine used~Cray C92A! are 5 min for a stationary
solution and between12 to 1 h for an oscillatory solution. The
effect of mesh refining on such figures is twofold. First, there
is an increase of the number of nodes~that goes asd2! and
second, more iterations have to be done to compensate a
decrease of the time step.

The figures given on the CPU time consumption are for
~quasi! sinusoidal or two-harmonic oscillations. Solutions
with three ~or more! spectral components can be much
longer to characterize4 and, of course, they were not system-
atically searched here. Some saving of computational time
~20%–30%! can be achieved by taking a previously obtained
solution as the initial one, provided that the Reynolds num-
bers of the old and the new solutions are not very far~6100!.
Finally, the CPU time consumption increases dramatically as
the transition is too closely approached.

Figure 2~a! and~b!, which depicts the time-history of the
vorticity on an arbitrary point in the flow domain, illustrate
the fact that the periodic regime tends to be less requiring on
mesh refining, as compared with the transient regime. In-
deed, if one looks only into Fig. 2~a!, the mesh HD seems to
be necessary. However, as the stability is reached@Fig. 2~b!#,
it becomes clear that the mesh LD suffices for characterizing
the steady-state oscillations of thez50.5 cavity case.

To conclude on the code validation, we have been
brought, after an ensemble of tests performed with the dif-
ferent meshes of Table I, to the following operational con-
clusion:
~1! for z>0.5, use LD;
~2! for 0.2>z<0.3, use HD.

IV. RESULTS AND DISCUSSION

A. Stationary regime

Extensive simulations of the stationary regime of Czo-
chralski flow are available in the literature, two of which
have been quoted in the Introduction. Thus here we have
chosen to show only few examples of flow visualizations,
with a twofold purpose. First, to illustrate some basic fea-
tures of the flow. And second, to give evidences of a vortex
breakdown effect that, as far as we know, has not yet been
discussed in connection with Czochralski numerical simula-
tions.

Figure 3 shows streamline visualizations of the station-
ary flow for three examples of cavity casesz and Reynolds
numbers. Note that only the right-hand side of the cavity
meridional plane is shown, and also that the disk profile is
sketched inside the computational domain, for pictorial pur-
poses only. This domain was discretized using a 1003200
uniform mesh. The contours represent streamlinesc5const.,
which are tangent everywhere to the local velocity vector. In
the case of Fig. 3~a!, for z50.3 and Re51300, the pattern is

FIG. 2. Effect of mesh refining on the time series for the cavity casez50.5, Re52000:~heavy lines! HD mesh~2003400 node points!; ~dotted lines! LD mesh
~1003200!: Comparisons between the results using both meshes for~a! the transient~start-up! regime and~b! the periodic regime.

FIG. 3. Streamlines of the stationary flow in three cavity cases:~a!
z[R0/Rc50.3, for Re51300; ~b! z50.5, Re51200; ~c! z50.7, Re51500.
Figures show the right half-view of the meridional plane. The representation
of the disk inside the computation domain is merely pictorial. In all cases,
the sense of the main vortex is clockwise.
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monocellular, and corresponds to the qualitative features ex-
pected from the discussion of Sec. II. The vortex center is
situated in the upper outer part of the meridional plane.
Three regions can be roughly distinguished in the computa-
tion domain, one intermediate, limited by an outer region
near the cylinder wall, and an inner region close to the cyl-
inder axis. These last two exhibit a pronounced Taylor col-
umn effect,24 as usual for such moderately high Reynolds
numbers, aside the end regions near the disk and the cavity
bottom.

Now looking at Fig. 3~b!, which shows the isolines for a
cavity with less free surface, namelyz50.5, some differ-
ences are worth noting. For instance, the inner streamlines
appear undulated. In this example, Re51200, a value not
very far from that of the previous example, of Fig. 3~a!.
Actually, a comparison with the very same Reynolds value
of that case is difficult to reach here by the approach of the
bifurcation ~see later!, which makes the steady state very
hard to reach.

The more striking feature of Fig. 3~b!, however, is the
recirculation bubble appearing around the cylinder axis,
probably a reminiscence of the~much stronger! vortex break-
down effect known from thecloseddriven cavity.1,3,25 See
also Fig. 4, that shows the local velocity field in the bubble
region. Indeed, such core structures become larger~and
eventually doubled! for higher z values @see Fig. 3~c!, for
z50.7#, whereas they are absent for open cavities with crys-
tal radiusR0<0.3Rc . For such cases the flow pattern is
rather like that of Fig. 3~a!.

To conclude about stationary flow, the main features de-
scribed here agree qualitatively well with previous Czochral-
ski ~isothermal! simulations available in the literature, except
for the mentioned absence of vortex breakdown occurrences
in those reports. For other aspect ratios see, e.g., the visual-
izations by Crochet8 and Langlois.9

B. Critical Reynolds number and characteristic times

As suggested in Sec. II, the early transition is, in general,
toward an oscillatory, harmonic solution. However, direct
transition through more complicated states has been reported
in a related rotor-stator system.26 In our computations there
is no such occurrence, but it is noticeable that, for small

R0/Rc , once the unsteadiness is reached, one arrives soon,
by slightly increasing Re, to quasiperiodic solutions. This
should not be confused, however, with ‘‘tendency to insta-
bility,’’ in view that, for z,0.5, it will appear from the data
below that Recr→` for z→0.

Specifically, within the scope of the present computa-
tions, what can be said is that the range of Reynolds numbers
for sinusoidal solutions becomes progressively narrower, as
z→0. For instance, in the casez50.2, the contribution of
higher frequency harmonics to the solution becomes quite
important in an interval less thanDRe550, above Recr ,
while, in all other cases studied, such important deviations of
the sinusoidal behavior do not appear before~Recr1300!.

Following Sec. II, the quantitative characterization of the
transition is made by ‘‘measuring’’ the peak-to-peak ampli-
tude on stable time series~or, equivalently, the diameter of
phase space portraits giving stable cyclic orbits! into the un-
steady domain. Then, time series have been generated for the
following sample variables:

v1 ,v2 ,v3 , c1 , and c2 .

Here, the labels ‘‘1’’, ‘‘2’’, and ‘‘3’’ refer to the three arbi-
trarily chosen monitor points, their coordinates (r ,z) in the
meridional plane being~Fig. 1!

‘ ‘1’ ’ 5~Rx ,z1!, ‘ ‘2’ ’ 5~Rx ,z2!, and

‘‘3’’ 5~ 1
2R0 ,z1!,

where

Rx5
3
4Rc , z15

1
2H, and z25

2
3H.

Note that the abscisse of point ‘‘3’’ is the only one that does
not scale with the cavity size, staying, for all cases, under the
disk at half of its radius apart from the central axis. This
particularity will reflect on the data issued for this point.

Hence, in terms of attractors and their topological nature,
we are interested in determining the critical value of the dy-
namical parameter of our system~Re! for which the attractor
changes from a stable fixed point to a limit cycle,27 that is,
the first bifurcation.

In spite of the differences detected by the effect of mesh
refinement, no serious disagreement has been found in the
critical Reynolds numbers evaluated after both the LD and
HD computations in the cavity casez50.3. Such estimates
were extracted from plots like those shown in Fig. 5~a! and
~b!, according to the method discussed in Sec. II~NB: in
these plots,v1, v2, v3, appear notedv1 ,v2 ,v3 , andc1,c2,
are notedp1 ,p2 , respectively!.

The plots for these five variables behave in a rather dif-
ferent way. In particular, the curve representing the only time
series probed at point 3 of the cavity~v3! has much stronger
amplitudes, reflecting the turmoil in those regions just under
the rotating disk~see Fig. 1!. In spite of this diversity, how-
ever, all curves have the tendency of crossing the abscisses
axis at some common point, according to the theoretical pre-
dictions. Of course, as the computational time grows exceed-
ingly as the critical point is approached, the determination of
Recr always has to be done within some limited accuracy.

FIG. 4. Local velocity field visualization forz50.5, Re51200, featuring the
small ‘‘bubble’’ seen in Fig. 3~b!, which corresponds here to a rather clear
area close to the axis~left side!. The figure magnifies one small area of the
meridional plane, in the corner defined by the axis and the cavity bottom.
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Still, considering the casez50.3, after averaging the re-
sults of the five curves for the extrapolations prescribed by
Eq. ~2!, we obtained Recr5144867 and 1380626 for the LD
and the HD meshes, respectively. That less dispersion is
present in the LD case, merely reflects a closer approach to
Recr adopted in the computations with this mesh. In both Recr
determinations the dispersion is less than62%. Neverthe-
less, the difference in the Recr value itself is significant, and
so we have chosen the HD value for the casez50.3 in the
plot of Recr vs z, shown in Fig. 6.

This plot demonstrates that the free surface strongly af-
fects the onset of the instability. For instance, the critical
value for the closed cavity~z51! almost doubles the value
corresponding to the minimum Recr . This minimum value
occurs for a disk radius that is half the length of the cylinder
radius. Then Recr raises again, asz decreases. This effect is
accompanied by an increasingly slow behavior of the flow
dynamics, as shown in Fig. 7, where the frequency of the
oscillations just above Recr is plotted againstz. It can be seen
that the frequency decreases dramatically asz decreases, ac-
tually suggesting an ultimate limit to zero frequency.

As an example of a simple physical argument supporting
this idea, one could realize that if the container is allowed to
grow ~at a constant aspect ratio! the ‘‘information’’ ~emitted
by the exciting device, i.e., the disk! will require a longer
time to propagate throughout the fluid.

However, the slowing down of the growing cavity is
certainly stronger than this obvious linear effect, by the fol-
lowing reason. As the rotating disk is the only generator of
perturbations in the system, it follows that asRc becomes
large, most of the energy associated to the perturbations is
used to excite modes of large wavelengths, which become
more and more important as the size of the ‘‘box’’ grows. In
other words, many reflections on the cavity walls tend to be
necessary to ‘‘reconstruct’’ the flow pattern whenever
Rc@R0 , which means that additional time is needed to ac-
complish the cavity response. Naturally, such a ‘‘Fourier su-
perposition view’’ is expected to hold only for linear sys-
tems, which is not rigorously the case. Nevertheless, for
small z the flow is rather inviscid, hence the linear approxi-
mation should apply to some extent.

FIG. 5. Recr estimates from squared~peak-to-peak! amplitude extrapolations on the time series. Comparison of the results with the~a! LD and ~b! HD meshes
for the cavity casez50.3. Conventions: See text.

FIG. 6. Recr versus the ratio of radii,z[R0/Rc : effect of the free surface on
the critical Reynolds number for the early bifurcation to unsteady flow. FIG. 7. Frequency of oscillations just above Recr as a function ofz.
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V. CONCLUSION

To conclude, we presented results of numerical simula-
tions of a rotating fluid flow in a cylinder with a partially
open lid, which resembles a Czochralski-like geometry. Data
were generated by employing a well-tested two-dimensional
code to solve the Navier–Stokes equations subjected to axi-
ally symmetric boundary conditions.

Next, a bifurcation-type analysis of the time series data
was performed, aiming to characterize the early transition to
unsteadiness, that is, from steady to oscillatory flow. The
computations were carried out for a fixed aspect ratio~l52!,
as function of the ratioz between the disk radius and the
cavity radius, in order to study the effect of the free surface
on the critical Reynolds number associated with the bifurca-
tion. This central result of the paper, embodied by Fig. 6,
may have practical implications in Czochralski growth pro-
cesses, in spite of the extreme simplicity of the present
model. It predicts a ‘‘region’’ of maximum instability for
oscillations~that is, low Recr values!, when the growing crys-
tal attains a radius comparable to the half of the radius of the
crucible~melt container!. On the other hand, in the preceding
‘‘seed’’ stage of the crystal, the Recr values are rather el-
evated, allowing, in principle, for high rotation rates.

Finally, data on the dynamical properties of the flow as
function of the radius ratioz were presented. The frequencies
associated to the computed variables seem to tend to a zero
limit as z→0, and a plausibility argument for this behavior
was given.

A final comment is worth making, concerning future
work. Although the power of three-dimensional simulations
is tempting, we point out that the possibilities of~much
cheaper! two-dimensional simulations to characterize bifur-
cations are still unexplored in this context. For example,
even in the particular case of the early bifurcation, there
remain interesting issues to examine as the effect of different
aspect ratios, as well as the inclusion of temperature effects.
On the other hand, a natural continuation of the study made
here would be to investigate further transitions, since the
whole range of Reynolds numbers of interest has not been
fully covered. Again compared with the closed cavity case,
for which the state-of-art of bifurcation studies is in a much
more advanced stage, it is worth mentioning that for higher
Reynolds numbers a cascade of other effects arises2,28 before
the flow becomes ultimately chaotic.
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