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We present a numerical investigation of the time-dependent dynamics of the creation of gas bubbles
in an axisymmetric flow-focusing device. The liquid motion is treated as a Stokes flow, and using
a generic framework we implement a second-order time-integration scheme and a free-surface
model in MATLAB, which interfaces with the finite-element software FEMLAB. We derive scaling
laws for the volume of a created bubble and for the gas flow rate, and confirm them numerically. Our
results are consistent with existing experimental results by Garstecki et al. �Phys. Rev. Lett. 94,
164501 �2005��, and predict a scaling yet to be observed: the bubble volume scales with the outlet
channel radius to the power of 4 and the surface tension. Our axisymmetric simulations further show
that the collapse of the gas thread before bubble snap-off is different from the recent experimental
results. We suggest that this difference is caused by differences in geometry between experiments
and the simulations. © 2006 American Institute of Physics. �DOI: 10.1063/1.2214461�

I. INTRODUCTION

Studying the generation of bubbles and drops on the mi-
crometer scale in a predefined geometry makes it possible to
investigate a variety of physical phenomena, such as capil-
larity, dripping, and bubbling processes. The initial work on
this topic has been mainly experimental and often it has been
driven by industrial applications of such devices; e.g., drop
formation in ink-jet printing.1 To better understand experi-
mental results, and possibly aid design of microfluidic de-
vices for controlling multiphase flow, numerical modeling of
drop and bubble formation is also necessary. Modeling the
free-surface dynamics includes the use of direct numerical
techniques such as the volume of fluid methods, tracer meth-
ods, and boundary-integral methods.2–5 A wide variety of
analytical and semi-analytical models have also been intro-
duced such as, for example, the thin jet approximation.6–10

In recent years, studies have been concerned with the
so-called flow-focusing configuration.11–16 One implementa-
tion possible with microfluidic devices allows for the genera-
tion of controlled multiphase flows; this has mainly been
investigated experimentally. Many interesting physical phe-
nomena have been described, including flow-rate controlled
breakup of gas threads,13 but also the appearance of chaotic
behavior as reported in other bubbling devices.6,12,14

In this paper, which is inspired by the experimental work
of Garstecki et al.,12,13 we present a numerical study of a
microfluidic flow-focusing device. The study is restricted to
the Stokes-flow regime �low Reynolds number� in axisym-
metric geometries.17 We derive a scaling law for the volume

of created bubbles, which is in agreement with those ob-
served experimentally. We also predict a new scaling: the
bubble volume is linearly proportional to the liquid-gas sur-
face tension an effect hitherto not observed in the experimen-
tally realized geometry, to our knowledge. Finally, we ob-
serve compressibility of gas bubbles in our system.
Nevertheless, it is important to note that we do not produce a
direct verification of experimental results as our axisymmet-
ric geometry is different from the planar one used in experi-
ments.

To simulate the free-surface dynamics, we have imple-
mented a second-order Runge-Kutta time algorithm in
MATLAB

18 coupled to the commercial finite-element program
FEMLAB

19 to solve the incompressible Stokes-flow equations
for the velocity and pressure fields. This approach enables us
to account for the full geometry of a device including walls,
inlets, and free liquid-gas interfaces. At the location of a free
surface, the normal and tangential stress conditions are en-
forced including the Young-Laplace pressure jump associ-
ated with a curved interface. We describe the governing
equations and the numerical model in Sec. II, we discuss the
results in Sec. III, and finally conclude in Sec. IV.

II. THE MODEL AND NUMERICAL FORMULATION

A. The system

The axisymmetric flow-focusing device is depicted sche-
matically in Fig. 1. A gas thread �light gray� under constant
pressure pgas is focused into an orifice �dark gray� by a liquid
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stream �white�. It is natural to use cylindrical �z ,r ,�� coor-
dinates, whereby the liquid flow-rate at the inlet is

Qin = �
��in

u · ndA = 2��
�r

Uin�r�rdr , �1�

where ��in is the inlet boundary, u=Uin�r�ez is the flow pro-
file at the inlet, n is the surface normal, and �r is the width
of the inlet in the radial direction r. As the system is axisym-
metric about the z axis the liquid is focusing the gas thread
uniformly from all sides; i.e., for all �� �0,2��. Over a large
range of flow parameters, the gas thread breaks periodically
and bubble snap-off occurs. The bubbles flow downstream
into the outlet.

The sketch in Fig. 1 also shows the boundary conditions:
�a� at the liquid inlet the fluid velocity Uin�r� is specified �see
Eq. �1��; �b� at the outlet the pressure is set to zero; �c� on all
solid walls we assume no slip u=0; and �d� at the liquid-gas
interfaces ��i the full stress condition is fulfilled, including
the Young-Laplace pressure jump associated with a curved
interface; and �e� at the line r=0 a symmetry condition is
applied.

B. Governing equations

Compared to the liquid, the shear stress and the viscosity
of the gas are negligible and the pressure variations are ex-
pected to be small, so that we only need to specify a pressure
in the gas domains. Moreover, we assume that the gas is an
isothermal ideal gas that does not exchange molecules with
the surroundings. In the gas thread the pressure pgas is con-
stant, and in the isolated ith bubble that is formed, we set the
pressure pi according to

piVi = pgasVsnap = const, �2�

where Vi is the volume of bubble i and Vsnap is the volume of
a bubble at snap-off.

In the present study, we assume that the liquid involved
is Newtonian. Moreover, since the Reynolds number in the
experiments falls in the range 0.02–0.2, we assume that the
flow is in the Stokes limit. The flow field thus satisfies the
equation

� · � = 0, �3�

where � is the Cauchy stress tensor. A Newtonian fluid in an
axisymmetric system is effectively a two-dimensional system
and the four components of the stress tensor are

�ij = �� �ui

�xj
+

�uj

�xi
� − p�ij . �4�

where �x1 ,x2�= �z ,r�, �u1 ,u2�= �u ,v� are the velocity compo-
nents, p is the pressure, and � is the dynamic viscosity of the
fluid. Apart from the momentum equation given in Eq. �3�
and the constitutive stress tensor, the continuity equation is
needed:

� · u = 0. �5�

To make parametric studies of physical variables in a dimen-
sionless setup, we introduce the dimensional length d and the
velocity U, the values of which will be discussed later. Using
this, we now rescale position x, velocity u, time t, and pres-
sure p as

x = x̃d , �6a�

u = ũU , �6b�

t = t̃
d

U
, �6c�

p = p̃
�U

d
. �6d�

The tilde is used to identify nondimensional parameters x̃, ũ,
t̃, and p̃. Introducing the rescaling Eq. �6� of the flow param-
eters, it is possible to reformulate Eqs. �3�–�5� into a diver-
gence form. Using the axisymmetric form of the governing
equations and some algebra yields

� · � r̃�2
� ũ

� z̃
− p̃� r̃� � ũ

� r̃
+

� ṽ

� z̃
�

r̃� � ũ

� r̃
+

� ṽ

� z̃
� r̃�2

� ṽ

� r̃
− p̃�

0 0
	

�

= �
0

− p̃ + 2
ṽ

r̃

ṽ + r̃� � ṽ

� r̃
+

� ũ

� z̃
� 	 , �7�

where �= �� /�z̃ ,� /�r̃�. The first two rows in the system rep-
resent the momentum equations and the third row is the in-
compressibility condition. Note that the matrix denoted � at
the left of the equal sign contains r̃ times the Cauchy stress
tensor. Rewriting the governing equations into the somewhat
unusual form of Eq. �7� is beneficial for the numerical imple-
mentation of the governing equations into FEMLAB, as dis-
cussed in the next section.

FIG. 1. Sketch of the axisymmetric flow-focusing device with liquid domain
� �white�, rigid boundaries �dark gray�, gas bubbles �light gray�, liquid-gas
interfaces ��i, interface normal n, pressure in the gas pgas, and the inlet
velocity u=Uin�r� of the liquid. The azimuthal angle � is depicted to em-
phasize the axisymmetric geometry.
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At the location of the free interface ��i �see Fig. 1� the
stress is continuous in the tangential direction, but exhibits a
discontinuity in the normal direction n given by the Young-
Laplace pressure. Thus, at the free interface the stress condi-
tion is

n · � = �2�lg	 − pgas�n , �8�

where �lg is the surface tension of the liquid-gas interface,
and 	 is the mean curvature of the surface. At the free sur-
face, the interface must move at the speed of a fluid particle
just next to it, which is the kinematic boundary condition

dx

dt
= u�x�
x���i

, �9�

where we take the total time derivative.
In the Stokes-flow limit, the time-dependent problem re-

duces to a quasistationary problem in the following sense.
Given an interface shape, we solve for the velocity field u
and the stress field � in the liquid. If the stress including
pressure is nonzero at any point on the liquid-gas interface,
this interface will move. Mathematically, the time depen-
dence only enters through the kinematic boundary condition
Eq. �9� at this free surface. The flow is thus implicitly a
function of the interface shape. Although we are in the Re
=0 limit, nonlinearity is nevertheless introduced to the dy-
namics of the problem by the curvature of the free interface
appearing in the dynamic boundary condition Eq. �8�.20

In the following, the length scale d introduced in Eq. �6�
is set equal to the gas inlet diameter depicted in Fig. 2. The
velocity scale U for the liquid is chosen when there is no gas
flow as Qin /Aor, where Aor=��
d /2�2 is the area of the ori-
fice cross section. In terms of these scales, the dimensionless
inlet velocity is given as

Ũin�s� =
3
2

�din

d
�2

+ 3
din

d

s�1 − s� , �10�

where s� �0;1� is a curve parameter on the inlet boundary.
The dimensionless, constant pressure p̃2 in the gas and the
capillary number Ca are defined as

Ca �
�U

�lg
, �11�

p̃2 �
pgasd

�U
. �12�

Typical parameter values for the various physical quantities
are listed in Table I. In terms of the rescaled variables and
parameters, the dynamic boundary condition Eq. �8� in com-
ponent form is

�11n1 + �12n2 = r̃� 1

Ca
	̃ − p̃2�n1, �13a�

�21n1 + �22n2 = r̃� 1

Ca
	̃ − p̃2�n2, �13b�

where 	̃ is the dimensionless curvature and �ij are the com-
ponents of the modified Cauchy stress matrix in Eq. �7�.

The liquid-gas interface is represented as a parametric
curve x̃�S�= �z̃�S� , r̃�S��, where S is the arc-length parameter
scaled by the total length of the given interface. The dimen-
sionless curvature 	̃ of the interface is given by the nonlinear
expression

r̃	̃ = r̃
żr̈ − ṙz̈

�ṙ2 + ż2�3/2 −
ż

�ṙ2 + ż2�1/2 , �14�

where a dot is the derivative with respect to S, and we have
multiplied with r̃. The last term in the expression is equal to
the r component n2 of the surface normal and is related to the
curvature in the azimuthal direction.

C. Numerical method

As mentioned above the Stokes problem effectively re-
duces to a quasistationary problem, where at any given time
the flow field �u ,v , p� is a function of the shape of the liquid-
gas interface. This fact is utilized for the numerical treatment
of the problem. The problem is solved numerically by using
the commercial finite-element program FEMLAB together
with a MATLAB code that we have developed comprising the
time evolution and numerical schemes for representing the
curvature of the interface. The method is inspired by the
boundary-integral method2,3 and classical finite-element
methods.21,22 At every time step, we begin with a given po-

FIG. 2. Sketch of the axisymmetric flow-focusing device with all relevant
lengths shown. Most important are the gas inlet diameter d, the orifice
diameter 
d, the distance from the orifice to the gas inlet �d, and the length
of the orifice �d.

TABLE I. Typical values of the parameters used in the experiments on the
planar flow-focusing device.12,13

Parameter Typical value

d 200 �m

Qin 0.05 �L/s

pgas 5–100 kPa

� 1–10 mPa s

�lg 30 and 73 mJ/m2

U 2 mm/s

Re 0.02–0.2

Ca 10–3-10−1
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sition of the liquid-gas interface and solve for the flow field,
and based on the new velocity information at the interface,
the position of the liquid-gas interface is updated.

To evolve the interface in time we use a second-order
Runge-Kutta time step algorithm. This algorithm is extended
such that the elongation of the free interface is taken into
account. The interface is given by the curve x�S�, which is
described by a cubic spline that interpolates all the mesh
points on the interface. Points on the boundary are only
moved normal to the interface such that Eq. �9� is trans-
formed to

dx�S�
dt

= �u · n�n
x���i
, �15�

where n is the surface normal. Whenever the interface is
evolved the finite-element mesh is regenerated to find a new
solution of the fields, and as a consequence the boundary
points shift from one time step to the next. Hence, to deter-
mine the correct Runge-Kutta gradient �u ·n�n, we have in-
troduced a mapping S= f�S��, which ensures that the correct
gradients, found at time t+�t /2, are used at the original
interface points at time t to evolve the interface to the next
time t+�t; see the sketch in Fig. 3. Moreover, the mapping
also handles the problem of the interface changing length.23

The form of Eq. �7� and the dynamic boundary condi-
tions Eqs. �13a� and �13b� are suited for direct use in FEM-

LAB. At each new time step the system is remeshed, a new
curve parameter S is found, and the flow equations with the
correct boundary conditions are solved in FEMLAB. The num-
ber of points used to track the interface varies from 30, ini-
tially, up to 400 at snap-off. The number increases when
narrow liquid regions appear that need to be well resolved.
The curvature 	 of the interface is found by using an ap-
proximating least square cubic spline. This ensures the cur-
vature to be smooth and it eliminates numerical noise intro-
duced by the FEMLAB meshing algorithm. Moreover, the time
step �t is determined such that no boundary point is moved
more than one-third of the local mesh size.

A series of tests was performed to verify the time evo-
lution algorithm and the code in general. The time evolution
algorithm was compared with a simple Euler method, where

the time step was chosen to ensure stability.20,23,24 The solu-
tions were identical, but our method was ten times faster. The
code was also tested for stability regarding mesh size and the
choice of basis functions. Finally, the code was tested on
three specific problems and performed very well in all three
cases: �1� a drop in an extensional flow,25–27 �2� the coales-
cence of two cylindrically shaped liquid bodies,28 and �3� the
steady-state shape of a gas bubble translating in a liquid-
filled capillary.29 Ample details about all the tests are found
in Ref. 30.

D. Snap-off mechanism

When a bubble snap-off occurs, the curve representing
the shape of the gas thread �solid line in Fig. 4� has to be
divided into two curves �dotted line in Fig. 4�. In this model
we define a length scale �cut �marked by the dashed line in
Fig. 4� that determines where to cut the original shape. The
curve is cut at the nearest interface grid point and a cubic
spline with vertical tangent at r=0 caps the gas-jet and the
new bubble. The spatial resolution of the dynamics near the
breakup are restricted by the mesh size hm; hence, we have
chosen �cut2hm. This method might seem crude; however,
the specific shape near the breaking point does not influence
the overall dynamics of the system. Just after the snap-off
discontinuities are registered in the liquid pressure at the ori-
fice region as the breakup event is a singular event in itself.

III. RESULTS AND DISCUSSION

The time-dependent dynamics of the liquid-gas system
evolving in the flow-focusing device sketched in Fig. 1 are
controlled by many parameters. In the following, we have
restricted our analysis to the dependence on four parameters:
�1� the pressure of the gas thread; �2� the inlet liquid flow-
rate Qin=AorU �3� one geometry component, namely, the out-
let channel radius H �see Fig. 2�; and �4� the liquid-gas in-
terfacial tension �lg characterized by the capillary number
Ca. The rest of the geometry parameters depicted in Fig. 2
are constant and set to �
 ,� ,� ,d

in
/d ,W /d�

= �0.5,1.5,2 ,1 ,15�. An important parameter to control and
observe experimentally is the volume Vb of the created
bubbles. The bubble volume is also the focus of our analysis
as it is straightforward to determine numerically.

FIG. 3. Schematic representation of an interface segment with associated
grid points. The interface is represented by a curve x�S� at time t and
x�S��=x�f−1�S�� at the intermediate time t+�t /2. The gradient n�n ·u� of
the interface position x�S� used to evolve the interface to time t+�t is
derived at the intermediate time, according to a Runge-Kutta scheme.

FIG. 4. The shape r̃�z̃� of the bubble just before snap-off �solid line� and the
new shape after snap-off �dotted line and black points�. The length scale �cut

�dashed line� determines where to cut the initial shape.
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We begin by studying various aspects of the creation of
the first bubble in a bubbling sequence and show how Vb

scales with the four parameters analyzed. Finally, we study a
sequence of four bubbles in a specific geometry. Our results
on the axisymmetric geometry are compared to experimental
findings on the planar geometry given in Refs. 12 and 13.

A. Bubble growth morphology

The snapshots depicted in Figs. 5�a�–5�e� represent the
creation of a typical bubble. Panel �a� shows the initial inser-
tion of the gas thread into the orifice, �b� the exit from the
orifice region of the bursting head of the gas thread, �c� the
blocking of the inlet liquid flow as the bubble inflates into
the outlet channel, �d� appearance of a clear collapse region
and collapse of the gas thread, and finally �e� the snap-off

event where the thread radius vanishes �h̃thr=0�. In this case,
the flow and geometry parameters are �p̃2 ,Ca,H /d�
= �350,0.1,1�, and the total time simulated is t̃=1.0. The
time-dependent distance from the tip of the bursting head of

the gas thread to the outlet, where p̃=0, is denoted �= � �t�,
while W is the constant length of the outlet region �see Fig.

5�c��. The length h̃thr=hthr /d is the dimensionless minimal
diameter of the gas thread and is located at z̃=zthr /d. The
volume Vb of a bubble at snap-off is simply calculated as

Vb = ��
z=zthr

zmax

r2�z�dz , �16�

where zmax is the z coordinate of the front of the gas thread
and r�z� is a representation of the interface curve. We will be
concerned mainly with bubbles of relatively large volume,
for which snap-off occurs when ��W. For some choice of
parameters, small bubbles may snap-off when they are still in
the orifice; i.e., when �W. At the time of snap-off, zthr is
generally located at the left end of the orifice.

B. Bubble growth time �

The time it takes a bubble to grow is denoted �. It is
defined as the time between the onset of the gas thread col-
lapse �Fig. 5�c��, when the emerging bubble blocks the liquid
flow, and the snap-off of the bubble �Fig. 5�e��. The collapse
is characterized by a rapid decrease of hthr and a rapid in-
crease of Qg, as illustrated in Fig. 6. When the blocking of
the orifice sets in, the liquid flow fills the orifice volume
Vor=Aor�d at the rate Qin, squeezes the gas thread, and in-
duces the collapse leading to bubble snap-off. As described
in Ref. 13, for a fixed orifice geometry and surface tension,
the bubble growth time � therefore scales as

� �
Vor

Qin
�

1

U
. �17�

Numerically, we found that for varying values of Ca and p̃2,
the dimensionless time �̃ was constant ��0.3�, and hence that
��d /U. For a constant geometry, the numerics confirmed
the predicted linear dependence.

FIG. 5. A sequence of five snapshots from the simulations representing the
creation of a bubble: �a� the initial insertion of the gas thread into the orifice,
�b� the exit of the gas thread from the orifice region, �c� the blocking of the
inlet liquid flow to the outlet, �d� the controlled collapse of the gas thread,

and finally �e� the snap-off event where h̃thr=0. The length ��t̃� is measured
from the tip of the bursting head of the gas thread to the outlet where p̃

=0, W is the length of the outlet region, and h̃thr=hthr /d is the minimal
dimensionless diameter of the gas thread. The simulations are for
�p̃2 ,Ca,H /d�= �350,0.1,1�.

FIG. 6. Plot of Qg� / �Ud4� as function of time for Ca=0.1, p̃2=350, and
H /d=1. The gas dimensionless flow-rate is found numerically and calcu-

lated as Q̃g=dṼg /dt̃, where Ṽg is the volume of the gas to the right of the gas
inlet at z̃=0.
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C. Gas flow-rate Qg

The gas flow-rate Qg is not set explicitly, but it can be
determined as follows. When the emerging gas bubble begins
to block the orifice, it interrupts the liquid flow from the inlet
to the outlet. The liquid flow-rate Qout at the outlet is there-
fore, by volume conservation, equal to the flow-rate Qg of
the gas. Assuming the liquid flow in the outlet region to be a
Poiseuille flow, we obtain

Qg = Qout =
�

8

1

�
GH4 � GH4, �18�

where G is the pressure gradient. A good approximation for
G is given by the pressure drop from the tip of the thread to
the outlet divided by the distance � �see Fig. 5�c��. As the
emerging bubble blocks the liquid flow, the pressure in front
of it is approximately pgas−�lg	, where 	�2/R. If we fur-
thermore assume that the bubbles being created are big, i.e.,
of size comparable to H, we have

G 
1

�
�pgas −

2�lg

H
� , �19�

where the radius of curvature RH because of the axisym-
metric nature of the geometry studied. Combining Eqs. �18�
and �19� leads to

Qg � � H4�pgas −
2�lg

H
� . �20�

Consequently, for constant geometry, gas pressure, and sur-
face tension, we expect Qg� to be constant. To verify this
expression numerically, the length � is found as the differ-
ence between W and the position of the gas front, and Qg is
found as dVg /dt, where Vg is the volume of the gas. The
dimensionless quantity Qg� / �Ud3� is plotted as function of
dimensionless time t̃ in Fig. 6, where we see that Qg� indeed
is constant for t̃0.7 after the gas bubble begins to block the
orifice. From Fig. 6, it is also seen how �̃ was determined
numerically as Qg� �t̃� changes abruptly when the blocking
of the orifice is initiated.

D. Gas-thread collapse speed us

The collapse speed of the gas thread just before snap-off
is defined as

us � �dhthr

dt
�

t=t0

, �21�

where t0 is the time of snap-off. Figure 7 shows us /U as
function of 1/Ca. The inset shows the dimensionless thread

thickness as function of time h̃thr�t̃�, which corresponds to the
evolution from Fig. 5�d� and 5�e�. The collapse speed us /U is

determined by a linear fit to the curve h̃thr�t̃� near its inter-
section with the t̃ axis. The spread in the calculated values is
due to uncertainties in this fit. It is interesting to find that
us /U depends linearly on 1/Ca, for Ca0.1. This means that
us��lg /�. Studies of breakup of viscous threads in axisym-
metric geometries �see Refs. 8–10 and 32� show that just

before snap-off the thread thickness hthr� �t0− t��lg /�, which
agrees with our numerical findings.

The numerically determined time-dependent evolution
of hthr is qualitatively similar to the one observed experimen-
tally in Ref. 13. The gas thread thickness is initially nearly
constant before it rapidly snaps during the time �. However,
the detailed evolution of the shape of the interface is differ-
ent in the two cases: In the experimental work,13 the collapse
region of the gas thread was seen to extend from the gas inlet
to the right of the orifice. In our axisymmetric model, the
collapse region is localized to an area just left of the orifice
�see Figs. 5�d� and 5�e��. We speculate that this disagreement
is due to the anisotropic confinement of the gas thread in the
planar geometry of the experiments versus the axisymmetric
confinement in our model. This most probably influences the
dynamics of the collapse.31

E. Bubble volume Vb

The volume of a bubble at snap-off is given by Vb in Eq.
�16�. It is proportional to the time � that the gas thread stays
open times the flow-rate Qg of the gas. Combining Eqs.
�17�–�19� and having � nearly constant leads to

Vb �
H4

�Qin
�pgas −

2�lg

H
� . �22�

For the experimental results, presented in Refs. 12 and 13, it
was determined that for a fixed geometry and surface tension
the volume of the bubbles is proportional to the ratio
pgas /�Qin. This scaling is directly given by Eq. �22� for con-
stant geometry. We also confirm this scaling with our nu-
merical results shown in Fig. 8, where, for H /d=0.8, 1, and
1.2 �fixed geometry�, the dimensionless volume Vb /d3 of the
bubble at snap-off is seen to scale as p̃2� pgas /�Qin. Note
that there is a deviation from this scaling for small bubbles
that do not emerge from the orifice before snap-off, i.e.,
when �W, and our assumptions do not hold.

FIG. 7. Collapse speed us /U at snap-off of the gas thread as function of Ca.

The inset depicts h̃thr�t̃� corresponding to the evolution from Figs. 5�d� and
5�e�. The dashed line corresponds to the linear fit made to determine us /U.
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In Fig. 9 we have depicted Vbd /H4 as function of p̃2 and
see that they fall on one line; hence, that Vb� pgasH

4 /�Qin.
This scaling also follows directly from our general expres-
sion Eq. �22�.

Finally, we study the scaling of the bubble volume as
function of the capillary number Ca for constant dimension-
less pressure p̃2. In Fig. 10, the volume Vb /d3 is plotted as
function of Ca for p̃2=300 and H /d=1, meaning that we plot
it as function of pgasd /300�lg. We note a linear relation for
values of Ca larger than some critical value Ca*0.1. In this
regime, we have Vb��U /�lg, or after multiplication by the
constant dimensionless pressure Vb� pgasd /�lg for pgasd /�lg

30. This last critical value relates to whether a bubble is
large ���W�, or is small ��W� when it snaps off �see Fig.
5�. When the gas pressure cannot overcome the Young-
Laplace pressure in the orifice the bubble snap-off occurs for
� �W+�d�, and we have pgas�2�lg / �
d /2�, yielding
pgasd /�lg�8. Values of pgasd /�lg between 8 and 30 corre-
spond to the situation where the gas front is in the orifice or
just left of it when bubble snap-off occurs. For values of
pgasd /�lg�8 corresponding to Ca�0.05, no bubble is cre-
ated �Vb=0� and we find a steady state solution of the inter-

face. In the opposite limit of very large values of the capil-
lary number, a continuous gas jet is streaming from the gas
outlet as observed experimentally by, e.g., Sevilla et al.33

The inset in Fig. 10 represents the velocity us /U as func-
tion of 1 /Ca for the same parameters. From the figure it is
seen that us /U�1/Ca. For Ca�Ca*, the linearity in 1/Ca is
not clear; this scattering of the data points could be due to
numerical noise.

F. Multi-bubble sequence

In this section we describe a system where four bubbles
are created in a sequence. There are three snap-off events and
the simulation ends just before the fourth bubble snaps off.
The parameters for this model are: Ca=0.1, p̃2=320, W /d
=15, H /d=0.6, �
 ,� ,��= �0.5,1.5,2�. The total computation
time for the simulation was one week on an Intel Pentium
4®, 3.2 GHz with 1 GB of RAM.

Snapshots of the bubble shape at selected times t̃ are
depicted in Fig. 11. The size of the bubbles are measured in
terms of p̃V /d3, which is constant for each of the four
bubbles and has the value 80.8, 232.7, 208.1, and 195.3,
respectively. The data indicate that the system exhibits a
transient behavior before reaching a stable period-one bub-
bling. The snapshots at Figs. 11�b�, 11�d�, 11�f�, and 11�h�
are taken just before a bubble snap-off occurs. It is clearly
seen how a preceding bubble shrinks when a new bubble is
about to be released. As discussed earlier, a bubble blocks
the liquid flow out of the orifice before it snap-off. The
blocking occurs on a short time scale leading to an immedi-
ate pressure increase in the liquid in front. The pressure in
the liquid in front of the bubble equals the pressure p̃2 in the
bubble minus the curvature contribution �see Eq. �19��. The
preceding bubbles cannot escape because of the large viscous
drag in the Stokes-flow regime. This results in a very pro-
nounced compression of the preceding bubbles. The com-
pression is seen graphically in Fig. 11: the first bubble is,
e.g., seen to shrink from Figs. 11�c� and 11�d� and then en-
large from 11�d� and 11�e�.

The volumes Vb /d3 of the three released bubbles are
plotted as function of time in Fig. 12�a�. From the graph it is
seen how preceding bubbles are compressed when a new
bubble is released. The bubbles are released at the times

FIG. 8. The dimensionless volume of the first bubble as function of the
parameter p̃2, for three values of the outlet channel radius H /d=0.8, 1.0, and
1.2 for constant surface tension �lg. Moreover, the triangles show a variation
of the capillary number Ca; i.e., a change in the surface tension for fixed
H /d, pgas, and Qin. See Fig. 10 for further details.

FIG. 9. Plot of the volume Vb /d3 scaled with the outlet channel radius
�H /d�4 as a function of p̃2 for constant surface tension �lg. Note that the
three lines sketched in Fig. 8 now merge, as predicted by Eq. �22�. The
vertical dashed line indicates the transition from bubbles snap-off when �
W and ��W.

FIG. 10. The volume Vb of the first bubble as function of the capillary
number Ca for constant pressure p̃2=300 and radius H /d=1. The inset
shows the collapse speed us /U as a function of 1/Ca.
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marked by the vertical dotted lines. These correspond to the
events shown in Figs. 11�b�, 11�d�, and 11�f�. In Fig. 12�b�,
the mean pressure on a bubble

�p̃i� = �
��i

n · � · ndA��
��i

dA�−1

�23�

is depicted as function of time. We clearly see how the vol-
ume of a bubble increases as the pressure around it decreases
and vice versa. In our model the compressibility of the
bubbles is further enhanced as we have a relatively short
outlet channel and because the reference pressure at the out-
let is zero.34 In experiments where the outlet channel is very
long compared to a typical bubble length the compressibility
effects are not very pronounced. The bubbles are, however,
seen to expand as they travel far in the outlet.35

In Fig. 13 the gas-thread thickness h̃thr is plotted as func-

tion of the time t̃− t̃0. We see that for all four bubbles h̃thr�t̃�
has the same shape and hence the same collapse speed
dhthr /dt. This indicates that the snap-off event is local and
not influenced by the hydrodynamic interactions of bubbles
further downstream. This results is supported by experimen-

tal results,13 in terms of the so-called flow-rate controlled
breakup of the gas thread: the collapse velocity of the liquid
thread is only a function of Qin for a given orifice geometry.

IV. CONCLUSION

In this work we have performed a numerical study of the
dynamics of bubble formation in an axisymmetric flow-
focusing device in the Stokes-flow limit. For this purpose a
generic numerical model for solving free-surface flows in an
axisymmetric geometry was developed. The model is based
on a second-order Runge-Kutta time integration algorithm
and free-surface scheme implemented in MATLAB, which are
coupled to the commercial finite-element solver FEMLAB.

The analysis of the flow-focusing device was restricted
to four parameters: the inlet liquid flow-rate Qin, the gas
pressure pgas, the outlet channel radius H, and the liquid-gas
surface tension �lg. Based on these parameters, we derive
scaling laws for the volume Vb of a created bubble and for
the gas flow-rate Qg. By physical analysis and numerical
simulation, we have shown that the bubble growth time �
scales proportionally to the inverse liquid flow rate 1/Qin.

FIG. 11. A sequence showing the generation of the first
four bubbles. The bubble shapes are depicted at differ-
ent selected times t̃. Snapshots �b�, �d�, �f�, and �h� are
taken just before a bubble snap-off event.
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The collapse speed us of the gas thread immediately
prior to the snap-off event was found to be proportional to
the ratio �lg /�. This scaling was not observed
experimentally,12,13 but is supported by other studies of the
breakup of viscous axisymmetric threads. The detailed be-
havior of the thread thickness as function of time hthr�t� de-
viates from the experimental data. We speculate that this dif-
ference in the collapse dynamics is due to the difference in
geometry of the devices. In the experiments the gas thread is
confined anisotropically, while it is confined equally from all
sides in our axisymmetric model. In the experimental work13

the collapse region of the gas thread was seen to extend from
the gas inlet to the right of the orifice. In our axisymmetric
model the collapse region is localized to an area just left of
the orifice �see Figs. 5�d� and 5�e��. In the simulated geom-
etry the thread can minimize surface area �energy� in two
dimensions simultaneously as it is not restricted by a top and
bottom lid as in the planar case.31

The above-mentioned scaling law for the bubble volume
is presented in Eq. �22�. For a constant geometry, it reduces
to the scaling law Vb� pgas /�Qin described by Garstecki et
al.12,13 We confirm this law by means of simulations for vari-
ous constant values of H. For a varying outlet channel radius,
our extended scaling law also predicts an H4 dependence;
namely, Vb�H4pgas /�Qin. We confirm this dependence by

means of the numerical results presented in Fig. 9. Our nu-
merical investigation further reveals that critical values exist
for the dimensionless parameters p̃2 and Ca determining
where the bubble is located when snap-off occurs. These
values are determined by the ratio between the surface-
tension-dependent Young-Laplace pressure and the gas pres-
sure.

Using a simple mechanism to account for the snap-off
we model a sequence of four consecutive bubbles and show
that the flow-focusing device does not produce bubbles of
constant volume straight away. The results suggest that there
is a certain transient behavior before reaching steady state.
Bubbles that are located upstream of the orifice influence the
pressure drop in the outlet channel. The pressure gradient
along the outlet channel is an important factor in the scaling
of the bubble volume. Bubbles of constant volume may
hence only be created when a constant pressure drop exists in
the outlet. This could, for example, be the case if the outlet
region is large compared to the bubbles or if large bubbles
are filling the entire outlet region, just as happens in
experiments.12

In the multibubble sequence we confirm that the collapse
speed of the gas thread is not influenced by hydrodynamic
interactions of bubbles downstream of the snap-off event.
Finally, we see a large compression of the created free gas
bubbles in the Stokes-flow regime. The effect is amplified
due to the numerical setup but it is also seen experimentally;
however, it is much less pronounced.

The numerical model we have implemented is versatile,
and consequently the work presented in this paper facilitates
the study of other features in flow-focusing devices. This
could include other geometries of the orifice, liquid-liquid
systems, or even non-Newtonian fluids. Results from such
studies would be very useful when designing future experi-
ments.
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