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One- and two-phonon capture processes in quantum dots
I. Magnusdottir,a) A. V. Uskov,b) S. Bischoff, B. Tromborg, and J. Mørk
COM, Technical University of Denmark, Bldg. 345w, DK-2800 Kgs., Lyngby, Denmark

~Received 10 July 2002; accepted 12 August 2002!

Multiphonon capture processes are investigated theoretically and found to contribute efficiently to
the carrier injection into quantum dots. It is shown that two-phonon capture contributes where
single-phonon capture is energetically inhibited and can lead to electron capture times of a few
picoseconds at room temperature and carrier densities of 1017 cm23 in the barrier. ©2002
American Institute of Physics.@DOI: 10.1063/1.1512694#

I. INTRODUCTION

Quantum-dot~QD! lasers with record low-threshold cur-
rents have now been realized in several laboratories1–3 with
self-assembled QDs. Carriers in such lasers are electrically
pumped into layers around the dots. Thereafter, they are cap-
tured into the dots and relax via the excited QD energy levels
to the lower-lying lasing levels. The properties of such lasers
thus rely on efficient carrier feeding to the active QD states.
The processes involved, carrier capture into the dots and in-
tradot relaxation, have been under extensive research during
the past decade, both experimentally and theoretically.4–15

Two different capture and relaxation processes have been
considered; via carrier–carrier interaction~Auger
processes!5,6,13,14or via carrier–phonon coupling.6,7,10–12In
Ref. 7, capture of a carrier from the wetting layer~WL! to
the first excited state in a cone-shaped dot, via emission of
one longitudinal optical~LO! phonon, is found to exhibit
strong resonances versus dot size. At resonance, the process
is shown to be efficient, leading to short capture times in the
picosecond range. In this article, we investigate capture of
carriers from states in the continuous bulk energy spectrum
into the discrete states of QDs via emission of oneor two LO
phonons. Expressions for the single- and two-phonon capture
rates will be derived. Two-phonon capture will be shown to
be efficient for states lying too deep for carriers to be cap-
tured in a single-phonon process and we will study the role
of the different intermediate states in this kind of capture. We
will show that two-phonon capture processes can lead to
electron capture times of a few picoseconds at room tem-
perature and carrier densities of 1017 cm23 in the barrier. We
are not aware of any other investigations of two LO-phonon
mediated capture processes in QDs.

II. MODEL

The capture of carriers~electrons or holes! from three-
dimensional~3D! states in the continuous part of the energy
spectrum into discrete QD states via emission of one or two
phonons can be described by a set of rate equations.16 We
assume that all the QDs are identical, each containing a

single energy level. The rate equations for the occupation
probability,r, of a single QD state and the 3D carrier density,
n, are then written as

dr

dt
5R~12r!, ~1!

dn

dt
522RND~12r!, ~2!

whereND is the number of quantum dots per unit volume.
For r!1, the rateR gives the mean number of carriers en-
tering the QD state per unit time. It can be measured, in
particular, in time-resolved photoluminescence experiments
the photoluminescence rise time,t51/R. Below, t will be
denoted the capture time. The factor of 2 in Eq.~2! is due to
spin degeneracy of the QD level. In Eqs.~1! and ~2!, spon-
taneous recombination is neglected for simplicity as it is ex-
pected to take place on a much longer time scale, and only
terms involving the capture process are included. Equation
~1! can also be expressed in terms of the QD carrier density,
nQD52NDr ~factor 2 due to spin!, as

dnQD

dt
52RND~12r!. ~3!

We will show later in this article that for low to moderate 3D
carrier densitiesn, the rateR is, to a good approximation,
proportional ton:

R5
A

2
n, ~4!

whereA is independent ofn. In this case, Eq.~2! becomes

dn

dt
52ANDn~12r!, ~5!

dn

dt
52

n

tc
~12r!. ~6!

In Eq. ~6!, we have defined the effective capture time

1

tc
5AND . ~7!

It is important to note thattc depends on the 3D density of
dots,ND , whereast is the property of a single dot, i.e., it is
independent ofND . The effective capture timetc is an es-
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sential parameter in laser dynamics, e.g., through nonlinear
gain.15,17 In the following sections, we will derive expres-
sions for the capture timet and estimate the effective capture
time tc in single- and two-phonon capture processes. In gen-
eral, the rate of carrier capture into an empty QD state of
definite spin can be written as

R5(
k

w~k! f ~«k!, ~8!

wherew(k) is the probability per unit time that the transition
will take place for a carrier in the continuous part of the
energy spectrum,k being the carrier wave vector.f is the
Fermi distribution of the thermalized electron distribution
and«k is the energy of the incident carrier.

A. Single-phonon capture

The single-phonon-mediated capture process~with emis-
sion of one LO phonon! is illustrated schematically in Fig. 1.
The probability that the carrier is captured into a QD state by
emitting a phonon of wave vectorq can be expressed with
Fermi’s Golden Rule:

w~k, q!5
2p

\
uV̂fi

em~q!u2d~Ef2Ei !, ~9!

whereEi(Ef) is the energy of the initial~final! state,k is the
wave vector characterizing the carrier state in the continuous
spectrum,V̂em is the Hamiltonian for phonon emission and
V̂fi

em(q) is the matrix element ofV̂em between the initial and
final state. It has been shown8,18 that carriers in discrete QD
states can couple strongly to LO phonons, forming polarons.
The formation of polarons can strongly affect carrier relax-
ation in QDs. This analysis has been extended to the inter-
action of carriers in quasibound states with LO phonons19

where we have shown that polarons can also be formed with
carriers in quasibound states. However, in this article, we
consider carrier capture in the framework of standard pertur-
bation theory20 and neglect the influence of quasibound
states on the carrier capture, so that the initial carrier states in
the continuous spectrum are described with plane waves~see
below!.5,7,13 We use a bulk model for the phonon modes,
although the phonon spectrum and phonon modes in semi-
conductor nanostructures can be modified in comparison
with bulk semiconductors. For instance, it was shown21 that
the LO-phonon modes in CdSe/ZnSe QD structures are of

mixed character, localized in the QD and extended along a
two-dimensional~2D! remnant layer~RL!. The detailed con-
sideration of phonon modes in QD structures can be neces-
sary, in particular, for a theoretical explanation21 of reso-
nance features in the PL spectra at low temperatures, which
are attributed to carriers in the RL in an excitonic state of
definite discrete energy. In this article, we concentrate on QD
structures ~GaAs/AlGaAs,22 for instance, and QD laser
structures1–3!, where the material characteristics that define
the spatial distribution of phonon modes do not differ signifi-
cantly in the QD and the barrier material. For such structures,
the bulk model for phonons has provided a good description
of dephasing rates,22,23 polaron effects,24 and capture
processes.7 Note, also, that LO-phonon carrier relaxation
rates in quantum wells do not differ significantly, when cal-
culated by either using bulk or confined LO phonons.25 Fur-
thermore, we are mainly interested in the carrier dynamics of
QD lasers at room temperature. Therefore, we neglect also
excitonic effects of carriers in the continuous spectrum. The
Hamiltonian for the carrier-LO phonon interaction is given
by26

V̂5(
q

~V̂q
abs1V̂q

em!, ~10!

where V̂q
abs and V̂q

em correspond to phonon absorption and
emission, respectively. They are given by

V̂q
abs5Cqeiq"râq ~11!

V̂q
em5Cq* e2 iq"râq

† , ~12!

whereCq are the polar coupling coefficients for carrier–LO
phonon interaction andâq(âq

†) is the operator of annihilation
~creation! of an LO phonon with wave vectorq. The cou-
pling coefficient is given by

uCqu25
\vLOe2

2«0« rVq2
, ~13!

where \vLO is the LO phonon energy,e is the electronic
charge,V is the normalization volume,«0 the permittivity
constant, and

1

« r
5

1

«`
2

1

«
, ~14!

where «`(«) is the high-frequency~static! dielectric con-
stant. Note that spin is conserved in a phonon-capture pro-
cess. Therefore, Eq.~8! does not contain a sum over spins.

In this single-phonon capture process, the initial and fi-
nal phonon states differonly in the number of phonons in
modeq

nq
f 5nq

i 11, ~15!

so that

w~k, q!5
2p

\
~ n̄11!uCqu2u^due2 iq•ruk&u2d~«k2\vLO

1«d!, ~16!

FIG. 1. Single-phonon capture process. A carrier in the continuous part of
the spectrum is captured into a QD energy state, thereby emitting one LO
phonon of energy\vLO . Energy of the incident carrier is denoted by«k and
the binding energy of the QD state is«d .
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where«d is the QD level binding energy.uk& is the initial
carrier state in the continuum andud& is the final carrier state
~in the QD!. The onset of the continuous energy spectrum is
at the QD barrier. We have averaged over the equilibrium
phonon distribution in the initial stateu i &, which gives the
factor (n̄11) with

n̄5
1

expS \vLO

kBT D21

. ~17!

It is assumed in Eq.~16! that the LO phonons have zero
dispersion. The probability,w(k), is now obtained by sum-
ming over all emitted phonon modes,q:

w~k!5(
q

w~k, q! ~18!

w~k!5
2p

\
~ n̄11!(

q
uCqu2u^due2 iq•ruk&u2d~«k2\vLO

1«d!. ~19!

Hence,

R5(
k

w~k! f ~«k!

5
2p

\
~ n̄11!

\vLOe2

2«0« rV
(

k
d~«k

2«k0
1p! f ~«k!(

q

u^due2 iq•ruk&u2

q2
, ~20!

where«k0
1p5\vLO2«d and we have inserteduCqu2 from Eq.

~13!. It is useful to write the capture rate in terms of the 3D
density of states. We rewrite Eq.~20! in terms ofg3D , the 3D
density of states~DOS!,

R5
2p

\
~ n̄11!

\vLOe2

4«0« r

3g3D~«k0
1p! f ~«k0

1p!
1

4p (
q,k0

u^due2 iq•ruk0&u2

q2
, ~21!

wherek0 fulfills «k0
1p5\2k0

2/(2m* ) and the summation over
k0 denotes an integration over the directions of the vector
k0 . g3D is given by

g3D~«!5H m*

p2\2
A2m* «

\2
, «>0,

0, «,0.
~22!

Furthermore, a dimensionless ‘‘DOS’’ can be defined in
terms ofg3D :

g3D~«!5
m*

p2\2
A2m* \vLO

\2
d3D

1p~«!, ~23!

where

d3D
1p ~«!5HA «

\vLO
, «>0,

0, «,0.
~24!

d3D
1p has the property thatd3D

1p(«k0
1p)51 when a new level

appears in the QD andd3D
1p(«k0

1p)50 when the level becomes
too deep for single-phonon capture to be possible. Expres-
sion ~21! can then be simplified further by writing

R5R0
1pd3D

1p~«k0
1p! f ~«k0

1p!. ~25!

The factorR0
1p is given by

R0
1p5

n̄11

~4p!2\

e2

«0« r
k3(

q,k0

u^due2 iq•ruk0&u2

q2
, ~26!

wherek fulfills \vLO5\2k2/(2m* ). This factor, therefore,
gives information about the interaction through the ampli-
tude of the carrier–LO-phonon interaction matrix element
and has the unit of s21 as the capture rate. As described
above, the initial state in the barrier can be modeled by a
plane wave:5,7,13

^r uk&5
1

AV
eik•r. ~27!

This approximation neglects the influence of scattered waves
in the QD and hence, in particular, the quasibound states
over the dot are not seen.

B. Two-phonon capture

Capture via emission of two phonons has the advantage
that it can take place to states with binding energies«d that
fulfill 0 ,«d<2\vLO , whereas single-phonon capture can
only take place for 0,«d<\vLO . For the two-phonon cap-
ture, the transition probability can be written as

w~k!5 (
q1,q2

w~k, q1, q2!, ~28!

wherew(k, q1, q2) is the probability of carrier capture via
emission of two phonons with wave vectorsq1 and q2 .
Second-order perturbation theory gives20 ~see the Appendix!

w~k, q1, q2!5
2p

\
~ n̄11!2

3UCq1
Cq2(n

M f n
q2M n i

q11M f n
q1M n i

q2

«k2«n2\vLO
U2

d~«k

22\vLO1«d!, ~29!

where the summation is over intermediate carrier states,
which either belong to the continuous energy spectrum or the
discrete QD spectrum. The matrix elements are given by

M f n
q 5^due2 iq•ruzn&,

M n i
q 5^znue2 iq•ruk&,

whereuzn& denotes an intermediate carrier state and«n is the
energy of the intermediate carrier state. Figure 2 shows the
two-phonon capture process, where capture via the different
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intermediate states is illustrated schematically. Intermediate
states are depicted with dashed lines since the carrier is not
actually transferred to an intermediate state.

It should be emphasized at this point that the above for-
mula ~29! is valid in the case where the denominator in the
sum,«k2«n2\vLO , is not too close to zero. The condition
«k2«n5\vLO corresponds, in fact, to a cascaded emission
of LO phonons, which cannot be treated perturbatively~see
Ref. 27 for a detailed treatment!. We restrict ourselves in this
article to calculating two-phonon capture rates to states with
binding energies\vLO,«d<2\vLO , where single-phonon
capture processes are prohibited. Due to the energy conser-
vation expressed with thed function in Eq. ~29!, «k
52\vLO2«d , we have that 0<«k,\vLO and, in that case,
there is not a possibility for a cascaded process via an inter-
mediate carrier state in the continuous energy spectrum.
However, a cascaded process can occur via intermediate dis-
crete carrier states, if such a state is situated\vLO below the
initial carrier state. Such a situation only takes place for very
specific values of confinement potential, dot size, and par-
ticle mass and we will avoid this particular situation in this
article.

From Eq.~28!, we obtain

w~k!5
2p

\
~ n̄11!2

3 (
q1,q2

UCq1
Cq2(n

M f n
q2M n i

q11M f n
q1M n i

q2

«k2«n2\vLO
U2

3d~«k22\vLO1«d!. ~30!

Using Eq.~8! we now obtain for the capture rate

R5
2p

\
~ n̄11!2S \vLOe2

2«0« r
D 2 1

V2

3(
k

f ~«k!d~«k

2«k0
2p! (

q1,q2

1

q1
2q2

2U(n

M f n
q2M n i

q11M f n
q1M n i

q2

«k2«n2\vLO
U2

, ~31!

where «k0
2p52\vLO2«d and we have inserteduCqu2 from

Eq. ~13!. This expression can be rewritten in terms of the 3D
DOS in the same manner as Eq.~21! was obtained

R5
2p

\
~ n̄11!2S \vLOe2

4«0« r
D 2

3g3D~«k0
2p! f ~«k0

2p!
1

2pV

3 (
q1,q2,k0

1

q1
2q2

2U(n

M f n
q2M n i

q11M f n
q1M n i

q2

«k0
2p2«n2\vLO

U2

, ~32!

where the sum overk0 denotes, as before, an integral over
the directions ofk0 . This expression can also be written in
terms of a dimensionless DOS

R5R0
2pd3D

2p~«k0
2p! f ~«k0

2p!, ~33!

where

R0
2p5

~ n̄11!2

A2~4p!2\
S e2

«0« r
D 2

3k3\vLO

1

V (
q1,q2,k0

1

q1
2q2

2

3U(
n

M f n
q2M n i

q11M f n
q1M n i

q2

«k0
2p2«n2\vLO

U2

. ~34!

The dimensionless DOS for this two-phonon capture process
is defined as

d3D
2p~«!5HA «

2\vLO
, «>0,

0, «,0,
~35!

which is analogous to the definition ofd3D
1p in Eq. ~24!.

d3D
2p(«k0

2p) is equal to unity when a new level appears in the
QD and becomes zero when the level becomes too deep for
two-phonon capture to be possible.

For capture via intermediate continuum states, we have
the selection rule

M n i
q 5dk,kn1q , ~36!

since the incident carrier wave function is described by a
plane wave~27!. This implies crystal momentum conserva-
tion in the continuum. With this selection rule, the matrix
elements in the sum involving continuum intermediate states
are given by

FIG. 2. Energy diagram ink space of the two-phonon capture process via
different intermediate carrier statesun&. Dashed lines indicate that a carrier
is not actually transferred to an intermediate state.u i & and u f & denote the
initial and final state.~a! shows a contribution to the capture from an inter-
mediate continuous state and~b! shows a contribution to the capture from an
intermediate discrete state. Initial and final states can also serve as interme-
diate states. Discrete energy levels do not have any definitek but are, for
illustration purposes, shown here with a finite extension ink space.
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M f n
q2M n i

q15F~k2q12q2!, ~37!

M f n
q1M n i

q25M f n
q2M n i

q1 , ~38!

where F(k2q12q2)[1/AV*drCd* (r )ei (k2q12q2)•r. With
this definition,R0

2p becomes

R0
2p5

~ n̄11!2

A2~4p!2\
S e2

«0« r
D 2

k3\vLO

1

V (
q1,q2,k0

1

q1
2q2

2

3U F~k02q12q2!

«k0
2«k02q1

2\vLO
1

F~k02q12q2!

«k0
2«k02q2

2\vLO

1(
pn

M f n
q2M n i

q11M f n
q1M n i

q2

«k0
2p2«n2\vLO

U2

, ~39!

wherepn stands for the quantum numbers describing inter-
mediate discrete QD states.

C. Quantum-dot wave functions and energy levels

In a real situation of self-assembled QDs, the dots are
formed on the interface of two lattice-mismatched materials.
The dots’ shape is in many cases believed to be a truncated
pyramid,28 coupled to a common two-dimensional layer; the
wetting layer. Carriers are captured into the dots primarily
via this 2D layer. Moreover, the QD energy spectra and wave
functions are strongly modified due to the presence of strain
in these structures29,33and, in fact, the precise size and shape
of dots is not known. The purpose of this article is to inves-
tigate two-phonon capture processes and the time scale on
which these occur in comparison to single-phonon processes.
To achieve this purpose, we use the spherical model of a QD
with finite confinement

V~r !5H 0, r<a,

V0 r .a, ~40!

whereV0.0 anda is the QD radius. In this case, the wave
function for bound QD states is given by

Cd~r !5Yl
m~u, f!Gl n~r !, ~41!

whereYl
m are the spherical harmonics and the radial part of

the wave function,Gl n , can be expressed through the
spherical Bessel function~see, for instance, Ref. 30!. The
numbern stands for thenth level of angular momentuml ,
which becomes bound to the dot. The quantum numbern
should not be confused with the carrier density. Note that the
spherical model is explored effectively in modeling of
chemically synthesized colloidal QDs, which have a spheri-
cal shape, and on which gain has recently been obtained.31,32

III. RESULTS

The material parameters are chosen to be those of bulk
GaAs. The phonon energy is set to be\vLO535 meV. The
carriers are assumed to be electrons of effective massm*
50.07m0 , wherem0 is the free-electron mass. The confine-
ment potential is set to beV05200 meV~close to the value
in Ref. 33!. Furthermore, unless otherwise stated, we useT
5300 K andn51017 cm23. Figure 3 shows the calculated

binding energy as a function of the QD radius. Up to
'2.8 nm, there is no bound state in the dot. This is in con-
trast to the case of quantum wells~QWs!, where at least one
state is bound. Due to the spherical symmetry, QD states can
be characterized by an angular momentum quantum number
l , an azimuthal quantum numberm, and spins. Each level
l is 2(2l 11) degenerate. Instead of determining the cap-
ture rate,Rl ,m

s , into each state (l , m, s), we define an ef-
fective capture rate

Rl 52 (
m52l

l

Rl ,m
s , ~42!

for which t l 51/Rl is the photoluminescence rise time of a
given levell . The factor of 2 arises from spin degeneracy of
the QD level. It should be emphasized that rate equation~1!
describes occupation probabilityr of a givenstateand ex-
pression~42! cannot be inserted into rate equations of the
form in Eqs.~1! and~2!. If r l ,m

s is the occupation probability
of a state (l , m, s), we have

]r l ,m
s

]t
5Rl ,m

s ~12r l ,m
s !, ~43!

and the rate equation forn includes contributions from all
states (l , m, s);

]n

]t
522ND(

l ,m
Rl ,m~12r l m!. ~44!

In Eq. ~44!, we have used thatRl ,m
11/25Rl ,m

21/2[Rl ,m , and
hence, the factor of 2.

A. Single-phonon capture

The single-phonon capture time for the individual angu-
lar momentum states,l , i.e., t l , is shown in Fig. 4 as a
function of QD radius. Capture to states of alll within
\vLO from the QD barrier is possible; results forl
P@0, 4# are shown. It is seen that there are bands of dot radii
where phonon-mediated capture is allowed, consistent with

FIG. 3. Binding energy of an electron in a spherically symmetric and finite
potential as a function of the QD radius. Results are shown for angular
momental P@0, 4#. The horizontal lines indicate\vLO ~LO phonon en-
ergy! and 2\vLO . A carrier can be captured into states with binding ener-
gies below\vLO in the case of single-phonon capture and below 2\vLO in
the two-phonon capture case. Quantum numbern is shown for l 50 for
illustration. For instance,n51 is the firstl 50 state to become bound,n
52 the second, etc.
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other results.7 The bands are seen to nearly cover the dot size
range apart from two narrow gaps on the lower radius side.
The lower end of a radius band,a5amin , is defined by the
appearance of a new level in the QD to which capture may
take place. The increase int at this end essentially follows
the decrease inR0

1p asa→amin
1 . In this limit, the ‘‘volume’’

of the QD wave function tends to infinity due to the weaker
binding to the dot andR0

1p decreases. The rate approaches
zero at the higher end of each radius band~t approaches
infinity! beyond which the binding energy of the level is
larger than the phonon energy. The abrupt increase int at
this end can be explained in terms of the DOS of the incident
carrier as«k0

1p→01 @see Eqs.~24! and ~25!#. The capture
times are typically of the order of 0.2–0.3 ps at the radius
band minima. In general, our results obtained with the
spherical QD model are close to the results of Ref. 7 for a
cone QD.

We have also considered the dependence of the capture
times on confinement energy. We decreased the confinement
energy by a factor of 2;V05100 meV, and calculated the
capture times for the firstl 50 band. The capture time mini-
mum is found to be similar to the case ofV05200 meV but

the radius band is broader, 2.5 nm wide, while it is less than
1 nm wide forV05200 meV. Thet dependence on QD ra-
dius is thus less pronounced.

The dependence of the capture rate on temperature for
fixed carrier density is shown in Fig. 5. The temperature
dependence occurs via the phonon and Fermi distribution
functions as

RT; f ~«k0
1p!~ n̄11!. ~45!

The behavior of the capture time with temperature follows
mainly the behavior of the Fermi factor, since the phonon
population factor varies slowly. At low temperatures, both
f («k0

1p) andn̄ are nearly zero, giving infinite capture times. At
T'50 K, the capture time reaches a minimum. At low and
moderate carrier densities, the minimum occurs at the same
temperature. The capture time stays approximately constant
(t'0.3 ps) for temperatures above;50 K.

B. Two-phonon capture

In Fig. 6 we show the two-phonon capture time of an
electron,t l , along with the single-phonon capture time from
Fig. 4 for comparison. In general, the radius bands for two-
phonon capture processes are more than two times as large as
the corresponding band for single-phonon capture as the
slope of the binding energy~Fig. 3! decreases with increas-
ing radius. Here, we restrict ourselves to capture into states
that have binding energy\vLO,«d<2\vLO and for which
the perturbative approach is valid. One can see that the cal-
culated two-phonon capture times intol 50, n51 and l

51, n51 levels are of the order of some picoseconds atn
51017 cm23. This is approximately an order of magnitude
longer than the single-phonon capture times into these states.
The two-phonon capture time into thel 51, n52 level is
close to 1 ps, which is only slightly longer than the single-
phonon capture time.

We have investigated the influence of the different inter-
mediate states on the total carrier capture rate by ‘‘turning
off’’ contributions from other states. This analysis has been

FIG. 5. Temperature dependence of single-phonon capture timet l into the
secondl 50 band, ata58.7 nm.n51017 cm23.

FIG. 6. Two-phonon capture timet l ~labeled ‘‘2p’’! as a function of QD
radius into the QD levelsl 50, n51 and l 51 with n51, 2. Single-
phonon capture times~labeled ‘‘1p’’! into the same states are shown for
comparison. Two-phonon capture intol 50, n52, 3 cannot be shown,
since the perturbative approach breaks down when the separation of energy
levels is too close to\vLO ~see Fig. 3!. T5300 K andn51017 cm23.

FIG. 4. Single-phonon capture timet l as a function of QD radius for
angular momental P@0, 4#. T5300 K andn51017 cm23.
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performed for the the first radius band,l 50, n51, where a
single energy level is present in the dot. For instance, at a
binding energy«d'2\vLO , the contribution from con-
tinuum intermediate states~neglecting spin degeneracy!
gives a capture rateR5231011 s21 (t55 ps) and the cor-
responding contribution from the state itself givesR54
31011 s21. However, the total capture rate, with all contri-
butions included, is smaller;R5831010 s21 (t512.5 ps).
This suggests that destructive interference between the two
contributions takes place. Mathematically, this can be ex-
plained by the difference in sign of the denominator in Eq.
~29! corresponding to the different contributions. The de-
nominator corresponding to continuous intermediate states is
always negative. Denominators for discrete intermediate
states can be either positive or negative depending on the
relative level position, the crossing point from negative to
positive occuring when an intermediate~discrete! state is
\vLO above the state to be captured into. The interference
pattern becomes more complex as more states become bound
to the dot and is expected to depend strongly on the energy
separation between the different dot levels.

The case of capture into thel 50, n52, 3 band cannot
be shown since, in this case, there exist discrete intermediate
carrier states lying\vLO above the state to be captured into
~see Fig. 3!. In this case the perturbative approach that we
have chosen here is no longer valid~see discussion in Sec. II
B!.

In the case of capture into anl 51, n51 state, two states
are bound to the dot, anl 50 state lying deep within the dot
and the levell 51. Performing an analysis of the contribution
from different intermediate states in this situation shows that
although the matrix elements corresponding to different in-
termediate states are approximately of the same order, the
contribution via continuous states is the most dominant. This
is explained in terms of the denominators; the ones corre-
sponding to the discrete intermediate states are equal to or
larger than \vLO while the denominator for continuous
states is small and negative. In this particular case, interfer-
ence between continuous contributions on one hand, discrete
on the other, is negligible as the calculations show that they
arep/2 out of phase.

In the l 51, n52 band, a local decrease is seen in the
capture time ata512.8 nm, found to be associated with the
binding of the l 52, n52 state. However, no decrease is
observed in the capture time with the binding ofl 50, n
53 ata513 nm. This can be understood in terms of overlap
of the different radial wave functions with the final state
wave function. The radial wave functions are shown in Fig. 7
at a513.1 nm.G12 andG22 have the same number of nodes
and behave very similarly. Hence, their overlap is very good,
resulting in the local increase in the capture rate.G03 is out
of phase with those functions and, therefore, does not con-
tribute significantly to the capture rate. No step is observed
in the capture rate intol 51, n51 as no new state becomes
bound in the dot in this band. We have limited the number of
intermediate states to those withl P@0, 5#. As the first l

56 state becomes bound ata515.4 nm, we only show re-
sults up to this QD radius.

The discussion above shows clearly that the total capture
rate depends strongly on the interference between contribu-
tions from the different intermediate states. The character of
the interference can to a large extent be identified by the sign
of the denominators of the different terms that enter into the
capture rate@see Eqs.~29!, ~33!, and ~39!#. Therefore, an
increase of possible intermediate statesdoes notnecessarily
lead to a simple increase in the capture rate. Furthermore, the
contribution of an intermediate state depends strongly on the
overlap of its radial wave function with the radial wave func-
tion of the final state. This was shown in the case of carrier
capture into thel 51, n52 level.

The capture time dependence on carrier density is shown
in Fig. 8 for single- and two-phonon capture into the first
l 50 band~see Fig. 6!. The density dependence occurs via
the Fermi filling of the energy level of the incident carrier. At
low and moderate carrier densities, the Fermi distribution
approaches a Boltzmann distribution,

f B~«k!5
n

n̄3D

expS 2
«k

kBTD , ~46!

FIG. 7. Radial wave functions ata513.1 nm.

FIG. 8. Density dependence of single- and two-phonon capture timest l for
two different dot sizes in the firstl 50 band. Ata53.3 nm, only the single-
phonon capture can be calculated with the perturbative formula for the cap-
ture rate. Only the two-phonon process is allowed ata54.2 nm. A coeffi-
cients, defined by Eq.~47!, are found to beA1p53.831025 cm3/s for the
single-phonon capture and for the two-phonon captureA2p51.9
31026 cm3/s, i.e., one order of magnitude smaller.

5988 J. Appl. Phys., Vol. 92, No. 10, 15 November 2002 Magnusdottir et al.

Downloaded 07 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



n̄3D52@m* kBT/(2p\2)#3/2 being the 3D density of states.
At these densities we can, therefore, define

R5An, ~47!

as was already stated in Sec. II. The coefficientsA are ex-
tracted from Fig. 8. The value for the single-phonon process
is A1p53.831025cm3 s21, andA2p51.931026 cm3 s21 for
the two-phonon capture. The effective capture time can now
be evaluated from Eq.~7! using the calculated values for the
A coefficients once dot densityND has been estimated. In
QD-based devices, several layers of dots are grown to in-
crease their gain. To estimate a typical value ofND , we
assume that the interlayer distance is about 20 nm. For a
typical areal dot density 531014 m22, the dot density is then
ND52.531016 cm23, and the effective capture times for
single- and two-phonon processes becometc

1p51.1 ps and
tc

2p521 ps. It should, however, be emphasized that theA
values depend strongly on the QD radius.

Alternatively, the capture rate can be expressed through
the capture cross section as

R5snvT , ~48!

where vT is the thermal velocity of the electron gas. By
comparing Eq.~48! with Eq. ~47!, we obtain thats1p51.5
310212 cm2 and s2p57.5310214 cm2. The latter value is
close to an estimate in a calculation of gain dynamics in QD
lasers.34

At very high carrier densities, the capture rate saturates
due to the saturation in the Fermi filling factors. As seen
from Fig. 8, this occurs at nearly the same carrier density for
the two different processes. This arises from the fact that the
captured carriers have nearly the same energy («k0

1p

512.8 meV and«k0
2p511.4 meV) and the Fermi filling be-

haves, therefore, in a similar fashion.

IV. CONCLUSIONS

In conclusion, we have calculated capture times in two
LO-phonon-mediated capture processes. The dependence on
dot radius, angular momentum quantum number, and carrier
density has been investigated. The case of single-phonon-
mediated capture has also been analyzed and the radius
bands, where single-phonon capture is allowed, were identi-
fied. For a typical carrier density,n51017 cm23, the minima
in single-phonon capture times were typically found to lie
between 0.2 and 0.3 ps. In general, the radius bands in the
two-phonon capture case were found to be more than two
times as large as single-phonon radius bands. We have cal-
culated the two-phonon capture times in the regions where
single-phonon capture is not possible. The role of both con-
tinuous and discrete intermediate carrier states in two-
phonon capture was investigated. The importance of the dif-
ferent intermediate states was shown to be dependent upon
the relative energy position of the different dot levels and an
increase of possible intermediate states does not lead to a
simple increase in the capture rate. The influence of the dif-
ferent discrete intermediate states on the total capture rate
was shown to depend strongly on the overlap of the radial
wave functions of the intermediate and final states. It was

found that the two-phonon capture times intol 50, n51
and l 51, n51 levels are of the order of some picoseconds
at n51017cm23. This is an order of magnitude longer than
the single-phonon capture times into these states. The two-
phonon capture time intol 51, n52 is about 1 ps~at n
51017cm23), which is slightly longer than the single-
phonon capture time into this level. The two-phonon-
mediated capture has thus been found to contribute effi-
ciently in situations where single-phonon capture is
energetically not allowed.

ACKNOWLEDGMENTS

The work of one of the authors~A.V.U.! was supported
by the Russian Federal Program Integration~Project No.
A0155!, by RFBR ~Project No. 01-02-17330!, by INTAS
~Project No. 2001-0571!, by the Danish Research Council
within the framework of program SCOOP, and by the Otto
Moensted Foundation.

APPENDIX: DERIVATION OF THE TRANSITION
PROBABILITY OF CAPTURE VIA EMISSION OF TWO
LONGITUDINAL OPTICAL PHONONS

The purpose of this Appendix is to give the details in the
derivation of Eq.~29!, i.e., the transition probability that a
carrier with wave vectork is captured by emitting phonons
with givenwave vectorsq1 andq2 . The probability is given
by second-order perturbation theory:20

w~k, q1, q2!5
2p

\ U(
n

Vfn
emVn i

em

Ei2En
U2

d~«k22\vLO1«d!,

~A1!

where the states, for whichVf n and Vn i are different from
zero, are referred to asintermediatestates. The Hamiltonian
for emission of two phonons is given by

V̂em~q1, q2!5Cq1
* e2 iq1•râq1

† 1Cq2
* e2 iq2•râq2

† , ~A2!

andEi(En) is the energy of the initial~intermediate! state. In
this two-phonon capture process, the carrier relaxes through
an intermediate state,un&, where its electronic part is either a
state in the continuous part of the energy spectrumukn&, or a
discrete QD state,udn&. Hereafter, intermediate carrier states
are labeleduzn&. The states involved in the process are la-
beled as follows:

u i &5uk&u$nq
i %&,

u f &5ud&u$nq
f %&, ~A3!

un&5uzn&u$nq
n%&.

We assume that the phonons are emitted into twodifferent
phonon modes, which we labelq1 andq2 , so that the initial
and final phonon states differ only in the number of phonons
in modesq1 andq2 ,

nq1

f 5nq1

i 11, ~A4!

nq2

f 5nq2

i 11. ~A5!
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It can be shown that the contribution from phonons emitted
into the same mode is negligible. If we assume that the wave
vector of the first emitted phonon isq1 , so that

nq1

n 5nq1

i 11, ~A6!

the transition matrix element fromu i & to un& is given by

Vn i
em5^$nq

n%u^znuV̂emuk&u$nq
i %&, ~A7!

Vn i
em5^$nq

n%u^znuCq1
* e2 iq1•râq1

1 uk&u$nq
i %&, ~A8!

Vn i
em5Anq1

i 11Cq1
* ^znue2 iq1•ruk&, ~A9!

Vn i
em5Anq1

i 11Cq1
* M n i

q1 . ~A10!

Correspondingly, the transition matrix element fromun& to
u f & is given by

Vf n5Anq2

i 11Cq2
* ^due2 iq2•ruzn&, ~A11!

Vf n5Anq2

i 11Cq2
* M f n

q2 . ~A12!

It is, of course, also possible to label the phonon vectors in
the reverse order, such that the sum over intermediate states
consists of two contributions. The transition probability then
becomes

wif~k, q1, q2!5
2p

\
~ n̄11!2

3U(
n

Cq1
* Cq2

*
M f n

q2M n i
q11M f n

q1M n i
q2

«k2«n2\vLO
U2

3d~«k22\vLO1«d!, ~A13!

where«k(«n) is the energy of the initial~intermediate! car-
rier state. It should be noted here that a discrete QD interme-
diate carrier state can be the same as the final carrier state,
since the matrix elementM f f

qi , i 51, 2, is in that case gener-
ally nonzero. Here, we have replaced (nq1

i 11)(nq2

i 11) with

the average (n̄11)2.
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