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A new method to detect geometrical information
by the tunneling microscope
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A new method for the detection of the geometrical information by the scanning tunneling
microscope is proposed. In addition to the bias voltage, a small ac modulation is applied. The
nonlinear dependence of the transmission coefficient on the applied voltage is used to generate
harmonics. The ratio of the harmonics to the dc current is found to give the width between the
sample and the probe, i.e., the geometrical information. This method may be useful to measure
materials, where the local-spatial-density of states may change notably from place to place.
© 1997 American Institute of Physics.@S0021-8979~97!05621-1#

I. INTRODUCTION

Since the discovery of the scanning tunneling micro-
scope~STM!,1 it is widely used to investigate the surface
structure of various materials~see e.g., Refs. 2–5!. More
recently, it is also used to manipulate individual atoms and
molecules.6,7

Because of the exponential dependence of the tunneling
current as a function of the tip–sample separation, the spatial
resolution is extremely high. The tip can be used to track the
surface topography as it is scanned, or conversely, the tip can
be held fixed and track the motion of the surface.8 This is
utilized in nanosize accelerometers with a feedback loop
maintaining a constant tunneling current and tracking the
motion of a cantilever beam.8–11 In the conventional method,
the distance between the needle probe and substance is regu-
lated so as to keep the tunneling current constant.9,10 How-
ever, the tunneling current depends not only on the distance
between the probe and the substance but also on the elec-
tronic states of the substance. Therefore, the so-determined
width profile contains both geometrical and electrical infor-
mation.

There are indeed three factors which affect the tunneling
current: The local density of states of the sample; the density
of states of the tip; and the barrier penetration factor.12,13

Since the tunneling microscope displays the local density of
electronic states it is crucial to obtain as exact information of
those states as possible. This is complicated, however, due to
the fact that these states are generally not simply related to
the atom core position, and the states observed depend on the
tip bias. Surface topography is best defined in terms of those
core positions. Since no probe microscope directly measures
core positions, the position of the surface must be calculated
with theoretical models. This is at best a difficult task.14

In this article, we shall propose a new method based on
the response of the tunneling current to the ac bias field.
Because of the nonlinear dependence of the current on the
bias voltage, higher harmonics are created. The amplitude of
the second harmonicj 2w relative to the dc component of the
current j dc is shown to be

j 2v

j dc
5

wnd

4dpuEf u
Fna

nd
G2

, ~1.1!

wherena andnd are amplitudes of the ac and the dc parts of
the applied voltage,w is the distance from probe to material,
uEf u is the work function, anddp[$2muEf u/\2%21 the pen-
etration depth of the wave function into the gap withm being
the electron mass.@Strictly speaking, Eq.~1.1! is valid for
(wnd)/(dpuEf u)!1. For details see Sec. III.# The control pa-
rameter is the voltage across the gap,n[ew, wheree is an
applied~constant! electric field. Note that Eq.~1.1! does not
contain the density of states for probe or sample. Therefore,
we can directly obtain the geometrical information as ex-
pressed byw by measuring the ratio between the second
harmonic and the dc currents. The key point of picking up
only the geometrical information is to measure theratio of
the currents instead of their absolute values.

In the following, we shall derive Eq.~1.1! by using a
one-dimensional model. An extension to three-dimensional
geometry is straightforward. We assume that both the ap-
plied ac voltage and the tunneling are very weak.

In Sec. II, our model will be explained and the transmis-
sion coefficient will be obtained in the Wentzel–Kramers–
Brillouin ~WKB! approximation. Then the transmission cur-
rent will be calculated. In Sec. III, the response of the current
under the voltage,

n5nd1na cos~vt !, ~1.2!

will be studied and the new method of detecting the geo-
metrical information will be explained.

a!Also at The Research Institute, The College of Judea and Samaria, 44837,
Ariel, Israel.
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II. TUNNELING CURRENT IN STM

In the following we consider the case where the sample
is a metal, and describe it by a one-dimensional model. We
also assume that the effective electron masses of the sample
and the metal tip are equal to the electron mass in vacuum.

In this section, we shall derive the tunneling current
across the STM under a constant biasE field. The derivation
of the tunneling current between two metals separated by a
thin insulating film has been performed by Simmons in Ref.
15. The following derivation is, however, more adequate for
the present purpose. For a comparison of different ap-
proaches to the calculation of the tunneling through one-
dimensional potential barriers, see Ref. 16.

A. Potential shape and model

In the STM, the wave functions for the tip and for the
sample can overlap in the gap region. The electron gases of
the tip and the sample reach an equilibrium by inducing sur-
face charges. This situation is shown in Fig. 1 and can be
described by the Hamiltonian

H52
\2

2m

d2

dx2 1V~x!, ~2.1a!

where the potentialV(x) is given by

V~x!5H 2V0
L , ~x<0!

0, ~0,x,w!

2V0
R , ~x>w!

~2.1b!

V0
L andV0

R being positive. The potential and the coordinate
which we use are shown in Fig. 2.

When we apply a constant voltage~the sample side is
positive!, the potential near the gap will change, as shown in
Fig. 3, and the potential becomes

V~x!5H 2V0
L , ~x<0!

2eex, ~0,x,w!

2V0
R2eex. ~x>w!

. ~2.2!

Note that in the new situation, the energy differences be-
tween the band bottom and the Fermi level do not change as
compared with the equilibrium case for both metal tip and
sample.

The variation inx is quite small. This is due to the small-
ness ofw combined with the weak slope of the trapezoidal
potential. One can, without loss of generality, replaceV(x)
by the average value in the interval 0<x<w. This leads to
~an almost! constant current and voltage, and hence to a con-
stante.

B. WKB calculation of the transmission coefficient

We shall now calculate the transmission coefficient in
the case of a constant bias field. We must therefore solve the
Schroedinger equation:

d2c

dx2 1
2m

\2 $E2V~x!c%50. ~2.3!

FIG. 1. Potential in equilibrium. The energy felt by an electron is indicated
by the ordinate. The shaded regions stand for the occupied levels.

FIG. 2. Potential functionV(x) and the coordinate system used in the cal-
culations. The energy felt by an electron is indicated by the ordinate.

FIG. 3. Potential under the bias field~the sample side is positive!. The
energy felt by an electron is indicated by the ordinate. The shaded regions
stand for the occupied levels.
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Since the change of the potential can be considered as slow, we shall solve~2.3! by the WKB method. In this method, the wave
function c(x) is expressed as

c~x!55
A

Ak~x!
expH i E

0

x

k~x!dxJ 1
B

Ak~x!
expH 2 i E

0

x

k~x!dxJ , ~x<0! ~2.4a!

C

Ak~x!
expH 2E

0

x

k~x!dxJ 1
D

Ak~x!
expH E

0

x

k~x!dxJ , ~0,x,w! ~2.4b!

F

Ak~x!
expH i E

w

x

k~x!dxJ 1
G

Ak~x!
expH 2 i E

w

x

k~x!dxJ , ~0<w,x! ~2.4c!

where

k~x!5A2m

\2 $E2Ṽ~x!%, ~2.5a!

k~x!5A2m

\2 $Ṽ~x!2E%. ~2.5b!

By applying the connection formula to the left and to the
right region in Eq.~2.4b!, we get the transmission coefficient
from left to right, settingG50.

TL→R~E!5TR→L~E!5
4

S 2u1
1

2u D 2 [T~E!, ~2.6a!

u5expHA8mee

9\2 F S uEu
ee D 3/2

2S uEu
ee

2wD 3/2G J . ~2.6b!

In the limit of uEu@eew, u can be approximated as

u>expS 2muEu
\2 wDexpS 2

1

4
A2muEu

\2 w
eew

uEu D . ~2.6c!

Note that, in~2.6!, there exists no restriction about the mag-
nitude ofu, in contrast to the Bardeens formula~see discus-
sion of Ref. 3!. By using the path integral method, the
present result can be extended to three-dimensional cases.

C. Tunneling current

The electrons in the left hand side with energyE moving
to the right can tunnel to the right hand side. The number of
such electrons is given by

2
V

h
dkL f L~E!, ~kL.0!, ~2.7!

whereV is the volume of the left hand side,f L(E) the Fermi
distribution in the left hand side, and the factor 2 comes from
the spin degrees of freedom. The flux of such electrons is
given by Eq.~2.7! by substitutingnL5\kL /m into V,

dFL52
dkL

h

\kL

m
f L~E!5

kLdkL

pm
f L~E!, ~2.8!

which gives the transmission current

j L→R52eE
kL.0

dFLTL→R@12 f R~E!#

52eE
0

`

dkL

kL

pm
TL→Rf L~E!@12 f R~E!#, ~2.9!

where f R(E) is the Fermi distribution function of the right
hand side and is introduced in order to take the Pauli prin-
ciple into account. Similarly, we have

j R→L51eE
0

`

dkR

kR

pm
TR→L f R~E!@12 f L~E!#, ~2.10!

and thus the total currentj across the junction is given by

j 5 j L→R1 j R→L

5
2e

p\2 H E
2V0

L

`

dET~E! f L~E!@12 f R~E!#

2E
2V0

R
2eew

`

dET~E! f R~E!@12 f L~E!#J
>

2e

p\2 E
2`

`

dET~E!@ f L~E!2 f R~E!#, ~2.11!

where we have assumed

f L~E!5 f R~E!51 for E,max$2V0
L ,2V0

R2eew%.
~2.12a!

The distribution functionsf L(E) and f R(E) at temperature
Te are given by

f L~E!5FexpS E2Ef

kBTe
D11G21

, ~2.12b!

f R~E!5FexpS E2Ef1eew

kBTe
D11G21

, ~2.12c!

whereEf is the Fermi energy measured from the vacuum and
kB is the Boltzmann constant. Note thatuEf u corresponds to
the work function ~see Fig. 1!. Now let us assumeuEf u
@eew. Then

f L~E!2 f R~E!>2eew
] f L~E!

]E
,
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and the right hand side has a sharp peak atE5Ef .
Thus we get

j >2
e2ew

p\2 T~Ef !. ~2.13!

This is the desired result.
We finally get from Eq.~2.6!

j >2
e2ew

p\2 expS 22A2muEf u
\2 wD

3expS 1

2
A2muEf u

\2 w
eew

uEf u
D , ~2.14!

which we shall use in the next section.

III. RESPONSE UNDER THE AC FIELD

It is convenient to rewrite the currentj in terms of the
control parameter and the system variables. The control pa-
rameter is the voltage across the gap

n[ew, ~3.1!

and the system variables are the penetration depthdp of
electrons

dp[S 2muEf u
\2 D 21/2

, ~3.2!

the withw of the gap and the work functionuEf u. In terms of
those, we have

j 52
e

p\2 n expS 22
w

dp
DexpS w

2dp

n

uEf u
D . ~3.3!

Although formula~3.3! is derived for a static field, we can
use it also for a low-frequency ac field by replacing the static
voltagen with the time-dependent one. Now we consider the
current under the field

n5nd1na cos~vt !, ~3.4!

wherena!nd . By substituting Eq.~3.4! into Eq. ~3.3! and
expanding it with respect tona , we obtain up to order
(na /nd)2

j 5 j dF11
w

4dp

nd

uEf u
S 11

w

4dp

nd

uEf u
D S na

nd
D 2G

1 j dS 11
w

2dp

nd

uEf u
D na

nd
cos~vt !1 j d

w

4dp

nd

uEf u

3S 11
w

4dp

nd

uEf u
D S na

nd
D 2

cos~2vt !, ~3.5!

where

j d52
e

p\2 nd expS 22
w

dp
DexpS w

2dp

nd

uEf u
D . ~3.6!

Note that the currentj given by Eq.~3.5! contains harmonics
due to the nonlinear dependence of the transmission coeffi-
cient on the external field. From Eq.~3.5!, we obtain

j w

j dc
>S 11

wnd

2dpuEf u
D na

nd
, ~3.7a!

j 2w

j dc
>

wnd

4dpuEf u
S 11

wnd

4dpuEf u
D S na

nd
D 2

, ~3.7b!

where j dc, j w , and j 2w are the current amplitudes of the
dc-component, the ac-component with frequencyv, and the
ac-component with frequency 2v, respectively.

Formula ~3.7! can be used to obtain the value of
w/(dpuEf u) and thus ofw sincedp

215A2muEf u/\ is deter-
mined from the work functionuEf u and the electron massm
in the vacuum. In particular, in the case wherewnd

!dpuEf u, Eq. ~3.7b! reduces to

j 2w

j dc
>

wnd

4dpuEf u
S na

nd
D 2

, ~3.8!

and directly gives the desired quantity.
The application of an ac dither on top of the dc bias

voltage indeed is a standard technique used fordI/dV
measurements17 as well as noise suppression by phase sensi-
tive detection~PSD!. It is important to discuss the experi-
mental conditions which are to be fulfilled in order to use the
nonlinear characteristics of the tunnelingIV curve to gener-
ate the second harmonic. The frequency and the amplitude of
the applied ac modulation should not in itself modulate the
IV curve, i.e., it should not alter the ‘‘distance’’ between the
tip and the anvil. For thisf ac@ f app, wheref app is the domi-
nant cutoff frequency of the apparatus. The cutoff may be
dictated by mechanical properties of the scanner tube or it
may be the effective cutoff frequency imposed by the elec-
trical feedback loop controlling thez distance via the tunnel
current whichever gives the highest cutoff. A modulation
of the tip–anvil distance by the ac modulation will lead to
parametric effects and may impose chaotic behavior, insta-
bilities, and eventually excessive noise. The relatively high
f ac may cause experimental problems with opening up the
circuit for noise at higher frequencies. However, proper nar-
row band filtering of the tunnel current amplifier input leads
should resolve this calamity. Except for the experimental
problems mentioned above the measurement of dc and sec-
ond harmonic is quite straightforward. The modulation fre-
quency presumably is limited by the available phase sensi-
tive detectors. Modern digitally based PSDs operate at
several MHz.

An appealing alternative is to apply simultaneously two
modulation frequencies. This allows for a double frequency
detection scheme where the mixing product and eventually
also the phase shift may give further information on the geo-
metrical properties of the tunnel distance.

With two modulation frequencies the field has the form

n5nd1na~a cosv1t1b cosv2t ! ~3.9!

and the current is given by
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j 5 j dF11
w

4dp

nd

uEf u
S 11

w

4dp

nd

uEf u
D S na

nd
D 2G1 j dS 11

w

2dp

nd

uEf u
D na

nd
@cos~v1,t !a1cos~v2t !b#

1 j d

w

4dp

nd

uEf u
S 11

w

4dp

nd

uEf u
D S na

nd
D 2

$cos~2v1t !a21cos~2v2t !b212ab@cos~v11v2!t1cos~v12v2!t#%, ~3.10!

where

j d52
e

p\2 nd expS 22
w

dp
DexpH w

2dp

nd

uEf u
J .

Finally we get

j v1
~ t !

j v2
~ t !

5
vna

4dpuEf u
Fa2 cos 2v1t1b2 cos 2v2t12ab@cos~v11v2!t#1cos~v12v2!t

a cosv1t1b cosv2t G , ~3.11!

with v determined by Eq.~3.1!.
One can also measure the current differencej v12v2

~or
j v11v2

! and determine the ratio,j v12v2
/ j v1

. This is from an
experimental point of view more feasible because of the
lower frequency and the possibility still to remain ‘‘above’’
the 1/f noise, but the expression one obtains is more compli-
cated than Eq.~3.11!.

IV. CONCLUSION

The present method has some obvious advantages:

~1! Since we consider the ratio of the dc and the ac current,
we can avoid the effect of the density of states which
enters as a prefactor for the current.

~2! This method gives direct information on the transmission
coefficient, for which the one-electron theory is expected
to give an accurate prediction. This is due to the fact that
the transmission beam is very sparse and that the
electron–electron interactions can be neglected.

~3! In addition one has the possibility to apply simulta-
neously two modulation frequencies and hence obtain a
double frequency detection scheme, where the mixing
product may give further information on the geometrical
properties of the tunneling distance.

Let us now compare the present method with the con-
ventional one. In the conventional method, the width profile
w(r ) is determined such that the tunneling current is kept
constant. However, as already pointed out in Sec. I, the cur-
rent also depends on the~local! density of states, and the

so-determined width profile reflects not only the geometrical
shape, but also the local electronic states.18 On the contrary,
the present method just gives information about the geo-
metrical shape, as we are not concerned with the absolute
value of the current but the ratio between the dc and the ac
components of the current. In this sense, the present method,
which to the best of our knowledge has never previously
been explored, is preferable to the conventional one. More-
over, by combining the two methods, we may determine both
geometrical and electronic structures.
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