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The dynamics of magnetic fluxons in a system of two vertically stacked long Josephson junctions 
is investigated numerically. The model is based on the approach by S. Sakai, P Bodin, and N. F. 
Pedersen [J. Appl. Phys. 73, 2411 (1993)] and is described by two strongly coupled sine-Gordon 
equations. In agreement with recent experimental data, we confirm numerically the effect of 
splitting of the fluxon travelling mode into two separated modes with different characteristic 
velocities. The simulated current-voltage characteristics indicate stable phase-locked flux-flow 
resonances of two junctions. These results support a possibility of application of the stacked long 
Josephson junctions as a system of coherent oscillators for millimeter and sub-millimeter wave 
bands. 0 -1995 American institute of Physics. 
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I. INTRODUCTION l coherent (in-phase) motion of two fluxons8”4 (one in 

Systems consisting of two or more stacked long Joseph- 
son junctions have recently been studied experimentally by 
several groups.lm5 Although such systems have mostly been 
realized as stacks of Nb-Al/AlO,-Nb tunnel junctions, there 
is also interest in such systems as a model of layered BSCCO 
high-T, superconductors.6 Thus there have already been 
published experiments clearly demonstrating that BSCCO 
high-T, superconductors may be considered as a stack of 
Josephson junctions.7 

On the theoretical side several aspects of the stacked 
long Josephson junction problem has been studied. In Ref. 8 
a theoretical foundation for describing the system-based on 
the Maxwell, London, and Josephson equations-were es- 
tablished, and a few predictions for likely experimental re- 
sults were pointed out. More exotic and less experimentally 
feasible n-dimensional systems were studied theoretically 
and numerically in Ref. 9. 

The general problem of two coupled long Josephson 
junctions has been first formulated by Mineev et al.” and 
has been studied by several gro~ps.“-‘~ In most of those 
cases it has been assumed that the inductive coupling be- 
tween the junctions was horizontal” (and small) as opposed 
vertical’-5 (and possibly large) as in the case here. Although 
the precise nature of the coupling in the previous papers”-14 
was not specified as in the case of the stacked junction 
model,* many general features of the dynamics of coupled 
systems can be learned. 

The purpose of the present work is to study numerically 
the variety of dynamical behaviors that can be expected in 
systems of two-stacked long Josephson junction systems. 
Previously the identified modes of dynamical behaviors are 

each junction), 
l symmetric motion (antiphase) of two fluxons8,14 (one 

in each junction), 
* flux flow steps with Fiske resonances (experimental 

observation2), 
l coherent motion of fluxon arrays in two junctions in a 

flux flow mode (experimental observation3). 

In our numerical investigations we change the relevant 
parameters for the two junction system, including the bound- 
ary conditions and the biasing conditions for the two junc- 
tions. By doing this we are able to confirm and elaborate on 
the modes listed above and to identify new types of dynami- 
cal behavior. In agreement with experiment,’ the simulations 
indicate a splitting of the dispersion relation in two branches, 
each of them corresponding to Auxons moving with different 
Swihart velocities:In addition, we were able to simulate the 
current-voltage character&tics of the stack which were pre- 
viously observed experimentally and understood to be the 
phase-locked flux%&~resonances of the two junctions. 

Simulation results presented here support a possibility of 
using stacked long Josephson junctions as local oscillators 
for millimeter and sub-millimeter wave crjoelectronic cir- 
cuits. Stacked junctions have several advantages with respect 
to planar junction arrays, in particular due to the stronger 
coupling between individual junctions, highly integrated de- 
sign, and rather simple fabrication requirements. Vertical 
stacking of long junctions is expected to increase the imped- 
ance of the whole structure which simplifies the impedance 
matching requirements for the external load. Fist experi- 
ments on phase locking in stacks3 showed very wide tune- 
able frequency range of coherent operation of stacked junc- 
tions. 
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The paper is organized in the following way. Section II 
discusses briefly the fundamentals of the mode splitting of 
the Swihart velocity that is essential to the understanding of 
the dynamic behavior of the two junction stack. Section III 
contain numerical simulations for the simple system with 
annular geometry. In the subsections here we consider differ- 
ent numbers of fluxons in the two junctions, different bias 
conditions for the two junctions and the possibility of 
fluxon- , antifluxon coherent motion. In Sec. IV we consider 
two stacked junctions in the overlap geometry and here we 
study the interaction of fluxons with small amplitude electro- 
magnetic waves (Fiske modes) and the magnetic field depen- 
dence. We also try different bias conditions for the two junc- 
tions. Finally, we study the influence of changes of the 
coupling parameter, which for the stacked junctions is not 
restricted to small values. Section V contains the conclusion 
and suggestions for new experiments to explore the dynam- 
ics of the stacked two Josephson junction system. 

II. THEORY 

The coupled sine-Gordon equations that will be used in 
the simulations describe two coupled long Josephson junc- 
tions A and B as derived in Ref. 8: 

Here the coupling parameter is defined as 

s 1, 
“2 - sinh(tA,)(d+ XL coth(tlX,) + h,, coth(t,lXL)) ’ 

We have assumed that junctions A and B are identical 
(symmetric stack). In the equation the barrier thickness is d, 
the middle electrode thickness is t, and the top and bottom 
eIectrode thickness is t, , while the London penetration depth 
is called A,. The spatial coordinate x is normalized to the 
Josephson penetration depth X,= [ @a l(2rpOd’jC)]‘“, 
where @a is the magnetic flux quantum, j, is the critical 
current density. Equation (1) were derived from first prin- 
ciples in Ref. 8, where the notations s and d’ were intro- 
duced as the effective coupling length (formally, s<O) and 
the effective magnetic thickness of the junctions, respec- 
tively. Note that the dimensionless coupling parameter SC0 
is determined completely by the thickness of the insulating 
and superconducting layers in the stacked junctions. A typi- 
cal experimental value for S in a two junction stack may be 
in the interval from - 0.2 to - 0.7 (see, for example, Ref. 2). 
A schematic drawing of the two coupled long junctions is 
shown in Fig. 1 for both the annular geometry (a) and the 
overlap geometry (b). 

As shown in Ref. 8, Eq. (1) lead immediately to two 
different fluxon modes, one with coherent (in-phase) motion 
of two iluxons (one in each junctionj, and another mode with 
symmetric (antiphase), but still phase-locked fluxon motion. 
For the coherent fluxon motion it was shown’ that the char- 
acteristic maximum tluxon velocity C+ exceeded the veloc- 
ity of light in a single junction, E, i.e. (remember S-CO), 

0 a 

FIG. 1. Sketches of twofold long Josephson junction stacks of the annular 
geometry (a) and the linear overlap geometry (b). 

c9 

It may be noticed from Ref. 8 that in the antiphase mode the 
characteristic velocity E- is smaller than E. The splitting of 
the velocity of small amplitude electromagnetic waves (Swi- 
hart velocity) in a double Josephson junction stack have been 
predicted (in the linear approximation) many years ago by 
Ngair6 but only recently observed experimentally.’ In this 
experiment the existence of both fluxon excitations with ve- 
locities C- and C+ (in the flux flow mode) and the corre- 
sponding Fiske modes (small amplitude electromagnetic 
modes) were ~observed. 

It can be shown17 from Eq. (1) that for the two junction 
system two Swihart modes with velocities 

--- cc-&, (3) 

exist. The existence of two fluxon modes can be derived also 
from a perturbational point of view for a general system of 
two weakly coupled long Josephson junctions.2P14 This result 
is in agreement with Eq. (3) where S, however, is an adjust- 
able parameter. 

In the following simulations for the two-stack long Jo- 
sephson junctions the interaction of the Auxon modes and the 
Fiske modes with the two characteristic velocities E- and 
E+ will play a prominent role for the observed dynamical 
behavior. 
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FIG. 2. Numerically calculated I- V curve for a twofold stack with cou- 
pling parameter S= -0.3 (annular geometry) with only junction A biased 
( ya= 0), NA=3, and N,=O. Dashed line corresponds the flux-flow step 
position in uncoupled single junction. Two insets show instantaneous pro- 
files of magnetic fields q$(n) (sorid line) and q:(n) (dashed line) in two 
points of the I- V curve indicated by arrows. 

III. ANNULAR GEOMETRY 

In this section we present numerical simulations for the 
annular geometry [Fig. l(a)]. This case correspond to Eq. (1) 
with periodic boundaty conditions 

(2jy ( ~)x~,. 
(;qy (Iiq=; +j 2 (4) 

where NA and NB are numbers of fluxons trapped in junc- 
tions A and B, respectively. Under the influence of bias cur- 
rent fluxons (which have to be trapped in the rings) perform 
revolutions in the junction, thus yielding a non-zero dc volt- 
age. The advantage of the annular geometry is that there are 
no fluxon collisions with boundaries, and the behavior is 
mainly characterized by the interaction between fluxon ar- 
rays which belong to different junctions in the stack. For the 
sake of convenience, here we normalize the calculated volt- 
age V= A q/At to the single soliton step voltage 
V. = 2 m3L of a conventional single-layer annular junction. 

In order to identify most characteristic features in the 
dynamics, we investigated numerically several cases with 
fluxons present in one or both junctions which can be biased 
in various ways. 

The case of NA f 0 and N,= 0 is shown in Fig. 2. In 
spite of the fact that junction B remains to be unbiased and 
contains no fluxons, its influence via the coupling factor 
S= -0.3 on fluxons in junction A is evident. We find two 
distinct relativistic branches for fluxons moving in junction 
A. These branches are associated with the splitting of the 
dispersion relation for linear waves in the structure and cor- 

FIG. 3. I-V curve of twofold stack with S= - 0.5 (annular geometry) with 
junction A biased, NA = 3 and N, = 0. Dashed line corresponds the flux-How 
step position in uncoupled single junction. 

respond to two limiting velocities E- and C+ given by Eq. 
(3). Dashed line in Fig. 2 shows the flux-flow step position 
(V= NA in normalized units) in the uncoupled single junc- 
tion (Swihart velocity F). As predicted by Eq. (3), one of the 
velocities c^- is below the velocity C and the other one E+ is 
above it. 

Two insets in Fig. 2 show a typical instantaneous profiles 
of magnetic fields p:(x) (solid line) and cpt(x) (dashed line) 
corresponding to the modes E- and C+ . Arrows indicate 
points in I-V curve where these profiles where taken. We 
can see that each fluxon moving in junction A produce a 
strong magnetic field perturbation, its “image,” in junction 
B. The most distinct feature is that this image has opposite 
polarities for the low (C-) and the high (C+) branches. In 
the first case each fluxon in A induce a maximum in q!(x) of 
the same polarity, whereas for the second case a sharp mini- 
mum is clearly observed. Note, that in both cases the spa- 
tially average cp,” remains to be zero ( Ns= 0). 

The influence of the coupling strength on I- V curve is 
shown in Fig. 3 for the same parameters as Fig. 2 but 
S = - 0.5. In agreement with Eq. (3), increasing of the modu- 
lus of the coupling parameter produce larger splitting of the 
flux-flow steps in Z-V curve, C- is decreasing and E+ is 
increasing. 

Simulation results for NA = Na= 3 are presented in Fig. 
4. In this case both junctions were biased in series 
( yA= Ye) and their voltages were always found to be equal. 
As compared with Fig. 2, the steps in Fig. 4 appear to be 
high which emphasizes a strong phase locking of oscillations 
in two junctions. As seen from the lower inset in Fig. 4, the 
relativistic branch C- corresponds to an out-of-phase locking 
of fluxon arrays. We note that the antiphase arrangement of 
lluxon arrays in two stacked junctions is the only stable con- 
figuration in the static case ( yA= ys= 0). Due to mutual 
repulsion between liuxons belonging to different junctions 
the static fluxon arrays are expected to be shifted by half of 
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0.8 

FIG. 4. The same as Fig. 2 with both junctions biased (~~=y~ # O), 
N,=J and Na=3. Naturally, V,= VA is found. 

their spatial period. Thus, the static out-of-phase contigura- 
tion remains to be stable in dynamics for the lower relativ- 
istic branch. 

For the high relativistic branch (upper inset in Fig. 4) we 
find a perfect ipl-$zase locking, fluxons in A and B attract 
each other and the magnetic field profiles q:(x) and q:(x) 
are undistinguishable. This dynamic state appears to be very 
stable which is reflected in the large current range of the 
calculated step in Fig. 4. Our numerical result for the in- 
phase locking is in agreement with the stability analysis by 
GrBnbech-Jensen et al. for the bunched single-fluxon solu- 
tions in coupled junctions.t4 We note also, that the in-phase 
(attractive) and the out-of-phase (repulsive) fluxon configu- 
rations in the stack can be understood consistently with the 
behavior seen from insets in Fig. 2. When the fluxon “im- 
age” in the idle junction has the same polarity as the fluxon 
itself one expects to have an attractive potential for a lluxon 
of the same polarity in the idle junction, in the opposite case 
the repulsion is expected. 

Finally, Fig. 5 shows the simulation results for the other 
phase-locking case, with junctions A and B opposite biased 
(yA= - Ye) and containing fluxons of opposite polarities 
(NA = 3, NB = - 3). Under the influence of the opposite bias 
currents the fluxon array in A and the array of antifluxons in 
B move in the same direction. In contrast to Fig. 4, now the 
most stable dynamic state appears to be the lower relativistic 
branch (as can be judged from the large current range of the 
step). As shown in the inset, the fluxons in junction A are 
locked in-phase with antifluxons in junction B. For the high 
branch (2,) (see the lower inset), as one may expect, the 
in-phase locking is broken and there is a phase shift between 
two moving fluxon arrays. Now, however, the shifted con- 
figuration of fluxon arrays is not exactly antiphase (as it was 
in Fig. 4). This can be related to the absence of any other 
stable out-of-phase configuration in this system (Iike the 
static one for the fluxon arrays of the same polarity). 
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FIG. 5. The same as Fig. 2 with opposite-biased junctions (y*=- yB 
# 0). Three fluxon trapped in A (N.4=3) and three antifluxons in B 
(NB=3). V,=;V, is found. 

IV. LINEAR OVERLAP GEOMETRY 

The other geometry we considered is the linear overlap 
geometry [Fig. l(b)]. This geometry is interesting both from 
the point of view to explore the different possibilities for the 
dynamics but also because it is more realistic for a compari- 
son with experiments.2P4 Before proceeding to the stacked 
overlap junctions we will dwell a little with the single junc- 
tions of the same type. The most prominent single dynamic 
features observable as singularities in the I-V curve are: (i) 
zero-field steps (ZFS), (ii) flux-flow steps (FFS), and (iii) 
Fiske steps (FS). 

For the zero-field steps the fluxons perform a back and 
forth motion due to the collisions with the boundaries; at 
each collision a tluxon (antifluxon) is changed into an anti- 
fluxon (fluxon). The flux-how steps and the Fiske steps are 
excited by a external magnetic field that acts through the 
boundaries of the junction. 

The FFS corresponds to the continuous injection of flux- 
ons from one edge of the junction and their annihilation at 
the other boundary. The FS regime can be understood as a 
cavity resonance on the junction length excited by moving 
fluxon chain. At high enough magnetic field, such a standing- 
wave pattern can be fairly well described by the linear mode 
approximation.‘* For all the above phenomena the voltages 
of the ZFS, the FFS, and the FS are given by the Swihart 
velocity of the junction. 

For the two-junction stack the appearance of two limit- 
ing velocities instead of the single Swihart velocity (as dis- 
cussed in Sec. II) has recently been studied both analytically 
and numerically.s2t4 It has been also observed experimentally 
for two stacked junctions biased in series’ and for a single 
biased junction in a two-junction stack.” In those experi- 
ments the usual single-junction FFSs and FSs have been 
found to be replaced by more complicated I- V characteris- 
tics that apparently involves two limiting velocities given by 
ECq. (3). For some yet not obvious reason the ZFSs have been 
difficult to observe experimentally. 
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FIG. 6. Numerically calculated Z-V curve for a twofold stack of linear 
overlap geometry with only junction A biased. 

In order to model the flux-flow behavior in a two- 
junction stack of the linear overlap geometry we have used 
the normalized two-junction form of Eq:(14) from Ref. 8 

A 
9.x 

i 1 
9,” 

= --(l+S+S,) = --Ten, (5) 
x=O,L 

We have performed a series of simulations where we 
have changed the biasing conditions for the two junctions 
( YA and yn), the magnetic field ( v), the damping (a), and 
the coupling parameter (S). As an example we show in Fig. 
6 a case in which only one junction is biased (‘yn” 0). The 
figure shows the calculated normalized I- V curve for junc- 
tion A for fixed external magnetic field ( ljleff = 11.2) while the 
other parameters are L = 7, LY= 0.1, and S= - 0.7. This situ- 
ation corresponds to a stack with an electrical contact to the 
middle electrode, where the splitting of Fiske steps in two 
families has also been observed in recent experiments by 
Barbara et a1.4 The above parameters have been chosen to 
satisfy the conditions of having rather strong cavity reso- 
nances (al;< 1) with sufficient large FS voltage spacing. As 
mentioned the current across junction B is zero’and we found 
that the calculated average voltage for junction B with these 
parameters was always zero. 

where q=H/(j,hJ) is the normalized external magnetic 
field H, and S, = XL /sinh( t, /AL). For comparison with ex- 
periments S and S, can be calculated from the experimental 
parameters. 

In Fig. 6 we observe two separated groups of steps (at 
V-J 1.8 and V-4) corresponding to two flux-flow modes 
with distinctly different Swihart velocities. Each flux-flow 
branch is split into a series of FSs with a constant voltage 
spacing within this branch. 

In the experiments’ the two junctions are biased in series In Table I we present a comparison of the numerically 
with the same bias current. This is the geometry that is most calculated values and theoretically predicted ones according 
favorable for observing phase locking of the two junctions to Eq. (3) for the two limiting velocities E- and C+ . There is 
and in addition it eliminates the difficult task of attaching a good agreement between theory and simulations in the ra- 
leads to the center film of the structure. tios of the FFS voltages and FS voltage spacings. Even better 

TABLE I. Summary of the numerically determined flux-flow step voltages 
and Fiske step voltage spacings. The theoretical ratio is 0.42. 

Figure VW, Vm Ratio AVFsl AVrsz Ratio 

6 4.71 1.74 0.37 0.58 0.28 0.48 
8 4.14 1.74 0.42 0.59 0.24 0.41 

(a) 

03 (d) 

FIG. 7. Spatio-temporal voltage dynamics qQx,t) in different points of the calculated I- V curve shown in Fig. 6: (a) junction A at point lA, (b) junction B 
at point IA, (c) junction A at point 2A, (d) junction B at point 2A. 
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‘A., 

FIG. 8. Numerically calculated I- V curve for a twofold stack with the 
same parameters as Fig. 6. Both junction; are biased. 

agreement is found for the two junctions biased in series (see 
below). 

To obtain a better understanding of the dynamics we take 
a closer look at the spatio-temporal voltage evolution in the 
stack. Figure 7 shows the normalized voltage &x,t) corre- 
sponding to the points marked as 1A and 2A in Fig. 6 [Figs. 
7(a) and 7(c), respectively]. Simultaneous pictures of 
qF(x,t) for the unbiased junction are shown in Figs. 7(b) 
and 7(d), respectively. We observe a continuous injection of 
fluxons from the left edge of the stack and their motion to- 
wards the right edge. Unlike in the annular junction case, an 
additional spatial modulation of the voltage profiles is ob- 
served. This accounts for the standing wave pattern which is 
due to a cavity resonance in the Fiske mode regime. Com- 
paring Figs. 7(a) and 7(b) we note that the two figures appear 
to be very similar. The standing wave pattern, however, 
seems to be out of phase in the two junctions. We also note 
that the dc voltage in the, unbiased junction B is zero while in 
junction A is different from zero. Figures 7(a) and 7(b) can 
be superimposed and made almost identical by suitable shifts 
in the voltage and the time axis. 

For the upper mode (2,) steps (point 2A in Fig. 6) we 
find that the oscillations in the two junctions take place in 
phase. An example is shown in Figs. 7(c) and 7(d). 

In Fig. 8 we calculated the I- V curve of junction A with 
both junctions biased in series. The presence of the current in 
junction B has only a limited influence on the resonant 
modes in the two junctions, and in general, the appearance of 
the Fiske steps does not change very much. Thus the main 
difference between the I-V curve in Fig. 8 and that of Fig. 
6 is that the former displays somewhat sharper and higher 
Fiske steps than the latter. 

A particular interest of the series biasing is due to the 
easy comparison between the numerical data and the experi- 
ment (see Ref. 2). In experiment two families of Fiske steps 
(FSl and FS2) on two distinct flux-flow steps (FFSl and 
FFS2) were observed in a very similar manner to Fig. 8. 
From a quantitative point of view the formula (3) seems to 

0 
0.0 0.2 0.4 0.6 0.8 

-s 
0 

FIG. 9. Numerically determined step voltage spacings. The theoretical curve 
given by ELq. (3) is shown by solid line. Open squares indicate the zero-field 
step data, the calculated Fiske step spacings are shown by crosses. 

be a good candidate to estimate the coupling parameter S 
from the experimental current-voltage characteristics, since 
AVFsz/AVFS1=E+ IE- . 

In order to compare our numerical results for the flux- 
flow steps and the Fiske resonances to the predictions of Eq. 
(3) we show in Fig. 8 the calculated normalized voltages for 
the upper and lower step in the case of zero-field steps. For 
some of the calculated Fiske steps we have also shown the 
normalized voltage differences. The continuous curves rep- 
resent the theoretical prediction [Eq. (3)] while the symbols 
are the calculated results. As can be seen, a good agreement 
is found, in particular for zero-field steps. 

v. CONCLUSlON 
In this work we reported results of numerical simulations 

of fluxon dynamic regimes in the system of two vertically 
stacked long Josephson junctions using the model by Sakai 
et aL8 We found several distinct features which have been 
observed in recent experiments with stacked Nb/Al/AlO,/Nb 
junctions.2-4 In agreement with these experiments, the simu- 
lations indicate a splitting of the dispersion relation in two 
branches C- and C, , each corresponding to fluxons moving 
with different limiting (Swihart) velocity. For the mutually 
phase-locked fluxon arrays of the same polarity we find the 
stable in-phase mode at C, branch, and the stable out-of- 
phase mode for E... branch. These results support a possibil- 
ity of application of the intrinsically phase-locked stacked 
Josephson junctions as local oscillators for millimeter and 
sub-millimeter wave cryoelectronic circuits. 
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