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Fluxons in thin-film superconductor-insulator superlattices 
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Electrotechnical Laboratory, l-l-4 Umezono, Tsukuba-shi, Ibaraki 305, Japan 

N. F. Pedersen 
Physics Laboratory I, Technical University of Denmark, DK-2800 Lyngby, Denmark 

(Received 18 May 1992; accepted for publication 15 November 1992) 

In a system of thin alternating layers of superconductors and insulators the equations describing 
static and dynamic fluxon solutions are derived. The approach, represented by a useful compact 
matrix form, is intended to describe systems fabricated for example of niobium or 
niobium-nitride thin films; in the limit of ultrathin superconductor films it may give a model for 
describing fluxon motion in layered high-T, superconductors. Numerical examples of current 
versus voltage curves to be expected in such an experiment are presented. 

I. INTRODUCTION 

Systems of many closely coupled Josephson junctions 
are being considered for many applications of supercon- 
ducting electronics. Examples are found in the Josephson 
voltage standard, in the Josephson computer, and in mi- 
crowave generators based on coherent action of many junc- 
tions. Large networks of Josephson, junctions have also 
received much attention as model systems for phase tran- 
sitions and for fluxon propagation. 

All such work is characterized by the problem of cre- 
ating many interacting or closely coupled junctions in the 
two-dimensional plane defined by the substrate. Here we 
want to address the problem of “vertical” integration of 
Josephson junction systems. Basic to this idea is, of course, 
the fact that closely interacting systems are much easier to 
obtain in three dimensions than in two or one dimensions. 
So far the applications of three-dimensional circuits of Jo- 

, sephson junctions in niobium-type superconducting elec- 
tronics are rare, although experimental circuits with three 
layers of superconductors and two oxide barrier layers are 
known with small area junctions;’ with long Josephson 
junctions some experiments have taken place’ or are in 
progress.3 

A promising avenue toward many electronic applica- 
tions of thin-tilm superconductivity is the use of fluxons4,’ 
in long Josephson junctions. Examples here are the phase 
mode superconducting computer6 and cavity coupled 
phase-locked long Josephson junctions as microwave gen- 
erators.7-9 For such circuits the problem of designing large 
systems of closely interacting long Josephson junctions in 
two dimensions is very difficult-even more so than for 
small junctions. Hence, it is of interest to study the prop- 
erties of fluxon propagation in stacked layers of supercon- 
ductors. In this article we will consider the case where the 
thickness of the superconducting layers is smaller than or 
comparable to the London penetration depth so that there 
is a large coupling perpendicular to the layers. As we shall 
see, a fluxon can then extend over many layers. Recent 
experimental data” suggest that oxide superconductors 
with strong anisotropy between the c axis and a or b axis, 
e.g., Bi-Sr-Ca-Cu-0 compounds, consist of Josephson- 
coupled Cu-0 superconducting layers.” Recent theo- 
ries’z13 based on the Lawrence and Doniach model,14 

where stacked zero-thickness superconducting planes are 
coupled by the Josephson tunneling effect, mainly discuss 
static flux lattice structure of such highly anisotropic oxide 
superconductors. Our model includes time dependence and 
has no limitations to the superconductor film thicknesses, 
so it may be a good model for describing fluxon dynamics 
in such oxide superconductor systems. We specialize our 
results to geometries that are well known from traditional 
experiments using low-T, metal superconductors, such as 
the in-line and overlap geometries. We also present numer- 
ical calculations of current versus voltage (I-V) curves 
relating to systems that could be fabricated in niobium or 
niobium-nitride technology. 

The article is organized in the following way. In Sec. II 
we present a theory describing electromagnetic wave mo- 
tion for our layered superconductor and present some spe- 
cialized examples such as the in-line and overlap junctions. 
Section III discusses coherent fluxon solutions and gives 
some numerical calculations of fluxon statics and dynamics 
with I-V curves for comparison to future experiments. Fi- 
nally, conclusions are given in Sec. IV. 

II. THE LAYERED SUPERCONDUCTOR MODEL 

Figure 1 (a) shows our superconductor-insulator 
model system, an SISISI* * *IS structure. The ith super- 
conducting layer (S layer) has a thickness fi and a London 
penetration depth pi, and the thickness of the insulating 
layer between S layers i and i- 1 is d,+ i. The structure has 
a length I in the x direction and a width W  in the y direc- 
tion. In the following all the physical quantities such as 
currents, magnetic field, etc. will be characterized by index 
i, relating to the ith superconductor layer. 

Figure l(b) shows in more detail the S layers i and 
i- 1, for which we may derive the current density Jf in the 
bottom of the ith S layer, 

J,“=--z (mBi+2eAi), 
W-Jo4 

(1) 

where Ai is the vector potential and 8, is the phase of the 
macroscopic wave function for the ith S layer. Here we 
asuume that the properties of the S layers are described 
only by the phase. This corresoponds to a circumstance of 
low-magnetic-field application. Therefore, the normal core 
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FIG. 1. (a) Schematic diagram of the long Josephson junction superlat- 
tice. (b) Detail of S layers i and i- 1. 

of the flux quantum can exist in the insulating layers as a 
Josephson vortex, but the case where it penetrates into the 
S layers is excluded. The gauge invariant phase difference 
between S layers i and i- 1 may then be written 

dij-I(X)=ef-Oi-*+~ J’*A*dl, 
Ql 

(2) 

where we assume that the phase 8i does not change in the 
z direction in the S layer. The current density to the z 
direction is of the order of the Josephson current density, 
but the density to the x direction can be a level of the 
critical density of the S layer itself. Usual cases are that the 
latter is much higher than the former. Thus the phase 
change to the z direction in the S layer can be ignored. 

The magnetic flux through the area P1P2Q& in Fig. 
1 (b) is then 

+ia --- 
2eax 

z::: 
di,j- 1 

: 
: 

$N,N- I 

= 

@= s Bi,i-l dS= A-dl. (3) 

After some lengthy but straightforward calculations we ob- 
tain the equation 

~~i+i 2e 2w0G 
-E-x d/,i-lBi,i-I-T Jf+ 

2ewC 1 
ax * Jiu-,, (4) 

where B,,,-, is the magnetic-flux density between S layers 
i and i- 1. Following our notation J*?. , is the current den- 
sity in the upper part of S layer i- 1. Inside S layer i, the 
magnetic-flux density (in the y direction) is described, in 
our model, by 

a2B 1 
-p=? B. (5) 

i 
By using Eq. (5) and the magnetic-flux density in the 
neighboring I layer (insulating layer) the surface currents 
Jf and JK i’ may now be expressed: 

1 
J$- 

B,i- 1 coSh( t/l-i> - Bi+ I,i 

PWG sinh ( t/At) ’ (64 

1 
Jj+- 

Bi-l,i-2-Bi,i-l coSh(ti-l/Ai-,) 
Pdi- 1 sinh(ti-r/&i) . (6b) 

From Eqs. (4) and (6) we can now obtain the simple 
relation 

fi @ii-l 
--A=d;,i-~Bi,i-~ +siBi+l,i+si_lBi-l,i--2, 2e ax (7) 

where we have defined the effective magnetic thickness 
d;i- 1, 

d~,i-I=d,i_I+~icoth(~) +/2,-r COth(e), (8a) ” 

and the parameter si describing the coupling between layers 
by 

ai 

s.= -sinh(ti//2i). I 

With the definitions in Eq. (8)) Eq. (7) may be written in 
the compact matrix form 

r. d;,, s1 0 - * . 
0 

Sl 
&,I 

s2 
0 . . * 

--. -. w -- . 

0 Si-1 dii-, Si 

-- . =. 

--_ 

0 

0 

--_ 
-- . --. 0 

sN- 1 dkN-l SN 

Bo,- 1 

4.0 
: 

Bi,I- 1 

BN,N- 1 

BN, l,N 

(9) 

At the bottom and top of our structure [Fig. 1 (a)] we have introduced the extra magnetic fields Bo,- i and BN+l,N, 
respectively. This implies that the tensor in Eq. (9) gets the dimensions NX (N+2). In the case of an applied uniform 
magnetic-ftux density B, we have Bo,-, = BN+ l,N= B, 
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If we consider the closed path P’ in Fig. 1 (a) we note that all the currents inside P’ contribute to the magnetic flux 
density B,,-r. This is understood from VxH AJ, giving rise to 

N 

BLI-,=E kz Ik+Ba . 
=i 

Using Eq. (10) we may rewrite Eq. (9) to the useful form 

fia 
--- 

2e ax 

\ 
41,o 

92,l 

+ijml =I”0 

: W  

.#N,:-1, 

+Bo 

4.0 4,o+s1 di,,+s* *** ** * d;,o+s, d;,o+sl 

s1 d;,,+s, d;,1+sI+s2 a** *-* d;,,+q+q d;,,+s,+Sz 

0 s2 d;,, +s2 

: 0 -. . . --. 

-* . 

. . . 0 sN--l d’ N,N- 1 fsN- 1 

(11) 

From the usual Josephson junction model we now introduce the capacitive, resistive, and Josephson current between 
S layers i and i- 1, and we define the total current of them, J$- 1 by 

2 +i,i- 1 
- 1 *+g G,i- 1 ar + Ji,i- 1 Sin #i,i- I, (124 

Here Ci,i-1 is the unit area capacitance, Gi,i_, the unit area conductivity, and Ji,i-l the dc maximum Josephson current 
density between S layers i and i- 1. 

We can now write 

1 rXi z 
---=J. 

wax r,i- 1 -JLl,i for 1 <i<iV- 1, 

and (12b) 

i arN 
-w~=JG,N-I. 

We note here that an external bias current may be added to the right-hand side of Eq. ( 12b) if necessary. Combining Eqs. 
( 11) and ( 12) we obtain the very general equation 

fi a2 
2epo dx2 

i 

4 1.0 

4i,j- 1 
. 
: 

$N,N- I 

= 

q. s1 0 *** 
Sl d’ 2,l s2 0 . . . 

-. . 

0 St-1 dii-1 si 0 

-- . 

sN- 1 

o sN-l dii,N- 1 

JZ LO 

(13) 

where J&I is defined in Eq. (12a). If the applied magnetic field B, is uniform it does not appear in the equations, but 
appears in the boundary conditions at x=0 and x= 1. They become 

2413 J. Appl. Phys., Vol. 73, No. 5, 1 March 1993 Sakai, Bodin, and Pedersen 2413 

Downloaded 04 Aug 2009 to 192.38.67.112. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



FIG. 2. The N-layer overlap junction. 

=B, (14) 

, x=~ 
.V=L 

For the usual long Josephson junctions with only two 
superconducting layers we are used to distinguishing be- 
tween overlap junctions and in-line junctions. In the 
present system the closest equivalent to an overlap junction 
would be a case in which a bias current 1s is supplied 
uniformly to the Nth layer and taken out uniformly in the 
zeroth layer as shown schematically in Fig. 2. In that case 
the vector 

--IB (15) 
dj,,r-,,N-2+~N-2+SN-l 

should be added to the right-hand side of Eq. ( 13). 
For the in-line case shown in Fig. 3 the magnetic-flux 

density at the upper side of the top bias lead is -&f 
2 W)Ic, where I, is the bias current and at the lower side 
of the structure it is + (&2uI)Ic Equation ( 10) then 
becomes 

FIG. 3. The Mayer in-line junction. 
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(16) 

with the condition ZrEdk=Ic The second term on the 
right-hand side of Eq. (11) is now changed to 

I d;,o+s, ---so \ 

-gq d,“;Y-]. (17) 

This term is independent of x so that the wave equation is 
basically the same as Eq. ( 13). The effect of I, appears 
only in the different boundary conditions at x =0 and x = 1. 
These are at x=0, IN=Ic, and Ii=O, for O<i<N- 1, i.e., 

a 

ax 

(P 1.0 
: . 
: 

+N-l.N-2 
(PN,N- i 

P0e-k =- 
+iW 

s=o 

and at x=1, Io=Ia and Ii=O, for l<i<N, i.e., 

a 

ax 

ho \ 

4 291 P0eJc =- 
fiW 

. 

18a) 

. (1%) 

III. SELECTED EXAMPLES 

In the following we will illustrate some of the conse- 
quences of the general equations derived in the previous 
section. The numerical part of the examples are selected so 
that realistic junction parameters are used, and some of the 
effects predicted should be observable in realistic experi- 
ments in niobium or niobium-nitride thin-film systems. 

A. The coherence mode 

The equations of the previous section have solutions in 
which fluxons in different layers move synchronously (or 
phase locked). This is a very interesting type of motion 
that has been studied in planar systems.7-9 

For simplicity let us assume three superconducting 
layers with the bias current of the overlapping geometry as 
in Fig. 2. We assume that the top and bottom layers have 
the same properties, and the two insulating layers have 
equal properties, i.e., N=3, dl,o=d2,1=d, t2= to (but may 
be different from t,), &=A0 (but may be different from 
Li). The two tunnel junctions have the same properties 
described by C, G, and J [Eq. (12a)]. Equations (13) and 
( 15) now become 

Sakai, Bodin, and Pedersen 2414 
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d”h 0 -- ‘- fi a2 

2ep0 a2k1 -i I -gT- 

1 
--Idd’+s) 1 , 0 

where 

d’=d+Ao coth(tddo) +/2i coth(ti/ili) 

and 

(19) 

(204 

(2Ob) 

Let us now look for a coherent mode with the property 
h,ob,t)=&,1(x,t) =q5(x,t). In that case Eq. (19) be- 
comes 

fi a24 
gg-ax"'W+s) 2e ~+2ex+Jsin $-1~ 

(21) 

This equation is almost the same as the perturbed sine- 
Gordon equation known from conventional long Joseph- 
son junctions.4 The main difference is a change of the 
length scale due to the factor (d’ +s) in Eq. (2 1) . If we go 
through the normalizations as, for example, done in Ref. 
15, we find that the effective Josephson penetration depth 
/25”’ becomes 

fi l/2 
a$“’ = 

2epo(d’+s) J ’ (22) 

Compared to the single-junction soliton case we note that 

(24) 

where index 1 refers to the single-junction soliton case. 
Since s < 0 [Eq. 20(b)] we note that 2” is larger than &‘I, 
i.e., we may exceed the velocity of light in the single- 
junction case. A similar conclusion was reached in Ref. 16. 

We also note that if we arrange a bias situation such 
that we extract a bias current Isi from the center layer 
such that I,, = - 21, (see Fig. 4) the solutions discussed 
above become antisymmetric in the sense that, i.e., now a 

FIG. 4. Schematic diagram of biasing for the coherent sol&on-antisoliton 
mode. 

soliton and an antisoliton move together in a coherent 
mode. The equation of motion and the penetration depth 
and velocity of light can be obtained from Eqs. (2 1 ), (22)) 
and (23) by substituting --s for s. It should be noted that 
this coherent soliton-antisoliton state is not possible in con- 
ventional single long Josephson junctions. 

Above we have concentrated on the coherent modes of 
the N=3 system. Of course, other modes than the coherent 
are possible; an example is shown in Sec. III C. 

For N> 3 we can follow the same procedure as used 
above. A complication, of course, is the boundaries created 
by the top and bottom layers. For N%l it may be justified 
to neglect effects from these two layers and assume that all 
the intervening layers are identical. In that case we may 
obtain coherent solutions of the same nature as for the 
N= 3 case discussed above. For the N layer system (N) 1) 
each of the N- 1 coherent solitons will then obey the equa- 
tion 

fi a24 
----T=(d'+2s) 3epoax- 

and the characteristic length and velocity are now 

;1’N-1) 1 
J - 

$-*I= 
1 

(264 

(26b) 

B. Single fluxon in the static case 

The previous general equations will be illustrated by a 
numerical example below. For a system consisting of seven 
junctions (N- 8) with equal properties we have calculated 
the phase difference ~i,i- i, the magnetic-flux density B,i_ 1, 
and the supercurrent sin &-i for each of the seven junc- 
tions. We consider the static case and use the input bound- 
ary conditions 

i ) @ii-1 = -.-L-.- 
ax 

0. 
x=+L./z 

For the central layer we set #43(O) =7r, and for the six 
other junctions $i,i-i(0) =O. This is equivalent to assum- 
ing that only in the middle layer do we have a fluxon. Such 
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a5 
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x 

FIG. 5. Static one-fluxon solution. N=8, L= 10. The numbering (i,i- 1) 
for each curve refers to the different layers. The coupling parameter Sms/ 
d’ = -0.4997 (strong coupling). (a) The phase difference I#,,+ i, (b) the 
magnetic field Q,, and (c) the supercurrent sin q$,-t. 

a static-type solution may be physically stable in a model 
with fluctuations of junction parameters, as was demon- 
strated in a single-junction case.l’ 

Figure 5 (a) shows the phase difference for the different 
layers (note that layers 1.0 and 8.7, 2.1 and 6.5, and 3.2 
and 5.4 are identical for reasons of symmetry). The param- 
eters are: L = I/ilj” = 10, S =s/d’ = - 0.4997 correspond- 
ing to strong coupling. As is evident from Fig. S(a) we 
obtain phase changes for the noncentral layers due to the 
current flowing in the different layers. Figure 5(b) shows 
the corresponding magnetic-flux density in the insulating 
layers. Also here the values of the magnetic field in the 
noncentral layers are significant, and we may consider the 

0 

FIG. 6. Calculated I-V curves for the (a) symmetric and (b) coherent 
modes in an N=3 system. L=5, (x=0.1, S= -0.3. Voltage for one junc- 
tion is shown. 

fluxon to be distributed over all layers. Figure 5 (c) shows 
the Josephson current distribution in the different layers. 
From Fig. 5(c) we note that the width of the fluxon has 
increased compared to the single-junction case,” in quali- 
tative agreement with Eqs. (22) and (26). 

Note that the static case expression of Eq. ( 13), ob- 
tained by neglecting the time-dependent terms in Eq. 
(12a), has an analogous form to that of the Bulaevskii and 
Clem theory” based on the Lawrence and Doniach model. 
2el.L Jd’/fi and 2e,u Js/ii of our notation correspond to 
2//2:+ l/A: and - l//2$ of their notation, respectively [see 
Eq. (4) in Ref. 121. 

C. Coherence of the two-fluxon case 

We have made numerical simulations corresponding to 
the two-fluxon coherent state described in Eq. (21). The 
normalizations are performed using the usual one-soliton 
case with the velocity of light given by S? ‘) and the Joseph- 
son penetration depth /2, . (l) The parameters are: N= 3 (two 
junctions), a=O. 1, L=5, and the coupling parameter 5’ 
= -0.3, where the loss a: is detined by a=G(W2eCJ) 1’2 
under the normalization. The initial condition is two iden- 
tical tluxons-one in each of the junctions. Figure 6 shows 
the static I-V curve for the coherent two-junction mode. 
Also shown is another mode we found during the simula- 
tions, particularly for low bias current, the symmetrk 
mode. For this mode the motion is symmetric in the sense 
that when the fluxon in junction (0.1) is at x= L then the 
fluxon in junction (2.1) is at x=0 The wave form is shown 
in Fig. 7(a), and we note that the two solitons perturb each 
other even though they are in different junctions. We also 
note from Fig. 6 that the asymptotic voltage is apparently 
somewhat smaller than that of the one-junction case, 
which is given by V,=2r/L. 

For the coherent mode in Fig. 6 the asymptotic value 
of the voltage is approximately 1.20 times higher that of 
the single-junction case. This factor is in very good agree- 
ment with g2)/g1) = 1/m [Eq. (24)]. 

We note that the losses appear to play a bigger role for 
the symmetric mode. Even though the solitons are in dif- 
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t 

L 

FIG. 7. Wave forms for (a) symmetric mode at ig31e/J=0.4 and (b) 
coherent mode at 1,=0.4, corresponding to Fig. 6. L=5, a=O.l, S= 
-0.3. Time is normalized to #)/.$‘), and f,--r,=20. 

ferent lines, they interact with each other, and “pseudocol- 
lisions” take place as can be seen from Fig. 7(a). 

The line shape for the coherent mode is shown in Fig. 
7 (b). Here it should be noted that the two solitons are fully 
identical, i.e., there is no phase shift between them, as is 
usually the case for coherent modes in other comparable 
systems. I8 

The behavior resembles qualitatively the system of two 
solitons in one junction with surface losses.18 Also, here 
both the bunched and the symmetric modes exist, although 
their stability ranges are distinctly different from those in 
Fig. 6; however, in both cases high bias seems to favor the 
coherent or bunched mode. 

Transitions between the two modes may take place of 
course, and which one we get depends on the initial con- 
ditions. This will be the subject of further studies.” 

IV. CONCLUSION 

A system consisting of alternating layers of supercon- 
ducting and insulating thin films has been considered. We 
assume the dimensions in the plane to be large so that the 
system resembles stacked long Josephson junctions. An im- 
plicit assumption is that the tilm thickness is not large 
compared to the London penetration depth. This condition 
can be readily met in niobium-nitride or niobium systems. 

Our analysis shows a variety of interesting behavior; of 
particular interest is the mode of N- 1 coherent solitons in 
a structure with N superconducting layers. This mode may 
have practical interest in connection with phase locking of 
Josephson oscillators. Other types of motion that we ob- 
served in numerical simulations are unique to the three- 
dimensional structure, and do not exist in the one- or two- 
dimensional sine-Gordon systems that have mostly been 
considered until now. 
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