
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Electric fields associated with transient surface currents

McAllister, Iain Wilson

Published in:
Journal of Applied Physics

Link to article, DOI:
10.1063/1.350925

Publication date:
1992

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
McAllister, I. W. (1992). Electric fields associated with transient surface currents. Journal of Applied Physics,
71(7), 3633-3635. DOI: 10.1063/1.350925

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/13718275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.350925
http://orbit.dtu.dk/en/publications/electric-fields-associated-with-transient-surface-currents(266c8409-1f0d-4b4e-b49d-4016951fcb88).html
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The boundary condition to be fulfilled by the potential functions associated with a transient 
surface current is derived and expressed in terms of generalized orthogonal coordinates. 
From the analysis, it can be deduced that the use of the method of separation of variables is 
restricted to three surface geometries, viz. a plane, a circular cylinder, and a sphere. 

In many situations of practical interest, not only do the 
surfaces of insulating materials exhibit a finite surface con- 
ductivity, but they frequently acquire a charge. Owing to 
surface leakage currents, this charge disperses over the sur- 
face through a period of time. Such behavior has recently 
been examined by Curzon. IV3 In these studies, however, the 
general field theory behind the derivation of the potential 
solutions is not discussed. In this communication, the ba- 
sis for analyzing transient surface current field problems is 
presented, and the separation of variables method is used 
to derive the boundary condition to be fulfilled at the sur- 
face. 

Subsequently, the validity of this approach for the 
present class of boundary value problems is examined, and 
it is concluded that the use of this method of solution is 
restricted to three interface geometries, viz. planar, circular 
cylindrical, and spherical. The occurrence of these partic- 
ular geometries in the problems examined by Curzon is 
thus not unexpected (see Refs. 2, 3, and 1, respectively). 

In relation to the present analysis we employ general- 
ized orthogonal coordinates ui (i = 1,2,3), and we consider 
the surface in question to be the interface between medium 
“a” and medium “b.” Hence if the interface is taken to be 
a surface of constant ui ( = a), then u2 and u3 represent 
surface coordinates upon this interface. 

For the situations under discussion, it is convenient to 
assume that the bulk conductivity y of the insulating ma- 
terials is much less significant than the surface conductivity 
r at the interface. This assumption implies that the con- 
duction field problem reduces to one of a surface current. 
In such circumstances, the general continuity equation 

aP div J + ‘;ii = 0 

(where J is the volume current density, p the volume 
charge density, and t time) must be replaced by the equiv- 
alent surface continuity equation, i.e., 

where K and c are the surface current density and surface 
charge density, respectively. This latter continuity relation- 
ship is used to develop the boundary condition for the field 
solution. 

The term Div K represents the surface divergence of K, 
which is defined as4 

DivK=~m~~~~K*mds), * (3) 

where m is an outward directed unit vector normal to the 
closed curve c and tangential to the surface in question. 
The curve c bounds the elemental surface area AA, and s is 
a distance coordinate along c. With reference to the or- 
thogonal surface coordinates u2 and u3, K can be expressed 
as 

K = a& + a&3, (4) 

where a2 and a3 represent unit vectors, and if we consider 
a curvilinear rectangle in the surface u, = constant, then 
Div K is given by 

Div K = k22g33) - 1’2 $ ((gd 1’2 K2) i 
a 

+ au, (k2d1'2 K3) 1 , (5) 

where g,, and g3, are the surface metric coefficients. As the 
surfaces of interest in the present discussion are associated 
with generalized orthogonal coordinates, we have 

(6) 

Following the above assumption concerning the bulk 
conductivities, the two media will be charge-free and thus 
the potential distribution in each of them must obey La- 
place’s equation. Hence we assume that the potential func- 
tion @ can be expressed as 

*(Ul,%,U3,t) = d%,%+)T(t), 

with 

(7) 

qdw42J43) = U(u,> Uu,) mu31 (8) 

being a solution of Laplace’s equation. By expressing Q, 
and p in this manner, we have implemented the first step in 
applying the separation of variables technique. For any 
coordinate system, the necessary and sufficient conditions 
to be satisfied with respect to the separability of Laplace’s 
equation are discussed in Moon and Spencer.’ To fulfill 
the field boundary conditions at the interface u1 = a, we 
must have @,( a,u2,u3,t) = Qb( a,u,,u,,t). This condition 
is obtained if @‘a = U, VWT, <pb = U, V WT, and U,(a) 
= U,(a). Such solutions imply that %),/au2 = a@dau2 

and a@,/&, = a@ddu3 at the interface. 
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With respect to the first term of (2), the surface cur- 
rent density K is related to the tangential electric field 
strength E, at the surface by 

K=rE, (9) 

and thus in general we have 

DivK=rDivE,+E,*Gradr, (10) 

where Grad r represents the surface gradient of I’, i.e., 

ar 
Grad I’ = a2(gz2) - 1’2 G + a3k33) 

- l/2 ar au3* (11) 

The surface conductivity of insulating materials is usually 
strongly influenced by the local physical and electrical en- 
vironment of the material, and thus an inhomogeneous l? 
variation is liable to be the norm rather than the exception. 
However, in keeping with Curzon,‘-3 we will assume for 
the present discussion that r is constant across the surface, 
and thus, as E, may be expressed as 

E, = a2E2 + a3E3, 

( 10) reduces to give 

(12) 

Div K = r(g2,g33) - *I2 
a 

auz\ k33 1 1’2~2) 

(13) 

With reference to generalized coordinates, however, the E 
components are given by 

(14) 

where Q represents the potential in question. Hence by 
combining ( 13) and ( 14) we obtain 

Div K = - r(g,g,,) - l/2 I$[ (Ey2zj 

(15) 

As Qa(a,u2,u3,t) = Qb(a,u2,u3,t) at the interface, E, can 
be derived from either @, or <p& We have indicated this 
situation by omitting the subscripts in ( 15), and will adopt 
this procedure subsequently when appropriate. 

When expressed in terms of generalized orthogonal co- 
ordinates, the scalar Laplacian becomes’ 

V2@ =g- 1~2[&(g$)+&(g2J 
(16) 

where g = gllg22g33. An examination of ( 16) and ( 15) sug- 
gests that by restricting the value of g,, to unity, simplifi- 
cation of the expression for Div K can be achieved. For 
example, as both @a and aPb are solutions of Laplace’s 
equation then with gll = 1 we obtain from (16) the rela- 
tionship 

& [ (:)‘“E] +g [ (:)“‘i$] 
= -; ( k22g33)‘ng . ) (17) 

Upon substitution of (17) and (7) into (15) and differen- 
tiating we obtain finally 

Div K = r(g22g33) - 

A second boundary condition to be fulfilled at the in- 
terface is the continuity of the normal component of the 
electric flux density D, i.e., we have 

u= (D,- Db)*n, (19) 

where n is a unit vector normal to the interface in the 
direction “b” to “a.” This orientation is also associated 
with increasing values of a,, so that tlla>au,. In the present 
analysis, the normal component of D is given by eEl, 
where E is the permittivity, and hence at the interface we 
have 

u= - (g1,)-“2 

or, with reference to (7) and (2), 

au l/2 aPb -= at kll) - $,- -&- 
au1 

(20) 

(21) 

Consequently the surface continuity equation for the inter- 
face can be expressed in terms of generalized coordinates as 

a 
r(gzzg33) - 1’2 G 

(22) 

For gll = 1, this expression represents the general bound- 
ary condition to be fulfilled by aa and @b at the interface 
(u, = a). 

As each of the bracketed terms is independent oft, it is 
clear that (22) can be written as 

dT 
dt +AT=O, (23) 

with 

The general solution for (23) is of course 

T=Bexp( -At>, 

where B is a constant. 

(25) 

In deriving (25), the basic assumption is that the sep- 
aration of variables method can be employed to obtain 
solutions for the potential functions Qa and Qb Hence as T 
is a function of t alone, this assumption implies that, with 
respect to the interface, ;1 must have a constant value. 
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For Laplace’s equation to be simply separable, i.e., to TABLE I. Coordinate systems associated with simple separability and 
be expressed as in (8)) the necessary and sufficient condi- g,, = 1. p is the coordinate representing the circular cylindrical surface. 
tions are’ Similarly r represents the spherical surface. 

git Mjl Surface geometry Coordinate system fl 
gii =K for j= 1,2,3 and j#i, (26) plane rectangular 1 

circular-cylinder 1 
and elliptic-cylinder 1 

g 
l/2 parabolic-cylinder 1 

- = f 1 f2 f3 Milt (27) circular cylinder circular-cylinder 
8ii sphere spherical f 

CdCd rz 
where Mil (u,+u~) and Mjl(2ldllk) are the cofactors of the 
ith and ith elements in the first column of the Stlckel 
determin-ant (k = 1,2,3 and k#j, k#i). The determinant 
arises from the technique of separating a three-dimensional 
partial differential equation into three ordinary differential 
equations, see Moon and Spencer’ for details. The princi- 
pal characteristic of this determinant is that each row con- 
tains functions of only one variable (or constants). f 1 ( ul), 
f2(u2) and f3(u3) are functions which are introduced to 
fulfill the requirement of separability and are deduced from 
the coordinate system in question via the metric coeffi- 
cients and the separability conditions. Full information 
about the various functions for all the relevant coordinate 
systems is to be found in the Field Theory Handbook6 

Thus upon substituting (8) and employing (27), we 
can express (24) as 

A.= 
wfl)(a/ad[fl(au/aul)] 
Eb(audaUl) - Ea(dua/aUl) ’ 

(28) 

Both U and f, are, however, functions of ul alone and 
hence at the interface (U 1 = a) these parameters will have 
constant values. Consequently il is a constant. 

A study of the Field Theory Handbook6 indicates that 
from the 19 distinct surfaces generated by the 11 coordi- 
nate systems which are simply separable, only three sur- 
faces fulfill the stated gll requirement; viz. a plane, a cir- 
cular cylinder, and a sphere. For each of these geometries, 
it is found that, with the relevant coordinate system (see 
Table I), gll = 1. Although the three geometries are also 
generated by other coordinate systems,6 we find in each 
case that Laplace’s equation is not simply separable and 
that g,,#l. 

An expression for /2 can be derived without assuming 
g,, = 1. From such an expression, however, it is possible to 
show that, in general, il would be a function of the surface 
coordinates u2 and u3. In such circumstances, the separa- 
tion of variables method ceases to be valid. Consequently, 
the use of this method to derive solutions for aa and @b is 

restricted to the three surface geometries involving the co- 
ordinate systems listed in Table I. 

The constant ,l associated with the decay of the field 
produced by a transient surface current is given by (28). 
However, in deriving a potential solution for a specific set 
of boundary conditions, it is frequently necessary to em- 
ploy a superposition of general solutions to fulfill these 
boundary conditions. Depending upon the situation, the 
particular potential solution may be expressed as either an 
infinite series, or an infinite integral. In such cases, (28) 
cannot be used directly to determine a.. Rather reference 
must be made to (22) which, on introducing the separa- 
bility conditions, reduces to give 

2; (f$)T+ (Q,$ -$$-j% =o (29) 
as the interface ( u1 = a) boundary condition. The relevant 
fl functions for the three surfaces of interest are listed in 
Table I. 

It may be concluded that the studies of Curzon1-3 can- 
not be extended to other surface geometries using the sep- 
aration of variables method. In the present analysis, the 
restrictions encountered with this method when dealing 
with transient surface currents are brought clearly into fo- 
cus. 

The author wishes to thank P. W. Karlsson for several 
illuminating discussions on the concept of surface diver- 
gence. 
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