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Abstract 
Keywords: Opponent Modeling, Imperfect Information Games, Poker, Neuroevolution, 

Evolutionary Algorithm, Coevolution. 

This thesis investigates the use of Bayesian analysis upon an opponent’s behaviour in 

order to determine the desired goals or strategy used by a given adversary. A terrain 

analysis approach utilising the A* algorithm is investigated, where a probability 

distribution between discrete behaviours of an opponent relative to a set of possible 

goals is generated. The Bayesian analysis of agent behaviour accurately determines the 

intended goal of an opponent agent, even when the opponent’s actions are altered 

randomly. The environment of Poker is introduced and abstracted for ease of analysis. 

Bayes’ theorem is used to generate an effective opponent model, categorizing 

behaviour according to its similarity with known styles of opponent. The accuracy of 

Bayes’ rule yields a notable improvement in the performance of an agent once an 

opponent’s style is understood. A hybrid of the Bayesian style predictor and a 

neuroevolutionary approach is shown to lead to effective dynamic play, in comparison 

to agents that do not use an opponent model. The use of recurrence in evolved 

networks is also shown to improve the performance and generalizability of an agent in 

a multiplayer environment. These strategies are then employed in the full-scale 

environment of Texas Hold‘em, where a betting round-based approach proves useful 

in determining and counteracting an opponent’s play. It is shown that the use of 

opponent models, with the adaptive benefits of neuroevolution aid the performance 

of an agent, even when the behaviour of an opponent does not necessarily fit within 

the strict definitions of opponent ‘style’.  
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Chapter 1: Introduction 
Inference is the derivation of a conclusion based solely upon the information 

presented to the being in question; it goes unnoticed, but the human brain is 

constantly applying a heuristic evaluation to everyday situations. For example, if a ball 

is falling and we aim to catch it, then we infer from the direction and speed it is 

travelling how fast to move in order to do so. Likewise in a situation when crossing a 

road, if a vehicle is moving towards us at great speed, we infer whether or not to cross 

based on what we know about our own speed capabilities.  

Humans cannot normally explicitly explain the fine points of exactly what we are 

thinking at the time of inference, just that we knew that the actions we performed 

were correct at that time. Some would argue that our mind’s instant calculation and 

force of action would support the case of a materialist viewpoint, where all 

phenomena are predetermined by the mechanics of the brain rather than a higher-

level free will, but this is beyond the scope of this thesis. The interested reader may 

refer to “L'homme Machine” (Man a Machine) by Julien Offray de la Mettrie (1748) for 

a philosophical discussion of this viewpoint. Our interest is somewhat analogous to this 

observation, as Artificial Intelligence (AI) is the process of understanding the 

mechanics of human inference, and thus designing computer methods to simulate 

them, or (at the least) to solve problems which otherwise would require ingenuity of 

the type shown by humans. Artificial Intelligence can be defined as the study and 

design of agents which display intelligence, more specifically human intelligence. It is a 
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science which strives to further our understanding our own and other animal 

intelligence (Callan, 2003) (Finlay & Dix, 1997) (Negnevitsky, 2005). 

 Many people, upon the first mention of AI, will probably relate their experiences to 

modern events and entertainment. One of the most high-profile events has been that 

of Garry Kasparov and his famous defeat to (and subsequent controversy surrounding) 

Deep Blue in the game of Chess (Campbell et al., 2002). Furthermore, the recent 

solving of the game of Checkers is a landmark achievement in the field of AI (Schaeffer 

et al., 2007). Beyond the scope of such ‘traditional’ AI however, research into game AI 

has been a popular topic for several years; Laird’s rallying call to research in 

commercial games (Laird & Van Lent, 2001), for example, has become a popular 

reference point for much research into game AI which, although out-dated in some 

respects, marks a significant turning point in relation to bringing ‘serious’ research into 

a virtual landscape, especially in relation to creating truly adaptive and intelligent 

game opponents.  

Understanding the relevance of an opponent’s actions, using them to infer 

conclusions about the opponent’s behaviour is one of the most integral parts of game 

AI. Games, in general, require some element of prediction and understanding of 

opponent actions in order to make an effective tactical decision. The capability to 

predict an opponents’ next move is an extremely useful way to defeat an adversary; 

knowing your enemy is integral to success in all forms of game, whether it is in a virtual 

video game environment, a game of Poker, predicting changes in stock values, or even 



 

 3 

waging war. Game theory (von Neumann & Morgenstern, 1944), and the formal 

investigation thereof, has probably been best described as "the analysis of rational 

behaviour under circumstances of strategic interdependence, when an individual's 

best strategy depends upon what his opponents are likely to do" (Varoufakis, 2001), 

and is integral to every aspect of modeling an opponent’s behaviour. Opponent 

Modeling is but a small facet of adaptive gameplay, but the understanding of an 

opponent’s strategy or capabilities through inference is a significant starting point for 

(at least the illusion of) truly intelligent agents. 

This thesis aims to apply opponent modelling to a series of environments as a 

technique to improve an agent’s ability to understand and counteract the strategy of a 

single, or indeed a set of, adversaries. With respect to game playing, Poker in 

particular, Jonathan Schaeffer’s (very laudable) aim is to develop a Poker player than 

can one day win the World Series of Poker (WSOP); that is not the focus of this thesis 

(Billings et al., 2001). Our primary focus is to investigate how opponent modelling can 

improve the performance of an agent in conjunction with other AI techniques such as 

Pathfinding, Neuroevolution and Genetic evolution, and Poker serves as an ideal 

environment within which to pursue this goal. The imperfect information environment 

of Poker offers many challenges relating to the understanding of opponent actions 

with respect to the underlying strategy behind them, which this thesis aims to address. 

Furthermore, Carter’s work notes that a multi-opponent Poker environment is 

generally ignored (where Carters work actively ignores opponent models), this is a 
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major motivation for this work; we not only aim to apply opponent modelling to a 

poker environment, but also aim to utilise multiple opponent models to improve an 

agent’s play against any number of opponents (Carter & Levine, 2007). Our opponent 

modelling approach makes heavy use of Bayesian Reasoning, which requires 

probability values as primary inputs (Negnevitsky, 2005). In our case, these are 

represented as ‘action probabilities’ – In the case of expert systems, these values are 

determined through human judgement and in the case of a game such as poker, 

human beliefs about the opponent are necessary to determine an accurate strategy to 

take. The issue with human judgement is that it is inaccurate, and research has shown 

that humans cannot necessarily elicit probability values consistent with Bayesian rules, 

or at least make a poor attempt (Burns & Pearl, 1981) (Tversky & Kahneman, 1982). 

This serves as a motivation for part of this work which applies both a probabilistic 

terrain analysis to any given game terrain (hence yielding a probabilistically accurate 

representation of action probabilities) and frequency analysis of opponent actions 

prior to actually playing the game (meaning that behaviour beliefs are representative 

of actual play rather than a human belief). In our use of opponent models, we use the 

NEAT algorithm as a means of evolving agents for game playing, although EANNs have 

been used for agent evolution (Stanley et al., 2005), the approach used in this thesis 

focuses upon the use of recurrent ANNs as a tool for improved performance in a multi-

player environment. 
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1.1 Contributions of this Thesis 

 An implementation of Bayesian terrain analysis in conjunction with the A* 

search algorithm to predict the path of an enemy unit in a grid-based strategy 

game. Chapter 3, (Baker et al., 2008) 

 A probabilistic approach to modeling the style of opponent players in a 

simplified Poker game, using a collection of previously performed actions. 

Chapter 4, (Baker & Cowling, 2007) 

 An investigation into the effect of opponent models upon the quality of evolved 

solutions in both Genetic and Neural Network evolution. Chapter 5, (Baker et 

al., 2008) 

 Utilisation of the recurrent nature of evolved Artificial Neural Networks to 

provide a scalable approach to game playing in a multi-agent environment. 

Chapter 5.3 (Baker et al., 2008) 

 An investigation into the stability of the Bayesian opponent model when 

confronting adversaries that have been Coevolved independent of the standard 

opponent definitions. Chapter 6 

 An adaptation of the opponent model to create a multi-betting round focused 

player, in order to apply to an implementation of full-scale Texas Hold’em. 

Chapter 7. 
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1.2 Authored Academic Papers 

The following are references to, and abstracts of, academic papers I have authored (as 

the main author): 

R.J.S. Baker, and P.I. Cowling (2007) – “Bayesian Opponent Modeling in a Simple 

Poker Environment”. IEEE Symposium on Computational Intelligence and Games (CIG 

2007), Honolulu, USA, pp. 125-131 (Baker & Cowling, 2007) 

Abstract -- In this paper, we use a simple Poker game to investigate Bayesian 

opponent modeling. Opponents are defined in four distinctive styles, and tactics 

are developed which defeat each of the respective styles. By analysing the past 

actions of each opponent, and comparing to action related probabilities, the most 

challenging opponent is identified, and the strategy employed is one that aims to 

counter that player. The opponent modeling player plays well against non-reactive 

player styles, and also performs well when compared to a player that knows the 

exact styles of each opponent in advance. 

The content of this paper is covered in depth in Chapter 4. 

R.J.S. Baker, P.I. Cowling, T.W.G. Randall, and P. Jiang (2008) – “Can Opponent Models 

Aid Poker Player Evolution?”. IEEE Symposium on Computational Intelligence and 

Games (CIG 2008), Perth, WA, pp. 23-30 (Baker et al., 2008) 

 Abstract -- We investigate the impact of Bayesian opponent modelling the 

evolution of a player for a simplified Poker game. Through the evolution of 
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Artificial Neural Networks using NEAT we create and compare players both 

utilizing and ignoring Bayesian opponent beliefs. We test the effectiveness of this 

model against various collections of dynamic and partially randomized opponents 

and find that using a Bayesian opponent model enhances our AI players even 

when dealing with a previously unseen collection of players. We further utilize the 

inherent recurrence of our evolved players in order to recognize the opponent 

models of multiple players. Through ablative studies upon the inputs of the 

network, we show that utilization of an opponent model as an evolutionary aid 

yields significantly stronger players in this case. 

The content of this paper is covered in depth in Chapter 5. 

R.J.S. Baker, P.I. Cowling, T.W.G. Randall, and P. Jiang – “Using Bayes' Theorem for 

Path Prediction”. 9th Informatics Research Workshop for Research Students, University 

of Bradford, 2008. (ed. D. Rigas) pp. 101-104 (Baker et al., 2008) 

 Abstract -- Understanding the intentions of another living creature is an inherent 

ability, one which humans use with great regularity in daily life. In video games, 

however, static interactions are generally used instead of ones that dynamically 

adapt to their opponents. This paper discusses the potential of opponent models 

and their application to predicting player goals in video games. The work 

presented uses a grid-based interception game to form probabilistic beliefs 

relating actions to goals by observing path transitions found through the A* 
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algorithm. We then apply Bayesian inference to determine the opponent’s 

destination given only real-time enemy path information. 

The content of this paper is covered in depth in Chapter 3. 

1.3 Co-Authored Academic Papers 

T.W.G. Randall, P. I. Cowling, R. J. S. Baker (2007). "Learning Ship Combat Strategies in 

the Commercial Video Game DEFCON”.  8th Informatics Research Workshop, University 

of Bradford. (ed. D. Rigas) pp. 182-183 (Randall et al., 2007) 

Abstract -- In this paper we use a commercial computer game called DEFCON for 

the creation of player AI that is capable of learning behaviours from the 

opponents that the agent plays. We then aim to use the knowledge learnt in 

controlling the other agent for different tasks and in different scenarios. 

Role of the Author – The author developed code to circumvent the static AI that 

was hard-coded into the DEFCON game itself, as well as co-developing a system to 

load in customised AI player libraries into the game. Furthermore, the author 

contributed some experimental ideas to the design of agent behaviours for the 

learning algorithm to mimic. 

 

Randall T.W.G., Cowling P.I., Baker R.J.S. and Jiang P. (2009): "Using Neural Networks 

for Strategy Selection in Real-Time Strategy Games", Proc. AISB Symposium on AI & 

Games, Edinburgh, UK (Randall et al., 2009) 
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 Abstract -- Video games continue to grow in importance as a platform for Artificial 

Intelligence (AI) research since they offer a rich virtual environment without the 

noise present in the real world. In this paper, a simulated ship combat game is 

used as an environment for evolving neural network controlled ship combat 

strategies. Domain knowledge is used as input to the Artificial Neural Networks 

(ANNs) through scripts that run in parallel and feed their decisions to the ANNs. 

The ANNs then interpret these scripts and decide what strategy to perform. The 

results are compared to ANNs that have no such knowledge and tested to see how 

well the ANNs generalise. 

Role of the Author – The author co-developed DEFSIM, a ship-combat game that 

emulates the ship behaviours of the commercial game DEFCON for fast testing of 

the evolved ANN player, which is used in this paper. The author also designed 

some of the agent-testing scenarios for use in the paper, as well as contributing 

the visual examples of the aforementioned testing scenarios. 

1.4 Thesis Outline 

The thesis is structured as follows: Chapter 2 discusses some of the literature related 

to this research, namely opponent modeling and game-playing with a greater focus 

upon the game of Poker which shall be a significant focus of this work. Chapter 3 

introduces our use of Bayesian probabilities to determine the goals of an opponent in 

a simple grid based game, Halmoids, combining an opponent modeling approach with 

A* search to form a probabilistic terrain analysis. Chapter 4 investigates the application 
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of our Bayesian model to a simplified version of the game of Poker, and its utility in 

selecting a suitable response strategy to a set of opponents. Chapter 5 expands upon 

Chapter 4’s work through the introduction of several evolutionary approaches to 

produce agents for the simple Poker game, and investigates how the developed 

opponent model affects an evolved agent’s capability of coping with different styles of 

opponent. The model is further utilised in an investigation into how the potentially 

recurrent nature of evolved neural networks can enable a network to cope with the 

information of several opponents rather than a one-on-one environment. The stability 

and robustness of the model and resulting evolved player is further tested in Chapter 6 

through a series of Co-Evolutionary opponents of interdependent styles. Chapter 7 

takes the progress of the previous chapters, and applies the approaches used to a full-

scale implementation of the Texas Hold‘em game. This chapter once again uses the 

recurrent nature of ANNs to play against a collection of several opponents, and also 

describes the necessary modifications required to enable the Bayesian model to work 

in a framework with multiple betting rounds. Finally, Chapter 8 discusses some of the 

conclusions from this thesis, as well as offering directions for further research into the 

realm of opponent modeling with respect to the environments considered in this 

document, as well as expansions into further game environments. 
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Chapter 2: Literature Review 
This chapter covers some of the surrounding literature relevant to the research in 

this thesis. The development of AI in game environments is explored with a discussion 

of various techniques used in game playing. Our main focus shall be upon opponent 

modeling, with some discussion of the various techniques applied by other researchers 

in understanding an opponent’s behaviour. 

2.1 AI and Games 

2.1.1 Game Tree Search 

At the very inception of Game Theory, Von Neumann and Morgenstern (von 

Neumann & Morgenstern, 1944) developed the idea of a minimax search upon the 

game tree of a zero-sum game (i.e. my loss is your gain). This considers all possible 

performable actions by searching through the game tree through to its conclusion and 

maximizing the potential gain. Although an extremely useful approach, there are 

numerous difficulties when being used for various games. When playing games with 

excessively complex game trees (Chess and Go being the most notable examples), the 

computationally expensive nature of searching to the end of the game tree is 

intractable. In such a complex case, the search can be depth-limited to reduce 

computation time, but requires a heuristic score for the given nodes at the limit rather 

than a concrete ‘win/lose’ or ‘gain/loss’ analysis. The further performance 

improvement gained by the depth-first search technique using α-β pruning became an 
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important factor (Knuth & Moore, 1973), which removes branches of the search where 

the maximal score of the minimizing player (the opponent at this depth) becomes less 

than the minimal score of the maximizing player (the player aiming for the best 

available score at this depth); this situation would imply that both players cannot be 

playing optimally. This pruning dramatically improves the performance of the minimax 

search, thus improving the analysis of more complex games. In the case of Chess, Deep 

Blue utilised the same ‘brute force’ approach to search and applied heuristic reasoning 

to the state of the Chessboard at a depth of 12 plies (Campbell et al., 2002). The 

minimax technique assumes, however, that the opponent is performing to the same 

standard as the heuristic given to the search. This is limiting in its assumption that the 

opponent would perform in exactly the same way as the agent given an identical 

situation, which is not necessarily the case. The approach is further restricted through 

the limitation of being applicable only to a two-player scenario. Progress is still being 

made, but only in a direction which harnesses Deep Blue’s techniques, transitioning 

from a (brute force) hardware approach to that of a software one, of which a success 

over the current Chess world champion Vladimir Kramnik has somewhat proven 

(Hamilton & Garber, 1997) (BBC News, 2006). The AI research community’s love affair 

with Chess has all but come to an end, as far as to say that no known human exists to 

beat the current techniques, focus can finally be applied to other, potentially more 

deserving problems. 
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Providing a greater focus for minimax search was an aim of Moriarty and 

Miikkulainen, who utilize ANNs with minimax in the game of Othello (Moriarty & 

Miikkulainen, 1994). Championship-level artificial Othello players have been 

investigated (and successful) for some time by Rosenbloom, who used minimax with α-

β pruning (and a carefully-constructed evaluation algorithm) to create the 

Shakespeare-referencing IAGO (Rosenbloom, 1988). Lee and Mahajan expenaded this 

work with pre-computed tables to increase computational speed, as well as greatly 

expanding the evaluation function - the resulting player (BILL) consistently beats 

Rosenbloom’s player, whilst using far less computation time (Lee & Mahajan, 1990).  

Moriarty and Miikkulainen’s approach, however, uses genetic algorithms to evolve a 

neural network that is used to direct the game-tree traversal of minimax search with 

α-β pruning onto a game of Othello. The approach used is based upon the Symbolic, 

Adaptive Neuro-Evolution (SANE) coevolutionary system (which is also used in the 

aforementioned BILL Othello player) (Moriarty & Miikkulainen, 1997). At each search 

level, the network communicates the most promising path to follow. After testing 

against a player with the same evaluation function, but no focusing to its search ability, 

the resulting player was shown to match one of the strongest Othello AIs currently 

available. The authors comment on the common usage of minimax search in game 

state-spaces and the inherent limitation of time and storage in relation to attempting 

to search to a game-end situation. One of the more striking points of this work is that 

the authors note that searching deeper (without a fitting evaluation function) can 

actually do more harm to the quality of the resulting play than good. The improvement 
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of this player was such that the ANN heuristic with a 2-ply search outperformed a full 

minimax search player at a depth of 4 plies. The efforts following this research 

(Moriarty & Miikkulainen, 1995) discovered new game-playing strategies against both 

a random moving opponents and an opponent using α-β pruning. The network 

subsequently learnt positional and mobility strategies. The mobility strategy is an 

advanced Othello technique, and is generally used only in tournaments by experts; it is 

surprising that the agent learnt this technique partly due to the fact that the networks 

involved learnt the game of Othello with no prior rule input or heuristic. 

2.1.2 Beyond Minimax 

Chinook, an AI for the game of Checkers developed by Jonathan Schaeffer, has now 

provided the world with a solution to the game after almost 20 years of intensive 

computation (Schaeffer et al., 2007). The work finally infers that perfect play by both 

competitors will result in a draw such that “*it+ could play draughts against God and 

would get a draw” (The Guardian, 2007). Schaeffer’s approach uses an iterative search 

along with retrograde analysis (working backwards from all possible endgames) in 

order to complete a database of all possible eventualities in the game and therefore 

solve the game. Conversely, the solution to a game such as Poker is much further from 

our grasp. In comparison to Schaeffer’s brute force approach, Gerald Tesauro’s 

research into Backgammon uses a neural network is used as the evaluation function 

for the game state. Self-play is utilized along with Temporal Difference learning in 

order to improve the accuracy of the evaluation (Tesauro, 1995). This is in contrast to 



 

 15 

Tesauro’s previous work which made use of Backpropagation and a set of expert-game 

records (Tesauro, 1990). Chellapila and Fogel’s work uses a similar approach to 

Tesauro’s, creating the ingeniously named Blondie24, utilizing the minimax algorithm 

in conjunction with an Artificial Neural Network (ANN) as its heuristic scoring function 

(which receives vector information concerning the game state). The weights of the 

ANN connections were found using an evolutionary algorithm focusing upon playing 

against different versions of itself (Chellapilla & Fogel, 1999).  

2.1.3 NeuroEvolution 

Evolutionary Computation is a branch of AI concerned with the continual 

improvement of a population of solutions through directed random search in order to 

adapt to a given problem (De Jong, 1975) (Mitchell, 1996). This ‘improvement’ is 

determined by processes which mimic the real-world occurrence of evolution, 

effectively ‘breeding’ and ‘mutating’ chromosomes akin to what would happen in 

biological processes. Generally, a population P of n solutions (chromosomes) is 

randomly generated (typically bit strings, but integer or floating point values may be 

used) and evaluated with a given fitness function. After evaluation, the following 

operations are most common: 

Selection: Choose chromosomes in the population for reproduction; the greater the 

fitness score, the greater the chance of reproduction 
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Crossover: Given a fixed point, the genetic sequence before and after that point is 

traded between two chromosomes, creating two offspring that comprise information 

from both parents. 

Mutation: Randomly flip bits (in a bit string representation), or alter the value in a 

random number of genes in a chromosome with a (generally low) probability p. Using 

a real-valued representation, mutation can be performed by adding a value 

generated through a Gaussian distribution. 

An early example of evolutionary computation with respect to games can be found in 

Axelrod’s work into the Iterated Prisoner’s Dilemma (IPD) using Holland’s genetic 

Algorithm (Axelrod, 1987) (Holland, 1975 ). This interest in both evolution and IPD still 

continues through Mittal and Deb’s research into multi-objective evolutionary 

programming (Mittal & Deb, 2009). 

In Coevolution, all members of a population compete against one another, but in 

competitive coevolution two populations of solutions compete against one another 

such that an increase in fitness in one population yields a decrease in fitness in 

another. A good example of this application to games is Rosin and Belew’s 

investigation into competitive CoEvolution, concerning itself improving agents for the 

game environments of Tic-Tac-Toe and Nim (Rosin & Belew, 1997). In this case, two 

populations of equal size are generated, within which each solution is measured in 

fitness against each member of the opposite population. Candidate fitness is evaluated 

using the concept of shared fitness which is such that weaker solutions with important, 
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individual, attributes have a fair chance of survival (regardless of certain weaknesses). 

The fitness of a solution s within Population A is determined relating to the number of 

solutions s has defeated from population B, with respect to how many other solutions 

from Population A have also defeated that player (i.e. if a generally weak player is able 

to beat a single opponent that no other player can defeat, it has therefore a fairer 

chance of surviving due to its individuality).  

Artificial Neural Networks are parallel computational models inspired by the 

structure and function of biological nervous systems. The earliest work is generally 

considered to be McCulloch and Pitts' neuron model (McCulloch & Pitts, 1943), which 

took a number of inputs, and ‘fires’ through a single output (0 or 1) depending upon if 

the inputs surpass a given activation threshold. Rosenblatt further developed this work 

creating a network using the ‘Perceptron’, which outputs 1 or -1 depending upon the 

weighted, linear combination of inputs (Rosenblatt, 1959). Beyond the 1970s, research 

into ANNs waned due to disinterest until it was later found that the limitations of the 

perceptron (primarily an inability to represent linearly inseparable functions) could be 

overcome through the use of multiple hidden layers of neurons to develop an 

approach to solving complex classification problems (Picton, 2000). This approach has 

been widely adopted in the realm of Computational Intelligence, with applications 

from fingerprint recognition (Leung et al., 1990), to explosive detection in airline 

baggage (Shea & Liu, 1990). 

ANNs are generally applied to classification and data mining tasks, and as such the 

number of outputs is limited, and the task of choosing the type and form of network 
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inputs can prove arduous (Lawrence et al., 1996). ANNs have, however, been used 

successfully within some video games, such as Colin McRae Rally 2.0, a Rally 

motorsport simulation game which trained ANNs to control opponent vehicles. This 

technique can only be applied where a finite number of responses are required. There 

are pitfalls in this technique, however, as the perceived ‘mysterious’ nature of ANN’s 

can lead to situations where if a bug in the system is found, or a new output response 

is required, a new ANN would need to be constructed and trained/evolved.  

Neuroevolution (NE) is the application of evolutionary techniques to the process of 

generating Artificial Neural Networks. Where some NE techniques involve the 

evolution of only the connection weights of a neural network, Topology and Weight 

Evolving Neural Networks (TWEANNs) evolve both the weights of the network as well 

as the topology. An early NE technique is the aforementioned SANE, which evolves 

populations of neurons instead of populations of networks. These are used as the 

hidden layer of a (fully-connected) network, within which their performance is 

evaluated. Each of the evolved solutions receives the average fitness of all networks 

within which they appeared.  Neuroevolutionary approaches into investigating games 

have been primarily interested in the evolution of an agent directly responsible for 

game playing behaviour. The board game of Go was of particular interest, where 

strong players have been evolved for a simpler, scaled down version of the game 

(Richards et al., 1998). More recent investigations have used the NEAT 

(NeuroEvolution of Augmenting Topologies) algorithm developed by Ken Stanley, 

which adapts the topology of an Evolutionary Artificial Neural Network, not just the 
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weights of connections between neurons (Stanley & Miikkulainen, 2002). An 

evolutionary algorithm is used, which utilizes historical markings, separating 

innovations into separate species, and gradually increases the size of the networks 

involved, determining the structure of the ANN. Each connection gene stores the input 

and output nodes, as well as the connection weight and, if it is enabled, an ‘innovation 

number’ which helps find corresponding genes during genetic crossover. Mutation in 

NEAT affects nodes, weights and connections, with nodes being added (splitting a 

connection, disabling one connection and creating two more), or new connections 

between nodes being created. Crossover involves matching genes between two equal-

fitness parents, and using disjoint and excess genes to create an expanded child node. 

The population is speciated so that innovations are not lost; only new innovations 

(with the same innovation number) are compared to each other, rather than the entire 

population. The fitness of a single genotype is the determining factor in the existence 

of the species, which is based upon the averaged fitness of all genotypes within that 

species. This restriction means that greater populations are at greater risk of more 

adaptation or replacement.  

The adaptation of NEAT into a real-time game environment (Unreal Tournament) 

initially uses a middleware system, TIELT (Testbed for Integration and Evaluation of 

Learning Techniques), which aids in the investigation of how an evolutionary Artificial 

Neural Network may perform in a videogame. The evolution of a game-playing agent is 

seen to be a very slow process, with limited progress made in simple path finding tasks 
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(Miikkulainen et al., 2006). ANNs (and by association, Evolutionary ANNs) are more 

suited to decision-based tasks, and other attempts to introduce Evolutionary ANNs 

have included strategy selection, and the attempted learning of an opponent’s own 

strategy selection (Randall et al., 2007) (Randall et al., 2009) 

The necessity for a fast, real time evolutionary process resulted in rtNEAT, an 

adapted version of NEAT that evaluates the fitness of evolving agents in a game 

environment and performs topological adjustment in real-time (Stanley et al., 2005) 

(D’Silva et al., 2005). The primary evaluation of rtNEAT is within the NERO 

(NeuroEvolutionary Robotic Operatives) game, which is primarily based upon the 

training and evaluation of a series of robotic agents to perform a variety of tasks such 

as approaching an enemy, shooting an enemy and avoiding enemy fire.  

2.1.4 Perfect and Imperfect Information 

Games can generally be categorized into two major camps; those with, and without 

perfect information. Perfect information implies that all players can observe all actions 

in the game, as well as the status of all artefacts that the game consists of (these may 

be counters, pieces, or cards). Examples of perfect information games include Chess 

and Checkers in which both players can observe the entire game state on the board. In 

contrast, an imperfect information game denies players of many facets of the game 

state in order to play within the realms of uncertainty; Poker is a good example of this, 

which shall be discussed later in section 2.3 of this chapter. Within the definitions of 

perfect information is the nature of the stochasticity of the environment; this implies 
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that unpredictable events take place during the playing of the game. Poker, for 

example, is a stochastic imperfect information game where cards are shuffled before 

dealing and opponent cards are hidden during the course of the betting rounds. 

Backgammon however, is a stochastic perfect information game where the counters 

are visible to all players, yet the roll of the dice is non-deterministic.  

It could be argued that games involving imperfect information have become a much 

more important focus within the past ten years, shifting from analysis of games where 

all information can be known, to ones within which the withheld information is the 

most valuable. Arguably the most notable Imperfect information game is that of the 

Iterated Prisoner’s Dilemma (IPD). The prisoner’s dilemma is a nonzero-sum non-

cooperative game where two separated suspects (the prisoners) are offered a deal 

where if one testifies against the other (defect) and the other remains silent 

(cooperate) then the defector is freed and the co-operator receives a 10 year 

sentence. If both prisoners defect then both receive a 5 year sentence. However, if 

both remain silent then only a six-month sentence is bestowed upon each.  Each 

prisoner must choose to stay silent or defect. In the Iterated Prisoner’s Dilemma, this 

game is played repeatedly such that a betrayed player has the opportunity to punish a 

previously defecting partner (Aumann, 1959). In applying Genetic Algorithms to the 

game Axelrod found that greedy strategies performed poorly over an extended period 

of time, whereas altruistic behaviours can eventually prove more profitable (Axelrod, 

1987).  
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Another example of imperfect information on a small, yet still puzzling scale is that of 

RoShamBo, known generally as the Rock-Paper-Scissors game. This game consists of 

two players who at the same instance choose one of the three options: rock, paper, or 

scissors. There are four potential outcomes of each round; Rock beats Scissors, Scissors 

beats Paper, Paper beats Rock, or both players choose the same option and the 

outcome is a draw. This is an extremely pure example of a game of imperfect 

information; the opponent’s action is made without any knowledge of your own, and 

vice versa. This is a situation in which opponent modeling must take precedence, 

especially in the case of iterated conflicts between the two same opponents, as shall 

soon be explained, a random strategy can be an optimal one in terms of a game such 

as this, but deterministic methods are extremely sub-optimal in reference to an 

opponent which tracks, models, and reacts to past encounters. Darse Billings at the 

University of Alberta, Canada has run a yearly (sadly, now defunct) RoShamBo 

competition, in which participants are invited to create artificial players to compete in 

a tournament of multiple iterations of the game (Billings, 1999). Of all agents to be 

created for the game, Iocaine Powder has proven to be a very successful competitor, 

written by Dan Egnor. The implementation is relatively simple to understand, but is far 

from trivial. Six strategies are employed, all using direct prediction; from assuming an 

opponent predicts a prior prediction and acting accordingly (double guessing), to 

predicting subsequent triple guessing on the part of the opponent. These strategies 

are selected through a combination of frequency analysis and pattern matching 

(Egnor, 1999). The player also formulates that if an opponent is defeating the player 
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with any regularity, then the player will revert to a random strategy to ruin any 

opponent’s modeling approach. 

2.1.5 Pathfinding 

The A-Star (A*) search algorithm (a development of Dijkstra’s algorithm developed 

for graph traversal) is widely used in game environments for path finding, being 

particularly more reliable than a Neuroevolutionary approach (Hart et al., 1968). The 

performance of A* is improved over the Dijkstra algorithm due to its use of heuristics. 

The search uses a heuristic based upon two factors: the cost of a move between nodes 

g(x) (which takes into account the total cost from the start node), and a distance 

heuristic f(x) (from the node to the goal). The algorithm performs a ‘best-first’ search 

along a list of prioritised ‘open’ nodes with respect to the given heuristic. This 

guarantees a shortest path from the starting node to the goal, provided that the 

heuristic estimates never overestimate the distance to the goal (Russell & Norvig, 

1995). If the position of the goal is unknown, any distance heuristic would be useless; 

in this case the Dijkstra algorithm would be the preferred method (as Dijkstra is 

essentially A* with heuristics returning 0).  

Research has attempted to model the path making behaviours of humans in real-

world situations (Krumm, 2006). The investigation into the predictive nature of human 

behaviour has shown startling results as to the predictability of human pattern 

analysis, identifying that 93% of human behaviour in relation to navigation is 

predictable (Song et al., 2010).  The application of such a predictive technique across 
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virtual environments is many-fold. In this vein, military prediction of enemy units has 

been deeply researched, particularly into the potential destinations of naval units 

(Zhao et al., 2004) (Brown & Gordon, 2005).  

In the context of games, path modeling is primarily concerned with online 

environments, where Dead Reckoning (a technique which utilises the current course 

vector and velocity to determine the next possible position) is used to model 

prospective agent position in an attempt to reduce network traffic caused by the 

transmission of positional data (Li et al., 2008) (Hladky & Bulitko, 2008). 

2.2 Opponent Modeling 

Modeling the intentions of other people is arguably one of the most important, yet 

most complex, of human abilities. An ‘average’ human is able to distinguish, through 

observation, the nature and intention of actions, as well as assess the capabilities of 

those who perform the action. As Sun Tzu (6th century BC) stated:  

“If you know your enemies and know yourself, you will not be imperiled in a hundred 

battles... if you do not know your enemies nor yourself, you will be imperiled in every 

single battle.” 

2.2.1 Human Behaviour 

Humans have an inherent ability to create a mental model of interactive behaviours, 

where the model is an approximated simulation of how another will behave (Johnson-

Laird, 1983). These models are generally created through social observation and 
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interaction which yields much information from which to learn. Through the 

generalization and interpretation of the modelled set of actions over a variety 

circumstances, humans are able to display a socially acceptable interactive behaviour 

pattern (Byrnes, 2001); indeed it is arguable that the ability to construct models of 

others actions and intentions is central to the definition of what is “acceptable” in 

social behaviour. Le Doux (Le Doux, 1997) explains that through evolution, human 

instincts have been somewhat ‘hard-wired’, culminating in a set of adaptive 

behaviours crucial to survival. Le Doux argues that humans possess a fast mental 

process that warns of a potential danger, in addition to a slower reasoning process 

that models the nature of stimuli which initially triggered the fast process. For 

researchers and game developers alike, the understanding of interactions, and 

subsequent reactions (in a human manner), is essential to achieving intelligent, 

interactive behaviour. The ability of a machine to display human-like intelligence has 

been previously defined through the Turing test (Turing, 1950), where a machine 

attempts to convince a judge that it is actually human through conversation. The 

Turing test has been denounced by Livingston, claiming that the vague nature of the 

test is not representative of the ability of a human to be fooled by a machine, partly 

because the Judge actually knows that they are taking part in a Turing test (Livingston, 

2006). 
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2.2.2 Opponent Modeling in Game Playing 

Laird created ‘Quakebot’ as an opponent modeling agent for the game of QUAKE II (id 

Software 1997). ‘Anticipation’ is implemented into the agent to predict the actions 

that an opponent could take. It is noted that formulating a plan in order to defeat the 

opponent or use their situation to an advantage is a very arduous task, especially in 

the face of the numerous events that would have to be taken into consideration. 

Search techniques cannot be used due to branching factor, especially in terms of the 

numerous actions available. An inherent problem of anticipative modeling is that 

predicting an opponent’s moves can take some time, which in a fast-paced game such 

as QUAKE II is a significant disadvantage. The agent is susceptible to being attacked, and 

the length of time in predicting impedes upon the time available to perform a suitable 

action. The authors answer this with a technique called ‘chunking’ which creates and 

saves a specific rule that the agent has inferred, to save time in regenerating the 

prediction at a later date (Laird, 2001).  

Steffens covers opponent modeling within a multi-agent environment - the RoboCup 

tournament (Steffens, 2003). His work covers case-based reasoning (CBR), and how its 

predicative accuracy is dependent upon similarity measures between current and pre-

programmed cases, in order to model the opponent. The RoboCup tournament 

consists of autonomous agents connected to a server playing a game of football (or 

soccer, dependent upon the territory). After receiving velocity information about all 

items on the field, such as players and the ball, the agents can execute discrete actions 

(Dash, Turn, and Kick), which are combined to create higher-level actions to represent 
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in game strategies, or an overall tactic. From defined situations, the predictions on an 

opponent’s next action use game-state comparisons to a higher-level goal. An example 

is ‘Shoot on Goal’ where if it is predicted that an opposing player with the ball will 

shoot, countermeasures are taken to prevent it occurring. Match history has also 

proven to be a useful tool in the evaluation and evolution of RoboCup teams 

(Nakashima et al., 2006). Their approach evolved strings of integers which represented 

a particular play strategy. The evaluation used match statistics such as goals for and 

against the team, and successful and failed incidents during the match. 

Van den Herik and Donkers investigate the use of opponent modeling in commercial 

video games, especially in relation to improving the game playing experience (van den 

Herik & Donkers, 2005). The use of an opponent model to adapt the difficulty of games 

has been investigated by Spronck and van den Herik through a tutoring system 

(Spronck & Herik, 2005). Tutoring systems are generally used to introduce a player to a 

game, and help the computer gauge the strength of the player. The authors describe 

enhancements that could be applied in commercial games, attempting to create an 

even balance of gameplay so that experienced players should be challenged, and 

novice players should be catered for, not necessarily by dumbing down opponents, but 

making them use weaker strategies so that the opponent is not ‘playing dumb’, or 

making a mistake to pander to the novice player’s weak play. Ideally a challenging 

agent would lose as many instances of confrontation as it would likewise win. The 

authors point out that there are some issues with current games, such that a difficulty 
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selection is too coarse due to its limited selection, as well as having been selected by 

the player themselves even though the player cannot yet grade their playing ability. 

The tutoring system gradually alters the strategies available to agents, whereas game 

difficulties are generally limited in scope, affecting enemies’ strength rather than 

changing their tactics. 

Spronck et al’s Dynamic Scripting uses a reinforcement learning approach, allowing 

an agent to learn a game policy through interaction with its environment, and can then 

learn what to do to achieve its specific goal (Spronck et al., 2006). This is achieved by 

giving the agent a reward signal in relation to its success in the environment. Initially 

Dynamic Scripting was slow to react to opponents in some situations (although 

effective), and attempts were made to improve the performance of the scripting 

technique (Spronck et al., 2004). The improvements used penalty balancing by relating 

the size of a penalty to the current reward, keeping the sum of weights for each tactic 

constant, and being able to roll back tactic scores. Further Investigations use the 

Evolutionary State-based Tactics Generator (ESTG), which utilises an evolutionary 

algorithm to select the tactics for scripting automatically (Ponsen et al., 2006). The 

Dynamic Scripting approach is applied to Wargus, a Real-Time Strategy (RTS) game that 

is in a similar vein to Warcraft II (Blizzard Entertainment 1995). It is noted that for the 

previous version of Dynamic Scripting that separate tactics needed to be created by 

hand for Dynamic Scripting to choose from, and therefore find the most suitable 

approach against the current opponent. ESTG, however, creates these tactics 
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automatically. AI in RTS games is usually encoded in scripts, which determine all AI 

decisions over the course of the game. The flaws that can exist within Dynamic 

Scripting are such that although the agent adapts relatively quickly, all of the tests are 

done against an opponent multiple times to learn their strategy. This may not always 

be possible within a given game environment, where there may not be enough 

iterations of a situation that can give an accurate enough description of how to defeat 

the opponent. 

2.3 Poker 

Texas Hold’em Poker is arguably the most popular form of Poker played around the 

world today overtaking other forms of Poker as the most popular in casinos worldwide 

(Clark, 2006). The popularity boost of Texas Hold‘em is such that the game has 

permeated into other forms of popular culture; In the Ian Fleming novel ‘Casino 

Royale’ for example (Fleming, 1953), British agent James Bond plays Baccarat against 

the primary antagonist, Le Chiffre. In the most recent adaptation of the novel into film, 

however, the game has been changed to Texas Hold‘em, primarily because of the 

worldwide popularity the game has found (MGM, 2006). The three main actions 

performed in-game are common to all forms of Poker, as follows: 

 Bet/Raise: Add money to the pot, and increase the monetary risk for the bettor 

and the opponents. 
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 Check/Call: Make the smallest bet required to stay in the hand (which may be 

nothing). 

 Fold: Take no further part in the proceedings of the hand. 

These basic actions are an essential staple of all Poker games. It is the underlying 

strategy behind the decision-making process of a player that makes the game of Poker 

arguably one of the most skilful card games in the world. The complexity of Poker 

results largely from the fact that the only information available to a player of the 

game’s state is that of their card(s) held, the community cards, and that of any past 

actions the opponents have made. Arguably the most important publication with 

respect to Poker-playing strategy is Sklansky’s “The Theory of Poker” (Sklansky, 1992), 

which is widely considered by professional Poker players to be the best source of 

information on how best to play Poker. Sklansky discusses game playing concepts over 

various forms of the game of Poker, from topics such as bluffing (and other deceptive 

plays) to the psychology of the game and the importance of playing position. 

As well as being a popular game, Poker has become an excellent testbed for research 

into games of imperfect information. Poker had mostly been overshadowed in the past 

in favour of games such as Chess. This is arguably due to the difficulty (and 

combinatorial explosion) that results from having to deal with imperfect information.  

2.3.1 Early Work 

Poker has driven numerous research efforts for many years, early efforts including 

Findler’s research into machine cognition using Poker; judging that dynamic or 
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opponent-adaptive play is necessary in order to be successful, and that static play 

styles can be easily beaten once the opponent’s style has been learnt (Findler, 1977). 

Earlier investigations into card game strategy have also considered the game of 

Goofspiel, which is deemed to have great tactical depth (Ross, 1971). Several 

approaches to understanding the mechanics behind games of imperfect information, 

however, have been based upon simplified variants of Poker: von Neumann used a 

simple form of Poker in his treatment of Game Theory (von Neumann & Morgenstern, 

1944) as did John Nash and Lloyd Shapley (Nash & Shapley, 1950). Kuhn’s approach to 

a game-theoretic analysis of Poker is also upon a simple game for two players, 

consisting of a three card deck, one card hands, and a maximum of two bets per player 

(Kuhn, 1950). Furthermore, Sakaguchi used three simple forms of Poker to investigate 

recommended changes in action selection based upon the number of opponents 

(Sakaguchi & Sakai, 1992).  More recently, many researchers have shown interest into 

Poker playing in general, most notably the GAMES (Game-playing, Analytical methods, 

Minimax search and Empirical Studies) research group at the University of Alberta 

which has released numerous papers on Poker research. Darse Billings, once a 

professional Poker player, has aided and assisted in the creation of Loki, a Poker-

playing AI (Billings et al., 1998). The variation of Poker in question is Texas Hold‘em 

Poker. Billings et al describe the system and how it models opponents, and then 

evaluates its performance against other artificial Poker agents. Their research spotted 

that in previous iterations tested against humans, the agent performed well initially, 

until the human players changed their strategy, to which the agent could not adapt. 
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The authors list some ‘requirements’ that a world-class Poker player would have to 

fulfil in order to be successful in a game of Poker (Billings et al., 1998). It is noted that 

all these requirements are intertwined, and should not be held separate from one 

another. The requirements state that a player must be able to have a good gauge of 

hand strength, whether it is as simple as an assessment of your own cards and 

community ones, or a more complex assessment of your cards, table position, and 

prospective opponent hands. Having a good sense of how the hand obtained can 

either improve or depreciate dependent upon the upcoming turn cards is also a 

definite requirement. The betting strategy encompasses all of the requirements, 

requiring a gauge of hand strength, potential, and winning chances. It is noted that 

unpredictability and bluffing are two very important factors for a Poker player, of 

which it is important that the potential of a hand improving be taken into 

consideration; blindly bluffing with a poor hand is much worse than bluffing with one 

that could turn profitable on the next turn card. Finally, as part of these requirements, 

it is noted that opponent modeling is extremely important, as hidden information, 

such as an opponent’s hidden cards can more easily be predicted when analysing and 

interpreting as much data that can be garnered from an opponent’s actions, which 

include betting plays, and betting amounts. 

2.3.2 Game Theoretic Approaches 

It has been noted that an optimal strategy in terms of a game such as rock-paper-

scissors (RoShamBo) is a random one, and Daphne Koller and Avi Pfeffer note that for a 
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game such as Poker there must be an optimal random strategy, just as there exists an 

optimal deterministic one for a game such as Chess (Koller & Pfeffer, 1995). At the 

time AI research had all but ignored imperfect information games (Nicholas Findler’s 

work notwithstanding), due to the complication of modeling prospective 

circumstances. The authors introduce the Gala system which provides a language, 

much in the vein of Prolog, to describe game situations, and derive an optimal strategy 

through a self-generated game tree. It is noted that the ‘paradigm’ for solving games 

involved transferring the game tree to a matrix, as a standard or strategic form. This is 

exponential in size in relation to the size of the game tree. Koller and Pfeffer (1995) use 

a simplified form of Poker in order to test the Gala system; a deck of three cards is 

used, and a single card is dealt to each of two players, betting rounds are initialised 

where when all bets are equal, or one player has decided not to bet, the betting player 

or the player with the highest card are the winner. The authors note that any 

deterministic strategy in this situation would not be prudent, as deterministic play 

spawns predictable play, which in turn can be easily defeated once predicted. The Gala 

system is tested against other systems which attempt to perform the same strategy 

optimisations, and while Gala runs in linear time, other approaches take much longer, 

even though Gala generates an equally optimal strategy to the exponential-time 

attempts. The results also give very interesting strategies in relation to betting 

probability for the dealer and gambler in an 8-card game of Poker.  The authors note 

that a game such as full-scale Poker, with the extremely large size of the game tree 

would prove impossible to generate a solution for, and that it is unlikely that a solution 
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is ever to be found (Koller & Pfeffer, 1997). Billings et al comment on the work by 

Koller and Pfeffer, stating that although a game-theoretic optimum strategy could be 

employed, if quantifying such a game tree was more easily accomplished, it would not 

help towards ‘solving’ the game, due to the necessity of modeling an opponent’s 

behaviours. This necessity is defined by the fact that optimal behaviour within an 

imperfect information game is useful, but within a game such as Poker, where bluffing 

is prevalent, an optimal strategy will not maximise winnings (Billings et al., 1998). An 

opponent’s bet could represent a bluffing move or a show of confidence, this being 

difficult for any player to determine. Part (if not most) of the challenge of Poker is the 

understanding of your opponent, recognizing and exploiting weaknesses and subtle 

changes in their behaviour.  A good human player has weapons in his arsenal 

unavailable to the current generation of AI players, using external factors such as 

conversation and facial/bodily gestures, which can be used to transmit 

(mis)information to the opponents. This author feels that a single ‘solution’ for Poker is 

unattainable, primarily due to the stochastic nature of the game as well as factors such 

as the aforementioned human aspects of the game. Contrary to the fact that although 

Checkers is solved, the game is still interesting for human players to play 

recreationally, whereas a solution to the game of Poker (where an optimal strategy 

could be more easily learnt) would effectively destroy the competitive nature of the 

game. Billings et al’s described Loki model uses an unsophisticated betting strategy, 

where betting actions are performed relative to hand strength and win probability; this 

is also utilised to determine the amount of money that should be bet (a function of bet 
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probability and current pot amount). The opponent is modeled directly using betting 

actions, and each action updates the weights of each hand combination (effectively 

the probability that an opponent holds such a hand). Each opponent’s action is 

classified by the action taken, the amount of money bet if any, and the stage of the 

hand in which the action took place. For each opponent action made, the weights are 

transformed to represent the analysis changes. Loki is tested against multiple simple 

artificial agents, some which used a modeling approach, and some which did not. The 

results clearly show that a modeling approach quickly beats an approach which does 

not. Billings et al 1998 claims that further research is to be aimed at creating an 

adaptive player, explaining that the current build will not adapt to a player that 

changes his style over time. 

(Billings et al., 1999) adds more sophisticated changes to the process of determining 

an opponent’s action as well as suggesting a suitable action to take. This is performed 

using probability triples, where each probability (f, c, r) represents the probability of 

folding, checking, or raising, and can be applied to the suggestions for either the player 

or the opponent to infer probable, or highly likely successful play through updating 

weight tables. The improved system uses a simulation of possible plays, and calculates 

an expected return of the opponent taking a certain action. The simulation uses a 

selection of the highest ranked probable card holdings that each opponent has in order 

to have a suitable approximation of return. The paper shows a respectable 

improvement in the player’s performance in comparison to previous implementations. 
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(Billings et al., 2003) covers the generation of game-theoretic optimal strategies for 

Poker, something which earlier papers commented was not necessary for playing 

Poker due to the nature of bluffing. The paper states that simpler variations of Poker 

do not fully quantify the complex nature of full-scale Texas Hold’em, and proposes 

using pseudo-optimal solutions by reducing the game in a less restrictive manner (such 

as Burns (2006) which investigates the optimality of commonsense poker strategies, 

uses a deck in which each player is dealt a card classed as ‘high‘ or ‘low‘), although the 

authors admit that there is no guarantee that these reductions will lead to reasonable 

predictions. These suggestions included reducing the number of betting rounds, in 

order to reduce the length of the game tree. The resulting player, designed to use only 

the game tree to play, with no opponent modeling methods, was able to perform 

adequately against a world-championship level player, although after 4000 hands the 

professional understood the style of the player, and the agent was unable to come 

back from persistent losses. It was noted that the addition of opponent modeling 

would provide an extremely strong Poker player. The performance was not necessarily 

the important point, however, as the paper was the first successful attempt at 

approximating a game theoretic strategy for a full-scale Poker game. Further game-

theoretic approaches in the realm of Poker have considered the idea of regret 

minimization, where as the regret of a strategy in response to an opponent strategy 

approaches zero, the strategies approach a Nash equilibrium (Zinkevich et al., 2008). In 

the pursuit of regret minimization, various techniques have been explored such as 
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counter-strategy evaluation (Johanson & Bowling, 2009), imperfect recall (Waugh et 

al., 2009), and Monte Carlo Sampling (Lanctot et al., 2009) (Ponsen et al., 2010). 

2.3.3 Opponent Modeling and Poker 

Aaron Davidson, along with Darse Billings, Jonathan Schaeffer and Duane Szafron 

adapted the Loki AI (now called Poki) with the interest of creating further adaptive play 

with the use of Artificial Neural Networks as part of the modeling system (Billings et 

al., 2000). The argument for this is that use of an ANN will maximise the accuracy of 

the targeted output. The most recent previous action, and the previous amount to call 

were seen as the determining factors, and most important inputs of all tested. The 

training data for the network was based on betting actions of players on an Internet 

Relay Chat (IRC) Poker room. Using the ANN, the agent was subsequently able to 

predict future actions with 80% accuracy, compared to the 57% of the previous 

system.  

In relation to creating an adaptive Poker player, Luigi Barone and Lyndon While 

started investigating approaches to evolving players to learn games of imperfect 

information, settling on Poker as a suitable testing ground (Barone & While, 1998). His 

research proceeded to investigate the evolution of a Poker player for a simplified 

variant of Poker (Barone & While, 1999). Barone and While point out what many 

believe to be four distinct styles of Poker player: Loose Aggressive, Loose Passive, Tight 

Aggressive, and Tight Passive. The authors also suggest similar player requirements to 

the previous Billings et al papers, namely hand strength analysis, position in play order, 
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and risk management. The authors have also used a bet tuple which represents the 

probabilities of betting folding and checking, also similar to the Billings et al paper. The 

authors use evolutionary algorithms to evolve a player from a randomly generated one 

to defeat the four playing styles. The paper continues to demonstrate that an 

evolutionary approach could be used, with some resolution, to adapt a player 

dynamically as opponent styles change. This research is further elaborated into the 

game of Texas Hold’em and shows how the player evolves due to differing styles of the 

opponent and adapts its strategy (Barone & While, 2000). This adaptation is quite 

slow, but shows much promise in the possible execution of a dynamically adapting 

player. Pieter Spronck’s previously mentioned work (Spronck et al., 2004) also looked 

into constantly dynamically adjusting behaviour for a game-playing agent, but it 

avoided convergence through weight control, Barone’s work avoids convergence by 

being negligent of domain-specific factors, such as play position. Barone shows that 

utilizing differing styles in the evolution of a player is beneficial to the performance of 

the final solution, and Kendall and Willdig (Kendall & Willdig, 2001) perform a similar 

approach to the evolution of a weighting factor to alter the decision process of a player 

against the same varying styles (which are discussed in further depth in Chapter 4) in 

the realm of draw Poker, where the players are dealt five cards before a round of 

betting, and can subsequently trade two cards before a final round of betting. Both 

Barone and While’s (as well as Kendall and Willdig’s) approaches use a single agent, 

which gradually adjusts its performance given the style of opponents at the table. 

Carter and Levine have also investigated the evolution of Poker players for tournament 
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Poker, noting that the performance of evolved agents is limited in its capacity due to 

the lack of an opponent modeling capability (Carter & Levine, 2007). 

Texas Hold’em has proven to be probably the most investigated form of the game of 

Poker, and few have varied from such a path, but Saund developed an approach to 

analysing and utilising an opponents’ betting behaviour in seven card stud Poker 

(Saund, 2006). The approach not only uses betting actions, and cards held in hand, but 

also allows for some usually hidden information, such as some downcards. This 

knowledge is then used to create a player that can further infer about a player’s 

unknown downcards, much in the same way as Billings’ earlier approach.  

2.4 Summary 

In this chapter, we have explored literature within the realms of game-playing AI 

starting from the initial game-theoretic approaches to games such as Chess, expand 

from this into the adaptations of the basic minimax search onto the games of Othello 

and Checkers. Research related to both Perfect and Imperfect information is 

considered and contrasted, especially with the increased difficulty in respect to 

stochastic environments compared to the deterministic nature of most board games. 

The importance of opponent modeling is investigated with respect to understanding 

human behaviour and how humans constantly model their environments.  

We note the importance of opponent modeling with respect to both understanding 

an adversary for agent improvement, as well as that of sculpting an agent’s play to 
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improve the game experience for a human. Finally, we discuss Poker, arguably an 

important testbed for opponent modeling research. We discuss some of the earlier 

approaches to how Poker was treated, as well as how the game is frequently simplified 

for use in research. These simplifications are almost completely necessary for any 

investigations into a game-theoretic approach into the game of Poker. Finally we 

discuss work where opponent models are applied in the realm of Poker, and how 

various techniques (such as evolutionary approaches) can be used in conjunction with 

opponent models to aid in creating adaptive Poker players.  
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Chapter 3: Agent Path Prediction 

Predicting the path of an agent is a necessary technique in many facets of interaction. 

A simple social example is the navigation of a person through a crowd of people; the 

predictive capability of a human is required to determine the correct time at which to 

cross the path of another person. This chapter serves as an introduction to the 

applicability of Bayes’ Theorem to the prediction of an opponent, as well as 

demonstrate the potential strength of Bayes’ rule as an approach to aiding decision 

making (before moving onto the imperfect information environment of Poker in 

Chapter 4). We explain our approach to demonstrate a probabilistic technique for 

determining an agent’s short-term goal in real-time evaluation for use in determining 

an appropriate and intelligent interceptive reaction. We use the A-Star (A*) algorithm 

as a terrain-analysis technique in order to determine action-goal probabilities, and 

apply Bayesian analysis upon the behaviour of an opponent with these probabilities in 

order to determine the potential goal of the opponent. The use of action probabilities 

in this respect makes our approach applicable to a wide range of varying situations, 

such as in a competitive environment where network (and positional) data is available 

for a number of human players. 

3.1 Bayes’ Rule 

Bayes’ rule relates conditional and marginal probability distributions of random 

variables, and shows that however different the probability of event A conditional 
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upon event B is to that of B conditional upon A, there is still a relationship between the 

two that allows one to be calculated from the other.  

)Pr(

)Pr()|Pr(
)|Pr(

B

AAB
BA 

                          (1) 

Equation (1) gives Bayes’ rule where, in a game scenario, our opponent has an 

unknown strategy, A. We need to determine the strategy A, given the observed set of 

opponent actions, B. The analysis of human action and inference with relation to a goal 

or strategy can be applied over numerous fields. For example, the imperfect 

information conveyed by players in Poker can be similar to that of partial information 

in a ‘deathmatch’ based game, where players are constantly unsure of the enemy 

position. 

3.2 Agent Path Prediction 

The prediction of the goals of an agent is an important tool in achieving believable 

reactive behaviour, and games give a greater opportunity to test and apply these 

approaches. In many games, forecasting an opponent’s path is critical. A useful analogy 

can be drawn to deathmatch-based games, such as QUAKE III: ARENA (id Software 1999), 

where predicting the intended target of enemy movement gives an indication of where 

to fire. A ‘deathmatch’ is a scenario where two or more agents use various weapons 

(from melee weapons to pistols, rocket launchers, or fictional devices) in order to 

accumulate kills (or ‘frags’) within a time limit or a set limit of kills in order to win the 
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match. In this scenario, the ‘splash damage’ of certain explosive weapons can be 

employed as both a successful play tactic and also an indication (to the player) as to an 

agent’s predictive capability, exemplifying the appearance of intelligence to a human 

player. Investigation into developing intelligent, human-like agents has been recently 

stimulated by the 2K Games-sponsored BotPrize Competition, which provides a Turing-

test type environment where agents, a human confederate and a judge all inhabit the 

game world in a series of competitions using the UNREAL TOURNAMENT 2004 game 

(Hingston, 2009) (Epic Games 2004). This game is a deathmatch game similar to the 

aforementioned QUAKE III: ARENA. In order to promote competitive play by the human 

confederates, a minor prize is awarded to the best human player such that no 

‘abnormal’ behaviour is exhibited by the human to try and convince judges that they 

are actually the ‘bot’. So far, no competitor has taken the $7,000 prize offered to 

researchers who can develop an agent which convinces a judge that it is a human 

player (instead of the human confederate). One point of note is that this author played 

in the competition as a human confederate in 2008, winning the ‘best human’ award, 

convincing 4 out of the 5 judges that he was human.  

3.2.1 GridWorld 

We introduce GridWorld, a teaching/research tool for AI techniques, and harness for 

a competitive AI environment created by the University of Bradford and Black Marble 

Ltd. with sponsorship from Microsoft (Cowling, 2006). GridWorld is a platform for 

teaching AI programming and conducting research using the development and study of 
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AI in games, which draws analogies to real game environments through the use of a 

visual grid rather than the underlying grid that is utilized in commercial games. An 

example of Halmoids, a GridWorld game, can be seen in Figure 3.1.  

3.2.2 Halmoids 

The aim of Halmoids is to control one or more pirate ships in order to navigate to a 

treasure chest with the same colour corresponding to that of the ship(s), and the 

scoring is determined by the number of ships that have reached their goal. The in-

game icons (designed by the author) are the following: 

                    The Ship represents the unit that is controlled by the player or an agent 

The Treasure represents the goal which the player needs to reach; each 
goal is colour-coded to each player’s ships 

 The Lighthouse represents an impassable ‘rock’ object, used for 
determining the layout of the terrain 
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Figure 3.1: A simple ship-blocking terrain 

In order to win, a player must maintain an advantage over their opponent, and 

therefore should attempt to stop one or more of their opponents’ ships from reaching 

their goal. This game is somewhat analogous to a ‘Capture-the-Flag’ mode of play from 

many multiplayer First Person Shooter (FPS) games such as UNREAL TOURNAMENT 2004 

(Epic Games 2004), where attacking or defensive strategies must be chosen in 

response to the opponent’s actions. The interception of an opponent requires early 

inference of their destination, given that the opponent has multiple goals to choose 
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from. In this example, the lower ship has been given only one of the treasure chests as 

its target destination, and the upper ship needs to intercept the lower ship before it 

reaches its goal. A useful analogy can be drawn through the consideration of sports 

simulations, an example such as player ‘marking’ tactics within a soccer video game 

such as PRO EVOLUTION SOCCER which simulates the game of Football (Soccer) in 

International games and domestic leagues (Konami Corporation 2001). A ‘marked’ 

player must attempt to evade the opposition player assigned to follow and restrict his 

movement, especially in such scenarios as those of a free-kick or corner kick 

(Denzinger et al., 2005). Halmoids as a game represents the task of both the marked 

player, and the marker themselves. In this work we concentrate on the role of the 

marker. As with many game scenarios, the importance of predicting a player’s tactical 

intention through action analysis is integral to successful play; to fail to understand the 

opponents target can potentially mean the loss of a goal in soccer, or the entire game 

in the case of Halmoids.  

3.3 Terrain Analysis 

An agent in a real-time game should be able to generalise its ability to infer 

destination over many scenarios or, in the case of Halmoids, terrains. We attempt to 

create a generalised opponent modeling approach through partial terrain analysis. The 

application of Bayes' rule requires an initial probability distribution to represent the 

link between opponent action and strategy/goal. This probability distribution can 

either be constructed from data of past interactions, or a designer's subjective belief of 



 

 47 

how an opponent should behave to achieve its goal.  

3.3.1 A* Analysis 

In a situation where the nature of a terrain/opponent is unavailable, we cannot take 

a subjective viewpoint. Thus, we need to be able to generalise for unforeseen terrains, 

and actively procure environmental data before analysis can be performed. In this 

chapter, we use A* search with a Euclidean distance heuristic to create paths from our 

opponent’s controlled unit to each of its potential destinations, as the Euclidean 

heuristic never overestimates. To explicitly compare our opponent’s position each turn 

in comparison to the paths we create would be a poor decision, in case our (human or 

otherwise) opponent uses a different distance heuristic or another (presumably non-

optimal) form of pathfinding. This is similarly the case if a single path is required by 

more than one goal, which can potentially apply in the case of 3.1. In light of this, our 

approach is to analyse each position along the path, in relation to the previous 

position. Since our environment is grid-based, we can count for each move along the 

path, a record of the direction moved in. From this, we can calculate a probabilistic 

relation of which direction would be moved in given a potential destination. The set S 

of directional probabilities per path is recorded, and is represented by 

                                  

such that 

        
                                           (2)   
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 Where U represents the Up direction, D represents the Down direction; L represents 

the Left direction, and R represents the Right direction. For each move along the path 

in each direction, a per-direction counter is incremented by 1 for that given direction. 

Obviously, this can be transformed to any directional or angular scale of choice, but 

these eight directions are chosen to make the technique applicable with the grid-based 

environment. This directional choice could potentially also apply to the spatial 

representation of a character in both 2 and 3-dimensional environments. 

3.3.2 Potential for Probabilistic Error 

 A limiting factor upon the accuracy of our observation is that of unexpected 

behaviour; if an opponent makes a move that is not anticipated through our ‘absolute’ 

prediction of the path to the potential target, the narrow probability distributions can 

potentially mean an erroneous analysis. Many values could be given a very low 

probability value since the A* analysis of the terrain may have yielded no instances of 

this action.  

 
Figure 3.2: Representation of Move counter in relation to related motion direction 
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 To allow for the consideration of deceptive or non-optimal pathfinding behaviour by 

the opponent, we count a move in each of the eight directions as a single step in the 

original direction, but also add a half step to the count for each neighbouring direction. 

E.g. if the path we assume for the opponent takes a step in the UP direction, our count 

of the moves in the direction are incremented by 1, but we also increment UL and UR 

by 0.5. This provides a ‘buffer’ for potentially unexpected (or non-optimal) moves. We 

now have a set of per-directional probability distributions for each possible 

destination. Using the terrain from 

Figure 3.1, we generate a distribution as shown in Table 3.1.  The probability 

distribution would be much more widespread across all directional values if a more 

complex terrain was to be considered, whereas in this case we can see that values are 

fairly similar across many targets due to the symmetry of the terrain.  
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 Target 1 Target 2 Target 3 

UP 0.3653 0.3845 0.3653 

DOWN 0.0003    0.0003    0.0003    

LEFT 0.1346 0.0577 0.0003    

RIGHT 0.0003    0.0577 0.1346 

UP-LEFT 0.3845 0.2499 0.1153 

UP-RIGHT 0.1153 0.2499 0.3845 

DOWN-LEFT 0.0003    0.0003    0.0003    

DOWN-RIGHT 0.0003    0.0003    0.0003    

Table 3.1: Probability distribution over all possible actions per available opponent targets from Figure 3.2. 

 Given our initial probability distribution, we can now perform an iterative calculation 

using Equation (1), which will take each action observed by the player and gain a 

posterior probability distribution of our opponent’s most probable target, which our 

opponent chooses at random. As our observation yields further information as to our 

opponent’s target, we can then intercept using the appropriate path to block our 

opponent’s progression. Figure 3.3 shows the convergence of probabilities given the 

movement data of an opponent moving to the right-hand treasure chest, Target 3. This 

shows that the use of a probability distribution over the predicted A* path can prove 

successful. Figure 3.4, however, shows the performance of a player moving to the 

central treasure chest, Target 2. As is shown through observation of the terrain defined 

by Figure 3.1, to move to the central chest requires the movement along one of the 

paths for either adjacent chest, hence the initial convergence of target belief being 

upon that of Target 3. The change denoted by the increase of the belief representing 
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that of Target 2 can be explained through Figure 3.5, which shows a map of the 

reaction of the Bayes-controlled ship (b) to the opponent action set. As can be 

observed, b successfully intercepts the opponent before it reaches the target. 

Observing the path taken by b, we can see that due to the frequency of moves to the 

right-hand treasure chest, the path before move number 9 (where our analysis 

determines a change in target) is at a point where the belief that the opponent will 

move to the right-hand treasure chest is strong enough to cause an effect that displays 

the realisation upon the next move that its initial belief is incorrect. This performance 

yields a behaviour that appears human in its folly, as well as showing enough 

intelligence in order to correct its error. 

 
Figure 3.3: Bayesian analysis of an opponent ship heading towards Target 3 (right-hand treasure chest) 
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Figure 3.4: Bayesian analysis of an opponent ship heading towards Target 2 (central treasure chest) 

 
Figure 3.5: Performance of the Bayes’ Rule -Controlled (Green/upper) ship 
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3.4 Coping with Random Behaviour 

In order to test the robustness of the A*-Bayes’ Rule hybrid, varying levels of random 

behaviour are added to the lower ship’s pathfinding, so that with probability p the 

move made is at random rather than following its original path. Figure 3.6 shows the 

accuracy of our analysis against an opponent where 0.01 ≤ p ≤ 1.0, applied in 

increments of 0.01.  

 
Figure 3.6: Interception success of a Bayes’ Rule-controlled ship against an opponent applying varying levels of 

randomness to its actions 

As we can observe, the predictive accuracy falls with the gradual increase in the 

amount of random behaviour displayed by the opponent. This can be accounted for by 

the presence of moves which are linked with a very small probability in relation to the 

target, as displayed in Table 3.1. This is further compounded by the amount of random 

movement that occasionally forces a ‘bluff’ move towards a different goal at the last 

minute; this sidestep can occasionally be enough to fool the analysis into believing in a 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0
.0

1
 

0
.0

5
 

0
.0

9
 

0
.1

3
 

0
.1

7
 

0
.2

1
 

0
.2

5
 

0
.2

9
 

0
.3

3
 

0
.3

7
 

0
.4

1
 

0
.4

5
 

0
.4

9
 

0
.5

3
 

0
.5

7
 

0
.6

1
 

0
.6

5
 

0
.6

9
 

0
.7

3
 

0
.7

7
 

0
.8

1
 

0
.8

5
 

0
.8

9
 

0
.9

3
 

0
.9

7
 

P
(I

n
te

rc
e

p
ti

o
n

 S
u

cc
e

ss
) 

P(Random Move) Interception Success 



 

 54 

change in destination. We can also see that as the amount of random behaviour 

further increases, the success of the analysis increases somewhat; this is due to the 

lack of focus or direction for the randomised player, causing an erratic approach, 

stopping or slowing the player from reaching its goal. 

3.5 Summary 

This chapter investigates the use of opponent modeling in a real-time game with 

some of the characteristics of a competitive video game, and has described how a 

probabilistic A* path analysis can be used as a generalizable means to develop 

probability distributions representing the link between assumed opponent actions and 

a short-term goal. Consider a first person shooter (FPS) type game where the player 

has a choice between finding cover, moving towards a health pick-up, or escaping 

through a given exit; applying a collection of action probabilities to various directions 

of movement and other actions (in relation to potential goals) can yield a good idea of 

the player’s tactics. Considering various other (video) game environments, tactical 

goals are prevalent in determining the success of an agent (or player) in many genres 

of game – Real-time strategies, that require the employ of planning and tactical 

decisions, may be of particular interest; given a selection of strategies, such as the 

human case base used by Louis and Miles in their customized strategy game (Miles & 

Louis, 2005) (Louis & Miles, 2005), we may analyse the use of independent actions (as 

a chain of actions or a set) to determine the overall opponent goal. A further example 

may be of a fighting game, such as KING OF FIGHTERS XII (SNK Playmore 2009) or STREET 
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FIGHTER IV (Capcom 2008), where sequences of moves (known as combinations, or 

‘combos’) or special abilities (such as throwing a fireball, or any particularly damaging 

move) can be employed to drain the ‘energy bar’ of another opponent. In the situation 

where enemy inputs can be observed, such as the GoCap system (Alexander, 2002), 

the set of actions input to perform a move can be used to observe the intended attack, 

and resultantly perform a blocking or countering action in time.  In these cases, the 

agent would be able to react believably (given a suitably coded response) to the 

player’s decision. At a higher level, initially low level strategies could be related to 

much grander strategic ideas – we only need to know action probabilities for hand-

coded strategies in relation to observed action probabilities. A player which is guessing 

opponent strategies (and changing guesses in response to opponent actions) could 

then appear to have a consistent, and human-like, approach to thwarting opponent 

strategies, even when these strategies will rarely be known in advance. We have 

shown in this chapter that Bayesian analysis upon this distribution in relation to 

opponent actions observed in real time can determine the goal of a previously unseen 

opponent, and hence determine the point of interception. The potential for applying 

Bayesian analysis and, by relation, opponent modeling to game agents is considerable; 

the data that can be gleaned from human interaction is expansive in scope, yet few 

have attempted to use any means to analyse it and apply any inference to a 

commercial game environment. It can be argued that Intelligence is only recognised 

and defined subjectively; the capability to behave in an intelligently believable way is 

enough to create an immersive, interactive experience. The weakness in this approach 
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is the time taken to converge to a conclusion of which goal an opponent is heading 

towards (and the potential for deceptive play to reduce the accuracy of the 

prediction), but a human’s predictive capability where unpredictability and human 

error could similarly contribute to a delay in an accurate belief of opponent 

destination. Furthermore, knowledge of the strategy (or at very least the potential 

goal) is required for an accurate analysis to be made – if we consider that the 

opponent’s target is that of a goal, but of something else, possibly a strategically 

advantageous position, then the analysis could be erroneous. However, in chapter 5 it 

is shown (using a simplified Poker game) that even if the actual strategy of the 

opponent is not strictly defined within the set of opponent strategies, an 

approximation of the potential strategy by a modeling technique is still inherently 

useful. This can be analogous to a human approach to game-playing, where 

approximations of an opponent (however incorrect) can still prove useful. 
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Chapter 4: Strategy Recognition in 
Simplified Poker 

In this chapter we investigate the application of opponent modeling in a simplified 

form of Poker; a 10-card deck, a single-card per player, highest card wins scenario. We 

describe four types of opponent agent in relation to action frequencies and determine 

‘anti-’ strategies that are capable of beating each type to an adequate degree. We 

subsequently use Bayesian analysis upon our opponents to determine the style of 

strategy used given only the actions performed by the opponent in game. This analysis 

then determines which anti-style should be adopted by the player in order to most 

successfully counter the opponent’s play style.  

4.1 One Card Poker 

We use a simple version of Poker, which still maintains some of the tactical ‘flavour’ of 

a full-scale Poker game, but is more amenable to experimentation. The deck consists 

of ten cards, numbered 1, 2, …, 10 (names and suit are arbitrary, only the strength 

order of the cards is important). Each player has an initial credit of 10 chips, and each 

hand entered requires a one-chip ante from each player, after which each player is 

dealt one card. This approach is somewhat richer than that of Koller and Pfeffer (Koller 

& Pfeffer, 1997), which uses an 8-card deck to find an optimal mixed strategy using 

game theory with each player having only one card and one chip each, and Burns 

(Burns, 2006), which investigates the optimality of common sense Poker strategies, 
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using a deck in which each player is dealt a card classed as ‘high’ or ‘low’. In our game, 

the winner of the hand is the player with the highest valued card at the showdown at 

the end of each hand. 

4.1.1 Game Rules 

After the cards are dealt, the players take turns in a clockwise direction, and make a 

decision whether to bet, fold, or check, given the value of their card. Betting (which is 

equivalent to a ‘raise’ action), and each subsequent raise costs one chip. Once all 

players have matched one another’s bets (or all but one player has folded) the 

showdown is reached, and the player with the highest card (or only player remaining) 

receives the pot. The players continue playing further hands until there exists a 

tournament winner who has won all of the chips. In this current work, a bet limit of 4 

chips per player per hand is employed. This limit prevents a tournament ending in a 

single hand, as could potentially happen in a ‘no-limit’ game as well as preventing a 

player from going ‘all-in’ (betting all held chips, and creating a side-pot in a multi-

player environment) to avoid other players from being unable to match any large bet, 

as well as potentially ending a tournament in a single action. Primarily, however, these 

limitations have been applied to allow us to observe opponent actions rather than 

tournaments ending prematurely. The strategies which can be employed in this 

version of Poker, particularly of bluffing and opponent modeling, echo those of a single 

betting round of the full-scale game. 
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4.2  The AI Players 

4.2.1 Distinct Style Players 

Poker players may usefully be categorized into four main styles: 

 Loose Aggressive (LA):  A player that typically over-values hand strength, who will 

constantly force the pot higher, even with a relatively weak hand. 

 Loose Passive (LP):  A player that will also over value their hand, but will generally 

call, and only bet when they believe that they are likely to win the hand. 

 Tight Aggressive (TA):  A player that accurately values their card, and will fold 

more often, but any hand where a high card is held, then the player will bet 

aggressively. 

 Tight Passive (TP):  A player that plays very few hands, and even when doing so 

will generally call, and only bet in rare situations when a win is most likely. 

Barone and While recognized these play styles as part of their investigation into 

evolutionary adaptive Poker play, and have also been utilized as part of Kendall and 

Willdig’s work (Barone & While, 1998), (Barone & While, 1999), (Barone & While, 

2000), (Kendall & Willdig, 2001). These classifications are used as standard Poker terms 

for describing in a general, simplified, sense how a player plays his hands, although a 

good human player would generally use more than one of these styles (possibly 

varying between them from hand to hand). Each of these styles of player was created 

using a simple deterministic design (Figure 4.1). Having four precisely defined player 
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styles gives us a good basis for analysis, even if the problems of analysis are easier than 

for the full game of Poker. 

4.2.2 Implementing the Distinct Styles 

A player’s style is characterized by a probability pair (α, β), where α represents the 

minimum win probability (the probability this player has the best hand) required for a 

player to remain in the hand, and β represents the minimum win probability for the 

player to bet. Then α is responsible for whether a player is tight or loose, and β 

determines whether a player is passive or aggressive. If the win probability is less than 

α, the player will make a checking action if no money needs to be placed in the pot to 

remain in the hand, and fold otherwise. It should be noted that these players act on 

card strength alone, and ignore opponents’ betting actions. 

 
Figure 4.1: Layout of a General Player 

 A pair *α, β+ represents a mixed strategy, with a distinct play style. The α and β values 

for each playing style are defined in Table 4.1. These values have been determined 

subjectively by the author based upon the descriptions laid out at the start of this 
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section. The play frequencies displayed in Table 4.3 infer that the α and β values here 

yield the desired playing behaviour for each of the individual styles. 

 Α Β 

LA 0.1 0.2 

LP 0.1 0.9 

TA 0.5 0.6 

TP 0.5 0.9 

Table 4.1: α and β values for each style of deterministic player. 

4.2.3 Design of the Anti-Players 

 “Anti-Players” were created as a ‘nemesis’ to each of the LA, LP, TA, and TP players, 

still based upon the same two-parameter model of playing style displayed in Figure 

4.1. The values of α and β for an “Anti” Player are dependent upon the number of 

opponents, and the respective styles of those opponents. (α, β) pairs were tested in 

increments of 0.1 for 0  α  β  1 to determine the best values. Each (α, β) pair is 

tested in a 100-game heads-up tournament, with all players starting each tournament 

with 10 chips. For example, Figure 4.4 gives the performance of different *α, β+ pairs 

against three LA players.  

Table 4.2 gives the *α, β+ values for the Anti-LA, Anti-LP, Anti-TA, and Anti-TP players, 

with the success rate of these values against the four distinct styles. Against loose 

players, the α and β values represent a rationally tight style of play, as loose players 

will often squander chips when facing a tight opponent that holds a strong card. When 

playing against tight players however, a loose strategy is adopted to remain in play, 

and a tight one in relation to betting/raising. This appears rational, as many tight 
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players will fold when holding a weak card, possibly leaving the pot to a looser player 

that may hold a weaker card. The tightness in relation to betting is also rational; 

staying in hands where the pot is small is wise, but when a strong card is held, the 

player should try to raise the pot as high as possible. When against loose players, the 

win percentage cannot reach 100% due to the situation where the loose player has the 

highest card and each player bets, ultimately costing the Anti-Player all of its chips. 

Conversely, when facing tight players, the win percentage cannot reach 100% due to 

the Anti-Player remaining in most hands, meaning that in some circumstances, the 

player will run out of chips due to the ante per hand. It should be noted, however, that 

the usage of tight and passive play is somewhat exaggerated in our two parameter 

model, when compared to that seen in real Poker (Sklansky, 1992). 

 α β WIN % 

Anti – LA 0.6 0.8 76 

Anti – LP 0.8 0.9 63 

Anti – TA 0.0 0.7 71 

Anti – TP 0.0 0.8 75 

Table 4.2: α and β values for each style of Anti-Player. 

4.2.4 Modeling the Opponent using Bayes’ Rule 

Having a means of defeating each style of player raises the question as to whether 

we can intelligently select between them to create a player that could defeat all types 

and combinations of opponent. We propose that Bayes’ theorem could be used to 
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analyse past play information (history of each player’s betting actions), in order to 

determine the style of each opponent.  
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                  (3) 

We use Bayes’ theorem to calculate the probability of a player utilizing a specific play 

style given their play actions. While using play action probabilities only may handicap 

the performance of the approach, we show below that this approach does converge 

quite quickly. This approach has proven effective for a perfect information 

environment in Chapter 3, and we intend to show the effectiveness of its generality 

over the next few chapters with respect to imperfect information games. Equation (2) 

gives an extension of Bayes’ rule from Chapter 2, Section 2.1 where A is a random 

variable representing player type, and B is a random variable representing player 

actions. Our calculation uses an a priori belief of 0.25 as P(A) for each of the four player 

strategies for the first iteration. The probabilities in Table 4.3 represent an a priori P(B | 

A) which were obtained by analysing the frequency of past actions of players of style A 

over 100,000 hands (25,000 hands against a collection of each type of opponent). P(A) 

is the prior belief of an opponent’s play style, and as such is set to 0.25 initially as all 

opponent styles are assumed equally likely at the start of a game. Actions that are not 

influenced by playing style, such as check actions taken when it is not necessary to 

place any stake to stay in the hand, are disregarded in order to improve the accuracy of 

the player analysis. Bayes’ rule updates the initial probability of player style belief such 
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that P(A | B) for the current iteration becomes P(A) for the next action analysed (i.e. 

our belief of style P(A) is the result of P(A | B) for the last action analysed). P(B) is 

represented by the summation of P(B | A)P(A) for all possible A, where the updated 

initial probability represents the probability that the player is of each of those styles. 

Pseudo code for this analysis player is given in Algorithm 4.1. 

#BayesTheoremPredictor 
Inputs:  
LastAction - Opponent’s Last action  
fLAPlayProb – Array of action probabilities given opponent is LA 
fLPPlayProb – Array of action probabilities given opponent is LP 
fTAPlayProb – Array of action probabilities given opponent is TA 
fTPPlayProb – Array of action probabilities given opponent is TP 
for All of Opponent i’s past actions 
{ 
action = Players[i].LastAction; 
// Multiply each action probability by the initial probability  
tp = fTPPlayProb[action] * fInitialTPProb[i]; 
ta = fTAPlayProb[action] * fInitialTAProb[i]; 
lp = fLPPlayProb[action] * fInitialLPProb[i]; 
la = fLAPlayProb[action] * fInitialLAProb[i]; 
// Sum all the separate probabilities, to create the normalizing constant,   
// Pr(B), and normalize each value so that the probabilities sum to 1 
float prob = tp+ta+lp+la; 
if (prob < 1) 
{ 
tp = tp / prob; 
ta = ta / prob; 
lp = lp / prob; 
la = la / prob; 

} 
// Set all initial probabilities as the new value, Pr(A|B) 
fInitialTPProb[i] = tp; 
fInitialTAProb[i] = ta; 
fInitialLPProb[i] = lp; 
fInitialLAProb[i] = la; 

} 
Outputs: 
fInitialLAProb – An array of LA style belief for each opponent 
fInitialLPProb – An array of LP style belief for each opponent 
fInitialTAProb – An array of TA style belief for each opponent 
fInitialTPProb – An array of TP style belief for each opponent 

Algorithm 4.1: Pseudocode of the Bayes’ Theorem predictor 
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 Fold Check/Call Bet/Raise 

LA 0.36 0.05 0.59 

LP 0.60 0.29 0.11 

TA 0.73 0.02 0.25 

TP 0.87 0.07 0.06 

Table 4.3: Action probabilities for each opponent style. 

  If we compare the action probabilities in Table 4.3 to the α and β values from Table 

4.1, we can see that the Loose Aggressive player will very rarely check; the narrow 

interval between LA’s α and β (0.1) dictates a very narrow probability for checking. 

Comparably, the very large probability of betting is indicative of the very low threshold 

for betting behaviour. The fold probability appears to be quite large for the LA player, 

but it must be considered that the analysis is upon a subset of all of the players actions 

(due to the aforementioned disregarding of certain betting scenarios) and therefore 

the probabilities are skewed. Similarly, the checking probability over all types of 

opponent are quite low due to this situational ignorance except in the case of the 

Loose Passive player, which will check and call significantly more than the other styles 

due to the greater number of hands played given the low α value. As is atypical of the 

tight player, fold probabilities are greatly exaggerated the tighter the player becomes, 

and it can be observed that the TP player will both check and bet very rarely given the 

high values of both α and β. 
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Figure 4.2 : Graph displaying how player type probabilities alter given opponent actions. In this case, the analysis 

player converges to the conclusion that the opponent is a Tight Passive player 

Figure 4.2 gives an example that shows how quickly the analysis player probabilities 

converge. This exemplifies the speed at which Bayes’ Rule can determine player 

strategy, as long as we have the probabilities of low level actions over some well-

defined player strategies (or potentially intentions/goals). This approach could have a 

wide application over a number of games where targets and intentions need to be 

modelled, especially where a representative set of possible strategies can be found, 

possibly even utilising network data or play records within a game - this is discussed 

further in Chapters 3, 5 and 6. The heterogeneity of independent strategies is vital to 

the accuracy of the analysis; in this case, we have a somewhat distinct separation 

between the strategies in relation to action probabilities (a conditional independence) 

that can be seen in Table 4.3. For example, the TP player can be defined by the 

frequency of folding, whereas the high frequency of folding with the TA player can be 
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offset from TP analysis by the (comparatively) significantly greater betting frequency. 

In the same vein, the TA player is separated from the LA player by the greater folding 

probability. The risk of strategy similarity can result in misleading analysis, as can be 

the case with scenario disparity in comparison to playing style. To explain this, consider 

a situation where an LA player holds a relatively weak card (5, for example); in this 

scenario, the LA player will bet significantly, whereas a Tight Passive player will most 

likely not stay in the hand given this dealing. If we compare this to the scenario where 

a TP player holds the highest card in the deck (an Ace), the TP player will also bet 

profusely. In both of these situations (if given no prior analysis) the Bayesian approach 

would assume the style for both players (a Loose Aggressive one) given the intensity of 

betting actions. Subsequent hands will separate the two players in terms of style to the 

analysis, but the similarity of play given certain scenarios between two differing styles 

can occasionally lead to an erroneous analysis. There must be a significant difference 

between the action probabilities of style (or goal in the case of Chapter 3) for a good 

enough conclusion to be reached. A good example of this can be seen in Chapter 3, 

where Figure 3.4 displays indecision as to the exact goal of the opponent given the 

(initially) similar behaviour when attempting to reach on of two disparate locations. 

4.2.5 Modeling Correct Responses for Differing Styles 

The four Anti-Players combine to form the strategies of the Analysis Anti-Player. 

After the analysis player learns the opponents’ styles, it prioritises its reactions in 

relation to the most “dangerous” opponent type. For example, a Tight Passive player’s 
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actions would be taken more seriously than that of a Loose Aggressive player. This risk 

analysis leads to choosing a specific anti-player’s tactics dependent on the greatest 

threat. A Tight Passive player has the greatest priority, due to the tight risk-free nature 

of play. After this, a Tight Aggressive player would be given priority.  

When considering only loose style players, the most frequent style is given 

precedence (for example, in a set of two LA players and a single LP player, LA is given 

precedence), pigeonholing the entire set of opponents in relation to that specific style. 

Algorithm 4.2 shows how the Analysis Anti-Player chooses its tactic. The player 

analyses each of the opponents’ actions and determines the opponents’ play style 

using the algorithm defined in Algorithm 4.1. It then analyses the assumed styles of all 

the opponents, and chooses to play against the most threatening style; Tight Passive 

and aggressive players take priority as tight players are much stricter in their style of 

play, if no tight players exist, then priority is given to the loose style used by most 

players. When the Analysis Player has decided which style of player to respond to, it 

will use the relevant ‘Anti’ style of play. This importance is in line with the best 

exhibited performing players in Kendall and Willdig’s work, where a tight approach to 

play is generally preferred (Kendall & Willdig, 2001). 
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#AnalysisAntiPlayer 
Inputs:  
NumberOfTP – Number of Tight Passive Opponents 
NumberOfTA – Number of Tight Aggressive Opponents 
NumberOfLP – Number of Loose Passive Opponents 
NumberOfLA – Number of Loose Aggressive Opponents 
BayesTheoremPredictor() 
CountNumberOfOpponentStyles() 
if(NumberOfTP>0) 
{ 
   action = GetAntiTPActions(); 
} 
else if(NumberOfTA>0) 
{ 
   action = GetAntiTAActions(); 
} 
else if(NumberOfLP>NumberOfLA) 
{ 
   action = GetAntiLPActions(); 
} 
else 
{ 
   action = GetAntiLAActions(); 
} 
Outputs: 
action – The action to be performed by the player 

Algorithm 4.2: Pseudocode for the Analysis Anti-Player to determine the opponents’ style and choose which tactic 
to employ 

4.2.6 The Simulation Player 

The last player created is called the Simulation Player. This player, on each of its turns 

is told the style of each opponent, and it then runs a simulation of the game within 

itself with the current demographic of players, and runs tests against the players over 

a discrete set of 66 α and β values in increments of 0.1 where 0 ≤ α ≤ β ≤ 1. These tests 

consist of 100 games per *α, β+ pair. This process takes approximately 5 minutes. The 

player then utilizes what it sees as the ‘best’ values of *α, β+ to make subsequent 

decisions against the opponents. The graphs from Figure 4.4 to Figure 4.7 show a 

representation of the results that a simulation player receives when playing different 

sets of opponents. 
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4.3 Results and Analysis 

4.3.1 Bayesian Analysis vs. Simulation Player 

The comparison of the Analysis Anti-Player against the Simulation Player (Figure 

4.3) represents an average of the percentage of tournaments won by each player 

against every combination of opponents in a four-player environment. All experiments 

are run on a Pentium IV 3.0 GHz HT with 1GB RAM using C#.NET running under 

Windows XP SP2, with a computation time of 50 minutes. 

 

Figure 4.3: Graph displaying combinations of opponent styles against the percentage of tournaments won by each 
player 

We observe that the averaged results are not sensitive to the order of opponents 

around the table, with a confidence interval of 3%. We can see that the performance 

of the Analysis Anti-Player is comparable to, and on occasion surpasses that of a player 
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that is already knowledgeable of the opponent’s styles. Due to the random nature of 

the hands, it is not surprising that the Analysis Anti-Player is occasionally the best. 

These results show how successful the pigeonholing technique is compared to a 

‘custom built’ design that the Simulation Player creates for the current demographic 

even though the analysis player is over 100 times slower (due to the large number of 

simulations needed at each decision point).. There is a point where the success rate of 

the Simulation Player reaches below 40% (the analysis player is also significantly 

impaired). The opponents at this point consists of two LP and one TP player – we 

consider that the loose nature of the two LP players influenced the simulation player 

to stay in more hands given the passive nature of the opponents, but the non-adaptive 

nature of the player does not adjust for when it is facing only the TP player (when 

either the LP players have either not played in the hand or have been previously 

knocked out of the tournament). The greater performance of the Bayesian analysis 

player can be attributed to the dynamic adjustment it performs given the changing 

opponent demographic, although it still displays difficulty due to the precedence of the 

TP players presence which dictates that more hands should be stayed in (which 

somewhat counteracts the advice of infrequently staying in the hand against a looser 

player)  It should be appreciated however, that 40% is not necessarily a failure as this is 

a four-player game, and 40% is greater than a ‘fair share’ of tournament wins. 

One comparison between the two players is related to the performance of each 

player against the groups of mostly tight players on the right hand side of the graph. 
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These results show that the players are both quite competent against these styles of 

play, and the Analysis Player has nearly an 85% success rate. An explanation for the 

high rate of success, even against four players is possibly due to the tight nature of the 

opponents; any action that the player takes which is not a folding action may steal the 

pot from a tight player with a better hand: tight players are very susceptible to 

bluffing. 

The success against mostly loose players is slightly less prominent, but still very 

impressive, averaging around 55% of tournament wins. This is not surprising since a 

loose player’s actions reveal relatively little about the card held. This can lead to 

situations where a loose opponent will have a very strong hand, and the Analysis 

Players will still remain in the hand, resulting in an unsuccessful tournament. 

 
Figure 4.4: Graph displaying the tournament success of different values of α and β (in % of tournaments won) when 

playing a four-player tournament against LA/LA/LA opponents 
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Figure 4.5: Graph displaying the tournament success of different values of α and β when playing a four-player 

tournament against TP/TP/TP opponents 

 
Figure 4.6: Graph displaying the tournament success of different values of α and β when playing a four-player 

tournament against LA/LA/TP opponents. 
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Figure 4.7: Graph displaying the tournament success of different values of α and β when playing a four-player 

tournament against LA/LA/LP opponents. 

4.3.2 Performance against Static Styles 

Figure 4.4, Figure 4.5, and Figure 4.6 provide some explanation as to why the 

pigeonholing technique works; these figures show the success of each possible value 

of α and β against a different collection of opponents; the areas closer to red indicate a 

greater concentration of large win percentages. The entire collection of results for 

each combination set of 3 opponents is in Appendix A. 

Figure 4.4 shows the successful probabilities against three Loose Aggressive 

opponents, a large area of high success values can be seen, indicating that playing 

tightly, as well as playing with a low amount of belief in the severity of the opponent’s 

actions can bring a large number of wins. Figure 4.5 shows the successful probabilities 

against three TP opponents, and the graph shows that the concentration of wins is 

very low, mainly due to the low probability of a large pot when playing a tight player, 
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best strategy is to participate in as many hands as possible, but not to make a betting 

action unless completely certain of a win. This appears to be a rational tactic, as 

remaining in a hand increases the probability of stealing a pot from a tight player.  

Figure 4.6 shows the effect of replacing one Loose Aggressive opponent with a Tight 

Passive one. The transformation from Figure 4.4 to Figure 4.6 is quite dramatic, and 

exemplifies the effect that a Tight Passive player can have upon a game of three loose 

opponents, in turn justifying the pigeonholing technique, as the resulting graph is 

much more closely related to the graph of three Tight Passive opponents than it is for 

three Loose Aggressive opponents. The main explanation of this is probably due to the 

order that a game may take with this general demographic; the loose players would 

have a tendency to risk many chips, and may get removed from the tournament early, 

leaving only the Anti-Player and the Tight Passive opponent, which would probably 

dominate most of the games. It should also be noted that the number of tournament 

wins in total across the graph is relatively low compared to other graphs. This is 

however, one of the points where the Analysis Player greatly outperforms the 

Simulation Player (by nearly a 20% margin). This is arguably due to the Analysis Player 

modifying its behaviour while playing to deal with the greatest threat. When the loose 

players have been removed, the main focus of play will be against the Tight Passive 

player. 

Figure 4.7 shows how small an effect is brought upon the same demographic of Loose 

Aggressive players by adding a Loose Passive player. As can be seen, there is very little 
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difference between the graph in Figure 4.7 and that of Figure 4.4, which is mainly 

caused by the loose nature of the opponents, as the dark area of the graph (displaying 

an ‘area of believability’) shows how fragile a loose player is against partially tight play. 

4.4 Summary 

This chapter presents an adaptation of the Bayesian analysis introduced in Chapter 3 

for a simplified game of Poker. The analysis is implanted into an agent that analyses 

the past actions of its opponents, and in turn uses the Bayesian analysis to learn the 

style of opponents it is facing. The player uses a system of ranking to determine the 

greatest threat and acts as if all opponents are of that style by ‘pigeonholing’. The 

performance of the learning player compared to one that knows the opponent styles 

without the need for probabilistic calculation is quite similar, and demonstrates the 

effectiveness of both learning and pigeonholing.  

A single deterministic opponent proves simple to beat once the Bayesian predictor 

analyses its actions and determines the opponent’s style. When facing a group of three 

opponents, however, the pigeonholing technique works to a suitable degree, but could 

be compromised when coping with partially randomised, dynamic, or bluffing players. 

An expansion to this technique would require a design highly specific to the strategies 

which the opponents might have could prove highly unwieldy. Given this limitation, we 

shall consider an alternative means of agent construction in the next chapter. 
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Chapter 5: Evolutionary 
Approaches to Simplified Poker 

Chapter 4 notes the difficulty of manually constructing a decision-making agent, such 

that a hard-coded agent may be limited by its construction in relation to achieving a 

successful counter strategy to the current opponent demographic. In this chapter we 

evolve a population of agents using a genetic algorithm in order to replace the 

previous ‘anti’ players. We further investigate the ability of a single chromosome to 

play against all four types of opponent then investigate the effects of an opponent 

model upon the quality of the evolution in order to ascertain that any improvement 

can be gained through the use of an opponent model with respect to the evolved 

solutions employed. We further apply this investigation to a neuroevolutionary 

approach which has been shown as a suitable general-purpose means of providing an 

effective agent (Lockett & Miikkulainen, 2008). We investigate the ability of NEAT to 

construct reliable counter strategies to our initial static opponent styles, and 

subsequently the effect our opponent model has upon the effectiveness of the evolved 

player, with the intention that an evolved player can be able to develop more complex 

strategic behaviours given our Bayesian modeling technique. Using our Bayesian 

approach, this chapter demonstrates the importance of recurrence and opponent 

modeling in conjunction with neuroevolution when investigating multiplayer games. 

Finally, the robust nature of our model and evolved agents is evaluated against 

opponents that use varying levels of bluffing and adaptation of their play style. 
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5.1 Evolving Genetically-Coded ‘Anti’-Players 

We evolve a set of players using an evolutionary algorithm using a chromosome 

comprised of 60 genes. The chromosome is built from three sections, based upon the 

opponent’s most recent action. In this case, a bet or a checking action is considered, 

but a folding action is not (as it indicates the end of a hand in our ‘heads-up’ 

environment) – we do, however, use the third section for the situation in which we are 

currently playing a new hand. In each of these three sections, the 20 genes determine 

both the alpha and beta values for each potential card held. For example, if the first 

two values of the chromosome are 0.5 and 0.7 respectively, then these values 

represent that the opponent has made a bet, stay in the hand with probability 0.5, and 

bet with probability 0.7 if staying in the hand. The alpha-beta pair is not separated 

during crossover, as keeping the two values together reduces noise (although both 

values are individually subject to mutation). This design is shown in Figure 5.1 

BET CHECK FOLD

Card 1
α     β 

Card 2
α     β 

………...
Card 10
α     β 

 
Figure 5.1: Design of the Chromosome 

The fitness of the solutions is determined by their performance in a 100-game 

scenario where performance is ranked by the number of games won by the solution. In 

this case a ‘game’ represents a competition where the winner is the player that wins 

all of the chips from his opponents. At the start of the game a player receives 100 
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chips, places an ante of 5 chips, with bets limited to 5 chips per action and limit of 40 

chips per player per betting round (essentially four bets, per player, per round). Once 

the bet limit is reached, any agent that would generally choose a betting action will call 

the current maximum bet instead of re-raising. Solutions are evolved using a 

population size of 100, a single-point mutation probability of 0.01 (intending for one 

mutation per chromosome, per generation), and single-point crossover for 500 

generations. We also use a fitness proportionate (roulette wheel) operator to promote 

poorly performing, yet potentially useful solutions to breed with other successful 

solutions. Each experiment is run five times and the results shown represent an 

average of those five runs.  

 
Figure 5.2: Evolution of a GA player against a single Loose Aggressive Opponent 
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Figure 5.3: Evolution of a GA player against a single Loose Passive Opponent 

 
Figure 5.4: Evolution of a GA player against a single Tight Aggressive Opponent 
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Figure 5.5: Evolution of a GA player against a single Tight Passive Opponent 

The evolution shown in the graphs from Figure 5.2 through to Figure 5.5 show that 

an evolutionary approach to defeating each player is accomplishable, as has been 

shown in other work (Barone & While, 2000) (Kendall & Willdig, 2001). Particularly in 

Figure 5.2, we see that the average ‘best’ solution for the first generation has an 

extremely high fitness (with almost 70% of tournaments won) which can be attributed 
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which responses to betting actions are performed). As with the nature of the randomly 

initialized population, the α and β values of the ‘best’ overall solution from the first 

generation indicates a probability of staying hands of around 0.5 (with a card of 4 or 

greater), which is analogous to the behaviour indicated by the Anti-LA player from 
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Tight Aggressive player seen in Figure 5.4 is similarly successful after an 

understandably longer period of evolution, as the Tight Aggressive player is more likely 

to be staying in hands with a stronger card rather than the frequent Betting of the 

Loose Aggressive player. Looser players appear to be a more difficult task for the 

evolution to compete against – the evolution against the Loose Passive player in Figure 

5.3 displays a similarly fast initial evolution, but the evolution slows dramatically, 

showing an evident stagnation in the average population fitness from around 

generation 120, the average best performance reaching a win percentage of 98% over 

all five instances of evolution. We see further difficulty with the evolution against the 

Tight Passive player (Figure 5.5), which upon reaching the limit of 500 generations still 

appears to be evolving (as indicated by the significant jump in average population 

fitness around generation 470). The slow evolution is understandable due to the 

difficulty previously discussed about the strength of the TP player in Chapter 4, section 

4.3.1, but even at the end of the 500 generations, the average best performance of the 

evolved solution is of 76% tournament wins, which is only of 1% different to that ‘Anti-

TP’ player displayed in Table 4.2. The evolved Anti-TP player behaves similarly with 

respect to the two-parameter ‘Anti-TP’ player, although a more diverse play behaviour 

appears such that folding is more likely in response to a Tight Passive opponent 

betting, and a persistence to stay in most hands where a Tight Passive player is likely to 

fold.   
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5.1.1 Evolving against all Types of Opponent 

The ease of our evolved agents to generate a successful counter strategy begs an 

investigation into determining whether a single chromosome could evolve a strategy 

capable of competing adequately with all types of opponent. We once again evolve 

solutions with the parameters given above, but run the experiment for 1000 

generations. Although the evolution shown in the graphs from Figure 5.2 through to 

Figure 5.4 show relatively rapid evolution to strong solutions (approximately 400 

generations), the slow evolution shown in Figure 5.5 dictates that a greater amount of 

time for evolution be provided given the increased complexity of the problem 

attempted. The fitness now consists of an average of how the solution performs when 

playing 100 games against each style of opponent in turn (hence 400 games per 

solution evaluation, 100 each against LA, LP, TA and TP), with a computation time of 

approximately 8 hours per opponent. The results of this evolution are averaged over 

five individual runs, and are displayed in Figure 5.6 



 

 84 

 
Figure 5.6: Evolution of a GA player against all types of opponent 

Figure 5.6 shows that the collective average is quite poor in relation to the potential 

performance shown from Figure 5.2 through to Figure 5.5, although a ‘best’ score of 

68% against all four opponents is not necessarily a bad average, given that a successful 

player will win more than 50% of the time. Through observation of the overall ‘best’ 

evolved solution, we can see that the performance against both styles of Aggressive 

player is very strong (with 100% of tournament wins against each), the overall solution 

is weak in comparison when playing against the Loose Passive and Tight Passive 

Players  (with average Tournament successes of 40% and 32% respectively). Using a 

single chromosome in order to respond to all four style of opponent is a weakened 

approach to facing the various types of opponent. We believe that utilising our 

Bayesian opponent model as part of the evolution could help yield stronger solutions 

against all four types of opponent. We now evolve solutions using a chromosome 

length of 240 (four sets of 60 genes as represented by our earlier experiments), and 
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use our Bayesian opponent analysis to determine which part of the chromosome to 

use when making decisions of when to stay in and fold, such that the first 60 alleles are 

used as a response to the belief that the opponent is Loose Aggressive, the second 60 

to respond to a Loose Passive player, and so on. The averaged evolution (over five 

instances) of our chromosome using Bayesian selection is displayed in Figure 5.7. 

 
Figure 5.7: Evolution of a GA player using the Bayesian Opponent Model against all opponent styles 

Figure 5.7 shows the evolution of our agent using our Bayesian analysis, which is, in 

comparison to Figure 5.6, far stronger when facing all types of opponent. The dramatic 

improvement is accountable to the separate sections of the chromosome being 

allocated to each opponent style, this allows flexibility enough that separate counter 

styles (like those evolved in Figure 5.2 through to Figure 5.5) can be utilized specifically 

for each opponent such that once our Bayesian predictor assumes the opponent style 

to be Loose Aggressive, for example, all resulting actions are taken from the first 60 

alleles in the chromosome (until the model adjusts, of course). The rapid evolution of 
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the solutions is surprising in comparison to Figure 5.6, where Figure 5.7’s chromosome 

is four times larger in its construction. The ability for Bayes’ Rule to select between 

individual strategies within an evolved agent is an important ability, slighted only by 

the need for separate tactics to be evolved (a per style set of genes within the 

chromosome). The resulting chromosome is, as mentioned four times larger than the 

other solutions evolved, which is analogous to Bayes’ Rule selecting one of the four 

agents evolved in Figure 5.2 through Figure 5.5 (similar to the selection of an Anti-

Player in Section 4.2.4) instead of a single, smaller solution. Furthermore, this genetic 

approach may still be constrictive in approaching stronger solutions against individual 

styles (with particular reference to the difficult evolution against a Tight Passive player 

shown in Figure 5.4). 

5.2 Evolving an ANN-Controlled Opponent 

In order for us to investigate an agent’s ability to evolve more complex behaviours, 

we take a neuroevolutionary approach to our simple form of Poker. The capability of 

evolutionary neural networks to adapt to their environment, as well as changes in the 

environment itself is a tributary factor to our choice of this approach. The adaptive 

nature of a neuroevolutionary system enables the determination of behaviour (and 

potential performance benefits) of an agent with which the internal decision process 

cannot be directly controlled or defined by the author, which can in many cases be a 

restrictive factor in agent design (Yao & Liu, 1998) (Yao, 1999).   
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5.2.1 SharpNEAT 

For our agent evolution, we use a C# version of Stanley’s NEAT algorithm called 

SharpNEAT. NEAT evolves increasingly complex networks, meaning that it becomes 

more complicated as evolution progresses, potentially meaning that more complex 

and sophisticated behaviours can be evolved (Stanley & Miikkulainen, 2002) (Stanley & 

Miikkulainen, 2002) (Stanley & Miikkulainen, 2002). An evolutionary algorithm is used, 

which utilizes historical markings, separating innovations into separate species, and 

gradually increases the size of the networks involved, determining the structure of the 

ANN. Each connection gene stores the input and output nodes, as well as the 

connection weight and, if it is enabled, an ‘innovation number’ which helps find 

corresponding genes during genetic crossover. 

Mutation in NEAT affects nodes, weights and connections, with nodes being added 

(splitting a connection, disabling one connection and creating two more), or new 

connections between nodes being created. Crossover involves matching genes 

between two equal-fitness parents, and using disjoint and excess genes to create an 

expanded child node. The population is speciated so that innovations are not lost; only 

new innovations (with same innovation number) are compared to each other, rather 

than the entire population. The fitness of a single genotype is the determining factor in 

the existence of the species, which is based upon the averaged fitness of all genotypes 

within that species. This restriction means that greater populations are at greater risk 

of more adaptation or replacement.  
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5.2.2 Evolving NEAT to Play Poker 

An issue for every researcher using ANN’s in their work is that of the number and 

form of their inputs, Davidson et al. (2000) used an ANN to predict an opponent’s next 

action, and used binary values for Boolean inputs representing the stage of the game 

and the last action of an opponent, and real values from 0 to 1 for all others (such as 

pot odds) in order to represent opponent playing habits. The design of our network 

structure, which ignores the round-based and card-based information from Texas 

Hold‘em used in Davidson’s approach, can be seen in Figure 5.8. 

 
Figure 5.8: Design of player network. 

 The ‘Last Opponent Action’ inputs translate the last action of the opponent into 

binary. The ‘Current Credit’ input represents the ratio of chips the player has in 

comparison to the number of chips available at the table (including all opponent-held 

chips). The final (and arguably most important) input is that of the card held, which is 

represented by its number divided by the total number of cards. The outputs of the 

network represent the action to be taken, the action represented by the largest output 
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value is the action performed. 

In our experiments the fitness of each of the genomes in a population is represented 

by T, the percentage of tournaments won by the player (i.e. the tournaments where 

this player wins all the chips of all opponents) over 100 tournaments. We use the 

number of tournaments won due to the speed with which an iteration of a tournament 

of one card Poker can be run (in comparison to that of Full-scale Texas Hold‘em); in 

this case success represents a genuine ‘competition’ win rather than a potentially 

erroneous success (i.e. winning a series of big pots through luck before a hand limit is 

imposed, for example). We use a population size of 100, a node-addition probability of 

0.005, and a node-connection addition probability of 0.01. The new node addition 

probability is limited such that several generations may be required to adjust to the 

addition of the new node (and for any connections added between the new node and 

others). Similarly, too great an addition frequency may reduce the effectiveness of the 

network in making effective use of the nodes currently in the network. The node 

connection addition probability is such that in a single generation there will be 

(assuming the addition of more nodes to the eight initial nodes per network) around 

one connection added per network (Stanley et al., 2005). Note that these results have 

been run for 400 generations (with a computational time of approximately 30 hours 

per run), but graphs have been truncated in order for ease of reading, and has been 

done so only when no further improvement has been exhibited by the evolution. It 

should be further noted that, with respect to the ‘best’ solution at the end of 
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evolution, the results given against LA and LP opponents have a confidence interval of 

2 tournament wins (2% of all tournaments played in this case) from the mean, and 

those against TA and TP opponents have a deviation of 5 tournament wins (5%). This is 

due to the stochastic nature of the cards in determining success, as well as the 

difficulty of playing against tighter styles of player. 

As we can see from Figure 5.9 to Figure 5.13 neuroevolution works very well versus a 

static opponent, with results against LA, LP, and TA styles reaching a ‘best’ success rate 

of 100%, with average population fitness above 90%. This is unsurprising, as even a 

static counter-approach to defeating static styles can be successful as shown in the 

previous chapter, and here we are using a dynamically learned approach. 

Through analysis of the outputs we have seen that, after evolution, the values output 

by the network generally give a very clear decision of the action it wishes to perform. 

The network structures in this case are somewhat simple; an evolved link between the 

card strength input to one of the outputs generally causes the dramatic increase in 

fitness in most cases (generation 56 in Figure 5.9; generation 23 in Figure 5.10; 

generation 20 in Figure 5.11). The results of evolution shown are an average of five 

individual SharpNEAT runs, the computation time of each run is approximately 4 hours. 
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Figure 5.9: Evolution of an ANN against a simple Loose Aggressive Player. 

 
Figure 5.10: Evolution of an ANN against a simple Loose Passive Player 
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Figure 5.11: Evolution of an ANN against a simple Tight Aggressive Player 

In the evolved best network there is a definite trend towards avoiding linking card 

strength to the bet output with a positive weighting; most connections to a betting 

output come from inputs/nodes linked to the opponent’s previous action. Another 

frequent reoccurrence of note is that of a positively-weighted recurrent connection to, 

and from the betting output node (i.e. a node that links to itself): it is fair to believe 

that if the previous action is a betting action, the recurrence in this node would yield 

that the agent should keep betting upon requesting the agent’s next response. This 

occurrence can be observed in Figure 5.12. 

When we observe Figure 5.13, however, we notice that our evolution fails to reach a 

100% success rate against a single Tight Passive player, even after many generations. 

This is due to the Tight Passive strategy being stronger than the other static strategies, 

and also the hardest to gauge due to the frequency at which checking actions occur 
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over any display of strength. Nonetheless, even in this case tournament success of the 

evolved NEAT network is impressive. 

 
Figure 5.12: Network Structure of the evolved best network from The evolution shown in Figure 5.11 

 
Figure 5.13: Evolution of an ANN against a simple Tight Passive Player 

Having now shown that a NEAT-evolved player is capable of defeating a single 

individual style, we aim to evolve a player capable of defeating all four types of 

opponent; Figure 5.14 shows the evolution of a player using the inputs described in 
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Figure 5.8. We make each candidate solution play 100 games against each opponent in 

every generation, such that they will play 100 games against an LA opponent, then 100 

games against an LP opponent, and so on – the order in which opponents are played is 

random, and the potential for our recurrent ANN to simply “remember” the player 

type from one game to the next is removed through the clearing of all data within a 

network between game instances (i.e. the data that is within the recurrent 

connections between nodes – the structure of the network and its weights remain) 

(Stanley & Miikkulainen, 2002). The fitness f of each solution is again the percentage of 

tournaments won against all opponent styles. It is noted that the evolved player 

reaches a maximum average success rate of 87% over 100 tournaments. If we consider 

Figure 5.9 through Figure 5.13, we can tell that our players should potentially be able 

to gain a greater success rate than this against these opponents. The much increased 

difficulty of the task of beating all four player styles is demonstrated by deeper analysis 

of the network structure – which is extremely complicated, and full of recurrent 

connections. The number of hidden nodes in the resulting evolved players is more than 

double that of those evolved against the individual styles from Figure 5.9 through 

Figure 5.13. It could be posed that our evolving agent could have been attempting to 

(and potentially succeeding in) constructing a means of modeling the opponent. At 

generation 136 in Figure 5.14, we can see a significant rise in the fitness of this agent, 

network analysis shows that a connection from a ‘mess’ of network connections to the 

output node for a checking action gave the boost required by the network for the 

increased fitness. In general, however, completely understanding the effect on game 
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play of the connection topology and weights is extremely difficult; Towell and Shavlik 

describe the ANN as a ‘black box’ , and that ‘determining exactly why an ANN makes a 

particular decision is all but impossible’ (Towell & Shavlik, 1994). 

 
Figure 5.14: Evolution of an ANN against all types of opponent 

5.2.3 Augmented Evolution with Bayes’ Rule 

An opponent model can represent the individual nature of an adversary, and as such 

could aid in the correct selection of an appropriate reaction to each opponent by an 

evolved network. In preparation for experimentation, we conclude that the Bayesian 

beliefs of opponent style should be included as inputs to our evolved ANN; Figure 5.15 

shows the structure of our proposed network design. We have emphasized that Bayes’ 

rule can be a powerful learning approach that can help us to analyse the past play 

information of an opponent, and determine useful information about each opponent’s 

respective playing style. 
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Figure 5.15: Design of proposed player 

The usage of Bayesian probabilities to model uncertainties is popular in relation to 

imperfect information games such as Poker (Burns, 2006) and we feel that the 

information used to separate the analysis of each style of the opponent can prove 

useful to the evolution of our agent (Yao & Liu, 1998). The four per-style beliefs (LA, LP, 

TA, and TP) are used as four further inputs to augment the evolution of our player. 

Figure 5.16 displays the effect that opponent model augmentation has upon the 

evolution: The network quickly evolves to a solution which reaches a best tournament 

success of an impressive 97% over 100 tournaments. The same cannot be said of the 

average population performance, however. This stagnation of average best 

performance can most likely be attributed to the increased number of inputs, which 

increases the search space and increases the fragility of a good NEAT network to 

changes made by crossover and mutation. Although there were 400 generations of 

evolution, no further improvement was seen after the first 100. 
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Figure 5.16: Evolution of a Bayesian Model-augmented ANN against all opponent styles. 

Through analysis of our evolved neural networks, it was noted that the Bayesian 

probability inputs were weighted significantly in determining the output of the player. 

Contrasting the results in Figure 5.16 to those of Figure 5.14, the advantage gained 

through the use of Bayesian probabilities is significant; the initial stagnation associated 

with the difficulty of the evolutionary task shown in Figure 5.14 is expounded through 

the average of the best solutions not improving until well past the 120-generation 

mark, whereas using the Bayesian inputs opens up an ‘evolutionary door’ towards 

successful play within 35 generations. 

5.3 Increasing the Number of Players 

Much research into Poker has looked into simple two-player, one-on-one games 

(more commonly known as ‘heads up’ Poker) (Billings et al., 2003), (Koller & Pfeffer, 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

1
 

1
1

 

2
1

 

3
1

 

4
1

 

5
1

 

6
1

 

7
1

 

8
1

 

9
1

 

1
0

1
 

1
1

1
 

1
2

1
 

1
3

1
 

1
4

1
 

1
5

1
 

1
6

1
 

1
7

1
 

1
8

1
 

1
9

1
 

2
0

1
 

2
1

1
 

2
2

1
 

2
3

1
 

2
4

1
 

2
5

1
 

2
6

1
 

2
7

1
 

2
8

1
 

2
9

1
 

%
 T

o
u

rn
am

e
n

t 
W

in
s 

Generation 

 BestFitness  MeanFitness 



 

 98 

1995), (von Neumann & Morgenstern, 1944), (Barone & While, 2000), (Burns, 2006), 

(Billings et al., 2000) which reduces evaluation complexity, especially in relation to 

dealing with opponent models. The increased complexity of a 3 vs. 1 game, for 

example, calls for our neural network to interpret the information of 3 opponents 

instead of 1 (Sakaguchi & Sakai, 1992), (Saund, 2006). We believe that the ability of 

NEAT to evolve network topologies as well as weights might lend itself to such a 

problem, particularly due to the strong possibility of creating recurrent neural 

networks. Recurrence yields a ‘memory’ that can be utilized when data is fed 

sequentially (Elman, 1990), (Arvandi et al., 2008) (Gomez & Miikkulainen, 1998).  

5.3.1 Recurrency Example 

In order to show the benefits of the recurrent nature of the networks NEAT evolves, 

we evolve a network to determine the style of an opponent given a set of previous 

opponent actions. Our training data consists of four sets of data for each opponent 

style – within each style set are 100 sets of seven moves performed by a player of each 

opponent type. The aim of our network evolution is to give a set of seven moves to the 

ANN and have it determine whether the set is taken from an LA, LP, TA, or TP player. 

These sets are constructed from samples of each style of player whilst playing against 

one another. We evolve two networks – the first is given all seven action values in one 

instance over a collection of 14 inputs, every two representing a Boolean input 

determining if the action is bet [1, 0], check [1, 1], or fold [1, 0]. Four outputs are used 

in the network, one for each of the potential opponent styles; the output with the 
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largest output value is the style ‘belief’ of the network. This design is shown in Figure 

5.17 

NEAT

LA LP TA TP

Predicted Style

Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7

 
Figure 5.17: Design of a style-predictive ANN 

Solutions are given a fitness determining the proportion of opponent styles it 

analysed correctly, which can be seen in Figure 5.18. 

 
Figure 5.18: Evolution of a 14-input ANN analysing opponent style 

The evolution displays a very high proficiency of accurate analysis (a maximum of 

90% accuracy). The remaining 10% of inaccurate analysis can be attributed to the fact 

that the test data is gleaned from actual in-game performance of the given agent style, 

and as such the stochastic nature of play can sometimes yield a behaviour that would 
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belie an agent’s natural style; for example, a Tight Passive player may hold a very 

strong hand, and will therefore be compelled to bet, a non-typical behaviour for a TP 

player. This non-typical behaviour can also be the contributing factor to the repeated 

pattern in the average population fitness in Figure 5.18; the evolution appears to be 

gradually progressing then re-evolving in a means to find an accurate distinction of 

actions sets which are of two separate types, but are indicative of a similar style of 

player. For the second network we evolve a solution which has only two inputs (which 

represent the aforementioned bet check and fold inputs), but pass each of the seven 

test data inputs iteratively to the network. In this scenario, we input the first action in 

the training set, then allow multiple steps of the network to transmit the data 

throughout the network. We then add the second, third, and subsequent nth input. 

This staggering of the inputs between activating the network for multiple steps should 

potentially promote a recurrent memory in order to store (and subsequently 

‘remember’) the previous actions and ultimately determine an opponent style 

(returned by the same four outputs as the previous experiment). 
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Figure 5.19: Evolution of a 2-input recurrent ANN analysing opponent style 

As Figure 5.19 exemplifies, although the evolution takes almost 200 generations longer 

to reach the previous evolution’s upper limit of 90% accuracy, the iterative nature of 

the inputs has yielded a recurrent ANN that determines opponent style accurately. 

Now that the effectiveness of a recurrent network has been demonstrated in a simple 

environment, our aim of reacting to more than one opponent shall take advantage of 

the ‘memory’ afforded to us through the recurrent connections. We use the same 

network inputs as Figure 5.15, and iteratively pass the inputs for the first second, third, 

and (potentially) nth opponent. Hence we can investigate whether this will result in a 

‘memory’ of the previous opponents which should influence the current decision. After 

the final opponents’ data is input, the output is received, and the action represented 

by the largest numerical output is performed. The fitness f for this experiment is 

represented by Equation (3), where a represents the number of player styles, T 

represents the fraction of tournaments won (over 100 tournaments), Hw represents the 
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number of hands won by the player, and Hp represents the total number of hands 

played. 

f =           
  

  
                                                  (4) 

The ratio of hand success is added in order to provide useful information to avoid 

large plateau in the fitness landscape due to the increased complexity of evolving a 

player against three opponents. Initial results from evolution without this value had 

difficulty in evolving initial reasonable strategies, in a fitness landscape that contained 

a greater number of large plateaus. 

 

Figure 5.20: Evolution of a three-input recurrent network against all four types of opponent in a four-player scenario 

As can be observed in Figure 5.20, the success of the player (without an opponent 

model) averaged over 5 individual SharpNEAT runs is modest, with a best tournament 

win percentage (over 100 tournaments) of 54%, and an average win percentage of 
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38%, modestly higher than the 25% which a set of 4 equally-matched players would 

obtain. Network structure in later generations fails to evolve to a suitable solution, 

arguably due to the lack of any further player-descriptive inputs. When we use 

Bayesian inference of opponent actions (Figure 5.21), however, we obtain an average 

success rate of over 70%, the same as that enjoyed by the same approach in the 

simpler 1 vs. 1 environment from fig. 10, and a best tournament success rate of 97%. 

 
Figure 5.21: Evolution of a Bayesian-augmented ANN against all types of opponent in a four-player scenario 

Looking at our network from Figure 5.22, we see few recurrent connections 

(although the bet output node is included once again), as well as a large improvement 

due to the opponent model inputs. One finding of note, however: In most of our 

networks which use the four Bayesian inputs, one of the inputs is almost always 

disconnected (in this case, input 6, the TP probability node). There appears to be no 

preference as to which one is disconnected, from which we can infer that the ANN 
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itself evolves to a simplified state through the fact that there are only three degrees of 

freedom for these four inputs, since their sum is always equal to 1 and as such the 

fourth input is somewhat redundant. The fitness of our evolved players was measured 

purely against tables of matching types; one table against three LA players, one against 

three LP players, one against three TA players, and one against three TP players. 

 
Figure 5.22: Network structure of an evolved network from Figure 5.21 

In Figure 5.23 we illustrate the tournament success of the best solution from the 

evolution illustrated in Figure 5.21, against all possible mixed player-table 

combinations, and as we can see, the network has excellent success rates against all 

possible opponent combinations including those it was not trained against. This is 

arguably due to the advantage a player receives once it has access to beliefs about an 

opponent’s style of play especially when we compare these results to Figure 5.20 

where no opponent model is utilised. An issue of note with Figure 5.23 is the slightly 

lower success rates against tables of primarily loose players, including tables which 

consist of three LA, and three LP types, which it was evolved against. The nature of a 4-
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player game of Poker differs from a 1 vs. 1 game, as a greater number of loose 

opponents mean that there is a greater probability of an opponent holding a good 

hand than if there was only one adversary. The choice of action in this case is therefore 

made much harder given the loose nature of all the opponents. Regardless, the win 

rates are still impressive against 3 opponents (when evenly matched players would 

expect to win only 25% of tournaments). Using Bayesian probabilities in this 

environment appears to be vital to the success of the player, especially when aiding 

the generalisation of our player against unseen combinations of opponent. 

 
Figure 5.23: Tournament performance of the best evolved genome against all combinations of 3 opponents over 

100 tournaments – The player was evolved against only the four highlighted combinations of players 

The inclusion of an opponent model appears to aid both the evolution and decision 

process of the agent. This appears to be due to the ANN’s ability to utilise the 

opponent model’s separation of opponent types in order to determine a reasonable 

course of actions against the opponent(s). In order to test this theory, we re-evolve 
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after disabling different data inputs and evolved abilities available to our network in 

order to see how an evolved player can cope without such data. In this experiment we 

compare three inputs that we feel are essential to the players’ function, namely 

opponent model information, last action information, and the recurrent nature of our 

evolved networks. 

Figure 5.24 shows the difference in the fraction of tournaments won when each of 

the inputs of the player’s network are disabled – this data represents the performance 

of the best performing network at the end of evolution. The greatest difference 

appears in relation to the removal of recurrence, and that of the most recent action by 

the opponent. 

 

Figure 5.24: Tournament performance of ablated configurations of the ‘best’ evolved genome over 100 
tournaments 
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The removal of recurrence removes the iteratively-passed opponent data, and hence 

memory of opponent characteristics, which greatly impairs performance. A noticeable 

facet of this is related to tables of three similarly-typed opponents; in Figure 5.24 we 

can see that in each of the situations where there are three opponents of the same 

type, the loss of recurrence causes a slightly less damaging effect. The removal of most 

recent action has a significantly damaging effect upon the success of our player, which 

is understandable due to the importance of taking our opponent’s most recent action 

to infer the strength of their downcard. As for the removal of opponent model, the 

effect is again pronounced in all cases (although less so than the other two effects 

above). We believe that this means that the opponent model is integral to the 

operation of our neural network in terms of being able to determine a strategy tailored 

to the nature of the opponents. Our Bayesian description of opponents is a simple one, 

but the results are very clear; Bayesian probability-based opponent models can play an 

important part in creating (or evolving) a stronger Poker playing agent. 

5.4 Dynamic opponents 

In order to test the ability of our player to adjust to the potentially dynamic nature of 

opponents, we create two sets of tests: firstly we test our player (our best single ANN 

from the previous experiment, with all inputs enabled) against each of the standard 

four types of opponent, but we make our opponent bluff (bet when the player decides 

it should actually fold) with probability p, which is adjusted in increments of 0.01 

where 0 ≤ p ≤ 1. Figure 5.25 shows the results of these tests averaged over 100 
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tournaments per bluff probability. It should be noted that once the player has decided 

to bluff, the player will continue to bluff for the rest of the hand, normal behaviour is 

resumed (if deemed so by the bluff probability) in the next hand. 

5.4.1 Bluffing 

“Bluffing” improves the performance of a TP player: at a bluff probability of 0.12 our 

best evolved player drops to a (still impressive) 72% tournament success rate. This is 

understandable, as there is strong evidence that tight approaches are greatly 

strengthened by a level of bluffing (Koller & Pfeffer, 1995), (von Neumann & 

Morgenstern, 1944). Indeed, Koller and Pfeffer showed that Nash equilibrium players 

bluff. 

 
Figure 5.25: Tournament performance of the ‘best’ evolved genome against partially randomized opponents over 

100 tournaments 

As the chance of performing a bluffing action rises, and the TP player becomes 

“looser”, so does the success of our player against the bluffing TP player. In this case, 
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our opponent model now assumes that the opponent is Loose Aggressive, and caters 

for the eventuality that our randomized player will be bluffing a large portion of the 

time. As for the other types of opponent, they will all mostly be classified as being an 

LA player as p rises. Figure 5.26 represents the probabilistic belief of opponent style of 

our Bayesian network against a TP player given varying levels of bluff probability – the 

probabilities represented are the belief after one single game against the opponent. 

We can see that there is a gradual trend towards the belief that a TP player is LA as the 

probability of bluffing increases (with some exceptions, but the random nature of the 

actions can lead to some unexpected analyses, as well as the stochastic nature of the 

player cards themselves). The most important aspect of this analysis is that even 

though the Bayesian analysis is not necessarily accurate 100% of the time, the play 

strength of our evolved agent is still strong enough to be able to deal with the 

misinformation. Indeed it is true that given a run of similar (high) cards it is hard to 

distinguish between loose and tight players. Bluffing does not improve play quality of 

LA, LP or TA players, as we observed in Figure 5.25. 
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Figure 5.26: Bayesian analysis of a TP player with varying bluff probabilities 

5.4.2 Play Style Adaptation 

If a players’ current tactic is unsuccessful, then it is sensible for the player to change 

their current strategy; we implement a series of players that transition from one style 

to another once their chips are at a level that is lower than 50% of their initial chips at 

the start of the game. We can see in Figure 5.27 that our player is able to cope well 

against our style-changing opponents. It is notable that our player is most susceptible 

to opponent strategy change when moving from a looser style to a tighter one. The 

main reasoning behind this is that our Bayesian modeler has to readjust its style-

representative weights in order to accommodate the opponent’s shift in style, and as 

such a lag is involved in “understanding” the opponents’ strategy.  
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Figure 5.27: Tournament performance of the ‘best’ evolved genome against dynamically styled opponents over 100 

tournaments 

Moving from a tight style to a loose one can be a good way of scaring opponents out 

of the game until they realize the change in strategy. This approach is important in 

human play of Poker, in order to avoid predictable play, as well as exploiting the 

gullibility of the opponent (Sklansky, 1992). The failing of this approach against our 

ANN strategy, however is that the probabilistic way in which our modeling approach 

updates its beliefs means that these beliefs will be altered significantly when a tight 

player repeatedly performs an action that it should rarely do (the main example being 

to move from TP to LA, drastically increasing the frequency of betting actions; see 

Figure 5.23). 

5.5 Discussion 

The collection and creation of action probability data is a straightforward task in a 

variety of games. Using a hard-coded or parameterized set of possible opponent 
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strategies and Bayesian analysis we determine opponent style based upon previously 

observed actions. The results from Figure 5.23, Figure 5.25 and Figure 5.26 show that this 

approach works even when the opponent strategy is not in the set of possible 

opponent strategies. Bayes’ theorem, which we have shown effective for Poker, has 

the potential for broad application of this approach in other games (including video 

games) where discrete actions can be related to strategies, or short term goals.  

Bayes’ theorem can be utilized in conjunction with approaches other than 

neuroevolution; for example, if we have a Finite State Machine (or any hard-coded) 

agent, a switch between states can be prompted by Bayesian beliefs to select suitable 

counter strategies (as has been utilized in (Baker & Cowling, 2007)). 

The strategy selection in this approach is generally smooth in relation to the gradual 

updates to the probabilities (see Algorithm 4.1), yielding a sensible change in strategies 

as the game situation changes (as long as the hard-coded strategies are sensible and 

broad), as well as being relevant to the player’s actions, which may give the AI 

opponent’s play a more self-consistent, natural feel. 

This approach assumes that we have a collection of known strategies to compare 

against, but as shown in this paper, our models need only represent a spectrum of 

possible opponent models (which need not include the actual player strategy) that do 

not necessarily have to be entirely correct or complete to be useful. It is possible that 

these strategies could be obtained directly by observation of actions of human players 

and their effective (human) opponents. 
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5.6 Summary 

In this chapter, players are evolved using various approaches for a simplified game of 

Poker. We first show it is easy to evolve a player against individual opponents of a 

fixed style. We then investigate the utility of opponent models in aiding the evolution 

and performance of game-playing agents against players that do not make use of such 

information. 

Against a single adversary, the results show little difference between approaches 

that use an opponent model, and those which do not. However, the benefits of using 

opponent models are much greater when facing increased numbers of opponents. 

Bayesian opponent modeling is shown to be a crucial input to a neuroevolutionary 

player, as is the recurrence which allows the evolved networks to have short term 

memory. Furthermore, the approach is able to generalise and defeat tables of 

opponent combinations not yet encountered. 

We test the approach against opponents that employ simple bluffing tactics, as well 

as simple dynamic strategies. In these experiments we find that our opponent-model 

augmented NEAT networks are able to perform well against these dynamic opponents, 

which do not lie in the set of possible opponent strategies for the opponent model.  
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Chapter 6: Adaptation to 
Nonspecific Opponent Styles 

In this chapter, we take the strongest evolved Bayes’ rule-utilising ANN from the 

previous chapter (evolved during the series of evolutions in Figure 5.21) with the 

intention of gauging the response of the Bayesian player against a series of agents that 

are designed to not fit in with the typical definitions of ‘Loose Aggressive’, ‘Loose 

Passive’, and so on. We evolve a population of GA players against the Bayesian player, 

with a greater complexity than that of the opponents the ANN was evolved to face, 

and subsequently Coevolve two populations of opponents to attain the strength of the 

model in attaining a suitable response to the perceived style of a non-style specific 

agent. 

6.1 Evolutionary Opponents 

In order to test the robustness of our best evolved ANN, we devise a player which 

based upon an evolutionary algorithm with a more standard (non-neural network) 

representation. In this sense, ‘robustness’ describes how well our opponent model and 

ANN copes with opponents that do not fit within the aforementioned styles (LA, LP, TA 

and TP). We evolve a set of weights which give a similar representation to that of 

Figure 4.1, but with finer granularity. We use a chromosome that consists of three sets 

of α and β values to represent each card, each one of the three sets representing the 

opponent’s previous action; one set for a previous bet, one set for a previous check, 
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and one representing a new hand. This chromosome is identical to the one described 

in Figure 5.1. For each card, α is used as the probability of staying in the hand given the 

card strength, and β is used as the probability of making a betting/raising action given 

that the player stays in the hand. The action is chosen based upon the α / β values and 

the card held (as shown in Figure 4.1). In our evolution we use a population size of 100, 

a mutation probability per allele of 0.01, and single point crossover. These values are 

chosen such that with 60 alleles per chromosome, on average one mutation per 

chromosome per generation is made. Mutated alleles are normalised to keep all values 

between 0 and 1. Figure 6.1 shows the evolution of this description against our 

neuroevolutionary player. 

 

Figure 6.1: Evolution of a probability-controlled GA player against the best evolved ANN 

As we can see, our evolutionary approach yielded a player (the GA-Player) that can (at 

best) beat our ANN-evolved approach 81% of the time in heads-up play. Further 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

1
 

2
7

 

5
3

 

7
9

 

1
0

5
 

1
3

1
 

1
5

7
 

1
8

3
 

2
0

9
 

2
3

5
 

2
6

1
 

2
8

7
 

3
1

3
 

3
3

9
 

3
6

5
 

3
9

1
 

4
1

7
 

4
4

3
 

4
6

9
 

4
9

5
 

5
2

1
 

5
4

7
 

5
7

3
 

5
9

9
 

6
2

5
 

6
5

1
 

6
7

7
 

7
0

3
 

7
2

9
 

7
5

5
 

7
8

1
 

8
0

7
 

8
3

3
 

8
5

9
 

8
8

5
 

9
1

1
 

9
3

7
 

9
6

3
 

9
8

9
 

%
 G

am
e

s 
W

o
n

 

Generations 

Best Average 



 

 116 

evaluation over 10, 000 games shows that the best genome actually has an average 

success of 63% wins against our Bayesian ANN. The GA requires over 100 generations 

of evolution to reach a point at which it can beat the ANN in 50% of tournaments 

played. This can be attributed to the ANNs response to its opponent model adapting to 

the changing nature of the GA-Player. Looking at the evolved α and β values, we have 

observed that the GA evolves to play within a mid-ground between an extremely tight 

game, and a light bluffing approach – Figure 5.25 suggests that light bluffing with tight 

play can be effective against our player; the representation of our GA means that a 

bluff probability can be set for every strength of card for each action our player can 

perform. This gives each chromosome the evolutionary potential to yield a strong 

player. The Bayesian inputs to the ANN in relation to the evolution of the GA 

exemplifies this to the extent that the belief of opponent style represents a Tight 

Passive opponent, therefore meaning that the minor amount of bluffing afforded by 

the probabilistic GA representation means that a slight advantage can be taken 

through the external representation of holding a strong card and playing tightly, 

although a relatively weak card will be held. In response to this, we once again evolve 

the Bayesian ANN against all four original styles, but also against the best evolved GA 

solution. The results of this experiment can be observed in Figure 6.2. 
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Figure 6.2: Evolution of a Bayes’ rule Utilising ANN against the GA player 

We observe that the ANN has evolved very strongly against the GA player (in 

addition to the original styles) with a greater average fitness than in Figure 5.21 – In a 

separate experiment, evolving the ANN against the GA on its own yields a >70% win 

rate within 20 generations, suggesting that the GA approach was overfitted to our 

original ANN approach. 

6.2 Coevolutionary Challenges 

Section 5.3.1 displays that the evolved Bayesian ANN is robust in its performance 

against a collection of opponents that have not been evolved against. Our approach 

has yielded the conclusion that even if an opponent is not strictly within the definition 

of an opponent style, as long as the model can generate a belief that the opponent’s 

behaviour is at least within the parameters of one of these styles, performance will be 
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improved over an agent employing no model. To test this belief, we use a Co-

Evolutionary process to evolve two randomly-initialised populations in order to 

generate a collection of potentially effective, yet not necessarily specifically styled, 

agents. 

6.3 Chromosome Representation 

The chromosome design is influenced by two main factors; these are the opponent’s 

previous action, as well as the strength of the card held. For each possible card held, 

we have two values; α and β, which have definitions synonymous with the values used 

in the construction of our simple player from Chapter 4, Figure 4.1. Alpha (α) 

represents the probability of staying in the hand given the current card (Fold/Stay in 

Hand), and Beta (β) represents the probability of making a betting action given that the 

previous probability has determined that the agent stays in the hand (Bet/Check), 

using the design from Figure 5.1. There are three α and β values for each card, each 

one representing the chromosome’s response to the previous action of an opponent; 

one pair in response to a betting action, one in response to a checking action, and the 

final pair is in response to a new hand (this, in theory could be attributed to an 

opponent not having yet performed an action in this hand). The sequence of actions in 

determining the agents response is as follows (with respect to the allele position P in 

the chromosome): 

 Check the opponents previous action (Bet: P = 0-19, Check: P = 20-39, and New 

Hand: P = 40-59) 
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 Check the α and β values for the card held (assuming Bet was chosen previously) 

(Card 0: P = 0+1, Card 1: P = 2+3... Card 9: P =18+19) 

 Generate a random number in the range 0.0 to 1.0 , r 

 Assuming Card 9 held, if r < P where P = 18 (α), then the agent stays in the hand 

(else fold). If r  < P where P = 19 then be bet (else check) 

6.4 Coevolution 

The approach used in this section is inspired by the Evolutionary technique 

introduced by Rosin and Belew’s investigation into competitive CoEvolution, 

concerning itself improving agents for the game environments of Tic-Tac-Toe and Nim 

(Rosin & Belew, 1997). Two populations of equal size are generated, within which each 

solution is measured in fitness against each member of the opposite population. 

Candidate fitness is evaluated using the concept of shared fitness which is such that 

weaker solutions with important, individual, attributes have a fair chance of survival 

(regardless of certain weaknesses). The fitness of a solution s within Population A is 

determined relating to the number of solutions s has defeated from population B, with 

respect to how many other solutions from Population A have also defeated that player 

(i.e. if a generally weak player is able to beat a single opponent that no other player 

can defeat, it has therefore a fairer chance of surviving due to its individuality). Figure 

6.3 (overleaf) gives an example of how this fitness is implemented. 
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// For each member of Population A 
for (int i = 0; i < POPULATIONASIZE; i++) 
{ 

// Initialise fitness 
fitness[i] = 0; 
// For all opponents solution i has beat from population B 
foreach (Opponent j in OpponentsIBeat) 
{ 

// Fitness is incremented relating to the number of members 
// of Population A that have also defeated Opponent j 
fitness[i] += 1 / 1 + MembersDeafting[j]; 

} 
} 

Figure 6.3: Pseudocode of the Shared Fitness Function 

The algorithm mainly takes into account individual successes to aid potentially 

successful solutions. We further implement a Hall of Fame system, which keeps the 

best solution from every previous generation, and is included in the number of 

solutions candidates have to face each generation (i.e. after evaluation against all 

members of population B, the collection of Hall of Fame members must be evaluated 

against also). The number of members of the Hall of Fame defeated by other members 

of the same population is also taken into account when evaluating fitness. This is such 

that a cyclical evolution is prevented where Type B beats Type A, Type B is defeated by 

Type C, but Type C can be defeated by Type A, which could then subsequently be re-

evolved. A Hall of Fame avoids this problem, because all three types remain in the 

population. Obviously, performance issues are incurred by such a practice, as further 

generations occur, the greater the reservoir of old players to be tested against.  

In order to reduce the performance impact of the greater number of Hall of Fame 

members over further generations, it is determined that a random sampling of the Hall 

of Famers for evaluation will be taken each generation (a selection equivalent to half 
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the population size), although there is difficulty in assuming the best trade-off 

between performance and accuracy. 

The Coevolutionary process is constrained by the fact that a ‘winner’ and ‘loser’ (i.e. 

solution 1 beats solution 2) is required. In this case, playing 100 games of One-Card 

Poker between two solutions can render numerous variations of results, as well as 

presenting the problem of which percentage of wins constitutes a definite win over an 

opponent. The difficulty is compounded when considering the situation that 55 

percent of wins in the favour of player A could represent a particularly unlucky spell of 

games for the other player B (in which case B is as good as A), or conversely a unlucky 

spell for A which is actually much stronger than B. We implement a threshold value T, 

which determines that a solution a has defeated solution b; if solution a has won by T 

games or greater, then a has defeated b. Any win margin falling below the threshold 

for both sides indicates a ‘Draw’, and dictates that a judgment of ‘both win, both lose’ 

is taken i.e. there is both a loss and a gain for tying with another solution, which should 

render the advantages to either side moot in determining fitness. For the given 

experiments, the threshold has been set to a size of T = 10. The subsequent 

experiments are run on a quad-core Intel Xeon X5460 running at 3.16 GHz with 4GB 

RAM using C#.NET 3.5 running under Windows Server 2003 R2. We Co-Evolve two 

populations, each of size 100, for 550 generations using the fitness described in Figure 

6.3; traditional single point crossover is used, with a mutation probability of 0.02 per 

allele of the gene. This is such that approximately one mutation is made per 

chromosome per generation. Each population is sorted using fitness-proportionate 
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(Roulette wheel) selection, and the top half of solutions is kept, whilst the second half 

is populated with the mutated and bred solutions from the remaining top half. The 

results of this Co-evolution can be seen in Figure 6.4. 

 
Figure 6.4: Coevolution of two populations using a ‘threshold’ size of 10 

As is generally evidenced by coevolutionary approaches, the cyclical process of a 

gradual arms race develops. The nature of the shared fitness is such that rather than 

seeing an overall gradient of improvement in the best results of each generation, the 

fitness values reached are within a small margin (from a value of 0 to 8, as we can see 

here). It can be seen that the margin between the performance of one population is 

not significantly correlated with the performance of the second (such that when the 

fitness of Population 1 improves, that of Population 2 degrades), this is understandable 

in that the populations are also evaluated against the Hall of Fame members, which 

would further skew the resulting fitness of the population. The wildly erratic fitness 

values at the start of evolution (where Population 2 reaches an extremely high fitness) 
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can be accredited to the general weakness of the randomly initialised solutions; once a 

population-relative successful solution has been found, its performance (when 

contrasted with weaker members of the population) would have a significantly greater 

chance of defeating solutions others in the same population could not, thus yielding 

the excessively great fitness. The overall competition between the two populations 

appears balanced, with neither population taking an excessive advantage over the 

other, nor either population remaining dominant for a long period of time.   

As a measure of the behaviour and performance of each of the evolved best solutions 

from each generation, we play each solution against the original static styled 

opponents, as defined in Chapter 4, Section 4.2.1. The results of this evaluation can be 

observed in Figure 6.5 through Figure 6.8). 

 
Figure 6.5: Performance of a static LA player against the Best evolved solutions from each generation. 
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Figure 6.6: Performance of a static LP player against the Best evolved solutions from each generation. 

 
Figure 6.7: Performance of a static TA player against the Best evolved solutions from each generation. 
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Figure 6.8: Performance of a static TP player against the Best evolved solutions from each generation. 

As we can observe, the result is somewhat typical given the representative ‘strength’ 

of each of the static styles (discussed in Section 4.3.2); each ‘best’ player performs 

poorly against each of the styles, and performance gradually improves as the 

populations coevolve. It should be noted that the solutions are not evolved against any 

of these styles, only against one another. Most noticeably, there is very little 

improvement against the Tight Passive player in Figure 6.8 as the solutions evolve 

against one another. This is arguably due to all the players evolved against each other 

are typically of a tight variety; the aggressive players will be beaten easily through tight 

play, but when playing against a passive player, it is difficult to measure strength of 

cards due to the lack of betting, this also attempts to explain the erratic performance 

of the solutions against the LP players. 
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Given our ‘tightness’ hypothesis (i.e. the evolved populations of co-evolved players 

are predominantly tight players), we shall measure this against our evolved Bayes-ANN 

player to determine both the resilience of our model, and the style predicted by the 

Bayesian analysis against both populations of evolved players. Figure 6.9 and Figure 

6.10 display the performance of the Bayesian ANN, as well as belief of the opponent 

style of each of the evolved opponents from each generation over a series of 100 

tournaments per solution. These graphs are ranked by play style (as decided by the 

Opponent model) as well as by performance against the Bayesian ANN.  

 
Figure 6.9: Performance of the Bayesian ANN Player against the Best evolved solutions from population 1. 
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Figure 6.10: Performance of the Bayesian ANN Player against the Best evolved solutions from population 2. 

From both Figure 6.9 and Figure 6.10, the assumption that most of the evolved 

solutions are tight styles of player has rung true. The majority of evolved solutions in 

both populations are judged to be within the Tight Aggressive label. Furthermore, only 

two solutions from each population were able to reach a success rate of over 50% 

against the Bayesian ANN, all of which are assumed to be within the Tight Aggressive 

style bracket. This evidence is further supported by the results from Figure 6.1, as the 

best evolved players employed a tight approach to play, with a loose bluffing approach 

when holding weaker cards. Whereas the opponent model assumed a Tight Passive 

style of player for the solutions in Figure 6.1, a Tight Aggressive style is used by the 

best solutions here. Once again, through evaluation of the best performing solutions, 

we see a tight approach to play, but a slightly greater probability towards bluffing than 

that seen in Figure 6.1’s solution. This is a reasonable explanation why the model 

believes the solution to have a Tight Aggressive style, due to the frequency of bluffing 

being slightly greater. 
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Irrespective of the trend towards Tight Aggressive players being produced by the 

coevolution, a large selection of varied players has been produced in order to test the 

robustness of the previously evolved Bayesian ANN, of which the ANN performed 

competently against all but four solutions.  The weakness seen in the evolved solutions 

against a static Tight Passive opponent in Figure 6.8 has proved to be a limiting factor 

as to the performance of the evolved solutions, but an initial ‘tutoring’ stage could be 

applied to any further investigation into the evolution of testing candidates. A tutoring 

stage would potentially include the standard ‘LA, LP, TA and TP’ styles within the Hall 

of Fame set, and subsequently promote evolved solutions to play strongly against as 

many opponent types as the chromosome would allow (This is further discussed 

previously in Section 5.1.1). 

6.5 Summary 

We implement a GA-controlled player which uses a concise, play-probability oriented 

structure which gives good control over the probability of bluffing. This player 

representation is evolved against the best evolved Bayes’ rule-utilising ANN from 

Chapter 4 and performs strongly given a good deal of time for evolution; when re-

evolving our Bayesian ANN however, the ANN is able to quickly adapt to the GA 

player’s play, as well as the original four styles of opponent, providing further evidence 

that opponent models remain useful even when the opponent strategies lie outside 

the set of modelled strategies. 
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A Coevolutionary approach is presented with the aim of evolving a pair of 

populations which represent a collection of strategies against which the Bayesian ANN 

is not familiar. The populations of solutions prove to play adequately against the set of 

four static play styles defined in Section 4.2.1. We observe the performance of the 

Bayesian ANN with a particular reference to the play style perceived by the opponent 

modeling technique as to the style of the solution. Through the coevolution we find 

that a diverse set of opponent styles is evolved, as evidenced by the beliefs of our 

opponent model. The performance of the Bayesian ANN proves to be strong against a 

vast majority of all evolved solutions, once again exemplifying the strength of an 

opponent model in inferring a belief of an opponent’s strategy, even when the 

opponent itself is not strictly defined within the parameters of a defined ‘type’.  
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Chapter 7: Texas Hold’em 
This chapter investigates the expansion of the work from Chapters 4 and 5 from the 

single-card game to full-scale Texas Hold’em Poker. We will once again analyse the 

actions of an opponent in order to use the resulting probabilistic model to aid the 

decision-making capabilities of a Poker-playing agent. The chapter is structured as 

follows: We present the game of Texas Hold’em Poker and describe our experimental 

conditions for evolving an ANN-controlled agent. We then apply our opponent model 

to the evolution, and cover the significant changes required to cope in a multi-round 

betting environment. Furthermore, we test the resilience of our evolved agents in a 

multi-player scenario as well as against dynamically performing agents. 

7.1 Texas Hold’em Poker 

 Texas Hold’em Poker is arguably the most popular form of Poker played around the 

world today overtaking other forms of Poker as the most popular in casinos worldwide 

(Clark, 2006). The popularity boost of Texas Hold‘em is such that the game has 

permeated into other forms of popular culture; In the Ian Fleming novel ‘Casino 

Royale’ for example (Fleming, 1953), British agent James Bond plays Baccarat against 

the primary antagonist, Le Chiffre. In the most recent adaptation of the novel into film, 

however, the game has been changed to Texas Hold‘em, primarily because of the 

worldwide popularity the game has found (MGM, 2006). The three main actions 

performed in-game are common to all forms of Poker, as follows: 
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 Bet/Raise: Add money to the pot, and increase the monetary risk for the bettor 

and the opponents. 

 Check/Call: Make the smallest bet required to stay in the hand (which may be 

nothing). 

 Fold: Take no further part in the proceedings of the hand. 

These basic actions are an essential staple of all Poker games. It is the underlying 

strategy behind the decision-making process of a player that makes the game of Poker 

arguably one of the most skilful card games in the world. The complexity of Poker 

results largely from the fact that the only information available to a player of the 

game’s state is that of their card(s) held, the community cards, and that of any past 

actions the opponents have made.  

7.1.1 A Typical Poker Hand 

A ‘dealer button’ denotes which player is the last to play in a hand. In most games 

the button would be held by the player that deals the cards, but in casino games the 

dealer never plays. The two players to the left of the dealer post the ‘small blind’ and 

‘big blind’ respectively, which is a predetermined amount of money (where the big 

blind is generally double that of the small blind) primarily so that an amount of money 

is available to win from the beginning of the hand.  

Each player is dealt (face down) two cards known as ‘hole’ cards and the first (pre-

flop) round of betting begins, starting with the first player to the left of the ‘big blind’. 

Each player may wager a (in our case, limited) amount of money which is added to the 
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‘pot’, or choose to fold out of the hand. Once all players have matched one another’s 

bets (or a winner is declared due to all other opponents folding), three cards known as 

the ‘flop’ are dealt face-up as community cards. Another betting round commences, 

after which a fourth community card is revealed (the ‘turn’). Another community card 

(the ‘river’) is revealed after another round of betting, after which a final round of 

betting commences.  

The winner is determined by the player that can use any combination of their two 

hole cards and five community cards to construct the strongest five-card hand. The 

hand types available to each player are as follows (in order of strength): 

 Royal Flush:  The best possible hand consisting of an Ace, King, Queen, Jack and 10, 

all within the same suit. 

 Straight Flush:  A five card sequence of all the same suit (e.g. 3, 4, 5, 6, and 7 of 

spades). 

 Four of a kind:  All four suited cards of equal value (e.g. 5 of spades, 5 of hearts, 5 

of clubs and 5 of diamonds). 

 Full House:  Three cards of equal value, with the remaining two cards also of equal 

value (e.g. King, King, King, Ace, Ace). 

 Flush:  All five cards in the hand are of the same suit. 

 Straight:  A five card sequence, but not all cards are of the same suit. 

 Three of a kind:  Three cards of equal value (e.g. 5 of spades, 5 of hearts and 5 of 

clubs). 
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 Two Pair:  Two separate pairs of cards (e.g. King, King, Ace, Ace). 

 Pair:  A pair of equally-valued cards (e.g. King, King,). 

 High Card:  Given none of the previous hands, a hand valued by the highest card 

held (e.g. King). 

 The strength of a hand is inversely proportional to the probability of the hand 

appearing for a given player. Of a possible C(52, 5) = 2,598,960 card combinations, the 

probability of receiving a ‘High Card’ hand is approximately 50.1% in comparison to the 

0.000154% of that of a ‘Royal Flush’. 

7.1.2 Tournament Format 

We investigate our approaches using a ‘Heads Up’ (two player) limit game, which 

involves bets of limited size. In our experiments we use a 5-chip small blind, and a 10 

chip big blind, with all bets within each round limited to a maximum of 40 chips per 

player. Each player is dealt two cards (known as hole cards) which are kept hidden to 

all other players. A betting round takes place, where each player must decide whether 

to fold, check/call, or bet/raise – a bet or raise costs 10 chips. The winner of the hand 

is the player with the highest valued 5-card hand at the showdown (using any of his 

own hole cards and the community cards), or the last player left if all opponents fold.   

7.2 The AI Players 

In creating simple AI opponents, we decide to follow the Loose-Aggressive, Loose-

Passive, Tight-Aggressive and Tight-Passive make-up of the previous, One-Card, 
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experiments highlighted in Chapter 3, Section 3.2.1. Our distinct style players retain 

the same play style as displayed in Figure 4.1 and Table 4.1. 

7.2.1 Evolving an ANN-Controlled Opponent  

In Chapter 3, section 4.2.3, “Anti-Players” are created as a ‘nemesis’ to each of the 

LA, LP, TA, and TP players. (α, β) pairs were tested in 0.1 increments for 0 ≤ α ≤ β ≤ 1 to 

determine the best  (α’, β’) pair against each opponent style. Although our previous 

agent’s approach involved a dynamic means of learning to approach an opponent, the 

strictly static nature of the agent’s response renders it unable to use more complex 

tactics such as check-raises, for example. Our motivation in this chapter is to 

investigate the potential for evolving a player to be able to develop complex strategic 

behaviours. In this chapter, we once again evolve players using a C#.NET 

implementation of NEAT, SharpNEAT (Lockett et al., 2007). Our reasoning behind using 

the NEAT algorithm is due to the successes of NEAT’s topological and weight evolution 

in finding a suitable network structure for various problems, including game-playing 

agent control and pole-balancing experiments (Stanley & Miikkulainen, 2002) (Stanley 

et al., 2005) (Stanley & Miikkulainen, 2002) (Lockett & Miikkulainen, 2008). This choice 

is further discussed previously in chapter 5, section 5.2.1. For the construction of an 

‘anti-style’ player, we cannot necessarily rely upon a two-parameter design within the 

realm of full-scale Texas Hold’em. This difficulty is particularly compounded through 

the use of several betting rounds instead of the previously described game where a 

there is only a single betting round. The use of α and ß is still applicable to the 
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application of Texas Hold‘em play, but only when considering the separate rounds, and 

how the probability of winning the hand adjusts based upon the new information 

yielded by the change of hand status due to the flop, turn and river cards respectively. 

This in turn makes the calculation of win probability much more difficult, especially 

due to the expanded number of cards (and suits) compared to the single-card game. 

Taking into account the use of separate betting rounds, the the design of our network 

structure has been adjusted such that we use this data as input into the network and 

can be seen in Figure 7.1.  

 
Figure 7.1: Design of player network 

The ‘Game Stage’ inputs are three binary inputs that are all set to 0 if the game is in 

the Pre-Flop stage, or set to 1 (independently) if the betting round is one of the three 

further betting rounds. The betting frequency inputs input the frequency at which each 

of the given actions (bet/check/fold) have been performed by the opponent, 

normalized over the betting behaviour of the given opponent over the previous 50 

hands played. The ‘Last Opponent Action’ inputs translate the last action of the 

opponent into binary. The ‘Win Probability’ input gives the probability of winning the 
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hand – these use a pre-calculated collection of probabilities from ‘Marv742’s Flop 

Tables’ (available from the university of Alberta’s games group webpage), which is a 

roll-out of all turn and river combinations for a 7 card hand thus determining the hand 

odds. This collection of values is split into win probabilities covering various numbers 

of opposing players, although the win probability can be ascertained from the 

probability of winning in a ‘heads up’ tournament, p. When given n opponents, the 

probability of winning P(win) becomes pn. We take the collection of pre-calculated 

values, which are then loaded into a lookup table in memory (values in the table are 

accessed using a non-suit specific key derived from the current hole cards and the 

current flop). From our implementation of the lookup table, we can subsequently 

access the win probability values during the game for each player. The benefit of this 

table is that on-flop win probabilities can be attained within milliseconds rather than 

the one-tenth of a second typically used to calculate the probability ‘on the fly’. Win 

probabilities for later betting rounds are calculated using a C# implementation of 

‘Cactus Kev’s Poker Hand Evaluator’ by Kevin Suffecool, a technique praised by the 

members of the University of Alberta Poker group for its speed in hand evaluation 

(Suffecool, 2006).  

The ‘Chips Held’ input represents the ratio of chips the player has in comparison to 

the number of chips available at the table (including all opponent-held chips). The final 

input is a binary input that tells the network if any bet is required by the player to stay 

in the hand. The outputs of the network represent the action to be taken, the action 
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represented by the largest numerical output is the action performed. Ties between 

output values are essentially impossible, but as we have seen in the forthcoming 

experiments the evolved network generally makes a clear choice for the action to be 

taken. 

7.3 Experimental Results 

 The evolution of an ANN-controlled player can be seen in Figure 7.2 through Figure 

7.5. All experiments are run on a quad-core Intel Xeon X5460 running at 3.16 GHz with 

4GB RAM using C#.NET 3.5 running under Windows Server 2003 R2. In these 

experiments the fitness of each of the solutions in a population is represented by c, the 

number of chips won by a player over 300 hands – This limitation is similar to the 

reasoning for using a tournament-based approach in Chapter 4, Section 4.1. To run 

entire tournaments is too computationally expensive (irrespective of using Marv747’s 

Flop Tables as a lookup in memory) and limiting the evolution to a number of hands 

rather than tournaments is the only feasible compromise. Each player starts with a 

potentially infinite number of chips, and aims to make the most profit after 300 hands. 

Each hand is played with a bet limit per round – each bet costs five chips, and up to 

four consecutive bets can be made per betting round. Each player leaves an Ante of 10 

chips for the big blind, and five for the small blind. We use a population size of 100, a 

node-addition probability of 0.005, and a node-connection addition probability of 0.01 

(Stanley & Miikkulainen, 2002). The node addition probability represents the 

probability that a new node will be added to the network and is limited such that 
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several generations may be required to adjust to the addition of the new node (and for 

any connections added between the new node and others). Similarly, too great an 

addition frequency may reduce the effectiveness of the network in making effective 

use of the nodes currently in the network. The connection addition probability 

represents the probability of adding a new connection between any two nodes of the 

network. These are indicative of the mutative stage of the evolution. There are further 

capabilities within NEAT to destroy connections and nodes, but have not been enabled 

here, as poorly-performing solutions are generally evolved out of the genome, 

lessening the need for such destructive measures on potentially promising solutions 

(Stanley et al., 2005). Each of the subsequent graphs has been averaged over 5 

individual runs; note that the ‘best fitness’ in these graphs represents the average best 

fitness over the five runs (each of which taking approximately 200 hours apiece), and 

that these results have been run for 500 generations. The confidence interval is such 

that over each of the individual runs in the following results, the difference between 

the performance of the best performing agents (after evolution) was no more than 100 

chips won. It should be noted that the ‘average’ fitness shown on these graphs is an 

indication of the overall average of the entire population at the time of evolution, and 

as such the average of best performance is indeed the ‘best’ indicator of overall 

evolutionary performance. 
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Figure 7.2: Evolution of an ANN against a Loose Aggressive Player 

 
Figure 7.3: Evolution of an ANN against a Loose Passive Player 
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Figure 7.4: Evolution of an ANN against a Tight Aggressive Player 

 
Figure 7.5: Evolution of an ANN against a Tight Passive Player 

As can be seen from Figure 7.2 to Figure 7.5, the ANN evolves to a stage where it is 

able to gain a large chip lead over each type of opponent, the only particularly large 

win being the excessive lead our evolution produces over a Loose Aggressive player in 
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Figure 7.2. This is mainly due to the fact that the LA player will stay in many hands 

betting aggressively, therefore putting more chips into the pot thus leading to the 

large lead by an LA-exploitative player. The performance shown in Figure 7.3 and Figure 

7.5 is indicative of the limited amount of money placed into the pot by similarly passive 

players. As such, calling a bet rather than re-raising will yield smaller pots and a smaller 

profit over the 300 hands played. A similar case can be noted with Figure 6.4, where 

the tight nature of the opponent playing limited hands yields fewer ‘large’ pot wins, 

and subsequently a lower overall profit – drastically in comparison with the success 

against Figure 7.2’s Loose approach. 

Given that a NEAT-evolved player is capable of defeating a single individual style, we 

aim to evolve a player capable of defeating all four types of opponent in order to 

reduce the necessity of selection between individual strategies; Figure 7.6 shows the 

evolution of a player continuing to use the inputs described in Figure 7.1. The fitness 

determination between evolutionary steps requires that each candidate solution play 

300 hands against each opponent in every generation, such that they will play 300 

hands against an LA opponent, then 300 hands against an LP opponent, and so on - as 

such each evolved agent is required to play 1200 hands per generation. The fitness c of 

each solution is again the number of chips won against all opponent styles, this time 

divided by four to average over each opponent style. 
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Figure 7.6: Evolution of an ANN against all four player styles. 

7.4  Bayesian Analysis 

 It is noted that the best evolved player average reaches a maximum average success 

rate of around 3000 chips over 300 hands. If we consider Figure 7.2 to Figure 7.5, we 

can tell that our players should potentially be able to gain a greater profit than this 

against these opponents. An opponent model can aid in representing the individual 

nature of an adversary, and as such could aid in the correct selection of an appropriate 

reaction to each opponent. Figure 7.7 shows the structure of our proposed network 

design. 

Previous chapters (Chapter 3, Chapter 4 and Chapter 5) have emphasized that Bayes’ 

rule can be a powerful learning approach that can analyse the past play information of 

an opponent, and determine useful information about each opponent’s respective 
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playing style, as well as showing that an opponent model can aid the overall quality of 

an evolved ANN against multiple styles of opponent. 

 
 

Figure 7.7: Design of proposed player 

The usage of Bayesian probabilities to model uncertainties is popular in relation to 

imperfect information games such as Poker (Burns, 2006).  

The probabilities in Table 7.1 represent an a priori P(B | A) = P(Action | Strategy) set 

of probabilities which were evaluated by analysing the past actions of players of style A 

over a 10,000 hands (2,500 hands were played against each separate style and the 

values averaged over all hands played). P(A) is the prior belief of an opponent’s play 

style, and as such is set to 0.25 initially as all opponent styles are assumed equally 

likely at the start of a game. Bayes’ rule updates the initial probability of player style 

belief such that P(A | B) for the current iteration becomes P(A) for the next action 

analysed (i.e. our belief of style P(A) is the result of P(A | B) for the last action 

analysed). P(B) is represented by the summation of P(B | A)P(A) for all possible A 

(represented by a), and is used as a normalising constant. 
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 FOLD 
CHECK 
/CALL 

BET 
/RAISE 

LA 0.03 0.07 0.90 

LP 0.01 0.94 0.05 

TA 0.25 0.55 0.20 

TP 0.25 0.70 0.05 

Table 7.1: Action probabilities for each opponent style. 

 The Bayesian Observation Window  

As the Style belief of our Bayesian model converges towards 1 (given a static 

opponent style; bluffing or deceptive play varies these styles and therefore 

probabilistic convergence may be limited), the capability of our model to adapt to 

different styles becomes compromised. To exemplify this, we use the same Bayesian 

probabilistic update as shown in Algorithm 4.1. upon a set of recorded actions by a 

Loose Aggressive player (i.e. a primarily betting opponent). If we observe Figure 7.8, 

we can see that the probabilities for all other styles of opponent approach zero (just as 

the LA belief approaches 1), and given how Equation 1 (and the code from Figure 4.2) 

updates its probabilistic beliefs the probabilities would potentially take far too long to 

recover from over-convergence and accurately represent a change in opponent style. 

This is due to the a priori belief being utilised as a multiplying factor therefore 

compounding the minimization of opponent style belief over time. Since the relative 

behaviours represented in Table 7.1 are not drastically different from one another, the 

change in belief is more subtle than it would be if there were only two styles of player 
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where style one played with P(BET)≈0.9, and the P(FOLD)≈0.9 (such a definition would 

lead to a very swift change in belief given random bet/fold actions). 

 
Figure 7.8: Probability convergence of the Bayesian model given a set of LA-type actions. 

To counteract this issue, we use a windowed analysis of actions, such that only the 

past n actions of an opponent are accounted for, yielding a faster recognition of 

opponent style change. Whenever our agent is requested to perform an action, all four 

beliefs of opponent style are set to the default value of 0.25, and the past n actions are 

used to determine opponent style. For all further experiments in this chapter, n shall 

be set to a value of 8. The effect of a limited Bayesian observation window in 

comparison to our normal Bayesian model can be seen in Figure 7.9, where we 

observe a tight, passive player changing style to a Loose Aggressive one over a period 

of 30 actions. The Bayesian probabilities are updated as in Algorithm 4.1, against a 

sample of the actions made by a Tight Passive player moving to the style of a Loose 

Aggressive one. 
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Figure 7.9: Comparison of probability convergence using standard Bayes’ rule (top), and windowed analysis 

(bottom) The opponent changes style from Tight Passive to Loose Aggressive at action number 7. 

As we can see, the analysis briefly traverses through the Tight Aggressive label whilst 

approaching a Loose Aggressive belief. This is understandable due to the frequently 

folding nature of a TP player as well as the frequently betting nature of an LA player, 

the central analysis containing a distribution of folding and betting actions which the 

TA player represents. In the top graph we note that the recovery of our analysis from 

TP to LA is slow due to over-convergence, whereas the windowed approach quickly 

resolves towards an LA belief although the mix of folding and betting inevitably yields a 

Tight Aggressive analysis, this is quickly overcome. The per-style Bayesian beliefs (with 

a limited observation window) are subsequently used as four further inputs to 

augment the evolution of our player. Figure 7.10 displays the effect that opponent 

model augmentation has upon the evolution. The experimental conditions are the 

same as those described for Figure 6.6 in Section 6.3; The fitness determination 
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between evolutionary steps requires that each candidate solution play 300 hands 

against each opponent in every generation, therefore 1200 hands per generation. The 

fitness c of each solution is again the average total of chips won against all opponent 

styles. 

 
Figure 7.10: Evolution of a Bayesian Model-augmented ANN against all opponent styles. 

We can see that the network evolves to a solution which reaches a best profit of 

4000 chips after 300 hands, a 33% improvement over the non-Bayesian ANN player in 

Figure 7.6. It appears that, through observation of the average fitness, greater 

improvement could be attained through further evolution, as the still increasing 

gradient (of the average population fitness) suggests towards the end of our 500 

generations – a stark contrast to the stagnant average fitness in Figure 7.6. 
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7.5  Observing the Evolved Performance 

The inclusion of an opponent model appears to aid both the evolution and decision 

process of the agent. This appears to be due to the ANN’s ability to utilise the 

opponent model’s separation of opponent types in order to determine a reasonable 

course of actions against the opponent(s). In order to test this theory, we observe the 

performance of the overall ‘best’ performing networks for both experiments (from 

Figure 7.6 and Figure 7.10) at the end of evolution. We play our best networks against 

each static style of opponent over a period of 1000 hands, recording the hand-to-hand 

performance of each player against the original four simple players. We once again use 

the conditions described in Section 7.3, where an infinite number of chips is assumed, 

with players limited to four bets/raises/re-raises per round. These results can be seen 

in Figure 7.11 through Figure 7.14. 

 
Figure 7.11: Performance of the ‘best’ evolved ANN against a Loose Aggressive Player. 
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Figure 7.12: Performance of the ‘best’ evolved ANN against a Loose Passive Player. 

 
Figure 7.13: Performance of the ‘best’ evolved ANN against a Tight Aggressive Player. 
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Figure 7.14: Performance of the ‘best’ evolved ANN against a Tight Passive Player. 

 Figure 7.13 and Figure 7.14 display a successful performance over the 1000 hands, 

consistently improving their chip-count over successive hands. Conversely, the results 

shown in Figure 7.11 and Figure 7.12 actually display poor performance. The overall 

average performance during evolution (Figure 7.6 and Figure 7.10) can be explained 

through the high values reached against TA and TP players being pulled back down by 

weak performances against LA and LP players. We can observe that the Bayesian 

player performs better than the standard NEAT player when the opponent is stronger, 

but performs slightly weaker against an opponent that is easier to beat. The Bayesian 

approach does seem to aid the quality of overall performance, but not to an extent 

within which it encourages a strong performing player. This behaviour is highly 

contrasted to the evolved performance against Loose Aggressive and Loose Passive 

styles displayed in Figure 7.2 and Figure 7.3. In the previous examples, a network 
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agents, but in this instance the evolved solutions appear to only be responsive to tight 

opponents. The contributing factor to the limited scope of the evolved players’ success 

could be the averaging nature of the fitness function used, which does not promote 

the improvement of success against opponent styles with which the solution is 

struggling. Another potential cause of weakness can be related to the construction of 

our model; as our previous work from chapters 4 and 5 uses a single betting round, we 

also use a single set of probabilities for our model. Just as Schaeffer’s detailing of 

attributes necessary of a world class Poker player (Billings et al., 2001) include that of 

being able to understand that the win potential of a hand could depreciate as well as 

improve, our model needs the ability to identify the changing nature of a player over 

the different betting rounds – win probabilities adjust given the addition of new 

community cards, and a two-parameter α-β player’s behaviour would switch as such 

given the new probabilistic information. 

7.6  Round-Based Modeling 

Considering the multi-round nature of full-scale Texas Hold’em, an individual model 

per betting round could prove far more useful, as betting behaviour can convey not 

only the style of an opponent, but also a potential change in the quality of an 

opponent’s hand due to subsequent community cards being revealed. The 

probabilities in Table 7.2 show the average behaviour of each type of opponent after 

10,000 hands (2,500 played against each style of opponent).  
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  Fold 
Check 
/Call 

Bet 
/Raise 

LA 

PreFlop 0.05 0.05 0.90 

PostFlop 0.05 0.12 0.83 

Turn 0.10 0.15 0.75 

River 0.15 0.25 0.60 

LP 

PreFlop 0.025 0.95 0.025 

PostFlop 0.05 0.90 0.05 

Turn 0.05 0.85 0.10 

River 0.15 0.80 0.05 

TA 

PreFlop 0.42 0.53 0.05 

PostFlop 0.11 0.60 0.29 

Turn 0.11 0.56 0.33 

River 0.05 0.52 0.43 

TP 

PreFlop 0.53 0.42 0.05 

PostFlop 0.13 0.82 0.05 

Turn 0.10 0.80 0.10 

River 0.05 0.80 0.15 

Table 7.2: Action probabilities for each opponent style per betting round. 

As Table 7.2 shows, the betting behaviour displayed by each type of player varies 

between betting rounds (as assumed in Section 7.6), in some cases even overlapping 

with the behaviour of a different style in another round. It appears that in the case of 

the two Passive players the action-style probabilities actually display a switch of styles 

– For the case of a Loose Passive player, many hands are played, and therefore stayed 

in due to the behaviour of the Loose Passive player to call and bet or raise. Towards 

the later betting rounds, as the Loose Passive player is prone to staying in a hand with 

a potentially poor set of hole cards (and is likely to be unlucky on the flop), the win 



 

 153 

probability for an LP player drops dramatically and the α and β values used would 

dictate that the player becomes characteristically a Tight Passive player – The Loose 

Aggressive player also appears to adapt in that the increasing weakness of the hand 

yields a greater probability of folding. Conversely, yet similarly, a Tight Passive player 

would generally exclusively stay in play with a strong hand in the earlier stages, such 

that the probability of winning would more likely increase (when in comparison to a 

Loose Passive players hand) and therefore as the probability increases, the more likely 

the Tight Passive player is to bet during the post-River round. This yields a greater 

explanation as to the performance of our evolved agents in Figure 7.11 and Figure 

7.12; the drastic change in opponent behaviour leads the opponent model to an 

incorrect solution as to the style of the opponent which, in turn, affects the 

performance of play.  

 
Figure 7.15: Analysis of a Loose Passive player using a single-round Bayesian approach 
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The effect of this incorrect analysis (as evidenced by Figure 7.15) is that as the Loose 

Passive player is subsequently believed to be Tight Passive at the end of a hand (in part 

expedited by the rapidity of change of style belief using the windowed analysis from 

Section 7.5). This then means that the agent will use this model to respond to a 

potentially Tight Passive opponent at the start of the next hand, meaning that the 

Loose play will then be taken by the agent as a display of the opponent holding a good 

opening pair of hole cards. Subsequent folding by the agent (in the assumption of a 

tight opponent) will then provide the Loose Passive player with chips, akin to the tactic 

of ‘blind stealing’, which is explained further in Chapter 5, Section 5.7. The Bayesian 

analysis of each style of opponent (given a set of style-cased opponent actions) can be 

seen in Figure 7.16 through Figure 7.19, which show the difference in convergence 

speed given the disparate action frequencies presented in Table 7.2. These results 

further display the importance of heterogeneity in the different Action-Style 

probabilities in determining opponent type, as discussed in Chapter 4, section 4.2.4. 
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Figure 7.16: Bayesian Multi-Model Analysis Vs. A Loose Aggressive Player 

 

 
Figure 7.17: Bayesian Multi-Model Analysis Vs. A Loose Passive Player 
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Figure 7.18: Multi Bayesian Model Analysis Vs. A Tight Aggressive Player 

 

 
Figure 7.19: Multi Bayesian Model Analysis Vs. A Tight Passive Player 
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We now evolve an ANN-controlled agent using the same network structure as in 

Figure 7.10, again requiring each candidate solution to play 1200 hands per 

generation, 300 against each type of opponent. The fitness c of each solution is once 

again the average total of chips won against all opponent styles. Evolution and 

evaluation using the same parameters allows us to investigate the effect our separated 

model has upon the quality of evolution and therefore the evolved solutions. The 

evolution of this agent can be seen in Figure 7.20, which is averaged over 5 individual 

runs. 

 
Figure 7.20: Evolution of a multi-round Bayesian player. 
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static style of opponent over a period of 1000 hands, recording the hand-to-hand 

performance of each player against the original four simple players. We once again use 

the conditions described in Section 7.3, where an infinite number of chips is assumed, 

with players limited to four bets/raises/re-raises per round. The performance of our 

multi-round modeling approach with respect to NEAT is compared to our previous two 

‘best’ players in Figure 7.21 to Figure 7.24. 

 
Figure 7.21: Performance of the ‘best’ evolved ANNs using each strategy against a Loose Aggressive Player. 
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Figure 7.22: Performance of the ‘best’ evolved ANNs using each strategy against a Loose Passive Player. 

 

Figure 7.23: Performance of the ‘best’ evolved ANNs using each strategy against a Tight Aggressive Player. 
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Figure 7.24: Performance of the ‘best’ evolved ANNs using each strategy against a Tight Passive Player. 
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‘stalemate’ as can be seen by the very low winnings displayed in Figure 7.22 over 1000 

hands. The performance against the Tight players is comparable to the NEAT-only and 

Bayes’ rule-NEAT approaches, displaying that a multi-round approach is a successful 

adaptation of the model when dealing with a multiple betting round scenario. The 

evolved agent adopts a strategy of blind stealing (where the Tight Passive player is 

liable to fold when facing aggressive play), as well as folding where the Tight player 

bets and limiting its betting behaviour where moderate to good hole cards are held. 

7.7 Response to Bluffing 

 We modify each of the individual opponent styles that it bluffs with probability p. 

Upon any decision by the agent, with probability p we change the action performed to 

that of a betting action; this will gradually adapt the playing style of any agent. For 

example, we take the evolved ANN from Figure 7.5 (herein referred to ANNti-TP), 

which is evolved against the Tight Passive player and observe the performance over 

300 hands against a Tight Passive opponent that bluffs with probability p. The value of 

p is adjusted in increments of 0.01 from p = 0 to p = 1.00. 300 hands are played against 

a Tight Passive player using each value of p. Figure 7.25 shows the weakness of 

adopting a static strategy (in this case ANNti-TP) against a dynamically changing 

opponent. 
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Figure 7.25: Performance of an evolved ANN versus a Tight Passive player with a varied bluffing level. 

As we can see the performance of ANNti-TP becomes unstable as the opponent 
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Figure 7.26: Performance of an evolved Multi-Round Bayesian ANN versus a Tight Passive player with a varied 

bluffing level. 

We can see that, irrespective of the inevitable change in opponent style with respect 

to the altering level of bluffing, a player using the Bayesian model copes suitably well; 

the stability of the performance wavers somewhat towards the greater probability of 

bluffing (as evidenced around the 0.73-0.90 area). This is understandable as the nature 

of dealing with an extremely loose player is to call what is presumably a weak hand – 

the outcome of this would be to mostly call the opponent’s bluff which takes a 

potentially significant risk, therefore the reward can be somewhat erratic. 

Our modeling approach aids the agent in its adaptation to an opponent’s behaviour, 

even if the opponent may not necessarily adhere to the strict definition of the 

individual styles. An assumed opponent style which is loosely affiliated with one of the 

styles is enough to aid the performance of the agent. As Figure 7.26 displays, the 

adaptive bluffing nature of the opponent adjusts the initially Tight Passive player to a 
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style not necessarily defined within the LA-LP-TA-TP bounds, but as the model assumes 

a style, the agent responds to the perceived type. This was also exemplified in the 

single card game, particularly in Section 5.6 where the resulting populations of co-

evolved players were of drastically differing styles, yet the agent remained stable in its 

playing success. 

7.8  Dynamic opponents 

In order to test the ability of our player to adjust to the potentially dynamic nature of 

opponents we test our player (our best single ANN from the experiment portrayed in 

Figure 7.20) against dynamic opponents. We implement a series of players that 

transition from one style to another once every 75 hands for a total of 300 hands. 

Figure 7.27 shows the performance of our agent against a Dynamic player that 

transitions from LA to LP to TA to TP, the vertical lines denoting each style change. 

 

 
Figure 7.27: Performance of evolved agent against a dynamic opponent (with representation of player’s belief of 

opponent style). 
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We can see in Figure 7.27 that our player is able to cope well against the style-

changing opponent. It is notable that our player becomes susceptible to a change in 

strategy change as evidenced by the gradual decrease in winnings once the opponent 

style changes – Once the opponent model recovers (seen in the lower half of Figure 

7.27) the agent’s winnings also start to increase once again. The main reasoning 

behind this is that our Bayesian model has to readjust its style-representative weights 

in order to accommodate the opponent’s shift in style, and as such a lag is involved in 

adapting to the opponents’ strategy. This lag would be much more noticeable if we did 

not use the windowed observation covered in Section 0. This appears to show that 

changing from one style to another can be useful in deceiving an opponent until they 

become aware of the change in strategy. This approach is important in human play of 

Poker, in order to avoid predictable play, as well as exploiting the gullibility of the 

opponent (Sklansky, 1992). The failing of this approach against our ANN strategy, 

however is that the probabilistic way in which our modeler updates its beliefs means 

that these beliefs will be altered significantly when a tight player repeatedly performs 

an action that it should rarely do (the main example being to move from TP to LA, 

drastically increasing the frequency of betting actions; see Table 7.2: Action 

probabilities for each opponent style per betting round.).  

7.9  Multi-Player Environment 

Chapter 4, section 4.3 investigates the use of recurrent node connections in evolved 

ANNs to utilise data from multiple opponents. In our experiments will full-scale Poker 
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we make no exception, only the complexity of the problem has been increased. 

Research into Poker has mostly looked into two-player, one-on-one games (more 

commonly known as ‘heads up’ Poker) (Billings et al., 2003), (Findler, 1977), (Billings et 

al., 2002), (Barone & While, 1998), which reduces evaluation complexity, especially in 

relation to dealing with opponent models. The increased complexity of a 3 vs. 1 game, 

for example, calls for our neural network to interpret the information of 3 opponents 

instead of 1 (Sakaguchi & Sakai, 1992). We believe that the ability of NEAT to evolve 

network topologies as well as weights might lend itself to such a problem, particularly 

due to the strong possibility of creating recurrent neural networks. Our aim of reacting 

to more than one opponent shall take advantage of the ‘memory’ afforded to us 

through the recurrent connections (Elman, 1990), (Arvandi et al., 2008), (Bodén, 2001). 

We use the same network inputs as Figure 7.7, with the addition of a single input that 

represents the position of the opponent at the table (this is a binary input that is set to 

0 if the opponent is yet to play after the agent or 1 if the opponent has already 

performed their action). We then iteratively pass the inputs for the first, second, and 

third opponent (in theory this could extend up to an nth opponent). If evolution allows, 

this will result in a ‘memory’ of the previous opponents which should influence the 

current decision. After the final opponent’s data is input, the output is received, and 

the action represented by the largest numerical output is performed (through analysis 

of the outputs we have seen that, after evolution, these values usually give a very clear 

decision). The fitness f for this experiment is represented by Equation (4), where a 

represents the number of player styles, C represents the number of chips won after 
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300 hands against player a,      represents the highest fitness of the a fitnesses, and 

     represents the lowest fitness of the a opponents played.  

f =                                      (5) 

This is designed such that our player is rewarded for playing well against all styles of 

opponent, rather than favouring some styles over others (the effects of which can be 

seen in Figure 7.28 and Figure 7.29). We evolve our agent’s ANN against all four types 

of opponent (vs. 3 LA players, then 3 LP players and so on). In order to avoid the 

recurrency ‘remembering’ the order of opponents, we clear all data within the network 

between evaluations, and also force our agent to face all four styles in a random order. 

If we consider this evolution without our opponent model, we can see the results in 

Figure 7.28. 

 
Figure 7.28: Evolution of a recurrent network (without opponent model) against all four types of opponent in a four-

player scenario. 
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As can be observed, the player evolves to a successful level of chips won after 500 

generations, but the number of chips won is comparable to that of Figure 7.20, which 

is against a single player. Considering each hand is versus three opponents in this 

instance, we would expect more sizeable winnings from a successful player. We now 

observe the evolution of a player using our multi-round Bayesian opponent model in 

Figure 7.29. 

 
Figure 7.29: Evolution of a recurrent network (with opponent model) against all four types of opponent in a four-

player scenario. 

We notice that the quality of solutions found by NEAT’s evolution using our opponent 

model have a drastic improvement over those shown in Figure 7.29, and even towards 

the 500-generation limit, appears to have the potential to evolve further as indicated 

by the average fitness. In the interest of ascertaining the quality of our recurrent ANN 

in comparison to an ANN using individual inputs per player, we evolve an agent that 

uses a similar design to Figure 7.7, but for each opponent (three in this case), we have 

eight inputs – three describing the last action of the opponent, four describing our 
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opponent model belief of the opponent (LA/LP/TA and TP respectively), and a single 

input denoting the position of our opponent yielding a total of 30 inputs. This network 

design can be seen in Figure 7.30. 

NEAT

B C F

Desired Action

Win Prob.
Chips 

Held

Game Stage

Pre-Flop/Post-Flop/Turn/River
Bet Required Opp. 3 InputsOpp. 2 InputsOpp. 1Inputs

 
Figure 7.30: Design of a 30-input ANN.  

We use the same fitness as Equation 4, and the results of evolution can be seen in 

Figure 7.31. 

 

Figure 7.31: Evolution of a non- recurrent, 30-input network (with opponent model) against all four types of 
opponent in a four-player scenario. 
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We can see that the best fitness of our evolved agent using the 30 inputs is indeed 

comparable to the evolution of the recurrently evolved agent. The major difference 

between the two approaches is a temporal one such that the large number of inputs 

cause a slowdown in terms of the evolutionary process.  

In Figure 7.32 we illustrate the tournament success of the best solution from the 

evolution illustrated in Figure 7.29, against all possible mixed player-table 

combinations, and as we can see, the network has excellent success rates against all 

possible opponent combinations including those it was not trained against. This is 

arguably due to the advantage a player receives once it has access to beliefs about an 

opponent’s style of play. This advantage was shown in Section 5.3.1 using our 

simplified version of the game, where an ablative study (in Figure 5.24) showed that 

the removal of opponent model inputs have a seriously detrimental effect upon the 

performance of the agent. It may be safely assumed that the same conclusion in a 

similar study upon the agent used here (in an admittedly more complex environment) 

would also ring true. Using Bayesian probabilities in this environment appears to be 

vital to the success of the player, especially when aiding the generalisation of our 

player against unseen combinations of opponent. 
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Figure 7.32: Tournament performance of the best evolved genome against all combinations of 3 opponents over 

300 hands – The player was evolved against only the four combinations of players highlighted in black. 

7.10 Discussion 

The collection of action probability distributions is straightforward in a variety of 
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other games where discrete actions can be related to homogeneous strategies (or 

goals as demonstrate in Chapter 3).  

After adaptation to a multi-round environment, we find that the update of opponent 
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situation changes (as long as the hard-coded strategies are clearly defined and broad in 

their scope), as well as being relevant to the player’s actions. 

This approach assumes that we have a collection of known strategies to compare 

against, but as shown in this (and previous) chapters, our models need only represent 

a spectrum of possible opponent models (which need not include the actual player 

strategy) that do not necessarily have to be entirely correct or complete to be useful.  

7.11 Summary 

In this chapter, players are evolved using NEAT for Texas Hold’em Poker. We first 

show it is easy to evolve a player against individual opponents of a fixed style. We then 

compare the improvement in performance of our agents afforded by the use of 

opponent models in aiding the evolution of game-playing agents against players that 

do not make use of such information. Against a single adversary, the results show little 

difference between approaches that use an opponent model, and those which do not. 

We take into account the multi-round basis of full-scale Texas Hold’em and utilise a 

round-based Bayesian model which adjusts beliefs based upon opponent behaviours 

given the specific round and action style probabilistic pairs for that round.  

We compare our players in an environment where there is more than one opponent. 

Results show the benefits of using opponent models increase with a greater number of 

opponents. In this instance, the evolved player relies upon Bayesian opponent 

modeling and the recurrent nature of the evolved neural network is shown to be 
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crucial in order to apply the appropriate strategy for each set of different opponents, 

and is able to generalise and defeat tables of opponent combinations not yet 

encountered. Furthermore, we test the approach against opponents that employ 

simple bluffing tactics, as well as simple dynamic strategy approaches. In these 

experiments we find that our opponent-model augmented NEAT networks are able to 

perform well against these dynamic opponents. 
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Chapter 8: Summary and 
Conclusions 

This thesis presents a Bayesian approach to opponent modeling in a series of games 

with both perfect and imperfect information, as well as investigations involving the 

robustness of the given model using Coevolutionary and reinforcement approaches. 

This work exemplifies the useful nature of opponent models in various game playing 

environments, and as such shows that the understanding of an opponent’s behaviour, 

even if the actual behaviour does not necessarily adhere to the inferred behaviour, can 

prove useful for the agent making use of the model.  

The application of Bayesian analysis to various game environments is a generalizable 

approach, as long as the game environment is amenable to observation, such that 

intentions can be gleaned through the use of Action|Goal or Action|Strategy beliefs 

and the conditional independence for each of the Goals or Strategies – the range of 

problems these beliefs can be applied to is wide. Examples can range from that such as 

a game of football, where beliefs of opponent strategy relating player movement and 

overall tactical intention can be inferred. Contrast this to a First Person Shooter 

environment where short term goals may be assessed through a small set of actions – 

if we consider the A* pathfinding approach used in Chapter 3, we can consider that 

this may be upscaled to deduce opponent intentions such as ‘pick up stronger weapon’ 

or ‘pick up health pack’ and intercept (as in Chapter 3’s experimentation) or apply a 

combative strategy to ruin the opponent’s plans. The understanding of a potential 
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opponent goal yields a potentially beneficial avenue for a counter strategy, and the 

application over various game environments is discussed further in Chapter 3, Section 

3.5. 

The Action|Strategy beliefs employed in Chapter 3 are developed through the use of 

terrain analysis, which can be a useful tool in real-time perfect information strategy 

game environments – the coordination of Bayesian analysis with the directional 

behaviour of an opponent’s potential path proves a useful tool for goal analysis given a 

small set of discrete actions. A further benefit of using the A* algorithm to generate 

Action|Strategy data is that the collection of probabilities will always be conditionally 

independent as long as (disparate) potential goals do not occupy the exact state space, 

therefore the collection of directional moves in comparison of one goal to one another 

remains heterogeneous. The robust nature of the Bayesian approach (in regards to the 

Halmoids environment) is tested through a randomized opponent that randomly 

performs actions outside of the predicted set (Section 3.4, Figure 3.6), which reduces 

the analysis accuracy by only a small amount, with the analysis agent succeeding in its 

interception to a significant frequency. 

In Chapter 4 we introduce a simple version of the game of Poker, consisting of a 10-

card deck, and one card per player with a single betting round and a ‘highest card wins’ 

win scenario. We develop and describe four interdependent opponent styles as well as 

determining the means to defeat these styles to a sufficient degree. Section 4.2.4 

introduces the application of our opponent model into an imperfect information 
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scenario, using an observationally-calculated set of Action|Style probabilities in 

conjunction with Bayes’s rule and opponent actions in order to determine a suitable 

counter-strategy. Facing a single strategy can prove simple to beat, but a collection of 

strategies at the same table represents a more complex problem that is handled using 

a system of opponent strength ranking and response to the most commonly used style 

at the table. The result is understandably imperfect, but copes sufficiently (and better 

in some cases) than an opponent which is privy to the actual style of all opponents, 

rather than just the Bayesian analysis of assumed opponent type. 

To combat the weakness of compromise introduced with the Pigeonholing approach, 

as well as the limitation of using a simple two-parameter strategy to combat the 

behaviour of another two-parameter opponent, an evolutionary approach to player 

decision is applied in Chapter 5, Section 5.1. Initially, the design of an agent using a 

chromosome evolved by Genetic Algorithm as its decision function is developed, and in 

attempting to evolve a suitable player against all opponent types, a disappointingly 

weak overall player is evolved. The use of our Bayesian opponent model is applied to 

the solution (resulting in a significantly larger chromosome), but the resulting tactic 

selection due to Bayes’ rule tenders a greater performance in comparison to an 

evolutionary approach which does not make use of an assumed opponent strategy 

through modeling. 

The size of the chromosome is a limiting factor for generalization over multiple 

opponents, as well as situations where more than the given set of styles is employed 
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(for each potential style, another set of genes to determine counter strategy needs to 

be added). This limitation of size in respect to generalizability is considered through 

the introduction of a Neuroevolutionary approach in Section 5.2, where the application 

of the opponent model once again yields a stronger multi-style player with respect to a 

neuroevolutionary agent in ignorance of an opponent model. This strength is further 

expounded through an investigation into the use of the recurrence present within 

many evolved ANNS to recognize and respond to multiple agents using a set of inputs 

that accommodate for only one opponent. The sequential passing of opponent data 

results in a successful player in a multiplayer environment regardless of the small 

number of inputs (thus negating the explosion of size per opponent associated with an 

ever-expanding chromosome), such that in the analysis of the resulting strongest 

player, the model aids strong performance against collections of players that it has not 

been evolved against.  

The testing involved in Section 5.4 (as well as Chapter 6) correspondingly tests this 

claim, applying bluffing tactics to the static players in an attempt to deceive the 

modeling process, as well as test the strength of the agent and model given a non-

style-specific opponent. Chapter 6 expands the testing of the robustness of our 

Bayesian model by using a coevolutionary approach to developing a collection of 

agents which are strong (in relation to one another), but not of a distinct style. The 

‘best’ evolved Bayesian ANN player from Chapter 5 is tested against each member of 

both populations to determine how the agent responds to numerous unknown 
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opponent types, as well as determine the style with which it believes each opponent to 

be. The Bayesian ANN agent is shown to respond well to the disparate collection of 

opponents, of which some also perform well against the initial static styles (which our 

ANN has been trained against). 

Chapter 7 expands the investigation of the effect of an opponent model upon 

evolution in the expansive realm of full scale Texas Hold‘em Poker. The application of a 

model intended for a single round over the multi-round tournament initially delivers 

evolved agents that appear to perform successfully, however through analysis of play 

behaviour it is seen that a decline of success is exhibited. We adapt our analysis over 

the separate rounds to understand that as play progresses win probabilities are greatly 

altered based upon the style of play. An example is that of a Tight Passive player which 

will mostly only aim to see later betting rounds if a good hand is held and will 

therefore fold less frequently in later betting rounds than in those earlier. This 

adaptation improves the accuracy of the model, and subsequently the same conclusion 

is reached that although the (single-round) Bayesian player performs better than a 

non-modeling player, a model must be applicable to several separate instances of play. 

The separation of individual sets  player behaviours is shown important over separate 

betting rounds, as the tactics of a players strategy will adapt given the improvement 

(or decline) of a players hand given new community cards. Once again the 

effectiveness of recurrence in the evolved ANNs is used to generate solutions which 
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are effectual in both multi-player environments and against players which adopt 

varying levels of bluffing frequency. 

8.1 Future Work 

It is recommended that the following domains would be interesting areas within which 

to expand this research in the future: 

8.1.1 A Preference-Based Modeling Approach to Real-

Time Game Environments 

The work presented in this thesis (in Chapter 3) exemplifies the use of Bayesian 

opponent modeling as a successful technique to predict low-level goals in relation to a 

limited set of basic movements. We suggest that this approach can be expanded in 

several directions to judge other facets of overall plans or potential sequences within 

an opponent’s play. An example of this (when considering an interactive game 

environment) could involve the analysis of potential goals of varying function or 

importance. Whereas the work in Chapter 3 considers that all potential goals are of 

equal importance to the opponent (such that no one goal is advantageous over the 

other) this work could concentrate upon a perceived preference of goal as well as 

predicting a potential order of goal visitation. For example, consider a multi-player 

First Person Shooter (FPS) environment such as UNREAL TOURNAMENT, where local 

objectives (such as finding a more powerful weapon, and restoring lost health) may be 

more immediately tended to in comparison to an overall goal such as either killing an 
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opponent or capturing an enemy base. A ‘preference of visitation’ could be considered 

based upon the status of an opponent, such as having started the match where the 

collection of a stronger weapon, or advancing towards an enemy goal would take 

priority, or in relation to nearing the capture of an enemy base where restoring health 

and defeating opponents would be the primary target. The prediction capability added 

to the QuakeBot, for example, used its own decision processes to determine what it 

would do if in the same situation as the opponent (Laird, 2001). In this case however, 

the prediction of how to respond to an opponent’s targets can utilize the Bayesian 

analysis of opponent behaviour, with an extension into an analysis of the preferential 

ordering of the opponent’s goals. The analysis could use the low level behaviour (such 

as movement direction with respect to a probabilistic distribution) to determine the 

low level goal of an opponent (as with the work in Chapter 3), but also take the 

completion of low level goals as an indication of the intended higher level tactical goal. 

The work would be best served through an investigation of the work of Sander Bakkes 

and Sushil Louis particularly where the game scenario investigated involves 

overarching strategic goals, and low level goals are completed in order to achieve 

those higher goals (Bakkes et al., 2004) (Bakkes et al., 2005) (Louis & Miles, 2005) 

(Miles & Louis, 2005).  
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8.1.2 A Bluff-Aware Approach for Modeling an Opponent’s 

Potential for Deceptive Play 

Chapters 5 through 7 indicate the strength of our model’s stability in the face of 

unseen collections of opponents, as well as those which enact bluffing behaviours with 

a given probability, p. We have also performed brief investigation into how a set of 

behaviours can be input to an evolved Artificial Neural Network in order to determine 

the opponent’s play style. Our model is indicative of the opponent’s play style using 

only the previous actions performed by the opponent, but the outcome of these 

performed actions could also be used in order to make a model of how the opponent 

performs his deceptive strategies (such as bluffing). The aim of this further 

investigation could investigate the effect that using this information has upon the 

stability (and respective success) of an agent, evolved or otherwise. For example, if we 

take into account the use of Blind Stealing, where an opponent with a weak or 

moderate strength hand decides to perform an aggressive action in order to force 

opponents out of the hand. If this approach is performed by a primarily tight player, 

the likelihood that the other players fold is increased. With this investigation, 

situations where a bluff is called, or a blind stealing hand is revealed, or even where an 

opponent may win the hand but quite obviously has had a weak set of hole cards up 

until the final betting round, could be recorded and stored as a frequency/probability 

of performing a deceptive tactic per hand. Situational data could be taken into 

account, such as the size of the player’s purse in relation to the deceptive strategy, or 
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the outcome of a previous hand. Research has shown the predictability of humans in 

relation to behavioural patterns is high and therefore reactionary behaviours such as 

going ‘all-in’ after a hand with a heavy loss in order to try and recoup some chips may 

be indicative of an opponent’s mental makeup (Song et al., 2010). The methodology 

may involve the use of the Bayesian ANN approach explored in this thesis, but could 

further analyse the effects that incidental and deceptive outcome data (as inputs to 

the network) have upon the responsive nature of the network to adapt to a deceitful 

opponent’s play. A limitation of this observation may ironically be due to the use of 

deception; if an opponent uses plays such as the ‘blind stealing’ approach successfully, 

the act of ‘mucking’ (hiding the hole cards when a showdown is not reached) would 

reduce the ability of recognizing when an opponent has actually bluffed in order to win 

the hand. It is recommended that the act of mucking be ignored during initial 

investigation in order to see the effectiveness of such frequency data when all cards 

are made visible at the end of a hand. The expansion into hidden card data may also 

reveal interesting information as to the nature of how often bluffing plays can be 

spotted without always having access to information about the bluffer’s cards (as well 

as success). 

8.1.3 Look-Ahead Prediction of Potential Strategy 

Adaptation 

The work presented in this thesis primarily concerns the determination of an 

opponent’s strategy based upon the collection of actions already performed by said 
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opponent. This is in contrast to Davidson’s approach, which uses information about 

current action frequencies in order to determine the opponent’s next action (Davidson 

et al., 2000). This being said, given Davidson’s claimed accuracy of prediction (over 

80% accuracy), an interesting avenue of research could be to use a predictive 

capability to determine an opponent’s next action, and use this action as part of the 

belief model of an opponent’s current style. If we consider our Bayesian approach, the 

set of previous actions used determine the current style, but a predictive capability 

may infer a potential ‘future style’. The proposed investigation would involve an 

analysis of how far forward into the hand a predictive ANN could look as to the 

opponent’s potential actions; this could then be used as a potential early indicator of a 

switch in opponent style. This approach could also intertwine with that from 8.1.2, 

where a predictive capability could infer whether the opponent was preparing to bluff, 

such as in the latter stages of a hand where an enterprising player may imply that the 

river card was a necessary card to make a strong hand available to him.  

8.1.4 Modeling Strategy Recognition Through 

Idiosyncratic Behaviour Capture 

As previously mentioned in Section 8.1.2, human behaviour can be predictable, and 

the dynamic and interesting nature of the human (face to face) game of Poker may be 

attributed to the ability of a player to see more than just the opponent’s previous 

actions and betting behaviour. A good human player can also look for ‘tells’ (seen as a 

behavioural tic in relation to a given situation) that a human opponent may display, 
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subsequently deciding upon the legitimacy of the opponent’s actions. This analysis of 

behaviour is far less common in relation to computer-based (or online) Poker, and as 

such the question of how idiosyncratic behaviours of a human whilst using the 

peripherals of a computer may indicate the human player’s hand strength. Some 

humans display compulsive behaviours to some degree, which can be exacerbated by 

stressful situations, research has shown that Poker players have been known to use 

medication such as beta blockers in order to calm nervous behaviour as well as 

improve concentration (Nova Southeastern University, 2010). This investigation may 

consider capturing a player’s computer mouse movement (or clicks) during hands, and 

through the analysis of hand outcomes with respect to input behaviours determine a 

player’s hand strength, or recognize situations where a bluffing tactic may be 

employed. A collection of the frequency of potential behaviours performed could be 

collected, for example the frequency of mouse clicks and certain abnormal mouse 

movements (such as shaking). These frequencies may be related to a post-hand 

analysis of outcome given the biometric collection of player data (i.e. if a player clicks 

compulsively, and wins the hand, this behaviour could be inferred as a sign of a good 

hand). Limited research has been performed in the area of biometric capture with 

respect to game playing, generally looking only to identify users through behaviour 

patterns (Kaminsky et al., 2008), but the inference of opponent style and tactic 

through (partially unintended) behaviours may prove interesting. 
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Glossary 
A*:  An algorithm widely used in pathfinding and graph traversal, uses heuristics to 

calculate the shortest path from one node to another 

A Priori:  Prior knowledge, commonly used by Bayesian analysis to make inferences 

conditional upon this knowledge 

AI:  Artificial Intelligence: The study and design of intelligent agents. 

ANN:  Artificial Neural Network 

Ante:  A forced bet from all players in the game of Poker before a hand can begin 

Blind:  A forced bet from one or more players before a hand can begin 

Bluff: A misleading betting action in a game of Poker. 

Boolean:  A value which can take the value of true or false (1 or 0) 

Deathmatch:  A common multiplayer videogame mode where two or more players kill 

one another’s avatars to score points. 

EA: Evolutionary Algorithm 

Flop:  Three initial community cards given after an initial round of betting in a game of 

Texas Hold ‘em 

FPS: First Person Shooter, An action game in which the player controls the protagonist 

from a first person viewpoint. 

GA:  Genetic Algorithm. 

Heads Up: A Poker game which consists of only two players 

Heuristic:  An experience-based technique used for problem solving, a ‘rule of thumb’.’ 

IPD:  Iterated Prisoner’s Dilemma 
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Nash Equilibrium:  In a game of two or more players, a Nash Equilibrium is reached 

when each player knows one another’s strategy, and no player can gain from changing 

from their current strategy. 

NEAT:  NeuroEvolution of Augmenting Topologies 

NeuroEvolution:  A form of machine learning that uses evolutionary algorithms to train 

neural networks 

River: A fifth community card in the game of Texas hold ‘em 

Robustness:  The ability of a computer system to operate despite abnormalities in the 

input. 

rtNEAT: Real-Time NEAT. An implementation of the NEAT algorithm for a real-time 

game environment 

RTS: Real Time Strategy. A game genre which requires the player to command multiple 

units to complete various objectives or defeat a given opponent (usually in a military 

scenario). 

SharpNEAT:  A C# implementation of NEAT. 

Splash Damage: An area of influence from explosions in deathmatch games within 

which damage can still be inflicted upon a desired opponent. 

Stochastic:  Random, non-deterministic. 

TIELT:  The Testbed for Integrating and Evaluating Learning Techniques 

Tuple:  An ordered list of Elements 

Turn: The fourth community card in a game of Texas Hold ‘em. 
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Appendix A 

Performance of varying α and β values against a 

collection of varied opponent styles 

 The following graphs are the result of 100 tournaments played between an 

‘amorphous’ player, which accepts α and β values as an argument, and every 

combination of three opponents given the four potential opponent styles. The graphs 

show the performance of the amorphous player where the α and β values are 

individually incremented in steps of 0.1 from 0.0 to 1.0. 
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Tournament success of different values of α and β (in % of tournaments won) when playing a four-player 

tournament against LA/LA/LP 

 
Tournament success of different values of α and β (in % of tournaments won) when playing a four-player 
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Tournament success of different values of α and β (in % of tournaments won) when playing a four-player 

tournament against LA/LP/LP 
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Tournament success of different values of α and β (in % of tournaments won) when playing a four-player 

tournament against LA/TA/TA 

 
Tournament success of different values of α and β (in % of tournaments won) when playing a four-player 

tournament against LA/TA/TP 
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Tournament success of different values of α and β (in % of tournaments won) when playing a four-player 

tournament against LP/LP/LP 
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Tournament success of different values of α and β (in % of tournaments won) when playing a four-player 

tournament against LP/TA/TA 
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Tournament success of different values of α and β (in % of tournaments won) when playing a four-player 

tournament against TA/TA/TA 
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Tournament success of different values of α and β (in % of tournaments won) when playing a four-player 

tournament against TP/TP/TP 

0
 0
.3

 0
.6

 0
.9

 

0
 0
.3

 0
.6

 0
.9

 

α β 

90-100 

80-90 

70-80 

60-70 

50-60 

40-50 

30-40 

20-30 

10-20 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 0.2 0.4 0.6 0.8 1 

α 

β 



 195 

Bibliography 
Alexander, T., 2002. GoCap: Game Observation Capture. In S. Rabin, ed. AI Game Programming Wisdom. 
Hingham, MA: Charles River Media. pp.579-85. 

Arvandi, M., Wu, S. & Sadeghian, A., 2008. On the Use of Recurrent Neural Networks to Design 
Symmetric Ciphers. Computational Intelligence Magazine, May, IEEE Press. pp.42-53. 

Aumann, R., 1959. Acceptable points in general cooperative n-person games. Contributions to the 
Theory 23 of Games IV, Annals of Mathematics Study, 40, pp.287-324. 

Axelrod, R., 1987. The evolution of strategies in the iterated prisoner's dilemma. In L. Davis, ed. Genetic 
Algorithms and Simulated Annealing. Los Altos, CA: Morgan Kauffman. pp.32-41. 

Baker, R.J.S. & Cowling, P.I., 2007. Bayesian Opponent Modeling in a Simple Poker Environment. In 
Kendall, G. & Lucas, S., eds. IEEE Symposium on Computational Intelligence and Games (CIG 2007). 
Honolulu, USA, 2007. IEEE Press pp.125-31. 

Baker, R.J.S., Cowling, P.I., Randall, T.W.G. & Jiang, P., 2008. Can Opponent Models Aid Poker Player 
Evolution? In Hingston, P. & Barone, L., eds. IEEE Symposium on Computational Intelligence and Games 
2008 (CIG 2008) 15 - 18 December. Perth, WA, 2008. IEEE Press pp.22-30. 

Baker, R.J.S., Cowling, P.I., Randall, T.W.G. & Jiang, P., 2008. Using Bayes' Theorem for Path Prediction. 
In Rigas, D., ed. 9th Informatics Research Workshop for Research Students, University of Bradford, 2008. 
Bradford, 2008. University of Bradford pp.101-04. 

Bakkes, S. & Spronck, P., 2005. Symbiotic Learning in Commercial Computer Games. In Mehdi, Q., 
Gough, N. & Natkin, S., eds. CGAMES 2005, 7th International Conference on Computer Games. 
Wolverhampton, UK., 2005. University of Wolverhampton pp.116-20. 

Bakkes, S. & Spronck, P., 2006. Gathering and Utilising Domain Knowledge in Commercial Computer 
Games. In Schobbens, P.-Y., Vanhoof, W. & Schwanen, G., eds. Proceedings of the 18th Belgium-
Netherlands Conference on Artificial Intelligence (BNAIC 2006). Namur, Belgium, 2006. University of 
Namur pp.35-42. 

Bakkes, S., Spronck, P. & Postma, E., 2004. TEAM: The Team-oriented Evolutionary Adaptability 
Mechanism. In Rauterberg, M., ed. Entertainment Computing - ICEC 2004. Eindhoven, 2004. Springer-
Verlag pp.273-82. 

Bakkes, S., Spronck, P. & Postma, E., 2005. Best-Response Learning of Team Behaviour in Quake III. In 
Aha, D.W., Muñoz-Avila, H. & van Lent, M., eds. IJCAI-05 Workshop on Reasoning, Representation, and 
Learning in Computer Games. Washington, DC, 2005. Naval Research Laboratory pp.13-18. 

Barone, L. & While, L., 1998. Evolving Adaptive Play for Simplified Poker. In n proceedings of IEEE 
International Conference on Computational Intelligence (ICEC-98) April 6-9. Seoul, Korea, 1998. IEEE 
Press pp.108-13. 

Barone, L. & While, L., 1999. An Adaptive Learning Model for Simplified Poker Using Evolutionary 
Algorithms. In Angeline, P.J., ed. In proceedings of the Congress of Evolutionary Computation (CEC'1999) 
July 6-9. Washington DC, 1999. IEEE Press pp.153-60. 

Barone, L. & While, L., 2000. Adaptive Learning for Poker. In Whitley, L.D. et al., eds. In proceedings of 
the Genetic and Evolutionary Computation Conference (GECCO 2000). Las Vegas, Nevada, 2000. Morgan 
Kaufmann pp.566-73. 



 

 196 

BBC News, 2006. Chess Champion Loses To Computer. [Online] Available at: 
http://news.bbc.co.uk/1/hi/world/europe/6212076.stm [Accessed October 2008]. 

Billings, D., 1999. The First International RoShamBo Programming Competition. [Online] Available at: 
http://webdocs.cs.ualberta.ca/~darse/rsb-results1.html [Accessed January 2009]. 

Billings, D. et al., 2003. Approximating game-theoretic optimal strategies for full-scale poker. In Gottlob, 
G. & Walsh, T., eds. 18th International Joint Conference on Artificial Intelligence. Acapulco, Mexico, 
2003. Morgan Kaufmann pp.661-68. 

Billings, D., Davidson, A., Schaeffer, J. & Szafron, D., 2000. Improved Opponent Modeling in Poker. In 
Proceedings of The 2000 International Conference on Artificial Intelligence (ICAI'2000)., 2000. pp.1467-
73. 

Billings, D., Davidson, A., Schaeffer, J. & Szafron, D., 2002. The Challenge of Poker. Artificial Intelligence 
Journal, 134(1-2), pp.201-40. 

Billings, D., Papp, D., Schaeffer, J. & Szafron, D., 1998. Opponent Modeling in Poker. In In Proceedings of 
AAAI-98 (15th National Conference of the American Association for Artificial Intelligence (AAAI)). 
Madison, WI, 1998. AAAI Press pp.493-99. 

Billings, D., Peña, L., Schaeffer, J. & Szafron, D., 1999. Using probabilistic knowledge and simulation to 
play poker. In In Proceedings of the Sixteenth National Conference on Artificial intelligence and the 
Eleventh innovative Applications of Artificial intelligence Conference innovative Applications of Artificial 
intelligence., 1999. pp.697-703. 

Billings, D., Peña, L., Schaeffer, J. & Szafron, D., 2001. Learning to Play Strong Poker. In Machines that 
Learn to Play Games. Huntington,NY: Nova Science Publishers. pp.225-42. 

Bodén, M., 2001. A guide to recurrent neural networks and back propagation. The DALLAS project. 
Report from the NUTEK-supported project AIS-8, SICS. Holst: Application of data analysis with learning 
systems, Citeseer, pp.1-10. 

Brown, D.E. & Gordon, G., 2005. Terrain Based Prediction to Reduce the Search Area in Response to 
Insurgent Attacks. In Attacks. The 10th International Command and Control Research and Technology 
Symposium., 2005. pp.13-16. 

Burns, K., 2006. Style in Poker. In In IEEE Symposium on Computational Intelligence and Games (CIG 
2006)., 2006. pp.257-64. 

Burns, M. & Pearl, J., 1981. Causal and Diagnostic Inferences: A Comparison of Validity. Organizational 
Behaviour and Human Performance, 28, pp.379-94. 

Byrnes, J.P., 2001. Cognitive Development and Learning in Instructional Contexts. 2nd ed. Boston, MA: 
Alyn & Bacon. 

Callan, R., 2003. Artificial Intelligence. Basingstoke, Hampshire, UK: Palgrave Macmillan. 

Campbell, M., Haone, A.J. & Hsu, F.-h., 2002. Deep Blue. Artificial intelligence, 134, pp.57-83. 

http://news.bbc.co.uk/1/hi/world/europe/6212076.stm
http://webdocs.cs.ualberta.ca/~darse/rsb-results1.html


 

 197 

Carter, R.G. & Levine, J., 2007. An Investigation into Tournament Poker Strategy using Evolutionary 
Algorithms. In IEEE Symposium on Computational Intelligence and Games, 2007 (CIG 2007)., 2007. 
pp.117-24. 

Chellapilla, K. & Fogel, D.B., 1999. Evolving Neural Networks to Play Checkers without Expert Knowledge. 
IEEE Transactions on Neural Networks, 10(6), pp.1382-91. 

Clark, B., 2006. The Dying Days of Las Vegas 1-5 Stud, Two Plus Two Internet Magazine. [Online] 
Available at: http://www.twoplustwo.com/magazine/issue21/clark0906.html [Accessed July 2010]. 

Cowley, B., Charles, D., Black, M. & Hickey, R., 2009. Analyzing player behavior in pacman using feature-
driven decision theoretic predictive modeling. In IEEE Symposium on Computational Intelligence and 
Games, 2009 (CIG 2009)., 2009. IEEE Press pp.170-77. 

Cowling, P.I., 2006. Writing AI as Sport. In S. Rabin, ed. AI Game Programming Wisdom 3. Charles River 
Media. pp.89-96. 

D’Silva, T. et al., 2005. Retaining Learned Behavior During Real-Time Neuroevolution. Artificial 
Intelligence and Interactive Digital Entertainment, pp.39-44. 

Davidson, A., Billings, D., Schaeffer, J. & Szafron, D., 2000. Improved Opponent Modeling in Poker. In 
Proceedings of the 2000 International Conference on Artificial Intelligence (ICAI'2000)., 2000. pp.1467-
73. 

De Jong, K.A., 1975. University Microfilms No. 76-09381 An Analysis of the Behavior of a Class of Genetic 
Adaptive Systems. PhD Thesis. Ann Arbor, MI: The University of Michigan. 

Deneve, S., 2008. Bayesian Spiking Neurons I: Inference. Neural Computation, 20, The MIT Press, pp.91-
117. 

Denzinger, J., Loose, K., Gates, D. & Buchanan, J., 2005. Dealing with parameterized actions in behavior 
testing of commercial computer games. In IEEE Symposium on Computational Intelligence and Games 
(CIG '05). Colchester, UK, 2005. pp.51-58. 

Egnor, D., 1999. Iocaine Powder. [Online] Available at: http://www.ofb.net/~egnor/iocaine.html 
[Accessed November 2008]. 

Elman, J.L., 1990. Finding Structure in Time. Cognitive Science, 14, Cognitive Science Society, pp.179-211. 

Felix, D. & Reis, L., 2008. An Experimental Approach to Online Opponent Modeling in Texas Hold'em 
Poker. Advances in Artificial Intelligence-SBIA 2008, Springer, pp.83-92. 

Findler, N., 1977. Studies in Machine Cognition Using the Game of Poker. CACM, 20(4), pp.230-45. 

Finlay, J. & Dix, A., 1997. An Introduction to Artificial Intelligence. London: UCL Press. 

Fraser, A.S., 1957. Simulation of genetic systems by automatic digital computers. I. Introduction. 
Australian Journal of Biological Sciences, 10, pp.484-91. 

Funge, J., 2000. Cognitive modeling for games and animation. Communications of the ACM, 43, ACM, 
p.48. 

http://www.twoplustwo.com/magazine/issue21/clark0906.html
http://www.ofb.net/~egnor/iocaine.html


 

 198 

Gal, Y. & Pfeffer, A., 2003. A language for modeling agents decision making processes in games. In 
Autonomous Agents and Multi-Agents Systems Conference (AAMAS). Melbourne, Australia, 2003. ACM 
pp.265-72. 

Gilpin, A. & Sandholm, T., 2006. Better automated abstraction techniques for imperfect information 
games, with application to Texas Hold em poker. In Proceedings of the 6th National Conference on 
Artificial Intelligence (AAAI). Boston, MA, 2006. AAAI pp.1176--1183. 

Gomez, F. & Miikkulainen, R., 1998. 2-D Pole Balancing with Recurrent Evolutionary Networks. In 
Proceedings of the International Conference on Artificial Neural Networks (ICANN-98). Skovde, Sweden, 
1998. pp.425-30. 

Greenwood, G., 2009. Deceptive strategies for the evolutionary minority game. In Lanzi, P.L., ed. 
Proceedings of the 5th international conference on Computational Intelligence and Games (CIG '2009). 
Milan, Italy, 2009. IEEE Press pp.25-31. 

Hamilton, S. & Garber, L., 1997. Deep Blue's Hardware-Software Synergy. Computer, 30(10), pp.29-35. 

Hart, P.E., Nilsson, N.J. & Raphael, B., 1968. A Formal Basis for the Heuristic Determination of Minimum 
Cost Paths. IEEE Transactions on Systems Science and Cybernetics SSC4, pp.100-07. 

Heijden, M.V., Bakkes, S. & Spronck, P., 2008. Dynamic Formations in Real-Time Strategy Games. In 
Hingston, P. & Barone, L., eds. IEEE Symposium On Computational Intelligence and Games, 2008 (CIG 
'08). Perth, WA, 2008. IEEE Press pp.47-54. 

Hingston, P., 2009. A Turing Test for Computer Game Bots. IEEE Transactions on Computational 
Intelligence and AI In Games, 1(3), pp.169-86. 

Hladky, S. & Bulitko, V., 2008. An Evaluation of Models for Predicting Opponent Positions in First-Person 
Shooter Video Games. Computational Intelligence, pp.39-46. 

Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. Ann Arbor, Michigan: University of 
Michigan Press. 

Johanson, M. & Bowling, M., 2009. Data-biased robust counter strategies. In van Dyk, D. & Welling, M., 
eds. Twelfth International Conference on Artificial Intelligence and Statistics (AISTATS). Clearwater 
Beach, FL, 2009. Microtome Publishing pp.264-71. 

Johnson-Laird, P.N., 1983. Mental models: towards a cognitive science of language, inference and 
consciousness. Cambridge, U.K.: Cambridge press. 

Kaboli, A., Bowling, M. & Musilek, P., 2006. Bayesian calibration for Monte Carlo localization., 2006. 
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999 p.964. 

Kaminsky, R., Enev, M. & Andersen, E., 2008. Identifying Game Players with Mouse Biometrics. Technical 
Report. University of Washington. 

Kendall, G. & Willdig, M., 2001. An investigation of an adaptive poker player. AI 2001: Advances in 
Artificial Intelligence, Springer, pp.217-29. 



 

 199 

Kim, K.-j. & Cho, S.-b., 2008. Ensemble Approaches in Evolutionary Game Strategies: A Case Study in 
Othello. In Hingston, P. & Barone, L., eds. IEEE Symposium On Computational Intelligence and Games, 
2008 (CIG '08). Perth, WA, 2008. IEEE Press pp.212-19. 

Kloetzer, J., Iida, H. & Bouzy, B., 2008. A Comparative Study of Solvers in Amazons Endgames. In 
Hingston, P. & Barone, P., eds. IEEE Symposium On Computational Intelligence and Games, 2008 (CIG 
'08). Perth, WA, 2008. IEEE Press pp.378-84. 

Knuth, D.E. & Moore, R.W., 1973. An Analysis of Alpha-Beta Pruning. Artificial Intelligence, 6(4), pp.293-
326. 

Koller, D. & Pfeffer, A., 1995. Generating and solving imperfect information games. In Proceedings of the 
14th International Joint Conference on Artificial Intelligence (IJCAI)., 1995. pp.1185-92. 

Koller, D. & Pfeffer, A., 1997. Representations and solutions for game-theoretic problems. Artificial 
Intelligence, 94(1), pp.167-215. 

Krumm, J., 2006. Real Time Destination Prediction Based on Efficient Routes. In Society of Automotive 
Engineers (SAE) 2006 World Congress., 2006. 

Kuhn, H.W., 1950. A simplified two-person poker. Contributions to the Theory of Games, pp.92-103. 

Ku, K., Mak, M. & Siu, W., 2000. A study of the Lamarckian evolution of recurrent neural networks. IEEE 
Transactions on Evolutionary Computation, 4(1), IEEE Press, pp.31-42. 

Laird, J.E., 2000. An Exploration into Computer Games and Computer Generated Forces. In The Ninth 
Conference on Computer Generated Forces and Behavior Representation. Orlando FL., 2000. 

Laird, J.E., 2001. It Knows What You're Going to Do: Adding Anticipation to a Quakebot. In Proceedings 
of the fifth international conference on Autonomous agents. Montreal, Quebec, Canada, 2001. ACM 
Press pp.385-92. 

Laird, J. & Arbor, A., 2000. Design Goals for Autonomous Synthetic Characters. Technical Report. 
University of Michigan. 

Laird, J.E. & Duchi, J.C., 2000. Creating human-like synthetic characters with multiple skill levels: A case 
study using the soar quakebot. In Simulating Human Agents, Papers from the 2000 AAAI Fall Symposium. 
Menlo Park, CA, 2000. AAAI Press pp.75-79. 

Laird, J. & Van Lent, M., 2001. Human-level AIs killer application: Interactive computer games. In 
Proceedings of the 17th National Conference on Artificial Intelligence. Menlo Park, CA, 2001. AAAI Press 
pp.1171-78. 

Lanctot, M., Waugh, K., Zinkevich, M. & Bowling, M., 2009. Monte carlo sampling for regret 
minimisation in extensive games. Advances in Neural Network Processing Systems 22 (NIPS), pp.1078-
76. 

Lawrence, S., Giles, C.L. & Tsoi, A.C., 1996. UMIACSTR 96-22 and CS-TR-3617 What size neural network 
gives optimal generalization? Convergence properties of backpropagation. Technical Report. University 
of Maryland. 



 

 200 

Le Doux, J., 1997. The Emotional Brain: The mysterious underpinnings of emotional life. New york: Simon 
& Schuster. 

Lee, K. & Mahajan, S., 1990. The development of a World-Class Othello program. Artificial Intelligence, 
(43), pp.21-36. 

Lent, M.V. & Laird, J., 1998. Developing an Artificial Intelligence Engine. In Proceedings of the 1999 
Game Developers’ Conference.. San Jose, CA., 1998. 

Leung, M.T., Engeler, W.E. & Frank, P., 1990. Fingerprint processing using backpropagation neural 
networks. In Proceedings of the International Joint Conference on Neural Networks I., 1990. pp.15-20. 

Li, S., Chen, C. & Li, L., 2008. A new method for path prediction in network games. Computers in 
Entertainment, 5(4), pp.1-12. 

Liu, Y., Comaniciu, C. & Man, H., 2006. A bayesian game approach for intrusion detection in wireless ad 
hoc networks. Proceedings of the Workshop on Game Theory for Communications and Networks, p.4. 

Livingston, D., 2006. Turing’s Test and Believable AI in Games. ACM Computers in Entertainment (CIE), 
4(1), pp.6-18. 

Lockett, A., Chen, C. & Miikkulainen, R., 2007. Evolving Explicit Opponent Models in Game Playing. In 
Opponent Models in Game Playing. Proceedings of the Genetic and Evolutionary Computation 
Conference (GECCO-07). San Francisco, 2007. Kaufmann pp.2106-13. 

Lockett, A. & Miikkulainen, R., 2008. Evolving Opponent Models for Texas Hold'em. In 2008 IEEE 
Conference on Computational Intelligence in Games. Perth, WA, 2008. pp.31--38. 

Louis, S.J. & Miles, C., 2005. Combining Case-Based Memory with Genetic Algorithm Search for 
Competent Game AI. In ICCBR Workshops. Chicago, IL, USA, 2005. pp.193-205. 

Lucas, S.M., 2008. Computational intelligence and games: Challenges and opportunities. International 
Journal of Automation and Computing, 5(1), pp.45-57. 

Lucas, S.M. & Robles, D., 2009. A simple tree search method for playing Ms. Pac-Man. In Lanzi, P.L., ed. 
IEEE Symposium on Computational Intelligence and Games 2009 (CIG 2009). Milan, Italy, 2009. IEEE 
Press pp.249-55. 

Magerko, B. et al., 2004. AI Characters and Directors for Interactive Computer Games. In In Proceedings 
of the 2004 Innovative Applications of Artificial Intelligence Conference. San Jose, CA, 2004. AAAI Press 
pp.877-84. 

Marin, C., Castillo, L.P. & Garrido, L., 2005. Dynamic adaptive opponent modeling: Predicting opponent 
motion while playing soccer. In Alonso, E. & Guessoum, Z., eds. Fifth European Workshop on Adaptive 
Agents and Multiagent Systems. Paris, France, 2005. 

Matthews, J., 2002. Basic A* Pathfinding Made Simple. In S. Rabin, ed. AI Game Programming Wisdom. 
Hingham MA: Charles River Media. pp.105-13. 

McCulloch, W. & Pitts, W., 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of 
Mathematical Biophysics, 5, pp.115-33. 



 

 201 

Mcpartland, M. & Gallagher, M., 2008. Creating a Multi-Purpose First Person Shooter Bot with 
Reinforcement Learning. In Hingston, P. & Barone, L., eds. IEEE Symposium On Computational 
Intelligence and Games, 2008 (CIG '08). Perth, WA, 2008. IEEE Press pp.143-50. 

Mcquesten, P. & Miikkulainen, R., 1997. Culling and Teaching in Neuro-evolution. In Proceedings of the 
Seventh International Conference on Genetic Algorithms. East Lansing, MI, 1997. pp.760-67. 

Mehta, M. & Corradini, A., 2009. Evaluation of a Domain Independent Approach to Natural Language 
Processing for Game-like User Interfaces. In Lanzi, P.L., ed. Proceedings of the IEEE Symposium on 
Computational Intelligence and Games (CIG 2009). Milan, Italy, 2009. IEEE Press pp.225-32. 

Meng, C. & Pakath, R., 2001. The Iterated Prisoner's Dilemma: Early Experiences with Learning Classifier 
System-based Simple Agents. Decision Support Systems, 31(4), pp.379-403. 

Micheli, A., Sona, D. & Sperduti, A., 2004. Contextual Processing of Structured Data by Recursive 
Cascade Correlation. IEEE Transactions on Neural Networks, 15(6), IEEE Press, pp.1396-410. 

Miikkulainen, R., Bryant, B.D., Cornelius, R. & Karpov, I.V., 2006. Computational Intelligence in Games. In 
G.Y. Yen & D.B. Fogel, eds. Computational Intelligence: Principles and Practice. Piscataway, NJ: IEEE 
Press. pp.155-91. 

Miles, C. & Louis, S.J., 2005. Case-Injection Improves Response Time for a Real-Time Strategy Game. In 
Lucas, S. & Kendall, G., eds. Proceedings of the 2005 IEEE Symposium on Computational Intelligence and 
Games (CIG05). Colchester, Essex, 2005. IEEE Press pp.149-56. 

Millington, I., 2006. Artificial Intelligence for Games. San Francisco: Morgan Kaufmann. 

Mitchell, M., 1996. An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press. 

Mittal, S. & Deb, K., 2009. Optimal strategies of the iterated prisoner's dilemma problem for multiple 
conflicting objectives. IEEE Transactions on Evolutionary Computation, 13(3), IEEE Press, pp.554-65. 

Mommersteeg, F., 2002. Pattern Recognition with Sequential Prediction. In S. Rabin, ed. AI Game 
Programming Wisdom. Clifton Park, NY: Charles River Media. pp.586-95. 

Monroy, G.A. & Stanley, K.O., 2006. Coevolution of Neural Networks using a Layered Pareto Archive. In 
Keijzer, M., Cattolico, M., Arnold, D. & al., e., eds. Proceedings of the 8th annual conference on Genetic 
and evolutionary computation (GECCO 06). Seattle, WA, 2006. ACM Press pp.329 - 336. 

Moriarty, D.E. & Miikkulainen, R., 1994. Evolving Neural Networks To Focus Minimax Search. In 
Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94, Seattle, WA). 
Cambridge, MA, 1994. MIT Press pp.1371-77. 

Moriarty, D.E. & Miikkulainen, R., 1995. Discovering Complex Othello Strategies Through Evolutionary 
Neural Networks. Connection Science, 7, pp.195-209. 

Moriarty, D.E. & Miikkulainen, R., 1997. Forming Neural Networks Through Efficient And Adaptive 
Coevolution. Evolutionary Computation, 5(4), MIT Press, Cambridge, MA, pp.373-99. 

Moriarty, D.E. & Miikkulainen, R., 1998. Hierarchical Evolution Of Neural Networks. In In Proceedings of 
the 1998 IEEE Conference on Evolutionary Computation (ICEC98). Anchorage, AK, 1998. IEEE Press 
pp.428-33. 



 

 202 

Moriarty, D., Miikkulainen, R. & Kaelbling, P., 1996. Efficient Reinforcement Learning through Symbiotic 
Evolution. Machine Learning, 22, pp.11-32. 

Nakashima, T., Takatani, M., Ishibuchi, H. & Nii, M., 2006. The effect of using match history on the 
evolution of robocup soccer team strategies. In Louis, S.J., ed. In proceedings of 2006 IEEE Symposium on 
Computational Intelligence and Games (CIG 2006). Reno/Lake Tahoe, 2006. IEEE Press pp.60-66. 

Nash, J.F. & Shapley, L.S., 1950. A simple three-person poker game. Contributions to the Theory of 
Games, 1, pp.105-16. 

Negnevitsky, M., 2005. Artificial Intelligence (A guide to Intelligent Systems). 2nd ed. Harlow, Essex: 
Addison Wesley. 

Nova Southeastern University, 2010. Study Finds Poker Players Using Drugs to Enhance Performance. 
[Online] Available at: http://www.sciencedaily.com/releases/2010/06/100601171840.htm [Accessed 
August 2010]. 

Papp, D.R., 1998. Dealing with imperfect information in poker. Master’s Thesis, University of Alberta, 
Edmonton. University of Alberta Edmonton, Alberta, Canada. 

Parker, M. & Bryant, B.D., 2009. Backpropagation without Human Supervision for Visual Control in 
Quake II. In Lanzi, P.L., ed. Proceedings of the 5th international conference on Computational Intelligence 
and Games (CIG 2009). Milan, Italy, 2009. IEEE Press pp.287-93. 

Picton, P., 2000. Neural Networks. 2nd ed. Basingstoke: Palgrave. 

Ponsen, M., Lanctot, M. & de Jong, S., 2010. MCRNR: Fast Computing of Restricted Nash Responses by 
Means of Sampling. In (To Appear) Interactive Decision Theory and Game Theory Workshop at the 
Twenty-Fourth Conference on Artificial Intelligence (AAAI-10)., 2010. AAAI Press. 

Ponsen, M.J., Muñoz-avila, H., Spronck, P. & Aha, D.W., 2005. Automatically Acquiring Domain 
Knowledge For Adaptive Game AI Using Evolutionary Learning. In Seventeenth Conference on Innovative 
Applications of Artificial Intelligence., 2005. AAAI Press pp.1535-40. 

Ponsen, M., Munoz-avila, H., Spronck, P. & Aha, D., 2006. Automatically generating game tactics via 
evolutionary learning. AI Magazine, 27(3), AAAI Press, pp.75-84. 

Pour, P.A. et al., 2008. Brain-Computer Interface : Next Generation Thought Controlled Distributed 
Video Game Development Platform. In Hingston, P. & Barone, L., eds. IEEE Symposium on Computational 
Intelligence and Games (CIG '2008). Perth, WA, 2008. IEEE Press pp.251-57. 

Randall, T.W.G., Cowling, P.I. & Baker, R.J.S., 2007. Learning Ship Combat Strategies in the Commercial 
Video Game DEFCON. In Rigas, D., ed. 8th Informatics Research Workshop for Research Students, 
University of Bradford, 2007. Bradford, West Yorkshire, 2007. University of Bradford pp.182-83. 

Randall, T.W.G., Cowling, P.I., Baker, R.J.S. & Jiang, P., 2009. Using Neural Networks for Strategy 
Selection in Real-Time Strategy Games. In Proceedings of the AISB Symposium on AI & Games. 
Edinburgh, UK, 2009. 

Richards, N., Moriarty, D.E. & Miikkulainen, R., 1998. Evolving Neural Networks to Play Go. In Back, T., 
ed. Proceedings of the Seventh International Conference on Genetic Algorithms. East Lansing, MI, 
January-February 1998. Morgan Kaufmann pp.768-75. 

http://www.sciencedaily.com/releases/2010/06/100601171840.htm


 

 203 

Rosenblatt, F., 1959. The Perceptron: A Probabilistic Model for Information Storage and Organization in 
the Brain. Psychological Review, 65, pp.386-408. 

Rosenbloom, P.S., 1988. A World-Championship-Level Othello Program. Computer Games II, 2, Springer-
VErlag, pp.365-408. 

Rosin, C.D. & Belew, R.K., 1997. New methods for competitive coevolution. Evolutionary Computation, 5, 
MIT Press, pp.1--29. 

Ross, S.M., 1971. Goofspiel - The Game of Pure Strategy. Journal of Applied Probability, 8(3), JSTOR, 
pp.621-25. 

Russell, J. & Norvig, P., 1995. Artificial Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice 
Hall. 

Sakaguchi, M. & Sakai, S., 1992. Solutions of Some Three-person Stud and Draw Poker. Mathematics 
Japonica, 6(37), pp.1147-60. 

Saund, E., 2006. The Information Conveyed By Opponents' Betting Behavior in Poker. In Louis, S., ed. In 
IEEE Symposium on Computational Intelligence and Games (CIG 2006). Reno/Lake Tahoe, 2006. IEEE 
Press pp.126-33. 

Schaeffer, J. et al., 2007. Checkers is Solved. Science Express, 19 July. pp.1518-22. 

Schaul, T. & Schmidhuber, J., 2008. A Scalable Neural Network Architecture for Board Games. In 
Hingston, P. & Barone, L., eds. IEEE Symposium On Computational Intelligence and Games, 2008. CIG '08. 
Perth, WA, 2008. IEEE Press pp.357-64. 

Shea, P.M. & Liu, F., 1990. Operational experience with a neural network in the detection of explosives 
in checked airline baggage. In Proceedings of the International Joint Conference on Neural Networks, Vol. 
II., 1990. pp.175-78. 

Simari, G., Sliva, A. & Nau, D., 2006. A stochastic language for modelling opponent agents. In 
proceedings International Conference on Autonomous Agents and Multiagent Systems. Hakodate, Japan, 
2006. ACM Press pp.244-46. 

Sklansky, D., 1992. The Theory of Poker. Two Plus Two Publishing. 

Song, C., Qu, Z., Blumm, N. & Barabási, A.-L., 2010. Limits of Predictability in Human Mobility. Science, 
327(5968), pp.1018-21. 

Spronck, P., 2005. A model for reliable adaptive game intelligence. in Proceedings of 2005 IJCAI 
Workshop on Reasoning, Representation, and Learning in Computer Games, pp.95-100. 

Spronck, P. & Herik, J.V., 2005. A tutoring system for commercial games. Lecture Notes in Computer 
Science, (3711), Springer-Verlag, pp.389-400. 

Spronck, P., Ponsen, M. & Sprinkhuizen-kuyper, I., 2006. Adaptive Game AI with Dynamic Scripting. 
Machine Learning, 63(3), pp.217-48. 



 

 204 

Spronck, P., Sprinkhuizen-Kuyper, I. & Postma, E., 2004. Difficulty Scaling of Game AI. In El Rhalibi, A. & 
Van Welden, D., eds. GAME-ON 2004: 5th International Conference on Intelligent Games and Simulation. 
Het Pand, Ghent, Belgium, 2004. pp.33-37. 

Spronck, P., Sprinkhuizen-Kuyper, I. & Postma, E., 2004. Online Adaptation of Game Opponent AI with 
Dynamic Scripting. International Journal of Intelligent Games and Simulation (eds. N.E. Gough and Q.H. 
Mehdi), 3(1), pp.45-53. 

Spronck, P. et al., 2004. Enhancing the Performance of Dynamic Scripting in Computer Games. In ICEC 
2004. Cambridge, UK, 2004. ACM Press pp.296-307. 

Stanley, K.O., Bryant, B.D. & Miikkulainen, R., 2005. Evolving Neural Network Agents in the NERO Video 
Game. In Lucas, S. & Kendall, G., eds. Proceedings of the IEEE 2005 Symposium on Computational 
Intelligence and Games (CIG '05). Colchester, Essex, 2005. IEEE Press pp.182-89. 

Stanley, K. & Miikkulainen, R., 2002b. Continual Coevolution Through Complexification. In Langdon, 
W.B., Cant-Paz, E., Mathias, K.E. & al., e., eds. Proceedings of the Genetic and Evolutionary Computation 
Conference (GECCO-2002). San Francisco, 2002b. Kaufmann pp.113-20. 

Stanley, K.O. & Miikkulainen, R., 2002. Efficient Evolution of Neural Network Topologies. In Proceedings 
of the 2002 Congress on Evolutionary Computation. Washington DC, 2002. IEEE Press pp.1757-62. 

Stanley, K.O. & Miikkulainen, R., 2002. Efficient Reinforcement Learning through Evolving Neural 
Network Topologies. In Langdon, W.B., Cant-Paz, E., Mathias, K.E. & al., e., eds. In Proceedings of the 
Genetic and Evolutionary Computation Conference (GECCO-2002). San Francisco, CA., 2002. Mogan 
Kaufmann pp.569-77. 

Stanley, K.O. & Miikkulainen, R., 2002. Evolving Neural Networks through Augmenting Topologies. 
Evolutionary Computation, 10(2), pp.99-127. 

Steffens, T., 2003. Feature-based declarative opponent modeling. In L. Iocchi, H. Matsubara, A. 
Weitzenfeld & C. Zhou, eds. RoboCup 2003: Robot Soccer World Cup VII. Springer. pp.125-36. 

Stensrud, B.S. & Gonzalez, A.J., 2008. Discovery of High-Level Behavior From Observation of Human 
Performance in a Strategic Game. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 38(3), 
IEEE Press, pp.855-74. 

Suffecool, K., 2006. Cactus Kev's Poker Hand Evaluator. [Online] Available at: 
http://www.suffecool.net/poker/evaluator.html [Accessed August 2009]. 

Terry, M. & Mihok, B., n.d. A Bayesian Net Inference Tool for Hidden State in Texas Hold em Poker. 
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. 

Tesauro, G., 1990. Neurogammon: a neural-network backgammon program. In 1990 IJCNN International 
Joint Conference on Neural Networks. San Diego, CA, USA., 1990. IEEE Press pp.33-39. 

Tesauro, G., 1995. Temporal Difference Learning and TD-Gammon. Communications of the ACM, 38(3), 
ACM Press, pp.58-68. 

The Guardian, 2007. Computer program takes draughts crown. [Online] Available at: 
http://www.guardian.co.uk/technology/2007/jul/20/news.uknews [Accessed October 2008]. 

http://www.suffecool.net/poker/evaluator.html
http://www.guardian.co.uk/technology/2007/jul/20/news.uknews


 

 205 

Thompson, T., Levine, J. & Wotherspoon, R., 2008. Evolution of Counter-Strategies: Application of Co-
evolution to Texas Hold 'em Poker. In Hingston, P. & Barone, L., eds. IEEE Symposium On Computational 
Intelligence and Games, 2008 (CIG '08). Perth, WA, 2008. IEEE Press pp.16-22. 

Thompson, T., Mcmillan, L., Levine, J. & Andrew, A., 2008. An Evaluation of the Benefits of Look-Ahead 
in Pac-Man. In Hingston, P. & Barone, L., eds. IEEE Symposium On Computational Intelligence and Games 
(CIG '2008). Perth, WA, 2008. IEEE Press pp.310 - 315. 

Towell, G. & Shavlik, J., 1994. Knowledge-based artificial neural networks. Artificial Intelligence, 70(1-2), 
pp.119-65. 

Tu, X., Funge, J. & Terzopoulos, D., 1999. Cognitive modeling: Knowledge, reasoning and planning for 
intelligent characters. In ACM, ed. Proceedings of the 26th annual conference on Computer graphics and 
interactive techniques. 8-13 August 1999. Los Angeles, CA, 1999. ACM pp.29-38. 

Turing, A., 1950. Computing Machinery and Intelligence. Mind, 236, pp.433-60. 

Tversky, A. & Kahneman, D., 1982. Causal Schemes in Judgements Under Uncertainty. In P. Slovic & A. 
Tversky, eds. Judgements Under Uncertainty: Heuristics and Biases. New York: Cambridge University 
Press. pp.117-28. 

van den Herik, H.J. & Donkers, H.S.P., 2005. Opponent Modelling and Commercial Games. In G. Kendall 
and S. Lucas, ed. Proceedings of IEEE 2005 Symposium on Computational Intelligence and Games CIG’05. 
Colchester, UK, 2005. IEEE Press pp.15-25. 

Varoufakis, Y., 2001. General introduction: Game theory's quest for a single, unifying framework for the 
social sciences. In Y. Varoufakis, ed. Game Theory: Critical Concepts in the Social Sciences. London: 
Routledge. 

von Neumann, J. & Morgenstern, O., 1944. Theory of Games and Economic Behavior. Princeton Univ. 
Press. 

Waugh, K. et al., 2009. A practical use for imperfect recall. In Bulitko, V. & Beck, J.C., eds. Proceedings of 
the Eighth Symposium on Abstraction, Reformulation and Approximation (SARA 2009). Menlo Park, CA, 
2009. AAAI Press p.175–182. 

Weber, B.G. & Mateas, M., 2009. A Data Mining Approach to Strategy Prediction. In Lanzi, P.L., ed. 
Computational Intelligence and Games, 2009. CIG 2009. IEEE Symposium on 7-10 Sept. Milan, 2009. IEEE 
Press pp.140-47. 

Whiteson, S. et al., 2005. Automatic feature selection in neuroevolution. In Beyer, H.-G. & O'Reilly, U.-
M., eds. GECCO 2005: Proceedings of the Genetic and Evolutionary Computation Comference. 
Washington DC, 2005. IEEE Press pp.1225-32. 

Yao, X., 1999. Evolving Artificial Neural Networks. Proceedings of the IEEE, 87(9), pp.1423-47. 

Yao, X. & Islam, M., 2008. Edward P.K. Tsang and Serafin Martinez-Jaramillo Centre for Computational 
Finance and Economic Agents (CCFEA). IEEE Computational Intelligence Magazine, IEEE Press, pp.31-42. 

Yao, X. & Liu, Y., 1998. Making Use of Population Information in Evolutionary Artificial Neural Networks. 
IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 28(3), pp.417-25. 



 

 206 

Yong, C.H. & Miikkulainen, R., 2001. AI07-338 Cooperative Coevolution Of Multi-Agent Systems. 
Technical Report. Austin, Texas: The University of Texas at Austin. 

Zhao, X., Xu, R. & Kwan, C., 2004. Ship-motion prediction: algorithms and simulation results. In IEEE 
International Conference on Acoustics, Speech, and Signal Processing. (ICASSP '04) 17-21 May 2004. 
Montreal, Quebec, Canada, 2004. IEEE Press pp.125-28. 

Zinkevich, M., Johanson, M., Bowling, M. & Piccone, C., 2008. Regret Minimization in Games with 
Incomplete Information. Advances in Neural Information Processing 21 (NIPS). 

 


	cover_sheet_thesis
	University of Bradford eThesis

	Thesis

