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Dependence of fluxon dynamics on loaded terminations in long overlap

Josephson junctions
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Fluxon motion in long overlap-geometry Josephson junctions influenced by loaded terminations
is investigated. The combination of results from a perturbation method with an approximate
expression for the emitted power yields equations describing the fluxon dynamics. The form of the
first zero field step is presented for various parameters and the emitted power is calculated.

PACS numbers: 85.25. 4 k, 74.50. + r, 84.20.Pc, 84.30.Ng

I. INTRODUCTION

Recently, fluxon (i.e., the quantized magnetic vortices
present in long Josephson junctions) dynamics have attract-
ed considerable interest because of the many potential appli-
cations of Josephson junctions, e.g., in data processing sys-
tems' and as microwave generators in high frequency
integrated circuits.” The latter application arises because the
fluxons propagating in a dissipative and biased junction at-
tain steady states determined by power balance. Thus, the
fluxons regain from the bias the energy they lose when re-
flected at lossy terminations. In such oscillator applications,
the power radiated from the junction is determined by the
resistive terminations. In Ref. 3, resonant fluxon propaga-
tion on an overlap-geometry junction with a variable resis-
tive load at one end is studied numerically for a specific
choice of loss and bias parameters, and the optimum load
resistance for maximum power is determined. This investi-
gation and many others like it* have been carried out by a
numerical solution of perturbed sine-Gordon equations
which model the problem in order to obtain general knowl-
edge about the dependence of basic dynamic proporties of
single fluxons on external parameters. Recently,” however, it
has been proved possible to calculate the shape of the zero
field steps in an inline junction using a perturbation theory.
The same idea was used to calculate the dependence of zero
field steps on an external magnetic field in inline as well as
overlap geometry.® In the present paper we apply a method
similar to that in Ref. 6 to calculate the dependence on resis-
tive terminations of the I-V characteristics and the emitted
power from the junction. We only consider the first zero field
step of overlap-geometry Josephson junctions. The expres-
sion for the radiated power as a function of the velocity of the
incoming fluxon and the resistive load found in Refs. 7 and 8,
is used in connection with perturbation results to combine
the effects of resistive loads at each termination and the pres-
ence of loss and bias in the junction.

Il. MODEL

In this section we shortly describe the equation which
models the overlap-geometry junction and the boundary
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conditions for this equation which model the resistive termi-
nations.

A. Overlap-geometry junction

It is well known that the equation describing fluxon
motion for this geometry is the perturbed sine-Gordon equa-
tion®

¢xx _¢tt——Sin¢=a¢t+n’ (1)
where ¢ (x,2 ) is the space and time dependent phase differ-
ence between the two superconducting films. The spatial
variable x is measured in units of the Josephson penetration
depthd; = (fi/2u4edJ)'/? and time ¢ in units of the reciprocal
plasma frequency w; !, where w, = (2eJ /#C)'/2. Here, J is
the maximum pair current density, d the magnetic thickness
of the barrier (d = 24, + ¢;), and C the capacitance per unit
area. The parameter a describes dissipative effects;
a = G (#/2eJC)"'?, where G is the shunt conductance per
unit area. (@ = 1/yB, where B is the usual McCumber pa-
rameter.) 77 represents the uniformly distributed bias cur-
rent; thus, p =1,./I., where I, is the dc bias current;
I, = JWL is the maximum supercurrent, and L and W are
the length and width of the junction. It is assumed that
LA, >W.

B. Resistive terminations

The voltage drop across the insulating barrier in the
junction is ¢, measured in units of fiw,/2e. The current flow-
ing parallel to barrier in the x direction is — ¢, measured in
units of JA,. Thus, the boundary conditions which must be
satisfied are

$,00,1) = R$,(0,1), | (2a)

and
¢.(Lt)= — R, (Lt) (2b)

Here, the terminal resistance R is normalized to the charac-
teristic impedance of the junction (uod /c)'/*and I = L /4,.

With o and 5 equal to zero Eq. (1) is the pure sine-
Gordon equation with the fluxon (soliton) solution
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& (x,t ) = 4 tan~ "{exp[H(u)(x — ut — xo)1}, (3)
where x, is the initial position of the fluxon with velocity u,
and the Lorentz factor y{u) = (1 — u?)~"/% The energy ab-
sorbed in R after reflection of a fluxon into an antiftuxon was
found in Ref. 7 to be approximately

2 [H P, ]
AH="A"Ztan '=—4+=L}, R>l. 4
e PRl R )
Here, H, is the energy of the incoming fluxon
H; = 8ylu), (5)
and P, is the momentum of the incoming fluxon
P, = 8uy(u). (6)

In the following, AH from Eq. (4) will be used as a measure of
the emitted power from the junction since the velocity is
almost constant. .

lll. PERTURBATION THEORY

It is a well known result that the steady state velocity
u_, is obtained in the presence of loss and bias a¢, and 7,
respectively. For 7 and ag, treated as small perturbations
u, (normalized to A,w) is given by’

(e (E))

With a fluxon (antifluxon) reflected as an antifluxon (fluxon)
at the junction terminations this gives rise to a zero field step
at a voltage V4. = (2mu_ )/l normalized to fiw,/2e. The
boundary conditions of Eq. (2) give rise to emission of power
given by Eq. {4).

Figure 1 shows schematically fluxon dynamic behavior
with an energy output at x = 0, and a rise in velocity towards
u_ as it approaches x = / where there is a velocity (energy)
decrease. Thus, the picture is symmetric (because of the
equal loads at x =0 and x =/).

In order to calculate those trajectories we introduce the
following notation® for convenience:

antifluxon

fluxon

X

FIG. 1. Schematic picture of the periodic fluxon velocity vs position x in the
overlap-geometry Josephson junction (0<x<L ). The picture is symmetric
due to equal loads at the terminations. At x = L the fluxon is reflected as an
antiftuxon with less energy. From 3 to 4 the antifluxon accelerates towards
the velocity 4. . At x = O the antifluxon is reflected into a fluxon and the
behavior is as for the antifluxon.
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u = tanh a,

z =uylu) = P,/8,
which implies that

ylu) = cosh a,

z=sinha,
z,, =m/4a, 9)
u, =tanha_ .

The equation of motion for a single fluxon in the per-
turbed sine-Gordon model is’

dP,
dt
Introducing the quantity z from Eq. (9) and integrating we

obtain
z=z_ +izg—z, )" %, (1

= —aP, +2my. {10)

where z, = uyy{u,), u, being the initial velocity of the fluxon.
Finding u(¢) from Eqs. (8) and (11) integrating yields the
trajectory x(¢ )

2 1/2
x(t)=x0+uwt__l_lnz_—t—(£.il)—_
a zo+(z(2)+1)”2

uy L2+ + 1S 1)

a 1+ zzy+ 22+ )32 + )2

(12)

P 1
0 05 1
(a)
n
3

AH

f
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n

FIG. 2. Average velocity u,, (voltage) (a) and the emitted power AH (b} vs
the bias parameter (dc current) at various loads for the first zero field step.
a =0.12and ! = 10. R = (a) 8, (b} 10, and (c) 50. The dashed curve in 2{a)
corresponds to u,, =4, , i.e, R= co. Note the cutoff at finite cur-

rent.
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FIG. 3. Average velocity (voltage) (a) and the emitted power AH (b) vs the
terminating load at various values of the loss parameter a. 7= 0.7 and
{ = 10.a = (a)0.05, (b) 0.1, and (c) 0.2523 [ = {57)'/?]. The dashed curvein
(a) corresponds to results obtained by numerical solution of the perturbed
sine-Gordon equation.

With reference to Fig. 1 and Eq. (4) the energy output at
x = [ and x = 0 may be expressed

8y(ua) — 8y(u,) = 8y(uy) — 8y(us) = 4H, (13a)
or

l{(cosh a;f tan™! + sinh g,

R sinh g, L4 !

= cosh a; — cosha;; i,j=32. (13b)
Because of the symmetry the two equations [Eqgs. (13a) and

{(13b)] are identical.
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The times of flight ,, and ¢,, are determined from Eq.
(11)

sinh @, — sinha (14)

=t =In
S sinha, —sinha_
The equation introducing the length of the junction comes
from Eq. (12):

cosh(_a.ﬂ_iza&)
A o, — =8 N2 gy
cosh(ﬁ‘}-TaE_)

Now we have two equations, Egs. (13) and (15), to determine
the two unknowns a,( = @) and a,( = a,) which, inserted in
Eq. (14), gives ¢,, [ = t34). The voltage of the zero field step is
given by the average velocity u,, defined by u,, =1/t,,
( =1/1,,). Because of the complexity of the expressions [Egs.
(13}{15)] we have not been able to find a closed expression
for this quantity. However, a numerical solution of the equa-
tions has been performed {using Newton—Raphson iter-
ation). The results are presented in the next section in the
form of I-V characteristics and emitted power versus load
characteristics.

u u

o0 @

V. /-V CHARACTERISTICS AND EMITTED POWER

In Fig. 2 we show the I-¥ characteristics and the emit-
ted power. Figure 2(a) shows the /-¥ characteristics, i.e., the
average velocity u,, (voltage) versus the bias parameter (dc
current) at various loads for the first zero field step. The
dotted curve corresponds to u,, =u_; i.e, R = «. Note
the cutoff at finite current which is also observed in labora-
tory experiments as well as numerical experiments.* In our
analysis the cutoff corresponds to absorption of the fluxon at
a termination, while Lomdahl* has found a transition to a
static solution in numerical experiments for small bias val-
ues. Furthermore, our analysis does not reveal the transition
from single fluxon propagation to uniform ¢ excitation
which in the /-¥ curve corresponds to a jump from the zero
field step to the ohmic background. In Fig. 2(b) we show the
emitted power as a function of the dc bias current for the
same values of the loads as in Fig. 2(a). The dashed curve in
Fig. 2(a) corresponds to AH = 0 in Fig. 2(b). The results are
in qualitative agreement with experiments; i.e., the power
increase is almost linear for increasing bias.

In Fig. 3 we show the average velocity (voltage) [Fig.
3(a)] and the emitted power AH [Fig. 3(b}] versus the termi-
nating load at various values of the loss parameter a. The
dotted curve in Fig. 3(a) corresponds to a numerical experi-
ment performed in Ref. 3 for the same parameters asin casec
of Fig. 3. The agreement is within a few per cent; although, a
and 7 are large. Figure 3(b) shows the emitted power as a
function of the load parameter. Our approach shows that the
maximum power emitted, even if the small change in veloc-
ity isincluded, is obtained for the absorbed fluxon in contrast
to the results in Ref. 3. This difference might be explained by
the fact that neither the perturbation theory nor the expres-
sion for AH holds in this region. For R 1 there is a propor-
tionality between AH and R .
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V. CONCLUSION

We have calculated the dependence of the I-¥ curve and
the emitted power on lossy terminations in long overlap-
geometry Josephson junctions. Combination of the results
from a perturbation method with an expression for the emit-
ted power valid for R>1 yields equations describing the
fluxon dynamics in the junction. The perturbation method
requires @ <1 and /> 1 which in connection with R>1 is a
parameter range often encountered in experimental situa-
tions. Comparison between a numerical experiment and our
approach shows reasonable agreement.

Finally, we remark that the phase shift encountered
when a fluxon is reflected is not taken into account in our
model. However, physical reality requires that a<1 such
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that #_ =1, in this limit the phase shift is approximately
given by 2v2(1 — u)*’2,
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