

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Behavioral Synthesis of Asynchronous Circuits Using Syntax Directed Translation as
Backend

Nielsen, Sune Fallgaard; Sparsø, Jens; Madsen, Jan

Published in:
IEEE Transactions on Very Large Scale Integration Systems

Link to article, DOI:
10.1109/TVLSI.2008.2005285

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nielsen, S. F., Sparsø, J., & Madsen, J. (2009). Behavioral Synthesis of Asynchronous Circuits Using Syntax
Directed Translation as Backend. IEEE Transactions on Very Large Scale Integration Systems, 17(2), 248-261.
DOI: 10.1109/TVLSI.2008.2005285

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13718032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TVLSI.2008.2005285
http://orbit.dtu.dk/en/publications/behavioral-synthesis-of-asynchronous-circuits-using-syntax-directed-translation-as-backend(b04ae1b3-034d-4e1d-ab58-4e6f649fcbb0).html

248 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

Behavioral Synthesis of Asynchronous Circuits Using
Syntax Directed Translation as Backend
Sune Fallgaard Nielsen, Jens Sparsø, Member, IEEE, and Jan Madsen, Member, IEEE

Abstract—The current state-of-the art in high-level synthesis
of asynchronous circuits is syntax directed translation, which
performs a one-to-one mapping of an HDL-description into a cor-
responding circuit. This paper presents a method for behavioral
synthesis of asynchronous circuits which builds on top of syntax
directed translation, and which allows the designer to perform
automatic design space exploration guided by area or speed
constraints. This paper presents an asynchronous implementation
template consisting of a data-path and a control unit and its imple-
mentation using the asynchronous hardware description language
Balsa. This “conventional” template architecture allows us to
adapt traditional synchronous synthesis techniques for resource
sharing, scheduling, binding, etc., to the domain of asynchronous
circuits. A prototype tool has been implemented on top of the
Balsa framework, and the method is illustrated through the imple-
mentation of a set of example circuits. The main contributions of
this paper are the fundamental idea, the template architecture and
its implementation using asynchronous handshake components,
and the implementation of a prototype tool.

Index Terms—Asynchronous circuits, behavioral synthesis.

I. INTRODUCTION

M OST of the tools for synthesis of large-scale asyn-
chronous circuits are based on a technique known as

syntax-directed translation; a process in which a description
in a language similar to communicating sequential processes
(CSP, [2]) is mapped directly into a hardware implementation
composed of so-called handshake components, each imple-
menting a syntactic element of the program text. Examples of
such languages and tools are Haste [3], [4], OCCAM [5], Balsa
[1], ACK [6], and TAST [7]. At least one of these tools (Haste)
has been used to design significant industrial-quality chips.

It is interesting that these tools are fundamentally different
from existing synthesis tools used in industry to design syn-
chronous circuits, in that they perform a one-to-one mapping of
a program text into a corresponding circuit. This transparency is
both an advantage and a disadvantage. The advantage is that the
designer has full control over the resulting circuit. The disad-
vantage is that in order to explore alternative implementations,
the designer is required to actually program these. In behavioral
synthesis of synchronous circuits the designer need only express
the desired behavior, and based on constraints on area, speed or
energy, the synthesis tool then automatically produces an imple-
mentation. In this way, the same behavioral description may be

Manuscript received November 29, 2006; revised June 04, 2007, September
14, 2007, and December 18, 2007. Current version published January 14, 2009.

The authors are with the Department of Informatics and Mathematical Mod-
elling, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
(e-mail: sfn@imm.dtu.dk; jsp@imm.dtu.dk; jan@imm.dtu.dk).

Digital Object Identifier 10.1109/TVLSI.2008.2005285

Fig. 1. Existing synchronous and asynchronous design flows and the synthesis
process addressed in this paper.

used to synthesize circuits with very different area, speed, and
energy characteristics. Fig. 1 illustrates the two design flows.

The first step in behavioral synthesis is to extract from the
program text an intermediate representation in which nonessen-
tial constraints (such as sequencing of independent statements
in the program text) have been omitted. Some form of con-
trol data flow graph (CDFG) is normally used for this. From
the CDFG, the classic synthesis tasks [8] of scheduling, alloca-
tion, and binding are performed, resulting in an register transfer
level (RTL) circuit description which is then synthesized into
gate-level circuits and eventually to layout.

The work presented in this paper represents an attempt to pro-
vide a similar behavioral synthesis flow for asynchronous cir-
cuits, where optimizations are performed by the synthesis tool
rather than by the designer.

The novelty of the approach is: 1) the idea of adapting tra-
ditional synchronous circuit synthesis techniques to an asyn-
chronous circuit design flow based on syntax-directed transla-
tion and 2) the implementation templates for the control unit and
the datapath, and the method which is used to derive these.

Our work takes advantage of the one-to-one mapping from a
Balsa-description to circuit, because it allows us to express the

1063-8210/$25.00 © 2009 IEEE

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

NIELSEN et al.: BEHAVIORAL SYNTHESIS OF ASYNCHRONOUS CIRCUITS 249

implementation at a high level avoiding altogether the complex
problem of specifying and synthesizing an asynchronous con-
troller [9]–[13] and avoiding the many low-level details involved
in generating a standard cell netlist of the implementation. The
techniques described in this paper can therefore also be seen as
a front-end tool for Balsa and similar tools.

The CDFG and its extraction from a behavioral description is
well understood [8] and will not be addressed in this paper—the
existence of a CDFG is assumed. This paper reviews how the
classic synthesis algorithms used for scheduling, allocation,
and binding are modified to a fine-grain discrete-time domain
suitable for asynchronous design and it elaborates on how we
generate and describe implementation of the datapath and the
associated controller in Balsa. Early work on our approach
was published in [14]. This paper provides a much more com-
prehensive description of the approach and in particular the
implementation template and the procedure used to produce
the Balsa program resulting from the synthesis. The current
synthesis flow also implements an important optimization
resulting in less control overhead in the synthesized circuits.
Furthermore, this paper provides a larger set of benchmark
results, including a couple of circuits for which standard-cell
implementations have been generated and characterized.

This paper is organized as follows. Section II discusses re-
lated work. Section III gives a review of our model, the input
format, and the implementation template. Section IV presents
the procedure for the Balsa code generation. Section V presents
a range of benchmarks and results and finally Section VI con-
cludes the paper.

II. RELATED WORK

The introduction mentioned a number of asynchronous high-
level synthesis tools. Haste [3], [4] is a proprietary tool of Hand-
shake solutions, a spin-off from Phillips Semiconductor. This is
quite mature and has been used to design circuits which are cur-
rently in production. Balsa [15] is a somewhat similar tool which
has been developed at the University of Manchester and which is
available in the public domain. These tools are based on syntax-
directed translation where there is a one-to-one correspondence
between the program source and the resulting circuit and where
the control is highly distributed. A related approach is used in
[16] where a program source is decomposed into a set of basic
processes for which there is an asynchronous circuit represen-
tation. TAST [7] and in particular ACK [6], involve the genera-
tion of a datapath and one or more centralized controllers. ACK
is no longer supported and TAST is not available in the public
domain.

A number of papers have presented work on synthesizing
asynchronous circuits from DFG or CDFG representations, but
they are surprisingly few and they have a different and/or more
limited scope [17]–[20]. The first paper limits itself to DFGs
and focuses mostly on a synthesis algorithm and its runtime.
The remaining papers address synthesis from a CDFG repre-
sentation and they target solutions where a centralized controller
or a distributed structure of controllers is specified at the level

of individual signal transitions (in the form of signal transition
graphs or burst-mode state graphs). The partitioning and opti-
mization of such a structure of distributed controllers is the sub-
ject for [21].

The work presented in [22] targets high-performance rather
than resource sharing and thus has the opposite goal to our
project. Their approach is based on mapping each node (or
group of nodes) of the CDFG onto a micro-pipeline stage,
creating a highly pipelined circuit.

A somewhat recent paper [23] presented a method with a
very similar aim to ours. The work extends an existing syn-
chronous behavioral synthesis system, MOODS, so that it can
handle asynchronous circuits as well. However their focus is
mainly on the opportunity for average-case performance and on
the implementation of the asynchronous components used in the
datapath and in the controller. The paper provides little insight
into the underlying synthesis procedure.

Our approach is different from the above related works in that
it targets handshake components and syntax-directed compila-
tion. This makes it both simpler and more powerful; simpler,
because the controller is synthesized implicitly in a distributed
fashion whereas in the previously published approaches it repre-
sents a major task in the synthesis process; and more powerful,
because Balsa allows very large circuits to be synthesized.

Some research seems to indicate that the distributed control
and the handshake signaling, which characterize circuits pro-
duced by syntax- directed translation, results in poor speed.
To alleviate this, a number of low-level post-synthesis tech-
niques are being used. One approach is peephole optimization,
which replaces common structures of handshake components
with simpler ones [4], [24], while other approaches involve
resynthesis from a specification of the behavior of one or more
handshake components into a more efficient implementation
[25]. At all events, this work is orthogonal to the work presented
in this paper where focus is on high-level synthesis.

III. BEHAVIORAL SYNTHESIS

This section briefly reviews the elements of traditional syn-
chronous behavioral synthesis and discusses the implications
for adapting these methods to the synthesis of asynchronous
circuits.

A. Review of the Classic Approach

Most behavioral synthesis tools make optimizations based on
a CDFG which is extracted from a behavioral specification of
the circuit behavior [8].

Our CDFG format is similar to that found in [8], [26], and
[27]. Fig. 2 shows an example fragment of behavioral code (in
Balsa syntax, augmented with a multiplier operator) and the
corresponding CDFG. Here we are only considering a single
process and limiting ourselves to a form where external syn-
chronization is not modeled by the CDFG, i.e., input data has to
be ready at the input edges to the CDFG and output results are
taken from the output edges of the CDFG. The extraction of the
CDFG from such a behavioral description is discussed in [26]
and [28] and is outside the scope of this paper.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

250 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

Fig. 2. Example program text and the corresponding CDFG. In the CDFG,
the different operators are identified by an index ��� � � � � �� and the different
intermediate results by labels �� � � � � � � �.

The target for behavioral synthesis is a hardware architecture
as shown in Fig. 3 consisting of: 1) a datapath which is able to
perform a set of operations on variables stored in a set of reg-
isters and 2) a controller which controls the execution sequence
of these operations and the reading from and writing into reg-
isters in order to perform a given computation. The selection
logic consists of a multiplexor selecting the proper inputs for
the functional units and the registers.

A key issue in behavioral synthesis is to reuse hardware re-
sources for the different operations in order to minimize area,
and to explore possible parallelism by executing several hard-
ware resources concurrently in order to increase performance.

Based on the CDFG, synchronous behavioral synthesis tools
perform three sets of transformations in order to create a suitable
implementation:

• Scheduling, in which operator nodes of the CDFG are
scheduled into the time-slots defined by the clock signal.

Fig. 3. Generic (synchronous) datapath.

Fig. 4(a) shows a possible schedule for the example as-
suming a datapath with an arithmetic logic unit (ALU)
and a multi-cycle multiplier.

• Allocation, in which the set of functional units (FUs) re-
quired for execution of the operator nodes and the number
of registers needed to store input operands and interme-
diate results are determined.

• Binding (or assignment), where individual operator nodes
and (intermediate) variables are tied to specific hardware
resources, also shown in Fig. 4(a).

B. Asynchronous Template Architecture

This paper presents an asynchronous implementation tem-
plate in which the structure of the datapath is very similar to
the synchronous implementation in Fig. 3. This is what enables
us to use the same high-level synthesis approach, which for
the running example results in the solution illustrated in Fig. 4.
Fig. 5 shows an example with only two registers/variables and
one functional unit, in order to allow a complete illustration of
the read and write selection logic (cf. Fig. 3). The details are ex-
plained in the following.

Despite the structural similarity between the synchronous and
the asynchronous datapath, the asynchronous template architec-
ture is fundamentally different in the way the sequencing of op-
erations is controlled, and the way in which the controller is
implemented.

In a traditional synchronous implementation (see Fig. 3) a
central controller state machine orchestrates the necessary op-
erations in an implicit or indirect way. Operands or temporary
results, which are to be written into registers, are assumed to
be present at the end of the scheduled clock cycle and operands
and function codes for functional units are assumed to be
available from the beginning of the scheduled clock period.
Fig. 4(b) illustrates this by showing a fraction of an “unrolled
implementation.”

In an asynchronous circuit, there is no notion of a global and
discrete time. Instead all communication and synchronization

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

NIELSEN et al.: BEHAVIORAL SYNTHESIS OF ASYNCHRONOUS CIRCUITS 251

Fig. 4. (a) Possible schedule of the operations and intermediate variables in Fig. 2. The dashed nodes indicate conditionally executed operations. (b) Partial
illustration of an “unrolled implementation”.

Fig. 5. Our asynchronous datapath template.

occurs using local point-to-point handshake channels. Func-
tional units may start to compute at any time when their inputs
are ready, and likewise they may finish at any time. In a similar
way, relevant registers are written when the relevant operands
are ready. Another difference is that the controller in Fig. 5 is
implemented in a distributed fashion using handshake compo-
nents (see the Appendix) such as: sequencer, parallelizer, join,
fork, and miscellaneous conditional sequencing elements.

The essence of this is that all the required (individual) partial
orderings of reads, operations, and writes are implemented

directly, and it is thus the collective behavior of the handshake
components which implements the schedule. This gives the
asynchronous implementation a larger set of possible behav-
iors, as it adapts to the actual (and possibly data-dependent)
latencies of the different operations; only the required partial
orderings are enforced and in a (timeless) fashion.

Let us now revert to the detailed implementation of the asyn-
chronous template. The example in Fig. 5 shows a datapath with
only two registers/variables and one functional unit in order to
allow a complete illustration of the selection logic. The asyn-
chronous datapath is composed of only five types of handshake
components: variables, operators, transferrers, mergers, and de-
multiplexors, as shown in Fig. 5. Readers who are not familiar
with handshake channels (push/pull, protocol, etc.) and hand-
shake components are referred to the Appendix. Note that the
demultiplexor does not have a control input, it is more like an
“inverse” merge. Note also the elegant way in which handshake
components mix push and pull channels in such a way that the
transfer-components alone control the flow of data. The tem-
plate uses a lot of transfer-components, but it should be kept in
mind that these are implemented using wires only! The data-
path implementation is thus quite efficient. The controller can
start an operation by transferring operands to its inputs and it
can control the writing of results into the variables by activating
the proper transferrer. Notice that all signaling among compo-
nents (including data-less control) is implemented using hand-
shake channels.

In conclusion our asynchronous implementation template has
a number of interesting properties.

• It is possible to use existing synthesis techniques developed
for synchronous design almost directly.

• It implements the schedule directly by explicitly imple-
menting the necessary partial orderings of operand reads,
operations and operand writes.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

252 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

• It allows us to describe the implementation of the circuit
at a high-level by taking advantage of the one-to-one map-
ping performed by Balsa and thus avoiding interference be-
tween high-level and low-level optimizations.

• The controller is implemented as a structure of simple
handshake components. In this way, our method avoids the
difficulty of synthesizing a centralized controller whose
state space would typically be very large due to the many
possible orderings of the read and write control signals to
which it must respond.

C. Adaptation to Asynchronous Design

Our current work focuses on the classic synthesis problem of
minimizing circuit area under a certain execution time constraint

, but there is nothing which prevents us from optimizing for
other goals (energy or execution time).

Our synthesis flow from CDFG to a schedule follows the stan-
dard synthesis flow. First, the algorithm enters an analysis phase
in which a compatibility graph [8] is created in order to deal with
conditional execution, and the as soon as possible (ASAP) and
as late as possible (ALAP) schedules are computed [8] in order
to reduce the search space.

To perform behavioral synthesis our method uses the meta-
heuristic Simulated Annealing algorithm [29], [30]. To repre-
sent solutions for the Simulated Annealing algorithm, a solution
vector containing tuples (one for each operator), consisting of
the pair: (StartTime,FUassignment), is used. The objective func-
tion driving our algorithms is based on an estimate of the area
cost, which is currently approximated by

Our method ignores as it is substantially smaller than
the others, since we are limiting ourselves to data-processing
dominant circuits with a single repetition. Our method does not
yet estimate (wiring). However with the shrinking
of gates, this becomes an important part of the total area, espe-
cially in connection with shared resources which gives rise to
an increase in wire count.

Our method assumes a library of asynchronous handshake
components from which to build our circuit. In this library, the
FUs may be implemented as simple combinatorial circuits or
they may include (normally opaque) input and output isola-
tion latches. This choice has consequences for the lifetime of
the intermediate variables. If input and output latches are not
used, more variable latches may be needed in the datapath in
order to accommodate the longer lifetime requirements and in
order to avoid auto assignments. In this paper, it is assumed that
the functional units normally have opaque latches on input and
output ports. This is a somewhat arbitrary choice and has no
fundamental implications for the approach or the synthesis al-
gorithms. The use of input and output latches tends to increase
speed and to reduce energy consumption by preventing spurious
signal transitions from propagating beyond latch boundaries.
Synthesis algorithms for both situations are presented in [31].

In the rest of this paper, it is assumed that behavioral synthesis
has been performed and thus the starting point is an allocation
of resources and a scheduled and resource-assigned CDFG.

Fig. 6. Datapath model for our running example.

IV. BALSA CODE GENERATION

The central step in our asynchronous synthesis flow is to (au-
tomatically) generate a Balsa program describing the circuit to
be implemented using the template shown in Fig. 5.

The synchronous schedule, operator to functional unit assign-
ment, and the variable to latch assignment generated by our be-
havioral synthesis algorithm, shown in Fig. 4(a) corresponds to
the data-path model, shown in Fig. 6. This is the “machine”
the behavioral synthesis algorithm has found to be optimal to
execute the CDFG under the given constraints. The controller
for this circuit implements the schedule and starts the FUs with
the right data at their designated times. Our approach combines
the controller and the routing into a component which is des-
ignated EX_architecture. Before presenting the algorithm for
code generation, the Balsa code generated by this algorithm is
discussed.

A. Balsa Program for our Example

The resulting Balsa program for the scheduled CDFG is
shown in Fig. 7 and is explained in the following. “Labels”
have been added to support the text.

The program starts by including a library of functional units
(label A). These FUs are themselves implemented as Balsa pro-
cedures (a procedure in Balsa is like an entity in VHDL).

After the include statements, there is a procedure EX, which
implements the synthesized circuit (label B). It has input chan-
nels X0, X1, and X2 and output channels Y0 and Y1. Next, fol-
lows a declaration part in which the internal variables, the in-
ternal channels to and from the FUs and possible constants are
declared. The variables synthesize into a corresponding set of
variable components (a.k.a. handshake latches), cf. Fig. 5.

Inside the EX-procedure (at label C), the functional units
of our datapath together with the EX_architecture are instan-
tiated (in parallel). The symbol “ ” denotes the parallel compo-

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

NIELSEN et al.: BEHAVIORAL SYNTHESIS OF ASYNCHRONOUS CIRCUITS 253

Fig. 7. Synthesized Balsa program for our running example.

sition operator. The result is three physical circuits operating in
parallel.

The EX_architecture procedure (label D) implements the
controller and the read and write selection handshake com-
ponents of the datapath connecting the handshake FUs with
handshake inputs, handshake latches and handshake outputs.
The body of the loop (label E) consists of simple assignment
statements composed by sequential (“;”), parallel (“ ”) and
if-then-else constructs. This part represents the combined
operation of the datapath and its associated controller. There
are two types of assignments: one transferring operands from
the variable latches, L0, L1, L2, and L3 to the inputs (input
latches) of the FUs and another which transfers results from the
outputs (output latches) of the FUs to the variable latches. All
these simple assignments are “implemented” by the transfer
components in the write selection and operand selection parts
of Fig. 5. The transfer components are controlled by the con-
trol unit which is represented by (and synthesized from) the

structure of the code in the loop body, i.e., the way in which
the assignment statements are composed using sequential (“;”),
parallel (“ ”) and if-then-else constructs.

If more than one assignment uses the same handshake com-
ponent as target, the Balsa compiler automatically synthesizes
a merge component to handle the “joining” of channels to that
handshake component. Likewise, if more than one assignment
uses the same handshake component as a source, the Balsa
compiler automatically synthesizes a demultiplexor compo-
nent to handle the “forking” of channels from that handshake
component.

During the execution of the loop body it is possible that the
same assignment occurs several times, involving the same pair
of source and target handshake components. This would lead
to the synthesis of multiple channels between the same compo-
nents, adding unnecessary (demultiplexor and) merge compo-
nents, as illustrated in Fig. 8 (left). This is an unwanted conse-
quence of the syntax-directed translation. Here a more efficient

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

254 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

Fig. 8. Repeated use of hardware resources (left) without and (right) with
shared construct.

topology is used where the control channels to the transferrers
are merged first, as illustrated in Fig. 8 (right). For each assign-
ment that occurs several times, the algorithm creates a shared
construct and replaces the assignment with a call to this shared
construct. The shared constructs are placed before the body of
procedure EX_architecture (label F).

Let us now take a closer look at some representative sections
of the code in the loop body. The assignments in the highlighted
area labeled I, receive in parallel (the ” ” symbol) inputs X0,
X1, and X2 into latches L0, L1, and L2. The assignments in II
initiate the ALU operation (the conditional test of)
by reading from L1 (using a shared construct S4) and the con-
stant a2 and giving the ALU a perform “les” command, corre-
sponding to the start of operator 4 in the CDFG. The assignment
in III reads the output of the ALU and stores the result in latch
L3, corresponding to the end of operator 4 in the CDFG.

The statements in IV implement a conditional construct. De-
pending on the result of a previously performed comparison
whose result is in L3, the code performs the following: if

, it stores the result of multiplication in L1.
Fig. 9 shows the datapath implemented by the Balsa program

in Fig. 7, and Fig. 10 shows the structure of the controller. The
output-channels on the right-hand side of Fig. 10 are the read,
write, and FU control channels, which come in on the left-hand
side of Fig. 9. For these, the corresponding statements can be
easily identified in the source code. For conditional statements
the controller needs to read and compare variables in the data-
path and therefore some channels are going from the datapath
to the controller. In the program, there are several occasions
of comparisons involving L3 and in the figures the associated
channel has been labeled c. This channel does not explicitly ap-
pear in the source code but is a label which is manually added.

The corresponding handshake components to the selected
statements (I, II, III, and IV) have been highlighted in Fig. 10
and the selected statements (II and III) have been highlighted
in Fig. 9.

Algorithm for Code Generation

The Balsa code generation is a mapping of the read and write
assignments found in the schedule, using the template, to a se-
quence of Balsa statements. No design-space exploration is per-
formed, only a finite set of local optimizations.

Fig. 9. Final datapath for our scheduled CDFG using handshake components.

Input to the code generation algorithm is as follows.
i) A description of the external input and output channels to

the procedure.
ii) A description of the machine, shown in Fig. 6, in the form

of the number and type of functional units and the re-
quired set of latches.

iii) An annotated CDFG, where each node has been aug-
mented with a start time and an FU assignment and each
arc has a latch assignment and a port-mapping; the nodes
which are conditionally executed have information about
which arc contains the Boolean condition for it to be ex-
ecuted; the nodes are grouped into re-executional body’s
(i.e., groups of nodes which may be re-executed) and the
information of the arc containing the condition for this is
also specified.

The pseudo-code for generating the Balsa-code is shown in
Fig. 11 and explained in the following.
Step 1) Start by writing the include for the FU_lib and write

the main procedure head with the inputs and out-
puts for the CDFG (found in).
Functions starting with are functions
which write the output Balsa-program text.

Step 2) Instantiate the required variable latches (found in
the list) and for functional
units declare the internal channels to and from
these (using the list and the FU
libraries), and state the constants used in the CDFG
(searches through the CDFG
and declares them individually). Then write the
procedure architecture head with the previously
mentioned internal channels and using the name of
the procedure.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

NIELSEN et al.: BEHAVIORAL SYNTHESIS OF ASYNCHRONOUS CIRCUITS 255

Fig. 10. Final control unit for the scheduled CDFG using handshake components.

Step 3) Run through the schedule and resource allocations
(each node of the annotated CDFG) and construct
the time-ordered list of assignments (read and write)
that are occurring. Each node has a list of input arcs
and only one output arc for which there is an assign-
ment. Read-assignment for input arcs and write-as-
signment for the output arc. The
is a list of tuples in the form of (Time, Assignment).
The time for read-assignments is the scheduled start
time of the node and the time for a write assignment
is the node start time plus the delay of the FU it has
been assigned to.

Step 4) Run through the generated list of assignments and
for each reoccurring assignment declare the cor-
responding shared construct. This is extended to
include pairs of time-simultaneous reoccurring
assignments. The reoccurrence is found by run-
ning through all assignments and counting their
use. Those which are used more than once are
shared. The is a list of tuples
of the form: (Time, AssignmentA, AssignmentB).

is responsible for
declaring a shared procedure with a single as-

signment and for
pairs.

Step 5) The architecture consists of a “statemachine”
wherein each executable body is a “state”. The
running example only has a single (re-)executable
body so this is not seen there. Each executable body
consists of a sequence of conditional Balsa-state-
ments. First the list of assignments is partitioned
into these bodies. If there is more than one, declare
the state-variable needed and output the begin of
the architecture. For each of the bodies run through
the list of assignments in time order and declare
the statements, using calls to the shared constructs
if applicable. Assignments, that are simultaneous
in time are declared using the ” ”-operator, other
assignments are sequenced by the ” ”-operator.

partitions the nodes in the
CDFG into a sequence of assignments to be exe-
cuted in parallel. Some of these group assignments
have common conditional execution and must
therefore be grouped together in the Balsa-state-
ment. takes care of this
partition. is a

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

256 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

Fig. 11. Pseudo-algorithm for code generation.

function which declares a group of parallel assign-
ments and puts them inside a conditional statement
depending on the common node execution con-
dition. As an example assume the condition-code
is “ ” (with w3 mapped to L0) for FU0_z
assigning to L1 then the function declares the state-
ment: “if then end”. If the
condition-code is the “unconditional” element the
assignments are simply declared.

Step 6) Finally, construct the main procedure using instan-
tiations of the allocated functional units and the
architecture.

V. RESULTS

In order to demonstrate the feasibility of the proposed ap-
proach, and in order to evaluate the efficiency of the proposed
implementation template, we present results for different syn-
thesized versions of a range of benchmark circuits: GCD, FIR,
HAL (a.k.a. DIFFEQ), ELLIPTIC, and COSINE. GCD are re-
ported on and described in the Section V-A. The main purpose
is to illustrate the benefits of behavioral synthesis over plain

TABLE I
FU LIBRARY (16 BIT) BASED ON LAYOUT IN 0.18-�m TECHNOLOGY. THE

NORMALIZED FIGURES ARE USED BY THE SCHEDULING ALGORITHM

syntax-directed translation. Section V-B presents results for the
remaining benchmarks. For FIR and HAL, we have produced
layouts and in Section V-C we report on the area, speed, and en-
ergy figures.

A library of asynchronous FUs with the worst-case latency,
area and energy parameters shown in Table I is used. The mul-
tiplier is a radix-2 Booth-multiplier which has been manually
coded in Balsa. The figures are normalized with respect to the
ALU.

But first, this paper reports on the area cost of our running
example. A one-to-one circuit-mapping of the CDFG in Fig. 2
would have an area estimate of 79 846.0 (“Balsa-cost”), whereas
the synthesized Balsa-code, shown in the previous section, has

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

NIELSEN et al.: BEHAVIORAL SYNTHESIS OF ASYNCHRONOUS CIRCUITS 257

TABLE II
AREA “BREAKDOWN” IN PERCENTAGE OF OUR RUNNING EXAMPLE FOR BOTH

THE ORIGINAL SOURCE CODE AND THE SYNTHESIZED CODE

an area estimate of 49 959.0 (“Balsa-cost”); leading to an area
reduction of 37%. “Balsa-cost” is an area measure reported by
the Balsa tool and represents a dual rail implementation in an
0.36- m technology. Table II shows area “breakdowns” of both
of these circuits into control, variables, routing, and FUs.

For the original circuit without any resource sharing, it is the
FUs which are the major area contribution. This is largely due
to the type of CDFG, which is dominated by computation. The
contributing factor of the controller is the compare circuit in the
conditional expression.

For the synthesized version, we see what we would expect
from behavioral synthesis of synchronous circuits. Resource
sharing the FUs leads to an increase of the storage and routing
in the datapath, and a modest increase in control area. The FUs
are still the major component and this is due to the multiplier.
If the Balsa-coded multiplier is replaced by a more efficient
implementation, we would expect the FUs area contribution to
be somewhat closer to the combined variable and routing com-
ponents. We also observe that the area used by the controller
still constitutes a small part of the overall circuit area, as is
the case in behavioral synthesis of synchronous circuits. The
control area is dominated by the sequencer, the guard, and the
choice handshake components.

It should be emphasized that the area reduction obtained in
this example is primarily gained by sharing the two multipliers.
Resource sharing two adders literally means replacing one of the
adders with a multiplexor and a latch which in combination have
almost the same area as the adder our method is trying to opti-
mize away. We therefore do not expect large area reductions in
circuits which are fully composed of the simple logic-arithmetic
operations; addition, shift, compare, subtraction, AND, OR, XOR,
and NOT.

A. GCD

In [32, sec. 13.2.3] the process of syntax-directed translation
and optimizations at the source code level (using Tangram) is
illustrated using GCD as an example. Fig. 12 shows the well
known algorithm expressed in Balsa code. The problem is that
the source code contains 4 operator symbols, and that the corre-
sponding circuit will have four functional units as well. In order
to optimize the area, the designer has to rewrite the code. Fig. 13
shows one such optimized design. It is slightly different from the
Tangram code in [32] as Balsa does not support exactly the same
constructs as Tangram, but the ideas underlying the optimization
are the same. Even this simple example hints that the process

Fig. 12. GCD-algorithm.

Fig. 13. Optimized version of GCD.

TABLE III
COMPARISON OF THE PLAIN ORIGINAL GCD, THE

“HAND”-OPTIMIZED GCD AND THE SYNTHESIZED GCD

of optimizing the circuit and exploring alternatives can be te-
dious. In behavioral synthesis one would take the basic code
in Fig. 12 and synthesize it with area minimization as the con-
straint. The work presented in this paper does exactly this, i.e.,
from a CDFG extracted from the basic code in Fig. 12, we au-
tomatically synthesize a circuit containing only one functional
unit, an ALU. Table III shows the area estimates (“Balsa-cost”)
reported by Balsa for the different versions of the circuit. It is
seen that behavioral synthesis in this example actually outper-
forms the manually optimized design.

B. Benchmarks

In a similar way, we have synthesized a range of benchmarks
as shown in Table IV. FIR is an eight-tap FIR filter. HAL is an

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

258 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

TABLE IV
BENCHMARK RESULTS. COLUMNS ALU, MUL, AND LT LISTS THE NUMBER OF ALUS, MULTIPLIERS, AND LATCHES IN THE CIRCUITS

TABLE V
LAYOUT RESULTS

iterative Euler integration of a differential equation. ELLIPTIC
is a fifth-order elliptic wave filter. COSINE is a part of the DCT
algorithm. Again, the area is expressed in terms of the “cost”
reported by Balsa. As seen, it is possible to automatically syn-
thesize implementations using the smallest possible number of
functional units. The next question is how efficient these im-
plementations are. To answer this question layouts for FIR and
HAL are produced.

C. Layout Results

For the benchmarks FIR and HAL, we have used the backend
part of the Balsa tools and actually produced a layout targeting
handshake components using the single-rail four-phase early
protocol. We have used the 0.18- m STM standard-cell tech-
nology, which has been augmented with standard cell compo-
nents for implementing various special asynchronous compo-
nents such as Muller C-elements. Simulation results are ob-
tained by simulating the post place-and-route Verilog netlist to-
gether with extracted layout information in NanoSim. We simu-
late 200 computations using random numbers without any cor-
relation. NanoSim reports the total time for execution and the
total energy used. All the circuits are implemented using 16-bit
variables and are simulated at 1.8 V and at a temperature of
25 C.

It is important to stress the results do not represent an attempt
to evaluate the asynchronous implementations against corre-
sponding synchronous ones; our focus is on the efficiency of the
automated resource sharing within the asynchronous domain.

The benchmark results are shown in Table V, where is the
average time to do one computation, is the layout area, and
is the average energy consumption per computation. In a similar
way, we have characterized the ALU and multiplier operators,
see Table I. The speed figures in Table I have been used in cal-
culating the schedules.

Implementations 1 and 3 in Table V are the direct non-re-
source shared circuit implementations of the computations and
the others are with resource sharing. These have also been de-
signed using latches on the input and output of the multipliers.
Although this gives an extra area overhead it is insignificant
compared to the area of the multiplier. The important fact is

TABLE VI
MODEL RESULTS

that it reduces the combinational depth of the circuit and thus re-
duces the energy consumption, which leads to a more fair com-
parison. The speed figures in Table V include a 20-ns handshake
delay in the testbench used to simulate the layouts.

The results in Table V show that resource sharing saves area
at the expense of reduced speed. This is as could be expected.
Concerning energy consumption it is interesting to note that it
remains constant. Given that resource sharing leads to more con-
trol circuitry for the same computation, an increase in energy
consumption could be expected. But here the energy reducing
effect of the opaque latches surrounding the functional units is
countering this.

In order to estimate the overhead of the control circuitry
which is introduced by resource sharing, we have computed the
cost of an ideal resource shared implementation, i.e., a model
in which the added control has zero area. Such ideal figures
are shown in Table VI and the difference between these figures
and the actual layout figures in Table I is an estimate of the
overhead.

Comparing the energy consumption of model and layout, the
model does not take into account the “use” of the FUs, i.e., ac-
tual data and their correlations but assumes worst-case random
number correlations everywhere. This leads to inaccuracies,
e.g., energy consumption comparing for (id 2) FIR resource
shared where the model (without overhead) exceeds the layout
(with overhead). The FIR computation is a large number of
multiplications with constants, these constant multiplications
have less switching activity.

Overall comparing Tables V and VI it is seen that the control
circuitry introduced by resource sharing accounts for 10%–30%
of the area and 0%–15% of the speed, whereas it does not affect
energy consumption (as discussed before). We find these results
encouraging.

VI. CONCLUSION

This paper presented a design-flow for behavioral synthesis
of asynchronous circuits; and more specifically, a method for
synthesizing from a scheduled and resource-assigned CDFG
representation into an optimized Balsa implementation. Key
elements in this process are the implementation template and
procedure used to produce the Balsa implementation. The

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

NIELSEN et al.: BEHAVIORAL SYNTHESIS OF ASYNCHRONOUS CIRCUITS 259

Fig. 14. Asynchronous handshake channels.

design-flow allows the designer to perform design space explo-
ration by constraining the synthesis to using few(er) functional
units.

Using this method and the Balsa and Cadence design tools,
a number of benchmark circuits have been synthesized and for
five of these, actual layouts have been produced and simulated.
The results show that it is possible to do tradeoffs between area
and circuit delay for asynchronous circuits. We find that there
is a 10%–30% area overhead and a 0%–15% time overhead and
no energy overhead implementing this method. We find these
results encouraging and in support of the design flow, the im-
plementation template, and the approach to resource sharing,
which is proposed by this paper.

Future work includes automating the front-end part of the
flow (i.e., automatic extraction of a CDFG from a behavioral de-
scription in some language), exploration and adaption of more
synthesis algorithms, miscellaneous optimizations at the circuit
level and last but not least, more and larger benchmarks once
the flow is fully automated.

Finally, it is important to emphasize that the described design
flow could be used in a number of ways. One is to synthesize
asynchronous circuit implementations from behavioral descrip-
tions expressed using existing industry-standard languages like:
C, VHDL, Verilog, etc. Another use would be as a front-end for
Balsa, which would allow the designer to automatically produce
optimized implementations of some or all of the procedures in
the design.

APPENDIX

HANDSHAKE COMPONENTS AND HANDSHAKE CHANNELS

In asynchronous circuits, components synchronize and ex-
change data on a local basis using handshake channels. This ap-
pendix briefly reviews various forms of handshake protocols and
a basic set of handshake components. In doing so, the appendix
also introduces the component symbols used in the schematics
shown in Section IV. For further details refer to [4], [33], or to
manuals for the Balsa and Haste/Tangram languages.

Handshake Protocols: Fig. 14 shows two components, A
and B, connected by a handshake channel. The figure also shows
the actual wires for a bundled data implementation of the dif-
ferent handshake protocols. Other encodings like dual-rail are
possible.

A channel connects a port on one component to a port on
another component. The sense of the port (active or passive)
indicates the direction of the handshake. A filled circle indicates

Fig. 15. Most important and frequently used handshake components. For com-
ponents (a), (b), and (e) there is also shown a possible realization in four-phase
bundled data early protocol.

an active port and an non-filled circle indicates a passive port.
An active port initiates a handshake (sends the request) and the
passive port acknowledges requests. Channels can carry data in
either the same direction as the handshake (a push channel) or in
the opposite direction (a pull channel). The direction of the data
flow is indicated by the arrow. Channels that carry no data are
known as sync channels or activation channels as they are often
used to start the operation of other handshake components.

To illustrate this, Fig. 14(a) shows a push channel, Fig. 14(b)
shows a pull channel, and Fig. 14(c) shows a sync channel. In the
push channel, the request signal indicates validity of the data and
in the pull channel data validity is indicated by the acknowledge
signal. A fourth type of handshake channel not shown in Fig. 14
is a bi-put channel where data is exchanged in both directions.

Handshake Components: EDA tools based on syntax-di-
rected translation using CSP-like languages like Balsa and
Haste perform one-to-one mappings from a program text into a
corresponding structure of handshake components. In principle
there is a handshake component for every syntactic element
of the language. Fig. 15 shows the most important and most
frequently used handshake components. The total number of
different handshake components in the Balsa- and Haste-based
tools is around 30–40.

Fig. 15(a) shows a variable. It has passive input and output
ports. The environment is supposed to perform mutually ex-
clusive reads and writes. The variable is implemented using a
(transparent) latch and a small control circuit. A variable com-
ponent implements a variable in the source language.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

260 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2009

Fig. 15(b) shows a transferrer which can be used to write to
or read from a variable. A handshake on the activation port a
causes the transferrer to transfer data from its input port b to
its output port c. The handshake on the activation port encloses
the transfer. Note the use of active and passive ports. The trans-
ferrer implements assignments and channels communication in
the source language.

Fig. 15(c) shows a repeater. Initiating a handshake on port
a causes an unbounded sequence of handshakes on port b. The
repeater component implements loop-forever constructs in the
source language. All channels are dataless activation channels.

Fig. 15(d) shows a sequencer. Initiating a handshake on port
a causes a handshake on port b followed by a handshake on port
c. The handshake on port a encloses the sequence of handshakes
on ports b and c. All channels are dataless activation channels.
The sequencer component implements sequential execution of
program statements in the source language.

Fig. 15(e) shows a parallelizer. It is similar to the sequencer,
except that handshakes on ports b and c are performed concur-
rently.

Fig. 15(f) shows a merge. Handshakes on passive ports a and
b are assumed to be mutually exclusive and the mixer simply
relays a handshake on one of its input channels to the output
channel c. Very often different statements in the source program
assign values to the same variable. A merge component is used
to merge these (mutually exclusive) assignments to the variable.

Fig. 15(g) shows a demultiplexor. Its function is to pass data
from the input port a, to one of its two output ports b and c. The
output ports b and c are passive and handshakes on these ports
are assumed to be mutually exclusive. The input port is active. In
this way input data is simply pulled through the demultiplexor to
the relevant output port. Very often different assignment state-
ments in the source program reads from the same output port.
A demultiplexor component is used to provide this value to the
relevant components.

We will limit the introduction of handshake components to
the above set, and just mention that the final control and datapath
circuits shown in Figs. 9 and 10 also make use of the following
components: guard and choice.

REFERENCES

[1] D. Edwards and A. Bardsley, “Balsa: An asynchronous hardware syn-
thesis language,” Computer J., vol. 45, no. 1, pp. 12–18, 2002.

[2] C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 21, no. 8, pp. 666–677, Aug. 1978.

[3] C. H. K. v. Berkel, C. Niessen, M. Rem, and R. W. J. J. Saeijs, “VLSI
programming and silicon compilation,” in Proc. Int. Conf. Comput.
Des. (ICCD), 1988, pp. 150–166.

[4] K. van Berkel, Handshake Circuits: an Asynchronous Architecture for
VLSI Programming, ser. International Series on Parallel Computa-
tion. Cambridge, MA: Cambridge University Press, 1993, vol. 5.

[5] E. Brunvand, “Translating concurrent communicating programs
into asynchronous circuits,” Ph.D. dissertation, Comput. Sci. Dept.,
Carnegie Mellon Univ., Pittsburgh, PA, 1991.

[6] P. Kudva, G. Gopalakrishnan, and V. Akella, “High level synthesis
of asynchronous circuit targeting state machine controllers,” in Proc.
Asia-Pacific Conf. Hardw. Description Lang. (APCHDL), 1995, pp.
605–610.

[7] M. Renaudin, P. Vivet, and F. Robin, “A design framework for asyn-
chronous/synchronous circuits based on CHP to HDL translation,” in
Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst., Apr. 1999, pp.
135–144.

[8] G. D. Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[9] R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin, and L.
Plana, “Minimalist: An environment for the synthesis, verification and
testability of burst-mode asynchronous machines,” Columbia Univ.,
NY, Tech. Rep. TR CUCS-020-99, 1999.

[10] H. Jacobson, E. Brunvand, G. Gopalakrishnan, and P. Kudva,
“High-level asynchronous system design using the ACK framework,”
in Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst., Apr. 2000,
pp. 93–103.

[11] P. Kudva, G. Gopalakrishnan, and H. Jacobson, “A technique for syn-
thesizing distributed burst-mode circuits,” in Proc. ACM/IEEE Des.
Autom. Conf., 1996, pp. 67–70.

[12] S. M. Nowick, K. Y. Yun, and D. L. Dill, “Practical asynchronous con-
troller design,” in Proc. Int. Conf. Comput. Des. (ICCD), Oct. 1992,
pp. 341–345.

[13] K. Y. Yun, D. L. Dill, and S. M. Nowick, “Synthesis of 3D asyn-
chronous state machines,” in Proc. Int. Conf. Comput. Des. (ICCD),
Oct. 1992, pp. 346–350 [Online]. Available: ftp://snooze.stanford.edu/
pub/papers/async/YDN92.ps

[14] S. F. N. J. Sparsø and J. Madsen, “Towards behavioral synthesis of
asynchronous circuits—An implementation template targeting syntax
directed compilation,” in Proc. EUROMICRO DSC, Aug. 2004, pp.
298–305.

[15] A. Bardsley and D. A. Edwards, “The Balsa asynchronous circuit syn-
thesis system,” presented at the Forum Des. Lang., University of Tue-
bingen, Germany, Sep. 2000.

[16] S. M. Burns, “Automated compilation of concurrent programs into
self-timed circuits,” M.S. thesis, Comput. Sci. Dept., California Inst.
Technol., Pasadena, 1988.

[17] B. M. Bachman, H. Zheng, and C. J. Myers, “Architectural synthesis of
timed asynchronous systems,” in Proc. IEEE Int. Conf. Comput. Des.:
VLSI Comput. Processors (ICCD), Oct. 1999, pp. 354–363.

[18] J. Cortadella and R. M. Badia, “An asynchronous architecture model
for behavioral synthesis,” in Proc. Euro. Conf. Des. Autom. (EDAC),
1992, pp. 307–311.

[19] J. Cortadella, R. M. Badia, E. Pastor, and A. Pardo, D. D. Gajski, Ed.,
“Achilles: a high-level synthesis system for asynchronous circuits,” in
Proc. 6th Int. Workshop High-Level Synth., 1992, pp. 87–94.

[20] E. Kim, J.-G. Lee, and D.-I. Lee, “Automatic process-oriented control
circuit generation for asynchronous high-level synthesis,” in Proc. Int.
Symp. Adv. Res. Asynchronous Circuits Syst., Apr. 2000, pp. 104–113.

[21] M. Theobald and S. M. Nowick, “Transformations for the synthesis and
optimization of asynchronous distributed control,” in Proc. ACM/IEEE
Des. Autom. Conf., Jun. 2001, pp. 263–268.

[22] M. Budiu and E. A. G. Venkataramani, “Spatial computation,” in Int.
Conf. Arch. Support for Program. Lang. Operat. Syst. (ASPLOS), Oct.
2004, pp. 14–26.

[23] M. Sacker, A. Brown, P. Wilson, and A. Rushton, “A general purpose
behavioural asynchronous synthesis system,” in Proc. Int. Symp. Adv.
Res. Asynch. Circuits Syst., Apr. 2004, pp. 125–134.

[24] G. Gopalakrishnan, P. Kudva, and E. Brunvand, “Peephole optimiza-
tion of asynchronous macromodule networks,” in Proc. Int. Conf.
Comput. Des. (ICCD), Oct. 1994, pp. 442–446.

[25] T. Chelcea and S. M. Nowick, “Resynthesis and peephole transfor-
mations for the optimization of large-scale asynchronous systems,” in
Proc. ACM/IEEE Des. Autom. Conf., Jun. 2002, pp. 405–410.

[26] L. Stok, “Architectural synthesis and optimization of digital systems,”
Ph.D. dissertation, Dept. Math. Comput. Sci., Eindhoven Univ.
Technol., Eindhoven, The Netherlands, 1991.

[27] J. B. Dennis, “Data flow computation,” in Control Flow and Data
Flow—Concepts of Distributed Programming, International Summer
School. Marktoberdorf, West Germany: Springer, 1984, pp. 343–398.

[28] J. Brage, “Foundations of a high-level synthesis system,” Ph.D. disser-
tation, Techn. Univ. Denmark (DTU), Lyngby, Denmark, 1993.

[29] S. K. C. Gelatt and M. Vecchi, “Optimization by simulated annealing,”
Science, vol. 220, no. 4598, pp. 671–680, 1983.

[30] P. J. M. Van Laarhoven and E. H. L. Aarts, Simulated annealing:
Theory and practice Kluwer, Norwell, MA, 1987.

[31] S. F. Nielsen, “Behavioral synthesis of asynchronous circuits,” Ph.D.
dissertation, Inform. Math. Modelling, Techn. Univ. Denmark (DTU),
Lyngby, Denmark, 2005.

[32] J. Sparsø and S. E. Furber, Principles of Asynchronous Circuit De-
sign—A Systems Perspective. Norwell, MA: Kluwer, 2001.

[33] A. M. G. Peeters, “Single-rail handshake circuits,” Ph.D. dissertation,
Dept. Math. Comput. Sci., Eindhoven Univ. Technol., Eindhoven, The
Netherlands, 1996.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

NIELSEN et al.: BEHAVIORAL SYNTHESIS OF ASYNCHRONOUS CIRCUITS 261

Sune Fallgaard Nielsen received the M.Sc. degree
in physics and the Ph.D. degree in computer science
from the Technical University of Denmark, Lyngby,
Denmark, in 1999 and 2005, respectively.

He is currently a postdoctoral with the Department
of Information Technology, Technical University of
Denmark. His research interests include behavioral
synthesis of asynchronous circuits, combinatorial op-
timization, modeling of nonlinear systems by the use
of periodic-orbit theory, and extending the computa-
tional power of quantum computers.

Jens Sparsø (M’98) received the M.Sc. degree
from the Technical University of Denmark (DTU),
Lyngby, Denmark, in 1981.

Since 1982, he has been with the Section for
Computer Science and Engineering, Department
of Informatics and Mathematical Modelling, DTU,
first, as an Assistant Professor and then was ap-
pointed as an Associate Professor in 1986, and
Professor in 2007. His research interests include
architecture and design of VLSI systems, application
specific computing structures and processors, low

power design techniques, design of asynchronous circuits and systems, and
communication structures for systems-on-chip (i.e., networks-on-chip). He is
the coauthor of the book Principles of Asynchronous Circuit Design-A Systems
Perspective (Kluwer, 2001).

Prof. Sparsø was the recipient of the Radio-Parts Award and the Reinholdt
W. Jorck Award in 1992 and 2003, in recognition of his research on integrated
circuits and systems. He was the recipient of the Best Paper Award at the IEEE

International Symposium on Asynchronous Circuits and Systems in 2005. He
has been on the steering committees and technical program committees for sev-
eral conferences. He was the General Chair for PATMOS 1998 and the Program
Chair for PATMOS 1999 and ASYNC 2006. He was the Director and Local Or-
ganizer of a summer school on asynchronous circuit design at DTU in 1997.

Jan Madsen (S’83–M’90) received the M.Sc.
degree in electrical engineering and the Ph.D. degree
in computer science from the Technical University
of Denmark, Lyngby, Denmark, in 1986 and 1992,
respectively.

From 1992 to 1996, he was an Assistant Pro-
fessor and from 1996 to 2002 he was an Associate
Professor. Since 2002, he has been a Full Professor
of computer-based systems with the Department
of Informatics and Mathematical Modelling, DTU.
He is currently head of the section on Embedded

Systems Engineering. His research interests include modelling, analysis and
design of embedded systems, particularly system-level tools for performance
analysis and verification, hardware/software codesign, and wireless sensor
networks. He has published more than 80 papers in peer-reviewed international
journals and conferences, 7 book chapters, and edited 1 book.

Prof. Madsen has been the Program Chair and Vice Chair of the Design
Automation, and Test in Europe Conference, and Program Chair and General
Chair for the Hardware/Software Codesign Conference, CODES. He has been
a member of the technical program committee and organizing committee of
several technical conferences, including the Symposium on Hardware/Software
Codesign, the International Symposium on System Synthesis, the Design Au-
tomation Conference, the Real-Time System Symposium, and the International
Symposium on Industrial Embedded Systems.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on July 22, 2009 at 04:06 from IEEE Xplore. Restrictions apply.

