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Abstract

Iterative Feedback Tuning constitutes an attractive control loop tuning method for
processes in the absence of an accurate process model. It is a purely data driven
approach aiming at optimizing the closed loop performance. The standard formu-
lation ensures an unbiased estimate of the loop performance cost function gradient
with respect to the control parameters. This gradient is important in a search al-
gorithm. The extension presented in this paper further ensures informative data to
improve the convergence properties of the method and hence reduce the total num-
ber of required plant experiments especially when tuning for disturbance rejection.
Informative data is achieved through application of an external probing signal in
the tuning algorithm. The probing signal is designed based on a constrained opti-
mization which utilizes an approximate black box model of the process. This model
estimate is further used to guarantee nominal stability and to improve the parame-
ter update using a line search algorithm for determining the iteration step size. The
proposed algorithm is compared to the classical formulation in a simulation study
of a disturbance rejection problem. This type of problem is notoriously difficult for
Iterative Feedback Tuning due to the lack of excitation from the reference.
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1 Introduction

The increasing competition on the global market has rendered optimizing pro-
cess operation a necessity for new as well as existing production in the chemical
industry. Advanced control strategies are based on models for the specific pro-
cess. These models play an important role for optimization. Control oriented
process modeling is part of the advances of application oriented modeling.
System identification is an area that has received much attention but within
identification for control there is still room for improvement in development of
systematic methods. Identification for control implies experiments where the
collected data for identification are retrieved from a process operated under
control i.e. in closed loop. It is however infeasible to derive rigorous dynamic
models for any process. Consequently a number of data driven methods have
been developed for control optimization such as Iterative Feedback Tuning,
Virtual Reference Feedback Tuning and Correlation-based Tuning [17,1,20].

Two main paths have been pursued in the attempt to produce an useful al-
gorithm for identification for control using closed loop data. The governing
principle in one of these paths has been to ensure robust stability of the
loop in all iterations. The paper [6] handles parameter uncertainty in the es-
timated plant model using confidence ellipsoids and ensures robust stability
of all systems within the spanned model set. During the iterations the worst
case performance within the set is optimized. A similar methodology is used by
[4], using the more conservative H

∞
strategy. The model and the uncertainty

are identified through the dual Youla parameterization. The control design is
based on µ-synthesis. These methods are attractive due to their robustness
properties but they are computationally demanding, and the achieved perfor-
mance may be poor due to optimization of the worst case performance. The
other path optimizes the actual performance of the loop and addresses the is-
sue of stability subsequently to an iteration between model identification and
control design. In this category falls the Iterative Feedback Tuning method,
which is the subject of the present paper. The key contribution presented here
is an analysis of how to improve convergence of the Iterative Feedback Tun-
ing and hence to reduce the required number of plant experiments. Improved
convergence is achieved by applying an external probing signal to the process
in order to optimize the information content in the data combined with the
use of line search in the parameter update.

This paper is organized as follows: The coming section presents basic criterion
based controller tuning and section 3 shows how Iterative Feedback Tuning
fits into this category and how an unbiased gradient estimate is achieved from
data. Section 4 presents the problem of lack of informative data when tun-
ing for disturbance rejection. It is shown how probing signals can resolve this
problem and how to design these. Section 5 presents a new algorithm for Per-
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turbed Iterative Feedback Tuning with guaranteed informative data and dis-
cusses control parameter update. In the subsequent section simulation studies
are presented before concluding remarks are given.

2 Criterion Based Controller Tuning

A description of a scalar closed loop system is depicted in Figure 1. The two
degree of freedom controller, C = {Cr, Cy}, is implemented on the discrete
linear time invariant system G, hence the transfer functions are given as:

yt =
GCr

1 + GCy

rt +
1

1 + GCy

vt = Trt + Svt (1a)

ut =
Cr

1 + GCy

rt −
Cy

1 + GCy

vt = SCrrt − SCyvt (1b)

rt is the reference value for the measurements yt, ut is the actuator variable
and vt is a noise signal for the system which is presented in deviation variables.
S and T are the sensitivity and the complementary sensitivity functions re-
spectively. Given a desired reference model for the closed loop Td, the desired
response from the loop is given as yd

t = Tdrt. The performance criterion, which
will be a function of the control parameters, ρ, can then be formulated as a
typical quadratic cost function, F (ρ), with penalty on deviations from the
desired output and the control effort. The deviation of the outputs is given as

ỹt = yt(ρ) − yd
t (2)

The optimal set of parameters will then require a minimization of F (ρ). A
solution to the minimization problem can be obtained through the iterative
gradient based local search algorithm (3). In case the cost function is convex
the minimization will converge to the global minimizer, but this is in general
not true.

ρi+1 = ρi − γiR
−1
i

∂F (ρi)

∂ρ

= ρi − γiR
−1
i J(ρi) (3)

rt
Cr

+

−

ut
G

vt

+ + yt

Cy

Fig. 1. Feedback loop with a two degree of freedom controller.
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where Ri is a positive definite matrix and J is the gradient column vector of
F (ρ) with respect to the control parameters ρ. The i’th step is then given by
hi = −γiR

−1
i J(ρi). In case R = I the algorithm steps in the steepest descent

direction. In case R = H(ρ) = ∂2F (ρ)/∂ρ2 or an approximation to the Hessian,
J(ρi)J

T (ρi), the Newton or Gauss-Newton algorithm appears respectively.
The choice of R and γ will thus affect the convergence properties of the
method [17,32]. The iteration step size γi can be determined using e.g. a line
search method.

3 Classical Iterative Feedback Tuning

This method of iterative performance enhancement does not include an es-
timate of the process model. The basic idea is to formulate a cost function
and use the optimization algorithm (3) to minimize this cost function with
respect to the control parameters. Evaluation of the partial derivatives of the
cost function with respect to the control parameters, ρ, are based on measure-
ments taken from the closed loop system. The algorithm was first presented
in [17] and has been analyzed, extended and tested in a number of papers.
References [5] and [13] provide an extensive overview of the development of
the method and of some of its applications.

The key contribution in Iterative Feedback Tuning is that it supplies an un-
biased estimate of the cost function gradient without requiring a plant model
estimate, Ĝ, given that the noise v is a zero mean, weakly stationary ran-
dom signal [15]. Using an estimate of the gradient vector in (3) instead of the
analytical gradient vector, as a stochastic approximation method, will still
render the algorithm converge to a local minimizer, provided that a local min-
imizer exists, the gradient estimate is unbiased and the sequence of γi fulfills
condition (4) [34].

∞∑

i=1

γ2
i < ∞,

∞∑

i=1

γi = ∞ (4)

This condition is fulfilled e.g. by having γi = a/i where a is some positive con-
stant. However this requirement has a convergence rate which is too slow for
most industrial purposes [30]. In cases where the variance of the cost function
gradient vector estimate approaches zero, classical Gauss-Newton optimiza-
tion with γ = 1 may be used instead in order to speed up the convergence.
The variance of the estimate will approach zero as the number of data points
approach infinity. The Gauss-Newton or other gradient based optimization
methods are not guaranteed to converge when the stochastic realization of the
gradient vector of the objective function change between iterations.
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Given the cost function

F (ρ) =
1

2N
E

[
N∑

t=1

ỹt(ρ)2 + λ
N∑

t=1

ut(ρ)2

]
(5)

where the minimization criterion is

0 = J(ρ) =
1

N
E

[
N∑

t=1

ỹt(ρ)
∂ỹt

∂ρ
+ λ

N∑

t=1

ut(ρ)
∂ut

∂ρ

]
(6)

it is seen that estimates of ∂ỹ/∂ρ and ∂u/∂ρ are needed in order to produce a
reliable estimate of the cost function gradient vector. Since yd is not a function
of the control parameters, then ∂ỹ/∂ρ = ∂y/∂ρ. The partial derivatives of the in-
and output with respect to the control parameters can be evaluated based on
equation (1).

∂y

∂ρ
=

1

Cr(ρ)

∂Cr

∂ρ
T (ρ)r −

1

Cr(ρ)

∂Cy

∂ρ
T (ρ)y (7a)

∂u

∂ρ
=

∂Cr

∂ρ
S(ρ)r−

∂Cy

∂ρ
S(ρ)y (7b)

or rewritten into the more favorable form.

∂y

∂ρ
=

1

Cr(ρ)

(
∂Cr

∂ρ
−

∂Cy

∂ρ

)
T (ρ)r +

1

Cr(ρ)

∂Cy

∂ρ
T (ρ)(r− y) (8a)

∂u

∂ρ
=

(
∂Cr

∂ρ
−

∂Cy

∂ρ

)
S(ρ)r +

∂Cy

∂ρ
S(ρ)(r− y) (8b)

where the estimates produced from this expression are expected to have a
reduced variance compared to (7) in case ∂Cr

∂ρ
≈ ∂Cy

∂ρ
. The derivation of (7)

and (8) are given in [15].

3.1 The Tuning algorithm

Estimates of the derivatives (8a) and (8b) can be realized through the following
set of experiments where the superscripts refer to the experiment number.

1) r1
t = rt i.e. the reference in the first experiment is the same as for normal

operation of the process.
2) r2

t = rt − y1
t i.e. the reference in the second experiment is the difference

between the ordinary reference and the output from the first experiment
3) r3

t = rt i.e. the reference in the third experiment is the same as for normal
operation of the process, just as in the first experiment.

These experiments give the following in- and outputs
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Ex. # 1: y1
t = T (ρ)rt + S(ρ)v1

t

u1
t = S(ρ) (Cr(ρ)rt − Cy(ρ)v1

t )

Ex. # 2: y2
t = T (ρ)(rt − y1

t ) + S(ρ)v2
t

u2
t = S(ρ) (Cr(ρ)(rt − y1

t ) − Cy(ρ)v2
t )

Ex. # 3: y3
t = T (ρ)rt + S(ρ)v3

t

u3
t = S(ρ) (Cr(ρ)rt − Cy(ρ)v3

t )

The sequence of input output data form these experiments (yi;ui) i ∈ {1, 2, 3}
will be utilized as

ỹt = y1
t − yd

t (9a)

ut = u1
t (9b)

∂̂y

∂ρ
=

1

Cr(ρ)

[(
∂Cr

∂ρ
−

∂Cy

∂ρ

)
y3 +

∂Cy

∂ρ
y2

]
(9c)

∂̂u

∂ρ
=

1

Cr(ρ)

[(
∂Cr

∂ρ
−

∂Cy

∂ρ

)
u3 +

∂Cy

∂ρ
u2

]
(9d)

The estimate of the gradients of the input and the output can be written as

∂̂y

∂ρ
=

∂y

∂ρ
+

S(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
−

∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
(10a)

∂̂u

∂ρ
=

∂u

∂ρ
−

S(ρ)Cy(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
−

∂Cy

∂ρ

)
v3 +

∂Cy

∂ρ
v2

]
(10b)

It can be seen from these equations that only the noise in the last two exper-
iments contribute as a nuisance, since they contribute to the variance. The
noise in the first experiment, in contrast, contributes to the analytical part of
the gradients from (8). The Iterative Feedback Tuning method is depicted in
Figure 2. The performance check is evaluated by repeating the first experiment
with the updated controller.

3.2 Characteristics of Iterative Feedback Tuning

The Iterative Feedback Tuning method has several attractive properties which
makes it useful for optimization of control performance when a model is un-
available. First of all Iterative Feedback Tuning utilizes closed loop data which
is advantageous since it is the loop performance that is subject to optimization,
and it renders the method amenable for processes where opening the loop is
not an option. Secondly it is not restricted by the type of process. Even though
the theory is developed for linear systems, the references [11,35] states that
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Choose Ci, i = 0

Perform the 3 closed loop experiments

Evaluate gradients
∂̂y

∂ρ
, ∂̂u

∂ρ
, Ĵ

Choose and evaluate R, {SD, NR, GN}

Iterate controller, ρi+1 = ρi − γiR
−1

i
Ji

Implement Ci+1

Check performance

Ok

Done

i = i + 1

Fig. 2. Schematic representation of the Iterative Feedback Tuning method.

this method is applicable on some nonlinear processes as well, despite the fact
that nonlinearities will generate a bias in the gradient estimate. The Iterative
Feedback Tuning method does generate the true first order approximation of
the gradients for a nonlinear process. The bias can be expected to be small
for many practical applications [35] and successful tuning of PID loops for
industrial processes has been reported in [23,16]. The theory has furthermore
been extended to cover optimization of multivariable processes, which implies
that more experiments in each iteration are necessary [14,12,19] and to cover
non-minimum phase and time delay systems [22]. Finally the only restriction
on the control structure is that the closed loop is stable and that the trans-
fer functions in (10), through which the data is filtered, are stable as well.
This property extends the application beyond the classical PID control with
derivative filter. The reference [2] has applied the method with internal model
controllers and the reference [18] applies the method on a nonlinear inventory
control structure. The filtering in (9) becomes a problem when the derivative
of the controller with respect to the parameters is unstable or when Cr is non-
minimum phase. Theory has been developed to cope with such difficulties by
including frequency filters in the cost function which is illustrated in [15].

One disadvantage of using Iterative Feedback Tuning compared to model based
optimization is that nominal stability can not be guaranteed. Even though the
parameter update in equation (3) steps in a descent direction, the new con-
troller may render the loop unstable. [3] provides an algorithm which ensures

7



stability using the generalized stability margin, evaluated by using estimates
of the closed loop transfer function. [38,33] go further and define two cost
functions, one for performance and another for robustness. The performance
cost is of the form (5) and the robustness criterion is minimizing some norm
of the closed loop sensitivities, preferably the H

∞
norm.

Speed of convergence can also be an issue since each iteration requires a num-
ber of real plant experiments, hence the number of iterations has to be rea-
sonably low. In case a process is tuned for disturbance rejection, it can be
seen from the algorithm in section 3.1 and equations (9) and (10) that only
the noise during the first experiment is driving the optimization. That implies
that the analytic part of the gradients of the input and output may be small
compared to the variance part. This poor signal to noise ratio will slow down
convergence at best, compared to a situation where the reference is different
from zero and the loop receives stronger excitation. In [15] it is shown how
filtering of the reference signal before the two gradient experiments, and sub-
sequently filtering of the input/output data from these experiments with the
inverse of the filters, can improve the signal to noise ratio. E.g. let W j

i be a set
of stable and inversely stable filters for iteration i and with j ∈ {2, 3} as the
experiment superscript in the algorithm. If r2 = W 2

i (r1 − y1) and r3 = W 3
i r1

are used as reference signals in the gradient experiments, and if the signals
{yj

i ,u
j
i} are replaced by {(W j

i )−1y
j
i , (W

j
i )−1u

j
i} in (9c) and (9d) the filters will

suppress the influence of the noise in the frequency band where it has a gain
larger than one. Optimal design of the prefilters, W j

i , have been investigated
in [8,10] where the asymptotic accuracy of the tuning method is improved
by minimizing the covariance of the gradient estimate. An expression for this
covariance is derived in [9].

Virtual Reference Feedback Tuning [1] and Correlation-based Tuning [20] are
two data driven controller tuning methods which typically outperform Itera-
tive Feedback Tuning in convergence rate and hence require fewer plant ex-
periments. Virtual Reference Feedback Tuning only need one open or closed
loop experiment to find a near optimal solution. The idea is to use a set of
input/output data obtained from the plant, and a reference model for the
loop. A virtual reference signal, which filtered through the reference model
reproduces the plant output, is calculated and the tracking error between
this virtual reference and the output can be formed. Estimation of the con-
trol parameters is then reduced to an open loop estimation problem, using the
tracking error as input and the actual plant input data as output. The method
is formulated using open loop and noise free data but the use of noisy data
and closed loop experiments are discussed in [21]. Correlation-based tuning
uses a reduced order reference model with the desired closed loop properties
to design a controller for the actual loop. Given a sequence for the reference,
an output error signal can be formed as the difference between the output
from the true system and the output from the designed loop. Only the output
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from the true system will be affected by process noise and the main idea in the
tuning method is then to adjust the control parameters in order to de-correlate
the output error with the reference signal. Despite the difference in criteria,
this method is closely related to the Iterative Feedback Tuning method. A spe-
cial formulation of the Correlation-based tuning algorithm which handles the
disturbance rejection problem is given in [29]. In the present contribution an
alternative route for obtaining informative experiments and fast convergence
is pursued.

4 Informative Experiments

The algorithm for Iterative Feedback Tuning ensures that the data from the
three experiments can be used to form an unbiased estimate of the cost func-
tion gradient with respect to the control parameters. However the experiments
are not necessarily performed such that a large signal to noise ratio is ensured,
thus informative data is not guaranteed. From the system identification lit-
erature it is well known that external perturbation can be required in order
to sufficiently excite a process. In order to identify a certain model structure
and/or minimize the variance on the parameter estimate, data with sufficient
information content is required [36,26]. This knowledge provides the inspira-
tion to include external perturbation in the experiments conducted during each
iteration of the Iterative Feedback Tuning when noise rejection is essential for
closed loop performance.

External perturbation, indicated with subscript p, can be applied as a probe
signal to either the reference or the control signal giving the following input
output relations

y = T (r + rp) + S(v + Gup) (11a)

u = SCr(r + rp) − SCyv + up (11b)

The derivatives of the input and output in (11) with respect to the control
parameters is determined as in (7).

∂y

∂ρ
=

1

Cr(ρ)

∂Cr

∂ρ
T (ρ)(r + rp) −

1

Cr(ρ)

∂Cy

∂ρ
T (ρ)y (12a)

∂u

∂ρ
=

∂Cr

∂ρ
S(ρ)(r + rp) −

∂Cy

∂ρ
S(ρ)y (12b)
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or rewritten into the more favorable form.

∂y

∂ρ
=

1

Cr(ρ)

(
∂Cr

∂ρ
−

∂Cy

∂ρ

)
T (ρ)(r + rp) +

1

Cr(ρ)

∂Cy

∂ρ
T (ρ)(r + rp − y)

(13a)

∂u

∂ρ
=

(
∂Cr

∂ρ
−

∂Cy

∂ρ

)
S(ρ)(r + rp) +

∂Cy

∂ρ
S(ρ)(r + rp − y) (13b)

By conducting the three experiments described in section 3.1 with the addition
of the signals {ri

p,u
i
p}, where i ∈ {1, 2, 3}, it can be seen by applying the signals

as in (9), that not every type of perturbation strategy should be recommended:

∂̂y

∂ρ
=

∂y

∂ρ
+

S(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
−

∂Cy

∂ρ

)
(v3 + Gu3

p) +
∂Cy

∂ρ
(v2 + Gu2

p)

]
(14a)

∂̂u

∂ρ
=

∂u

∂ρ
−

S(ρ)Cy(ρ)

Cr(ρ)

[(
∂Cr

∂ρ
−

∂Cy

∂ρ

)
(v3 + Gu3

p) +
∂Cy

∂ρ
(v2 + Gu2

p)

]

(14b)

The signals u2
p and u3

p will give a contribution to the variance part of the
gradient estimate hence these signals should be avoided. Adding a probing
signal to the reference will on the other hand always contribute to the analytic

part of ̂∂y/∂ρ and ∂̂u/∂ρ, but note that it must be required that r2
p = r3

p in order
to construct equation (13) from (12).

Which, and how many of the probing signals, {r1
p, r

2
p, r

3
p,u

1
p}, one should use

in Iterative Feedback Tuning is less evident. One could argue that it would
not be an advantage to apply perturbation in the two last experiments since
the second experiment is already perturbed with the output from the first.
Even though all experiments are conducted in closed loop, it is desired not to
disturb the process more than necessary. Choosing between perturbing either
the reference or the control signal in the first experiment is of little conse-
quence. Identical results in the output can be achieved using r1

p or u1
p = Crr

1
p.

Intuitively it seems more reasonable to use u1
p rather than r1

p since this choice
will not affect yd in the cost function.

When applying the Iterative Feedback Tuning method for performance opti-
mization, the achieved set of control parameters will be, ρn, which is a stochas-
tic variable. Hence there will be an error between the achieved set of control
parameters and the optimal set, ρopt, which will minimize the expected perfor-
mance cost. Assuming n to be large this error will only be associated with the
noise of the system while the expected value E [ρn − ρopt] will be equal to zero,
hence the difference between the expected value of the achieved performance
cost and the optimal is a variance error. Introducing perturbations on e.g. the
reference in the first experiment in the Iterative Feedback Tuning algorithm
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imply that the method achieves the set of control parameters ρn(rp). For large
values of n the expected value of E [ρn(rp) − ρopt] is in general non zero. The
difference between the expected value of the achieved performance cost and
the optimal will be associated with both a bias and a variance error. The bias
error is due to the fact that it is the performance of the perturbed process,
and not the performance for the normal operation that becomes subject to
optimization. This means that the objective transforms to a disturbance re-
jection problem with both process noise and an external perturbation signal.
Introducing external perturbation will in general be associated with a bias
error, but the variance error will decrease due to better signal to noise ratio in
the data used by the tuning method. Hence the aim is to find a perturbation
signal which balance these two errors and render

E [F (ρn(rp))] < E [F (ρn)] (15)

The bias error will in general be a consequence of introducing external per-
turbation. Design of perturbation signals which renders unbiased or minimal
bias is current work. Adding perturbations will change the curvature of the
performance cost function, hence it may change the location of the optimum
and should change the rate of convergence. The perturbed problem will, as the
classical, converge to a local minimum of the performance cost, if the pertur-
bations signal is bounded. Hence the two problems belong to the same class
of optimization problems for which convergence has been established [13].

4.1 Probe signal design

Design of the probing signal aims at obtaining as rich an information content
in data as possible, without disturbing the process more than necessary. There-
fore the probe signal design will be formulated as a constrained optimization
problem. A high information content will correspond to shaping the Hessian of
the cost function, i.e. rendering it large in some sense and make the optimum
more distinct [7]. The information content may be evaluated by the numerical
value of a scalar function of the Hessian e.g. the trace or the determinant of
the matrix. The value of the cost function with the current controller and for
a given perturbation signal should be constrained by a maximum value. An
alternative constraint condition could be to limit the intensity of the pertur-
bation signal itself. The subject for optimization will be a parameterization,
ϑ, of the probing signal e.g. the parameters in a data filter or the amplitude
and frequency for a number of sinusoids. Choosing the determinant as the
scalar function the design of probing signal can be formulated as

ϑopt = arg max
ϑ

det(H)

s.t. F (ρ, ϑ) ≤ F max
(16)
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In order to compute ϑopt and thus generate an optimal probing signal, it is
necessary to be able to evaluate both the cost function, F , and a full rank
Hessian or Hessian approximation for any given set of ϑ. That would require
knowledge of the true system or an evaluation based on the Iterative Feedback
Tuning. The latter would imply an unreasonably large number of experiments.
Instead the optimization is based on a model estimate. This model estimate
will be used only as an approximation of the true system for the optimization
of ϑ to define the perturbation signal. It will not be utilized for the gradient
evaluation in the Iterative Feedback Tuning that optimizes ρ based on the true
closed loop performance. The reason being that Iterative Feedback Tuning is a
model free tuning method, which can be applied in cases where a model based
control design is not possible due to lack of a sufficiently good model. Using
a very crude model estimate in the perturbation signal optimization may be
sufficient to produce a perturbation signal which significantly improves the
convergence of the tuning. Knowing the process gain may be useful e.g. in
determining the intensity of the perturbation signal. Performing a model based
control design based on the crude model estimate could serve as an initial
starting point for the control parameters, but it is in this context assumed
that this initial controller does not perform sufficiently well and that the data
driven tuning is necessary.

Having the optimization of the perturbation signal based on an approximate
model implies that using this signal on the true process, the input output data
may not satisfy the constraint exactly. How large such a constraint violation
can become will of cause depend on the accuracy of the model, but in cases
where this might be of concern, a more conservative choice of F max may be
appropriate. The plant model mismatch will also affect ϑopt. This is unavoid-
able, but the effect is judged to be of limited consequence. The system will in
any case be perturbed, hence faster converge of the tuning is achieved.

It will be necessary to apply this optimization of perturbation signals before
each iteration in the Iterative Feedback Tuning. Since the control is tightened
through the iterations, stronger perturbations can be allowed as one proceeds
through the iterations, while satisfying the performance constraint. Since the
design of the perturbation signal is model based, it can be calculated offline
before a new iteration begins. The optimization problem (16) does not restrict
neither the system nor the parameterization of the perturbation. Convexity is
therefore not guaranteed.

5 Perturbed Iterative Feedback Tuning

Applying perturbation in Iterative Feedback Tuning calculated based on a
plant model estimate introduces a few new elements in the algorithm, as shown
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in Figure 3 with gray shaded background. In this illustration of the algorithm
it is assumed that the perturbation is added to the control signal as a filtered
white noise signal.

Choose u
1
p = P (ϑ0)ǫChoose Ci, i = 0

Perform the 3 closed loop experiments

Evaluate gradients
∂̂y

∂ρ
, ∂̂u

∂ρ
, Ĵ

Choose and evaluate R, {SD, NR, GN, LM}

Iterate controller, ρi+1 = ρi − γiR
−1

i
Ji

Check stability, adjust γi (line search)

Implement Ci+1

Check performance

Ok

Done

i = i + 1

Based on Ĝ & Ci

optimize

u
1
p = P (ϑi)ǫ

Fig. 3. Workflow in the novel Perturbed Iterative Feedback Tuning. The new ele-
ments are shown with a gray shaded background. The parameters, ϑi, are the filter
coefficients.

The workflow in Figure 3 shows that the optimization of the probe signal is
performed after each update of the controller, when a new iteration is required.
The initial probe signal can also be based on the optimization if a plant model
is determined a priori. In absence of a model estimate ϑ0 will have to be se-
lected by the user. The data from the perturbed experiment can give the basis
for estimation of a new model consecutively through the iterations. Whether
it is preferred to update the model estimate in each iteration or use the same
a priori estimate in the optimization will depend on how well the updated
models can be expected to be. Since the controller is changing through the
iterations, it would be expected that better models can be achieved by con-
secutive update. This has to be viewed in relation to the fact that the data
from the experiments is optimized for the controller tuning algorithm which
may not provide the best data for model estimation.

Having an approximate model estimate provides the option of ensuring nom-
inal stability of the loop before implementing the updated controller, Ci+1.
Estimation of the plant model can be performed using closed loop system
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identification [36,26].

5.1 Control parameter update

The control parameter update in the Iterative Feedback Tuning method in-
fluences the convergence properties and hence the number of required experi-
ments. In [17] equation (17) was suggested as an estimate of the Hessian of the
cost function with respect to the control parameters, that can be estimated
from the experiments. This estimate is biased due to occurrence of squared
terms of the noise signals v2 and v3. This problem was resolved in [37] by
conducting experiment # 2 and 3 twice in order to form two uncorrelated es-
timates of ∂y/∂ρ and ∂u/∂ρ to be used in (17). Including yet an extra experiment
gives the option of including second order terms in the Hessian estimate as
well. The advantage of having an unbiased Hessian estimate, or including sec-
ond order terms has to be weighted against the disadvantage of an additional
experiment in each iteration and the possible loss of the positive definiteness
property.

Ĥ =
1

N

N∑

t=1


 ∂̂yt

∂ρ

(
∂̂yt

∂ρ

)T

+ λ
∂̂ut

∂ρ

(
∂̂ut

∂ρ

)T

 (17)

The Gauss-Newton optimization method is known to perform very well in
the vicinity of the optimal solution [32]. When the initial controller gives a
performance which is far from optimal, the curvature of the performance cost
with respect to the control parameters may be more complicated, hence a
more cautious algorithm may be preferred. An obvious solution could be to
include a damping factor, µ, as a regularization in the Hessian estimate as
suggested by Levenberg [25].

Ri = Ĥi + µiI (18)

A starting value for the damping coefficient is

µ0 = τ max (diag(Ĥ0)) (19)

where τ is 10−6 for a good initial guess and 10−3 to 1 if the guess is expected
to be poor [27]. The update of the damping coefficient can then be evaluated
based on the quality of the previous step. The gain ratio, ̺, is the ratio between
the actual and the expected improvement in the cost function:

̺ =
Fi−1 − Fi

1
2
hT

i (µihi − Ji)
(20)

where hi is the step in the control parameters given by −γiR
−1
i J(ρi). As in

update of the step length in trust region methods the damping coefficient can
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be updated using the gain ratio which has given name to Levenberg-Marquardt
optimization. The update strategy suggested by Marquardt [28] is

µi+1 =





2µi, ̺ ∈] −∞; 0.25]

µi, ̺ ∈]0.25; 0.75[
µi/3, ̺ ∈ [0.75;∞[

(21)

In [31] the damping coefficient is updated by

̺ < 0





µi+1 = µiνi

νi+1 = 2νi

̺ ≥ 0





µi+1 = µi max (1
3
, 1 − (2̺ − 1)3)

νi+1 = 2

(22)

where ν0 = 2. This scheme is a continuous version of the strategy suggested
by [28] but converges generally faster. The two updating strategies are illus-
trated in Figure 4. Both strategies decrease the step length in the parameter
update by increasing µ if the value of the cost function is increasing from one
step to another or not sufficiently decreased. The use of Levenberg-Marquardt

−0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

̺

µ
i+

1

µ
i

Fig. 4. Updating of the damping coefficient as function of the gain ratio. The straight
dashed curves is the strategy proposed in [28] cf. equation (21) and the full line is
the strategy proposed by [31] cf. equation (22).

optimization in Iterative Feedback Tuning is attractive since it provides a sys-
tematic method for handling ill conditioned Hessians, which otherwise can
lead to large steps in Gauss-Newton optimization that may render the loop
unstable. This problem was encountered in [24] for optimization of step re-
sponses. The solution chosen by the authors was to gradually truncate the
initial part of the time horizon in the calculation of the cost function and
thereby changing the curvature of the performance cost with respect to the
controller parameters. The cost function used in [24] was

F (ρ) =
1

2N
E




N∑

t=t0

ỹt(ρ)2 + λ
N∑

t=1

ut(ρ)2


 (23)

where an initial time for the output deviation in the cost function, t0, was de-
creased from some initial large value through the iterations. This strategy was
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effective but the problem can be overcome by using the Levenberg-Marquardt
method which optimize the cost function with t0 = 1 through all the iterations.

The more cautious Levenberg-Marquardt method compared to classical Gauss-
Newton is advantageous when a model of the system is not available. In case
a process model is available, a more attractive update method will include
a line search algorithm. Line search is only a real option for Iterative Feed-
back Tuning if a model is available, since several cost function evaluations are
required, which otherwise would demand plant experiments.

6 Simulation Examples

Test cases with Iterative Feedback Tuning are performed given the following
two degree of freedom PID controller

Cr :
U(s)

R(s)
= Kc

[
1 +

1

τIs

]
(24a)

Cy :
U(s)

Y (s)
= Kc

[
1 +

1

τIs
+

τDs

0.1τDs + 1

]
(24b)

working in closed loop on the linear time invariant second order process model,
(25a), affected by Gaussian white noise vt ∈ N (0, 0.052) filtered through the
first order noise model (25b). See Figure 1.

G(s) =
1

s2 + 0.1s + 1
(25a)

H(s) =
1

s + 1
(25b)

This process model was used in [24] to illustrate Iterative Feedback Tuning for
the settling time problem. In the first simulation example the same settling
time problem is considered and the use of Levenberg-Marquardt optimization
is demonstrated. In the subsequent simulation case, in section 6.2, the loop is
tuned for noise rejection. It is demonstrated how probing signals and the line
search algorithm can improve the convergence of the Iterative Feedback Tuning
algorithm. Different noise realizations are used through the iterations but the
same set of different realizations are use between different trials of the tuning
in order to keep comparable conditions. In Monte Carlo simulations performed
for performance evaluation all realizations of the noise are independent.

The initial controller is chosen identical to the example in [24], which gives a
very poorly tuned loop, but helps to illustrate some of the inherent problems
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in Iterative Feedback Tuning.

[
Kc τi τD

]
=
[
0.025 2 1

]

6.1 Optimizing of Settling Time

For the settling time problem a unit step change is introduced in the reference
and it is desired to optimize the controller such that the closed loop response
resembles that of a first order process with a settling time of 20 seconds, hence
Td = 3/(20s+3). The simulation time is 200 seconds. In optimization of settling
times, a cost function without penalty on the control is used, hence λ = 0
in (5). When the classical Iterative Feedback Tuning method is used with
the simple Gauss-Newton optimization, the biased Hessian estimate (17) and
γ = 1, then the first iteration produces a controller which renders the loop
unstable.

As a solution to this problem, and in order to avoid local minima, [24] uses
the cost function (23) with an initial time for the output deviation in the
cost function on t0 = 80 sec. in the first iteration. This initial time is lowered
by 20 sec. until t0 = 20. The values of γi remains equal to one. Simulation
results based on this strategy but with a final mask of t0 = 1 are presented in
Table 1, where the control parameters are presented with the corresponding
value of the cost function from the first experiment in the iteration and the
corresponding mask width.

Table 1
Control parameters and the value of the performance cost function for each iteration
with the corresponding mask as suggested by [24]. The cost function is evaluated
based on the first experiment in the iterations. The Gauss-Newton method is used
for optimization of the loop performance

Iteration Kc τI τD Mask F (ρi) · 10
3

Initial 0.025 2 1 80 21.713

No. 1 0.0382 1.5344 0.4247 60 7.0074

No. 2 0.0514 1.1304 0.2513 40 4.2786

No. 3 0.0516 0.4671 0.2909 20 2.0616

No. 4 0.0422 0.3742 0.8757 1 1.0989

No. 5 0.0312 0.2599 1.5292 1 1.1534

In this paper the above problem is solved using Levenberg-Marquardt opti-
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mization, with τ = 10−4 in (19) and the update strategy for µ is based on (22).
The results are presented in Table 2. Comparing the results in Tables 1 and

Table 2
Control parameters and the value of the performance cost function for each iteration.
The mask is only one sample for all iterations. The cost function is evaluated based
on the first experiment in the iterations. The Levenberg-Marquardt method is used
for optimization of the loop performance

Iteration Kc τI τD Mask F (ρi) · 10
3

Initial 0.025 2 1 1 75.717

No. 1 0.0501 1.9268 0.8011 1 27.655

No. 2 0.0944 1.9029 0.7259 1 8.1042

No. 3 0.1555 1.8930 0.7113 1 2.3160

No. 4 0.1823 1.8904 0.7111 1 1.3894

No. 5 0.2113 1.8862 0.7110 1 0.9797

2, it is seen that the performance after 5 iterations is very close despite the
different development of the control parameters through the iterations. The
main difference between two methods is, that the method of [24] changes the
cost function that is minimized, when the initial time, t0, in the cost function is
changed. With the proposed Levenberg-Marquardt method the cost function
remains the same. That is reflected in the performance cost. In the latter case
the improvement from one iteration to the next is reflected by the value of the
cost while these are not comparable when the mask t0 in the cost function is
changed.

Remark:
From iteration 4 and 5 in Table 1 the value of the performance cost is increased
slightly for the same cost function. This is due to the different stochastic
realizations of the noise. This behavior is an indication of being close to optimal
tuning.

6.2 Perturbations in Iterative Feedback Tuning

In this example the process is tuned for disturbance rejection, hence rt = 0
and only the noise present in the first experiment drives the tuning. λ = 0.01
is used in the cost function. Again the Levenberg-Marquardt optimization
is used where τ = 10−4 in (19) and the update strategy for µ is based on
(22). Three trials with different strategies for the tuning are performed for the
performance optimization of the process. 10 iterations are used in each of the
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trials. In the first trial the Iterative Feedback Tuning method is applied in its
standard form but having the Levenberg-Marquardt parameter update. In the
second trial external perturbations on the control signal are included in the
first experiment of each iteration in order to increase the information content
in data. The perturbation signal is given by

up = P (ϑ)ǫ, ǫt ∈ N (0, 1), t ∈ {1, 2, .., N} (26)

where P (ϑ) is the stable first order data filter

P (ϑ) =
ϑ1

ϑ2s + 1
, ϑ ∈ R2

+ (27)

The optimization performed in each iteration is based on an estimated plant
model and subject to the constraint F max = 0.02. In the last trial the same
perturbation strategy is applied as in trial 2 and the Levenberg-Marquardt
parameter update is extended with an exact line search in each iteration for
evaluating γi. The line search is performed on the estimated plant and noise
model of the system. The results are presented in Figure 5 which shows the
value of the performance cost function for each of the control loops through
the ten iterations as an average of 100 Monte Carlo runs, F̄MC(ρi). Tables 3
and 4 shows the result as control parameters and observed performance for
the second and third trial for all ten iterations. This information is omitted
for the first trial since no significant changes occur. The process model esti-
mate and the noise model is produced prior to the tuning from closed loop
data with the initial controller in the loop. Data points have been collected
from one hour simulation with a pseudo-random binary reference signal. This
signal was generated with a low pass frequency band from 0 to 0.01 hence a
clock period of 100. The amplitude was 0.4 such that the constraint on F max

was not violated during the experiment. Two thirds of the data was used to
estimate a Box Jenkins model with the true model structure as an open loop
estimation problem using the prediction error method, i.e. direct identifica-
tion. The remaining one third of the data was used for validation and showed
white residual for the auto- and cross-correlation functions and a model fit for
the one step ahead prediction of 93.7 %.

From the results of the three trials it can be seen that hardly any improvement
of the performance can be observed over the 10 iterations of the tuning for
the first trial with classical Iterative Feedback Tuning. The control parameters
moved very little in each iteration. In the second trial with Perturbed Iterative
Feedback Tuning the performance is improved from one iteration to the other
and provides a controller after ten iterations that is clearly superior to the
initial trial. The rate of approach towards the local minimizer is slowing down
through the iterations which is also due to the update strategy of the damping
coefficient. In the third trial where both Perturbed Iterative Feedback Tuning
and exact line search are used, significant improvements can be observed be-
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Table 3
Controller parameters and the value of the performance cost function for each iter-
ation in the second series of Perturbed Iterative Feedback Tuning. The cost function
is evaluated based on 100 Monte Carlo runs, F̄MC(ρi).

Iteration Kc τI τD F̄MC(ρi) · 10
3

Initial 0.025 2 1 0.2328

No. 1 0.0180 2.6910 2.4212 0.2319

No. 2 0.0202 3.0130 3.0618 0.2300

No. 3 0.0259 3.1818 3.2934 0.2254

No. 4 0.0349 3.2657 3.4148 0.2191

No. 5 0.0488 3.3067 3.4685 0.2136

No. 6 0.0654 3.3315 3.4918 0.2060

No. 7 0.0935 3.3389 3.4998 0.1956

No. 8 0.1292 3.3397 3.5007 0.1862

No. 9 0.1464 3.3398 3.5011 0.1794

No. 10 0.1577 3.3398 3.5015 0.1761
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Fig. 5. Performance of each controller through the iterations for all three series
evaluated based on 100 Monte Carlo trials. The cost for the local minimizer is also
displayed as the dotted line.

tween consecutive iterations until the fifth iteration where the update seems
to have converged. After the fifth iteration the line search could not find im-
provement in the search direction for these iterations and did not approach
the minimum further. The theoretical value of the local minimizer has been
evaluated numerically to 7.636 · 10−5 based on full process knowledge.
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Table 4
Controller parameters and the value of the performance cost function for each it-
eration in the third series of Perturbed Iterative Feedback Tuning with line search.
The cost function is evaluated based on 100 Monte Carlo runs, F̄MC(ρi).

Iteration Kc τI τD F̄MC(ρi) · 10
3

Initial 0.025 2 1 0.2328

No. 1 0.0221 2.2873 1.5909 0.2313

No. 2 0.0231 5.2606 8.5949 0.2251

No. 3 0.2475 6.1356 2.1208 0.1599

No. 4 11.438 7.7009 0.8945 0.1492

No. 5 11.437 7.7030 0.7431 0.1475

No. 6 11.437 7.7030 0.7431 0.1481

No. 7 11.437 7.7030 0.7431 0.1485

No. 8 11.437 7.7030 0.7427 0.1478

No. 9 11.437 7.7030 0.7421 0.1471

No. 10 11.437 7.7030 0.7421 0.1472

7 Conclusion

An extension to the Iterative Feedback Tuning algorithm imposing external
probing signals to the predefined experiments is proposed. Perturbed Itera-
tive Feedback Tuning is an advantage when tuning for disturbance rejection.
Perturbing the process can yield more informative data and thereby improve
convergence properties of the tuning method for disturbance rejection, hence
reducing the number of plant experiments. The use of the Perturbed Iterative
Feedback Tuning algorithm is outlined. It is motivated to generate this ex-
ternal probing signal from a constraint optimization utilizing a plant model,
which is not necessary in the standard formulation of the tuning method. Hav-
ing a plant and a noise model of the system renders the use of a line search
algorithm for the parameter update possible, which is demonstrated to sig-
nificantly improve convergence. Furthermore availability of a model allows a
check on nominal stability of the loop. The use of Levenberg-Marquardt opti-
mization is advocated and illustrated for controller tuning of a step response
problem. The advantages of the proposed algorithm with probing and line
search is illustrated on a disturbance rejection problem, which is notoriously
difficult for classical Iterative Feedback Tuning.
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