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MINIMAL WEBS
IN RIEMANNIAN MANIFOLDS

STEEN MARKVORSEN

Abstract. For a given combinatorial graph G a geometrization
(G, g) of the graph is obtained by considering each edge of the
graph as a 1−dimensional manifold with an associated metric g.
In this paper we are concerned with minimal isometric immersions
of geometrized graphs (G, g) into Riemannian manifolds (Nn, h).
Such immersions we call minimal webs. They admit a natural
’geometric’ extension of the intrinsic combinatorial discrete Lapla-
cian. The geometric Laplacian on minimal webs enjoys standard
properties such as the maximum principle and the divergence the-
orems, which are of instrumental importance for the applications.
We apply these properties to show that minimal webs in ambi-
ent Riemannian spaces share several analytic and geometric prop-
erties with their smooth (minimal submanifold) counterparts in
such spaces. In particular we use appropriate versions of the di-
vergence theorems together with the comparison techniques for dis-
tance functions in Riemannian geometry and obtain bounds for the
first Dirichlet eigenvalues, the exit times and the capacities as well
as isoperimetric type inequalities for so-called extrinsic R−webs
of minimal webs in ambient Riemannian manifolds with bounded
curvature.

1. Introduction

We let G = (V,E) denote an abstract infinite graph with edge set E
and vertex set V . We will use standard notation and terminology from
graph theory, see e.g [We], [MT], [Wo]. For example, two vertices x and
y in V are called neighbours if there is at least one edge e in E between
them, in which case we write x ∼ y and e = xy . Multigraphs (with
a finite number of multiple edges between neighbouring vertices) are
allowed. Loops (pseudo-graphs) are not allowed. In other words we
assume without lack of generality that graphs containing loops have
been ’normalized’ by introducing an auxiliary vertex somewhere on
every loop edge. We also assume that the graph is countable and
connected as well as locally finite (but not too finite) in the sense that
every vertex p ∈ V has finite vertex degree m(p) ≥ 2.
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2 STEEN MARKVORSEN

We geometrize the graph G as follows. Every edge e = xy in E is con-
sidered as a compact 1-dimensional manifold with boundary ∂e = x∪y
(where x and y are the vertices in E which are joined in G by e). Let
each edge e be given a metric ge such that (e, ge) is isometric to a finite
interval [0, L(e)] of the real line with the standard metric. We assume
throughout that L(e) > ε for some positive ε for every edge e ∈ E.
The distance metric on the edges can be extended to the full graph via
infima of lengths of curves in the geometrization of G. Then the graphs
become metrically complete length spaces, see e.g. [BH, Chapter 1.3].
In particular, for every two points p, q in the geometric graph there
exists a minimal geodesic joining p and q. The distance d(p, q) in G
between p and q is the length of such a geodesic. Note that because
of the assumption m(p) ≥ 2 every geodesic can be extended in such a
way that the extension is still the shortest connection between any pair
of points – at least locally. However, the extension through a vertex
point may not be unique.

The resulting length space is called (G, g) – or just shorthand G. We
note that the intrinsic curvature at every vertex with degree m ≥ 3 is
−∞ in the geodesic triangle comparison sense, see e.g. [BuBI]. In such
cases (G, g) does not have bounded geometry in this geometric sense,
but only in the combinatorial sense of having bounded degree.

1.1. Concerning the literature on metric graphs and webs. The
intrinsic discrete analysis of functions defined only on the vertices of a
given graph has produced a wealth of results beginning with the works
of [E], [H], and [Dod2]. We find excellent surveys in e.g. [Ch], [So],
[Wo], and [CoG].

The idea of extending the analysis to intrinsic differentiable func-
tions defined on the full edges of the graph has been considered from
different viewpoints. We refer to J. Friedman [Fr] and Y. Ohno and
H. Urakawa [OU], who obtain results concerning the eigenvalues of the
discrete Laplacian on graphs by way of linear interpolation along the
edges.

When we impose natural (Kirchhoff type) conditions at the vertices,
the spectrum of the discrete Laplace operator and the correspond-
ing eigenfunctions (defined at the vertices) determine the spectrum
of the geometric Laplacian and the continuous (Kirchhoff) eigenfunc-
tions. This far reaching intrinsic relationship has been studied by a
number of authors, see e.g. [Ro], [Nic], [Be], [Cat], [FT], and the excel-
lent recent survey papers on quantum graphs: [EP, Ku1, Ku2, SmSo].
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Yet another main idea of the present paper is to facilitate the anal-
ysis of, say, eigenvalues and isoperimetric properties of metric graphs
by appealing to the fruitful interplay between the ’inner’ combinatorial
geometry and the ’outer’ geometry of graphs which are immersed iso-
metrically and minimally into a given ambient Riemannian manifold.
A related point of view has been applied in [ChY], where F. Chung
and S. T. Yau obtain lower bounds on Neumann eigenvalues of certain
subgraphs of homogeneous lattice graphs embedded into Riemannian
manifolds. In their setting the eigenvalue bounds are derived from
known results for eigenvalues of the ambient Riemannian manifolds us-
ing both the discrete heat kernels of the graphs and the continuous
heat kernels of the Riemannian manifolds in question.

In the other direction we refer to the work of K. Fujiwara in [Fu],
where he obtains a two-sided estimate of the spectrum of a given com-
pact Riemannian manifold via the discrete spectra of roughly isometric
nets on the manifold in the sense of Kanai, see [Ka1, Ka2, Ka3]. These
nets, however, do not necessarily span minimal webs in the sense of
Definition 2.6 below. It is an open question - stated in [Fu, p. 2587]
- whether a suitable ’nice’ sequence of graphs could improve the esti-
mation of the eigenvalues of compact manifolds. At this note and in
a related vein, H. Urakawa obtains in [U2] explicit limit expressions
for the Dirichlet and Neumann eigenvalues from special (equilateral or
isosceles right) triangulations of bounded plane domains. In particular
the resulting approximating graphs are thence in fact planar minimal
webs. The result supports the general idea that minimal webs could
be of instrumental value for the precise estimation of the spectra of
Riemannian manifolds in general.

Here we also emphasize in particular those aspects of the previous
works which are related to the notion of harmonic maps of graphs into
suitable target spaces. In [U1], [A], and [Ts] the harmonic morphisms
of (weighted) graphs into (weighted) graphs is defined and studied. As
observed by C. K. Anand in [A], Remark 3, the discrete combinatorial
structure of the target spaces in such a setting does not, however, allow
directly for a proper definition of an energy functional (whose critical
maps should then be called harmonic). The work [EF] by Eells and
Fuglede offers a natural setting for the study of harmonic maps of gen-
eral Riemannian polyhedra into Alexandrov spaces.

In the present paper we consider only those maps on metric graphs
which are isometric immersions and minimal in a sense, which will be
made precise in the next section.
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2. Preliminaries
and outline of main results

Definition 2.1. A continuous map φ of (G, g) into a given Riemann-
ian manifold (Nn, h) will be called an isometry if it is an isometric
immersion in the usual sense on every edge with respect to the metric
induced from h.

Remark 2.2. By continuity the isometries of geometrized graphs pre-
serve the global graph structure in the sense that φ(e) = φ(x)φ(y)
whenever e = xy , whereas they only preserve the local distances of
the corresponding metric space continua. In comparison, the isomet-
ric embeddings of finite combinatorial metric graphs considered in e.g.
[DL] preserve all the distances represented by the full distance matrices
of the corresponding finite metric spaces. In both contexts the geom-
etry and topology of the target spaces represent interesting possible
obstructions for isometric immersions of a given (G, g) to exist.

Definition 2.3. A given isometric immersion φ(G) is edge-minimal
if the image of each edge is a geodesic segment in Nn (realizing locally
the distances between pairs of points on each edge).

In the following we shall often use the notation G as shorthand for
both (G, g) and φ(G, g) unless the context calls for special attention
concerning the metric g or concerning specific properties of a given iso-
metric immersion φ. In particular we note, that a given edge-minimal
isometric immersion of G into Nn may map several edges of G into
identical (or overlapping segments of) geodesics in Nn. For example,
we may consider immersions of non-line graphs into R1. In such cases it
is important to keep track of the combinatorics of the original abstract
graph, so that the edges in the immersed image is counted with the
correct multiplicities.

To facilitate the local analysis of functions in a given metric neigh-
borhood of a vertex p in G we introduce the notion of parametrized
star spaces as follows.

Definition 2.4. The p−centered parametrized star space Yp ⊂ (G, g)
is the compact metric subspace of (G, g) consisting of the vertex p to-
gether with the arc length parametrized edges emanating from p:

(2.1) ei = γi([0, L(ei)]) , i = 1, ...,m(p) ,

where γi(s) , s ∈ [0, L(ei)], denotes the unique point on the edge ei

which is at distance s from p.
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Figure 1. A 2D joint element for Scherk’s web in R3.

Figures 1 and 2 show special well known star spaces. They will be
used to construct the so-called Scherk web in Example 2.7. The Scherk
web was originally introduced in [MMT] as a discrete approximation
to Scherk’s doubly periodic minimal surface, see Figures 3, 4, and 5.

Definition 2.5. The immersion φ(G) is vertex-minimal if every vertex
is ’edge-balanced’ in the following way: Let p denote a given vertex in
the image of G in Nn. Then φ(G) is vertex minimal at p if the unit
tangent vectors to the emanating edges from p in Yp add up to the zero
vector in TpN , i.e.

(2.2)

m(p)∑
i=1

γ̇i(0) = 0 .

Definition 2.6. We will say that the immersion φ(G) is minimal if it
is both vertex-minimal and edge-minimal.

An example of a minimal web in R3 which has already been alluded
to above is the ’skeleton’ of Scherk’s surface:

Example 2.7. Scherk’s surface is the doubly periodic minimal surface

in R3 defined by the Monge patch parametrization φ(u, v) = ln
(

cos(v)
cos(u)

)
.

The domain of definition in the (u, v)−plane is like the black squares
in an infinite checkerboard pattern. In Figure 3 we show one piece
of the surface which is defined over just one square - 7 such pieces fit
together smoothly, as shown in Figure 5. Every vertex in Scherk’s web
is the center of a star-space which is one of two types, a 2D joint as
in Figure 1 or a 3D joint as in Figure 2. The Scherk web construction
is also shown in Figures 4 and 5. Every vertex is clearly minimal and
since every edge is a straight line segment, we conclude: Scherk’s web
is minimal in R3.

Definition 2.8. We recall that a map ψ between metric spaces (X, dX)
and (Y, dY ) is called a rough isometry if there are constants α ≥ 1 and
β ≥ 0 such that for every (x, y) ∈ X ×X we have

(2.3) α−1dX(x, y)− β ≤ dY (ψ(x), ψ(y)) ≤ α dX(x, y) + β .

Scherk’s web is known to be roughly isometric to the doubly periodic
Scherk minimal surface in R3; See [MMT], [C2].
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Figure 2. A 3D joint element for Scherk’s web in R3.

Figure 3. A block of Scherk’s surface.

Definition 2.9. A given Riemannian manifold M has bounded geom-
etry if the injectivity radius of M is bounded positively away from 0
and if the Ricci curvatures of M are bounded away from −∞ .

In view of the examples considered above and in view of the flexi-
bility of the constructions involved, we conjecture that every minimal
submanifold in an ambient Riemannian manifold N may be approxi-
mated by a roughly isometric, Hausdorff close, minimal web in N . The
Hausdorff distance between two subsets A and B of N is defined to
be the infimum of all η for which A is contained in the metric η-tube
around B, and B is contained in the metric η-tube around A in N (see
e.g. section 7.3 in [BuBI]).

Conjecture 2.10. Let Pm denote the image of a minimally immersed
submanifold in a Riemannian manifold Nn. Suppose that Pm and Nn

have bounded geometries. Let ε be any given positive number. Then
there exists a metric graph (G, g) and a minimal isometric immersion
of (G, g) into Nn, such that (G, g) is roughly isometric to Pm and such
that the Hausdorff distance dH(G,Pm) between the image of G and Pm

in Nn is less than ε.

A very interesting recent development related to this conjecture is
found in the works of Bobenko, Hoffman, Pinkall, and Springborn, see
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Figure 4. A graph building block for Scherk’s web.

e.g. [BP, BHS]. For example they obtain O( 1
n
)−approximations to

minimal surfaces in R3 by constructing discrete Weierstrass represen-
tations from discrete holomorphic maps from 1

n
Z2.

2.1. Main results. Having constructed and analyzed the geometric
Laplacian ∆G on graphs and after having proved the fundamental
properties alluded to in the abstract, we show in Section 9 that the
first Dirichlet eigenvalue of certain subsets of minimal webs (called
R−webs, defined in Section 7) are bounded from below by π2/4R2

when the ambient space has an upper curvature bound; See Theorem
9.4.

A phenomenon, which in fact is related to this eigenvalue estimate is
the following: If you get lost in a minimal maze (with the architecture
of a minimal R−web in Rn) then you can get out fast by performing
a ∆G−driven Brownian motion in the maze. If the ambient space is
negatively curved, then you get out even faster unless the web archi-
tecture is that of a star web, whose inner geometry is clearly not able
to ’feel’ the curvature of the ambient space. These results are stated
and proved via the notion of mean exit time functions in Theorem 9.6
and in Theorem 8.4; See also Remark 8.5.

In Section 10 we obtain isoperimetric inequalities which show that
R−web subsets of minimal webs behave much the same way as totally
geodesic R−discs in space forms: In negatively curved ambient spaces
the boundary is large relative to the interior mass and in positively
curved ambient spaces the opposite holds true; See Theorem 10.4.

Finally, in Section 11 we show bounds on the capacity of annular
subsets of minimal metric webs – see Theorem 11.4 – and we relate
these bounds to the notions of transience and recurrence for complete
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Figure 5. Scherk’s minimal buildings - surface and web, respectively.

minimal webs in Hadamard–Cartan manifolds; See Corollary 11.7. In
terms of the maze analogy alluded to above, an infinite geometric maze
is transient if the Brownian motion in it is not certain to visit every
vertex as time goes by. In consequence there is a positive probability of
getting lost at infinity. We have shown in [MMT] that Scherk’s maze
is transient. In view of Theorem 8.4 this shows in particular, that the
mean exit time functions for R−webs are not able to tell if a given
infinite minimal web is transient or not.

3. The geometric Laplacian of
admissible (Kirchhoff) functions

In this section we consider the local analysis (to second order) of
functions defined on the geometrized graphs (resp. on their isomet-
ric immersions into Riemannian manifolds). In this paper we mainly
consider finite precompact subgraphs of the geometrized graphs, in par-
ticular the so-called R-webs which will be defined shortly in section 7
below. In the following analysis we therefore assume that G is finite.
The intrinsic analysis of functions on the open edges of a finite graph
is standard and as elementary as can be. Hence we must pay special
attention to the notion of second order derivative, i.e. the Laplacian,
at the vertices of the finite graphs.

We consider the set C0(G) of continuous functions on G. Then

L2(G) =
⊕#E

j=1 L2(ej), and with fj = f|ej
we set
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‖f‖2
G =

∑
j

‖fj‖2
ej

=
∑

j

∫

ej

|fj(t)|2 dt .

We let H1(G) denote the Sobolev space obtained as the completion
of the set

{ f ∈ C0(G) | fj ∈ C1(ej)} ,

where the closure is with respect to the norm

‖f‖2
1,G =

∑
j

(
‖fj‖2

ej
+ ‖f ′j‖2

ej

)

For all f ∈ H1(G) we associate a quadratic form to G:

F : f → ‖f ′‖2
G =

∑
j

‖f ′j‖2
ej

.

The Laplacian of G is then the unique self-adjoint and non-negative
operator ∆G associated with the closed form F , see e.g. [Cat, Lions,
EP, D, RS].

Lemma 3.1 (See e.g. [Cat], Lemma 1). The domain DG of ∆G consists
of all functions f ∈ C1(G) which are twice weakly differentiable on each
edge and which satisfies the Kirchhoff condition at each vertex. The
functions in DG will be called the admissible functions on G.

We now explain this latter Kirchhoff condition in some detail be-
cause it mimics precisely the geometric condition of vertex minimality
previously introduces in 2.5. For each edge e = γ([0, L(e)]) in the
parametrized star space Yp from a point p we have for every f ∈ DG:

(3.1)





lims→0 f(γ(s)) = f(γ(0)) = f(p) ,

lims→0 f ′(γ(s)) = f ′(γ(0)) and

lims→0 f ′′(γ(s)) = f ′′(γ(0)) ,

where we use shorthand notation f ′(γ(s0)) for the first derivative of
the function f(γ(s)) with respect to s at s = s0.

Every function ψ in DG satisfies

Definition 3.2 (The Kirchhoff condition).

(3.2)

m(p)∑
i=1

ψ′(γi(0)) = 0 at every vertex p in V , γi ∈ Yp .

Remark 3.3. The Kirchhoff condition is a first order ’balancing’ con-
dition for the functions at each vertex of the graph G. As we shall see
in the next section, this property is naturally inherited (by functions
which are restrictions to G from Nn) when G is vertex-minimal in Nn.
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In the domain DG the Laplacian is related to the form F as follows:

〈∆Gf, f 〉L2(G) = ‖f ′‖2
G .

The name ’Laplacian’ is further motivated by:

Corollary 3.4. Let f ∈ DG . Along the interior of any given edge
e = γ([ 0, L(e) ]) the Laplacian of f is the usual second order deriv-
ative with respect to arclength (independent of the orientation of the
parametrization of the edge):

(3.3) ∆G(f)|γ(s)
=

d2

ds2
f(γ(s)) = f ′′(γ(s)) for s ∈ ] 0, L(e) [ .

At any given vertex p in G we have - using the parametrized star
space Yp:

(3.4) ∆G(f)|p = lim
s→0


 2

s2


 1

m(p)

m(p)∑
i=1

( f(γi(s))− f(γi(0)) )





 .

Remark 3.5. The square bracket in this definition is (when L(e) =
1 for all the edges and s = 1) the discrete combinatorial Laplacian
which was studied and applied by Dodziuk and co-workers in [Dod2],
[DodKa], [DodKe]. This definition may be considered a natural limit
of the combinatorial Laplacian obtained as follows: Subdivide every
edge by inserting w = L(e)/s new auxiliary vertices equidistributed
along each edge e, scale the graph by a homothety with factor 1/s,
so that the new graph has all its edge-lengths equal to 1, calculate
the usual discrete combinatorial Laplacian of f , and finally multiply
the result by 2/s2. It should come as no surprise, therefore, that this
definition of the Laplacian satisfies the important maximum principle.
For completeness we give the proof below, cf. Proposition 3.6.

Proposition 3.6 (Maximum Principle for ∆G). Let ψ ∈ DG denote
an admissible function which is superharmonic on Ω ⊂ G so that
∆Gψ(x) ≤ 0 for all x ∈ Ω . Then ψ has no local interior minimum
in Ω: If there is an interior point p ∈ Ω such that ψ(p) ≤ ψ(x) for
all x in a neighbourhood ω(p) of p in Ω, then ψ(x) = ψ(p) for all
x ∈ ω(p) . In a similar way subharmonicity rules out the existence of
interior maxima.

Proof. At any given interior edge point w ∈ e ∈ E this follows from
the usual maximum principle (for the double derivative with respect
to arclength along the edge). Suppose then that p is a vertex, and
that ψ(p) ≤ ψ(x) for all x ∈ ω(p) ⊂ Yp. Along every arclength
parametrized edge γi(s) in Yp we therefore have

(3.5) ψ′(γi(0)) ≥ 0 .
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From condition (3.2) we conclude, that

(3.6) ψ′(γi(0)) = 0 .

Hence along every edge (via superharmonicity of ψ there) in ω(p)

(3.7) ψ′(γi(s)) =

∫ s

0

ψ′′(γi(t)) dt ≤ 0 .

This contradicts the assumption ψ(x) ≥ ψ(p) for all x ∈ ω(p)
unless ψ(x) = ψ(p) for all x ∈ ω(p) , which is what we wanted to
conclude. ¤

In the last section of the present paper, which is concerned with the
capacities of minimal webs, we shall also need the following version
of the maximum principle, which is proved along the same lines of
reasoning as above.

Proposition 3.7 (Boundary point version). Let ψ ∈ DG denote an
admissible function which is subharmonic on a precompact open domain
Ω ⊂ G , so that ∆Gψ(x) ≥ 0 for all x ∈ Ω . Suppose there exists a
point x0 ∈ ∂Ω at which

(3.8) ψ′(γi(0)) = 0 for all γi ⊂ Yx0 ∩ Ω .

Then ψ(x) = ψ(x0) for all x ∈ Ω .

4. Minimal immersions

Proposition 4.1. Let f ∈ DG. For each vertex p there exists a min-
imal isometric immersion of the p−centered star space Yp into a Eu-
clidean space Rn (of sufficiently high dimension) and a smooth function
U : Rn → R such that f is the restriction of U to Yp, i.e. f = U|Yp

.

Proof. This follows from solving the relevant linear system of equations
for the cofficients in the Taylor series expansion of U at the point p. ¤
Remark 4.2. Proposition 4.1 raises the interesting question of obtain-
ing conditions under which a given complete metric graph G admits
an isometric minimal immersion (or embedding) into some Euclidean
space or, say, into a given space form of constant curvature. We shall
not pursue this question further here. If such an immersion exists,
then it is probably not unique in general - it may be quite flexible
in the same way as exemplified by the families of associated pairwise
isometric minimal surfaces in R3. Concerning graphs on surfaces, the
combinatorial (non-metric) embedding problem is thoroughly covered
in [MT].

Proposition 4.3. Suppose G is a vertex minimal isometric immersion
in Nn and let φ denote a smooth function on Nn. Then the restriction
f of φ to G is an admissible function on G,

(4.1) f = φ|G ∈ DG .
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Proof. The function φ is clearly smooth on the (open) edges of G. At
any given vertex p we have, using again the parametrized star space Yp

(4.2) φ′(γi(0)) = 〈∇Nf, γ̇i(0) 〉N ,

so that by vertex-minimality at p

(4.3)

m(p)∑
i=1

φ′(γi(0)) = 〈∇Nf,

m(p)∑
i=1

γ̇i(0) 〉N

= 〈∇Nf, 0 〉N = 0 .

Lemma 3.1 then applies and gives the result.
¤

5. Divergence theorems

A vector field X on G is a (smooth) choice of tangent vector at
each point of every edge. A vector field is thus m(p)−valued at any
given vertex p. Along the 1-dimensional interior of every edge ei in the
p−centered star space Yp a given vector field X is integrable and may
thus be considered as the gradient of a smooth function fi on ei in Yp :

(5.1) X|ei
= ∇ei(fi) = f ′i(γi(s)) · γ̇i(s) for some fi ∈ DG .

Note that fi(γi(s)) is defined only modulo arbitrary constants of inte-
gration and that the sign of f ′i(γi(s)) depends on the parametrization of
γi in Yp: f ′i(γi(s)) = 〈X, γ̇i(s) 〉G . The inner product 〈 . , . 〉G stems
from the geometrization of G. We will say that X is admissible in G if
for every vertex p we have

(5.2)

m(p)∑
i=1

f ′i(γi(0)) = 0 ,

where fi(γi(s)) is any (local integral) function representing X on the
star space Yp.

Conversely, suppose f is an admissible smooth function on G. Then
the gradient of f is the vector field (m(p)−valued at the vertex p)

(5.3) ∇G(f) = f ′(γ(s)) · γ̇(s) along every edge e = γ([0, L(e)]) .

The gradient vector field is clearly admissible in G because of equation
(3.2).

Definition 5.1. Let X be a smooth admissible vector field on G as
defined above with the local integrals fi on the edges of Yp. By suitable
choice of integration constants we may assume without lack of general-
ity that the values of fi agree at p, and that f is a single-valued smooth
function on Yp which agrees with fi along the edges emanating from p.
Then we define

(5.4) div(X) = div(∇Gf) = ∆G(f) .
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Remark 5.2. This ’definition-by-local-construction’ only depends on
the vector field X and not on the local representing integrals f nor fi.

With this definition the familiar divergence theorems hold true. In-
deed, let us consider a domain Ω in G, i.e. Ω is a precompact, open,
connected subset of G with boundary denoted by ∂Ω, and let X denote
a smooth admissible vector field on G.

Theorem 5.3 (Divergence theorem).

(5.5)

∫

Ω

div(X) dV =
∑

∂Ω

〈X , ν〉G .

Here dV denotes the measure on the graph induced from the geometriza-
tion of G. The vectors ν are the outward (from Ω) pointing unit tan-
gent vectors of the closed segments of edges in Ω at the respective points
of intersection with ∂Ω. If ∂Ω contains a vertex from G, then ν and
X may be multi-valued at this point in ∂Ω , in which case the sum has a
contribution from each of the outward pointing unit tangent directions.

Proof. The theorem follows from the ’one-dimensional’ divergence the-
orem applied to the union of open edges of G in Ω together with the
following observation: The contribution to the left hand side of equa-
tion (5.5) from the inner vertices of G in Ω vanishes because of the
balancing condition (3.2) at the ’center’ of every star space.

¤
The corresponding Green’s theorems may now be stated as follows:

Theorem 5.4. Let h, f ∈ DG denote smooth admissible functions on
G . Then

(5.6)

∫

Ω

(
h ∆Gf + 〈∇Gh , ∇Gf〉G

)
dV =

∑

∂Ω

h · 〈∇Gf , ν〉G and

(5.7)

∫

Ω

(
h ∆Gf − f ∆Gh

)
dV =

∑

∂Ω

(
h · 〈∇Gf , ν〉G − f · 〈∇Gh , ν〉G

)
.

6. The first Dirichlet eigenvalue

Much of the well known analysis of functions on domains in man-
ifolds can be extended to domains of geometrized graphs G as long
as we restrict attention to admissible functions. In particular we can
study the eigenfunctions of ∆G in DG. The Dirichlet spectrum of ∆G is
purely discrete on precompact sub-webs of G, see e.g. [Cat] and [FT].
The so-called R−webs, which are defined in the following section 7,
will be our main examples of such sub-webs of G.
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For the Laplacian defined in Section 3 we consider the smallest eigen-
value λ1(Ω) in the Dirichlet spectrum of any given precompact domain
Ω in G, i.e. λ1 is the smallest real number for which the following
problem has a non-zero solution u ∈ DΩ:

(6.1)

{
∆Gu(x) + λ1 u(x) = 0 at all points x ∈ Ω

u(x) = 0 at all points x ∈ ∂Ω .

Proposition 6.1. The first eigenfunction is nowhere zero in the inte-
rior of the domain and has multiplicity 1.

Proof. This follows almost verbatim from the proof of the correspond-
ing statement for domains in Riemannian manifolds together with the
maximum principle, see e.g. [C2]. ¤

A beautiful observation due to Barta concerning the estimation of
first eigenvalues of precompact domains on manifolds can therefore be
extended to precompact domains of geometrized graphs as follows (cf.
also [OU], [Fr]).

Theorem A ([B]). Let Ω denote a given precompact domain in G and
let f ∈ DΩ be any admisssible function on Ω, which satisfies f|Ω > 0
and f|∂Ω

= 0 . Then the first eigenvalue λ1 of the Dirichlet problem
on Ω is bounded as follows

(6.2) inf
Ω

(
∆Gf

f

)
≤ −λ1 ≤ sup

Ω

(
∆Gf

f

)
.

If [ = ] occurs in any one of the two inequalities in (6.2), then f is an
eigenfunction for Ω corresponding to the eigenvalue λ1.

Proof. Let φ be an eigenfunction for Ω corresponding to λ1. Then we
may assume without lack of generality that φ|Ω > 0 and φ|∂Ω

= 0 .
If we let h denote the difference h = φ− f , then

(6.3)

−λ1 =
∆Gφ

φ
=

∆Gf

f
+

f∆Gh− h∆Gf

f(f + h)

= inf
Ω

(
∆Gf

f

)
+ sup

Ω

(
f∆Gh− h∆Gf

f(f + h)

)

= sup
Ω

(
∆Gf

f

)
+ inf

Ω

(
f∆Gh− h∆Gf

f(f + h)

)
.

Here the supremum, supΩ

(
f∆Gh− h∆Gf

f(f + h)

)
is necessarily positive

since

(6.4) f(f + h)|Ω > 0 ,

and since by Green’s second formula (5.7) in Theorem 5.4 we have

(6.5)

∫

Ω

(
f∆Gh− h∆Gf

)
dV = 0 .
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Figure 6. Any finite system of intersecting straight
lines in the plane (with a vertex at each intersection
point) is a minimal web in R2. Portions of regular hexag-
onal ’fillings’ also generate minimal webs.

For the same reason, the infimum, infΩ

(
f∆Gh− h∆Gf

f(f + h)

)
is neces-

sarily negative. This gives the first part of the theorem. If equal-
ity occurs, then

(
f∆Gh− h∆Gf

)
vanishes identically on Ω , so that

−λ1(Ω) =
∆Gf

f
, which gives the last part of the statement. ¤

Along the same lines of reasoning we can establish Rayleigh’s The-
orem, the Max-Min theorem and the Domain Monotonicity (of eigen-
functions) almost verbatim from the classical analysis, see e.g [C1],
[C2].

7. Extrinsic distance analysis on minimal webs

We let G be a complete immersed minimal web in an ambient Rie-
mannian manifold (Nn, h) with bounded sectional curvatures ( i.e.
KN ≤ b or KN ≥ b respectively, for some b). Let p denote a point in
G - not necessarily a vertex point - and let BR(p) denote the geodesic
distance ball of radius R and center p in (Nn, h) :

(7.1) BR(p) = {x ∈ N | distN(p, x) ≤ R} .

The distance from p will be denoted by r so that r(x) = distN(p, x)
for all x ∈ N . In particular G inherits the function r|G , which will also
be denoted by r.

Since we shall need differentiability of certain distance dependent
functions F ◦ r in our analysis below, we will assume that the balls
under consideration are always diffeomorphic to a standard Euclidean
ball via the exponential map in Nn from the center point. This is
guaranteed by bounding the radius as follows:

(7.2) R <
π

2
√

k
and R < iN(p) , where

(1) k = supx∈BR(p){KN(σ) |σ is a two-plane in TxBR(p)} ,
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Figure 7. Examples of hexagonal minimal R−webs in R2.

(2) KN(σ) denotes the sectional curvature in Nn of the 2−plane σ,
(3) π

2
√

k
= ∞ if k ≤ 0 , and

(4) iN(p) = the injectivity radius of expp in N .

The intersection of the interior of a regular ball BR(p) with G will be
called an extrinsic minimal R−web of the web G, and will be denoted
by

(7.3) WR(p) = BR(p) ∩G .

The geodesic balls BR(p) are strongly convex as follows directly from
[Sa, proof of Theorem 5.3]. Thus any two points in BR(p) can be joined
by a unique minimal geodesic which is completely contained in the ball
BR(p). Therefore, when the boundary ∂BR(p) meets a (geodesic) edge
of WR(p), then the prolongation of this geodesic intersects the bound-
ary transversally.

Without lack of generality we may and do add vertices to WR(p) at
these intersections with the boundary of the ambient ball BR(p), so
that WR becomes the image of a web in its own right with a well de-
fined vertex set boundary ∂WR(p). We refer to Figures 6, 7, and 8 for
examples indicating how to construct a variety of R−webs in the plane.

We then obtain the (2.nd order) comparison theory for the F−mo-
dified distance functions on extrinsic R−webs of minimal webs by
first specializing the corresponding theory for minimal submanifolds
(as developed in e.g. [JK], [P], [MP1]—[MP3], and [MM]) to the 1-
dimensional case of geodesics and then secondly by generalizing this to
minimal webs as follows.

Proposition 7.1. Let G ⊂ Nn denote a minimal web in Nn (resp.
the image of an isometric minimal immersion of G into Nn). Let F
denote a smooth real function on R, such that the function F ◦ r is an
admissible function on G within an extrinsic web WR of G. Suppose
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further that

(7.4)

{
KN ≤ b for some b ∈ R , and that

d
dr

F (r) ≥ 0 for all r ∈ [0, R] ,

and let ZF,b(r) denote the function

(7.5) ZF,b(r) = F ′′(r)− F ′(r)hb(r) ,

where the function hb(r) denotes the mean curvature of the geodesic
sphere ∂Bb,n

r of radius r in the space form Kn(b) of constant curvature
b. Specifically

(7.6) hb(r) =





√
b cot(

√
b r), if b > 0

1/r if b = 0√−b coth(
√−b r) if b < 0 .

Along the interior of every arclength parametrized geodesic edge γ(s)
of the web WR we then have for all r = r(γ(s)):

(7.7) ∆G(F ◦ r)|γ(s)
≥ ZF,b(r) · 〈∇Nr, γ̇(s) 〉2N + F ′(r)hb(r) .

At a given vertex p in WR with emanating edges γi(s) (in the corre-
sponding p−centered star space Yp) we get for r = r(p):

(7.8)
∆G(F ◦ r)|p ≥ ZF,b(r) ·


 1

m(p)

m(p)∑
i=1

〈∇Nr, γ̇i(0) 〉2N




+ F ′(r)hb(r) .

Proof. Along the interior of each geodesic edge in G this follows directly
from the result for minimal submanifolds (in casu geodesics) in Nn on
the basis of standard index comparison theory for Jacobi fields along
the distance realizing minimal geodesics from p, see e.g. [MM]. The
Laplace inequality at vertices is then obtained by averaging the Laplace
inequalities (7.7) over the directions in Yq emanating from q. ¤

In particular we note the following consequences

Corollary 7.2. If precisely one of the inequalities in the asumptions
(7.4) is reversed, then the inequalities (7.7) and (7.8) are likewise re-
versed.

Corollary 7.3. If at least one of the inequalities in the assumptions
(7.4) is actually an equality (i.e. N = Kn(b) or F (t) = constant ),
then the inequalities (7.7) and (7.8) are equalities as well.
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Figure 8. A foam-like wedge portion of a hexagonal
web in R2.

8. Minimal R−webs in space forms

If we consider functions F satisfying ZF,b(r) = 0 for all r ∈ [0, R],
and if we furthermore assume that N = Kn(b), then we get the fol-
lowing results for minimal webs in space forms.

Proposition 8.1. Let G ⊂ Kn(b) denote a minimal web in Kn(b). In
any extrinsic web WR of G the following identities hold for all r ∈ [0, R]:

(8.1) ∆G cos(
√

b r) = −b cos(
√

b r) for b > 0 ,

(8.2) ∆G

(
1

2
r2

)
= 1 for b = 0 and

(8.3) ∆G cosh(
√
−b r) = −b cosh(

√
−b r) for b < 0 .

Proof. In all 3 cases the function ZF,b(r) vanishes identically, so the
statements follow from Corollary 7.3 and Proposition 7.1.

¤
8.1. An exact first Dirichlet eigenvalue. With reference to The-
orem A in section 6 we thus get from equation (8.1) the exact first
Dirichlet eigenvalue for minimal webs in any hemisphere:

Corollary 8.2. Let G ⊂ Kn(b) denote a minimal web in the sphere of
constant positive sectional curvature b. Then the first Dirichlet eigen-

value of any extrinsic minimal
(

π
2
√

b

)
−web of G is

(8.4) λ1(W π

2
√

b
) = b .
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8.2. An exact mean exit time function. Furthermore, referring to
Remark 3.5 we may consider the Brownian motion on a given min-
imal web as a limit process of the random walk on the subdivided
and scaled combinatorial web. The discrete combinatorial Laplacian
(the difference operator defined by Dodziuk in [Dod2]) as well as the
smooth Laplacian (on Riemannian manifolds) both give rise to a the-
ory of diffusion on the corresponding geometric background - via the
heat equation and its kernel solutions, see e.g. [Dy], [CLY], [M3, MM].
Accordingly we define the mean exit time functions ER for the Brown-
ian motion (’driven’ by the operator ∆G) on minimal webs G - in casu
extrinsic minimal webs WR in G - as follows:

Definition 8.3. Let WR denote an extrinsic R−web of a minimal web
G in an ambient Riemannian manifold Nn. Then the mean exit time
function ER(x) for the Brownian motion on WR from the point x is
the unique continuous solution in DWR

to the following boundary value
Poisson problem on WR

(8.5)

{
∆GER(x) = −1 at all x ∈ WR , and

ER(x) = 0 at all x ∈ ∂WR .

Using Proposition 8.1, equation (8.2), we then obtain the following
result:

Theorem 8.4. Let WR(p) denote an extrinsic p−centered web of a
minimal web G in Rn. Then the mean exit time from any given starting
point x ∈ WR is

(8.6) ER(x) =
1

2

(
R2 − r2(x)

)
,

where r(x) as usual denotes the Euclidean distance in Rn of x from p .

Remark 8.5. A somewhat surprising interpretation of this result is
the following. Consider a maze in Rn constructed in such a way that
the underlying graph is an extrinsic R−web of a minimal web. The
theorem roughly says that if you get lost in the maze at some place with
Euclidean distance r from p then by performing a Brownian motion in
the maze, then (in the mean) you will get out of the maze as quickly
as if you had performed a Brownian motion on a straight line segment
of length 2R starting at distance r from the center of the segment.

9. Minimal webs in nonconstant curvature

In ambient spaces with varying (but bounded) curvature we expect
the equalities of the above space form results to be replaced by suitable
inequalities. Since ∇Nr and γ̇i(s) are both unit vectors, we certainly
have the following basic inequality which will be instrumental for our
applications:



20 STEEN MARKVORSEN

p

Figure 9. An extrinsic minimal star web W ∗
2 (p) of ra-

dius 2 in the Euclidean plane.

(9.1) 〈∇Nr, γ̇i(s) 〉2N ≤ 1 .

We note that if equality holds in 9.1 for all edges γi in a given web
WR(p), then ∇Nr = γ̇i(s) and therefore the web is a star web of radius
R consisting of m(p) geodesic line graphs each of length R emanating
from p, see Figure 9.

From these observations together with Proposition 7.1 (equations
(7.7) and (7.8)) we then get the following comparison inequalities and
corresponding rigidity statements:

Proposition 9.1. We consider a minimal web G in Nn, and let WR(p)
denote an extrinsic minimal web of G. (In the following we let KN ≤ b
be the shorthand notation for the assumption KN(σ) ≤ b for every
2−plane σ in Nn. Further we let, for example, F ′(r) ≥ 0 represent
that assumption for all r ∈ [0, R] and similarly for ZF,b(r) ≤ 0.) Then
the following inequalities hold true at every point x ∈ WR(p):

(9.2)




KN ≤ b

F ′(r) ≥ 0

ZF,b(r) ≤ 0


 =⇒ ∆G(F ◦ r)|x ≥ F ′′(r)|x ,

(9.3)




KN ≤ b

F ′(r) ≤ 0

ZF,b(r) ≥ 0


 =⇒ ∆G(F ◦ r)|x ≤ F ′′(r)|x ,

(9.4)




KN ≥ b

F ′(r) ≥ 0

ZF,b(r) ≥ 0


 =⇒ ∆G(F ◦ r)|x ≤ F ′′(r)|x ,
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(9.5)




KN ≥ b

F ′(r) ≤ 0

ZF,b(r) ≤ 0


 =⇒ ∆G(F ◦ r)|x ≥ F ′′(r)|x .

If ZF,b(r) 6= 0 almost everywhere in [0, R] and if ∆G(F ◦ r)|x =
F ′′(r)|x almost everywhere in [0, R], then WR(p) is a star web of radius
R from p.

For the applications below we need to study those modified distance
functions for which the right hand sides of the Laplace inequalities in
(9.2)–(9.5) are constants. Specifically we have the following immediate
consequences of Proposition 9.1:

Corollary 9.2. Let F denote a function with F ′(r) = c − r for some
constant c ∈ R (so that F ′′(r) = −1). Then we get the following
Laplace inequalities for minimal extrinsic webs WR in N :

(9.6)





If c ≥ R, then ∆G(F ◦ r) ≥ −1.

If KN ≤ b ≤ 0 and c ≤ 0, then ∆G(F ◦ r) ≤ −1.

If KN ≥ b ≥ 0 and c = 0, then ∆G(F ◦ r) ≥ −1.

If (c 6= 0 or b 6= 0) and if ∆G(F ◦ r) = −1 almost everywhere in [0, R],
then WR is a star web of radius R from p.

Proof. Since the sign discussion for F ′(r) is quite obvious, we only
have to consider the sign of ZF,b(r) = −1 − (c − r) hb(r). We get for
all r ∈ [ 0, R]: If c ≤ 0 and b ≤ 0, then ZF,b(r) ≥ 0; If c ≥ 0 and b ≥ 0,
then ZF,b(r) ≤ 0; If c ≥ R, then ZF,b(r) ≤ 0 for all b. The Corollary
then follows directly from Proposition 9.1. In all cases ZF,b(r) 6= 0
unless b = 0, so that the rigidity conclusion holds true as well.

¤
Corollary 9.3. Let F denote a function with F ′(r) = c for some
constant c ∈ R (so that F ′′(r) = 0). Then we get the following Laplace
inequalities for minimal extrinsic webs WR in N :

(9.7)

{
If c ≥ 0, then ∆G(F ◦ r) ≥ 0.

If c ≤ 0, then ∆G(F ◦ r) ≤ 0.

If c 6= 0 and if ∆G(F ◦ r) = 0 almost everywhere in ]0, R], then WR is
a star web of radius R from p.

Proof. The sign discussions for F ′(r) and ZF,b(r) = −c hb(r), respec-
tively, is now obvious. We get for all r ∈ ] 0, R]: If c ≤ 0, then
ZF,b(r) ≥ 0; If c ≥ 0, then ZF,b(r) ≤ 0; The Corollary again follows
from Proposition 9.1. For c 6= 0 we get ZF,b(r) 6= 0, so that the rigidity
conclusion again holds true.

¤
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9.1. Eigenvalue inequalities.

Theorem 9.4. Let G ⊂ Nn denote a minimal web in an ambient
Riemannian manifold Nn. Then the first Dirichlet eigenvalue of any
extrinsic minimal R−web WR of G satisfies

(9.8) λ1(WR) ≥
( π

2 R

)2

,

and equality is attained if and only if WR is a star web.

Proof. We use Barta’s Theorem A (from section 6) on the test function
F (r) = cos( π

2R
r). Let b denote the supremum

b = sup
x∈BR(p)

{KN(σ) |σ is a two-plane in TxBR(p)} .

In view of Proposition 9.1 equation (9.3) we only need to show, that
ZF,b(r) > 0 for all r ∈ ] 0, R]. But this is a consequence of the following
equivalent inequalities:

(9.9)

ZF,b(r) > 0

−F ′(r) hb(r) > F ′′(r)

hb(r)
( π

2R

)
sin

( π

2R
r
)

>
( π

2 R

)2

cos
( π

2R
r
)

hb(r) >
( π

2R

)
cot

( π

2R
r
)

hb(r) > h π2

4R2
(r) .

Indeed, the last inequality follows from the fact that the mean curvature
function hb(r) is a strictly decreasing function of b for every fixed r ≤
R together with the general assumption that R < π

2
√

b
, so that b <

π2

4R2 . We conclude that

(9.10) ∆GF (r) ≤ F ′′(r) = −
( π

2 R

)2

F (r) .

The result then follows from Barta’s second inequality in (6.2). Since
ZF,b(r) > 0, the equality statement follows from the rigidity conclusion
of Proposition 9.1. ¤

Remark 9.5. In view of the inequality
(

π
2 R

)2
> b , we get λ1(WR) >

b . This is, of course, only interesting when b > 0, in which case (9.8)
should be compared with Corollary 8.2. It is also informative to com-
pare the R−web-eigenvalue in (9.8) with the first Dirichlet eigenvalue
of a geodesic ball of radius R in Rm:

(9.11) λ1(B
0,m
R ) =

(
jk

R

)2

>
( π

2 R

)2

,

where jk is the smallest positive zero of the Bessel function Jk of order
k = 1

2
(m− 2). (Here j0 ' 2.405 and jk ∼ k ∼ 1

2
m for m →∞.)
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9.2. Mean exit time inequalities. The mean exit time function F
from the extrinsic R−web of a minimal web in Rn satisfies ZF,0 = 0
and F ′(r) ≤ 0 for all r ∈ [ 0, R ], see Definition 8.3 in combination
with the R−web analysis above. In consequence we have the following
inequalities.

Theorem 9.6. Let WR(p) denote an extrinsic minimal web of a mini-
mal web G in a Riemannian manifold Nn. The sectional curvatures of
the ambient space are denoted by KN . Then the mean exit time ER(x)
from the point x in WR satisfies the inequalities:

(9.12)

{
ER(x) ≥ 1

2
(R2 − r2(x)) if KN(σ) ≥ 0 for all σ ,

ER(x) ≤ 1
2
(R2 − r2(x)) if KN(σ) ≤ 0 for all σ .

If the sectional curvatures KN(σ) are bounded strictly away from 0 in
either of the two cases in (9.12), then the corresponding mean exit time
function ER(x) is also bounded strictly (with strict inequalities) by the
comparison function 1

2
(R2 − r2(x)) , unless the web WR(p) is a star

web of radius R.

In case of a positively curved ambient space we shall also need – in
Section 11 – an upper bound on the mean exit time. A rough estimate
is the following:

Theorem 9.7 (See e.g. [M2], [MP3]). Suppose that KN ≤ b for some
b > 0, then

(9.13) ER(x) ≤ µb
R(r(x)) for all x ∈ WR ,

where

(9.14) µb
R(r) =

cos(
√

b r)

b cos(
√

bR)
.

Proofs of Theorems 9.6 and 9.7. When inserting the comparison func-
tions f(r) = 1

2
(R2 − r2(x)) and f(r) = µb

R(r), respectively, into
Proposition 9.1, equation (9.3), and using f ′(r) ≤ 0 , Zf,b(r) = f ′′(r)−
f ′(r)hb(r) = 0 for all r, we get in both cases (for KN ≤ b):

(9.15) ∆P f(r(x)) ≤ f ′′(r)|x ≤ −1 = ∆P ER(x) ,

so that the difference function ER(x)− f(r(x)) is subharmonic in WR.
Furthermore, the difference is certainly non-positive on the boundary
∂WR. The Maximum Principle then implies that the difference function
is non-positive in all of WR, and this proves the two upper bounds for
ER in (9.12) and in (9.13), respectively.

To get the lower bound on ER in (9.12) we proceed with the com-
parison function f(r) = 1

2
(R2 − r2(x)) and apply Proposition 9.1,

equation (9.5), or Corollary 9.2, from which it follows that

(9.16) ∆P f(r(x)) ≥ f ′′(r)|x = −1 = ∆P ER(x) .
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The difference function ER(x)− f(r(x)) is now superharmonic in WR.
Furthermore, the difference is precisely 0 on the boundary ∂WR. The
Maximum Principle then implies that the difference function is non-
negative in all of WR, and this proves the lower bound for ER.

If the sectional curvature bounds in (9.12) are given by strict in-
equalities, then in the negatively curved case we have by compactness
of BR(p) that KN(σ) ≤ b for some negative b. Using this value of
b and still f(r) = 1

2
(R2 − r2(x)) in Proposition 9.1, equation (9.3),

we now obtain Zf,b(r) = f ′′(r) − f ′(r)hb(r) > 0 for all r, (because
x coth(x) > 1 for all x > 0) so that (according to the rigidity state-
ment in Proposition 9.1) the identity ER(x) = f(r(x)) is only possible
if WR(p) is a p−centered star web. If the sectional curvatures are
bounded positively away from 0 the same conclusion follows almost
verbatim from the corresponding elementary inequality x cot(x) < 1
for all x ∈ ] 0 , π

2
[. ¤

10. Isoperimetric inequalities

From the divergence theorem together with the Laplace inequalities
of section 9 we obtain useful isoperimetric information for extrinsic
minimal webs WR of G in Nn such as inequalities relating the measure
of the boundary (the number of incoming edges to ∂WR) to the measure
of the web itself (the total length or mass of the edges in WR). We refer
to [P], [MP1], and [MP2] for the corresponding statements for minimal
submanifolds in Nn.

To facilitate the discussion and to ease the notation, we first define
the radial transversality of the boundary ∂WR(p) as ’seen’ from the
center p.

Definition 10.1. For a given extrinsic minimal web WR(p) of a min-
imal web G in Nn, the radial transversality of the boundary ∂WR(p) is
defined by

(10.1) T(∂WR) =
∑

∂WR

〈∇Nr, ν〉N =
∑

∂WR

〈∇Gr, ν〉G ,

where the sum is to be taken over every out-going unit direction ν
from WR at the boundary ∂WR - as in the statement of the divergence
Theorem 5.3.

Definition 10.2. Two extrinsic minimal webs are concentric if they
share the same center point.

The divergence theorem then gives direct estimates of the total lengths
of minimal extrinsic R−webs in terms of the transversalities as follows.

Proposition 10.3. Let WR(p) and Wρ(p), R > ρ , denote two concen-
tric extrinsic minimal webs, with radius R and ρ respectively. Then the
total lengths L(WR) and L(Wρ) of the edges in WR and Wρ, respectively,
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satisfy the following inequalities (without any further assumptions on
the sectional curvatures of the ambient space)

(10.2) L(WR)− L(Wρ) ≥ (R− ρ) · T(∂Wρ) .

In particular we get

(10.3) L(WR) ≥ R ·m(p) ≥ 2 R .

If equality occurs in (10.2) or in the first inequality of (10.3) then WR

is a p−centered star space of radius R.

Proof. We choose c = R in Corollary 9.2 and let F ′(r) = R − r. Then
∇G(F ◦ r) ≥ −1 for all r ∈ [ 0, R]. Using the divergence theorem we
therefore get:

(10.4)

L(WR −Wρ) =

∫

WR−Wρ

1 dV

≥
∫

WR−Wρ

−∆G(F ◦ r) dV

= −
∫

WR−Wρ

div(∇GF ◦ r) dV

= −F ′(R)
∑

∂WR

〈∇Gr, ν(∂WR) 〉N

+ F ′(ρ)
∑

∂Wρ

〈∇Gr, ν(∂Wρ) 〉N

= 0 + (R− ρ) · T(∂Wρ(p)) ,

where ν(∂Wρ) denotes the outward pointing unit directions from Wρ

at ∂Wρ and similarly, ν(∂WR) denotes the outward pointing unit direc-
tions from WR. Since c 6= 0 in this setting, equality in equation (10.4)
implies rigidity via Corollary 9.2.

¤
If we do bound the sectional curvatures of the ambient space, then

we have the following dual inequalities:

Theorem 10.4. Let WR(p) and Wρ(p), R > ρ , denote two concentric
extrinsic minimal webs, with radius R and ρ respectively, in an ambient
space Nn with sectional curvatures KN . Then we have
(10.5){

L(WR)− L(Wρ) ≤ R · T(∂WR)− ρ · T(∂Wρ) if KN ≤ b ≤ 0 ,

L(WR)− L(Wρ) ≥ R · T(∂WR)− ρ · T(∂Wρ) if KN ≥ b ≥ 0 .

In particular we get

(10.6)

{
L(WR) ≤ R · T(∂WR) ≤ R ·#(∂WR) if KN ≤ b ≤ 0 ,

L(WR) ≥ R · T(∂WR) if KN ≥ b ≥ 0 ,
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where #(∂WR) denotes the number of outgoing directions ν (counted
with multiplicities) from WR along the boundary ∂WR - this is the same
as the number of edges in WR which have a point in common with ∂WR.
If equality occurs in one of the inequalities in (10.5) and if b 6= 0, then
WR is a p−centered star web.

Proof. We now use c = 0 and F ′(r) = −r. According to Corollary
9.2 we have (but here only for b ≤ 0) that ∇G(F ◦ r) ≤ −1 for all
r ∈ [ 0, R]. Again the divergence theorem applies, and this time we get

(10.7)

L(WR −Wρ) =

∫

WR−Wρ

1 dV

≤
∫

WR−Wρ

−∆G(F ◦ r) dV

= −
∫

WR−Wρ

div(∇GF ◦ r) dV

= −F ′(R)
∑

∂WR

〈∇Gr, ν(∂WR) 〉N

+ F ′(ρ)
∑

∂Wρ

〈∇Gr, ν(∂Wρ) 〉N

= R · T(∂WR)− ρ · T(∂Wρ) ,

which shows the first inequality of (10.5). The other follows similarly.
For b 6= 0 the rigidity is likewise again a consequence of Corollary 9.2.

¤

Corollary 10.5. Let WR(p) denote a p−centered extrinsic minimal
R−web in a flat ambient space N . Then

(10.8) R ·#(∂WR) ≥ L(WR) = R · T(∂WR) ≥ R ·m(p) ≥ 2 R .

Remark 10.6. The equality #(∂WR) = T(∂WR) does not by itself
imply that WR is a star web. This follows e.g. from an inspection of
the web shown in Figure 10.

11. Capacity and transience

We finally apply the considerations from the previous sections to
estimate capacities and transience of minimal webs.

Definition 11.1. The p−centered annular (ρ,R)−web of a minimal
web G in Nn is defined by Aρ,R(p) = WR(p)−Wρ(p).

The notion of capacity of a minimal annulus Aρ,R of G in Nn is
defined as follows.
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p

Figure 10. An extrinsic minimal 2−web W2(p) in the
Euclidean plane with #(∂W2(p)) = T(∂W2(p)) = 8.
The outer circle is ∂B2(p). The total length L(W2) of
W2(p) is 16 - in accordance with Corollary 10.5 and Re-
mark 10.6.

Definition 11.2. Let Ψ ∈ DAρ,R
denote the harmonic function on Aρ,R

which satisfies

(11.1)





∆GΨ(x) = 0 for all x ∈ Aρ,R ,

Ψ(x) = 0 for all x ∈ ∂Wρ and

Ψ(x) = 1 for all x ∈ ∂WR .

Then

(11.2)

Cap(Aρ,R) =
∑

∂Wρ

〈∇GΨ, ν(∂Wρ) 〉G

=
∑

∂WR

〈∇GΨ, ν(∂WR) 〉G .

Remark 11.3. The latter equality in (11.2) is, of course, due to the
harmonicity of Ψ, and is obtained via the divergence Theorem 5.3. The
harmonic function equation (11.1) with the given boundary conditions
is precisely the Euler–Lagrange equation for the alternative energy ex-
pression of the capacity as in the case of smooth manifolds, see e.g.
[G].

We then have the following

Theorem 11.4. Let Aρ,R(p) denote a p−centered minimal annular web
in an ambient manifold Nn. Then

(11.3) T(∂Wρ) ≤ (R− ρ) · Cap(Aρ,R) ≤ T(∂WR) .

In particular, if we let ρ go to 0, we get

(11.4) m(p) ≤ R · Cap(A0,R) ≤ T(∂WR) ≤ #(∂WR) .

If equality occurs in one of the inequalities in (11.3), then Aρ,R(p) is
isometric to a star web annulus (with #(∂WR) radial edges from ∂Wρ

to ∂WR), see Figure 11.
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p

Figure 11. The extrinsic minimal star web annulus
A1,2(p) = W ∗

2 (p)−W ∗
1 (p) in the Euclidean plane.

Proof. We apply Corollary 9.3 with the function F (r) defined by

(11.5) F (ρ) = 0 , F (R) = 1 , and F ′(r) = (R− ρ)−1 ,

so that

(11.6) ∆GF (r)|x ≥ 0 = ∆GΨ(x) ,

where Ψ(x) is the solution to equation (11.1). The difference F (r(x))−
Ψ(x) is hence a subharmonic function on Aρ,R, and since the difference
vanishes at the boundary ∂Aρ,R, we get from the maximum principle,
that

(11.7) F (r(x)) ≤ Ψ(x) for all x ∈ Aρ,R .

In particular, along the in-boundary and out-boundary the derivatives
must therefore satisfy the following inequalities

(11.8)
〈∇GF (r(x)) , ν(∂Wρ) 〉G ≤ 〈∇GΨ(x) , ν(∂Wρ) 〉G ,

〈∇GF (r(x)) , ν(∂WR) 〉G ≥ 〈∇GΨ(x) , ν(∂WR) 〉G .

It follows that

(11.9)

Cap(Aρ,R) =
∑

∂Wρ

〈∇GΨ , ν(∂Wρ) 〉G

≥
∑

∂Wρ

〈∇GF (r(x)) , ν(∂Wρ) 〉G

= F ′(ρ) · T(∂Wρ)

= (R− ρ)−1 T(∂Wρ) ,

and similarly

(11.10) Cap(Aρ,R) ≤ (R− ρ)−1 T(∂WR) .

If equality occurs in (11.9) or in (11.10), then we have a corresponding
equality in equation (11.8) as well. The boundary version of the maxi-
mum principle, Proposition 3.7, then applies and gives F (r(x)) = Ψ(x)
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for all x ∈ Aρ,R. In particular all the edges in Aρ,R(p) must be directed
radially away from p, and this proves the theorem. ¤
Remark 11.5. Equalities in (11.3) do not imply that all of the R−web
WR is star shaped - consider e.g. the minimal annulus A1,2(p) of the
example W2(p) in Figure 10.

Definition 11.6 (Cf. [G]). A given complete metric graph G is tran-
sient if there is a precompact open domain Ω in G, such that the Brow-
nian motion Xt starting from Ω does not return to Ω with probability
1, i.e. :

(11.11) Px{ω |Xt(ω) ∈ Ω for some t > 0} < 1 ,

otherwise G is called recurrent.

In view of Remark 3.5, and since G = (V,E) = (G, g), considered as
a length space continuum, is roughly isometric to (V, d), considered as
a combinatorial metric space with the metric d induced from the length
space metric g, we obtain: Transience of the Random Walk on V with
respect to d is equivalent to transience of the ∆G−driven Brownian
Motion on G with respect to g, see e.g. [MMT].

In the literature there are several conditions for transience of man-
ifolds and combinatorial graphs. For example, T. Lyons [Ly] obtains
transience from the existence of a finite energy flow field on the graph.
This, in turn, is applied by C. Thomassen in [Th] to show transience
from the existence of a rooted isoperimetric profile function whose re-
ciprocal is square integrable on the graph. The corresponding state-
ments for manifolds are established in [LyS] by Lyons and Sullivan and
in [Fe] by Fernandez, respectively.

The following is but one other consequence, which expresses tran-
sience in terms of capacities. The relation between these two notions is
much more general than stated here (see e.g. [G], [LyS]), but we only
need the following for Corollary 11.7 below.

Proposition B. A given complete minimal web G in an Hadamard–
Cartan manifold is transient if for some (hence any) fixed ρ we have

(11.12) lim
R→∞

Cap(Aρ,R) > 0 ,

From Theorem 11.4 we then conclude

Corollary 11.7. Let G denote a complete minimal web in an Hada-
mard–Cartan manifold. Let p ∈ G and let WR denote the p−centered
R−web of G. Then G is recurrent if

(11.13) lim
R→∞

(
R

T(∂WR)

)
= ∞ .

The so-called type problem is concerned with the challenging problem
of establishing sufficient (and necessary) global ’structural’ conditions
for a given metric graph to be transient.
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Remark 11.8. As already alluded to in subsection 2.1, Scherk’s web
is transient. This is shown in [MMT] via the finite energy flow criterion
of [Ly].

It is to be expected that minimal webs in Hadamard–Cartan mani-
folds are in fact transient under conditions which should be quite mild
in comparison with the intrinsic isoperimetric type conditions alluded
to above. This expectation is mainly motivated by the fact that min-
imally immersed submanifolds (of sufficient dimension) in Hadamard–
Cartan manifolds are transient without any further conditions:

Theorem C ([MP3]). Let Pm be a complete minimally immersed sub-
manifold of an Hadamard–Cartan manifold Nn with sectional curva-
tures bounded from above by b ≤ 0. Then Pm is transient if either
(b < 0 and m ≥ 2) or (b = 0 and m ≥ 3) .

However, it is not yet clear how to mold a similar condition like this
’dimensionality assumption’, which in a corresponding setting would
work for minimally immersed metric graphs as well.
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