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Abstract

This Ph.D. project has been concerned with the development of new algorithms, which are to be used in the
processing of medical ultrasound RF-signals. The aim of the processing is to obtain estimates of the blood
velocities in the human cardiovascular system. Algorithms, which are related to 1) the pre-processing of the
RF-signals prior to the estimation, 2) the actual estimation of the blood velocities, and 3) the post-processing
of the estimates prior to display, have been developed.

Two pre-processing algorithms, which perform a classification of the signal segments in the RF-signals,
have been developed. The aim of the classification is to determine those segments, which carry blood veloc-
ity information. This knowledge can be used to control the subsequent estimation, as only signal segments,
which do carry blood velocity information, should be processed by the blood velocity estimator. If the es-
timation is performed on all segments, the outcome of the classification is used to determine, which of the
computed estimates that should be displayed. A set of features have been determined, which distinguish
segments, which do and do not carry blood velocity information. The features are I) the energy content in
the segments before and after echo-canceling, and II) the amplitude variations between samples in consec-
utive RF-signals (acquired along the same line in the image) before and after echo-canceling. This gives a
total of 4 features. The first discriminator employs maximum likelihood theory. The probability densities of
the features, when they represent segments that do and do not carry blood velocity information, have been
determined. Two joint probability densities are generated and based on the values hereof, it can be deter-
mined, how likely it is that the segment under investigation do or do not carry blood velocity information.
The statistical discriminator has a success rate on correct classification of over 96 %, when the signal to
noise ratio is above 0 dB. The second discriminator uses a neural network to perform the classification. The
neural network determines a non-linear relation between the feature values. A SoftMax expansion of the
network results in an output, which determines the likelihood of a segment carrying blood velocity infor-
mation. The neural classifier has a success rate above 97 %. The two discriminators have been compared
to a simple discriminator, which only uses the amplitude level in the segments. The classification is per-
formed by comparing the amplitude level to a threshold value. The new discriminators out perform the
simple discriminator significantly, as they have a success rate of 91-99 % on the segments, which do carry
blood velocity information. The simple discriminator can only classify 42 % of these segments correct. The
performance on the segments, which do not carry blood velocity information, is similar for all three discrim-
inators, and the success rate is above 96 %. The incorporation of more features and the employment of more
advanced algorithms have improved the basis for the discrimination. The discriminators are applicable on
RF-signals acquired from the larger vessels in the human cardiovascular system.

Present blood velocity estimators do not employ the features of fluid mechanics, which predicts that
the velocities in a temporally and spatially bounded neighborhood are correlated. A maximum likelihood
estimator, which incorporates this feature, has been developed and evaluated. An a priori density function
has been included in the distribution for a measure of the cross-correlation between segments in the RF-
signals. The a priori density sets up restrictions for the allowed variations between the blood velocities in
the bounded neighborhood. The functionality of the a priori density is to determine, if the velocity value
under investigation is likely, when the velocities in a bounded spatial and temporal neighborhood are known.
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The estimator has been named the CMLE estimator. Its performance has been evaluated on simulated data,
which represent RF-signals from the carotid artery. The introduction of the correlation property has shown to
be beneficial for the estimation process. A selection of previously developed estimators have been evaluated
as part of this project. Most of them produce quite a few estimates, which deviate significantly from the
true velocities. The number of deviating estimates range from 4-42 %. With the CMLE estimator no
highly deviating estimates are produced. The CMLE estimator produces estimates, which follow the overall
variations throughout the cardiac cycle well. The employment of the correlation property has improved the
basis for the estimation.

A second blood velocity estimator has been developed. It combines the autocorrelation and the BST
estimators in order to overcome the aliasing problem of the former estimator. An initial velocity estimate is
determined with the autocorrelation estimator, and then a set of possible true phase shifts are evaluated with
the BST estimator. The estimator has been named the AB estimator. The introduction of the subsequent
analysis with the BST estimator both has a positive and negative effect on the estimation. The aliasing
problem can be circumvented, but some estimates are generated, which deviate significantly from the true
velocity. A total of 4 % of the estimations result in these deviating estimates for the employed data set. This
number can be decreased by employing a post-processing filter. The combination of the two estimators have
been beneficial. The obtained velocity estimates follow the variations across and throughout the vessel and
throughout the cardiac cycle well. Investigations have shown that the AB estimator is able to out perform
a large selection of the previously developed blood velocity estimators. Therefore the AB estimator should
be considered used for blood velocity estimation.

A new post-processing filter based on optical flow theory, which incorporates the properties of fluid
mechanics, has been developed. The post-processing is required, as the blood velocity estimates come with
a level of inaccuracy. This results in a noisy and non-smooth appearance of the estimated velocity profiles,
which is not consistent with the true profiles. The post-processing of the estimates should minimize this
variation before the estimates are displayed. The correlation between the velocities in time and space makes
it possible to set up restrictions for the allowed variations between the velocity levels in time and space. A
posterior probability density has been determined, which incorporates the restrictions in an a priori density
function, and the information given by the computed estimates in an observation specific density function.
The relation for the filter is determined through maximization of the posterior density. A filter arises, which
computes a new velocity estimate as a linear combination of the original velocity estimate and the velocities
in a spatial and temporal bounded neighborhood of the original estimate. The filter coefficients weight the
contributions from the different velocity estimates and allow for a difference in the spatial and temporal
correlation. The values of the filter coefficients are dependent on the temporal and spatial resolution in
the CFM images along with the temporal position in the cardiac cycle. The performance of the new post-
processing filter has been evaluated on simulated and in-vivo data acquired from the carotid artery. The
evaluation on the simulated data reveals that an improvement of 15-53 % on the RMS error can be obtained.
The highest improvement was obtained at low SNRs. The resulting velocity profiles are more consistent with
the true velocity profiles. The performance of the filter has been compared to the performance of median
filters, which employ the original estimate and the spatial neighbors in the velocity image to compute the
new velocity estimate. The improvement on the RMS error is a factor of 2-4 lower, when the median filters
are employed. The velocity profiles obtained with the median filters are less smooth, and steep transitions
are seen, which are not consistent with the true profiles. The incorporation of the correlation between the
blood velocities in a temporal and spatial bounded neighborhood has shown to be beneficial for the post-
processing of the velocity estimates.

Models for the tissue motion induced by breathing, the beating of the heart, and the pulsation of the
vessel wall have been developed based on investigations of in-vivo data. These models are required to be
able to create realistic simulated data, which contain as many properties of the in-vivo situation as possible.
Thereby a proper basis for the evaluation of new algorithms is given. The investigations of the in-vivo
data revealed that tissue motion is present, when scannings are performed at the carotid artery and in the
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abdominal region. The motion level is on the order of a few millimeter per second. The analysis of the data
revealed that the tissue motion is a function of time and space. The time dependence is determined by the
motion pattern of the motion inducer. The spatial dependence is due to the damping of the tissue motion, as
the distance from the motion inducer to the tissue region being scanned increases. In the models developed
here, the dependence on time and space has been split up in two separate terms. A linear relation for the
damping of tissue motion induced by breathing and the beating of the heart has been used. The temporal
evolution of the motion is modeled with a sine function for these two motion inducers. A cosine function was
used for the modeling of the damping of the tissue motion at the carotid artery, and an exponential weighted
sine function was used for the temporal function. The parameters in the models are dependent on the scan
site, the subject, and the physical state of the subject. The models were verified through simulations. The
results hereof were compared with the in-vivo data, and a qualitatively agreement was seen. Tissue motion
exists and can be modeled, and therefore this motion should be incorporated in the generation of realistic
simulated RF-data.
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Resumé (Abstract in danish)

Dette ph.d. projekt har omhandlet udvikling af nye algoritmer, der skal bruges i signalbehandlingen af
medicinske ultralyds RF-signaler. Målet med signalbehandlingen er at opnå estimater af blodhastighederne
i det menneskelige hjerte- og karsystem. Algoritmer, der er relateret til 1) forbehandlingen af RF-signalerne
inden beregningen af estimaterne, 2) den egentlige beregning af blodhastighederne, og 3) efterbehandlingen
af estimaterne inden visning, er blevet udviklet.

To forbehandlingsalgoritmer, som udfører en klassifikation af signalsegmenterne i RF-signalerne, er
blevet udviklet. Målet med klassifikationen er at fastlægge de signalsegmenter, som indeholder infor-
mation om blodets hastigheder. Denne viden kan bruges til at kontrollere den efterfølgende beregning
af blodhastighederne, idet kun de segmenter, som indeholder denne information, skal behandles af blod-
hastighedsestimatoren. Hvis hastighedsestimationen udføres på alle signalsegmenterne, kan udfaldet af
klassifikationen bruges til at fastlægge, hvilke hastighedsestimater der skal vises. Et sæt af karakteristiske
egenskaber er blevet fastlagt, som adskiller segmenterne, der indeholder og ikke indeholder information
om blodhastighederne. Egenskaberne er I) energien i segmenterne før og efter ekko-filtrering, og II) am-
plitudevariationerne mellem signalværdierne i efterfølgende RF-signaler (opsamlet langs den samme linie
i billedet) før og efter ekko-filtrering. Dette giver sammenlagt 4 karakteristiske egenskaber. Den første
diskriminator anvender maximum likelihood teori. Sandsynlighedstæthederne for de 4 egenskaber, når de
henholdsvis repræsenterer segmenter med eller uden information om blodets hastigheder, er blevet fast-
lagt. De samlede sandsynligheder udregnes og på baggrund af disse værdier, kan det fastlægges, om det
er sandsynligt, at det undersøgte signalsegment indeholder information om blodets hastigheder. Den statis-
tiske diskriminator har en succes procent på korrekt klassifikation på 96 %, når signal-støj forholdet er
over 0 dB. Den anden diskriminator anvender et neuralt netværk til at udføre klassifikationen. Det neurale
netværk fastlægger en ikke-lineær relation mellem værdierne for de 4 egenskaber. En SoftMax udvidelse af
netværket resulterer i et output, der fastlægger sandsynligheden for, om et segment indeholder information
om blodets hastigheder. Det neurale netværk har en succes procent på over 97 %. De to diskriminatorer
er blevet sammenlignet med en simpel diskriminator, der kun anvender amplitudeniveauet i segmenterne.
Klassifikationen udføres ved at sammenligne amplitudeniveauet med en tærskelværdi. De nye diskrimina-
torer udkonkurrerer den simple diskriminator signifikant, idet de har en succes procent på 91-99 % på seg-
menterne, der indeholder information om blodets hastigheder. Den simple diskriminator kan kun klassificere
42 % af disse segmenter korrekt. Klassifikationsevnen på de segmenter, der ikke indeholder information om
blodets hastigheder, er meget ens for alle tre diskriminatorer. Over 96 % af segmenterne klassificeres kor-
rekt. Inkorporeringen af flere karakteristiske egenskaber samt anvendelsen af mere avancerede algoritmer
har forbedret grundlaget for diskriminationen. Diskriminatorerne kan anvendes på RF-signaler opsamlet fra
de større blodkar i hjerte- og karsystemet.

De nuværende blodhastighedsestimatorer anvender ikke egenskaber fra fluid mekanik, som udsiger at
hastighederne i et tidsligt og rumligt afgrænset område er korrelerede. En maximum likelihood estimator,
der inkorporerer denne egenskab, er blevet udviklet og evalueret. En a priori tæthedsfunktion er blevet
inkluderet i fordelingen for et mål af krydskorrelationen mellem segmenter i RF-signalerne. Den a priori
tæthed opstiller restriktioner på de tilladte variationer mellem blodhastighederne i et afgrænset område.
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Funktionen af den a priori fordeling er at fastlægge, om den undersøgte hastighed er sandsynlig, når
hastighederne i et tidsligt og rumligt afgrænset område er kendt. Estimatoren er blevet navngivet CMLE
estimatoren. Dens estimationsevne er blevet evalueret på simulerede data, som repræsenterer RF-signaler
omsamlet fra carotis. Introduktionen af korrelationsegenskaben har vist sig at være gavnlig for beregningen
af blodhastighedsestimaterne. Et udvalg af de tidligere udviklede estimatorer er blevet evalueret som en del
af dette projekt. De fleste producerer en hel del hastighedsestimater, der afviger signifikant fra de sande
blodhastigheder. Antallet af afvigende estimater spænder fra 4-42 %. Med CMLE estimatoren bliver der
ikke produceret nogle afvigende estimater. CMLE estimatoren fastlægger hastighedsestimater, der følger de
overordnede variationer henover hjertecyklusen godt. Anvendelsen af korrelationsegenskaben har forbedret
grundlaget for estimationen af blodets hastigheder.

Endnu en blodhastighedsestimator er blevet udviklet. Den kombinerer autokorrelations og BST esti-
matorerne med henblik på at overvinde aliaserings problemet for autokorrelations estimatoren. Et initielt
hastighedsestimat fastlægges med autokorrelations estimatoren, og et sæt af mulige sande fase skift eval-
ueres med BST estimatoren. Den nye estimator er blevet navngivet AB estimatoren. Introduktionen af den
efterfølgende variansanalyse med BST estimatoren har både en positiv og negativ effekt på udregningen
af estimaterne. Aliaserings problemet kan omgås, men et antal estimater beregnes, som afviger signifikant
fra den sande hastighed. Fire procent af det samlede antal estimater for det anvendte data sæt afviger sig-
nifikant. Dette antal kan nedbringes ved efterbehandling af estimaterne. De beregnede estimater følger
hastighedsvariationerne i karret og henover hjertecyklusen godt. Undersøgelser har vist, at AB estimatoren
kan udkonkurrere et stort udvalg af de tidligere udviklede blodhastighedsestimatorer. Derfor bør det kraftigt
overvejes at anvende AB estimatoren til beregning af blodhastighederne.

Et nyt efterbehandlingsfilter baseret på optisk flow teori, som inkorporerer egenskaber fra fluid mekanik,
er blevet udviklet. Efterbehandling er nødvendig, idet estimaterne er behæftet med usikkerhed. Dette resul-
terer i en støjfyldt og ujævn fremtoning af de estimerede hastighedsprofiler, som ikke er i overensstemmelse
med de sande profiler. Efterbehandlingen af estimaterne skal minimere denne variation, inden estimaterne
vises. Korrelationen mellem blodets hastigheder i tid og rum gør det muligt at opstille restriktioner for de
tilladte variationer mellem hastighedsniveauerne i tid og rum. En a posteori tæthedsfunktion er blevet fast-
lagt, som inkorporerer restriktionerne i en a priori tæthedsfunktion, og informationen fra de givne estimater
i en observations specifik tæthedsfunktion. Udtrykket for det resulterende filter fastlægges ved maksimering
af den posteori tæthedsfunktion. Et filter opstår, som udregner et nyt hastighedsestimat som en lineær kom-
bination af det originale estimat og hastighedsestimaterne i et tidsligt og rumligt afgrænset område i forhold
til det originale estimat. Filterkoefficienterne vægter bidragene fra de forskellige hastighedsestimater og
tillader, at den tidslige og rumlige korrelation er forskellig. Værdierne af filterkoefficienterne afhænger af
den tidslige og rumlige opløsning i CFM billederne samt den tidslige position i hjertecyklusen. Filtreringsev-
nen for det nye efterbehandlingsfilter er blevet evalueret på simulerede og in-vivo data opsamlet fra carotis.
Evalueringen på de simulerede data viser, at en forbedring af RMS-fejlen på 15-53 % kan opnås. Den største
forbedring opnås for lave værdier af signal-støj forholdet. De resulterende hastighedsprofiler stemmer mere
overens med de sande profiler. Filtreringsevnen af det udviklede filter er blevet sammenlignet med filtrering-
sevnen af median filtre, som anvender det originale estimat samt de rumlige naboer i hastighedsbillederne
til at udregne det nye hastighedsestimat. Forbedringen på RMS-fejlen er en faktor 2-4 lavere, når median
filtrene udfører efterbehandlingen af hastighedsestimaterne. Hastighedsprofilerne, der opnås efter filtrering
med median filtrene, er mindre jævne og bratte overgange eksisterer, som ikke er i overensstemmelse med de
sande profiler. Inkorporeringen af korrelationen mellem blodhastighederne i et tidsligt og rumligt afgrænset
område har vist sig at være gavnlig for efterbehandlingen af hastighedsestimaterne.

Modeller for vævsbevægelse frembragt af vejrtrækning, hjertets slag og pulsationen af karvæggene er
blevet udviklet baseret på undersøgelser af in-vivo data. Disse modeller er nødvendige for at skabe realis-
tiske simulerede data, som indeholder så mange egenskaber fra den in-vivo situation som muligt. Dermed
skabes en forsvarlig basis for evalueringen af nye algoritmer. Undersøgelserne af de in-vivo data afslørede,
at vævsbevægelse er tilstede, når skanninger foretages ved carotis og i underlivsregionen. Bevægelses-
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niveauet ligger i størrelsesordenen et par millimeter per sekund. Analysen af data viste, at vævsbevægelsen
er en funktion af tid og rum. Tidsafhængigheden er fastlagt af bevægelsesmønstret for organet, der gener-
erer bevægelsen. Den rumlige afhængighed skyldes dæmpning af vævsbevægelsen, når afstanden mellem
organet og vævet, der skannes, øges. I modellerne udviklet i dette projekt blev den tidslige og rumlige
afhængighed opsplittet i to led. En lineær relation for dæmpningen af vævsbevægelsen frembragt af vejr-
trækningen og hjerteslaget er blevet anvendt. Det tidslige forløb af bevægelsen er modelleret ved en sinus
funktion. En cosinus funktion blev anvendt til modellering af dæmpningen ved carotis, og en eksponentiel
vægtet sinus funktion blev brugt til at beskrive den tidslige funktion. Parametrene i modellerne afhænger
af den vævsregion, der bliver skannet, patienten, samt den fysiske tilstand for patienten. Modellerne blev
verificeret ved simulationer. Resultaterne fra simuleringerne blev sammenlignet med de in-vivo data, og
en kvalitativ overensstemmelse blev fastlagt. Vævsbevægelse er tilstede og kan modelleres, og derfor skal
denne bevægelse inkorporeres i genereringen af realistiske simulerede RF-data.
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Chapter 1

Introduction

Techniques for imaging of the internal organs in the human body have developed a great deal in the 20th cen-
tury. Employment of X-rays gave the first pictures. Unfortunately X-rays have the disadvantage of exposing
the patient to ionizing radiation. The 3D volume examined is projected onto a 2D plane. Each pixel in the
image is the sum of contributions from the tissue structures, which are located along the propagation path
from the source to the X-ray film. This feature limits the information extractable from the images. Mag-
netic Resonans Imaging (MRI) evolved in the 1970’s. Volume images became available, but the electronic
capabilities at that time limited its usability. Hours were spent on acquiring and processing responses from a
small volume, which made the imaging process very cumbersome. The time issue has been addressed today
with the advances within electronics. The MRI scanners still have some disadvantages, as they are very ex-
pensive and non-mobile. The research into employment of ultrasound for imaging started around the same
time as for MRI. Medical ultrasound deals with the mentioned disadvantages of X-ray and MRI. A movable
scanner on wheels is standard, which makes it possible to move the same scanner between examination
rooms and theaters depending on the need. Two dimensional images are constructed from reflected acoustic
waves, which have been emitted into the body. Three dimensional information is obtained by moving the
transducer around in space and thereby scan different planes. No health risk has been reported, so the health
issue of performing scannings is considered non-existing. Several examinations can be performed without
considering the trade off between the information obtainable by doing another scan and the health risk. The
initial costs are a factor of 40 lower compared to an MRI scanner (according to price levels in Denmark
[1],[2]).

Medical ultrasound is employed intensively in modern hospitals for diagnosing diseases in all soft tissue
structures in the body. Grey-level B-mode images are used for anatomical studies, and velocity images are
employed for diagnosing diseases in the cardiovascular system. Fast image formation can be performed,
which makes it possible to both follow flow dynamics in real-time and give an immediate diagnosis. This
is of great importance for diagnosing cardiovascular diseases. The flow conditions tell something about the
pathological conditions:

� If the vessel lumen is constricted (due to e.g. plaque), the blood will flow at higher velocities as it
passes the constriction.

� The flow to and in the kidneys determines the functionality of the kidneys.

� The flow in the heart and the coronary arteries determines the functionality of the heart.

� Cancerous tissue requires an increased supply of oxygen. Therefore increased blood flow in the tissue
(e.g. breast tissue) might be an indicator for cancer.
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CHAPTER 1. INTRODUCTION

The advantages and capabilities of medical ultrasound has made it one of the fastest growing and mostly
used scanning modalities today.

This project aims at improving the estimation of the blood velocities in the human cardiovascular sys-
tem. The estimation is performed on acquired ultrasound RF-signals. Proper processing schemes must be
employed to extract the valuable information in the RF-signals and compute the velocity estimates. The
research carried out in this project aims at improving some of the processing schemes. This involves the
pre-processing prior to blood velocity estimation, the actual estimation of the blood velocities, and the post-
processing prior to displaying the computed estimates. In the following the different parts of the project will
be described in more detail.

The development of new algorithms includes an evaluation phase, where the performance of the algo-
rithms is determined. This requires access to well-defined data, where the true outcome of the processing is
known a priori. In medical ultrasound this includes knowing the exact location of the tissue structures and
the blood vessel(s), along with the true values of the blood velocities. Simulated data are often used, but it
requires that as many features of the in-vivo situation are incorporated as possible. Especially the features
that will influence the performance of the algorithms should be incorporated, so the evaluation is performed
on a realistic basis. One feature of importance in blood velocity estimation is the motion in the tissue sur-
rounding the vessel. The movement induced by breathing, the beating of the heart, and the pulsation of the
vessel walls degrades the ability to detect slow moving blood. Determination and modeling of these motions
will enable us to create more realistic simulated data, so a proper evaluation of algorithms can be performed.
Investigations into these motions and modeling hereof are carried out in this project.

The acquired RF-signals are pre-processed prior to performing the velocity estimation. The pre-processing
includes de-noising of the signals along with processing, which improves the basis for the estimation and
the subsequent display of the blood velocity estimates. Only the blood velocity estimates are of interest in
blood velocity estimation, but non-zero estimates are obtained for both the blood and the tissue regions in
the image. A discrimination must be performed that determines, which parts of the RF-signals that carry
blood velocity information. The output of the discrimination can be used to control the subsequent process-
ing, as the blood velocity estimation only should be carried out on segments, which carry blood velocity
information. The discriminator must use features extractable from the RF-signals. The ability to determine
features will be investigated, and a set of discriminators will be developed in this project.

A number of blood velocity estimators have been proposed in the past. An investigation and evaluation
of some of these are carried out to determine their capabilities and shortcomings. This gives a basis for
developing new estimators. In present velocity estimators the fact that spatial and temporal correlation exist
between the blood velocities is not incorporated into the estimators. The mechanics of fluid flow predicts
that the velocity profile in a vessel can be described as a continuous function in time and space. This
sets up limitations to the possible variations in the velocity levels between the velocities in a spatially and
temporally bounded neighborhood. A situation with a sudden change from high positive to high negative
velocity within a short time indicates an error in the calculations of the velocity. The incorporation of
flow characteristics into the estimators makes it possible to improve the estimates. The estimator processes
data from a spatially and temporally bounded neighborhood in the present and previous images. A new
estimator based on maximum likelihood theory, which incorporates the temporal and spatial correlation,
will be developed and evaluated.

The computed blood velocity estimates come with a level of inaccuracy, so the estimates in the images
vary about the true velocities. A noisy and non-smooth appearance of the velocity distribution is obtained,
which is not consistent with the actual velocities in the vessel. The variations will disturb the eye, when a
sequence of images are shown right after each other at a high frame rate. Post-processing should be applied
to minimize the variation prior to displaying the estimates. The correlation between the velocities in time
and space can also be used in the post-processing. A post-processing filter will be derived and evaluated in

2



this study, which incorporates the correlation property.

Organization of dissertation

The organization of the dissertation is listed in the following:

Chapter 1 : This chapter contains a short introduction to this dissertation and a project description.

Chapter 2 : The basic theory of acoustics and the employment of transducers are introduced.

Chapter 3 : The cardiovascular system and properties hereof are introduced. A relation between the internal
pressure in the carotid artery and the induced tissue motion from pulsation is derived. Womer-
sley’s model for the blood flow in the carotid and femoral artery is introduced. The common
imaging modes are described. The information is employed in the subsequent chapters.

Chapter 4 : This chapter is concerned with the generation of realistic simulated data, which incorporate the
tissue motion. The presence of tissue motion is investigated through inspection of in-vivo data.
The possibility of generating simulated RF-data, which include the tissue motion, is investigated.
Models are derived for motion related to the pulsation, breathing, and the beating of the heart.
Simulations are performed to verify the models.

Chapter 5 : The pre-processing of the acquired RF-signals is the topic of this chapter. A filter for de-
noising is introduced. The pre-processing also includes elimination of the tissue components,
and two echo-canceling filters will be introduced. The discrimination process is investigated,
and three discriminators are discussed and evaluated. The last two discriminators represent new
approaches. A set of features, which determine when a segment of the RF-signal carry blood
velocity information, are derived. The new discriminators are based on maximum likelihood
theory and neural networks, respectively.

Chapter 6 : After the pre-processing the actual estimation can be carried out. This chapter introduces and
evaluates a selection of blood velocity estimators. The capabilities and shortcomings of each
are determined. Two new estimators are derived and evaluated. The first estimator combines
two existing estimators. The second estimator makes use of maximum likelihood theory and
incorporates the correlation property between the velocities.

Chapter 7 : This chapter introduces and evaluates the performance of two post-processing filters. The last
filter represents a new approach, which incorporates the temporal and spatial correlation between
the velocities in the blood vessels. The filter is based on Bayesian image analysis.

Chapter 8 : The work and the results obtained in this project are summarized in this chapter.

A number of papers, which contain some of the results obtained within this Ph.D. project, have been
presented and published. Copies of the papers are enclosed in Appendix A of this dissertation.
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Chapter 2

Basic acoustics

The generation of medical ultrasound images is based on transmission of an acoustic wave into the human
body, which is followed by a measurement of the reflected and scattered wave due to the interactions with
the tissues. An example of an ultrasound image of the fetus is given in Fig. 2.1. The image contains spatial
information in 2 dimensions, so individual structures can be distinguished. The skull, the spinal cord, and
the heart can be recognized fairly easy. The spatial resolution is obtained by emitting a wave that has a finite
extent in time and space. Ultrasound waves with frequencies in the range 1-10 MHz are used in diagnostic
clinical ultrasound to image the human anatomy [3]. The wavelengths, λ, span the range from 150 µm to
1540 µm, which makes it possible to visualize organs, but not the micro structures - the cells, fibers etc.

This chapter introduces the basic theory of wave propagation and the interaction with media, the concepts
and limitations of using transducers of finite size, and the aspect of beamformation. A more comprehensive
discussion of these topics is obtainable from a number of books on acoustics [4], [5], arrays [6], and medical
ultrasound [3].

2.1 Generation of waves

The first aspect to understand is the generation of waves. When observing a medium in its ambient state,
no waves are propagating. Applying a force causes a pressure change, so the medium is perturbed. The
pressure acts on the medium and results in a displacement of the particles next to the point of interaction.
The displaced particles subsequently act on their neighboring particles and displace them. This interaction
between neighbors continues, and like the Domino-effect the pressure and displacement travel through the
medium. A propagating wave has been generated. An example of wave propagation that one can relate to
is speech. The vocal cords apply a pressure to the air particles in the trachea. Due to the Domino-effect
the generated displacement travels up and out of the mouth and propagates into space. The proof of the
propagation is that other people can hear you talking! In medical ultrasound the wave propagates in body
fluids and soft tissues. In these media longitudinal waves can exist, and the theory is derived for these waves.
The particle displacement is parallel to the direction of the wave propagation in this case.

2.2 Wave propagation

Upon generation of the wave it will propagate through the medium. The propagation is a function of both
time and space. In the following the characteristics of the propagation will be described briefly. The propa-
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Figure 2.1: Gray tone (B-mode) image of a 17 week old fetus.

gation has both linear and non-linear properties.

Many factors influence the propagation. The interaction between the wave and the medium is one factor,
and the composition of the medium is another on a long list of factors. A comprehensive mathematical
description of the propagation becomes very complicated, and will not be derived in this context (see [4],
[5]). In this section the nature of linear and non-linear propagation is discussed. In the following sections
some of the factors that influence and alter the wave, as it propagates and interacts with the medium, will be
discussed.

2.2.1 Linear wave equation

A mathematical relation that describes the linear property of the propagation can be derived. In the derivation
it is assumed that the medium is a homogeneous, lossless, and elastic fluid. The applied pressure disturbance
is assumed small relative to the equilibrium pressure, so only small density variations and displacements
occur. The last assumption does not apply to medical ultrasound. High pressures are applied (1-10 MPa)
that causes additional non-linear propagation (see Section 2.2.2). The derivation of an equation, which
describes the linear propagation, is based on three well known relations from mechanics:

1. Equation of state : When a pressure p is applied, particles are displaced an amount�ε in space. This
causes a change in the density (ρ). The linear relation between pressure and density variation is [4]:

p � B
ρ�ρ0

ρ0
� Bs� (2.1)

where B is the adiabatic bulk modulus [4]. The variation in density relative to the equilibrium density ρ0
is termed condensation, s. The equation holds, when the condensation is small, �s� �� 1. The relation is
referred to as the ”Equation of state”.

2. Conservation of mass: The derivation of a relation between the pressure and the particle displacement
is based on the property of conservation of mass [4]. Based on this property another linear relation is
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2.2. WAVE PROPAGATION

Tissue
Water Air Blood Fat Kidney Muscle

1480 333 1566 1446 1567 1542-1626

Table 2.1: Sound velocities ([m/s]) for various body tissues.

obtained:
p ��B∇ ��ε� (2.2)

where ∇ is the three-dimensional Laplacian operator.

3. Force relation (Euler’s equation): As the force is applied, the particles, which span a volume with a
certain mass, will accelerate according to Newton’s second law. A relation between the particle velocity �u
and the applied pressure can be derived [4]:

ρ0
∂�u
∂t

��∇p� (2.3)

where t represents time. By proper combination of the above three equations the wave equation is obtained.
It describes the course of the wave propagation in a homogeneous medium as a function of time and space.
The relation is:

∇2 p �
1
c2

∂2 p
∂t2 � (2.4)

where c is the propagation velocity for the longitudinal wave - usually termed the sound velocity. The sound
velocity is material dependent. In Table 2.1 the sound velocity is listed for different tissues and fluids of
interest in medical ultrasound [3]. Due to the linear relation between pressure, condensation, and density,
the wave equation can also be expressed as a function of the latter variables [4].

A set of solutions to the wave equation are the harmonic waves. The plane wave is one solution, and the
mathematical description is:

p�t��r� � Aexp� j�ωt ��k ��r��� (2.5)

where�r is a vector representing the spatial coordinates �x�y�z�, A is the amplitude, and ω is the oscillation
frequency.�k is the wavenumber, and the orientation of the vector determines the direction of propagation of
the plane wave. Its magnitude is related to the sound velocity and the oscillation frequency through ��k�� ω

c .
The phase front of the plane wave is characterized by being constant perpendicular to the propagation
direction.

Another solution of importance in medical ultrasound is the spherical wave:

p�t�r� �
A
r

exp� j�ωt � kr��� (2.6)

The wave propagates symmetrical in all directions, and constant phase fronts occur as spheres at points in
space with equal radial distances to the source. Due to the nature of the wave it is usually described in
polar coordinates with r being the radial distance from the source to a point in space. The requirement of
conservation of energy results in the amplitude drop off with increased distance. Spherical waves therefore
have a finite propagation range. Far away from the source (in the far-field) the curvature of the spherical
wave decreases and can be considered as a plane wave over a limited distance.

When only the linear propagation is considered, any wave can be described by a linear combination of
plane waves [7]. If more than one wave are propagating in the medium, the total pressure in any point
in space is the sum of the contributions from the individual waves. This property is usually named the
superposition principle.
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Up until now the source and the boundary conditions have not been defined and included. To solve the
equation for a particular situation these conditions must be incorporated [4].

2.2.2 Non-linear effects

In medical ultrasound the applied pressures can reach 1-10 MPa, which results in non-linear wave propaga-
tion. Through investigation of the relations between the sound velocity, the applied pressures, the density
variations, and the particle velocities one will learn the following [3]:

� positive particle velocity results in an increase in the effective sound velocity,

� negative particle velocity results in a decrease in the effective sound velocity.

The particle velocity is related to the pressure, which causes the wave to propagate faster during a positive
period of pressure, and slower during a negative period. The waveform thereby gets distorted. The distortion
results in generation of higher harmonics. In the last few years imaging based on higher harmonics has been
developed and is now widely used [8], [9]. The image quality is improved, since an increase in contrast and
resolution is obtained.

A comprehensive description of wave propagation therefore contains both the linear and non-linear ef-
fects.

2.3 Interaction with the medium

In the above it is assumed that the wave was propagating in a homogeneous and lossless medium. No real
media are completely homogeneous and lossless, so the wave will interact with the medium and be altered
as it propagates.

2.3.1 Refraction

If the object under investigation consists of a set of bounded regions of different media, the wave will get
altered as it reaches the plane boundaries. All media can be characterized by the product of the sound
velocity and the density. This property is designated the acoustic impedance, and the parameter determines,
if two media are different. As the wave interacts with the boundary, part of the wave will get reflected,
whereas the remaining part will continue propagating (see Fig. 2.2). The splitting of the wave is termed
refraction. The acoustic impedance of the two media determines the ratio of pressure amplitude and energy
contained in the transmitted and reflected wave. The propagation direction of the transmitted wave (θt ) is
determined by the incidence angle (θi) and the sound velocities in the different media. Snell’s law determines
the relation [3], [4]:

sin�θi�

ci
�

sin�θt�

ct
� (2.7)

where ci and ct are the sound velocities in the two media. In the human body only a few plane boundaries
exist such as the vessel walls, the diaphragm, and some of the organ boundaries. If only the refraction effects
were present in the human body, medical ultrasound would only be able to map the boundaries. Fortunately
other effects are present, which cause an interaction and reflection continuously as the wave propagates.
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Figure 2.2: Refraction of a wave at the boundary between two media with different acoustic impedance.

2.3.2 Scattering

The soft tissues in the human body are non-homogeneous. When investigating small (infinitesimal) volumes
of tissue one will observe that the density and tissue composition vary slightly between neighboring volumes.
The soft tissues therefore are characterized by having varying properties on a continuous basis. Due to these
variations in the acoustic impedance the propagating wave will interact continuously with the volumes along
its propagation direction. As a result reflected waves will be generated continuously. Again the amplitude
and energy of the reflected wave is determined by the acoustic impedance of the neighboring volumes. Each
reflected wave thereby carries information of the anatomical structures present in that area.

The observed interaction is not a mere refraction process but a phenomenon termed scattering [3]. Anal-
ysis of the soft tissues reveals that they consist of components (cells, fibers, connective tissues etc.) smaller
in size than the wavelength of the wave. The propagating wave interacts with all these small structures
termed scatterers. Scattering is a very complex phenomena, and a comprehensive description hereof is out
of the scope of this discussion. The discussion in the following will point out some features of scattering
from small, hard structures. When the propagating wave interacts with the scatterers, each scatterer absorbs
part of the energy of the wave, and re-radiates it in all directions. The scatterers thereby act as a source radi-
ating spherical waves. Due to the size of the scatterers, the measured reflected signal is the constructive and
destructive interference of scattered signals from all the small structures. When visualizing the measured
signal a speckle appearance will occur. It does not visualize the individual scatterers but the contributions
from a group of scatterers [3]. The fraction of absorbed and thereby re-radiated acoustic energy is still
dependent on the tissue characteristics (the acoustical impedance), so variations in the appearance of the
speckle pattern reveal different anatomical and pathological structures. An example is shown in Fig. 2.3,
which shows a B-mode image of the liver (left) and the kidney (bottom right).

Estimation of the blood velocities in the cardiovascular system also rely on the scattering of the wave as
it interacts with the blood. The blood constituents are the plasma fluid and the blood cells, which are termed
platelets, leukocytes (white blood cells), and erythrocytes (red blood cells). The dimensions of the individual
particles are more than a factor of 10 smaller than the wavelength, which causes Rayleigh scattering [3],
[10]. As the particles are displaced by the propagating pressure wave a change in compressibility occurs,
which gives rise to the emission of a spherical wave re-radiating energy in all directions. This effect is
known as monopole scattering [3]. The simultaneous occurrence of density variations results in a dipole
scattering, where the re-radiated energy mainly propagates forward or backwards along the direction of
propagation [3]. The scattering ability is described by the backscattering coefficient and the backscattering
cross-section, σbsc [3]. The backscattering cross-section depends on:
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Figure 2.3: B-mode image of liver (left) and kidney (bottom right).

� the density and compressibility fluctuations,

� the inverse of the wavelength to the power of 4,

� the size of the erythrocytes,

� the fraction of the volume filled with the erythrocytes (the hematocrit value), and

� a packing factor determining the level of independence of the erythrocytes. As the volume fraction of
erythrocytes increases, their location and orientation becomes dependent on the neighboring erythro-
cytes. The backscattering from the individual erythrocytes get correlated, which seems to introduce
destructive interference between the scattered waves [3].

Investigation of the backscattering from blood reveals that the amplitude level is 10-500 times smaller than
that from tissue.

The majority of the anatomical structures in the human body can be imaged employing ultrasound due
to the scattering characteristics of soft tissues and blood. Imaging of bone structures and the air in the lungs
are limited, as most of the wave is reflected at the boundary. This effect influences the ability to image soft
tissues lying directly beneath air and bone structures.

Although scattering results in energy re-radiated in all directions, a measurement of the signals is per-
formed with a sensor of finite size. One should therefore be aware that only part of the scattered waves is
measured.

2.3.3 Attenuation

The human tissues are lossy media, and therefore acoustic energy is dissipated. Usually the term attenuation
is used to describe this effect. The linear wave equation does not govern this. Additional terms should be
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Tissue
Liver Fat Kidney Blood Bone

0.6-0.9 1.0-2.0 0.8-1.0 0.17-0.24 16.0-23.0

Table 2.2: Attenuation ([dB/(MHz cm)]) values for a selection of soft body tissues and the blood.

included in the basic equations, and a new set of equations must be solved [4]. The majority of the energy
loss (70-90 % [3]) is due to absorption, where the acoustical energy is converted into thermal energy. The
following effects cause this conversion [4]:

� the viscous losses due to the shearing viscosity of particles with different velocities, and the bulk
viscosity losses from the compression and dilation of volumes,

� heat exchange due to temperature gradients, and

� molecular energy exchange, where the kinetic energy is converted into other energy forms such as
potential and vibrational energy.

The level of attenuation is tissue and frequency dependent and is usually expressed in dB/[MHz cm]. The
amplitude level of the wave decreases with increased distance from the source to a point in space. For high
oscillation frequencies the amplitude drop off is higher, than is the case for a wave oscillating at a lower
frequency. The distance dependence causes the wave to have a finite propagation range. A trade off between
penetration depth, resolution, and level of backscattered energy is thereby introduced. In cardiovascular
imaging it is desirable to emit a wave with a high frequency to obtain high resolution. This limits the
imaging depth and thereby the number of vessels that can be imaged. Table 2.2 lists attenuation values for
a selection of soft tissues and the blood in the human body [3].

In medical ultrasound the emitted wave spans a band of frequencies. Due to the nature of the attenuation
the higher frequency components are attenuated more than the lower frequencies. This results in a change
of the emitted wave as it propagates. Often a linear relation between attenuation in dB, distance, and
frequency is assumed. In ultrasound imaging, compensation is attempted by performing an amplification
upon measuring. The amplifier characteristics change over time to compensate for the depth dependence.
More or less advanced amplifiers can be implemented. Often a mere amplitude amplifier is used, where the
signal amplitude is increased by multiplication by a factor, which is dependent on depth. The amplification
process is termed the ”Time Gain Compensation” - TGC for short.

2.3.4 Alteration of the emitted wave

Two more effects cause alteration of the emitted waveform. As the wave propagates through different tissues,
the speed of propagation varies. Since different parts of the wave propagate through different tissues, some
wave segments travel faster or slower than other segments. A temporal misalignment of the wave segments
occurs, which causes a distortion of the waveform. This effect is termed phase aberration [6].

If the propagating wave passes through a medium in motion such as blood, the center frequency will
change due to the Doppler effect [3]. The relation between the velocity of the medium v and the change in
frequency - the Doppler shift fd - is given by:

fd ��2v
c

f0� (2.8)
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Figure 2.4: Plot of 1D linear array of 16 point sources.

where f0 is the temporal center frequency of the wave. In the human body both blood and the tissue lying
next to moving or pulsating organs (heart, lungs, and arteries) carry motion and thereby cause a Doppler
shift.

2.4 Employment of transducers

The characteristics of wave propagation and the interaction with media have been discussed so far. The
generation of the wave and the measuring of the scattered signals for imaging requires a device that can
convert two energy forms in a controlled manner. A transducer is used for this purpose. It can convert voltage
to pressure (and vice versa), and thereby emit a specific pressure waveform, and subsequently measure the
scattered signals. Real physical transducers have a limited spatial extent and consist of an array in 1D or 2D
of one or more elements. The individual elements can be flat or curved. The different types of transducers
have different characteristics. The choice of the transducer to use in a particular situation depends on what
one wants to emit and measure. A finite sized transducer - an aperture - introduces spatial windowing and
sampling. Waves can only be emitted and received at a set of predefined locations determined by the aperture
size and location, and the element size and spacing. Each of the elements in the aperture emit a wave.
Investigation of the generated wave field and its distribution in space reveals that the distribution of energy
is dependent on the geometry and element spacing of the aperture. This property can be described fully
by an aperture function, which can be computed for any transducer geometry [4]. The function describes
the distribution of energy as a function of direction in the far field. In the acoustics literature the term
beampattern is used. Medical ultrasound scanning is performed in the near field, but the aperture function
still can be used to give an indication of the energy distribution.

In Fig. 2.4 a linear array is shown, which consists of 16 point sources spaced a distance ds apart. The
direction is determined by the angle θ, which is measured relative to the unit normal vector for the transducer
surface. The beampattern is plotted in Fig. 2.5 (a), (b), and (c) for ds equal to 1�5λ�0�5λ, and 0�25λ,
respectively. Continuous waves are emitted from each element. As the distance ds decreases, the replica
of the major and minor lobes is removed from the so called visible region, which is the space bounded by
the range θ � ��90o�90o�. These grating lobes are a result of the spatial sampling, which is determined
by the choice of ds. If the replicas are not removed, signals from several regions in space will contribute
to the measured signal. The different regions cannot be distinguished, so the spatial resolution is limited.
Decreasing ds unfortunately has the effect of widening the mainlobe, when the number of elements are
kept constant. Although the insonification area has been narrowed by removing the grating lobes, the finite
width of the mainlobe results in insonification of a volume of scatterers. As the mainlobe width increases,
the resolution along the direction perpendicular to the transducer surface decreases. Infinite resolution is
therefore not obtainable.

The parameters in the aperture function include the wave frequency, which makes the aperture function
dependent on the wavelength. The grating lobes will not be present in the visible region, if the following
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Figure 2.5: Plot of the beampattern for different choices of spacing between the sources. Top : ds � 1�5λ.
Middle : ds � 0�5λ. Bottom : ds � 0�25λ. The center frequency is 3 MHz, and the sound velocity equals
1540 m/s.
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constraint is obeyed: ds � λ�2 [4]. During reception the aperture function causes scattered signals from
certain directions to be favored over other directions. Thereby directional sensitivity is obtained both in
transmission and reception. As discussed above the width of the mainlobe determines the resolution perpen-
dicular to the direction of propagation (usually termed the lateral resolution). By increasing the number of
elements the mainlobe can be narrowed and the resolution increased. So by proper design of the geometry
and working frequency the lateral resolution can be increased. In medical ultrasound the apertures should
be handy to work with, which limits the size and thereby the resolution.

So far a square spatial windowing function has been assumed, where the individual signals from each
element contribute equally. Introduction of a weighting function on the aperture, which weights the contri-
butions from the individual elements, improves the resolution. The mainlobe becomes wider but the sidelobe
levels decrease. The weighting (apodization) function should have the following properties [6]:

� the amplitude should have its maximum in the center of the aperture,

� the amplitude should drop off and go towards zero with increased distance to the center element.

2.5 Beamforming

As each of the elements can emit and receive independently, the propagation characteristics of the waves
can be incorporated in the emission and reception scheme to improve resolution at some location. The latter
is done by introducing focusing. The definitions of focusing in emission and reception respectively are as
follows:

� the ability to direct waves in a desired direction and concentrate energy in a spatial location,

� the ability to receive energy from a desired spatial location and compensate for different travel times.

The focusing scheme is usually termed beamformation. The focusing schemes discussed in the following
are only possible for multi-element transducers.

2.5.1 Emission

A spherical wave (approximately) is emitted from each of the elements. By assuming a constant sound
velocity throughout the medium, the propagation time from the element to a spatial location can be computed
for the individual waves. Concentration of the energy in a particular location requires that the individual
waves constructively interfere at that point. By delaying the time of emission of the individual waves, the
differences in travel time can be compensated for. A delay function over the elements is introduced, and a
focusing of energy and thereby a higher resolution at the point of focus is obtained. This focusing method
resembles the conventional focusing in transmission and is limited to having only one transmit focus. By
varying the delay function the focus point can be moved around in space.

This focusing scheme is not fully valid due to the existence of phase aberration. Different research groups
investigate the issue of phase aberration correction [11], [12], [13], [14]. Different methods are currently
being developed employing synthetic apertures to obtain multiple foci in transmission [15], [16].
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2.5.2 Reception

The scattering of energy results in the emission of a spherical wave. The distance from a point in space to
each of the elements varies, which causes a delayed arrival of the constant phase fronts on the elements.
As the distance is known, the travel time to each of the elements can be calculated. An alignment of
the individual signals can be obtained by introducing a delay function in the reception phase. A dynamic
focusing along the scan direction can be performed by letting the delay function vary as a function of time
(and thereby depth).

2.6 Summary

With the theoretical basis given above it can be concluded that it is possible to emit waves in predefined
directions with a level of spatial resolution, along with measurement of the acoustical response from the
interaction between the wave and the tissue structures. Information about the investigated media can be
extracted by means of proper processing of the signals. The subsequent chapters will describe some of the
processing schemes employed in more detail.
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Chapter 3

The cardiovascular system and imaging
modes

After having introduced the acoustical basis for medical ultrasound in Chapter 2, an introduction to the car-
diovascular system and some of the imaging modes will be given in this chapter. The introduced terminology
and the properties are used in the following chapters.

First, a short introduction to the cardiovascular system and its properties is presented in Section 3.1. A
relation between the internal pressure in the carotid artery and the induced motion of the vessel wall and the
surrounding tissue is introduced in Section 3.1.1. Womersley’s model for the blood velocities as a function
of time and position along the radius of the vessel is introduced in Section 3.1.2. The model applies for the
carotid and femoral artery, and the set of model parameters for these arteries are listed. The properties of
the cardiovascular system and the models will be employed for generating simulated data, which resemble
the in-vivo situation.

Some of the typical images that are generated from the recorded signals are discussed in Section 3.2.

3.1 The cardiovascular system

The cardiovascular system supplies the organs and the tissue in the body with oxygen and removes waste
products (such as CO2). This requires a network of branching and interconnected pipes, in which blood
flows out into the body and back to the heart. The heart initiates the outgoing flow by pumping oxygenated
blood out into the arteries. The blood propagates in the body through the branching arterioles and capillaries.
At the capillary level the exchange of oxygen and waste products between blood and tissue takes place. The
capillaries collect into venulaes, which connect to the veins. The de-oxygenated blood is lead back to the
heart through them. Re-oxygenation is performed by passing the blood through the lungs. The four chamber
structure of the heart ensures that de-oxygenated and oxygenated blood are kept separate, and pumped to the
lungs and into the arteries, respectively. A more thorough discussion of the cardiovascular system is given
in [17].

Table 3.1 lists flow and dimensions characteristics for a selection of arteries and veins from the human
cardiovascular system [18]. Fig. 3.1 shows an anatomical drawing of a subset of the arteries and veins in
the human body.
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Internal Wall Young’s
diameter thickness Length modulus

Vessel [cm] [cm] [cm] [N/m2 �105]
Ascending aorta 1.0-2.4 0.05-0.08 5 3-6
Descending aorta 0.8-1.8 0.05-0.08 20 3-6
Femoral artery 0.2-0.8 0.02-0.06 10 9-12
Carotid artery 0.2-0.8 0.02-0.04 10-20 7-11
Inferior vena cava 0.6-1.5 0.01-0.02 20-40 0.4-1.0

Peak Mean Reynolds Pulse propagation
velocity velocity number velocity

Vessel [cm/s] [cm/s] (peak) [cm/s]
Ascending aorta 20-290 10-40 4500 400-600
Descending aorta 25-250 10-40 3400 400-600
Femoral artery 100-120 10-15 1000 800-1030
Carotid artery 600-1100
Inferior vena cava 15-40 700 100-700

Table 3.1: Dimensions and flow characteristics for a selection of arteries and veins in the cardiovascular
system.

3.1.1 A relation between blood pressure and tissue motion

The pumping heart generates a pulsating blood flow in the arteries, which induces a time varying pressure
acting on the arterial wall [19]. Due to the elastic property of the vessel, a radial motion of the wall (relative
to the center of the vessel) and the surrounding tissue [19] is induced. As a result hereof the radius of the
vessel varies throughout the cardiac cycle - it pulsates. The change in radius is usually termed dilation d,
and it is defined as the change in radius R relative to the inner radius Ri at diastolic pressure:

d � R�Ri� (3.1)

A mathematical relation between the pressure and the dilation for the carotid artery is introduced in the
following. The relation assumes a vessel with no pathological conditions. The amount of dilation depends
on the elastic properties of the vessel wall (such as stiffness which increases with age), and the exercise level.
The levels of pressure throughout a cardiac cycle in the carotid artery are normally within a range of 80-160
mmHg [19]. A relation between the internal pressure in the vessel and the resulting dilation can be derived
using the theory on deformable pipes [20], [21]. The human vessels are approximated by a cylinder with
a finite wall thickness, which are subjected to uniformly distributed internal and external pressures. This
results in a symmetrical deformation about the center axis of the vessel. The vessel wall must be considered
as thick, since the thickness of the wall is large compared to the inner vessel radius [3], [21]. The level of
displacement varies along the radius. The motion of the outer vessel wall is of interest in order to relate
the motion of the surrounding tissue to the internal pressure. When the outer wall moves, the tissue next to
the wall will move with it. The pulsation induces motion in the tissue. Based on the above assumptions the
following relation arises:

d�t� �
1
E

2Ro

�Ro
Ri
�2�1

p�t�� (3.2)

where p�t� is the time-varying internal pressure in the vessel, Ro is the outer radius at diastolic pressure,
and E is Youngs modulus for the vessel wall. The relation is independent of the external pressure, since it
is assumed that no pressure variations occur outside the vessel. A relation between pressure and dilation
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Figure 3.1: Drawing of part of the human cardiovascular system.

has not been derived for pathological conditions. By introducing a measure of the elasticity that varies as a
function of angular position on the wall, a relation approximating the dilation for a diseased vessel might be
obtainable.

Based on (3.2) a relation between the internal pressure and the volumetric flow rate, QF , can be obtained.
The volumetric flow rate at any time instant, t, is defined as the integral of the velocity v over the cross-
section of the vessel [3]. By introducing related parameters the relation can be derived:

QF�t� �

�
x

�
y
v�x�y� t�dxdy

� A�t�v̄�t�

� v̄�t�πR2�t�

� v̄�t�π�Ri �d�t��2

� v̄�t�π�Ri �
1
E

2Ro

�Ro
Ri
�2�1

p�t��2� (3.3)

where �x�y� are the spatial coordinates, A is the cross-sectional area of the vessel, v̄ is the spatial mean blood
velocity over the cross-section, and R�t� is the radius of the vessel as a function of time. The volumetric flow
rate ([m3/s]) will in practical systems be computed by summing the estimated velocities within the vessel.
Given a measure of the parameters v̄�Ro�Ri, and E an estimate of the internal pressure can be obtained. The
feasibility of using this relation to make an estimate of the internal pressure has not been considered in this
study.

3.1.2 Womersley’s model for blood flow

Investigations of the motion of the blood particles throughout a cardiac cycle have resulted in equations,
which describe the velocity of the scatterers as a function of time and position relative to the center of
the vessel. The results are based on the assumption that the blood fluid is Newtonian [3], [19]. This is
approximately true for larger vessels, as the dependence between viscosity and the shear stresses (the force
per unit area) decreases. It is assumed that the fluid flows in a straight pipe, and no patholocigal conditions
are present. The flow profile can then be described as a linear combination of a set of sinusoidal components
[3], [19]. The model parameters are found from the spatial mean velocity over the vessel cross-section as a
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function of time. This signal is Fourier decomposed and the spatial and temporal velocity in the vessel can
be computed from the coefficients. The Fourier decomposed version of the model [19] is given by:

v�t�rd�R� � 2v0

�
1�
�rd

R

�2
�
�

∞

∑
m�1

�Vm��ψm�rd��cos�mωt�φm �χm�rd��� (3.4)

where rd is the radial distance from the center to a position along the radius of the vessel, and v0 is the mean
velocity. Vm and ψm are the Fourier amplitude and phase term, respectively. ω is the fundamental heart
frequency. The parameters φ and χ are dependent on the vessel characteristics (density ρ, viscosity µ) and
the radial position. They are defined by:

τm � j3�2R

�
ρ
µ

ωm � α j3�2

ψm�rd�R�τm� �
τmJ0�τm�� τmJ0�

rd
R τm�

τmJ0�τm��2J1�τm�
(3.5)

χm � � ψm�rd�R�τm��

where Jn�x� is the nth order Bessel function, and � ψm�rd�R�τm� denotes the angle of the complex function
ψ. Table 3.2 lists the model parameters for the carotid and femoral artery [22], [23]. The unit bpm is an
abbreviation for beats per minute. In Fig. 3.2 the velocity profile for the carotid artery is plotted for a full

Common femoral Common carotid
Diameter = 8.4 mm Diameter = 6.0 mm
Heart rate = 62 bpm Heart rate = 62 bpm
Viscosity = 0.004 kg/[m � s] Viscosity = 0.004 kg/[m � s]

m f α �Vm�
v0

φm m f α �Vm�
v0

φm

0 - - 1.00 - 0 - - 1.00 -
1 1.03 5.5 1.89 32 1 1.03 3.9 0.33 74
2 2.05 7.7 2.49 85 2 2.05 5.5 0.24 79
3 3.08 9.5 1.28 156 3 3.08 6.8 0.24 121
4 4.10 10.9 0.32 193 4 4.10 7.8 0.12 146
5 5.13 12.2 0.27 133 5 5.13 8.7 0.11 147
6 6.15 13.4 0.32 155 6 6.15 9.6 0.13 179
7 7.18 14.5 0.28 195 7 7.18 10.3 0.06 233
8 8.21 15.5 0.01 310 8 8.21 12.4 0.04 218

Table 3.2: Fourier model parameters for the carotid and femoral artery.

cardiac cycle as a function of time and radial distance relative to the radius of the vessel. The mean velocity
is 0.15 m/s, and R=0.003 m. Due to the fluid laws arising from flow physics, the velocity must converge to
0 at the vessel wall [24]. The profile is symmetric about the center axis of the vessel.

The common carotid artery branches into two, the external and internal carotid, half way up the neck.
The latter supplies the brain, whereas the former supplies the muscles and the other organs in the head. The
velocity profile for the internal carotid has an offset velocity different from zero, as the brain needs a contin-
uous flow of oxygen. The muscles and organs do not require this, so in this case the offset velocity equals
zero. The velocity profile from the common carotid artery thereby gets altered at the level of branching, and
the two profiles in the branches are different.
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Figure 3.2: Plot of the velocity profile for the carotid artery.

3.2 Imaging modes in medical ultrasound

Medical ultrasound is used to extract information of diagnostic value. Depending on the aim of the exami-
nation different strategies with respect to the frequency and temporal extent of the emitted pulse, the volume
scanned etc. are used. After acquisition of the signals - usually termed RF-signals - processing is performed
to extract and present the valuable information to the clinicians. The subsequent presentation of the infor-
mation depends on the aim. In the following a short discussion of some of the commonly used visualization
modes [3], [25] will be presented. The introduced terminology will be used in the subsequent chapters.

3.2.1 B-mode imaging

An image of the anatomical structures in the scanned volume can be created due to the varying acoustic
impedances of the tissue components. The information about the different tissue structures is extracted
from the recorded RF-signals. A high level of resolution is obtained by emitting a temporally short pulse
(a few cycles). The exact resolution level is dependent on the frequency and increases, as the frequency is
increased. As the attenuation increases with increased frequency, a trade off between axial resolution and
imaging depth exists.

By emitting and receiving from a number of directions a 2D image can be generated. Each recorded
RF-signal, r, is:

� envelope detected according to (3.6), where l is the line number in the image, and n is time in number
of samples. One RF-signal is acquired for each line in the image. The operator H represents the
Hilbert transformation,

� logarithmically compressed to a dynamic amplitude range of 60-80 dB. Gray-tone values are assigned
for the chosen range.
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renv�l�n� � �rl�n�� jH �rl�n���� (3.6)

An alignment of the lines to a 2D rectangular grid along with an interpolation is performed, before the
image is displayed on the screen. This process is usually termed scan conversion. The resulting 2D image
is termed a B-mode image. An example is shown in Fig. 3.3(a).

3.2.2 CFM-mode imaging

Diseases in the cardiovascular system can be diagnosed through inspection of the spatial blood velocity dis-
tribution and the magnitudes hereof. Estimates of the blood velocities are obtainable after proper processing
of a number of RF-signals (see Chapter 6) acquired along the same direction. The B-mode image is still
needed to guide the scanning and determine pathological conditions for the tissue regions. Therefore the
blood velocity estimates are overlaid onto the B-mode image, and different colors are used to represent the
velocity levels. This scan mode is termed Color Flow Mapping (CFM for short). An example is shown
in Fig. 3.3(b). The length of the emitted pulse is dependent on the processing scheme used to determine
the blood velocities. Both long and short pulses are used (see Chapter 6). When a long pulse is used, an
alternation between emission of pulses and acquisition of the RF-signals for B-mode and CFM-mode is
performed. Different schemes can be used, and they vary for different scanners and for the scan settings
(center frequency, pulse emission frequency, size of scanned area with respect to blood velocity estimation
etc.). In CFM-mode more lines have to be acquired before a full image can be displayed. The frame rate
(the number of images presented per second) therefore decreases. The frame rate is inversely proportional to
the size of the 2D B-mode and the 2D CFM-mode image, and the number of lines used in the blood velocity
estimation.

In the following chapters RF-signals for blood velocity estimation will be referred to with the variable
rc f m, whereas the signals for B-mode imaging will be named rb. The terms RF-signal(s) and RF-line(s)
will be used alternately throughout this dissertation. They both denote the acquired signal response, which
arises, when the emitted pulse has interacted with the scanned medium.

3.2.3 Spectral Doppler mode

The temporal evolution of the blood velocity in a specified spatial point is also used to extract information
of diagnostic value. The scanners show this information, when they run in Spectral Doppler mode. The
velocity or the corresponding frequency value is plotted as a function of time on the screen. The temporal
sequence is termed a sonogram. The lower plot in Fig. 3.3(a) shows an example of a sonogram.

3.3 Summary

Some of the properties of the cardiovascular system were presented in this chapter. An approximative model
between the pressure variations in the carotid artery and the induced tissue motion was introduced. Womers-
ley’s model for the velocity profiles in the carotid and femoral artery was introduced, and it will be employed
in the subsequent chapters. A selection of the imaging modes were introduced, and the terminology here
fore will be used throughout the dissertation.
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Figure 3.3: Examples of some of the common imaging modes in ultrasound. (a) The upper plot is a B-mode
image of the carotid artery and the jugular vein, and the lower plot is the sonogram of the flow in the center
of the carotid artery. (b) CFM-mode image of the carotid artery and the jugular vein.
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Chapter 4

Incorporation of tissue motion in simulated
RF-data

A testing phase is included in any development of new techniques, where the performance of the methods
is evaluated. The evaluation must be performed on a well-defined setup. When developing algorithms for
blood velocity estimation, a well-defined setup is characterized by RF-data, where 1) the location of the
signal components from the interactions with the tissue structures, the vessel wall, and the blood are given,
and 2) the true blood velocity distribution and magnitudes in the vessels are known. Data obtained from in-
vivo measurements are not well-defined, since these requirements are not met. Measurements on phantoms
come close to being well-defined, as the location of the tissue mimicking structures often are fixed and
therefore known. A level of uncertainty is present on the velocities of the blood mimicking fluid. The flow
situation is dependent on the capabilities and the precision of the flow pump and the tubing to and from the
phantom. Turbulence might be generated, and then the actual flow profile will not be consistent with the
expected profile. Data from phantom measurements are therefore not completely well-defined. Simulated
data, which resemble the in-vivo situation, are often employed instead. The computation of simulated data
requires:

� modeling of the transducer (1D/2D array, number of elements, geometry and spacing of elements), the
excitation pulse, the impulse response of the transducer, and the focusing and apodization schemes,

� generation of a distribution of point scatterers in space. Each scatterer is assigned a value, which
determines its scattering ability and thereby the nature of the scatterer (tissue or blood),

� modeling of the propagation forth and back of the generated waves,

� determination of the interaction between the wave and the scatterers.

These requirements are fulfilled with the simulation program Field II, which has been developed by Jensen
[26], [27]. Any array transducer, focusing and apodization scheme, and transducer excitation can be handled,
and the simulation model can easily be expanded to any imaging method and flow situation. The Born
approximation [10], which excludes multiple scattering, is applied. The simulated system is assumed to be
a linear system, so the non-linear propagation is not incorporated.

Generation of realistic data, which resemble the in-vivo situation over time, includes the incorporation
of the movements of the scatterers between acquisitions. The blood moves, as it propagates through the
cardiovascular system. Motion in the tissue structures are also present and must be incorporated. The aspect
of tissue motion is the topic of this chapter. The nature hereof is discussed in Section 4.1. The presence
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of tissue motion is investigated through inspections of in-vivo data and subsequently modeled in Sections
4.2-4.4. A verification of the models is presented in Section 4.5, and the results are summarized in Section
4.6.

4.1 The nature of tissue motion

The tissue motion is induced by breathing, the beating of the heart, and the pulsation of arterial vessel
walls. These motions are present, when measurements are performed on major arteries and in the abdominal
region. A large group of echo-canceling filters (see Chapter 5) are based on the assumption that the tissue is
stationary. As this is not the case they fail to perform well on in-vivo data. With simulated data incorporating
tissue motion a proper basis for developing and evaluating these filters is present.

The motion in the surrounding tissue is a result of a change in position of one or more organs (lungs
and heart), and the vessel walls lying close to the region of interest (ROI). The motion changes the position
of the ROI and can also change the size of the different components in the region (e.g. increased diameter
of vessel because of pulsation). The motion repeats itself due to the periodic nature of breathing and the
beating of the heart. The repetition rate, and thereby duration of the motion, usually varies for the individual
motion contributors. The heartbeat frequency is about 60 bpm on average, and the respiratory frequency
is 12 breaths/min (when resting). These values vary among individuals and their physical state. The level
of tissue motion at a particular scan site is dependent on 1) the distance from inducers to the ROI, and
2) the motion level of the inducers (e.g. breathing level: superficial or deep). All these factors should be
incorporated in the simulation. The above motions are generated by the subject being scanned. A fourth
motion arises, when the transducer is hand held during the scan session. It is most likely that the clinician,
which performs the scanning, cannot keep the hand and probe steady over a longer period of time. The
applied pressure against the skin and/or the angulation will vary (slightly) during a scan session. The level
of motion is highly dependent on the clinician and impossible to predict. Over short periods of time its
contribution will be negligible. This study will not investigate and model the fourth motion but will focus
on the motions induced by the subject.

Several authors have investigated tissue motion previously. Badawi et al. [28] studied the tissue motion
due to pulsation of the heart and neighboring arteries in normal and diseased livers. The diseased livers
suffer from schistosomiasis, which results in changes of the elastic properties of the liver tissue. Variations
in the level of tissue motion were found among the different states of the disease.

Induced motion of the breast tissue due to cardiac pulsation and respiration was investigated by El-Fallah
et al. [29]. The ability to minimize the tissue motion - leaving only the blood motion - by proper positioning
(dorsal, lateral, or ventral decubitus) of the subject was studied. A dependence between position and the
level of tissue motion was proven. The level of motion was also shown to depend on depth and varied
among the examined subjects. In both studies the velocity of the motion was determined to be on the order
of millimeters per second.

Changes in the motion properties of the vessel wall due to stenoses was studied by Bonnefous [30]. Di-
ameter variations of the vessel throughout a cardiac cycle were determined for normal and stenotic arteries.
The dilation sequences had different characteristic properties dependent on the pathological condition.

The above studies focused on obtaining some pathological information from tissue motion or minimiza-
tion hereof. The issue of tissue motion modeling for simulation of realistic RF-data is addressed in this
project. The focus is on scannings performed at the carotid artery and in the abdominal region. A model for
each of the motion inducers (heart, lungs, and the pulsating vessel wall) is determined.
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4.2 In-vivo measurements of motion

The development of models for the individual motion contributors were based on investigations of in-vivo
RF-data. The RF-data were recorded with a 3.2 MHz probe. A dedicated real-time sampling system [31]
interfaced to a B-K Medical 3535 scanner was used for data acquisition. The system was capable of sampling
at 15 MHz, which limited the selection of the center frequency of the ultrasound probe. The sampling system
could acquire 0.27 seconds of data along one line in the image. Measurements were performed on 10 healthy
volunteers lying supine, and the probe was hand held throughout the measurements. Each measurement was
repeated 10 times to cover the whole cardiac cycle and a total of 400 independent RF measurements of 950
pulse echo lines were recorded. It was not possible to synchronize the measurements to the ECG signal, and
it could therefore not be guaranteed that the whole heart cycle was covered in the complete measurement
set for each volunteer.

To obtain information about all the different motion contributors, a number of measurements at different
positions and under various conditions were made. Table 4.1 lists the scan sites and the motions present
during measurements.

Dataset Vessel Scan plane Motion

C1 Carotid artery Transverse P,B
scan angle 90o

HV1 Hepatic vein Right liver lobe B,H (P)
intercostal scan

HV2 Hepatic vein Right liver lobe H (P)
intercostal scan

HV3 Hepatic vein Left liver lobe H (P)
epigastric scan

Table 4.1: Measurement conditions for determination of motion due to pulsation (P), heartbeat (H), and
breathing (B).

Measurements were taken at three different sites for a total of four different conditions:

C1. The common carotid artery was scanned in a transverse plane with an insonation angle between the
blood flow and the ultrasound beam of 90o. This site and insonation angle were chosen to obtain
measurements, where all movement could be attributed to pulsation from the target artery.

HV1. An hepatic vein in the right liver lobe was scanned intercostally. The insonation angle was in the inter-
val 34�66o, and the vessel was seen longitudinally. The subject was instructed to breathe shallowly
during measurements in order to keep the vessel within the Doppler gate (size : 19 mm). During mea-
surements the vessel moved back and forth, but was always inside the gate. This vessel was chosen
to obtain measurements where movement could be attributed to both pulsation (venous pulsation of
the vessel in question plus arterial pulsation from neighboring arteries and the heart) and respiratory
movement (the vessel moved back and forth inside the gate).

HV2. The measurement in HV1 was repeated where the subject was asked to hold his breath to eliminate
the influence of respiratory movement.

HV3. An hepatic vein in the left liver lobe was scanned longitudinally in the midline. The insonation angle
was in the interval 0�65o and the vessel was seen longitudinally. The subject was instructed to hold
his breath during measurements. This vessel was chosen to obtain measurements, where movement
could be attributed to pulsation (venous), and heartbeat (the left lobe of the liver moves with every
heartbeat).
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Figure 4.1: Duplex scan image from carotid artery (C1 scanning).

Duplex scan images from a C1 and a HV2 measurement are shown in Figures 4.1 and 4.2.

4.3 In-vivo velocity estimates

The acquired RF-data were bandpass filtered to minimize the noise content in the data. The tissue velocities
were estimated by applying the autocorrelation estimator (see Section 6.3). Thirty-four consecutive RF-
lines were used to obtain high-quality estimates. Tissue velocity estimates as a function of time and depth
were computed for further investigation. The estimates revealed presence of tissue motion. The maximum
velocities (vmax) for the individual volunteers (Pi) are listed in Table 4.2. Differences are seen among these
due to anatomical variations, variations in heartbeat frequency, and level of shallow breathing. No HV3-
data were obtained from subject P4 due to anatomical limitations. The maximum estimates were computed

Volunteer Investigation site

C1 HV1 HV2 HV3
P1 6.3 3.1 3.1 17.0
P2 6.2 4.9 3.9 10.2
P3 9.1 13.2 5.3 9.6
P4 10.6 5.4 2.9 -
P5 9.4 4.9 2.2 9.7
P6 5.7 4.0 2.4 6.2
P7 5.9 11.8 7.7 7.7
P8 7.6 5.8 4.8 11.8
P9 18.1 4.3 4.9 9.3
P10 9.6 4.7 4.3 9.6

Table 4.2: Maximum velocities (in mm/s) for each volunteer for the 4 scan conditions.
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Figure 4.2: Duplex scan image from the right liver lobe (HV2 scanning).

by two different methods for the carotid artery and the hepatic vein. Tissue and blood motion must be
continuous in both time and space, which precludes the possibility of having neighboring estimates that
differ significantly in value. The estimates of the blood velocities are encumbered with uncertainty due to
measurement noise, velocity spread, and signal alteration introduced by the de-noising and echo-canceling
filters (see Chapter 5). A non-smooth velocity distribution arises. As only the velocity level is of interest,
no post-processing filter is applied to smoothen the distribution. A few estimates - the outliers - differ
significantly from the smooth surface and should be removed.

For the hepatic vein the maximum velocity estimate at each estimated position in the signal was deter-
mined for each measured file of RF-signals. Any of these maximum estimates were determined as outliers,
if they had a value outside the interval [µmax 	 3σmax], where µ and σ are the mean and standard deviation
of the computed maximum estimates. Since some outliers were very dominant the elimination process was
repeated, until µ and σ did not change between iterations. After elimination of the outliers the maximum
velocity was found as the maximum (absolute) velocity estimate among all estimates. For the carotid artery
a different approach was chosen based on the following observations. Within the blood vessel non-zero
estimates occur, although theoretically this should not be the case with a scan angle of 90o. Tissue motion
due to pulsation is at its highest close to the vessel and is then damped throughout the tissue. To incorporate
this feature and eliminate outliers the maximum values were determined by applying a spatial median filter
of length 5. The filter operated on the estimates along the scan direction, and the maximum velocity was
found as the maximum output (absolute value) of the median filter for all estimates. The maximum velocity
estimates (vmax) averaged over the 10 volunteers and the standard deviation (σv) among these are listed in
Table 4.3.

Insonation angle correction of the motion direction relative to the transducer were not performed on
the estimates from the hepatic vein. The motion angle for the heart and lungs cannot be determined, and
will most probably not be the same. The above velocity estimates are a measure of the resulting velocity
vector. This vector is the sum of the individual motion vectors from each contributor projected onto the scan
direction. This is not a limitation of this simulation model, as it is the actual scan situation that should be
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C1 HV1 HV2 HV3

vmax 8.9 6.2 4.2 10.1
σv 3.7 3.4 1.7 3.0

Table 4.3: Maximum velocities (in mm/s) and corresponding standard deviations obtained for the 4 scan
conditions, when averaged over all the volunteers.

modeled here. The goal is to create realistic simulated data - not to estimate the exact motion and motion
directions of the heart and lungs.

The tissue velocities are small compared to the usual velocity levels seen in the center of an artery (see
Chapter 3). As the blood velocities go to zero at the vessel wall, the blood and tissue velocities have similar
levels at the boundary. Distinguishing the signals from the blood and the tissue is therefore complicated.

The maximum velocities quantify

� the level of motion,

� the influence from the different motion contributors, and

� the dependence on distance between scan site and the location of the motion generator(s).

The last two properties in the list will be investigated in the following. The obtained maximum velocities
from each volunteer for the different scan sites are compared using a Wilcoxon test [32]. The Wilcoxon test
compares two data sets to determine, whether a pair �x�y� differs in magnitude. The hypothesis is that the
difference �dW � x�y� between the members of each pair �x�y� in the data set has a median value of 0. The
test is used, since only few data are available and the distributions of x and y are unknown. The outcome
of the test is a probability value - p - stating the probability of the hypothesis to be true. For p-values
below 0.05 the hypothesis will be rejected, and the pairs are different in magnitude. Comparing HV1 and
HV2 gives a p-value of 0.01, so the heart influences the motion at the right liver lobe, and the presence of
respiration adds to the motion. The dependence on distance from the heart can be determined by testing
HV2 against HV3. A p-value of 0.004 indicates that the level of tissue motion due to heart motion increases
as the measurements are obtained closer to the heart.

4.4 Motion estimates and its modeling

Based on the above investigations, it can be concluded that tissue motion is present and should be incor-
porated into the simulation program to obtain realistic simulated data. The three motions are modeled
individually, since the analysis showed that their contribution to the total motion depends on the scan site
and the type of motion. The desired simulation model should then include both blood and tissue motion.
Assuming no correlation between the individual motions, the accumulated tissue motion at a given scan site
can be computed by adding the individual motion vectors.

Development of the tissue motion models are based on plots of velocity and motion estimates as a func-
tion of time and depth. The movement m is computed by a time summation of the estimated velocities at
each depth:

m�neΔT�z� �
ne

∑
i�0

v�iΔT�z�ΔT� (4.1)

where ne is the estimate number, ΔT is the time between estimates, v���� is the estimated velocities, and z is
the (radial) depth. Figures 4.3, 4.4, and 4.5 show examples of motion plots, which illustrate features of the
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Figure 4.3: Example of motion found from in-vivo data from the carotid artery as a function of depth in
tissue and time. Pulse rate: 60 bpm.

three different motions as a function of time and depth. The motion is positive, if the scatterers move away
from the transducer relative to an initial position, and negative if movement is towards the transducer. A full
motion sequence cannot be observed, since the sampling system only acquires RF-data in a time interval
of 0.27 seconds. The time duration of pulsation and the heartbeat is approximately 1 second, whereas it
is about 4-5 seconds for breathing. An estimate of the maximum value of the motion therefore cannot be
determined. By combining the recorded sequences an idea of the maximum motion and the course of the
motion can be obtained. One should bear in mind that the value of the maximum motion will vary among
individuals and scan sites.

4.4.1 Pulsation

In Fig. 4.3 motion estimates from the carotid artery are shown. A motion due to pulsation will - in the plots
- show up as two motion sequences moving in opposite directions relative to the center of the vessel. With
this in mind the motion in Fig. 4.3 is due to pulsation. The nature of pulsation [19] gives that the position
change of tissue scatterers has to be controlled by a change in radius relative to the center of the vessel.
The time sequence of the dilation rises fast and then decreases and returns to the initial value. The motion
is damped radially. Less dilation is seen for increased radius relative to the center. The model is therefore
a function of time and depth. When no correlation between time and depth is assumed, the motion model
becomes a product of two functions - one describing the time sequence, and the other describing the depth
dependence. The latter dependence will be modeled as a damping function, which can take the values from
0 to 1. A damping value of zero at some depth is equal to no motion present at this depth. A value of one
results in no damping, and therefore the scatterers will move an amount described by the temporal motion
model. Close to the transducer (for low axial values) hardly any tissue motion is seen, as the transducer is
maintaining a pressure on it. This limits the tissues ability to move around.

31



CHAPTER 4. INCORPORATION OF TISSUE MOTION IN SIMULATED RF-DATA

0

0.1

0.2
10

15
20

25
30

35
−0.4

−0.2

0

Depth [mm]
Time [s]

M
ot

io
n 

[m
m

]

Figure 4.4: Example of breathing motion at carotid artery obtained from in-vivo data.
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Figure 4.5: Example of motion due to heartbeat (HV3) at hepatic vein obtained from in-vivo data.
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Figure 4.6: The damping functions associated to motions from pulsation (a), (b) and heartbeat (c). Solid
lines (–) indicate the model values, and the circles (o) represent the in-vivo data.

The damping radially is described by a cosine damping function:

αp�rd� �

���
�	

1 rd � R

0�5�cos�π rd�R
Rl�R��1� R � rd � Rl,

0 rd � Rl

(4.2)

where αp is the damping level at a given radius rd relative to the center of the vessel, R is the radius of
the vessel, and Rl is the maximum radial distance at which motion will be seen. Beyond Rl the damping
function is equal to zero. In Fig. 4.6(a)-(b) the damping model is compared to two sets of in-vivo damping
sequences. The sequences have been computed by temporal averaging of the estimates and a normalizing
with the maximum dilation. No filtering has been performed on the estimates to eliminate wrong estimates
and thereby smoothen the motion estimates. Therefore the in-vivo data contain some variations in the
damping sequence, which is not expected to be due to tissue properties. One damping estimate has been left
out in the plot, since it originates from an outlier, which is significantly wrong.

To match the fast rise and the slower decay of the temporal dilation, the following model for the dilation
has been chosen:

d�t� � ap sin�πt�Tpulse�exp��bpt�Tpulse� 0 � t � Tpulse� (4.3)

where ap is the amplitude, and bp is the decay term, which is dependent on the heartbeat frequency. The
variable Tpulse represents the period of pulsation. In Fig. 4.7(a) the temporal model for dilation due to
pulsation is shown. The parameters Tpulse and bp are equal to 1 s and 4.7, respectively. This model matches
the in-vivo dilation estimates obtained by Bonnefous [30], where a maximum radial dilation of 0.35 mm
was estimated. Assuming a vessel radius of 4 mm for the carotid artery, a lumen increase of 20% will occur
at the time of maximum dilation.
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Figure 4.7: Temporal models of motion due to pulsation (a), breathing (b), and heartbeat (c). Frequency of
breath: 13 breaths/min. Frequency of pulsation and heartbeat: 60 bpm.

4.4.2 Breathing

Tissue motion from breathing is the only motion contributor, which can be eliminated by asking the subject
to hold their breath. In long examination sessions this cannot be done by the subject, so RF-data with motion
due to breathing can occur. Therefore the ability to simulate this should be investigated. In abdominal
recordings the lung is positioned deeper than the scanned region. The tissue will be pushed towards the
transducer as the lungs expand. The absolute level of motion increases as a function of (radial) depth. The
exact motion direction of the lung wall (relative to the transducer axis) is unknown, so the motion is modeled
as acting along the radial axis - corresponding to what is seen in the motion plot. Motion due to breathing
is a much slower process than pulsation due to the respiration frequency. Breathing can be modeled as a
product of a time and a damping dependent function, when they are assumed independent. The temporal
motion model mb�t� is shown in Fig. 4.7(b) with a respiration frequency of 0.22 breaths/s. The mathematical
relation is given by:

mb�t� ��ab sin�πt�Tbreath� 0 � t � Tbreath� (4.4)

where ab is the amplitude, and Tbreath is the respiration period. The model has a negative sign, since the
motion is acting in the opposite direction of the positive motion axis (z-axis). The damping function αb is
modeled as a linear function of depth (decreasing damping for increasing depth):

αb�z� �

���
�	

0 z � zb

kb�z� zb� zb � z � zmax,

1 z � zmax

(4.5)

where kb determines the rate of decay, zb is the depth, where no motion due to the breathing can be seen,
and zmax is the distance to the motion inducer.
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4.4.3 Heartbeat

The contractions of the heart induce motion in the surrounding tissue. A sequence of motion due to the heart
beating is shown in Fig. 4.5. It contains the same features as for breathing in terms of position of motion
generator and damping, but the repetition frequency is higher - on average 60 bpm. The linear model for
the damping is used (see (4.6)). The model has been compared to an in-vivo data sequence, and the plot in
Fig. 4.6(c) shows a good agreement. Since heart contractions are the driving force of the blood pulsation in
the arteries, one could suspect that the temporal model for tissue motion induced by the heart would be the
same as the model for pulsation. Investigations of motion plots of in-vivo and simulated data have shown
that this is not the case. It is presumed to be due to the more complex motion pattern (translation as well as
rotation) of the heart. The motion induced on the surrounding tissue is still time-varying, but more equally
divided throughout the heartbeat cycle. The temporal model for the tissue motion is plotted in Fig. 4.7(c).
It is assumed that the motion is acting in the radial direction. The sequence matches the temporal model for
breathing, if Tbreath is replaced with Theart - the period for one heartbeat (see (4.6)).

mh�t� � �ah sin�πt�Theart� 0 � t � Theart

αh�z� �

���
�	

0 z � zh

kh�z� zh� zh � z � zmax

1 z � zmax

(4.6)

All the models developed contain the same features regarding time and depth dependence, but the repetition
time, amplitude of motion, and damping vary with scan site and for the individual motion types. Addition-
ally, these model parameters vary among individuals.

4.5 Simulation of motion

Simulations have been performed to verify the developed models. Simulations for the carotid artery (C1) and
the hepatic vein (HV3) have been performed. The transducer was modeled as a 3.2 MHz convex, elevation
focused array with 58 elements. A focusing and apodization scheme matching the used scan probe for the
in-vivo measurements has been incorporated. The point scatterers were given amplitude properties of tissue
or blood. Some scatterers were positioned explicitly to resemble the vessel wall. Any angle orientation of
the vessel relative to the transducer can be chosen. In the following equations this angle dependence is left
out to make them easier to read. A mathematical description of the motion �m for each scatterer is:

�m j�iTpr f � � �m j��i�1�Tpr f ��Tpr f�v j�iTpr f � j�� (4.7)

where �mj is the position of scatterer j in a 3D coordinate system, i is the discrete time index, Tpr f is the
time between pulse emissions, and �vj is the velocity of scatterer j. It is assumed that accelerations occur,
but the level of acceleration multiplied by Tpr f is small compared to the magnitude of the velocity. The
velocity profiles for blood and tissue motion can therefore be assumed continuous within the time interval
Tpr f . Motion due to pulsation results in a motion of the scatterers outside the vessel. All scatterers inside
and outside of the vessel are affected, when motion due to breathing and the beating of the heart is present.
In the simulation all scatterers are assigned an initial position �mj�0�. This is used to compute the scatterers
positions at any given time by adding the contributions from the individual motions. As an example, the
mathematical relation for the computation of the position for scatterers outside the vessel is:

�m j�iTpr f � � �m j�0�� �d�iTpr f ��αp�r���mh�iTpr f ��αh�z���mb�iTpr f ��αb�z�� (4.8)

where each product term is a vector multiplication. The motion of the blood scatterers for the carotid
artery is determined by Womersley’s pulsatile flow model (see Chapter 3). RF-data for 5 seconds have been
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Figure 4.8: Estimates of motion from simulated data mainly due to pulsation at the carotid artery. Pulse
rate: 60 bpm.

simulated to generate data containing the full effect of pulsation, heartbeat, and breathing. In Fig. 4.8 an
example of simulated dilation for the carotid artery is shown. Motion from pulsation and breathing motion
has been incorporated. The damping was modeled by the cosine damping function (4.2) with Rl equal to 20
mm. The scan angle was 90o. The breathing motion is at this point in the simulation not very dominant.
Comparison with Fig. 4.3 reveals a good agreement between the two motions.

For the hepatic vein the blood motion was modeled as a steady flow superimposed on a time varying
flow modeled by Womersley flow model. The diameter was set to 0�6 cm. Simulations for 1 second have
been performed, since only motion due to the heartbeat is present. The damping function in (4.6) was used.
The result of simulation is plotted in Fig. 4.9, and the comparable measured data are plotted in Fig. 4.5.
Comparison reveals a good agreement between the motions. Simulation of realistic data for the abdominal
region is thus possible.

The amplitude levels of the individual motion contributors are variables that change relative to scan site,
respiration and pulsation level, and the subject. These can be set in the simulation model. In the plot of
in-vivo motion at the carotid artery some motion is present within the vessel (center of vessel at depth equal
to 19 mm) - probably because the scan angle was not exactly 90o.

In Fig. 4.10 a comparison of in-vivo and simulated RF-data as a function of time is shown. The insonation
angle is 45o. The tissue motion is seen as the slow varying signal component, and on top of that is the blood
signal. Again the simulated and in-vivo data agree qualitatively. The simulated RF-data thereby contain
both the tissue and blood motion present in in-vivo RF-data.
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Figure 4.9: Motion estimates based on simulated data resembling the HV3 recordings. Pulse rate: 60 bpm.
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Figure 4.10: A measured (left) and simulated (right) RF-signal at the carotid vessel wall at one depth as a
function of time.
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4.6 Summary

Based on the above investigation it can be concluded that tissue motion is present, and should be incorpo-
rated into the simulation to create realistic simulated data. The motions induced by breathing, the beating of
the heart, and pulsation at the carotid artery and in the abdominal region have been investigated. The motion
takes values in the millimeters per second range. It is possible to model tissue motion and incorporate it
into a simulation program. The models contain two terms. The first determines the temporal course of the
motion next to the inducer, which is related to the motion pattern of the moving organ. The motion gets
damped in space, and the second term defines the course of the damping. The simulated RF-data agree
well with in-vivo RF-data. This makes the simulation a realistic and powerful tool in optimizing ultrasound
echo-canceling filters and blood velocity estimators. The repetition frequency of the individual motions and
model amplitudes vary among subjects and scan sites. Therefore choices for these parameters have to be
made and set in every simulation.
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Chapter 5

Pre-processing of RF-data

A clinical examination with ultrasound aims at extracting information of diagnostic value. The acquired
RF-signals must be processed to extract the valuable information present. The processing goes through a
number of steps, and the steps related to blood velocity estimation are discussed in this and the subsequent
chapters. The steps can be divided into three parts: 1) the pre-processing of the acquired signals, 2) the
actual estimation of the blood velocities, and 3) the post-processing of the estimates, which must be per-
formed prior to displaying the computed estimates. This chapter discusses the pre-processing step, and the
estimation and post-processing are discussed in Chapter 6 and 7, respectively.

The acquired signals are contaminated with noise, so a de-noising of the signals must be performed at
first. De-noising with a matched filter is discussed in Section 5.1.

Blood velocity estimation aims at determining the velocity of the blood only. The acquired signals
contain the responses from both blood and the tissue structures. The blood velocity estimation is complicated
by the presence of the tissue responses, and it is desirable to remove them prior to performing the actual
blood velocity estimation. Filters have been derived for this purpose, and they are usually referred to as
clutter and echo-canceling filters. Two of these filters are introduced in Section 5.2.

A complete elimination of the noise and the tissue components is not possible, and non-zero velocity
estimates are computed outside the vessels. Only the blood velocities should be displayed in the CFM
image. By some means it must be determined, which segments of the RF-signals that carry blood velocity
information. In Section 5.3 three algorithms are introduced, which perform this discrimination. Two of the
discriminators represent new approaches.

5.1 Minimization of SNR with matched filter

As the recorded RF-signals are contaminated with noise (electrical and acoustical), pre-processing is per-
formed to minimize the noise content prior to applying any other algorithms. The process of minimizing
the noise content will be referred to as de-noising. In medical ultrasound the de-noising is often performed
with the matched filter hd�t� [33], [34], which is the time reversed of the signal of interest s�t�:

hd�t� � s�T0� t�� (5.1)

where T0 is the temporal length of s�t�. In this case the signal of interest is the emitted signal. In reality only
the excitation signal is known exact, whereas the impulse response of the transducer is less well defined.
An idea of the transducers impulse response can be obtained by testing the transducer. The matched filter
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CHAPTER 5. PRE-PROCESSING OF RF-DATA

is then the time reversed of the convolution of the excitation pulse e�t� with the impulse response in both
transmit (ht �t�) and receive (hr�t�):

s�t� � hr�t�
 �ht �t�
 e�t��

hd�t� � s�T0 � t�� (5.2)

The matched filter matches the signal bandwidth of the signal. When applied, the filter performs a bandpass
filtering determined by the original, emitted signal. As the noise also has components within the pass band,
only part of the noise is removed. The effect of attenuation and thereby alteration of the emitted signal
should be considered and incorporated, if the best performance of the filtering should be obtained at all
temporal positions along the RF-signal. This aspect will not be considered in the following, and the filter
defined above will be employed on the entire signal. This choice implies that the filtered signals will be
somewhat more noisy than data filtered with the ”optimum” filter.

5.2 Echo-canceling filters

The acquired RF-signals consist of the interactions with the different tissue structures and blood. The
sections of the RF-signals originating solely from the interaction with the tissue are of no interest in blood
velocity estimation. When imaging small vessels, the diameter of the vessel is comparable to the axial
extent of the pulse, so a major part of the signal carrying blood velocity information is overlaid by the
high amplitude response from the surrounding tissue and vessel wall. This complicates the blood velocity
estimation, and it is therefore desirable to remove the tissue components prior to performing the estimation.
Several clutter and echo-canceling filters have been developed for removing the tissue components [3], [35],
[36], [37] [38]. A thorough discussion and evaluation of these filters are out of the scope of this project.
Two echo-canceling filters will be introduced and commented on in the following. Their influence on the
blood velocity estimation on a synthetic data set will be evaluated in Chapter 6.

5.2.1 Stationary echo-canceling with high-pass filters

If the tissue surrounding the blood vessels is assumed stationary, the tissue scatterers will be located at the
same spatial position every time a pulse interacts with them. The part of the RF-signal representing the
interaction with the tissue scatterers will be identical in consecutively recorded RF-signals, when no noise is
present. This assumption is the basis for the high-pass echo-canceling filters, which act on the samples from
consecutive RF-lines at the same temporal location relative to the pulse emission. The frequency spectrum
of a constant signal is the DC value. Removal of the stationary tissue therefore requires a high-pass (HP)
filter that filters out the DC value and lets all other frequencies pass unchanged. As the blood is moving, the
frequency spectrum lies at non-zero frequencies and will not be removed by this filter. In Fig. 5.1(a) a sketch
of the spectra is plotted. In reality the tissue is non-stationary due to motion induced by the pulsating vessels,
the heart, and from breathing (see Chapter 4). The presence of noise adds a random signal to the responses
from the blood and tissue. The values of the samples in consecutive RF-lines vary, which correspond to
non-zero frequency components in the tissue spectrum (see Fig. 5.1(b)). The tissue and blood spectra now
overlap, which complicates the separation process. No ideal solution exists. If the filter is designed to
remove the tissue completely, the low blood frequency components are also removed. Estimation of the
low blood velocities close to the vessel wall is then not possible. If the filter is designed to preserve all
blood information, the tissue components will not be removed completely, and non-zero velocities will be
estimated both inside and outside the vessel.
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5.2. ECHO-CANCELING FILTERS

Figure 5.1: Frequency spectrum of tissue and blood components, when the tissue is not moving (a) and
moving (b).

The general transfer function for an Nth order high-pass echo-canceling filter is [3]:

HHP� f � l� �
N

∑
i�1

ai�l exp�� j2π�i� l� f� fsh�

fsh �
c

2vz
fpr f � (5.3)

where the ai�l’s denote the filter coefficients, l specifies the line currently being filtered, and fpr f is the pulse
repetition frequency. N consecutive RF-lines are employed in the filtering. A total of Nl consecutive RF-
lines have been acquired, which put an upper limit to N: N �Nl . The fsh term is related to the axial velocity,
vz, of the scatterers and determines the spectrum properties of the HP-filter. Employment of a finite number
of lines result in a HP-filter, which has a transition band of finite extent between stop and pass band. The
width of the transition band decreases as the number of lines increase. With this in mind as many lines as
possible should be used in the filtering. The presence of the transition band results in alteration of the lower
frequencies in the spectrum, which represent low velocities. The low frequency tissue motion gets filtered
and partly removed, which is desirable. Unfortunately the blood close to the vessel wall also moves at low
velocities, and these signals get altered. Valuable information is removed by the filter, and the accuracy on
the subsequent estimate decreases due to the employed HP-filter. The HP-filter uses samples from N lines to
compute one filtered sample. The number of lines available after filtering are therefore Nl �N, which limits
the amount of data available for the blood velocity estimation. A trade off between the performance of the
HP-filter and the need for several lines for blood velocity estimation exists.

The simplest HP-filter is a 2nd order filter, where a mere subtraction of two samples in two consecutive
lines is performed:

recho�c f m�n� l� �
1
2
�rc f m�n� l�� rc f m�n� l�1��� (5.4)

The variable n represents the temporal location (in number of samples), and recho�c f m is the echo-canceled
output of the filter. Only one line is lost in the filtering, so Nl � 1 lines are available for the subsequent
estimation. A 2nd order HP-filter will be employed and evaluated, when different blood velocity estimators
are evaluated in Chapter 6. The simple filter is easy to implement and employ, but a wide transition band
is obtained. The acquired signals consist of the response from the blood, the tissue structures, and additive
noise. At low velocities the response from blood and tissue will be almost identical in consecutive acqui-
sitions, so the subtraction results in an almost complete cancellation of the response. The filtering causes
a decrease in amplitude of the response. The random noise component will still be present, and the signal
to noise ratio (SNR) decreases in the resulting signal after filtering [3]. The limitations of the HP-filter laid
ground for development of more advanced filters [36], [37] [38], and one of them [35] will be introduced in
the following.
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5.2.2 Echo-canceling with regression line filter

The drawbacks of the HP-filter with respect to the loss of valuable RF-lines and the course of the transition
phase between stop and pass band were the driving force for Hoeks et al. [35] to develop a new echo-
canceling filter. The aim was to develop a filter, where no RF-lines were lost, and the transition band was
narrowed.

Scatterers (blood or tissue) moving at low velocities will move little between two RF-line acquisitions.
Within the time frame of the acquisition of a limited set of RF-lines (usually few milliseconds) the movement
will also be small. Plotting the samples at a given temporal location as a function of line number will reveal
that the movement approaches a straight line. Stationary tissue will give a flat line with a zero slope. The
low velocity components can therefore be removed by fitting a regression line, y, to the set of samples. The
filtering is carried out by subtracting the regression line from the samples. The deviations from the line
remain and will be passed on to the subsequent velocity estimation. The equation for the regression line is:

y�t� l� � mt � l � st (5.5)

l � ��Nl �1��2� � � � �0� � � � ��Nl �1��2

Nl odd�

where mt expresses the mean of the samples at the temporal location t being investigated, and st determines
the slope. An odd number of lines are employed, and the numbering of the lines go from ��Nl � 1��2 to
�Nl � 1��2 rather than from 1 to Nl. Several approaches can be employed to determine the slope but one
should keep the aim in mind: the low velocities should be suppressed, and the high velocities should pass
unaltered. This can be achieved by requiring that the sum of deviations for a negative line index equals the
sum of the deviations for a positive line index [35]:

�Nl�1��2

∑
l�1

�rc f m�t��l�� �mt � st � l�� �
�Nl�1��2

∑
l�1

�rc f m�t� l�� �mt � st � l�� (5.6)

The relation determining the slope becomes:

st � 4
�Nl�1��2

∑
l�1

�rc f m�t� l�� rc f m�t��l����N2
l �1� (5.7)

The output of the echo-canceling filter is recho�c f m�n� l� � rc f m�n� l��y�n� l�, where n indicates the temporal
location in number of samples.

A regression line is determined and applied for each temporal location. The filtering can only be per-
formed after all Nl RF-lines have been acquired, so storage space must be set aside for storing the RF-lines.
The performance and influence of the regression line, echo-canceling filter on blood velocity estimation will
be evaluated in Chapter 6.

5.3 Display algorithms

In CFM-mode the blood velocity estimates are overlaid onto the B-mode image. Motion is present within the
vessels as well as in the surrounding tissue, so non-zero velocity estimates will be computed in both regions.
The presence of noise (measured as well as filter generated) adds a random signal variation on top of the
RF-signals, so the responses from non-moving tissue structures will not be identical in consecutive RF-
lines. Non-zero velocity estimates will be computed in these regions too. Prior to displaying the computed
estimates a discrimination algorithm is needed to determine, which estimates should be displayed. If the
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discrimination is performed prior to the estimation, it can be determined, which segments that carry blood
velocity information and therefore should be processed by the blood velocity estimator. This approach will
lower the computational load of the blood velocity estimation. Whether the discrimination is performed
before or after the velocity estimation, an algorithm must be developed to perform the discrimination.

A comparison of the values of the velocity estimates within and outside the vessels reveals that the
estimates cannot be discriminated by means of their amplitude. A wide and overlapping range of velocities
are computed within as well as outside the vessel. The discriminator must employ other features to perform
the discrimination. In the following 3 discriminators will be introduced and evaluated. The last two represent
new approaches. Ideally the discriminator should be applicable in all scan situations with respect to tissue
types, SNR, and vessel diameter. In this study the SNR is defined relative to the signal level in the section
of the RF-signals, which only contain responses from the blood. Only preliminary investigations have been
performed, so all the scan related issues have not been addressed. Therefore this study is only to be seen
as indicative. Further investigations must be performed before any finite conclusions can be made, but
hopefully the discussion can inspire future work.

The discriminators use information extractable from the acquired and de-noised RF-signals. This study
focuses at the amplitude and energy variations in the RF-signals, along with the signal variations between
consecutive RF-lines. Each RF-line is divided into a set of segments, which consist of a set of consecutive
samples. The number of segments are equivalent to the number of velocity estimates that can be displayed
for each line. The discriminator determines, which segments that carry blood velocity information and non-
blood velocity information, respectively. In the following these two segment types will be referred to as BV
and NBV segments. A segment is assigned as a BV segment if more than 66 % of the samples lie within
the vessel. The discrimination process could also be termed a classification, as the segments are classified
as either BV or NBV segments. Both terms will be used in the following.

5.3.1 Amplitude discriminator

The first discriminator to be introduced and evaluated is the amplitude discriminator. It is a very simple
discriminator and has been used in scanners. As discussed in Chapter 2 the scattering from tissue is much
stronger than from the blood. When imaging larger vessels (e.g. the carotid artery), this shows up as ampli-
tude differences in the recorded RF-signals. It is not the amplitude at any temporal location in the RF-signal,
which is considered, but the peak amplitude levels over a temporal range equaling a couple of wavelengths.
An example is plotted in Fig. 5.2(a). The amplitude difference also shows up in the envelope detected
signal as shown in Fig. 5.2(b). This property makes it possible to develope a discriminator. The amplitude
level in the regions, which relate to the interactions with tissue, is higher, than the amplitude level in the
region, which represents the interactions with the blood alone. A high amplitude signal originating from
the interaction with tissue and vessel wall overlaps the blood signal just inside the vessel. The amplitude
property is therefore not present here. The amplitude differences in the envelope detected data are used to
discriminate BV and NBV segments in RF-signals obtained from larger vessels. A discrimination threshold
is determined, and a decision is made by a mere comparison between the threshold and the amplitude in the
segment. The segment amplitude is computed as the average amplitude over the samples in the segment and
the number of acquired lines:

A�iseg� �
1
σ

1
NsNl

Nl

∑
l�1

Ns

∑
k�1

renv�c f m�l�k� isegNs�� (5.8)

where iseg represents the segment number, and Ns is the number of samples in the segment. The normal-
ization factor �NsNl�

�1 ensures that A�iseg� is independent of the sampling frequency and the number of
acquired CFM lines. The normalization factor σ is introduced to make the feature value independent of
the representation of amplitude (e.g. mV or quantized levels according to the number of bits used). The
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Figure 5.2: Example of an RF-line (a) and the envelope detected signal (b) from the carotid artery. The
vertical lines indicate the location of the anterior and posterior vessel wall.

constant is computed as the average value of the standard deviation in a set of acquired RF-signals. The
discrimination is performed on the de-noised RF-signals acquired for CFM-mode imaging. Ideally a short
pulse should be emitted to minimize the overlap between the tissue and the blood signals at the vessel wall,
which makes the discrimination difficult at this point.

The threshold varies as a function of depth and center frequency, when no compensation for the attenua-
tion is performed. A continuous or discrete implementation of the threshold function can be used. The latter
allows for a simple implementation with a short lookup table and will be employed in the following. The
amplitude decay over distance and center frequency is assumed to be an exponential decaying function, and
the discrete threshold function is modeled as a step function.

The performance of the amplitude discriminator has been evaluated on a set of simulated data, which
resemble RF-data from the carotid artery. The simulation program Field II [26], [27] is used. A focusing and
apodization scheme matching the setup of a B-K Medical 3535 scanner has been employed. The transducer
is modeled as a linear array. Three cardiac cycles were simulated. Tissue motion due to pulsation along with
blood motion were included (see Chapter 4). Table 5.1 lists the choices of simulation parameters. Eight RF-
lines were acquired at each lateral position. RF-data were simulated for the full lateral imaging range of the
transducer (3.6 cm) to cover a wide range of different RF-signals (e.g. location of vessel, location of vessel
close to/far from/at the transmit focus). This gives a frame rate of 4 frames/s. The number of segments
extractable from each line are 61, and a total of 97 imaging lines are present in each of the 13 2D images
generated.

The threshold value changes every 1.2 cm (equal to 38 wavelengths). The step function, which gives
the best classification, for the given data set was determined by generating a range of exponential functions,
converting them into a step function, performing the discrimination, and then evaluating the performance.
The number of correctly classified segments over all frames relative to the total number of segments are
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Parameter Value

Transducer center frequency 5.0 MHz
No. of elements 128
Pulse length 6 cycles
Geometric focus 17 mm
Pulse repetition frequency 4 kHz
Sampling frequency 40 MHz
Radius of vessel 3 mm
Angle between vessel
and transducer 35o

Table 5.1: Choice of parameters for the simulated data used in the performance evaluation of the amplitude
discriminator.

used as an objective measure of performance. The overall and class specific performance are of interest, so
the following three performance values are computed:

� the number of correctly classified segments in total relative to the total number of segments: NT

(independent of classes),

� the number of correctly classified BV segments relative to the total number of BV segments: NBV ,
and

� the number of correctly classified NBV segments relative to the total number of NBV segments: NNBV .

The values range from 0 to 1, and a high performance value is desirable. Before determining the threshold
function, which gives the best performance, a discussion and definition of the expression ”best performance”
is required. About 84 % of the segments in the employed data set are NBV segments. The value of NT

therefore mainly represents the performance on the NBV segments. The question arises, if it is reasonable
to determine the discriminator from this value. Doing so implies that the NBV segments are considered a
lot more important than the BV segments. It is of more concern to perform well on NBV segments than BV
segments. In this case a discriminator could be chosen that performs perfect on NBV segments but does
not perform at all on the BV segments. As the aim is to perform blood velocity estimation and subsequent
visualization hereof, this result does not give the best performance. The performance on the two segment
types - NBV and NNBV - should be used instead. Both values are normalized with the number of segments
in the class, so the favoring of either of the classes is eliminated. This choice still leaves some unanswered
questions about how to determine the discriminator though. It is likely that the maximum of NBV and NNBV

do not occur simultaneously, so this criteria cannot be employed. Then one must ask: which segment type is
more important to classify correct? What is the cost of making a wrong classification? The latter represents
the issue of false positives (type 1 error) and true negatives (type 2 error) from statistics. A type 1 and 2 error
represent the situations, where a true hypothesis is rejected, and a false hypothesis is accepted, respectively.
In the discrimination process this resembles classifying the segments wrong. A BV segment is classified
as an NBV segment, and vice versa. The issue then is: how does one determine, which is more important
to classify correct? The answer to this is not simple and unambiguous. It is dependent on the aim of the
scanning. This statement becomes more clear, when the following two scan situations are considered:

Situation 1
Upon a kidney transplant the blood flow conditions in the new organ are monitored. A lack of flow indi-
cates that the body is rejecting the organ. Countermeasures must be taken. Ultrasound imaging is used to
determine the flow conditions. Under these circumstances the cost of classifying a BV segment as an NBV
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segment is high. The clinician will wrongly draw the conclusion that the kidney is rejected. Under these
circumstances it is important to put emphasis on a high success rate on classifying the BV segments.

Situation 2
Increased flow in the breast tissue could be an indicator of breast cancer. The cost of showing flow, where
there is no flow, is therefore high. The consequence could be a false diagnosis of breast cancer. In this
situation the emphasis should be put on classifying as many NBV segments correctly as possible.

The expression ”the best performance” is not unambiguous. The basis, which should be used to determine
the threshold function for the discriminator, is therefore dependent on the situation. A set of solutions exist.
The scanner must alternate between solutions as the aim of the scanning changes. Determination of the
aim requires an input from the clinician, as it will be very complicated to make any automatic procedure to
determine the anatomical location being scanned.

The goal of the discriminator is to classify as many BV and/or NBV segments correctly relative to the
cost. The maximum of a weighted combination of NBV and NNBV is employed in this study to determine the
discriminator, which gives the best performance:

ϒ̂ � arg max
ϒ

�aNBV �bNNBV �� (5.9)

where a and b are the weights, and the following properties exist: a� b � 1 and �a�b� � 0. The latter
property is introduced to eliminate the discriminator that only works on BV or NBV segments. ϒ represents
the parameters in the exponential function. The weights determine the cost of making a wrong classification.
A high value states that the cost is high, if a wrong decision is made with respect to this segment type. The
discriminator, which gives the best performance, has been determined for three combinations of the weight
values: �a�b� � ��0�7�0�3�;�0�5�0�5�;�0�3�0�7��. The first and last combination could represent the kidney
and breast cancer scenario, respectively. The influence of noise was determined by employing data sets,
where the SNR was 0, 10, 20, and 30 dB. This gives a total of 12 combinations, and the discriminator has
been determined for each combination. In Fig. 5.3(a) the normalized exponential function and the resulting
discriminator (the step function) for the case of �a�b� � �0�5�0�5� and a SNR of 10 dB are plotted. The
normalization factor equals the maximum value of the exponential function. Fig. 5.3(b) shows the best
discriminator and an example of the computed average amplitudes (see (5.8)) for an RF-line. Tables 5.2-5.4
list the values of NBV , NNBV , and NT (in %) for the discriminators. The results show that the amplitude
discriminator is stable to a variation in the SNR. The slight variations result in minor differences of the
parameters in the exponential function, when �a�b� is equal to (0.3,0.7) and (0.5, 0.5). The performance
values NBV , NNBV , and NT vary according to the choice of weights and thereby the cost of drawing a wrong
conclusion. The choice of discriminator to use varies according to the costs.

SNR (dB)
0 10 20 30

NNBV NT NNBV NT NNBV NT NNBV NT

NBV NBV NBV NBV

98.8 89 98.6 88.9 98.5 88.8 98.5 88.8
39.3 39.7 39.8 39.8

Table 5.2: Amplitude discriminator: Number of correctly classified segments (in %) for different SNRs,
when the weights equal �a�b� � �0�3�0�7�.

Some general comments on the performance of the amplitude discriminator can be drawn from the tables.
The NNBV value is a factor of 1.8-2.5 higher than NBV , so the discriminator works better at classifying the
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Figure 5.3: Plot of the best discriminator (a), and an example of the discrimination of an RF-line (b). The
dashed line (- -) indicates the exponential function, the solid line (—) indicates the threshold function, and
the circles (o) indicate the averaged amplitude values computed along an RF-line. The SNR is 10 dB, and
the weights �a�b� � �0�5�0�5�.
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SNR (dB)
0 10 20 30

NNBV NT NNBV NT NNBV NT NNBV NT

NBV NBV NBV NBV

97.1 88.2 97.1 88.1 97 88 97 88
42.6 42.1 42.3 42.3

Table 5.3: Amplitude discriminator: Number of correctly classified segments (in %) for different SNRs,
when the weights equal �a�b� � �0�5�0�5�.

SNR (dB)
0 10 20 30

NNBV NT NNBV NT NNBV NT NNBV NT

NBV NBV NBV NBV

90.1 83.1 88.1 81.5 88 81.4 87.9 81.4
47.5 47.9 48 48

Table 5.4: Amplitude discriminator: Number of correctly classified segments (in %) for different SNRs,
when the weights equal �a�b� � �0�7�0�3�.

NBV segments than the BV segments. Less than half of the BV segments are classified correctly. In Fig. 5.4
the output of the discriminator is plotted along with the true discrimination (2 upper plots). Inspection of the
blood velocity levels in this frame reveals that it contains the systolic phase of the cardiac cycle. The SNR
is 10 dB, and �a�b� are (0.5,0.5). The images reveal that the majority of the misclassified BV segments are
positioned next to the vessel wall, and the misclassification occurs at both the anterior and posterior vessel
wall. The extent of the vessel is therefore always underestimated. This comes as no surprise due to the
overlaid high amplitude tissue signal in this part of the RF-signal. The majority of the BV segments in the
center of the vessel are classified correct. The misclassified NBV segments are spread out over the 2D image.
Inspection reveals that quite a few of the misclassified NBV segments in one frame will show up again in
the consecutive frame. This does not mean that the same misclassifications show up in all frames, but in two
consecutive frames some systematism is present. The performance on a frame, which contains the diastolic
phase, is plotted in the bottom two plots in Fig. 5.4. The performance on the BV segments is poorer, and it is
especially pronounced in the part of the vessel in the lower right part of the image (far from the transducer).
Hardly any of the BV segments are classified correct, which must be considered a major problem. The
trends for the classification are similar, when the weights are �0�7�0�3� and �0�3�0�7�. Of course the number
of misclassified BV and NBV segments increase/decrease, as the focus of the discriminator - by means of
the cost - is changed.

The amplitude discriminator described above is a simple method for discrimination of the segments. The
performance on NBV segments is good but one cannot say the same for the BV segments. The overlapping,
high amplitude response from the tissue and the vessel wall is the reason for the poor performance. The
above investigations were carried out on simulated data resembling a large vessel. The level of overlap will
increase as the size of the vessel decreases, and the amplitude differences - and thereby the basis for the
discriminator - will be less profound or non-existing. It is therefore most likely that the number of correctly
classified BV segments will decrease as the diameter of the vessel decreases.
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Figure 5.4: Performance of the amplitude discriminator on systolic frame (2 upper plots) and diastolic
frame (2 lower plots), when �a�b� � �0�5�0�5�, and the SNR is 10 dB. Black and white indicate BV and
NBV segments, respectively.
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5.3.2 Statistical discriminator

The amplitude discriminator only employs one feature of the signals, and it performs a mere comparison of
the amplitude level with a threshold. Other approaches, which make use of more advanced algorithms and
include more features to discriminate, should be developed. In the following a statistical discriminator will
be considered and evaluated.

Features of RF-signals

Discriminators based on maximum likelihood statistics are of interest, if one can determine a set of features
that makes it possible to distinguish the different segment types. A statistical discriminator can be obtained,
if estimates of the probability density functions (PDFs) of the feature values for both the BV and NBV
segments can be computed. The estimates can be obtained through a histogram analysis. In the following the
PDFs for the BV and NBV segments will be denoted as pf �BV �Xf � and pf �NBV �Xf �, respectively. The feature
number is indicated with f ( f � �1� ���F �), and Xf is the feature value of the segment under investigation. A
decision is made by choosing the segment type that is most likely. In statistics this can be determined by
computing the joint probability densities:

pBV � p1�BV �X1� � p2�BV �X2� � p3�BV �X3� � ��� � pF�BV �XF�

pNBV � p1�NBV �X1� � p2�NBV �X2� � p3�NBV �X3� � ��� � pF�NBV �XF�� (5.10)

where pBV and pNBV are the joint probability densities for the BV and NBV segments, respectively. This
definition assumes that the individual features are independent. This is not the case for the features derived
in this study, but the approach is used to ease the implementation with respect to storing the PDFs. The
maximum value of the two joint probability densities determines the type of the segment. Investigation into
this area has been initiated.

Feature 1

The basic assumption for the amplitude discriminator is that the distribution of amplitudes are different for
the BV and NBV segments. The amplitude differences can also be expressed as a difference in the energy
content in the segments. This measure is determined from the acquired RF-signals (no envelope detection
performed). The first feature (feature 1 - F1) to be used in the statistical discriminator is computed as:

F1�iseg� �
1
σ

Nl

∑
l�1

Ns

∑
k�1

�rc f m�l�k� isegNs��
2� (5.11)

Again a normalization with σ is performed to make the feature independent on signal levels and represen-
tation. Normalization with the number of lines and samples has been left out here, as it merely performs a
scaling of the values. These normalization factors will also be left out in the following. It should be included
though in an implementation to make the method invariant of the sampling frequency and the number of
lines.

Due to attenuation the energy level decreases as a function of depth and center frequency. This makes
the probability density function dependent on the depth, and a set of density functions (as look-up tables)
for each feature are required. This complicates the situation, and it has been decided to apply TGC compen-
sation prior to computing the feature value to compensate for the attenuation. Two probability densities are
determined and employed for each feature (one for the BV and the NBV segments, respectively).

Feature 1 is only valid for larger vessels, where the level of overlap between tissue and blood responses
is small.
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Feature 2

The energy content in the segments after echo-canceling is also worth considering as a feature. The energy
content in the echo-canceled NBV segments is expected to be smaller than the same measure for the BV
segments. A large portion of the tissue components has been removed or dampened a lot. The resulting
signals will contain high amplitude samples mostly in the regions carrying blood velocity information. The
probability density functions for the BV and the NBV segments will overlap to some extent due to the influ-
ence from noise, the moving tissue structures, and the characteristics of the echo-canceling filter. The level
of overlap determines the suitability of this feature in the discrimination process. Feature 2 (F2) is defined
as:

F2�iseg� �
1
σ

Nl�1

∑
l�1

Ns

∑
k�1

�recho�c f m�l�k� isegNs��
2� (5.12)

At this point it should be noted that the echo-canceling in this study of the discriminators has been performed
with the 2nd order HP-filter discussed in Section 5.2.1 only. A major part of the tissue response, which is
overlaid the blood response in smaller vessels, will be removed by the echo-canceling filter. It is therefore
likely that this feature will be valid for both small and large vessels.

Feature 3

The RF-signal measured from non-moving scatterers will be identical in consecutive acquisitions, if no
noise is present. The standard deviation on a set of samples from consecutive lines at a given temporal
location will be zero. Moving structures (blood or tissue) will result in a non-zero standard deviation, as the
sample values vary. The motion of the tissue structures is small, and in most cases smaller than the motion
of the blood (see Chapter 4), so it is to be expected that the distributions of the standard deviation for the
NBV and the BV segments differ quite a lot. This property becomes feature 3 in this study. Some overlap
will inevitably exist, and the overlap determines the features suitability for discrimination. Feature 3 (F3) is
computed as:

F3�iseg� �
1
σ

Ns

∑
k�1


��� 1
Nl �1

Nl

∑
l�1

�rc f m�l�k� isegNs��µk�isegNs�
2� (5.13)

where µk�isegNs is the mean value of the set of samples from the set of consecutive lines at the temporal
location k� isegNs (in samples). The level of overlap will increase, as the diameter of the vessel decreases,
since the overlap between tissue and blood signals increases.

Feature 4

The idea behind feature 3 can also be used on the echo-canceled signals, and then it might also be feasible
for smaller vessels. The standard deviation computed on the echo-canceled signals is used as feature 4 (F4),
and it is computed as:

F4�iseg� �
1
σ

Ns

∑
k�1


��� 1
Nl �2

Nl�1

∑
l�1

�recho�c f m�l�k� isegNs��µecho�k�isegNs�
2� (5.14)

A total of 4 features are suggested in this study. Feature 1 and 3 are probably only applicable for larger
vessels, whereas feature 2 and 4 might also be usable for smaller vessels.

Generation of density functions

The estimation of the probability density functions for the different features has been carried out on simu-
lated data resembling RF-signals obtained from the carotid artery. The same data set as the one employed in
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the evaluation of the Amplitude Discriminator are used. The same basis material is thereby employed, and
the performance of the two discriminators can be compared. In this study the distributions and performance
on smaller vessels have not been evaluated.

The probability density functions are derived from a histogram analysis of the feature values. Two
functions arise for each feature - one for the BV and the NBV segments, respectively. A finite number of
equally spaced bins, nbins, will be employed, which span the value range of the features. Each bin spans an
interval Ib�b� �1� ���nbins�, of values. The estimated density functions are discrete, and they will be employed
as such in the discrimination. The feature value Xf is assigned as belonging to a bin, Ib, and the probability
of the feature value is then determined as the estimated probability of that bin. An empiric rule is used in
statistics to determine the sufficient number of bins to be employed in the analysis [32]:

nbins � 1� log2�Nsegments�� (5.15)

where Nsegments is the number of segments available for the analysis. A total of 67967 NBV segments and
13346 BV segments are extracted from the simulated data. The minimum requirement for the number of
bins are 17.1 and 14.7, respectively. In this study a somewhat higher number of bins - 76 - have been used
to increase the resolution in the feature values and thereby the ability to distinguish. The range of feature
values spanned from 0 to 15, and this range was divided up into the 76 bins. Estimates of the probability
density functions pf �BV and pf �NBV were obtained by performing the histogram analysis, and then dividing
each bin value with the total number of BV and NBV segments, respectively. The computed estimates of the
density functions for the features are plotted in Figures 5.5-5.8 for different levels of the SNR. A discussion
of the PDFs for each feature follows. It will reveal if the assumptions made in the derivation of the features
hold and to what extent.

Inspection of the PDFs for feature 1 in Fig. 5.5 reveals that the feature values of both segment types span
the full value range. The probability mass is therefore spread out over the full range. In some regions the
two segment types are more probable though, and these regions do not overlap much. Quite a few NBV
segments lie in the region [0,1.5], whereas the BV segments are seen more often in the region [1.0,5]. The
high amplitude signals inside and just outside the vessel, which originate from the wall (see Fig. 5.2), result
in the non-zero probability at the high feature values for both segments. The plots show that feature 1 is
stable to different SNRs. The suitability of employing feature 1 is limited by the spread and overlap of the
probability mass.

The energy content after echo-canceling (feature 2) is concentrated in the low range of values. The PDFs
in Fig. 5.6 overlap a lot for a SNR of 0 dB. At higher SNRs the NBV segments are highly concentrated
around 0, whereas the BV segments span the range [0,1]. The inserted box in the plot represents a zoom of
the PDF in the region 0 to 2. The density functions of feature 2 for BV and NBV segments differ to a high
degree, and a discrimination based only on feature 2 will have a high rate of correct classified segments.
Some misclassification will occur due to the overlap around 0. It is to be expected that more BV segments
will be misclassified than NBV segments.

The probability density functions in Fig. 5.7 of feature 3 reveal that the properties of the BV and the NBV
segments differ to a high degree, when the standard deviation property between samples in consecutive lines
is employed to discriminate them. A level of overlap is present as expected but the level decreases as the
SNR increases. The presence of noise makes the signals from non-moving structures appear to be moving
to some extent (on a random basis), and therefore a non-zero value of the standard deviation is encountered.
As the SNR decreases, this effect gets more pronounced, and it shows up in the PDFs. The probability
densities for a SNR of 0 dB clearly show the effect. The feature value for the NBV segments are centered
around 2 rather than 0 (equaling no motion). The effect also influences the BV segments but not as much.
For the case of a SNR of 0 dB a high degree of overlap exists between the two density functions, which
makes the discrimination process complicated under these conditions. For higher SNRs the level of overlap
decreases, and the density function of the NBV segments narrows and moves toward 0. The probability
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Figure 5.5: The probability density function for feature 1 for different SNRs. The densities for the BV and
NBV segments are plotted with dotted (...) and dashed lines (- -), respectively.
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Figure 5.6: The probability density function for feature 2 for different SNRs. The densities for the BV and
NBV segments are plotted with dotted (...) and dashed lines (- -), respectively.
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Figure 5.7: The probability density function for feature 3 for different SNRs. The densities for the BV and
NBV segments are plotted with dotted (...) and dashed lines (- -), respectively.
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Figure 5.8: The probability density function for feature 4 for different SNRs. The densities for the BV and
NBV segments are plotted with dotted (...) and dashed lines (- -), respectively.
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density function for the BV segments is stable for SNRs over 10 dB, and spans the value range from 1 to
5. From these observations it seems as feature 3 carries some valuable information for the discrimination
process. Its suitability depends on the level of overlap - just as is the case for feature 1 and 2.

The PDFs for feature 4 in Fig. 5.8 show most of the same characteristics as feature 3 but a few differences
should be mentioned. The density function of the BV segments is spread out more and spans values from 1 to
6. At a SNR of 0 dB the two PDFs overlap quite a bit, which make the discrimination process very difficult.
For all SNRs the level of overlap is increased, which makes this feature less suitable for discrimination
compared to feature 3.

The above inspections of the PDFs show that overlap is present for all features, and the level hereof is
dependent on the feature and the SNR. By computing the joint probability densities one can hope that the
limitations of some features are counteracted by the other features. An example makes this statement more
clear. The segment under investigation is an NBV segment, and the SNR is 10 dB. The value of F1 is 1,
which resembles a low energy content. The probability values p1�BV �1� and p1�NBV �1� take the values 0.04
and 0.02, respectively. If a classification was based merely on the PDFs for feature 1, this segment would
be classified as a BV segment. No motion is present in the NBV segment, and the value of F3 is 0.64.
The probability values p3�BV �0�64� and p3�NBV �0�64� take the values 0.008 and 0.54, respectively. The joint
probabilities pBV and pNBV become 0.00032 and 0.0108. It is therefore most likely that the segment is an
NBV segment. The combination of feature 1 and 3 in the discrimination produced the correct classification
despite the discrimination limitation of feature 1. The limitations of feature 1 have been counteracted by
feature 3 for this particular segment.

The discriminator defined in (5.10) makes use of all features. In principal any combination of the features
could be employed. In the above example the discriminator was based on the combination of feature 1 and
3 only. In the following all combinations of the 4 features (a total of 15) will be evaluated.

Results

The performance of the statistical classifiers are evaluated both objectively and subjectively. The objective
measure is identical to the one employed in the evaluation of the amplitude discriminator. Table 5.5 lists
the performance values (in %) for each of the classifiers for the different SNRs. Before determining the
statistical discriminator, which gives the best performance, the results will be commented on. None of
the classifiers can produce a 100 % correct classification, which is a result of the overlap between density
functions. For a SNR of 0 dB the success rate on the classification of the BV segments ranges from 63.3-90.9
%, and the same measure for the NBV segments ranges from 86.2-95.2 %. The difference in performance
on the two segment types spans the interval from -1.2 % to 31.9 %. Most often the success rate on NBV
segments is higher than the same measure for the BV segments. As the SNR increases the success rate
on classification increases for the BV segments. The overall success rate level for SNRs � 0dB ends up
around 90 % or more for most classifiers. The classifiers L - O use only one feature in the classification.
The discussion in the following describes the results for SNRs � 0 dB. Classifier L, which only uses feature
1 in the discrimination, has the poorest performance of all classifiers. This comes as no surprise, as the
two probability density functions overlap quite a lot. Classifier N is stable to the variation in SNR, and
the success rate is high. It performs really good on BV segments but has the second worst performance
on NBV segments. The success rates of classifier M and O vary for the different SNRs, but the success
rates are above 90 % for both BV and NBV segments. The features 2 and 4 contain valuable information
for the discrimination. Actually classifier O out performs most of the other classifiers, which use two or
more features. Unfortunately the performance of classifier O is very poor for a SNR of 0 dB, and therefore
makes this classifer less usable as discriminator. Still, if a discriminator based on only one feature should
be designed classifier O along with classifier M should be considered.
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SNR (dB)
0 10 20 30

Class- Fea- NNBV NT NNBV NT NNBV NT NNBV NT

ifier tures NBV NBV NBV NBV

A 1,2,3,4 91.9 90.8 93.3 93.9 95.2 95.5 94.8 95.2
84.8 96.7 96.9 96.8

B 1,2,3 90.3 89.8 92.7 93.4 94.1 94.2 94.1 94.2
87.6 96.9 94.6 94.4

C 1,2,4 93.7 90.3 94.7 95 96.8 96.5 96.6 96.4
73.1 96.5 94.9 95.4

D 1,3,4 90.8 90.4 95.6 95.8 96.1 96.5 96 96.4
88.7 96.7 98.3 98.6

E 2,3,4 91.4 89.9 92.8 93.4 95.4 95.5 95 95.2
82 96.7 96 96.6

F 1,2 89.2 87.9 91.7 92.5 95.2 94.6 95.3 94.6
81.5 96.7 91.4 90.9

G 1,3 90.5 90.5 90.9 91.9 91 92 91 92.1
90.9 97 97.4 97.2

H 1,4 91 89.3 96.5 96.3 96.9 97.1 96.4 96.8
80.5 95.1 98.1 98.9

I 2,3 90.5 89.4 92.6 93.3 94.9 94.3 94.4 93.9
84.1 96.8 91.7 91.7

J 2,4 95 89.8 95.2 95.3 97.4 96.8 97.3 96.6
63.7 95.7 93.8 93.2

K 3,4 88.2 87.9 95.5 95.5 96.4 96.7 96 96.4
86.5 95.7 98.3 98.3

L 1 86.2 82.8 86 82.6 86 82.6 86 82.6
65.3 65.5 65.5 65.5

M 2 95.2 89.9 92 92.7 95.5 94.8 95.6 94.8
63.3 96.8 91.3 90.8

N 3 88.5 88.7 89.7 90.9 89.7 91 90 91.2
89.7 97.2 97.7 97.4

O 4 87.6 85.1 97.9 96.8 96.8 97 96 96.5
72.8 91.7 98.1 98.9

Table 5.5: Statistical discriminator: Number of correctly classified segments (in %) for the different classi-
fiers at different SNRs.
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Cost SNR (db)
(a,b) 0 10 20 30

(0.5,0.5) G D H H
(0.7,0.3) G D H H
(0.3,0.7) G H H H

Table 5.6: The best statistical classifier as a function of SNR and the cost.

Although the success rate is rather high for all classifiers, the classifier, which produces the best classi-
fication, should still be determined. This study focuses on features for larger vessels, and therefore all 15
classifiers are evaluated with respect to determining this classifier. As the features were defined, a comment
was made on the likelihood of a feature being valid for both smaller and larger vessels. As no investigations
on RF-data from a smaller vessel have been carried out, no conclusions will be drawn on the choice of clas-
sifier for small vessels in this context. The cost issue of taking a wrong decision must still be considered, and
(5.9) must be employed to determine the discriminator. Table 5.6 lists the discriminators, which produces
the best performance for the different SNR levels and the 3 combinations of the cost weights. A range of
classifiers are to be employed dependent on the cost and the SNR. The discriminators use a combination of
two or three features. The influence of the SNR requires that the SNR in the data is determined. From an
implementation point of view this complicates the situation. The noise level should be determined prior to
acquiring data for imaging. If this approach is not desirable, one discriminator must be determined. The
choice hereof is based on the overall performance for the range of SNRs. The best classifier for the SNR
range 10-30 dB is:

� classifier H, when the cost weights, �a�b�, are (0.5,0.5),

� classifier D and H, when the cost weights, �a�b�, are (0.7,0.3),

� classifier H, when the cost weights, �a�b�, are (0.3,0.7).

At SNRs above 0 dB classifier H can be used for the discrimination independent of the choice of the cost
weights. Determination of the best discriminator over the full range of SNRs (0-30 dB) gives the following
results:

� classifier D, when the cost weights, �a�b�, are (0.5,0.5),

� classifier D, when the cost weights, �a�b�, are (0.7,0.3),

� classifier D, when the cost weights, �a�b�, are (0.3,0.7).

The results show that the best performance for all the cost and noise situations is obtained with classifier D.

The objective performance measure does not tell anything about the distribution of the correctly classified
and misclassified segments in the images. The misclassification should not be systematic or group together
but rather be spread out over the images. Therefore a subjective performance evaluation is needed as well.
Through inspection of the images of the classification the following can be learned:

� Often the misclassified NBV segments group together next to the vessel wall. This problem occurs as
the systolic phase of the cardiac cycle starts. An example hereof is plotted in Fig. 5.9(a). The results
originate from classifier D for a SNR of 0 dB. The true classification is given in Fig. 5.9(b).

� For some classifiers the misclassified BV segments group together in the vessel.
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Figure 5.9: Plot of some of the problems encountered with the statistical classifiers. (a) Classification of
systolic frame with classifier D for a SNR of 0 dB. (b) The true classification of the systolic frame in (a).
Black and white pixels represent BV and NBV segments, respectively. (c)-(d) Examples of misclassification
in the transition between segment types. Black indicates that a NBV segment has been classified as a BV
segment, and vice versa for the white pixels.

� The transition between BV and NBV segments are not well-defined. The extent of the vessel is
classified both to wide and narrow in the same frame as shown in Fig. 5.9(c). The misclassification
of the transition some times extent several segments (see Fig. 5.9(d)).

So even though the objective measure expresses a high success rate on classification, the subjective inspec-
tion of the images reveals that discrimination problems are encountered. The problem in the systolic frames
occurs as the cardiac pulsation starts, and the vessel walls and the surrounding tissue are pushed outward at
high speed. The problem of the systematic misclassification of NBV segments in the systolic frames does
not exist, when classifier H is employed. For a SNR of 0 dB the success rate on BV segments is 8.2 %
lower than the same measure for classifier D, and the problem of grouped misclassified BV segments is
increased. The inability to determine the exact extent of the vessels are not solved with classifier H or any
of the other classifiers. In Fig. 5.10 the classification results on a systolic and a diastolic frame for the SNR
0-20 dB is plotted. Inspection of all the images in the cardiac cycle reveals that the plotted results do not
represent the worst or best classification result but rather the average performance. The misclassification is
fairly non-systematic and non-grouped. Though, some misclassifications repeat themselves in consecutive
frames. This effect is mostly seen, when the SNR is 0 dB. The performance on the NBV segments is also
at its lowest in this case. Overall this effect is much less pronounced than for the amplitude discrimina-
tor. All 15 statistical filters perform better than the amplitude discriminator with respect to the number of
correctly classified segments (see Section 5.3.1). The amplitude discriminator has a high success rate on
NBV segments, which exceeds quite a few of the statistical discriminators. The real achievement obtained
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Figure 5.10: Performance of classifier H on systolic frame (4 upper plots) and diastolic frame (4 lower
plots) for different values of the SNR along with the true classification. Black and white represent BV and
NBV segments, respectively.
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SNR (dB)
0 10 20 30

NNBV NT NNBV NT NNBV NT NNBV NT

NBV NBV NBV NBV

Amp. 97.8 88.2 97.1 88.1 97 88 97 88
42.6 42.1 42.3 42.3

Stat. 91 89.3 91 96.3 96.9 97.1 96.4 96.8
80.5 95.1 98.1 98.9

Table 5.7: Performance comparison of the amplitude (Amp) and statistical (Stat) discriminator for �a�b� �
�0�5�0�5�.

by employing the statistical discriminator is the high success rate on classification of the BV segments.
An improvement of a factor of 1.5-2.4 has been obtained. Table 5.7 shows these trends. The results for
the amplitude discriminator (Amp) are the results for the best classifier for each SNR. The performance of
classifier H as a function of SNR is listed as the best result for the statistical discriminator (Stat). The ideal
situation of a 100 % correct classification has not been obtained but the statistical classifier is closer to this
goal than the amplitude discriminator.

In the present study 4 features have been derived and evaluated. The results show that all 4 are valuable
for the discrimination. More features are probably extractable for the RF-data, and other statistical classifiers
will be obtained. From the above investigations it can be concluded that the acquired RF-data contain
information of value for the discrimination. It is worth determining and including other features than the
amplitude feature in the discrimination process.

5.3.3 Neural network

The statistical discriminator makes use of the joint probability of an outcome to classify the type of seg-
ment. Another approach would be to determine a parametric relation between the features, which produces
an output that states the type of segment. The relation can be both linear and non-linear, and the contri-
butions from the different features can be weighted. In the statistical classifier all features were assumed
equally important for the discrimination. The span of possible relations are infinite. The process of deter-
mining the proper relation becomes to complicated and incalculable, unless the process is automated. In the
following a classifier based on a neural network [39],[40] is investigated. The network simply describes a
mathematical relation, and the complexity of the relation is dependent on the choice of structure. Looking
into the literature of neural networks will reveal that many different network types exist. This study will
not investigate which type is the optimum for the given situation. A 2-layered feed-forward neural network
[39], [40] will be employed, and the suitability of employing this network for classification of the NBV and
the BV segments will be investigated.

The literature shows that neural networks have been employed before for classification of RF-signals
[41], [42], [43], [44]. The features employed in the classification were derived from filtered and processed
data (e.g. audio data, envelope detected, and color-coded data). In the study by Kahl et al. [42] the filtered
RF-signals were pre-segmented by a physician, so only signals in the region of interest (the myocardium)
were filtered and processed before the features were derived. Feleppa et al. [44] employ a neural network
to distinguish cancerous and non-cancerous tissue of the prostate, and the classification is performed on
spectral parameters derived from the RF-signals. In general a set of features were derived and employed.
The same approach will be used in this study. The aim is to discriminate between BV and NBV segments
for CFM imaging.
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Figure 5.11: Architecture of a 2-layer feed-forward neural network expanded with a SoftMax function.

The lay-out of the network structure is given in Fig. 5.11. The feed-forward term refers to the fact
that no feed-back loops are present. The flow of information is only in the forward direction. A set of
input values, x1� ���xnI , which represent features derived from the segment under investigation, are fed to the
network and processed by the two layers in the network. The first layer is termed the hidden layer, where a
set of ”neurons”, h1� ���hnh , process the weighted sum of the inputs. The variables nI and nh determine the
number of inputs and the number of hidden neurons, respectively. The wi j indicates the weight multiplied
onto input xi, when it contributes to the sum at the hidden neuron hj. The output of each hidden neuron
is weighted by ω jl and passed to the output layer. The contributions are summed, and the output values
φ1� ���φC�1 of the network are available. The variable C determines the number of classes (types of segments)
in the classification, and ωjk is the weight that is multiplied onto the value from hidden neuron hj, when
it contributes to the sum at the output neuron φk. To make the functionality of the 2-layer feed-forward
network clearer the above description is exemplified by writing up some of the mathematical relations in the
network. The relations giving the output of hidden neuron number 1, η1, and the output number 1, φ1, when
four inputs are fed to the network, and two hidden neurons are present in the first layer, are:

η1 � tanh�w11 � x1 �w21 � x2 �w31 � x3 �w41 � x4� (5.16)

φ1 � ω11 �η1 �ω21 �η2�

From the output values, φk, it can be determined which class the segment under investigation belongs to. The
level of certainty on the estimate is not given. A probability value of the segment belonging to a particular
class contains this information. To interpret the output values as probabilities, the output values are passed
through a normalized exponential transformation known as the SoftMax function [45]. This extension of the
neural network is included in Fig. 5.11. A set of probabilities values, y1� ����yC�1�yC, result. The segment is
assigned to the class with the highest probability.

The optimum weights wi j and ω jk for the problem at hand must be determined. It requires access to
a data set, where the input values and the corresponding output values are known. Through minimization
of an error cost-function the optimum weights are determined. Programs that can determine the weights
have been developed, and one of them is employed in this study. The program is named Neural Classifier
1.0 [46], and it is written by Jan Larsen and Morten With Pedersen [47]. It uses a common optimization
algorithm for feed-forward networks, which is named the pseudo Gauss-Newton scheme. The cost function
is a negative log-likelihood function. The cost function determines the error on classification. Minimization
of the error is performed on an iterative basis. After each iteration the weights are assigned new values,
which cause the error to decrease some and thereby move toward the global minimum. The optimization
schemes are manifold, but they all aim at reaching the global minimum fast without getting caught in local
minima. A thorough discussion of these algorithms can be found in [39], [40].
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The process of determining the network, which gives the best classification, is usually referred to as the
training process. In this study the data set are divided into three subsets of equal size, and two of them
are used to train the network. The ratio of NBV and BV segments are constant in the subsets. The third
subset is used to evaluate the performance of the network, when the network has been determined. A choice
has to be made on the number of hidden neurons in the network before the training can be performed.
From an implementation point of view the network should be small, so the number of calculations are
minimized. Still the network should have a certain size that allows for the generation of a relation, which
can perform a good classification. The optimum number of hidden neurons are not known a priori, so a set
of neural networks are evaluated for a range of values of nh. The optimum network is determined according
to a performance criteria. Initially all weights are assigned to randomly small values, which are Gaussian
distributed [40]. When the training starts, the network has a fixed size, which is determined by the number
of weights and the number of hidden neurons. This choice does not necessarily give the best performance,
so algorithms have been developed to determine the importance of the weights. The least important weight
is pruned away (set to zero) on an iterative basis, until all weights are zero. The least important weight is the
one that causes the least change in the error value, when it is removed. The network is pruned by employing
the algorithm Optimal Brain Damage (OBD) [40]. The error can increase or decrease in each iteration. The
best choice of network - by means of the choice of number of non-zero weights - is determined by plotting
the number of non-zero weights against the error. The training and pruning are performed on both the
training and test set, so two curves are obtained. The joint minimum of the two determines, which network
should be used for classification. The performance is then determined by letting the network classify the
evaluation set, and then compare the outputs to the true outputs. Often the performance on the evaluation is
(slightly) poorer than the performance on the test and training sets. This is not a surprise, as the network has
been determined from the two latter sets and never has been introduced to the evaluation set.

In this study 5 networks are evaluated. The features determined for the statistical discriminator are used
as inputs, so a total of 4 inputs are fed to the network. The results can thereby be compared to the results
of the amplitude and statistical discriminator. The network has one output, as the number of classes are two
(the BV and the NBV class). The networks differ on the number of hidden neurons, and a range from 4-20 in
steps of four is investigated. The SNR in the data set was 20 dB. In Fig. 5.12 an example of the error curves
for the training and test sets as a function of the number of non-zero weights are plotted. The network has 12
hidden neurons. The joint minimum occurs for 55, so the network, which produces the best classification,
has 55 non-zero weights. For each network the optimization is performed. The results of the optimization
are listed in Table 5.8. The first column specifies the number of hidden neurons. The initial size with respect
to number of weights, nw, is listed in the second column, and the final number of non-zero weights, nw�opt

appear in column 3. The performance with respect to the number of correctly classified segments in each of
the subsets and in total is listed in the last 4 columns. All the networks make use of a subset of the weights.
No improvement in the classification of the training and test set is seen, when nh is larger than 4. The
performance on the evaluation set is slightly lower as expected. In the current investigation the difference
is very little, so the networks have determined a relation that discriminates well. The overall performance
increases as nh increase. The performance with respect to correct classification of NBV and BV segments
is listed in Table 5.9. The NBV segments are close to being classified 100 % correct, and no significant
improvement on the classification is obtained for nh � 4. The success rate on BV segments is also very
high, and it increases as a function of nh (except for nh � 16). The best performance is obtained for nh � 20.
The performance of the networks with 12 and 20 hidden neurons is so similar that one would often choose to
work with the smallest network to decrease the computational load. In Fig. 5.13 the structure of the neural
network, which produces the best classification, for nh equal to 12 is plotted. The middle layer represents
the hidden layer. A line between two circles (o) tells that the weight is non-zero. The lack of a line between
two circles tells that the weight is zero. All 12 hidden neurons play a role in the classification. All features
contribute. Each of them is connected to 8 hidden neurons but none of them are connected to the same 8
hidden neurons. Fig. 5.14 shows plots of the classification on a systolic and diastolic frame along with the
true classification, when the neural network with 12 hidden neurons is employed. The classification is very
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Figure 5.12: Plot of training (- -) and test (-) error as a function of the number of non-zero weights, when
nh � 12.

SNR = 20 dB
nh nw nw�opt TR TE EV T

4 25 20 98.5 98.5 98.4 98.4
8 49 40 98.6 98.6 98.4 98.5

12 73 55 98.6 98.6 98.5 98.5
16 97 70 98.6 98.6 98.4 98.5
20 121 89 98.6 98.6 98.5 98.6

Table 5.8: The optimum size of the investigated neural networks along with the performance of the network
on the training (TR), test (TE), and evaluation (EV) set. The overall performance (T) on the full data set is
listed in the last column.

SNR = 20 dB
4 8 12 16 20

NNBV 98.9 99 99 99 99
NBV 94.4 94.5 94.8 94.5 94.9

NT 98.4 98.5 98.5 98.5 98.6

Table 5.9: Neural network: Number of correctly classified BV and NBV segments (in %) as a function of
the number of hidden neurons.
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Plot of the optimum neural network

Feature 1

Feature 2

Feature 3

Feature 4

Output 1

Figure 5.13: Plot of the optimum neural network, when nh are 12, and the SNR is 20 dB.

good on both BV and NBV segments. The majority of the misclassified NBV segments appear around the
vessel wall, when the extent of the vessel is overestimated. The misclassified BV segments also show up
around the vessel wall, when the extent of the vessel is underestimated.

The investigations show that it is possible to determine a relation between the features, which can be
used to discriminate BV and NBV segments, when the SNR is 20 dB. A range of SNRs must be investigated
before any final conclusions can be made. This has been done for the network with 12 hidden neurons. The
additional SNRs were 0, 10, and 30 dB. The networks, which produce the best performance, here fore have
56, 49, and 49 non-zero weights, and the network structures differ. For the 10 and 30 dB situation only 11
hidden neurons are present in the final network. In Table 5.10 (the last row) the performance on the BV and
the NBV segments is listed for all investigated SNRs. At a SNR of 0 dB the success rate on classification
of BV segments is below 80 %. For increasing SNRs the performance improves and gets beyond 90 %.
The success rate on NBV segments is above 97 % for all SNRs. Plots of the classification reveal that the
majority of misclassified segments are located in the region next to the vessel wall. The extent of the vessel
is both over- and underestimated.

In Table 5.10 the results for the 3 different discriminators discussed in this chapter are summarized.
Both the statistical and neural discriminator out perform the amplitude discriminator for all SNRs. The
performance of the statistical discriminator and the neural network is very similar. Looking at the overall
performance the statistical discriminator is to be preferred over the neural and the amplitude discriminator,
as the statistical discriminator has the best overall performance on the BV segments.

5.3.4 Summary

The amplitude discriminator is a simple method for discrimination, but its performance is very poor on the
BV segments. Only 42 % of these segments are classified correct. The success rate on the NBV segments is
97 %. More features should be determined, and more advanced algorithms must be used in order to make a

66



5.3. DISPLAY ALGORITHMS

Lateral position [mm]

A
xi

al
 p

os
iti

on
 [m

m
]

Classification of systolic frame

−10 0 10

10

15

20

25

30

35

40

Lateral position [mm]

True classification of systolic frame

−10 0 10

10

15

20

25

30

35

40

Lateral position [mm]

A
xi

al
 p

os
iti

on
 [m

m
]

Classification of diastolic frame

−10 0 10

10

15

20

25

30

35

40

Lateral position [mm]

Classification of diastolic frame

−10 0 10

10

15

20

25

30

35

40

Figure 5.14: Classification with neural network of a systolic frame (2 upper plots) and a diastolic frame (2
lower plots).
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SNR (dB)
0 10 20 30

NNBV NT NNBV NT NNBV NT NNBV NT

NBV NBV NBV NBV

Amp. 97.8 88.2 97.1 88.1 97 88 97 88
42.6 42.1 42.3 42.3

Stat. 91 89.3 91 96.3 96.9 97.1 96.4 96.8
80.5 95.1 98.1 98.9

NN. 97.9 94.5 99.1 97.8 99 98.3 99 98.3
77.3 91.5 94.8 94.8

Table 5.10: Performance comparison of the amplitude discriminator (Amp), the statistical discriminator
(Stat), and the neural network (NN) for �a�b� � �0�5�0�5�.

good discrimination. This will result in better CFM images. Two new approaches - a statistical and a neural
discriminator - have been investigated. They employ 4 new features, which were determined in this study.
The features are the energy content in the segments before and after echo-canceling (a total of two features),
and the variations in amplitude between consecutive RF-lines before and after echo-canceling (a total of two
features). Both discriminators out perform the amplitude discriminator and come close to the optimum goal
of being able to discriminate all BV and NBV segments correctly. The success rate on classification of the
BV and NBV segments gets beyond 91 %, when the SNR is above 0 dB. The results only hold for larger
vessels such as the carotid artery. Further investigations into using these methods on smaller vessels must
be carried out.

More features probably exist and should be included, if they contribute positively to the performance
of the discriminators. The class type of neighboring segments in time (between frames) and space (within
frame) might carry valuable information. It is probably not very likely that a segment carries blood velocity
information, if all its neighbors in time and space do not carry blood velocity information. Investigations
into this aspect should be considered, included as one or more features in the discrimination process, and
evaluated with respect to its influence on the performance.

What is to be learned from the investigations is that the RF-signals contain information applicable for
discrimination. Several features should be derived and incorporated in advanced discrimination algorithms,
which can combine the information at hand.

5.4 Summary

This chapter has been concerned with the pre-processing of the RF-signals prior to blood velocity estimation.
A matched filter for minimization of the noise content in the RF-signals has been introduced in this chapter.
It has been and will be employed for de-noising of the RF-signals in this and the subsequent chapters.

Echo-canceling must be performed prior to performing blood velocity estimation, and two filters here
fore have been introduced. The influence of the filtering on the blood velocity estimation will be evaluated
in the subsequent chapter. The evaluation is only carried out on a synthetic data set.

Non-zero velocity estimates are produced both inside and outside the vessel. Only the estimates, which
relate to the motion of the blood, are of interest and should be displayed. Three discriminators have been
derived and evaluated in this chapter. The first discriminator employs the variation in the amplitude levels in
the envelope detected RF-signals. Less than 50 % of the segments, which carry blood velocity information,
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were classified correct. Therefore other approaches for the discrimination were considered. In this study two
new approaches were developed. One is based on maximum likelihood theory, and the other uses a neural
network for the classification. Both approaches out perform the first approach. The new approaches included
more features derived from the RF-signals in the discrimination. The features are the energy content in the
segments before and after echo-canceling, and the signal variation between sample values in consecutive
RF-lines (also computed before and after echo-canceling). The new discriminators are able to perform a
correct classification of more than 91 % of the investigated BV segments. This is valid, when the SNR is
above 0 dB. The performance on the NBV segments is similar for the three discriminators. The success rate
reaches and gets beyond 91 %. The introduction of more features and the employment of more advanced
algorithms have resulted in a better basis for discriminating the BV and the NBV segments. More features
should be considered and incorporated. The segment types of neighboring segments in time and space could
contain valuable information.
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Chapter 6

Blood velocity estimators

The velocity distribution in the human vessels carries information of diagnostic value (see Chapter 1). There-
fore methods for estimation of the blood velocities from the recorded RF-signals are desirable. If a continu-
ous, monochromatic wave is emitted, an estimate of the average velocity in the medium can be determined
from the acquired response due to the Doppler shift [3]. Estimates of the blood velocities with a level of
spatial resolution along the propagation direction are not obtained with this approach. Other methods have
been developed over the years to obtain images of the velocity distribution with a level of resolution. The
resolution is achieved by emitting a wave of finite temporal extent instead. The resolution is inversely pro-
portional to the length of the emitted pulse. An infinite resolution is not obtainable, as the excitation of the
transducer with a Dirac delta impulse will result in an emitted pulse, which is a couple of cycles long. This
is due to the impulse response of the transducer. A lower limit on the pulse length is therefore given and is
transducer dependent. An infinite short pulse is not desirable, as all estimators discussed in the following use
a set of samples to improve the accuracy on the estimate. The final choice of pulse length to use for blood
velocity estimation depends on the estimator. The estimation is carried out on the acquired RF-signals. The
signals are split up in a number of segments, and the velocity is determined for each of these. Employing a
short pulse makes estimation based on the Doppler shift very difficult. The emitted pulse spans a band of
frequencies (the bandwidth usually ranges from 60-100 % of the center frequency), and the attenuation in
the medium changes the spectrum of the propagating pulse. This spectral change dominates over the change
generated by the Doppler shift [3], so the effect of the Doppler shift is negligible and hardly detectable. The
estimation therefore relies on other features of the acquired RF-signals, and these are discussed in Section
6.1.

A selection of estimators are presented and evaluated in Sections 6.3-6.9. The advantages and disadvan-
tages will be pointed out. Two new estimators are presented in Section 6.7 and 6.9. The first combines two
of the presented estimators, whereas the last is an expansion of the maximum likelihood estimator discussed
in Section 6.8. The new maximum likelihood estimator incorporates properties of fluid mechanics, which
predicts that the velocities are correlated in time and space.

The performance of the estimators is evaluated on two sets of data, which are defined in Section 6.2.

6.1 Properties of the RF-signals for blood velocity estimation

An understanding of the acquired RF-signals must be obtained prior to developing blood velocity estimators.
The nature of the acquired RF-signals will be discussed in the following. The basic properties of wave
propagation and the interaction with a medium were discussed in Chapter 2. A comprehensive model for
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the received RF-signals will not be derived in this context. Instead, some features of the linear propagation
and the linear interaction will be discussed and modeled, since the estimators introduced in the following
rely on linear properties [3].

A pulse is emitted, and it propagates in the medium, which consists of a spatial distribution of scatterers.
The pulse is reflected and scattered as it interacts with the medium. The acquired signal is influenced by:

� the distribution of scatterers and their scattering characteristics,

� the attenuation,

� the Doppler shift,

� the beam width of the emitted field,

� the noise, and

� the impulse response of the transducer in transmit and receive.

In the following discussion it is assumed that the properties of the scatterers are constant over the time of
interaction with the emitted pulse. The velocity and the scattering properties of the scatterers are constant.
The size of the scatterer is small compared to the length of the emitted pulse. Under these conditions the
scatterers can be considered as point reflectors [34]. In the simple situation with only one, non-moving
scatterer the acquired signal rc�t� will be a scaled version of the emitted signal e�t� [3], [34]. The scaling
depends on the scattering properties of the scatterer. The time of arrival determines the distance from the
transducer to the scatterer. When the scatterer is moving, a frequency shift fd is experienced due to the
Doppler shift. This shows up as an expansion or compression of the time axis [3]. A simple model of the
complex received signal rc�t� is [3], [34]:

e�t� �
�

Et f �t�exp� j2π f0t�

rc�t� � S
�

Et f �t�2t0� fd

f0
t�exp� j2π� f0 � fd��t�2t0� fd

f0
t���n�t�� (6.1)

where Et is the energy of the transmitted signal. The complex envelope of the emitted signal is represented
by f �t�, and it is assumed that

�
f �t�2dt � 1. The parameter S determines the scaling of the signal, which is

introduced by the scattering. The effect of attenuation has not been included in this model, but it will be in
the following. The time of arrival is equal to 2t0 and is determined by the distance R0 from the transducer
to the scatterer: t0 � R0�c. The influence of the noise is represented by the additive term n�t�. The noise is
assumed random and Gaussian distributed.

When multiple scatterers are present, the acquired signal will consist of the sum of contributions from
these scatterers [34], [48]. The individual contributions are influenced by the beam width and the attenu-
ation. In medical ultrasound the width of the emitted wave is sought minimized in the directions perpen-
dicular to the direction of propagation to increase resolution. Only scatterers lying within the spatial region
bounded by the beam width will interact with the propagating wave and contribute to the acquired signal.
The signal amplitude of the pulse varies over the extent of the beam, and the scattered signal is modeled as
a scaled version of the emitted pulse. The effect of attenuation must also be included. As the attenuation
is frequency dependent, the individual frequency components in the emitted signal experience different at-
tenuation. Therefore the attenuation cannot be modeled as a mere amplitude scaling. A linear filter g�t� t0�
is used instead [48], and the resulting signal is obtained by convolving the envelope of the emitted signal
with g�t� t0� [3], [48]. The impulse response of the transducer influences the signal. In this discussion this
effect is included in the envelope of the emitted signal. When only considering linear propagation and linear
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interaction the simplified model for the acquired signal is [48]:

e�t� �
�

Et f �t�exp� j2π f0t�

fa�t�2ti� fd�i

f0
t� � g�t �2t0� fd

f0
t� ti�
 f �t�2ti� fd�i

f0
t�

rc�t� �
�

Et ∑
i

Sibi�ti� fa�t�2ti� fd�i

f0
t�exp� j2π� f0 � fd�i��t�2t0� fd

f0
t���n�t�� (6.2)

where the index i indicates the contribution from the ith scatterer. The term bi�ti� determines the scaling due
to the beam width, and it is dependent on the spatial position indicated by ti. It should be stressed again that
this model is not complete and does not include all factors of the in-vivo situation. The model only indicates
some features of the RF-signals. The modeling of the influence from the beam width as a mere scaling is
an approximation to the real situation. It is assumed that the influence only depends on the spatial position,
but in reality a temporal dependence also exists. The full description of the influence is determined by the
so-called spatial impulse response [3], [49]. The influence gets to be a filtering rather than a scaling of the
pulse. A thorough discussion of the spatial impulse response and the resulting filtering is out of the scope of
this work. As discussed in the introduction to this chapter the Doppler shift and the attenuation changes the
spectrum of the propagating pulse. The latter factor dominates, so the signal alteration due to the Doppler
shift is negligible. The spatial location of the individual scatterers determines the temporal position of the
contribution to rc�t� from each scatterer. The velocity information is not extractable from one RF-line, since
ti only determines the scatterers location in the signal. The change in position should be determined, and
therefore a set of RF-lines must be acquired.

In medical ultrasound the set of RF-lines are acquired within a few milliseconds. Within this time
frame the velocity of the scatterers can be assumed constant [50]. The movement of the scatterers between
acquisitions is usually less than 1 mm even for high blood velocities [3]. The following example verifies
this. The blood velocities take values up to 1-2 m/s. The time between acquisitions are determined by Tpr f ,
which is usually less than a few milliseconds. For a velocity of 1 m/s and a Tpr f of 1/4000 s the movement
between acquisitions is equal to z � v �Tpr f � 0�25 mm. So the movement is very small. The beam width
and beam profile can be assumed constant within this range [3]. The attenuation will be slightly different.
Still the scattered response acquired from each scatterer is similar in consecutive acquisitions. The velocity
of the individual scatterers vary, and therefore their relative distance changes between acquisitions. The
sum of contributions from a group of scatterers in consecutive acquisitions is not identical. The change in
distance between scatterers is very small due to the short time frame for acquisition of several RF-lines and
the level of the blood velocities. If two neighboring scatterers move at a velocity of 0.4 and 0.5 m/s, the
scatterers will move 0.1 and 0.125 mm, respectively. The distance between the scatterers changes by 0.025
mm between acquisitions, which can be considered small. The response from a group of scatterers are not
identical but similar in a set of consecutive RF-lines. Similar patterns, which are temporally shifted, exist
in the RF-lines. An example hereof is plotted in Fig. 6.1, where four consecutive RF-lines are plotted. The
RF-lines have been generated with Field II [26], [27]. No noise is present in the signals. The plot clearly
reveals that the RF-lines are not identical but fairly similar. The blood velocity estimators make use of this
property and track the movements of the patterns. An estimate of the velocity can then be obtained.

The acquired RF-signals are a result of the contributions from a large number of scatterers. If the con-
tributions from each of the scatterers are assumed independent, the Central Limit Theorem [51] states that
the distribution of the amplitude in the RF-signals is Gaussian distributed. The blood particles cannot be
assumed independent [3]. Still, investigations have shown that the amplitude distribution is approximately
Gaussian distributed with a zero mean [3], [52]. The amplitudes follow a complex Gaussian distribution
with zero mean, when the amplitudes are represented on complex form.
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Figure 6.1: A set of consecutively acquired RF-lines, where scatterers have moved between acquisitions.

6.2 Evaluation data

Before moving on to the actual introduction and evaluation of a selection of estimators, the data sets used
for the evaluation are defined. A performance evaluation requires access to a set of data, where the exact
velocity distribution are known a priori. Many factors influence the performance of the estimators. Some
are strictly related to the estimator algorithm, whereas others arise because of the properties of the RF-
signals. An example of the latter is the velocity distribution of the scatterers. The individual scatterers move
at different velocities relative to their spatial location in the vessel. In-vivo RF-data are characterized by
carrying information for a spread of velocities within a set of samples due to the emission of a pulse of finite
length and finite beam width. This complicates the estimation process as several samples are used. The
increased inaccuracy is not due to the estimator itself but due to the properties of the RF-signals. Two types
of data set - synthetic and simulated data - are used in the present study. The synthetic data set will determine
the performance of the estimator itself, where the effect of beam width, velocity spread, and attenuation have
been eliminated. The simulated data will resemble in-vivo RF-signals, where the properties of these signals
thereby get to influence the performance.

6.2.1 Synthetic data

In this study a signal, which contains some of the features from the in-vivo situation, is employed in the
generation of the synthetic data. A signal, which resembles the measured response from the interaction
between the emitted pulse and a distribution of blood scatterers along a line, has been chosen. In this way
the effect of beam width has been eliminated. The issue of velocity spread does not exist, if all scatterers
move at the same constant speed. The blood scattering is modeled as a white, zero mean, random signal
with a Gaussian amplitude distribution [3]. The transducer excitation pulse is a sine pulse, and the number
of cycles are estimator dependent. Present estimators require either a short (1-2 cycles) or a long pulse (from
about 6 cycles). The impulse response of the transducer is modeled as a Hanning weighted sine signal with
2 cycles. The interaction between the propagating pulse and the scatterers is described by a convolution,
so the scattered signal is computed by convolving the blood and pulse signal. Noise is introduced and
modeled as white, zero mean Gaussian noise. No correlation exists between the noise in consecutive lines.
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This approach equals the method used by Jensen [3]. The generation of the synthetic data goes through the
following steps:

� generate the scattered signal,

� convolve the scattered signal with the impulse response of the transducer in transmission and recep-
tion,

� time shift this signal according to the velocity, the pulse repetition frequency, and the line number. A
set of consecutive lines are generated,

� add noise to each of the generated signals, and

� perform matched filtering to minimize the noise content.

For the data set generated here, the pulse repetition frequency is 4 kHz. Two set of signals are generated,
where the length of the excitation pulse is 1.5 and 6 cycles, respectively. The generation process is repeated
four times, as four velocities - v � �10�20�30�40� cm/s - are investigated. One hundred noise realizations
are generated to make a statistical evaluation. The mean, µ, and the standard deviation, σ, on the velocity
estimates are obtained.

Synthetic data, which can be employed for evaluating the performance of the individual estimators,
have been generated. As will become clear in the following sections, the performance of the estimators is
influenced by a number of factors and parameters. This influence is determined by performing an evaluation,
where the factors and parameters are varied. The influence from the following factors and parameters will
be evaluated:

� the number of RF-lines Nl available prior to echo-canceling,

� the number of samples Ns from an RF-line used in the estimation,

� the sampling frequency fs,

� the signal to noise ratio : SNR � �0�10�20�30� dB,

� the type of echo-canceling filter : no echo-canceling filter, the 2nd order HP filter, or the regression
line filter (see Chapter 5).

The possible range of values for Nl, Ns, and fs are dependent on the estimator and echo-canceling filter and
will be defined in each situation. In this study the number of samples used are stated in units of pulse lengths.
A pulse length is defined as the length of the resulting pulse obtained, when the excitation pulse has been
convolved with the transducers impulse response in transmit and receive. The number of samples within
one pulse length are dependent on the sampling frequency. In Fig. 6.2 a section of two consecutive RF-lines
are plotted, when a short and a long excitation pulse are used, respectively. Only one velocity estimate will
be computed, and samples from the middle section of the RF-lines will be employed in the estimation. All
RF-lines are de-noised with the matched filter (see Section 5.1) prior to performing the estimation.

6.2.2 Simulated data

Simulated data resembling RF-data acquired from the carotid artery have been generated with Field II [26],
[27] (see Chapter 4). The in-vivo properties with respect to velocity spread, attenuation, and beam width
are then present in the data and get to influence the estimation process. A focusing and apodization scheme
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Figure 6.2: Examples of the synthetic data, when emitting a long (two upper plots) and short (two lower
plots) pulse. A section of two consecutive RF-lines spaced 6 pulse emissions are plotted. The SNR is 20
dB.
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Parameter Value

Center frequency of pulse 5.0 MHz
No. of elements 128
Pulse length 1.5 / 6 cycles
Geometric focus 17 mm
Pulse repetition frequency 4 kHz
Sampling frequency 40 MHz
Radius of vessel 3 mm
Angle between vessel
and transducer 35o

Table 6.1: Choice of parameters for the simulated data used in the performance evaluation of the blood
velocity estimators.

matching a B-K Medical 3535 scanner connected to a linear array with 128 elements has been used. The
parameters for the current simulation are listed in Table 6.1. Both tissue motion (from pulsation) and blood
motion are included (see Chapter 4). One cardiac cycle (one second) has been simulated. The lateral extent
of the CFM image equals half the imaging range of the transducer. The pulsing strategy alternates between
acquiring one RF-line for the B-mode image, and then 8 RF-lines for the blood velocity estimation. With this
scan setup a frame rate of 10 frames/s is obtained for the CFM-mode image and 5 frames/s for the B-mode
image. The low frame rate is of no concern in the current study, as the aim is to evaluate the performance of
the estimators rather than displaying many images. The sound velocity is equal to 1540 m/s. The simulated
data are de-noised with the matched filter. The echo-canceling is performed with the 2nd order HP filter. The
resulting, filtered signals are processed by the estimators. The velocity profiles in 10 consecutive frames can
be determined from the data set.

6.3 Autocorrelation estimator

A group of scatterers traveling at a constant axial velocity of vz will have moved a distance z � vz � Tpr f

between two emissions. As the scatterers have moved, the time of interaction between the scatterers and
the pulse is shifted. As discussed in Section 6.1, the part of the signal representing the interaction with this
particular group of scatterers will (ideally) show up at a new temporal location ts in the acquired response.
The new location should be determined. The emitted signal and the acquired response are oscillating signals.
Inspection of the acquired RF-signals from two consecutive emissions at the same temporal location will
reveal that the movement can be approximated by a phase shift, φ, of the oscillating signal [3]:

rc f m�t� l �1� � rc f m�t � ts� l�

ts �
φ

2π f0

φ � �2π f0
2vz

c
Tpr f � (6.3)

where l and l �1 indicate two consecutive lines, and f0 is the center frequency. The movement and thereby
velocity of the group of scatterers can be determined, if an estimate of the phase shift can be computed.
For this to hold it is assumed that the velocity is constant within the time frame of the two emissions. This
assumption is valid, when the time frame is less than 10 ms [50]. Different approaches can be employed to
obtain an estimate of the phase shift [3]. The acquired RF-signals are sampled upon acquisition. The signals
are therefore represented by a discrete set of samples. An estimation scheme applicable for this situation
must be developed. Kasai et al. [53] derived a relation, which computes an estimate of the phase based on
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the discrete samples. In order to determine the direction of the motion (towards/away from transducer) the
complex signal is needed, which in the following will be represented by: rc�c f m � x� j � y. The imaginary
part - the Q component - is the 90o phase shift of the real part - the I component. In digital systems the
Q component is determined by Hilbert transforming the RF-signal, since this transformation is capable of
shifting all frequency components the desired 90o. The estimate of the phase shift at a given temporal
location in the RF-signal is [3]:

φ̂ � arctan

�
y�l�x�l�1�� y�l�1�x�l�
x�l�x�l �1�� y�l�y�l�1�

�
� (6.4)

The terms in the denominator and numerator correspond to the real and imaginary part of the discrete,
complex autocorrelation function at lag 1, which is defined as [3]:

R̂�1� �
1

�Nl�e�1�Ns

Nl�e�1

∑
l�1

Ns

∑
j�1

r�c�c f m�l� j�rc�c f m�l �1� j�� (6.5)

where 
 represents the complex conjugate operation. Averaging over a range of samples, Ns, and over a
set of lines, Nl�e, has been introduced in (6.5) to improve the accuracy of the phase estimate. Nl�e is the
number of lines available for the estimation after echo-canceling. In reality the estimate of the phase shift
is computed from the echo-canceled data. The subscript ”echo” will be omitted here and in the following
sections to make the equations easier to read. By combining the above equations an estimate of the velocity
in a given temporal location can be computed. The estimate is:

vz �� c
2π f02Tpr f

arctan

�
Im�R̂�1��
Re�R̂�1��

�
� (6.6)

where Im and Re denote the imaginary and real part, respectively. With this definition motion away from the
transducer is positive, and motion towards the transducer is negative. This sign convention will be employed
for all estimators. Equation 6.6 determines the velocity component along the propagation direction of the
pulse. The true velocity is obtained by determining the projection angle and then compensating here fore.

The output of the inverse tangent operation is limited to the interval �� π�π�. This corresponds to a
movement of half a wavelength. If the true phase shift is outside this interval, it will get projected into this
interval. A bound on the maximum velocity that can be estimated correctly arises:

vmax �
c
4

1
f0Tpr f

� (6.7)

The level can be varied by proper choice of the scan parameters. The maximum velocity bound is increased,
if the pulse repetition frequency, fpr f � 1�Tpr f , is increased, and/or a transducer with a lower center fre-
quency is employed. The projection of phase shifts outside the interval follows a cyclic nature. A true phase
shift of π� φ̂ will be aliased down to �π� φ̂.

The standard deviation, σv, on the velocity estimate computed from two consecutive lines is [3]:

σv �


c

4π2 f 2
0

1
Tpr f Tp

�vz�� (6.8)

It is a function of the center frequency, the time between emissions, the temporal length of the emitted pulse
Tp, and the magnitude of the velocity. A longer pulse gives a better estimate. By decreasing the number of
pulse emissions per second ( fpr f ) the standard deviation decreases. A trade off between the accuracy and
the maximum detectable velocity thereby occur with respect to choosing Tpr f . The same problem exists for
the choice of f0. The accuracy increases as the center frequency is increased, but the maximum detectable
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velocity decreases. Averaging over several samples and lines decreases the variance. The expression for σv
does not include the influence of the noise on the estimation.

The above velocity estimator is termed the autocorrelation estimator and determines the phase shift. The
method is said to be a narrow band, frequency domain method. An oscillating signal arises, if the samples
from consecutive lines are plotted as a function of the line number. The oscillation frequency is determined
by the phase shifts. Estimation of φ equals estimation of the frequency. Therefore the method is referred to
as a frequency method. The narrow band term refers to the employment of a long pulse in the emission.

A long pulse is required to obtain an estimate with a low standard deviation. Unfortunately then another
issue gets to influence. In the human arteries the velocity varies as a function of spatial location (see Chapter
3). A long pulse will interact with a range of scatterers, which move at different velocities. The recorded
RF-signal in a temporal interval equal to the pulse length therefore will contain information for a range of
velocities due to the velocity spread. The estimated velocity for a given temporal position will be an average
of the velocities. The variance on the estimate will increase for increasing spread. The expression in (6.8)
does not take into account the velocity spread [3]. A finite pulse length has to be employed. The choice of
pulse length depends on the desired resolution, but pulse lengths from 6 to 32 wavelengths are employed.

Although the recorded RF-signals are matched filtered to remove noise, the noise component within the
frequency band of the RF-signal is not removed. The remaining noise will decrease the accuracy of the
estimate. The presence of noise introduces a positive bias on the velocity estimate, when the echo-canceling
is performed with the HP filter [3] or the regression line filter. This can be proven by splitting up the signal
in two terms - the desired response and the noise - and passing them through the equations related to the
echo-canceling and the estimation. The noise influence does not cancel out. The bias decreases as the SNR
increases. The low velocities are degraded the most [3].

The autocorrelation estimator has the following disadvantages:

� a long pulse has to be emitted, which lowers the axial resolution and the accuracy of the estimate due
to the velocity spread,

� the maximum detectable velocity is bounded, and aliasing errors occur if the velocity exceeds the
boundary,

� the choice of the pulse emission frequency influences the estimate both positively and negatively, so
a compromise must be made with respect to accuracy and maximum detectable velocity,

� the estimate is biased due to the noise influence.

The method is very popular though, as the computational load is low. The number of multiplications
Nm�autocor and additions Na�autocor performed to calculate the complex autocorrelation functionR̂�1� are:

Nm�autocor � 4Ns�Nl�e�1��1

Na�autocor � 3Ns�Nl�e�1�� (6.9)

The determination of Nm�autocor and Na�autocor are based on the definition of R̂�1� in (6.5). It is assumed that
4 multiplications are performed to compute the product of two complex numbers. The last multiplication
comes from multiplying with the normalization term 1��Ns�Nl � 1��. Implementation of the estimator re-
quires that the variables in the equations are assigned a value. The variables are the number of lines Nl, the
number of samples Ns, and the sampling frequency fs.
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Figure 6.3: Performance of the autocorrelation estimator: the true (—) and estimated (*) velocities along
with the standard deviation for a SNR of 0 and 20 dB. No echo-canceling filter was applied. Nine lines
were employed. The sampling frequency equals 30 MHz, and the number of samples are equal to one pulse
length.

6.3.1 Performance on synthetic data

The performance of the estimator on synthetic data has been determined, and the results are presented in the
following. The estimator parameters were varied as follows:

� number of lines: Nl � �3�6�9�12�15�18�21�24�,

� sampling frequency: fs � �15�20�30�40�60� MHz,

� number of samples: Ns � �0�25�0�5�0�75�1�0�1�25�1�5�1�75�2�0� times the length of the emitted pulse.
The length in samples is dependent on the sampling frequency.

When the regression line echo-canceling filter is employed, the number of lines employed in the estimation
must be an odd number. In that situation the evaluation is only performed for the odd values of Nl . The
maximum velocity detectable is 30.8 cm/s.

In Figures 6.3-6.11 the performance of the estimator is plotted, as the different parameters and factors
(echo-canceling filters) are varied. The performance is determined by means of the mean and the standard
deviation on the estimates over the 100 realizations. When one parameter is varied, the others are kept
constant at: the SNR is 10 dB, Ns is equal to one pulse length, Nl are 9, and the sampling frequency is 30
MHz. Please refer to Appendix B for tables containing the performance for the range of combinations of
the velocities, the parameter values, and the echo-canceling filters. The best performance is defined as the
estimation, which produces the lowest standard deviation and still is able to compute a velocity estimate,
which is within 	 2 cm/s of the true velocity. A good estimate has been determined, if the mean is within 	
2 cm/s of the true velocity, and the standard deviation is below 1 cm/s.
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Figure 6.4: Performance of the autocorrelation estimator as a function of the number of lines and the SNR.
No echo-canceling filter applied. The sampling frequency is 30 MHz, and the number of samples are equal
to one pulse length. The true velocity is 10 cm/s.
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Figure 6.5: Performance of the autocorrelation estimator as a function of the number of samples and the
sampling frequency. No echo-canceling filter applied. The SNR is 10 dB, and 9 lines were employed. The
true velocity is 10 cm/s.
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Figure 6.6: Performance of the autocorrelation estimator: the true (—) and estimated (*) velocities along
with the standard deviation for a SNR of 0 and 20 dB. HP echo-canceling filter was applied. Nine lines were
employed. The sampling frequency is 30 MHz, and the number of samples are equal to one pulse length.
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Figure 6.7: Performance of the autocorrelation estimator as a function of the number of lines and the SNR.
HP echo-canceling filter applied. The sampling frequency is 30 MHz, and the number of samples are equal
to one pulse length. The true velocity is 10 cm/s.
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Figure 6.8: Performance of the autocorrelation estimator as a function of the number of samples and the
sampling frequency. HP echo-canceling filter applied. The SNR is 10 dB, and 9 lines were employed. The
true velocity equals 10 cm/s.
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Figure 6.9: Performance of the autocorrelation estimator: the true (—) and estimated (*) velocities along
with the standard deviation for a SNR of 0 and 20 dB. Regression line echo-canceling filter was applied.
Nine lines were employed. The sampling frequency is 30 MHz, and the number of samples are equal to one
pulse length.
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Figure 6.10: Performance of the autocorrelation estimator as a function of the number of lines and the
SNR. Regression line echo-canceling filter applied. The sampling frequency is 30 MHz, and the number of
samples are equal to one pulse length. The true velocity is 10 cm/s.
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Figure 6.11: Performance of the autocorrelation estimator as a function of the number of samples and the
sampling frequency. Regression line echo-canceling filter applied. The SNR is 10 dB, and 9 lines were
employed. The true velocity is 10 cm/s.
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The bound on the maximum velocity that can be estimated and the resulting aliasing show up clearly in
Figures 6.3, 6.6, and 6.9. Although the bound is 30.8 cm/s, the velocity estimate of the scatterers moving
at 30 cm/s is aliased due to the influence of the noise. The problem is usually rectified by increasing the
pulse repetition frequency. Unfortunately this has the effect of decreasing the imaging depth. The results
for the velocities 10 and 20 cm/s are discussed in the following. The estimator is biased, and the bias takes
a positive value (as expected). The bias is dependent on the SNR, Ns, Nl, and the applied echo-canceling
filter. The bias takes a value in the range from 1-10 % of the true velocity for the given data set. For some
choices of Ns the bias increases as Nl increase, and vice versa. The first situation is present in Fig. 6.4.
An oscillation between decreasing and increasing bias as a function of Nl is also seen (see Fig. 6.7). The
following trends can be derived from the non-aliased results:

� the standard deviation decreases as the number of lines are increased,

� the standard deviation decreases as the SNR increases,

� the choice of Ns, which gives the best performance, is dependent on the SNR and the number of lines.
The variation on the standard deviation for the span of parameter values is about a few millimeters
per second in most cases, so the difference in performance is very small. The variation decreases as
the SNR increases,

� the performance is independent of the sampling frequency.

The levels of the mean and the standard deviation vary, when the different echo-canceling filters are
employed. The influence of the different filters is not unambiguous. It depends on the velocity level and
the choice of Nl and Ns. The difference in the level of the standard deviations for the 3 filters is very small.
The maximum variation is a few millimeters per second, but most often it is much less than 1 mm/s. A
successful estimation can be obtained with either of them. This conclusion is valid, if more than 3 RF-lines
are available. The regression line filter is not able to produce good estimates for any combination of the
other parameters, if Nl are equal to 3 lines. The three data points do not contain enough information to
make a good echo-canceling. The filtering alters the signal, and makes the subsequent estimation difficult
(impossible).

The autocorrelation estimator performs well, as long as the velocities are below the aliasing bound. A
non-zero, positive bias exists. Many lines should be employed to obtain the highest accuracy. The choice of
the number of samples is dependent on the velocity level, the number of lines, and the SNR, but the variation
is small for the span of values. Samples equal to one pulse length give an overall good performance.

6.3.2 Performance on simulated data

Other issues than optimum performance must be considered when implementing the estimator on a com-
mercial scanner for CFM-mode imaging. An infinite number of lines cannot be used, as 1) the velocity can
only be assumed constant within 10 ms, and 2) the frame rate goes down dramatically. In CFM-mode one
wants to follow the temporal evolution of the velocities in a bounded spatial area. A finite number of lines
must be employed, and the choice depends on the spatial extent of the CFM image and the desired frame
rate. A lower limit also exists, as a certain level of accuracy on the estimation is required. Eight consecutive
RF-lines are available for each lateral position in the simulated data, and the performance of the estimator
will be evaluated for this situation. The HP echo-canceling filter will be applied. The investigations above
showed that the estimates obtained were very similar for the different echo-canceling filters. Echo-canceling
is necessary in in-vivo RF-signals. Since the HP filter is computationally simple, it has been preferred over
the regression line filter. The velocity spread limits the number of samples that can be employed. The per-
formance of the autocorrelation estimator on simulated data will be evaluated with Ns equal to one pulse
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length. The choice of f0 and Tpr f ensures that no aliasing errors will occur. Thereby the autocorrelation
estimators ability to perform on a span of velocities can be evaluated.

Figure 6.12 shows 2D plots of the estimated velocity profiles for a systolic and diastolic frame in the
cardiac cycle. The true blood velocity image shows the true blood velocity values at the spatial position
defined by the spatial location of the center of the pixel. The need for applying some kind of discrimination
algorithm prior to displaying the estimates is evident, as non-zero velocity estimates occur in the tissue
region. In the systolic frame the estimator is not able to produce good estimates along the anterior wall in
the left half of the image. The vessel appears to be narrower than what is really the case. This problem does
not show up to the same extent in the other frames. The true and estimated velocities are not identical. The
trends with respect to the velocity levels are the same but some variation about the true values is present in
the estimated values. This variation is due to the influence of the velocity spread, SNR, the echo-canceling
filter, and the estimator parameters. In Fig. 6.13 two lines from the 2D plots are plotted as a function
of depth. The variation about the true values shows clearly. The majority of the estimates in the upper
half of the vessel (above the center axis of the vessel) are underestimated, whereas an overestimation is
seen for quite a few of the estimates in the lower half of the vessel. This trend holds for all frames in the
simulated cardiac cycle. The highest deviations from the true value are observed for the estimates along the
posterior vessel wall. A few estimates in the last image line (to the right) take values below 0 m/s. This is
not consistent with the true velocity values. The velocity profile for the carotid artery only takes positive
values. The velocities range from 0 cm/s to 50 m/s for the current simulation of the blood flow. A measure
of the estimates, which deviate significantly, has been determined. If the estimated velocities are outside the
velocity range from -10 cm/s to 80 cm/s, they are considered as highly deviating. In the 10 frames given
here 0.4 % of the estimates deviate significantly.

When the individual frames are combined into a movie, the noisy variation of the estimates about the true
values disturbs the eye. Therefore post-processing (see Chapter 7) must be performed prior to displaying the
results to minimize the variation. Still the autocorrelation estimator has captured the variations of the blood
velocities within the cardiac cycle and throughout the vessel very well. The estimated velocities for each
frame have been combined into one postscript-file, which is enclosed on CD-rom. Please refer to Appendix
C for a description of how to locate and access the file.

The root-mean-square (RMS) error on the blood velocity estimation is used as the objective measure of
performance. The RMS error is 0.06 m/s and 0.07 m/s for a SNR of 20 and 10 dB, respectively. As expected
the performance improves as the SNR increases.

6.4 Cross-correlation estimator

As a group of scatterers move, the pattern in the RF-signal, which resembles the interaction between the
pulse and these scatterers, moves (ideally) to a new temporal position expressed by ts. An estimate of the
temporal shift can be obtained by performing a cross-correlation analysis for a range of temporal shifts
[3]. For each shift the original pattern is correlated with signal segments in the consecutively acquired RF-
signals, which are shifted according to the temporal shift under investigation. The values of the resulting
cross-correlation function give a measure of how similar the compared segments are. The cross-correlation
function peaks, when the best match has been determined. The temporal shift, which relates to the maximum
value of the cross-correlation function, is the estimate of t̂s. The estimator determines the time shift and
therefore is said to be a time domain technique. The cross-correlation is performed on the recorded, real
signals. The recorded RF-signals are split up in a number of segments iseg with Ns samples in each segment.
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Figure 6.12: Autocorrelation estimator: The estimated (left) and the true (right) velocities for a systolic
(upper two plots) and a diastolic frame (lower two plots). The SNR is 20 dB.
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Figure 6.13: Autocorrelation estimator: Plot of line 11 and 34 in the images for the systolic (upper 2 plots)
and diastolic frame (lower 2 plots). The SNR is 20 dB.

The velocity is determined for each segment. The cross-correlation is defined as [3]:

R̂l�l�1�n� iseg� �
1
Ns

Ns�1

∑
k�0

rc f m�l�k� isegNs�rc f m�l �1�k� isegNs �n�� (6.10)

where n is the discrete time shift in number of samples. The computations are performed on the echo-
canceled signals, but the subscript ”echo” has been omitted in (6.10).

Employment of the cross-correlation estimator requires that a span of temporal shifts are investigated.
This increases the computational load significantly compared to the autocorrelation estimator. Infinite time
resolution is not implementable, so a set of discrete temporal shifts are investigated. A discrete cross-
correlation function is computed, where the true maximum of the cross-correlation function is not neces-
sarily present. The maximum can be determined by performing an interpolation of the cross-correlation
function. This will increase the temporal resolution and increase the accuracy on the estimate of the time
shift. The RF-signals are discrete signals. The discrete time shift is not necessarily an integer number of
samples. Interpolation is required to determine the signal values for the temporal shift under investigation.
This can be avoided though, if a discrete set of integer sample shifts are investigated instead. The accuracy
on the cross-correlation estimate can be increased by averaging over a set of lines. In order for the discrete
cross-correlation to be equivalent to the analog cross-correlation, the sampling frequency must be equal to
four times the maximum frequency in the signal [3]. The estimate of the blood velocity is:

v̂z �
c

2Tpr f
t̂s� (6.11)

where t̂s [s] is the estimated time shift.
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In principle the correlation analysis can be carried out for any value of the temporal shift (and thereby
any velocity). In practice the search range is limited, as the blood velocity levels are bounded. If n spans
from �Ns to Ns, the maximum detectable velocity is determined by the value of Ns. The minimum velocity
is limited by the time quantization. The relations for the velocity bounds are:

vmin �
c
2

fpr f

fs

vmax �
c
2

Ns
fpr f

fs
� (6.12)

The sampling frequency influences both bounds. An increase in fs will lower the bound on the minimum
detectable velocity, but unfortunately also lower the bound on the maximum detectable velocity.

The employed relation for the cross-correlation does not include any normalization with the energies of
the two segments. This makes the estimator vulnerable to the amplitude levels in the two segments, which
are correlated. As the RF-signals are oscillating, similar patterns will show up a number of times throughout
the signals. The amplitudes will vary, but the position of positive and negative values, and zero crossings
will match between the signals. If one segment within the search range have a high amplitude compared
to the amplitude of the original pattern, a high value of the cross-correlation will occur. This value will
then be higher than the value of the cross-correlation for the true match of segments. An example will be
given to make this point more clear. Consider the situation given in Fig. 6.14. In the top plot the original
segment (solid line) and the true, matching segment from the consecutive line (indicated with circles) are
plotted. The cross-correlation value is 37.4. In the bottom plot the original segment is compared with a
different segment in the consecutive RF-line. Inspection of the plot clearly reveals that the two segments
do not match in amplitude. The cross-correlation value is 38.9, which is higher than the value for the true
match. The cross-correlation method states that the true time shift relates to the maximum value of the cross-
correlation. In this case an incorrect estimate of the time shift and thereby velocity will be determined. The
varying amplitude levels in the RF-signals introduce a level of uncertainty in the estimation and can result
in false detection of the true time shift.

The accuracy on the velocity estimate is dependent on [3]:

� the noise level,

� observation time with respect to number of lines used in the estimation,

� beam width, since the acquired RF-signals will represent the interactions with a wider lateral range of
scatterers (moving at different velocities), if the beam width is increased,

� velocity spread, and

� decorrelation between consecutive acquired RF-lines. As the scatterers move at different velocities
the distance traveled between two emissions will be different. The summed responses will not give
identical patterns in two consecutive lines, and this property is referred to as decorrelation.

An approximate expression for the variance on the estimate of the time shift, when two consecutive lines
are employed, is [3]:

σ�t̂s� �
1

πB
4

�
3

4BTs

4

�
1�

1
SNR2 �

1
2SNR4 � (6.13)

where B is the bandwidth of the emitted pulse, and Ts is the temporal length of the segment (Ts � Ns� fs).
A high bandwidth is preferred to minimize the variance. This is obtained by emitting a short pulse. The
number of RF-lines available for estimation can be increased by one, if 1) the same excitation pulse is used
to acquire RF-signals for the B-mode image and the velocity estimation, and 2) the emission strategy is
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Figure 6.14: Comparison of the original segment (—) with two different segments (o) from the consecutive
RF-line.

chosen properly. Averaging over a long segment (Ts high) is desirable to lower the variance on the estimate.
The variance on the estimate decreases as the SNR increases.

The computational load of the estimator is high, since the computations in (6.10) have to be performed
for each time shift evaluated. The number of multiplications, Nm�crosscor, and additions, Na�crosscor, performed
to calculate the cross-correlation function in (6.10) for Nv�steps temporal shifts are:

Nm�crosscor � Ns�Nl�e�1�Nv�steps

Na�crosscor � �Ns�1��Nl�e�1�Nv�steps� (6.14)

The averaging over a set of lines is included in Nm�crosscor and Na�crosscor.

To decrease the computational load, Foster [54] and Bonnefous [55] suggested to perform the cross-
correlation estimation using only the sign value of the samples. The sign can be represented by 1 bit,
whereas the sampled signal values need 9 or 17 bit. The signs are assigned according to the following
definitions:

rs�c f m�n� �

�
1 rc f m�n�� 0

�1 rc f m�n�� 0
(6.15)

where n indicates the sample number. The estimation follows the same procedure as the ordinary cross-
correlation estimator. Only difference is that the RF-signals rc f m are substituted with the signals rs�c f m. The
multiplication of signs can be implemented by a Boolean XOR operation [3].

6.4.1 Performance on synthetic data

The performance of the cross-correlation estimator has been evaluated on the synthetic data, where a short
excitation pulse was used. A lower bound on the sampling frequency is introduced in order for the discrete
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and analog cross-correlation function to be identical. The estimator parameters were varied as follows:

� number of lines: Nl � �3�6�9�12�15�18�21�24�,

� sampling frequency: fs � �30�40�60�120� MHz,

� number of samples: Ns �: �0�25�0�5�0�75�1�0�1�25�1�5�1�75�2�0� times the length of the emitted
pulse. The length in samples is dependent on the sampling frequency.

A good and stable performance is obtained, when the mean is within 	 2 cm/s of the true velocity, and the
standard deviation is less than 2 cm/s. The velocity range from -50 cm/s to 50 cm/s was investigated in steps
of 1 cm/s. Interpolation of the determined cross-correlation function is performed to increase the resolution
on the estimates. The following trends can be derived from the results:

� the cross-correlation estimator does not suffer from aliasing problems,

� the segment length with respect to Ns must be 2 pulse lengths to ensure a stable estimation for all
SNRs, values of Nl , fs, and the velocity levels (for a few combinations of the parameters this is not
valid). This conclusion holds, when no echo-canceling filter and the HP filter are applied. When the
regression line filter is employed, a good performance can also be obtained, when Ns equal 1.75 pulse
lengths. This is valid, if more than 3 lines are employed. The regression line filter cannot perform at
all, when only 3 lines are used,

� the performance is slightly dependent on the sampling frequency but no unambiguous systematism
has been determined,

� the velocities are estimated both to high and to low (relative to the true value), and the over-/underestimation
do not follow any systematism,

� the standard deviation on the estimate decreases and approaches zero as the SNR increases.

In general only few combinations of the parameters produce good estimates. The influence of the dif-
ferent parameters is less unambiguous than was the case for the autocorrelation estimator. Only one thing
is clear: a high number of samples should be used in the estimation of the cross-correlation. Both echo-
canceling filters can be employed with success. Their influence on the estimation is dependent on the
parameters. The output of the estimation after echo-canceling sometimes out perform the estimation with
no echo-canceling filter. A lower standard deviation on the estimate is obtained in this case.

In Figures 6.15-6.17 examples of the performance of the estimator are plotted as the different parameters
are varied. The HP echo-canceling filter was applied. When one parameter is varied, the others are kept
constant at: the SNR is 10 dB, the number of lines are 9, the sampling frequency is 30 MHz, and the number
of samples are equal to 2 pulse lengths. Tables, which contain the performance for the range of combinations
of the parameters, the velocity values, and the echo-canceling filters, are enclosed in Appendix B.

The velocity estimates and the standard deviations obtained with the autocorrelation and the cross-
correlation estimators have been compared for velocities below the aliasing limit of the autocorrelation
estimator. The HP filter was applied and the estimator parameters are chosen to give stable performance.
The results reveal the following trends:

� the difference between the true and the estimated velocity is often higher for the cross-correlation
estimator than with the autocorrelation estimator,
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Figure 6.15: The cross-correlation estimator: the true (—) and the estimated (*) velocities along with the
standard deviation for a SNR of 0 and 20 dB. HP filter applied for echo-canceling. The number of lines are
9, fs is 30 MHz, and Ns are 2 pulse lengths.
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Figure 6.16: Performance of cross-correlation estimator as a function of the number of lines and the SNR.
HP filter applied for echo-canceling. The sampling frequency is 30 MHz, and Ns are 2 pulse lengths. The
true velocity is 10 cm/s.
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Figure 6.17: Performance of cross-correlation estimator as a function of the number of samples and the
sampling frequency. HP filter applied for echo-canceling. The number of lines are 9, and the SNR is 10 dB.
The true velocity is 10 cm/s.

� the standard deviation on the estimate is lower for the autocorrelation estimator at low SNRs. As
the SNR increases the standard deviation approaches zero for both estimators. The cross-correlation
estimator approaches zero faster than the autocorrelation estimator,

� the performance of the autocorrelation estimator for different values of the parameters is more unam-
biguous.

Both estimators have some advantages and disadvantages, so the choice of which to use depends on the situ-
ation. The computational load has previously been of much concern due to the limitations of the electronics.
With the advances in electronics in the last decade this problem is of less concern. If the optimum fpr f is
used, and the aim is to obtain an estimate with high accuracy that is stable to different choices of the param-
eters, then the autocorrelation estimator should be employed. If the number of estimates along the RF-line is
of concern, the cross-correlation estimator should be used. The employment of a wideband excitation pulse
increases the axial resolution, so more estimates are usually computed along the axial direction.

6.4.2 Performance on simulated data

The performance on the synthetic data indicated that Ns should be 2 pulse lengths. As higher values of Ns

were not investigated, the best choice of Ns could be even higher. Therefore the performance on the simu-
lated data has been investigated for a range of Ns values. The HP filter was employed for echo-canceling,
so the performance of the autocorrelation and the cross-correlation estimators can be compared. This pro-
cedure will be employed for all estimators, which are introduced and evaluated in the following. The SNR
in the data set is 20 dB. The velocity range from -50 cm/s to 50 cm/s was investigated in steps of 1 cm/s.

The RMS error as a function of Ns is plotted in Fig. 6.18. The RMS error decreases as Ns increase. A
high value of Ns should be used, if the aim is to obtain the lowest error as possible. The investigations have
not been carried out for values of Ns over 7 pulse lengths. A visual inspection of the estimated velocity
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Figure 6.18: The RMS error ([m/s]) as a function of Ns for the cross-correlation estimator. The SNR is 20
dB.

profiles reveals that a high value of Ns also has a negative influence on the estimation. Figure 6.19 shows
the problem. Only estimates within the vessel are shown. Non-zero estimates are also present outside the
vessel, so a discrimination algorithm must used to determine, which of the estimates should be displayed.
Estimates, which are represented by the maximum and minimum value of the velocity scale, take values
above or below the maximum and minimum value, respectively. As Ns increase, the estimator fails to
produce good estimates in part of the vessel in the frame, which contains the systolic phase. The estimates
are close to 0, which are not consistent with the actual velocity in the vessel. The influence is especially
pronounced in the upper, left part of the vessel. This is not desirable, as the aim is to produce accurate
estimates across the full spatial extent of the vessel. The problem decreases for lower values of Ns. The
increased RMS error at low values of Ns is mainly due to the occurrence of more estimates, which deviate
significantly in amplitude from the true value. They are a result of the amplitude problem discussed earlier.
Some are still present in the systolic frame in Fig. 6.19, but many have been removed. By comparing
the estimates obtained when Ns are equal to 3 and 7 pulse lengths, this decrease in the number of highly
deviating estimates shows. Figure 6.20 shows the estimated velocity profiles for the systolic frame and a
diastolic frame, when Ns are equal to 3 pulse lengths. It is the same two frames, which were plotted to show
the performance of the autocorrelation estimator. The incorrect estimates occur as single and grouped errors.
A group consists of two or more estimates, which are neighbors along the lateral and/or axial directions in
the image. Some kind of post-processing filter must be applied to reduce the amplitude of these estimates
prior to displaying them. The incorrect estimates occur mostly along the posterior wall and the lower half
of the vessel (below the center axis of the vessel). The velocities are underestimated. An objective measure
for the number of highly deviating estimates has been determined. It is the same measure used for the
autocorrelation estimator. For the cross-correlation estimator a total of 14.7 % of the estimates take values
outside the velocity range from -10 cm/s to 80 cm/s.

Apart from the highly deviating estimates, the cross-correlation estimator is able to produce estimates,
which follow the overall trends of the velocity variation across the vessel and throughout the cardiac cycle.
In Fig. 6.21 a set of lines from the systolic and diastolic frame in Fig. 6.20 are shown separately. The
variations about the true velocities vary for the different frames. The lowest variation mostly occurs along
the center axis of the vessel, where the estimates are a little underestimated. An overestimation is seen along
the vessel walls. Post-processing is required to minimize this variation prior to displaying the estimates. In
Appendix C the estimates for all 10 frames are available from a postscript-file, which is enclosed on CD-
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Figure 6.19: Cross-correlation estimator: The estimated (left) and the true (right) velocities for the systolic
frame, when Ns equal 7 pulse lengths. The SNR is 20 dB.

rom.

The amplitudes of the variation and the distribution of under-/overestimated velocities differ from what
is experienced with the autocorrelation estimator. Overall the autocorrelation estimator produces estimates,
which follow the variations of the true velocities better than the cross-correlation estimator. The autocor-
relation estimator out performs the cross-correlation estimator, when no aliasing occur. This conclusion
is based on the RMS error, the visual inspection of the images, and the measure of the number of highly
deviating estimates.

6.5 Extended autocorrelation estimator

The autocorrelation estimator has been preferred in most commercial scanners previously due to the high
computational load of the cross-correlation estimator. To overcome the aliasing problem of the autocorrela-
tion estimator, Lai and Torp [56] have developed a new estimator that combines the autocorrelation and the
cross-correlation estimators. The phase estimate from the autocorrelation estimator may be off by an integer
number np of 2π:

φtrue � φautocor �np2π� (6.16)

As the cross-correlation estimator can handle any search range, a set of possible true phase shifts for a range
of np � ������2��1�0�1�2� ���� can be evaluated by the cross-correlation estimator. The maximum of the
resulting cross-correlation function gives the estimate of the correct phase-shift. The estimator is called the
Extended Autocorrelation method (EAM), and the steps involved are listed below:

� compute an initial estimate of the phase shift employing the autocorrelation estimator,

� determine a set of possible values of the phase shift (a total of Np) by adding and subtracting an integer
number of 2π,

� compute the temporal shifts, which correspond to the set of possible phase shifts,

95



CHAPTER 6. BLOOD VELOCITY ESTIMATORS

−80

−60

−40

−20

0

20

40

60

80
D

ep
th

 [c
m

]
−0.5 0 0.5

1.5

2

2.5

3

3.5

−80

−60

−40

−20

0

20

40

60

80−0.5 0 0.5

1.5

2

2.5

3

3.5

V
e
l
o
c
i
t
y

[cm/s]

Lateral position    [cm] Lateral position    [cm]

−50

0

50

D
ep

th
 [c

m
]

−0.5 0 0.5

1.5

2

2.5

3

3.5

−50

0

50−0.5 0 0.5

1.5

2

2.5

3

3.5

V
e
l
o
c
i
t
y

[cm/s]

Lateral position    [cm] Lateral position    [cm]

Figure 6.20: Cross-correlation estimator: The estimated (left) and the true (right) velocities for a systolic
(upper two plots) and a diastolic frame (lower two plots), when Ns equal 3 pulse lengths. The SNR is 20 dB.
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Figure 6.21: The cross-correlation estimator: Plots of the estimates for line 11 and 34 in the images of the
systolic (2 upper plots) and diastolic frame (two lower plots).

� perform the cross-correlation analysis for the set of possible temporal shifts - including the temporal
shift of the initial phase estimate (np � 0),

� determine the maximum of the cross-correlation function and the corresponding value of the temporal
shift,

� compute the velocity estimate based on the new estimate of the temporal shift.

An estimator combining the advantages of the two methods has been obtained. The computational load has
been lowered quite a lot compared to the load for the cross-correlation estimator as Np �� Nv�steps. The
number of multiplications and additions employed are:

Nm�EAM � 4Ns�Nl�e�1��1�Ns�Nl�e�1�Np

Na�EAM � 3Ns�Nl�e�1���Ns�1��Nl�e�1�Np� (6.17)

These numbers are obtained by combining (6.9) and (6.14) and substituting Nv�steps with Np. To obtain an
accurate initial estimate of the velocity a long pulse should be emitted. This is not optimum from a cross-
correlation point of view. A conflict exists with respect to the choice of the excitation pulse. In the following
the focus will be put on getting a good initial estimate of the velocity, so the data set generated with a long
excitation pulse will be employed in the performance evaluation.

6.5.1 Performance on synthetic data

The performance of the estimator on the synthetic data was evaluated for the following values of the esti-
mator parameters:
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� number of lines: Nl � �3�6�9�12�15�18�21�24�,

� sampling frequency: fs � �15�20�30�40�60� MHz,

� number of samples: Ns � �0�25�0�5�0�75�1�0�1�25�1�5�1�75�2�0� times the length of the emitted pulse.
The length in samples is dependent on the sampling frequency.

Three possible phase shifts were investigated: np � ��1�0�1�. In this context an estimate is defined as good,
if the bias is less than 2 cm/s, and the standard deviation is less than 1 cm/s.

The performance on the synthetic data shows that the aliasing problem of the autocorrelation estimator
can be circumvented by performing the subsequent cross-correlation analysis. The choice of estimator
parameters, which gives good estimates, are more restricted though. The estimation of the velocity 30 cm/s
gives most restrictions. The initial estimate is incorrect due to the limitation of the autocorrelation estimator.
The subsequent cross-correlation analysis only performs well for all SNRs and Nl � 6 (9 for the regression
line filter), when Ns are 0.25 pulse lengths. A lower variance can be obtained, if Ns are increased but then
only a subset of the values of Nl can be employed. A good estimate cannot be obtained for Ns � 1�25 pulse
lengths for any value of Nl , when the SNR is 0 dB and no echo-canceling filter is applied. The application
of the HP filter stabilizes the estimation a little. No good estimates can be obtained, when Ns � 1�5 pulse
lengths for any value of Nl . The regression line filter only works well for all SNRs and Nl � 9, when Ns

equals 0.25 pulse lengths. In general more combinations of Nl and Ns give good estimates, as the SNR
increases. The performance for the velocity 40 cm/s is very similar to the performance on velocities below
30 cm/s. The overall best choice of Ns for the velocities 10, 20, and 40 cm/s lies around one pulse length.
The level of variation on the standard deviations for different choices of the parameters is on the order of a
few millimeters per second or less. The loss of working with less samples than the best choice is therefore
very limited. The following trends can be determined for the cases, when Ns and Nl are chosen appropriately:

� the estimate is biased, and the level is dependent on the estimator parameters. The bias is positive and
takes values in the range from 3.5-8.5 % of the true velocity for the given data set. No unambiguous
relation between the bias and the parameters can be determined,

� the performance is independent of the sampling frequency,

� the standard deviation on the estimates decreases as the SNR increases,

� the standard deviation decreases as the number of lines are increased, as long as Ns and Nl are chosen
appropriately. The value of Ns, which gives the overall best performance, is lower, when 21 and 24
lines are employed in the estimation, compared to when Nl are in the range from 6-18 lines.

The effect of performing the echo-canceling is not unambiguous. An increase as well as a decrease
in the standard deviation can be obtained. No unambiguous relation between the level of the standard
deviation and the parameters has been determined. The differences in the standard deviations even out as
the SNR increases. The combinations of Nl and Ns, which give good performance, are almost identical for
the different filters. Under some circumstances more or less combinations will work for the different filters.
As the HP echo-canceling filter produces good estimates for more combinations of the parameters, it is to
preferred over the regression line filter.

Figures 6.22-6.24 show examples of the performance of the estimator, when the different parameters are
varied. The HP echo-canceling filter was applied prior to the velocity estimation. When one parameter is
varied, the others are kept constant at: the SNR is 10 dB, the number of lines are 9, the sampling frequency
is 30 MHz, and the number of samples are equal to one pulse length. Please refer to Appendix B for tables
containing the performance for the range of combinations of the parameters, the velocity values, and the
echo-canceling filters.
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Figure 6.22: The extended autocorrelation estimator: the true (—) and the estimated (*) velocities along
with the standard deviation for a SNR of 0 and 20 dB. HP echo-canceling filter was applied. Nine lines was
employed. The sampling frequency is 30 MHz, and the number of samples are equal to one pulse length.

0 10 20 30
10.38

10.39

10.4

10.41

10.42

10.43

SNR [dB]

E
st

im
at

ed
 v

el
oc

ity
 [c

m
/s

]

0 10 20 30

0

0.05

0.1

SNR [dB]

S
ta

nd
ar

d 
de

vi
at

io
n 

[c
m

/s
]

3 6 9 12 15 18 21 24
10.39

10.4

Number of lines

E
st

im
at

ed
 v

el
oc

ity
 [c

m
/s

]

3 6 9 12 15 18 21 24
0

0.02

0.04

0.06

Number of lines

S
ta

nd
ar

d 
de

vi
at

io
n 

[c
m

/s
]

Figure 6.23: Performance of the extended autocorrelation estimator as a function of the number of lines and
the SNR. HP echo-canceling filter applied. The sampling frequency is 30 MHz, and the number of samples
are equal to one pulse length. The true velocity is 10 cm/s.
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Figure 6.24: Performance of the extended autocorrelation estimator as a function of the number of sam-
ples and the sampling frequency. HP echo-canceling filter applied. The SNR is 10 dB, and 9 lines were
employed. The true velocity is 10 cm/s.

The EAM estimator out performs the autocorrelation estimator, as it can produce good estimates for the
full range of velocities. The levels of the velocity estimates and the standard deviations are similar (almost
identical) for the velocities 10 and 20 cm/s. The choice of parameters, which give good performance, are
more limited though.

The performance of the cross-correlation estimator is very dependent on the choice of the parameters.
The EAM estimator is less dependent hereof (at least when the velocity is different from 30 cm/s), and
since the EAM estimator can handle the full velocity range, it should be preferred over the cross-correlation
estimator.

6.5.2 Performance on simulated data

When the extended autocorrelation estimator was applied to the synthetic data, the same number of samples
were employed in the autocorrelation and the cross-correlation analysis. In principle the number of sam-
ples employed could be different for the two steps in the estimation. This approach will be pursued in the
evaluation of the performance on the simulated data. Ns are kept constant at one pulse length for the auto-
correlation analysis, whereas Ns are varied over the range from 0.25-6 pulse lengths in the cross-correlation
analysis.

The initial estimates computed by the autocorrelation estimator are equal to the ”correct” estimates, as
the fpr f has been chosen, so no aliasing will occur. The subsequent cross-correlation analysis is therefore
not really needed but will be performed, if the EAM estimator is employed. Under these circumstances it is
possible to determine, how the subsequent cross-correlation analysis influences the estimation. Inspection of
the computed estimates reveals that the subsequent cross-correlation analysis introduces quite a few velocity
estimates, which deviate significantly from the true velocity. This is due to the amplitude problem of the
cross-correlation estimator, where the zero-crossings and peaks in the segments match but the amplitude
levels vary (see discussion in Section 6.4). The number of 2π-investigations, which produce a correct
output, have been determined. In the following this measure will be referred to as the number of correct
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2π-investigations. This measure is plotted as a function of the number of samples employed in the cross-
correlation analysis in Fig. 6.25. The estimator is applied to the simulated data with a SNR of 10 and 20
dB. The performance increases slowly as the number of samples are increased. In the current study 4 and
6 pulse lengths equal 6.2 and 9.3 mm, respectively, so the segment length exceeds the extent of the vessel.
At 6 pulse lengths and a SNR of 20 dB only 61.4 % of the investigations produce a correct estimate. The
discussion in the following relates to the results obtained, when Ns equal 6 pulse lengths. Inspections of
the 2D plots of the velocity estimates reveal that the majority of the incorrect estimates extent several pixels
laterally and/or axially. Examples of the estimated velocity profiles for a systolic and a diastolic frame
are plotted in Fig. 6.26. It is the same two frames used to display the performance of the autocorrelation
and the cross-correlation estimators. Non-zero estimates are present both inside and outside the vessel, but
only the estimates within the vessel are displayed. Velocities plotted with the colors, which represent the
maximum and minimum values on the velocity scale, take values above or below these limits. Of the 10
simulated frames the performance on the systolic frame represents the worst case. A total of 56.9 % of
the 2π-investigations turn out wrong. In general the majority of the incorrect velocity estimates along the
anterior wall are overestimated, whereas an underestimation is seen along the posterior wall. The incorrect
estimates within the vessel are mostly overestimated. A comparison between frames shows that a portion
of the incorrect estimates are repeated in subsequent frames. Figure 6.27 shows the true and the estimated
velocities for two lines from the systolic and diastolic frame. The performance measure for the number of
deviating estimates, which was introduced for the autocorrelation estimator, has also been determined for
the EAM estimator. A total of 41.2 % of the estimates take values outside the range from -10 cm/s to 80
cm/s.

Post-processing of the estimates is required, if the EAM estimator should be employed for blood velocity
estimation. Lai and Torp suggests [56] to apply a post-processing filter, which compares the phase estimate
in a given location to the phase estimates of its neighbors in time (between frames) and space (within
frame). The incorrect estimates will be off by an integer number of 2π. Therefore an integer number of
2π must be subtracted or added until the phase estimate lies in the same range of values as its neighbors.
The filter is named the 2D-tracking filter. The filter has been implemented and applied. The mean of
the phase estimates in the spatial and temporal neighborhood of the velocity of interest is computed. The
spatial neighbors include the neighbors along the axial and lateral direction. The mean is subtracted from
the phase value being tracked, and the resulting value is compared to a threshold value. The outcome of
the comparison determines whether a subtraction/addition of 2π should be performed. The filter has been
applied to all frames. The first and last axial line of estimates in the image are not filtered, because a full
spatial neighborhood does not exist. As no temporal neighbors exist for the first frame, this frame was
filtered with a 2D tracking filter, which only employs the spatial neighbors. The filter was applied to the
estimated profiles obtained with Ns equal to 6 pulse lengths. After filtering 78.8 and 78.0 % of the estimates
are identical to the correct estimates, when the SNR is 10 and 20 dB, respectively. The performance of the
EAM estimator (including the 2D tracking) has improved 16-19 %, and the largest improvement is obtained
for a SNR of 10 dB. Inspection of the velocity profiles confirms that some of the highly deviating estimates
have been removed, but also new incorrect estimates have been produced. Fig. 6.28 shows examples
of the resulting velocity profiles for the systolic and the diastolic frame from Fig. 6.26. Only the velocity
estimates within the vessel are displayed. The problem of the incorrect estimates have not been resolved fully
but minimized. As the ”correct” estimates are identical to the estimates obtained with the autocorrelation
estimator, the trends with respect to the variations about the true velocities are the same and will not be
repeated here.

The simulated data generated by emitting a long pulse have been used in the above evaluation. This
is optimum for the autocorrelation estimator, so an initial estimate with low variance is obtained. From a
cross-correlation point of view a short pulse (a wideband pulse) should be emitted. The optimum choice
of excitation pulse collides. The performance of the EAM estimator on the data generated by emitting a
short pulse has therefore also been evaluated. In Fig. 6.29 the number of correct 2π-investigations N2π (in
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Figure 6.25: Number of correct 2π-investigations (in %) as a function of the number of samples employed
for the cross-correlation analysis with the EAM estimator. The SNR is 10 and 20 dB in the top and bottom
plot, respectively.
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Figure 6.26: EAM estimator: The estimated (left) and the true (right) velocities of a systolic (upper two
plots) and diastolic frame (lower two plots). The SNR is 20 dB, and Ns (for the cross-correlation analysis)
are 6 pulse lengths.
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Figure 6.27: EAM estimator: The estimates for line 11 and 34 in the images of the systolic (upper 2 plots)
and diastolic frame (lower 2 plots).

%) as a function of the number of samples employed for the cross-correlation analysis are plotted. The
SNR is 10 and 20 dB, respectively. N2π grows exponentially and reaches a plateau around 5 pulse lengths.
With this approach 76.9 % and 83.6 % of the 2π-investigations turn out correct, when Ns equal 5 pulse
lengths, and the SNR is 10 and 20 dB, respectively. The performance of the 2π-investigations has increased
with 25-30 %. This improvement is relative to the performance of the EAM estimator on data with a long
excitation pulse, and when no 2D tracking is performed. The performance is similar to the performance
of the EAM estimator on data generated with a long pulse, when the 2D tracking is applied. The best
performance of the EAM estimator is obtained on the data generated with a short pulse, as the basis for
the cross-correlation analysis has improved. Five pulse lengths equal 4.3 mm, so the correlation analysis is
performed over a shorter spatial range than was the case for the data set generated with a long pulse. In Fig.
6.30 the estimated and true velocities for the systolic and the diastolic frame are plotted. Only the velocity
estimates within the vessel are plotted. It is the same two frames used to show performance previously. Most
of the incorrect velocity estimates along the posterior wall take values below the true velocity, whereas the
estimates along the anterior wall are overestimated. Still some incorrect estimates show up in consecutive
frames. The majority of these estimates still group. The performance can be improved, if the 2D tracking
filter is applied. The number of correct 2π-investigations increase to 90.0 and 89.8 %, when the SNR is 10
and 20 dB, respectively. Examples of the resulting images of the estimated velocity profiles are plotted in
Fig. 6.31. The non-erroneous estimates computed with the EAM estimator, when it was applied to the data
set generated from a long and short excitation pulse, have been compared (see Fig. 6.26 and 6.30). The
latter estimates fluctuate more, when the course across the axial extent of the vessel is investigated. The
velocity values are lower and thereby further from the true velocities. The employment of a short pulse has
degraded the performance of the autocorrelation estimation, which was to be expected.

The best performance of the EAM estimator is obtained, if it is applied to data generated with a short
pulse, and a 2D tracking filter is applied prior to displaying the estimates. The best performance is deter-
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Figure 6.28: EAM estimator: The estimated (left) and the true (right) velocities of a systolic (upper two
plots) and diastolic frame (lower two plots) after application of the 2D tracking filter. The SNR is 20 dB,
and Ns (for the cross-correlation analysis) are 6 pulse lengths.
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Figure 6.29: Number of correct 2π-investigations (in %) as a function of the number of samples employed
for the cross-correlation analysis with the EAM estimator. The simulated data generated from emission of a
short pulse are used. The SNR is 10 and 20 dB in the top and bottom plot, respectively.

106



6.5. EXTENDED AUTOCORRELATION ESTIMATOR

−80

−60

−40

−20

0

20

40

60

80
D

ep
th

 [c
m

]

−0.5 0 0.5
1.5

2

2.5

3

3.5

−80

−60

−40

−20

0

20

40

60

80−0.5 0 0.5
1.5

2

2.5

3

3.5

V
e
l
o
c
i
t
y

[cm/s]

Lateral position    [cm] Lateral position    [cm]

−50

0

50

D
ep

th
 [c

m
]

−0.5 0 0.5
1.5

2

2.5

3

3.5

−50

0

50−0.5 0 0.5
1.5

2

2.5

3

3.5

V
e
l
o
c
i
t
y

[cm/s]

Lateral position    [cm] Lateral position    [cm]

Figure 6.30: EAM estimator: The estimated (left) and the true (right) velocities of a systolic (upper two
plots) and a diastolic frame (lower two plots), when the estimator is applied to data generated with a short
pulse. The SNR is 20 dB, and Ns (for the cross-correlation analysis) equal 5 pulse lengths.
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Figure 6.31: EAM estimator: The estimated (left) and the true (right) velocities of a systolic (upper two
plots) and a diastolic frame (lower two plots), when the estimator is applied to data generated with a short
pulse, and 2D tracking is performed. The SNR is 20 dB, and Ns (for the cross-correlation analysis) equal 5
pulse lengths.
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Number of samples
Excitation SNR (fraction of pulse length)

pulse (dB) 0.5 1 2 3 4 5

Long 10 0.9 0.92 0.89 0.86 0.82 0.76
20 0.9 0.92 0.89 0.85 0.8 0.74

Short 10 0.8 0.76 0.66 0.6 0.55 0.53
20 0.79 0.73 0.61 0.53 0.46 0.43

Table 6.2: The RMS error ([m/s]) as a function of the number of samples used in the cross-correlation anal-
ysis with the EAM estimator. The estimator is applied to data generated with a long and a short excitation
pulse, respectively. The SNR is 10 and 20 dB, respectively.

mined by means of the RMS error and the number of correct 2π-investigations. A low error and a high
number of correct 2π-investigations are desirable. A total of 16.5 % of the computed velocity estimates take
values outside the range from -10 cm/s to 80 cm/s. This measure is a factor of 2.5 lower than the same
measure, when the EAM estimator was applied to data generated with a long pulse. Table 6.2 lists the RMS
error for the EAM estimator, when it was applied to the data set generated with a long and a short pulse,
respectively. The values represent the errors prior to applying the 2D tracking filter, as these determine the
performance of the estimator itself. The incorrect estimates result in the high values of the RMS error. The
estimated velocity profiles with the EAM estimator on all 10 frames are enclosed in Appendix C. The results
obtained, when the estimator was applied to the data generated from a short and long pulse, are included.
No post-processing has been applied to the estimated velocity profiles.

The discussion of the EAM estimator in the following and in the subsequent sections is strictly related
to the performance of the EAM estimator itself. The autocorrelation estimator should be preferred over the
EAM estimator, when no aliasing occur. The EAM estimator introduces quite a few new erroneous esti-
mates, and they appear in all frames throughout the cardiac cycle. Some can be eliminated by applying the
2D tracking filter, but still the advantages of the EAM estimator seem to be counteracted by the limitations
of the cross-correlation analysis.

The performance of the EAM and cross-correlation estimators are similar, when the estimators use 5
and 3 pulse lengths, respectively. This conclusion is based on the RMS error, the measure of the number
of highly deviating estimates, and the visual inspection. The conclusion is valid, when the EAM estimator
is applied to the data generated with a short excitation pulse. Both estimators introduce some estimates,
which deviate significantly from the true velocity. These incorrect estimates occur more often for the EAM
estimator and seem to group together more. The advantage of the EAM estimator is that the ”correct”
estimates follow the variations across the vessel and throughout the cardiac cycle well and better than is
the case for the cross-correlation estimator. A post-processing filter should be applied to the minimize the
variations and the values of the estimates, which deviate significantly.

6.6 The Butterfly Search Technique

In 1995 Alam and Parker [57] proposed another blood velocity estimator, which also tries to match patterns
between consecutive lines. A perfect match corresponds to the situation, where the amplitude values in
corresponding positions in the segments under investigation are equal. A mathematical measure of equality
between samples is the variance. If two values are equal, the variance will be zero. In the RF-signals
noise is present, so a perfect match will never occur. The effect of decorrelation adds to the mismatch
between the segments. Still some similarity will be present, and a match between segments in consecutive
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Figure 6.32: BST estimator: Envelope detected response from single scatterer moving away from the
transducer along with the trajectory lines representing different velocities.

RF-lines will be characterized by having a low variance. This is the idea behind the estimator developed by
Alam and Parker. For a set of sample shifts (corresponding to a set of velocities) the shifted segment in the
consecutive line is compared to the original segment by means of a variance analysis. The minimum variance
corresponds to matching segments, and an estimate of the velocity has been determined. By employing this
estimator the amplitude problem of the cross-correlation estimator will be eliminated, as the mismatch in
amplitudes results in a high variance. The analysis can be performed on the real RF-signals, the envelope
detected RF-signals, or the complex demodulated (I and Q) RF-signals [57]. The method has been named
the Butterfly Search Technique (BST), as the search is performed along a set of trajectory lines that forms
a butterfly shape. The slope of the trajectory lines is a function of the velocity. In Fig. 6.32 the search
approach is indicated on envelope detected data from a single scatterer. In the plot the RF-line in the middle
(line number 2) is used as the reference but in principle any of the lines can be used here fore. A short pulse
should be emitted to minimize signal decorrelation, and averaging over a set of samples and a set of lines
should be performed to increase the accuracy on the estimate.

The computational load of the BST estimator is much higher than for the autocorrelation estimator, but
it can be directly implemented in hardware [57]. The search can be performed by sampling through the data
set, and then pass the values through a variance processor. The analysis for a range of velocities can be
performed by parallel processing. With this approach the resolution on the velocity estimate is determined
by the sampling frequency, as no interpolation is carried out on the computed set of variance values. The
variance value for each investigated velocity is obtained by performing the following computations:

� the mean of the sample values for the set of RF-lines is determined for the range of samples n in the
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segment of length Ns:

µ�n� �
1

Nl�e

Nl�e

∑
l�1

rc f m�n� l��

� the variance values for each position in the segment n is determined, and the Ns values are summed to
obtain one variance value for the segment:

σ2 �
Ns

∑
n�1

1
Nl�e�1

Nl�e

∑
l�1

�rc f m�n� l��µ�n��2�

The computations are performed on the echo-canceled data, but the subscript has been omitted. The values
of σ2 as a function of the investigated velocities give the basis for determining the velocity estimate. The
sample shift related to the minimum variance value gives the estimate of the velocity. The number of
additions and multiplications used to obtain the set of variance values are:

Nm�BST � NsNv�steps �NsNl�eNv�steps

Na�BST � 2�Ns�1�Nl�eNv�steps �Nl�eNsNv�steps� (6.18)

where Nv�steps represents the number of investigated velocities. The computation of the mean includes a
normalization with the number of values used. The factor 1�Nl�e can be determined prior to performing the
variance analysis, and then multiplied on to the sum of sample values. The first term in the Nm�BST represents
this multiplication. The pre-processing, which is required to determine the enveloped detected data or the I
and Q signals, has not been included in Nm�BST and Na�BST . This further increases the computational load.

6.6.1 Performance on synthetic data

In the current study the search approach by sampling through data will not be employed. A set of discrete
velocities will be investigated as were the case for the cross-correlation estimator. The estimator will be
applied to the envelope detected data. The estimator parameters were varied as follows:

� number of lines : Nl � �3�6�9�12�15�18�21�24�,

� sampling frequency : fs � �15�20�30�40�60� MHz,

� number of samples : Ns � �0�25�0�5�0�75�1�0�1�25�1�5�1�75�2�0� times the length of the emitted pulse.
The length in samples is dependent on the sampling frequency.

The velocity range from -50 cm/s to 50 cm/s was investigated in steps of 1 cm/s. The estimated velocities
can only take one of the discrete values investigated, since no interpolation of the function, which represents
the variance values as a function of the discrete velocities, is performed. A finite resolution on the velocities
is therefore dictated by the choice of the step size. A good performance is defined as an estimation, where
the mean is within 	2 cm/s of the true velocity, and the standard deviation is less than 1 cm/s. The best
performance is obtained, when the standard deviation takes its minimum value, and the mean is within 	 2
cm/s. The following trends can be derived from the results:

� the BST estimator does not suffer from aliasing problems,

� the mean approaches the true velocity as the SNR increases, when the true velocity is 10 cm/s. For
the velocities 20, 30, and 40 cm/s the estimates approach a value biased by +1 cm/s,
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� the standard deviation decreases as the number of samples are increased, when no echo-canceling
and the HP echo-canceling filter are used. A slight increase (less than 0.1 cm/s) is seen for some
combinations of the parameters, when Ns � 1�25. The trend is not as unambiguous for the regression
line filter,

� the standard deviation decreases as the number of lines are increased, when no echo-canceling and
the HP echo-canceling filter are used. For the regression line filter this trend is not seen for all
combinations of the parameters,

� the standard deviation on the estimates decreases and reaches 0 as the SNR increases,

� the performance is independent of the sampling frequency, when Nl and Ns are chosen, so a good
performance is obtained,

� the choice of the segment length (Ns), which gives good performance, gets more limited as the SNR
decreases. The choice of Ns moves towards 2 pulse lengths,

� the employment of the HP echo-canceling filter increases the standard deviation. This is also the case
for the regression line filter for low values of Nl and Ns. The difference in the standard deviations
evens out as Nl and Ns increases, and the velocity is below 30 cm/s. For some combinations of the
parameters estimates with a lower standard deviation are obtained after application of the regression
line echo-canceling filter. The difference decreases as the SNR increases.

If the regression line filter is employed, a minimum of 15 lines and Ns � 1�25 pulse lengths must be employed
to obtain a good and stable performance for all SNRs and velocity levels. A minimum of 12 lines and
Ns � 1�5 pulse lengths must be used, when the HP filter is applied. The demands decrease as the SNR
increases, when the HP filter is employed. If a standard deviation of 2 cm/s can be accepted, a good
performance with the HP filter can be obtained, when 9 lines are used. The performance for the range of
combinations of the parameters, the velocity values, and the echo-canceling filters, are enclosed in Appendix
B. Figures 6.33-6.35 show examples of the performance of the estimator, when the different parameters are
varied. The HP echo-canceling filter was applied prior to the velocity estimation. When one parameter is
varied, the others are kept constant at: the SNR is 10 dB, the Nl is 9, the sampling frequency is 30 MHz, and
Ns are 2 pulse lengths.

The standard deviations on the estimates computed with the BST estimator are a factor of 10-40 times
higher than the same measure for the autocorrelation estimator, when the SNR is 0 dB. The performance
of the estimators are only compared for the velocities 10 and 20 cm/s. As the SNR increases, the standard
deviation approaches 0 for both estimators. As the SNR increases, the bias on the BST estimates is higher
for velocities above 10 cm/s but lower, when the velocity is equal to 10 cm/s. The autocorrelation estimator
is to be preferred if the computational load and a high accuracy at low SNRs are of concern. The BST
estimator will eliminate the aliasing problem and increase the number of estimates obtainable along the
RF-line.

The BST estimator is more stable to different choices of the estimator parameters than the cross-correlation
estimator. The standard deviation on the BST estimates is higher for a SNR of 0 dB for most combinations
of the parameters, which give good performance of both estimators. The mean and the standard deviation
are more stable for different choices of Nl �Ns, and fs as the SNR decreases. The BST estimator can work -
and work well - at lower sampling frequencies than the cross-correlation estimator. The BST estimator is to
be preferred over the cross-correlation estimator.

Both the BST and the EAM estimators only work well for a limited range of the estimator parameters.
When the parameters are chosen appropriately both estimators can handle velocities above the aliasing
bound of the autocorrelation estimator. The estimates are biased, and the bias takes a positive value. The
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Figure 6.33: The Butterfly search technique: the true (—) and the estimated (*) velocities along with the
standard deviation for a SNR of 0 and 20 dB. HP echo-canceling filter applied. The number of lines are 9,
fs is 30 MHz, and Ns are 2 pulse lengths.
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Figure 6.34: Performance of the Butterfly search technique as a function of the number of lines and the
SNR. HP echo-canceling filter applied. The sampling frequency is 30 MHz, and Ns are 2 pulse lengths. The
true velocity is 10 cm/s.
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Figure 6.35: Performance of the Butterfly search technique as a function of the number of samples and the
sampling frequency. HP echo-canceling filter applied. The number of lines are 9, and the SNR is 10 dB.
The true velocity is 10 cm/s.

standard deviations on the estimates obtained with the EAM estimator are a factor of 4-10 lower, when the
SNR is 0 dB. One should keep in mind that the standard deviations are below 1 cm/s for both, when the
parameters are chosen to give good performance. As the SNR increases, the standard deviation on the BST
estimates approaches zero, whereas a non-zero standard deviation is still obtained with the EAM estimator.
The bias is slightly higher (but less than 1 cm/s) for the EAM estimator, when the velocities exceed 20
cm/s. The EAM estimator should be preferred over the BST estimator, when the aim is to obtain the lowest
standard deviation on the estimates for any SNR.

6.6.2 Performance on simulated data

In the following the performance of the BST estimator will be determined. The echo-canceling was per-
formed with the 2nd order HP filter. This choice is made, because the investigations on the synthetic data
showed that 1) the regression line filter requires more than the available 8 lines to perform well, and 2) a
comparison of the performance of the autocorrelation, the cross-correlation, and the BST estimators can be
performed. The velocity range from -50 cm/s to 50 cm/s was investigated in steps of 1 cm/s.

The performance of the BST estimator has been determined for a range of Ns values. The RMS error as
a function of Ns is plotted in Fig. 6.36. The RMS error decreases as Ns increases. Inspection of the velocity
estimates reveals that the BST estimator has the same problem as the cross-correlation estimator. It is not
able to compute good estimates across the full extent of the vessel. The problem is most pronounced in the
systolic frame, which is plotted in Fig. 6.37. Minimization of this deficiency is obtained by decreasing Ns,
which on the other hand results in an increase in the RMS error. To obtain estimates across the full spatial
extent of the vessel, the accuracy on the estimates has to be down weighted. The estimated velocities for
the systolic frame and a diastolic frame are plotted in Fig. 6.38, when Ns are equal to 3 pulse lengths. It
is the same two frames, which have been used to show the performance of the estimators discussed in the
previous sections. Only the velocity estimates within the vessel are shown. Estimates that are plotted with
the maximum and minimum value of the velocity scale take values above or below these border values.
Inspection of all the velocity estimates obtained, when Ns equal 3 pulse lengths, reveals that the velocity
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Figure 6.36: RMS error ([m/s]) as a function of Ns for the BST estimator. The SNR is 20 dB.
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Figure 6.37: BST estimator: The estimated (left) and the true (right) velocities for the systolic frame, when
Ns equal 7 pulse lengths. The SNR is 20 dB.
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Figure 6.38: BST estimator: The estimated (left) and the true (right) velocities for a systolic (upper two
plots) and a diastolic frame (lower two plots), when Ns equal 3 pulse lengths. The SNR is 20 dB.
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Figure 6.39: BST estimator: Plot of line 11 and 34 in the images for the systolic (upper 2 plots) and diastolic
frame (lower 2 plots). The SNR is 20 dB, and Ns are 3 pulse lengths.

estimates fluctuate about the true velocities. Both over- and underestimation are seen throughout the vessel
and the frames. There exists a tendency of overestimation along the posterior vessel wall. For the remaining
estimates the variation is not systematic but random. The estimates do not follow the velocity variations
across the axial extent of the vessel very well. Some estimates occur that deviate significantly from the
true value, and they occur as both single and grouped errors. These incorrect estimates take values, which
are both over- and underestimated. Only very few of them repeat themselves in the consecutive frame.
In Fig. 6.39 the estimates along two lines (axially) for the systolic and diastolic frame are plotted. The
fluctuations about the true velocities and the existence of highly deviating estimates are seen in these plots.
Post-processing is required prior to displaying the estimates to minimize the variation and the amplitude
of the incorrect estimates. A total of 6.9 % of the estimates take values outside the velocity range from
-10 cm/s to 80 cm/s. The estimated velocity profiles over the cardiac cycle have been combined into one
postscript-file, which is enclosed on CD-rom. Please refer to Appendix C for information on how to locate
and access this file.

The performance of the autocorrelation estimator out performs the BST estimator, when no aliasing oc-
cur. This conclusion is based on the value of the RMS error, the measure of the number of highly deviating
estimates, and the inspection of the estimated velocity profiles. For the autocorrelation estimator the vari-
ations about the true velocity are systematic, which is not the case for the BST estimator. Still the BST
estimator has some advantages over some of the other estimators evaluated, as it only produce few highly
deviating errors. The overall trends with respect to the velocity levels throughout the cardiac cycle is also
determined. The inability to follow the variations across the vessel is a drawback, and a post-processing fil-
ter should be employed to minimize these variations. If this is possible, the BST estimator will be beneficial
to employ, if aliasing errors occur.

The BST estimator out performs the cross-correlation estimator. This conclusion is based on the follow-
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ing. The RMS error of the BST estimator is lower, and the number of highly deviating estimates are a factor
of 2 lower. The cross-correlation estimator computes estimates that follow the true variations across the
axial extent of the vessel better, when only the estimates that do not deviate significantly are considered. So
both estimators have advantages and disadvantages. The cross-correlation estimator should be preferred, if
the highly deviating estimates can be removed through post-processing.

The BST estimator also out performs the EAM estimator, when the conclusion is based on the RMS error
and the number of highly deviating estimates. If the highly deviating estimates of the EAM estimator are
removed by post-processing, the EAM estimator (employed on data generated with a short excitation pulse)
should be preferred. This conclusion is based on the fact that the non-highly deviating estimates are closer
to the true velocities and follow the variations of the velocity throughout the vessel and the cardiac cycle
better.

6.7 Extended autocorrelation estimator employing variance

The cross-correlation analysis suffers from the amplitude problem discussed in Section 6.4. This highly
degraded the performance of the EAM estimator (see Section 6.5). The BST estimator tries to come about
the amplitude problem by determining the variance between samples from consecutive lines instead. The
analysis in Section 6.6 shows that less highly deviating estimates are obtained with the BST estimator. A
new extended autocorrelation estimator is suggested here. It combines the autocorrelation estimator and the
Butterfly Search Technique. An initial guess of the velocity is obtained by employing the autocorrelation
estimator. The set of possible phases are evaluated by employing the Butterfly Search Technique on the real
RF-data or the envelope detected data. The new estimator is named the Autocorrelation and Butterfly (AB)
estimator, and the steps are as follows:

� compute an initial estimate of the phase shift employing the autocorrelation estimator,

� determine a set of possible values of the phase shift by adding and subtracting an integer number of
2π (see (6.16)),

� compute the temporal shifts, which correspond to the set of possible phase shifts,

� perform the variance analysis for the set of possible temporal shifts - including the temporal shift for
the initial phase estimate,

� determine the minimum variance value and the corresponding temporal shift,

� compute the velocity estimate based on the new estimate of the temporal shift.

The decorrelation between the signals in consecutive RF-lines influences the performance of the variance
analysis and thereby the performance of the AB estimator.

The computational load of the AB estimator is higher than for the EAM estimator due to the additional
additions and multiplications needed to compute the variance. The number of multiplications Nm�AB and
additions Na�AB performed to compute the variance values for Np possible phase shifts are:

Nm�AB � 4Ns�Nl�e�1��1�Nl�eNsNp �NsNp

Na�AB � 3Ns�Nl�e�1��2�Nl�e�1�NsNp �Nl�eNsNp� (6.19)

These numbers are obtained by combining (6.9) and (6.18), where Nv�steps is substituted with Np. The
computations performed to get the envelope detected signals are not included in Nm�AB and Na�AB. The
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autocorrelation estimator is applied to the echo-canceled, real RF-signals. The BST estimator works on both
the real and envelope detected signals, and the 2π-investigations will be performed with both approaches.
The two approaches will be referred to as the AB1 and the AB2 estimators, respectively.

6.7.1 Performance on synthetic data

The AB1 and the AB2 estimators will be evaluated for the same parameter set, which were used for the
EAM estimator:

� number of lines : Nl � �3�6�9�12�15�18�21�24�,

� sampling frequency : fs � �15�20�30�40�60� MHz,

� number of samples : Ns � �0�25�0�5�0�75�1�0�1�25�1�5�1�75�2�0� times the length of the emitted pulse.
The length in samples is dependent on the sampling frequency.

Three possible phase shifts were investigated: np � ��1�0�1�. The data set generated with a long excitation
pulse will be used, since a long pulse is optimum for the autocorrelation estimator. The same number of
samples are used in the computation of the initial phase shift and the variance value for each segment. In
this context an estimate is defined as good, if the bias is less than 2 cm/s, and the standard deviation is less
than 1 cm/s.

The results obtained with the AB1 estimator will be discussed first. The AB1 estimator does not suffer
from aliasing problems for many combinations of the parameters Nl and Ns, when no echo-canceling or a HP
echo-canceling filter is used. The subsequent variance analysis corrects for the initial incorrect estimate. The
regression line filter does not go well with the AB1 estimator. A non-aliased estimation is only obtainable for
Nl � 9 and Ns equal to 0.25 pulse lengths, when the velocity is 30 cm/s and the SNR is 0 dB. The limitations
on the choices of Nl and Ns might become a problem in an in-vivo situation. The HP filter should be applied
instead, and the results for this situation is discussed in the following. The estimation of the velocity 30 cm/s
gives the most restrictions with respect to the choice of the parameters Nl and the Ns. The application of the
HP filter prior to estimation has a positive effect on the estimation. The estimator is capable of performing
a good estimation for more combinations of Nl and Ns, when the velocity is 30 cm/s. It is not possible to
get a good estimation for any value of Nl, when Ns � 1�25 pulse lengths, the SNR is 0 dB, and the velocity
is 30 cm/s. As the SNR increases, more combinations of Nl and Ns result in a successful estimation. If
the estimator should be able to work at all SNRs, the range of Nl’s, and all velocities (except 40 cm/s), the
number of samples should be equal to 0.25 pulse lengths. Estimates with a slightly lower standard deviation
can be obtained for other values of Ns, if Nl � 12. The difference on the standard deviations is on the order
of 10�2 cm/s or less, so the difference is really only slightly lower. The velocity 40 cm/s unfortunately sets
up slightly different restrictions, when 15 and 18 lines are used. In this case Ns should take the value 0.5
or 0.75 pulse lengths as a minimum. So the choice of Ns is dependent on the value of Nl. The incorrect
estimates span the range from -85 cm/s to 40 cm/s with standard deviations in the range from 1.5 to 65 cm/s.
For a few combinations of Nl and Ns a low value of the sampling frequency causes the estimation to fail.
A sampling frequency above 20 MHz ensures good performance. The following trends exist for the AB1
estimator, when the parameters Ns and Nl are chosen appropriately (a good estimate has been computed):

� the estimate is biased. The velocity estimates are overestimated, and the level of the bias is dependent
on the estimator parameters. The bias takes values in the range from 4-10 % of the true velocity,

� the performance is independent of the sampling frequency,

� the standard deviation on the estimates decreases as the SNR increases,
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Figure 6.40: The AB1 estimator: the true (—) and the estimated (*) velocities along with the standard
deviation for a SNR of 0 and 20 dB. HP echo-canceling filter was applied. Nine lines were employed. The
sampling frequency is 30 MHz, and the number of samples are equal to one pulse length.

� the standard deviation decreases as the number of lines are increased.

Figures 6.40-6.42 show examples of the performance of the AB1 estimator. When one parameter is varied,
the others are kept constant at: the SNR is 10 dB, the number of lines are 9, the sampling frequency is
30 MHz, and the number of samples are equal to one pulse length. Tables containing the performance for
the range of combinations of the parameters, the velocities, and the echo-canceling filters are enclosed in
Appendix B.

The results obtained with the AB2 estimator will be discussed in the following. Only results obtained
after echo-canceling with the HP filter will be discussed to be able to compare the performance of the two
estimators. The AB2 estimator is more stable to variations in the values of Nl and Ns than the AB1 estimator,
since:

� the estimates and standard deviations obtained with the AB1 and the AB2 estimators are identical for
the combinations of Nl and Ns that produce good estimates with the AB1 estimator,

� good estimates are obtained for combinations of Nl and Ns, which were not possible with the AB1
estimator,

� the incorrect estimates for the velocity equal to 30 cm/s span the range from 29 to 50 cm/s with
standard deviations in the range from 1.1 to 21 cm/s. The mean and standard deviation span a narrower
range of values, than were the case for the AB1 estimator. The 2π-investigations performed with the
AB2 estimator turn out successful for quite a lot of the 100 realizations of the data set. If the definition
of a good estimate is changed, so higher values of the bias and standard deviation are allowed, some
of the remaining combinations of the Ns and Nl will produce good estimates,

� the restrictions on the choice of parameters introduced for the velocity 40 cm/s do not exist for the
AB2 estimator.
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Figure 6.41: Performance of the AB1 estimator as a function of the number of lines and the SNR. HP
echo-canceling filter applied. The sampling frequency is 30 MHz, and the number of samples are equal to
one pulse length. The true velocity is 10 cm/s.
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Figure 6.42: Performance of the AB1 estimator as a function of the number of samples and the sampling
frequency. HP echo-canceling filter applied. The SNR is 10 dB, and 9 lines were employed. The true
velocity is 10 cm/s.
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For the AB2 estimator to perform well for all SNRs, all values of Nl , and all velocities the number of
samples employed in the estimation should equal the number of samples within 0.25 pulse lengths. A slight
improvement on the accuracy is obtained, if Ns equals 0.5 pulse lengths, and Nl � 9. The trends with respect
to the bias, and the relations between the standard deviation and the parameters fs, Nl, and the SNR are the
same for the AB1 and the AB2 estimators.

The same combination of parameters gives the best performance of the two estimators, when the veloc-
ities 10, 20, and 30 cm/s are considered. The AB2 estimator can handle the velocity 40 cm/s for a wider
range of values of the parameters. For the given data set the AB2 estimator is to be preferred over the AB1
estimator.

The performance of the EAM and the AB estimators on the synthetic data set is identical. The best
performance is obtained for the same combination of parameters, and the mean and standard deviations are
identical. Based on this observation the EAM estimator should be preferred over the AB estimator, if the
computational load is of concern. Otherwise the AB estimator should be used, since it is more stable to
variations in the choice of parameters.

The mean and the standard deviation on the estimates are identical for most combinations of the parame-
ters, when the performance of the AB and the autocorrelation estimators are compared for velocities below
30 cm/s. Only the AB estimator can handle the velocities 30 and 40 cm/s. Therefore the AB estimator
should be preferred over the autocorrelation estimator, since it is able to produce good estimates for the full
range of velocities.

The AB estimator performs well for more combinations of the parameters than the cross-correlation
estimator. Both estimators can handle velocities above 20 cm/s. Estimates with a zero standard deviation
can be obtained with the cross-correlation estimator for high SNRs, which is not possible with the AB
estimator. For lower SNRs the standard deviations for the two estimators are more similar. Still the AB
estimator should be preferred over the cross-correlation estimator, since it is more stable to variations in the
SNR and the choice of parameters.

A comparison of the results for the AB and the BST estimators reveals that both estimators can handle
velocities above 20 cm/s. The AB estimator can produce good estimates for more combinations of the
parameters than the BST estimator, and the standard deviation at low SNRs is lower for the AB estimator. At
higher SNRs the BST estimator produces estimates with a standard deviation of zero, which is not possible
with the AB estimator. Based on the performance at low SNRs the AB estimator should be preferred over
the BST estimator.

6.7.2 Performance on simulated data

The performance of the AB1 and the AB2 estimators is evaluated in the following. The evaluations are
carried out on both data sets (short and long emitted pulse). The initial estimate computed by the autocor-
relation estimator is the ”correct” estimate. The idea of performing the autocorrelation estimation and the
subsequent variance analysis with different values of Ns is investigated. Samples equal to one pulse length
is used to compute the autocorrelation estimate. The number of samples used in the variance analysis are
varied. The performance is evaluated by determining the number of correct 2π-investigations.

First, the performance on the data set generated with a narrow band pulse is evaluated, when the AB1
estimator is employed. In Fig. 6.43 the number of correct 2π-investigations N2π (in %) as a function of the
number of samples employed for the variance analysis are plotted. The SNR is 10 and 20 dB, respectively.
The best performance is obtained, when the number of samples equal 0.6-0.65 pulse lengths. The number
of correct 2π-investigations are 68.1 % and 63.7 % for a SNR of 20 and 10 dB, respectively. As the SNR
increases a better performance is obtained. Still 30-36 % of the 2π-investigations turn out wrong, and this
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is a problem.

The performance of the AB2 estimator has been determined, and the number of correct 2π-investigations
as a function of the number of samples employed are plotted in Fig. 6.44. The number of correct 2π-
investigations increases, as the number of samples employed for the variance analysis increase. For Ns

equal to 5-6 pulse lengths the performance converges to 92 %, when the SNR is 20 dB. The variance
analysis is not reliable unless a large number of samples are employed. One should remember that 4 and
6 pulse lengths equal 6.2 and 9.3 mm’s. The diameter of the vessel is 6 mm. The performance decreases
as the SNR decreases, and a higher value of Ns must be employed to obtain the maximum number of
correct 2π-investigations. The AB2 estimator out performs the AB1 estimator, when Ns exceed one pulse
length, and the AB2 estimator should be preferred over the AB1 estimator for blood velocity estimation.
The performance of the AB2 estimator is discussed in the following. Although the 2π-investigations turn
out correct in the majority of the investigations, some erroneous estimates still exist. The 2D plots of the
velocity estimates have been investigated, when Ns equal 5 pulse lengths. Quite a few of the incorrect
estimates group together axially. For a number of lines incorrect estimates are obtained across the full
axial extent of the vessel. Only few single errors exist. The incorrect velocity estimates along the anterior
and posterior vessel wall are mostly under- and overestimated, respectively. Examples of the estimates on
a systolic and diastolic frame are plotted in Fig. 6.45. The same two frames, which have been used to
show the performance of the estimators discussed in the previous sections, are used here. Only the velocity
estimates within the vessel are displayed. Estimates that are plotted with the maximum and minimum value
of the velocity scale take values above or below these border values. In Fig. 6.46 the estimates for two axial
lines, which are taken from the systolic and diastolic frame in Fig. 6.45, are plotted. The measure for the
number of highly deviating estimates, which was determined for the previous evaluated estimators, will also
be used to determine the performance of the AB2 estimator. A total of 9.0 % of the estimates take values
outside the velocity range from -10 cm/s to 80 cm/s. As the ”correct” estimates are equal to the estimates
obtained with the autocorrelation estimator, the trends with respect to the variations about the true velocities
are the same. This discussion will not be repeated here.

Data obtained after emission of a narrow band pulse is to be preferred, if a good initial estimate is to
be computed with the autocorrelation estimator. The variance analysis performs best, when a wideband
pulse is emitted. A conflict with respect to choosing the excitation pulse exists - just as was the case for
the EAM estimator. The performance of the AB2 estimator is determined for the data set that favors the
BST estimator, and the results are discussed in the following. Figure 6.47 shows the number of correct
2π-investigations as a function of Ns. The AB2 estimator performs slightly better on the data set, which
was generated from a short excitation pulse. For Ns equal to 5 pulse lengths a total of 89.5 and 96.3 % of
the 2π-investigations turn out correct, when the SNR is 10 and 20 dB, respectively. The performance for a
SNR of 10 dB can be increased, if Ns are increased. A total of 3.8 % of the estimates take values outside
the velocity range from -10 cm/s to 80 cm/s, when the SNR is 20 dB. The estimated velocity profiles for
a systolic and diastolic frame are plotted in Fig. 6.48, when Ns equal 5 pulse lengths. Only the velocity
estimates within the vessel are displayed, and it is the same two frames used to show the performance of the
previously evaluated estimators. The majority of the remaining incorrect estimates show up in the last axial
line (to the right) in the images. Some single and grouped errors are seen, and they are mostly located along
the vessel wall. It will be beneficial to apply the 2D tracking filter (see Section 6.5.2) prior to displaying
the estimates, so some of the incorrect estimates are removed. The velocity profiles obtained with the AB2
estimator, when it was applied to the data set generated from a long and short excitation pulse, have been
compared. The trends with respect to the non-highly deviating estimates, which were seen with the EAM
estimator, also exist for the AB2 estimator. The estimates, which arise from the application of the AB2
estimator to the data generated with a short pulse, fluctuate more, when the course across the axial extent
of the vessel is investigated. The velocity values are lower and thereby further from the true velocities. The
basis for the autocorrelation estimation has been degraded, and the estimates come with a higher inaccuracy.
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Figure 6.43: Number of correct 2π-investigations (in %) as a function of the number of samples used in the
variance analysis with the AB1 estimator. The SNR is 10 (top) and 20 dB (bottom), respectively.
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Figure 6.44: Number of correct 2π-investigations (in %) as a function of the number of samples used in the
variance analysis with the AB2 estimator. The top and bottom plots shows the results for a SNR of 10 and
20 dB, respectively.
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Figure 6.45: AB2 estimator: The estimated and true velocities of a systolic (upper two plots) and diastolic
frame (lower two plots), when the data set is generated from a long excitation pulse. The SNR is 20 dB, and
Ns (for the variance analysis) are 5 pulse lengths.
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Figure 6.46: AB2 estimator: The estimates for line 11 and 34 in the images of the systolic (upper 2 plots)
and diastolic frame (lower 2 plots). The SNR is 20 dB.

The performance (with respect to the number of correct 2π-investigations) of the AB1 estimator also
improves, when it is applied to the data set generated from a short excitation pulse. Still, the AB2 estimator
out performs and should be preferred over the AB1 estimator.

In Appendix C the images, which contain the velocity profiles, are included for all 10 frames in the
cardiac cycle.

The RMS error for the AB2 estimator as a function of Ns (for the variance analysis) are listed in Table
6.3. These RMS errors relate to the performance, when the estimator are applied to the data set generated
with a long and a short pulse, respectively.

The autocorrelation estimator out performs the AB estimator, when no aliasing occur. The RMS error is

Number of samples
Excitation SNR (ratio of pulse lengths)

pulse (dB) 0.25 0.5 1.0 2.0 3.0 4.0 5.0

Long 10 - - 0.73 0.62 0.53 0.45 0.39
20 - - 0.69 0.57 0.46 0.38 0.33

Short 10 0.69 0.66 0.61 0.53 0.46 0.41 0.36
20 0.56 0.53 0.46 0.36 0.29 0.25 0.22

Table 6.3: The RMS error ([m/s]) as a function of the number of samples used in the variance analysis with
the AB2 estimator. The results are listed, when the estimator is applied to the data set generated with a long
and a short pulse, respectively. The SNR is 10 and 20 dB, respectively.
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Figure 6.47: Number of correct 2π-investigations (in %) as a function of the number of samples used in the
variance analysis with the AB2 estimator. The top and bottom plots shows the results for a SNR of 10 and
20 dB, respectively. A short excitation pulse was used.
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Figure 6.48: AB2 estimator: The estimated (left) and the true (right) velocities of a systolic (upper two
plots) and diastolic frame (lower two plots). The SNR is 20 dB, and the data set generated with a short pulse
is used. The number of samples used in the variance analysis are equal to 5 pulse lengths.
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lower, and hardly any highly deviating velocity estimates are seen. The performance of the AB2 estimator
comes close to the performance of the autocorrelation estimator, though. If (some of) the highly deviat-
ing estimates can be removed by proper post-processing, the AB2 estimator should be preferred over the
autocorrelation estimator, as it is designed to handle the aliasing problem.

The AB2 estimator out performs the cross-correlation estimator. This conclusion is independent of the
choice of data set, as the RMS error is lower for both data sets. Fewer highly deviating estimates are
obtained with the AB2 estimator, and the estimates follow the velocity variations throughout the vessel and
the cardiac cycle more closely. Post-processing of the estimates should be performed for both estimators
prior to displaying the estimates.

Both the AB2 and the EAM estimators were developed to overcome the limitation of the autocorrelation
estimator with respect to aliasing. None of them perform as well as the autocorrelation estimator, when no
aliasing is present. Both estimators produce deviating estimates, which are off by an integer number of 2π.
The analysis with the cross-correlation estimator or the BST estimator fails. A comparison reveals that the
AB2 estimator out performs the EAM estimator. The introduction of a variance analysis (inherited from
the BST estimator) instead of the cross-correlation analysis improves the investigation of the set of possible
2π phases. This conclusion is based on the values of the RMS errors, the measure of the number of highly
deviating estimates, and the inspection of the computed velocity estimates. Still post-processing is required
to minimize the error.

The performance of the BST and the AB2 estimators are similar, when the AB2 estimator is applied to
the data generated from a short excitation pulse. The conclusion is based on a comparison of the RMS errors
and the measures for the number of deviating estimates. The estimation with the BST estimator is performed
with Ns equal to 3 pulse lengths. Deviating estimates occur for both estimators and must be removed by
means of post-processing. The visual inspection of the obtained velocity estimates shows that the AB2
estimator produces estimates, which follow the velocity variations better. Based on this observation the
AB2 estimator should be preferred over the BST estimator, if the AB2 estimator is applied to data generated
with a short excitation pulse.

6.8 Wideband Maximum Likelihood estimator

The estimator described in this section is inspired by techniques developed for radar. The field of detection
and estimation is of much concern in radar. Objects (e.g. airplanes, missiles) must be detected, and features
(e.g. velocity and direction) must be estimated. Algorithms have been developed based on statistics, which
are capable of performing the detection and estimation. A thorough discussion of these are available from
the books on detection and estimation by Van Trees [33], [34]. The methods are developed for complex
signals and will be used for this type of signals in this study. Ferrara et al. [48], [58] employed this
theory and developed an estimator applicable for estimation on RF-signals. It is named the Wideband
Maximum Likelihood estimator (MLE), and the estimator will be derived in the following. The derivation
is split up into a number of steps. Otherwise the discussion easily becomes unclear. The basic principles of
estimation and detection will be discussed first in Section 6.8.1. The expansion for the situation at hand will
be introduced in Section 6.8.2.

6.8.1 Basic principles of detection and estimation theory

The objective of performing detection and estimation is to determine the presence of one or more objects
and estimate some properties for these objects. If each of the objects (e.g. airplane, group of scatterers) emit
a characteristic signal,

�
Es�t�, this can be acquired and used for the detection and estimation. The signal

130



6.8. WIDEBAND MAXIMUM LIKELIHOOD ESTIMATOR

can be self generated or a reflection of a transmitted signal from an observer. The variable E represents the
energy of the received signal, and it is assumed that

� T
0 s2�t� � 1. The following discussion will investigate

the situation, when only one object is present. The derived algorithms can be extended to the situation of
more objects [33], [34]. The presence of the object is not known a priori, so the acquired signal, rc�t�,
can either contain noise only or the emitted signal added noise. Two situations - equal to two hypothesis
�H0�H1� in statistics - can exist:

rc�t� �

� �
Es�t��n�t� 0 � t � T : H1

n�t� 0 � t � T : H0�
(6.20)

where T represents the temporal length of an observation. It is desirable to reduce the dimensionality of the
signal vector rc�t� to ease the subsequent detection and estimation process [33], [34]. If s�t� is known, it is
beneficial to perform the reduction through a series expansion of rc�t� [33], [34]:

rc�t� � lim
K�∞

K

∑
i�1

qiψi�t� (6.21)

0 � t � T �

where qi are the coefficients of the series, and ψi are a set of orthonormal functions. If the first orthonormal
function, ψ1, is set equal to s�t�, the coefficients become:

q1 �

� � T
0 �
�

Es�t��n�t��s��t�dt �
�

E �n1 : H1�� T
0 n�t�s��t�dt � n1 : H0�

(6.22)

qi �

� � T
0 �
�

Es�t��n�t��ψi�t�dt � ni : H1�� T
0 n�t�ψi�t�dt � ni : H0�

(6.23)

Only q1 will contain information related to s�t�, since all ψi are orthogonal to s�t� for i � 1 . Therefore
q1 represents the measure (the sufficient statistic), which is needed to perform the detection and estimation.
Given the probability density of q1 under the two hypothesis, a statistical solution based on the likelihood
ratio LR�Q1� can be obtained [33]:

LR�Q1� �
pq1�H1

�Q1�H1�

pq1�H0
�Q1�H0�

� (6.24)

where Q1 represents an observation of q1, and pq1�H0
and pq1�H1

are the probability density functions under
H0 and H1, respectively. The likelihood ratio determines the ratio of the probability values for the observa-
tion under the two hypothesis. The ratio performs a comparison of the probability values, and the output
expresses which hypothesis is more likely. A decision criteria is introduced as a threshold value η for the
ratio. The detection problem is then solved by comparing the likelihood ratio to the threshold:

LR�Q1�

H1

�
�
H0

η� (6.25)

The computation of q1 is equal to a correlation analysis between the acquired signal, rc�t�, and the reference
signal, s�t�.

The likelihood ratio can also be employed for the estimation of properties of the object [34]. One property
could be the distance from the observer to the object of interest. Consider the situation where the observer
transmits a signal. As this signal reaches the object, the transmitted signal is reflected. The reflected signal
will reach the observer, and the time of arrival is related to the distance. As the distance is not known
a priori, the acquisition takes place over a time window Tw (Tw �� T ). In this long signal the reflected
signal is present within a temporal interval �t1� t1 �T �, and the determination of t1 equals the estimation of
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the distance. A search through the long signal must be performed for the range of possible values of t1.
Although not stated in the above discussion of the detection problem a search through a long signal is also
required as the distance is not known a priori. For each investigated interval �t� t �T � q1 is computed, and
the presence of the reflected signal within the investigated interval is determined. At some point the signal
is detected, and the temporal value t is the estimate of the temporal location t1. The likelihood ratio takes
its maximum value [33], [34], when the signal is detected, so the estimate of the temporal location t̂1 is
determined as:

t̂1 � arg max
t

�LR�Q1�t���� (6.26)

where t takes values in the range from 0 to Tw�T . An estimator based on this theory is named a maximum
likelihood estimator.

A statistical approach for detection and estimation has been derived above. It requires knowledge of:

� the signal of interest, s�t�,

� the distribution for q1 under H0 and H1, respectively.

The detection and estimation are then based on the likelihood ratio.

6.8.2 Estimation of blood velocity

The maximum likelihood estimation scheme derived above can also be used for estimation of the blood
velocities in ultrasound RF-signals. The situation is slightly more complicated though, as a large number of
small objects (the scatterers) are present and contribute to the acquired signal. As discussed in Section 6.1,
the acquired signal consists of the sum of contributions from the individual scatterers distributed in space.
Therefore the (average) velocity of a group of scatterers will be determined, rather than the velocity of each
scatterer.

The first step in the estimation was to reduce the dimensionality of the signal vector. A choice of the
orthonormal functions, ψi, is required. If ψ1 was chosen to be identical to the signal of interest, an estimator
based on q1 alone could be obtained. As the properties of the scatterers and the attenuation are not known
a priori, it is not possible to determine the response from a group scatterers. The signal s�t� cannot be
modeled. Even if s�t� could have been modeled, it will be very difficult to determine the blood velocities
by processing one RF-line only, as the Doppler shift is negligible compared to the spectrum changes from
attenuation. Only the position of the scatterers could have been determined. Instead several RF-signals
should be acquired and used to determine the shift in position between acquisitions, which gives a basis
for estimating the velocity. The acquisition of several RF-lines also makes it possible to determine an
approximative model for s�t�. If it is assumed that the response from a group of scatterers does not change
between acquisitions, the same response will be present in all RF-signals. The location of the response in
each RF-signal is shifted, as the scatterers have moved between acquisitions. The response in the first RF-
line can be used as a model for s�t� and be used to perform the correlation analysis. The correlation analysis
requires that a set of samples are employed. The first RF-line, which now acts as the reference line, is split
up in a number of segments, and a velocity estimate is determined for each segment. The reference segment
is compared to segments in all RF-lines - including the first RF-line:

q1�l �
Ns�1

∑
k�0

rc�c f m�1�k� isegNs�r
�
c�c f m�l�k� isegNs �n � �l�1��� (6.27)

where n gives the temporal shift in position of the segments in the RF-signals in number of samples. The
parameter n is a function of the investigated velocity. A total of Nl�e values of q1 are obtained from each

132



6.8. WIDEBAND MAXIMUM LIKELIHOOD ESTIMATOR

correlation analysis, and these observations are referred to as Q1�l . The position of the segments in the
RF-lines are determined by the velocity, which currently is being evaluated. In Section 6.8.1 the correlation
was performed over a range of temporal values, which represented the temporal location in the signal. The
temporal location is related to the velocity, so in the following the q1�l and the likelihood ratio will be defined
as a function of velocity. The velocity variable is named vp. Each value of Q1�l tells, if the reference signal
has been detected in the RF-line under investigation.

The probability density of each q1 under H1 is a complex Gaussian distribution with a zero mean [33],
[34], [48], [51], [58]. The variance equals the energy of the reference signal, which includes the energy of
the response, Er, and the noise, N0. The probability density of the sum of the q1�l will also be a complex
Gaussian distribution, when the individual q1�l are assumed statistically independent. The probability density
of q1�s � q1�1 � ����q1�Nl�e is:

pq1�s�H1�Q1�s�H1� �
1

π�Er �N0�Nl�e
exp

�
� �Q1�s�vp��2
�Er �N0�Nl�e

�
� (6.28)

where Nl�e represent the number of lines available for the estimation after echo-canceling. The probability
density of q1�s under H0 is:

pq1�s�H0
�Q1�s�H0� �

1
πN0Nl�e

exp

�
��Q1�s�vp��2

N0Nl�e

�
� (6.29)

As the probability density of q1�s is known under H0 and H1, the likelihood ratio can be derived:

LR�Q1�s�vp�� �
pq1�s�H1

�Q1�s�H1�

pq1�s�H0
�Q1�s�H0�

�
�π�Er �N0�Nl�e�

�1 exp
�
� �Q1�s�vp��

2

�Er�N0�Nl�e

�
�πN0Nl�e��1 exp

�
� �Q1�s�vp��2

N0Nl�e

� � (6.30)

By taking the logarithm and rearranging the terms the following relation is obtained:

ln�LR�Q1�s�vp��� � ln�
N0

Er �N0
��

Er

�Er �N0�N0Nl�e
�Q1�s�vp��2� (6.31)

The parameters N0, Er, and Nl�e are constants. They only contribute with an offset value and a scaling of
�Q1�s�vp��2, so �Q1�s�vp��2 represents the sufficient statistic (the measure), which is needed to perform an
estimation of vp. If �Q1�s�vp��2 is computed (using (6.27) and summing the Nl�e values) for the range of
velocities, the maximum of �Q1�s�vp��2 gives the estimate of the (average) velocity for a group of scatterers:

v̂�x�z� t f � � arg max
vp

��Q1�vp��2�� (6.32)

The derived scheme for estimation can be employed to determine estimates of the blood velocity. A short
excitation pulse should be employed to minimize the influence of velocity spread, which will degrade the
performance of the estimator. The correlation analysis tries to find a signal, which is identical to the refer-
ence signal. Due to the decorrelation a perfect match does not exist.

The computational load of the estimator is higher than for the cross-correlation estimator, as the correla-
tion analysis is performed on the complex data. The number of additions Na�MLE and multiplications Nm�MLE

performed to obtain the value of �Q1�s�2 for Nv�steps velocity values are:

Nm�MLE � 4NsNl�eNv�steps �4Nv�steps

Na�MLE � 2�Ns�1�Nl�eNv�steps �3Nv�steps ��Nl�e�1�Nv�steps� (6.33)

These numbers have been obtained by counting the number of multiplications and additions performed to
compute Q1�l in (6.27) and �Q1�s�2 for the range of investigated velocities.
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6.8.3 Performance on synthetic data

The performance of the maximum likelihood estimator (MLE) was determined on the synthetic data set
generated with a short excitation pulse. The estimator parameters were varied as follows:

� number of lines : Nl � �3�6�9�12�15�18�21�24�,

� sampling frequency : fs � �15�20�30�40�60� MHz,

� number of samples : Ns � �0�25�0�5�0�75�1�0�1�25�1�5�1�75�2�0� times the length of the emitted pulse.
The length in samples is dependent on the sampling frequency.

The velocity range from -50 cm/s to 50 cm/s was investigated with a resolution of 1 cm/s. No interpolation
of the likelihood ratio is performed prior to the determining the maximum. The velocity resolution on the
estimates is restricted by the choice of the step size. A good performance on the estimation is obtained,
when the mean lies within 	 2 cm/s of the true velocity, and the standard deviation is less than 1 cm/s. The
following trends exist, when the velocities 10, 30, and 40 cm/s are evaluated, and a good performance is
obtained:

� the maximum likelihood estimator does not suffer from aliasing problems,

� the estimates are biased. The bias decreases to 0 cm/s for the estimation of the velocity 10 cm/s, when
Nl increase. For the velocities beyond 10 cm/s the bias converges to +1 cm/s as Nl increase. This
trend holds for all values of Ns,

� the standard deviation decreases and reaches 0 as Nl increase. The zero standard deviation is obtained
even for low values of Nl , and no performance improvement is obtained, if Nl are increased. The
lower value of Nl , which gives zero standard deviation, is dependent on the SNR and the choice of
echo-canceling filter. As the SNR increases the limit decreases,

� the choice of Ns only plays are role for low values of Nl and the SNR, where the standard deviation
varies for the different values of Ns,

� the performance is independent of the choice of sampling frequency for most combinations of Nl and
Ns. The sampling frequency should be higher than 15 MHz, when the SNR and Nl take a value in the
lower range, to ensure a good performance.

The MLE estimator performs very well on the velocities 10, 30, and 40 cm/s, where a standard deviation
close to or equal to zero can be obtained even at low SNRs and low values of Nl . For a velocity of 20 cm/s
this can only be obtained for high SNRs. The estimate is still biased, and the bias takes a positive value.
For most combinations of Nl and Ns the bias approaches +1 cm/s, as the SNR increases. For some choices
of Ns the bias goes to zero, when the number of lines used are low. An overall good performance on the
estimation of the velocity 20 cm/s is obtained, when Ns take a value in the range 1-1.5 pulse lengths. For
all 4 velocities the following can be concluded. Employment of the regression line filter requires that more
than 3 lines are available. Otherwise the subsequent estimation fails. If a bias of zero for the velocity 10
cm/s should be obtained, a minimum of 15 lines must be employed. The HP filter is able to produce the
zero bias for the velocity 10 cm/s, when only 6 lines is employed. The levels of the standard deviations
for the three echo-canceling filters are very similar. The standard deviation after application of the HP
filter takes values higher, lower, and equal to the standard deviations obtained, when no echo-canceling was
applied. The difference in the levels of the standard deviations are on the order of a few millimeter per
second for these two filters. The standard deviations are even more similar, when the results obtained with
the regression line filter and no echo-canceling filter are compared. So the performance of the estimator is
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Figure 6.49: The maximum likelihood estimator: the true (—) and the estimated (*) velocities along with
the standard deviation for a SNR of 0 and 20 dB. Nine lines were employed. The sampling frequency is 30
MHz, and the number of samples are equal to one pulse length.

not influenced significantly by the introduction of the echo-canceling filters for the given data. Please refer
to Appendix B to see tables containing the performance for the range of the parameters, the velocities, and
the echo-canceling filters. Examples of the performance are plotted in Figures 6.49-6.51, when the different
parameters are varied. The HP echo-canceling filter was applied prior to the velocity estimation. When one
parameter is varied, the others are kept constant at: the SNR is 10 dB, Nl are 9, the sampling frequency is
30 MHz, and Ns are equal to one pulse length.

The maximum likelihood estimator out performs all of the estimators discussed previously for the veloc-
ities 10, 30, and 40 cm/s, when the SNR is low and Nl is above 6 lines. Estimates with a standard deviation
of 0 cm/s can be obtained under these conditions.

The MLE estimator does not suffer from aliasing problems, and therefore the MLE estimator should be
preferred over the autocorrelation estimator. When the velocity is 20 cm/s or Nl is low, the lowest standard
deviation on the estimate is obtained with the autocorrelation estimator.

The maximum likelihood estimator performs well for most combinations of the parameters. So overall
the MLE should be preferred over the cross-correlation estimator.

Both the MLE and the EAM estimators can handle the full velocity range. For low SNRs and a velocity
of 20 cm/s the EAM estimator produces estimates with a lower variance than the MLE estimator. At higher
SNRs the MLE estimator out performs the EAM estimator, as estimates with a zero standard deviation are
obtained. Overall the MLE estimator should be preferred over the EAM estimator.

The performance of the BST and the MLE estimators is very similar. Both can handle the full range of
velocities, and they produce estimates with a zero standard deviation as the SNR increases. The MLE esti-
mator works well for more combinations of the parameters, which give the MLE estimator some advantages
over the BST estimator. The maximum likelihood estimator should be preferred over the BST estimator.
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Figure 6.50: Performance of maximum likelihood estimator as a function of the number of lines and the
SNR. HP echo-canceling filter applied. The sampling frequency is 30 MHz, and the number of samples are
equal to one pulse length. The true velocity is 10 cm/s.
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Figure 6.51: Performance of maximum likelihood estimator as a function of the number of samples and the
sampling frequency. HP echo-canceling filter applied. The SNR is 10 dB, and 9 lines were employed. The
true velocity is 10 cm/s.

136



6.8. WIDEBAND MAXIMUM LIKELIHOOD ESTIMATOR

1 2 3 4 5 6

0.2

0.25

0.3

0.35

Number of samples (ratio of pulselengths)

R
M

S
 e

rr
or

 [m
/s

]

Figure 6.52: RMS error ([m/s]) as a function of Ns for the MLE estimator. The SNR is 20 dB.

The AB estimator performs very similar to the EAM estimator. Therefore the same conclusion will be
drawn: overall the MLE estimator should be preferred over the AB estimator.

6.8.4 Performance on simulated data

The performance of the MLE estimator has been evaluated on the data set generated with a short pulse. The
SNR is 20 dB, and the HP filter was applied for echo-canceling. The velocity range from -50 cm/s to 50 cm/s
was investigated with a resolution of 1 cm/s. The RMS error as a function of Ns is plotted in Fig. 6.52. The
error decreases, as Ns increase, and reaches a value of 0.17 for Ns equal to 6 pulse lengths. The estimator is
not able to produce estimates across the full axial extent of vessel, and this problem increases as Ns increase.
The same problem was experienced with the BST and the cross-correlation estimators. Figure 6.53 shows
the problem for the systolic frame, when Ns equal 6 pulse lengths. A lower value of Ns must be used to
minimize the problem. In Fig. 6.54 examples of the estimated velocity profiles for a systolic and a diastolic
frame are plotted. The number of samples used are equal to 3 pulse lengths. Again the performance on the
same two frames, which have been used to show the performance of estimators discussed in the previous
sections, are plotted. Only the velocity estimates within the vessel are shown. Estimates that are plotted
with the maximum and minimum value of the velocity scale take values above or below these border values.
The problem has not been resolved but minimized.

Inspection of all computed estimates reveals that some estimates occur, which deviate significantly from
the true velocity. These velocity estimates are underestimated, and they are mostly found along the posterior
vessel wall. More than 50 % of them group together axially and/or laterally. The remaining estimates
fluctuate about the true velocities. The estimates along the vessel wall are mostly overestimated, whereas
an underestimation is seen along the center axis of the vessel. This conclusion holds for all frames except
the systolic frame, where the velocity estimates are mostly underestimated. The level of overestimation is
higher than the underestimation, so the velocity estimates across the axial extent of the vessel do not vary
as much as the true velocity profile. The MLE estimator does not follow the velocity variations across the
spatial extent of the vessel very well. In Fig. 6.55 a selection of the axial lines in the systolic and diastolic
frame in Fig. 6.54 are plotted separately. The problem of determining the velocities along the vessel wall
shows clearly in the lower two plots. A file, which contains the velocity estimates of all 10 frames, have
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Figure 6.53: MLE estimator: The estimated (left) and the true (right) velocities for the systolic frame, when
Ns equal 7 pulse lengths. The SNR is 20 dB.

been generated, and it can be accessed from the enclosed CD-rom (see Appendix C). The measure of the
number of highly deviating estimates has been determined. A total of 4.1 % of the estimates take values
outside the velocity range from -10 cm/s to 80 cm/s.

A post-processing filter should be applied to minimize the amplitude of the incorrect estimates and
resolve the problem of overestimation along the vessel wall. The resulting velocity distributions should be
more consistent with the true velocity distributions.

The autocorrelation estimator should be preferred over the MLE estimator, when no aliasing occur. The
RMS error is lower, and hardly any deviating estimates occur. The autocorrelation estimator follows the
velocity variations across the vessel and throughout the cardiac cycle more closely than the MLE estimator.
The MLE estimator has the advantage of being able to handle the aliasing problem. If a post-processing
filter can be determined, which can remove (or minimize the amplitude of) the highly deviating estimates
one should consider using the MLE estimator.

The MLE estimator out performs the cross-correlation estimator, when the RMS error and the measure
of the number of highly deviating estimates are used to compare performance. The conclusion is drawn
for the estimates obtained, when Ns are equal to 3 pulse lengths in the estimation. Both estimators produce
estimates, which deviate significantly from the true velocity. The cross-correlation estimator is able to follow
the velocity variations across the extent of the vessel better than the MLE estimator. Both estimators require
that a post-processing filter is applied to minimize the variations about the true velocities.

A better performance on velocity estimation is obtained, if the MLE estimator is used instead of the
EAM estimator. A lower RMS error is obtained, and the MLE estimator does not introduce as many highly
deviating estimates as the EAM estimator. If these estimates can be removed by a post-processing filter, the
EAM estimator should be preferred over the MLE estimator, as the ”correct” estimates follow the variations
across the vessel and throughout the cardiac cycle better.

The RMS error for the BST and the MLE estimators is very similar, and both estimators produce some
estimates, which deviate significantly from the true value. The fluctuations about the true velocities are not
systematic for the BST estimator, which result in a very noisy image of the velocity profile. The velocity
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Figure 6.54: MLE estimator: The estimated (left) and the true (right) velocities for a systolic (upper two
plots) and a diastolic frame (lower two plots), when Ns equal 3 pulse lengths. The SNR is 20 dB.
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Figure 6.55: MLE estimator: Plot of line 11 and 34 in the images for the systolic (upper 2 plots) and
diastolic frame (lower 2 plots). The SNR is 20 dB.

profile for the MLE estimator is more smooth, which is beneficial when consecutive frames are displayed
after each other at a high frame rate. The number of highly deviating estimates are slightly lower with the
MLE estimator. Overall the MLE estimator should be preferred over the BST estimator.

The performance of the MLE and the AB2 estimators is similar, when the AB2 estimator is employed
on data generated with a short pulse. The RMS error is almost the same, when the MLE estimator employs
3 pulse lengths in the estimation. Estimates that deviates significantly in amplitude are produced by both
estimators. The number of highly deviating estimates are very similar. The AB2 estimator produces esti-
mates, which are more consistent with the true estimates, as they follow the variations across the vessel and
throughout the cardiac cycle well. Based on this observation the AB2 estimator should be preferred over the
MLE estimator.

6.9 Maximum likelihood estimator including spatial and temporal correla-
tion

All of the estimators discussed above focused at determining the velocity for each segment individually. An
estimate is computed and assigned to the corresponding location of the segment in the RF-line. A spatial
and temporal correlation between the velocities in the vessel are not considered. If a correlation exists the
variations between the velocity levels in a bounded neighborhood are restricted. The mechanics of non-
turbulent, fluid motion predicts [24] that a temporal and spatial correlation exist. The velocity levels are
similar in a spatially and temporally bounded neighborhood, and the transition from one velocity level to
another can be described by a continuous function. An estimate that deviates significantly in amplitude
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from its neighbors can be considered as an incorrect estimate. Examples of incorrect estimates have been
seen for most of the estimators investigated here. With the autocorrelation estimator aliased estimates could
be obtained. The cross-correlation analysis produced incorrect estimates due to the amplitude problem.
Incorporation of the correlation property in the estimation will be beneficial. In the following an estimator
based on maximum likelihood theory, which includes the correlation property, is derived. A maximum
likelihood estimator was derived in Section 6.8.2, where a maximum likelihood function was determined
from the probability density for the first coefficient in the series expansion. This approach is also used for
the estimator developed here, but the employed probability density under H1 is expanded with an a priori
probability density.

The velocity is a function of time and spatial location: v�x�z� tf �, where �x�z� determine the spatial
location along the lateral and axial direction, respectively. The axial location in an RF-line was referred to
by the time of acquisition t in the previous sections. The two variables are related through: t � 2z�c, and
the spatial variable is used in the following. The variable tf represents the time instant, where a frame is
generated and is related to the frame rate through:tf � nF Tf rame. The variables nF and Tf rame represent a
discrete, integer value and the time between two consecutive frames are displayed, respectively. The flow
is three-dimensional but in this context the third dimension will not be considered, as velocity estimates are
not computed along the y direction. Only the velocity component along the axial direction is estimated, so
v�x�z� t f � is one-dimensional.

The existence of temporal and spatial correlation introduces some restrictions on the velocity variations
in a bounded neighborhood. This introduces an a priori knowledge of the velocity level in a given location, if
the velocities in the neighborhood are known. It has to be similar in value to its neighbors in time and space.
If the MLE estimator is employed, the likelihood ratio (LR) is determined for a range of velocities, and the
maximum of the LR gives the estimate of the velocity. Given the a priori knowledge of the velocities in the
neighborhood, the velocity in the location currently being estimated will be restricted to span a narrower
range of velocities. The range is determined by the velocity values of its neighbors. This restriction can
be introduced in the estimation by expanding the probability density under H1 with an a priori probability
density function pa. The probability density function sets up restrictions for when neighboring velocities can
be considered similar. The expansion of the probability density under H1 introduces additional information
to the estimation process, so a better basis for the estimation is obtained. The joint probability density
becomes:

p�q1�vp�x�z� t f �� � pa�vp�x�z� t f ��pq1�H1 � (6.34)

where vp�x�z� t f � determines the value of the velocity currently being evaluated.

So far the actual definition of similarity has not been given. The range of possible variations of the
velocities in a bounded neighborhood must be investigated, and a probability density function for the a
priori knowledge must be determined. The true velocities are given for the simulated data employed in this
chapter, which makes it possible to investigate the temporal and spatial velocity variations in the 2D images
of the velocity profiles. The spatial variations along the axial and lateral directions will be considered. The
variations are expressed by means of the difference between the velocities in two neighboring locations:

vdx�x�z� t f � � v�x�Δx�z� t f �� v�x�z� t f �

vdz�x�z� t f � � v�x�z�Δz� t f �� v�x�z� t f �

vdt�x�z� t f � � v�x�z� t f �Tf rame�� v�x�z� t f �� (6.35)

where Δx and Δz determine the lateral and axial distance between neighbors. A histogram analysis of
vdx�vdz, and vdt results in the set of probability densities, which are plotted in Fig. 6.56. The values of
Δx and Δz are 0.4 mm and 0.8 mm. The obtained densities are only valid for the carotid artery under
the given simulation conditions. The probability densities are approximately Gaussian distributed. The
probability density for the axial derivatives show the least resemblance with a Gaussian distribution, because
of the drop in probability for values of �vdx� � 8 cm/s. The temporal probability density is shifted slightly
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Figure 6.56: Plots of the axial (top), lateral (middle), and temporal (bottom) variations in the velocity
profiles in the 2D images.
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towards positive velocity changes. The high, negative values of vdt resemble the variations, when the present
and previous frame contain part of the systolic and the diastolic phase, respectively. The positive velocity
variations resemble the conditions for the frames from the diastolic phase. The latter has a longer temporal
duration, and therefore small changes are seen more often in the cardiac cycle. The mean is very close to
zero. The width of the distribution is dependent on the temporal resolution and will decrease as the frame
rate increases. The reason here fore is that the amplitude of the changes will be lower at a higher frame rate,
as the variations in the velocity throughout the cardiac cycle are sampled more often. In general the width of
the density functions will be dependent on the temporal and spatial resolution, which makes the modeling of
the densities dependent hereof. The above investigations tell that the spatial and temporal velocity variations
are restricted. A measure of similarity is obtained by computing the difference, and the probability densities
are approximately Gaussian. A priori knowledge of the velocity variations is present and should be included
in the probability density of q1�s under H1. The functionality of the a priori density is to compare the velocity
vp�x�z� t f � currently being investigated to the values of its neighbors and determine, if vp�x�z� t f � is likely or
not.

In this study the probability densities for the variations will be approximated by Gaussian distributions
with a zero mean. The value of the variance depends on whether the density is related to the spatial or
temporal variations. The a priori density pa is defined as:

pa�vp�x�z� t�� �
1
Z

exp

�
�ζ1C1�x�z� t f �

σ2
1

� ζ2C2�x�z� t f �

σ2
2

�
� (6.36)

where Z is a normalization constant, which assures that
�

p�q1�vp�dq1dvdxdvdzdvdt � 1. The parameters ζ1

and ζ1 are scaling factors. σ2
1 and σ2

2 are the variances of the temporal and spatial distributions. The terms
C1 and C2 contain the similarity investigation along the temporal and spatial direction, respectively. Before
defining these terms, a discussion of the neighborhood is performed. The RF-data are acquired according to
a predefined scheme, which determines when RF-lines are acquired for the different lateral positions. When
data are available, the processing can be initiated. The choice of acquisition and processing scheme are
manifold, and it determines, which spatial neighbors are available and can be employed. In the following it
is assumed that:

� the set of RF-lines for each lateral position are processed after each other (line by line from left to
right), and

� each line is split up in a number of segments, and the segments are processed after each other (from
first to last segment).

With this choice only two spatial neighbors (along the axial and lateral directions) within the same frame are
available, when the estimation is carried out: v�x�Δx�z� tf � and v�x�z�Δz� t f �. Estimates from the previous
frame are used to make a complete neighborhood, which contains information around the location under
investigation. The employed neighborhood Vn becomes:
Vn � �v�x�Δx�z� t f ��v�x �Δx�z� t f �Tf rame��v�x�z�Δz� t f ��v�x�z �Δz� t f � Tf rame�,v�x�z� t f �Tf rame��. A
full neighborhood does not exist for the first and last segment in each line, and the first and last line in the
image. In the following the estimates for these spatial locations will be computed with the MLE estimator.
This approach is also employed for the first frame, as no temporal neighbors exist.

Based on the definition of the neighbors, the terms C1�x�z� t f � and C2�x�z� t f � are defined as:

C1�x�z� t f � � �v�x�z� t f �Tf rame�� vp�x�z� t f ��
2 ��v�x�Δx�z� t f �Tf rame�� vp�x�z� t f ��

2

��v�x�z�Δz� t �Tf rame�� vp�x�z� t��
2

C2�x�z� t f � � �v�x�Δx�z� t f �� vp�x�z� t f ��
2 ��v�x�z�Δz� t f �� vp�x�z� t f ��

2� (6.37)
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The joint probability density for q1�s under H1 becomes:

pq1�s�H1
�Q1�s�vp�H1� �

1
Z

1
π�Er �N0�Nl�e

exp

�
�ζ1C1�x�z� t f �

σ2
1

� ζ2C2�x�z� t f �

σ2
2

�
exp

�
� �Q1�s�vp��2
�Er �N0�Nl�e

�
�

(6.38)
The probability density of q1�s under H0 is unchanged:

pq1�s�H0
�Q1�s�vp�H0� �

1
πN0Nl�e

exp

�
��Q1�s�vp��2

N0Nl�e

�
� (6.39)

The likelihood ratio for the current problem becomes:

LR�Q1�s�vp� �
pq1�s�H1

�Q1�s�H1�

pq1�s�H0�Q1�s�H0�

�
�Zπ�Er �N0�Nl�e�
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�
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1
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2

�
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2

�Er�N0�Nl�e

�
�πN0Nl�e��1 exp

�
� �Q1�s�vp��2

N0Nl�e

� � (6.40)

If all the exponentials are combined into one, and the logarithm of the LR is computed the following relation
is obtained:

ln�LR�Q1�s�vp�� � ln�
N0

Z�Er �N0�
�� ζ1C1�x�z� t f �

σ2
1

� ζ2C2�x�z� t f �

σ2
2

��Q1�s�vp��2 1
Nl�e

�
1

Er �N0
� 1

N0

�
(6.41)

� ln�
N0

Z�Er �N0�
�� ζ1C1�x�z� t f �

σ2
1

� ζ2C2�x�z� t f �

σ2
2

�
1

Nl�e

Er

�Er �N0�N0
�Q1�s�vp��2�

The first term in (6.41) represents a constant value and therefore only adds an offset to the likelihood ratio.
The last three terms represent the sufficient statistic. Determination of (6.41) for a range of velocity values
requires knowledge of Er, N0, ζ1, and ζ2. The factors ζ1 and ζ2 scale the contributions from C1 and C2. If
C1 and C2 should play any role in the sum of terms, the scale factors will take values which to some extent
compensate out the amplitude differences between C1, C2, and Q1�s. In this study ζ1 and ζ2 will be defined
as:

ζ1 � κ1
Er�Er �N0�

N0

ζ2 � κ2
Er�Er �N0�

N0
� (6.42)

where κ1 and κ2 are a new set of scale factors. These definitions are introduced in (6.41). By rearranging
terms, ignoring the first term and the common constants for the last terms, the sufficient statistic in the form
of the likelihood ratio (LRS) can be expressed as:

ln�LRS�Q1�s�vp�� �
1

Nl�e�Er �N0�2 �Q1�s�vp��2 � κ1C1�x�z� t f �

σ2
1

� κ2C2�x�z� t f �

σ2
2

� (6.43)

The values of the variables κ1, κ2, σ2
1, and σ2

2 are dependent on the temporal and spatial resolution. The exact
values for the individual variables as a function of the resolution will not be investigated in this context, and
therefore the variables are combined as:

Γ1 � κ1�σ2
1 (6.44)

Γ2 � κ2�σ2
2�
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The velocity estimate is:

v̂�x�z� t f � � arg max
vp

�ln�LRS�Q1�s�vp���

� arg max
vp

�
1

Nl�e�Er �N0�2 �Q1�s�vp��2�Γ1C1�x�z� t f ��Γ2C2�x�z� t f ��� (6.45)

The value of ln�LRS�Q1�s�vp�� is computed for the range of velocities investigated. Each value is determined
by:

� computing the values of Q1�l . The definition of Q1�l is given in (6.27),

� computing Q1�s by summing the Q1�l , and then performing the squaring to obtain �Q1�s�vp��2,

� determining C1 and C2 for the velocity under investigation, and then

� performing the summing of the terms within the brackets in (6.45).

An estimator, which is based on maximum likelihood theory and incorporates the temporal and spatial cor-
relation between the blood velocities, has been derived in the above. It will be named the CMLE estimator,
where the C refers to incorporation of the correlation property. The performance of the estimator is influ-
enced by decorrelation and the accuracy on the neighboring velocity estimates. The latter influences the
terms C1 and C2.

The similarity investigations by means of C1 and C2 increase the computational load of the estimator
compared to the ordinary maximum likelihood estimator introduced in Section 6.8.2. The computations
performed in (6.27), (6.37), and (6.45) along with the summing and squaring operation to obtain �Q1�s�2
determines the number of additions Na�CMLE and multiplications Nm�CMLE performed to obtain (6.45) for
Nv�steps:

Nm�CMLE � 4NsNl�eNv�steps �12Nv�steps �Ns �2

Na�CMLE � 2�Ns�1�Nl�eNv�steps�13Nv�steps ��Nl�e�1�Nv�steps ��Ns�1�� (6.46)

6.9.1 Determination of the estimator parameters

The values of Γ1 and Γ2 must be determined before the estimator can be employed. In the following these
scale factors are determined for the simulated data set used in this chapter. This data set give the velocity
profiles for the carotid artery for one choice of the temporal and spatial resolution. The factors are specific
for this situation. In order for the estimator to be applicable for the estimation of the velocities in other
blood vessels, the values should be determined for other vessels and thereby velocity profiles. Additionally,
the influence of different settings of the temporal and spatial resolution should be determined. A set of
scale factors, which are dependent on the vessel and the resolution, will most likely occur. This is not to be
seen as a limitation. A look-up table can be implemented, which contains this information. The spatial and
temporal resolution are specified by the scanner, so this information is given. An input from the clinician
can determine the anatomical site and thereby the settings for the vessels in this region.

The RMS error is used as the measure for the performance, and the error is determined for a range of
values of Γ1 and Γ2. The choice of the number of samples used in the correlation analysis will be inherited
from the MLE estimator and are set equal to 3 pulse lengths. Table 6.4 lists the RMS error, when Γ1 and
Γ2 take values in the range from 0 to 5. The error of the first frame is included in the total RMS error, so
the performance of the CMLE estimator can be compared with other estimators. The RMS error decreases
as the values of the scale factors increase. For the investigated combinations of Γ1 and Γ2 the minimum
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Γ1

0 1 2 3 4 5
0 0.2092 0.1306 0.1219 0.1199 0.1198 0.1195
1 0.1399 0.1219 0.1201 0.1181 0.1182 0.1183

Γ2 2 0.1228 0.12 0.1181 0.118 0.118 0.1182
3 0.1209 0.1181 0.1181 0.1181 0.118 0.1181
4 0.1202 0.1182 0.1181 0.1181 0.1179 0.118
5 0.1187 0.1182 0.1181 0.1181 0.1179 0.1178

Table 6.4: The RMS error ([m/s]) as a function of Γ1 and Γ2.

RMS error is obtained for �Γ1�Γ2� � �5�5�. Inspection of the RMS errors reveals that the performance is
degraded only by 0.25 %, if �Γ1�Γ2� � �2�2� are used instead. For values of Γ1 and Γ2 above 1 the RMS
error is nearly constant.

The influence of the a priori probability density on the estimation is plotted in Fig. 6.57. The values of
the sufficient statistic are plotted as a function of vp for the MLE and the CMLE estimators. The sufficient
statistic for the MLE estimator has two high peaks. The maximum occurs for a velocity of -50 cm/s, whereas
the second peak is located at a velocity of 11 cm/s. The true velocity is equal to 12.6 cm/s. The velocity at
the second peak is closer to the true velocity and should have been the output of the estimation. This result is
obtained with the CMLE estimator. The velocity -50 cm/s is far from the values of the neighboring velocities,
and the a priori density assigns a low probability to this velocity. This causes the value of LRS to decrease,
as the terms Γ1C1 and Γ2C2 take high values and therefore contribute to the sum. The true velocity estimate
is not obtained, but the introduction of the correlation property has produced a more correct estimate. The
course of the LRS for the CMLE estimator is more flat. A clear peak is present, but it does not stick out as
much as was the case for the MLE estimator.

6.9.2 Performance on simulated data

The performance of the CMLE estimator has not been determined for the synthetic data set, since the
data were not designed to represent a spatial and temporal distribution of velocities. In the following the
performance of the CMLE estimator on the simulated data will be evaluated. The data set generated with
a short excitation pulse are employed, and the HP echo-canceling filter was applied prior to the estimation.
The SNR is 20 dB. The investigated velocities vp range from -50 cm/s to 50 cm/s in steps of 1 cm/s. The
number of samples used in the correlation analysis are set equal to 3 pulse lengths. This is inherited from
the performance evaluations of the MLE estimator.

Figure 6.58 shows plots of the estimated velocity profiles for a systolic and diastolic frame. It is the same
two frames used in the previous sections to display the performances. Only the velocity estimates within
the vessel are plotted. The systolic frame is the first frame, and therefore the velocity estimates has not
been determined with the CMLE estimator. The estimated velocities have been computed with the MLE
estimator. The velocity estimates in the diastolic frame have been computed with the CMLE estimator.
No highly deviating estimates are seen, when the velocity estimates along the image edge are discarded.
The latter has not been determined with the CMLE estimator, as a full neighborhood does not exist. The
introduction of the correlation property in the estimator has removed the highly deviating estimates produced
by the MLE estimator. This is verified by comparing Figures 6.54 and 6.58. It can be concluded that the
correlation property contains valuable information for the estimation, and it should be incorporated in the
estimation.

Inspection of all 10 frames reveals that no estimates, which deviate significantly from its neighbors, are
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Figure 6.57: The value of the likelihood ratio for the span of investigated velocities vp, when the MLE (top)
and CMLE (bottom) estimators are used, respectively. The scaling factors Γ1 and Γ2 in the CMLE estimator
are equal to (2,2).

obtained with the CMLE estimator. The remaining erroneous estimates are along the image edge, which
was processed by the MLE estimator. A total of 1.0 % of the estimates take values outside the velocity range
from -10 cm/s to 80 cm/s. The non-deviating estimates obtained with the MLE and the CMLE estimators
are identical for more than 90 % of the estimates. The difference on the velocities for the remaining 10 %
of the estimates is on the order of 	2 cm/s. As most of the estimates are identical, the CMLE estimator
suffers from the same problem as the MLE estimator. They are not able to produce estimates, which follow
the velocity variations across the spatial extent of the vessel well. The estimates along the center axis of
the vessel are underestimated, whereas the estimates along the vessel wall are mostly overestimated. Figure
6.59 shows this problem. The estimated velocity profiles are not as smooth as the true profile, so post-
processing should be applied to reduce the variation. Still, the introduction of the temporal and spatial
correlation between the velocities in a bounded neighborhood has been very beneficial for the outcome of
the estimation. The estimated velocity profiles with the CMLE estimator on all 10 frames are enclosed in
Appendix C.

The autocorrelation estimator out performs the CMLE estimator, when no aliasing occurs. The RMS
error is lower, and the estimates follow the variation across the axial extent of the vessel better. Still, the
performance of the CMLE estimator is quite good, as it does not produce any highly deviating estimates.
The RMS errors would be close, if the errors in the first frame and along the image edges were not included
in the RMS error. The measure of the number of highly deviating estimates is very similar for the two
estimators. The CMLE estimator therefore seems applicable for blood velocity estimation.

The CMLE estimator performs better than the cross-correlation estimator, as the RMS error is lower, and
no highly deviating estimates are produced. The advantage of the cross-correlation estimator is that it is
capable of producing estimates, which follow the variation across the axial extent better. Both the CMLE
and the cross-correlation estimators perform a cross-correlation analysis, but the analysis is performed on
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Figure 6.58: CMLE estimator: The estimated (left) and the true (right) velocities for a systolic (upper two
plots) and a diastolic frame (lower two plots), when Ns equal 3 pulse lengths. Both Γ1 and Γ2 are equal to
2. The SNR is 20 dB.
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Figure 6.59: CMLE estimator: Plot of line 11 and 34 in the images for the systolic (upper 2 plots) and
diastolic frame (lower 2 plots). Both Γ1 and Γ2 are equal to 2. The SNR is 20 dB.

the complex and real signals, respectively. Given this fact it should be possible to include the spatial and
temporal correlation in the cross-correlation estimator. This could possibly reduce the number of highly
deviating estimates. Inspection of the estimated velocity profiles reveals that more highly deviating estimates
are produced with the cross-correlation estimator (in its present form). A comparison of the measures of
the number of highly deviating estimates results in the same conclusion. Based on the results, the CMLE
estimator should be preferred over the cross-correlation estimator, when the performance evaluation is based
on the RMS error and the number of highly deviating estimates.

The CMLE estimator out performs the EAM estimator, as no highly deviating estimates are produced,
and the RMS error is lower. The advantage of the EAM estimator is that the estimates follow the variations
across the axial extent of the vessel better. Still, the CMLE estimator should be preferred.

The RMS error and the number of highly deviating estimates are higher for the BST estimator than the
CMLE estimator. In addition the fluctuations of the velocity estimates across the spatial extent of the vessel
are more random with the BST estimator, so the CMLE estimator should be preferred for blood velocity
estimation.

The AB2 estimator produces rather good estimates, as it is able to follow the velocity variations across the
axial extent of the vessel. Still the CMLE estimator should be preferred over the AB2 estimator. The RMS
error is about 50 % lower, and no highly deviating estimates are produced. When the estimates obtained
with the AB2 estimator are post-processed with the 2D-tracking filter, the AB2 estimator gets to be more
applicable for blood velocity estimation. Under these circumstances the AB2 estimator probably should be
preferred over the CMLE estimator.

A comparison of the CMLE and the MLE estimators reveals, that the RMS error has been reduced by
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about 45 %. In addition most of the highly deviating estimates have been removed. The remaining deviating
estimates is due to the employment of the MLE estimator for the estimates in the first frame, and along the
image edges. There is no doubt that the CMLE estimator should be preferred over the MLE estimator. The
spatial and temporal correlation among the velocities contain valuable information for the estimation.

6.10 Summary

This chapter has been concerned with the introduction and evaluation of a selection of blood velocity es-
timators. In the following the estimators and their performance on synthetic and simulated data will be
summarized. The estimation is performed on recorded RF-signals, which have been pre-processed to mini-
mize the noise content and to remove responses originating from the tissue. The latter process is referred to
as echo-canceling, and two echo-canceling filters have been employed and evaluated on the synthetic data.
The filters were the high-pass (HP) filter and the regression line filter. Both filters filter out movement at low
frequencies. The number of lines used in the HP filter determine the width of the transition band between
stop and pass band. The removal of low frequencies is beneficial, as the tissue movements occur at low
frequencies. Unfortunately, part of the blood also moves at low frequencies, so valuable information from
the blood signal is removed and limits the blood velocities, which can be determined. The filter employs
a set of RF-lines to compute one filtered value, so RF-lines are lost in the filtering. Therefore a low filter
order is often used, which then again degrades the performance of the filter. A simple 2nd order filter has
been employed here. The second filter is the regression line filter. If sample values in consecutive lines are
identical (or at least very similar), the relation between the samples can be described by a straight line with
a very low slope. By fitting a line to the samples and then subtract it from the samples, the tissue compo-
nents will be filtered out. No RF-lines are lost. The influence of the two filters on the estimation has been
determined. A successful estimation can be performed after echo-canceling with both filters in most cases.
This conclusion is valid for the investigated velocities. The regression line filter did not go well with the
AB1 estimator though, and the HP filter should be preferred for this estimator. No unambiguous relations
for the influence on the standard deviations have been determined. The influence is dependent on the choice
of the estimator parameters. Under some circumstances the filters stabilize the estimation, and for other it
degrades the performance. For the given data set the differences in the standard deviations were on the order
of a few millimeter per second, so no significant difference in the performance can be determined. The
regression line filter seems to work best, when the number of lines used in the filter take a high value. This
limits is usability, when only a limited set of lines are available for estimation.

A total of seven blood velocity estimators have been introduced and evaluated here. All estimators
aim at determining the movement of the scatterers between acquisitions. The scattered responses from the
scatterers are fairly similar in consecutive acquisitions, so similar patterns are seen in consecutive RF-lines.
The position of the patterns in the RF-signals are temporally shifted due to the movement. An estimate of
the velocity is obtained, when an estimate of the movement is determined.

First, the autocorrelation estimator was introduced. This estimator determines the movement of the
scatterers by determining the phase shift between consecutive RF-lines. The obtained velocity estimates are
biased due to the influence of noise. A long excitation pulse should be used to obtain an estimate with a low
standard deviation. An inverse tangent operation is included in the estimation, which puts an upper bound
on the velocities that can be determined. The bound is dependent on the choice of pulse repetition frequency
and the center frequency. Aliased estimates are obtained, if the true velocity exceeds the maximum velocity
detectable. This problem was verified, when the performance of the estimator on the synthetic data was
determined. The non-aliased estimates were biased as expected. The velocity estimates are overestimated.
The level of the bias is dependent on the SNR and the choice of the parameters in the estimation. The
standard deviation decreases, as the number of lines used in the estimation increase, and the SNR increases.
The performance was independent on the choice of the sampling frequency. The performance on simulated
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data, which resembled RF-signals obtained at the carotid artery, was determined. The results showed that the
autocorrelation estimator computes estimates, which follow the velocity variations across the axial extent of
the vessel, and throughout the vessel and the cardiac cycle well. This is valid, as long as the pulse repetition
frequency and the center frequency are chosen, so no aliasing occurs. The true velocity profiles take values
in the velocity range from 0 cm/s to 50 cm/s. A measure of the number of highly deviating estimates was
determined. Only 0.4 % of the estimates take values outside the velocity range from -10 cm/s to 80 cm/s.
The RMS error on the estimation over the 10 frames is 0.06 m/s for a SNR of 20 dB. The autocorrelation
estimator has been very popular in the past, as the computational load is low. The computational load
has previously been of much concern. The advances in electronics makes it possible to consider using
algorithms, which are computationally more demanding, if they are able to out perform the autocorrelation
estimator.

A tracking of the moving patterns can be performed with a cross-correlation analysis. The cross-
correlation function is determined for a set of temporal shifts (and thereby a set of velocities). The tem-
poral shift, which relates to the maximum of the cross-correlation function, determines the estimate of the
temporal shift. The computation of the cross-correlation for a range of shifts increases the computational
load of the estimation. The patterns in the consecutive lines are not identical due to decorrelation. This
influences the performance of the estimator. A short excitation pulse should be emitted, as the bandwidth
influences the standard deviation on the estimate. The cross-correlation estimator does not suffer from the
aliasing problem. It can handle any temporal shift and thereby any velocity. A large number of samples
should be employed in the computation of the cross-correlation. For the simulated data an upper limit on the
number of samples exists for the current data set. As the number of samples increases, the estimator fails
to produce good estimates across the full axial extent of the vessel. When the number of samples are equal
to 3 pulse lengths, the RMS error is 0.4 m/s, when the SNR is 20 dB. The estimator produces both over-
and underestimated estimates. The cross-correlation estimator suffers from the amplitude problem, which
can cause a false detection of the velocity. This problem was experienced, and estimates, which deviate
significantly from the true velocity, occur in the estimated velocity profiles for the simulated data. A total of
14.7 % of the estimates take values outside the velocity range from -10 cm/s to 80 cm/s. A post-processing
filter must be applied to minimize the amplitude of these estimates. The non-deviating estimates follow the
variations across and throughout the vessel and the cardiac cycle well but not as well as the autocorrelation
estimator.

The advantages of the autocorrelation and the cross-correlation estimators have been combined in the Ex-
tended Autocorrelation Method (EAM). An initial estimate is determined with the autocorrelation estimator,
which can be off by an integer number of 2π due to the aliasing problem. A subsequent cross-correlation
analysis is performed for the set of possible true phase shifts. The limitation of the autocorrelation estimator
is circumvented, as the cross-correlation estimator can investigate any temporal shift and thereby veloc-
ity. The computational load related to the cross-correlation analysis is minimized due to computation of an
initial velocity estimate. The performance evaluations on both data sets reveal that the EAM estimator is
capable of overcoming the aliasing problem. Unfortunately the amplitude problem of the cross-correlation
introduces quite a few highly deviating estimates in the velocity profiles obtained from the simulated data.
These must be removed through post-processing of the estimates. The cross-correlation analysis performs
best, when a wideband pulse is emitted, whereas a narrow band pulse should be used with the autocorrela-
tion estimator. This mismatch influences the performance. If a narrow band pulse is used, an accurate initial
estimate is obtained, but a total of 41.2 % highly deviating estimates are obtained. The RMS error is 0.74
m/s, when the SNR is 20 dB and the number of samples used in the cross-correlation analysis are 5 pulse
lengths. The accuracy on the initial estimate decreases, if a wideband pulse is employed. But this choice im-
proves the basis for the cross-correlation analysis. Less highly deviating estimates are obtained. Still, quite
a few exist and must be removed through post-processing. About 17 % of the total number of estimates are
incorrect, when the SNR is 20 dB. The number of samples used for the cross-correlation analysis should be
5 pulse lengths, when the estimation is carried out on the data generated with the wideband pulse. In this
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case the RMS error is 0.43 m/s, when the SNR is 20 dB. The advantages of the EAM estimator with respect
to resolving the aliasing problem of the autocorrelation estimator is counteracted by the limitations of the
cross-correlation analysis.

The cross-correlation estimator tries to determine, if patterns are similar by calculating the cross-correlation
value. Similarity can also be expressed by means of the variations between samples in consecutive lines.
The BST estimator employs this feature by performing a variance analysis. A low value of the variance
resembles that the compared segments are similar. Any temporal shift can be investigated, so the estimator
does not suffer from aliasing problems. The performance of the estimator is influenced by the decorrelation.
A wideband excitation pulse should be employed. The performance on the synthetic data reveals that the
estimates are biased, and the bias takes a positive value. The variance analysis should be performed for
several samples, and the sum of variance values for a segment is used to determine the velocity estimate.
Low standard deviations are obtained as the SNR increases. Inspection of the velocity profiles computed
from the simulated data reveals that an upper limit on the number of samples used for the variance analysis
exists. As the number of samples increases the estimator fails to produce estimates for the full axial extent
of the vessel. A choice was made, and the number of samples were set equal to 3 pulse lengths. The problem
is not fully resolved with this choice of the number of samples, but it has been minimized. The estimator
produces less highly deviating estimates than was seen with the cross-correlation and the EAM estimators.
A total of 6.9 % of the estimates take values outside the velocity range from -10 cm/s to 80 cm/s. The RMS
is 0.22 m/s, when SNR is 20 dB. The estimates do not follow the velocity variations across the axial extent
of the vessel very well. A random variation about the true velocities occurs. This is a problem, as it is very
difficult to extract valuable information from this ”noisy” profile. The variations are due to the limitations
of the estimator - not the actual velocity distribution. The velocity profiles must be post-processed before
they are displayed. When comparing the introduced estimators capability to follow the velocity variations
in the vessel, the BST estimator has the poorest performance.

The idea of combining the autocorrelation and the cross-correlation estimators is smart, as the advan-
tages of each are exploited and the computational load is minimized. The amplitude problem limited the
performance of the EAM estimator. A new estimator, which combines the autocorrelation and the BST es-
timators, has been suggested and evaluated. It has been named the Autocorrelation and Butterfly estimator
(AB). Although the BST estimator could not determine the variations across the vessel very well, it was
able to produce estimates within the right velocity range. Few highly deviating estimates were produced,
and therefore it seems beneficial to employ it together with the autocorrelation estimator. The performance
evaluation on both the synthetic and simulated data confirms this. The best performance is obtained, if the
variance analysis is performed on the enveloped detected data. The number of samples employed for the
variance analysis should take a value around 5-6 pulse lengths, when the estimator is applied to the simu-
lated data. The BST estimator works best, when a wideband pulse is employed, whereas the autocorrelation
estimator should be applied to data generated from a long pulse. This mismatch influences the performance
of the AB estimator. A less accurate initial estimate is obtained, if a short pulse is employed, but only very
few highly deviating estimates are obtained. At a SNR of 20 dB, a total of 4 % of the estimations produce
highly deviating estimates. In this case the RMS error is 0.22 m/s. The number of highly deviating estimates
increase to 8 %, if the AB estimator is applied to the data generated with a long pulse. The RMS error is
0.33 m/s, when the SNR is 20 dB. The highly deviating estimates should be removed (or at least reduced)
through post-processing. The employment of the variance analysis instead of the cross-correlation analysis
in the investigations of a set possible true phase shifts is beneficial. The problem of highly deviating esti-
mates has not been resolved fully with the AB estimator, but the number of highly deviating estimates have
been lowered significantly. The AB estimator is to be preferred over the EAM estimator. The AB estimator
does not suffer from the aliasing problem, and it only produces few highly deviating estimates. The AB
estimator can almost match the autocorrelation estimator, and it out performs the cross-correlation and BST
estimators.

The MLE estimator employs maximum likelihood theory to determine the velocity estimates. A set of
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samples in consecutive RF-lines are correlated for each investigated velocity. A probability density can be
derived for the correlation values, and an estimator based on the likelihood ratio arises. The correlation
analysis is performed on the complex signals. The MLE estimator performs very well on the synthetic data.
The estimator does not suffer from aliasing problems. The estimates are biased, and the bias is positive.
A zero standard deviation can be obtained even at low SNRs, and when only few RF-lines are used in the
estimation. Overall the estimator out performs all estimators discussed so far. A good performance is also
obtained on the simulated data. The choice of the number of samples to be used in the correlation analysis
is limited, if good estimates across the full axial extent of the vessel should be obtained. In this study the
number of samples were set equal to 3 pulse lengths. The problem is not resolved but minimized with this
choice of the number of samples. In this case the RMS error is 0.21 m/s, when the SNR is 20 dB. A total
of 4.1 % highly deviating estimates are obtained for the simulated data. The number of these estimates
are less than what was seen with the cross-correlation and the EAM estimators. The velocity estimates do
not follow the variations across the axial extent of the vessel well. The estimates are very similar across
the axial extent. This is to be preferred over the random fluctuations of the velocity estimates, which were
experienced with the BST estimator. The AB estimator matches the performance of the MLE estimator and
the former should be preferred.

None of the above estimators employ the features of fluid mechanics in the estimation, which predicts
that the velocities are correlated in time and space. The velocities in a spatial and temporal bounded neigh-
borhood are similar, and transitions between the different velocity levels occur smoothly. By comparing the
velocity value vp under investigation (in a correlation analysis) to the velocity values in a spatial and tempo-
ral neighborhood, it can be determined, if vp is likely or not. A new estimator based on maximum likelihood
theory has been developed here. The probability density used with the MLE estimator has been expanded
with an a priori probability density, which determines if vp is likely or not. A set of scale factors are included
in the a priori density, which weight the contributions from the temporal and spatial neighbors. The values
of the scale factors are dependent on the temporal and spatial resolution. The new estimator has been named
the CMLE estimator. The CMLE estimator does not suffer from aliasing problems. No highly deviating
estimates are obtained with this estimator, so the estimator out performs all previously discussed estimators.
The number of samples used in the estimation was inherited from the MLE estimator and were set to 3 pulse
lengths. In this case an RMS error of 0.12 m/s is obtained, when the scale factors were used, which gave the
lowest error. The SNR is 20 dB in this case. The estimates do not follow the variations across the axial ex-
tent of the vessel well. The estimates are more similar across the vessel. The same problem was experienced
with the MLE estimator. Still, the introduction of the correlation property in the estimator has improved the
blood velocity estimation. The correlation property contains valuable information for the estimation, and
it should be incorporated in the estimation scheme. The basic idea of introducing the correlation property
in the estimation can probably also be employed for the cross-correlation estimator. This idea should be
pursued and evaluated.

All presented estimators are able to perform blood velocity estimation, but the accuracy on the estimation
varies for the different estimators. A low standard deviation is desirable, and therefore some estimators are
to be preferred over others. The computational load has previously been of much concern, as the electronics
were limited in their performance. This problem limited the choice of estimators, which could be used, if
real-time processing should be obtained. With the advances in the electronics new estimators, which are
computationally more demanding, should be considered. The new estimators should resolve some of the
problems experienced with the previously employed estimators. The two new estimators presented here are
able to resolve some of the experienced problems and out perform most of the other estimators. Especially
the correlation property between the velocities in a spatial and temporal neighborhood contained valuable
information for the estimation, and this aspect should be incorporated in the estimators. A clinical evaluation
of the AB and the CMLE estimators should be carried out in the future, before a final conclusion can be
drawn on the feasibility of using these estimators for blood velocity estimation. But the presented results
seem very promising. The employment of the CMLE estimator requires further investigations into the
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CHAPTER 6. BLOOD VELOCITY ESTIMATORS

influence of the velocity profile (e.g. carotid or femoral artery) and the spatial and temporal resolution on
the values of the scaling parameters. The main contribution to the field of blood velocity estimation obtained
from this study is the aspect and the importance of incorporating the correlation between velocities in time
and space. The incorporation of this property into the estimation should be pursued, and it seems possible
to include it in existing estimators such as the maximum likelihood and the cross-correlation estimators.
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Chapter 7

Post-processing of blood velocity estimates

The blood velocity estimators produce estimates with a certain level of inaccuracy. The standard deviation
on the estimates is influenced by the measurement noise, the velocity spread, and the signal alteration
introduced by de-noising and clutter filters. The characteristics of the employed estimator also influences the
estimates. In case of the cross-correlation estimator highly deviating estimates were obtained because of the
amplitude problem. The autocorrelation estimator can produce aliased estimates due to the limitations of the
inverse tangent operation in the estimator. A noisy and non-smooth appearance of the velocity distribution
is obtained, which is not consistent with the actual velocity in the vessel. The level of noise varies over
the image and between consecutive images. The human visual system is sensitive to these rapid variations.
When the images are displayed after each other at a high frame rate, the observers focus gets distracted
from the important information. Post-processing of the estimates should be performed prior to displaying
the estimates, and the applied filter should minimize the variation. A median filter has been used previously,
and it will be discussed and evaluated in Section 7.1. A new post-processing filter based on optical flow
theory has been developed in this study. Applying the theory of fluid mechanics introduces restrictions on
the variations. Neighboring estimates in time and space are highly correlated, since transitions must occur
smoothly. This property is employed. The filter is derived and evaluated in Section 7.2. In Chapter 6 a
2D-tracking filter was introduced, which was used for post-processing of the velocity estimates obtained
with the EAM and the AB estimators (see Section 6.5 and 6.7). As this filter is specific for these two
estimators, it will not be introduced and evaluated in this chapter. The two filters discussed in the following
are independent of the employed blood velocity estimator.

7.1 Post-processing filter based on median filter

Investigation of the blood velocity distributions in the human cardiovascular system reveals that the veloc-
ities are correlated in time and space. This was verified for the carotid artery in Chapter 6. Neighboring
velocities are similar in amplitude. The correlation property makes it possible to derive post-processing fil-
ters, which can reduce the variations in the estimated velocity distributions. The level of similarity must be
determined by some means. This can be done by comparing the individual estimates with their neighbors.
If the deviation is too high, the estimate is replaced with one, which is more similar to the velocities in the
neighborhood. A less noisy and more smooth velocity distribution should be obtained.

In image processing the non-linear median filter is often employed for smoothing. The filter rearranges
a set of values �V e � �ve

1�v
e
2� ����v

e
N �, so that the values are arranged according to an increasing amplitude

order. The output v̂c of the filter is the central value in the resulting, rearranged row of values�V e
o [59], [60].

The variable names and superscripts are chosen to relate the discussion to the situation at hand, where a
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Figure 7.1: Definition of the spatial coordinate system in the 2D image.

set of estimated velocities v are given and should be processed. The filter employs the computed velocity
estimates and produce an estimate of the correct velocity. An example of median filtering is given to clarify
the definition of the filter:

�V e � �1�3�13�7�9� (7.1)
�V e

o � �1�3�7�9�13�

v̂c � 7�

The filter is very useful for noise suppression and preservation of edges [59]. Each pixel in the image is
filtered, and the set of values involved in the filtering are:

� the value of the pixel of interest for the current filtering, ve�xi�z j� t f �, where �xi�z j� are the spatial
coordinates in a 2D image, and tf represents the time instant, where the image was generated,

� the values of the pixels in the neighborhood of ve�xi�z j� t f �.

The definition of the spatial coordinate system in the 2D image for a given time instant tf is given in Fig.
7.1. A neighborhood can extend in both time and space. Examples of neighbors are:
ve�xi�1�z j�1� t f ��ve�xi�1�z j� t f �� ���ve�xi�z j�1� t f ��ve�xi�z j� t f �� ����ve�xi�z j� t f �Tf rame�, where Tf rame is the time
between the generation of two consecutive frames. The common definition of a two-dimensional median
filter states [59] that all neighbors along the vertical, the horizontal, and the diagonal axes are employed.
In this study a modified two-dimensional median filter will be employed, which only employs the spatial
neighbors along the vertical (axial) and horizontal (lateral) axes in the image. The number of values, Nm,
used define the order of the median filter. If the value of the pixel under investigation deviates significantly
from its neighbors, the amplitude ordering will place it as one of the outer elements in the rearranged vector.
The pixel value will be replaced by one of the neighboring values, and the noisy estimate has been removed.
The rearranging according to amplitude serves as the similarity investigation. The velocity level for the
pixel under investigation should lie within an amplitude range defined by its neighbors. A high deviation
will be experienced when aliasing errors occur. If �N�1��2 neighboring estimates are erroneous, a median
filter of order N or higher is required to remove all the errors. Smoothing is also obtained, when only small
deviations are seen. The velocity estimate under investigation is replaced by the value of the velocity of one
of the neighbors, if it does not take the central position in�V e

o .

In this study two median filters, which employ the spatial neighbors, will be evaluated. The first filter,
M1, is a 3rd order filter, which uses the two neighbors ve�xi�z j�1� t f � and ve�xi�z j�1� t f � along with the pixel
value ve�xi�z j� t f �. This filter acts along the axial direction in the image. The second filter, M2, employs the
immediate neighbors axially and laterally: ve�xi�1�z j� t f �, ve�xi�z j�1� t f �, ve�xi�z j�1� t f �, and ve�xi�1�z j� t f �
along with the pixel value ve�xi�z j� t f �. The filter will only be applied to the image once.
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7.1. POST-PROCESSING FILTER BASED ON MEDIAN FILTER

Parameter Value

Center frequency of pulse 5.0 MHz
No. of elements 128
Pulse length 1.5 / 6 cycles
Geometric focus 17 mm
Pulse repetition frequency 4 kHz
Sampling frequency 40 MHz
Radius of vessel 3 mm
Angle between vessel
and transducer 35o

Table 7.1: Choice of parameters for the simulated data used in the performance evaluation of the median
filter.

SNR RMSbe f ore M1 M2

0 0.125 11.0 27.1
5 0.096 8.4 21.8

10 0.076 5.0 15.2
15 0.061 2.2 9.9
20 0.054 0.0 6.0
30 0.049 -0.8 3.9
40 0.048 -0.4 4.1

Table 7.2: The RMS ([m/s]) error before and the improvement in % after application of the median filters
for a range of SNRs.

7.1.1 Performance on simulated and in-vivo data

The performance of the median filters has been evaluated on simulated data, which resemble RF-signals
obtained at the carotid artery. The simulation was performed with the simulation program Field II [26],
[27]. Table 7.1 lists the simulation parameters. The transducer is modeled as a linear array. The focusing
and apodization scheme matches the setup of a B-K Medical 3535 scanner, when it is connected to the linear
array. Tissue motion due to pulsation is included, and the blood motion is modeled using Womersley’s
pulsatile blood flow model (see Chapter 4). Eight RF-lines were acquired at each lateral position. Three
seconds of data (3 cardiac cycles) have been simulated at a frame rate of 10 frames/s. This gives blood
velocity estimates across half the imaging range of the transducer. The choice of the simulation parameters
ensures that no aliasing errors occur. The filters capability of minimizing the low amplitude, noisy variations
can be evaluated. The performance for a range of SNRs is investigated. The RF-signals were de-noised
with the matched filter (see Section 5.1), and a 2nd order HP echo-canceling filter was applied prior to the
estimation (see Section 5.2.1). The autocorrelation estimator (see Section 6.3) was employed to obtain the
blood velocity estimates ve. The performance is determined by computing the RMS error before and after
the application of the median filter. Table 7.2 lists the RMS errors before and the improvements in % after
application of the median filters. An improvement is obtained with both median filters, when the SNR
is below 30 dB. The level of improvement increases as the SNR decreases. The RMS error increases after
application of the M1 filter, when the SNR is 30 and 40 dB. Additional noise variations have been introduced
in the image. The best performance is obtained with the M2 filter.

In Fig. 7.2 the result of the median filtering with the M2 filter is plotted for a frame, which is taken from
the diastolic phase of the cardiac cycle. The top plot shows the velocity distribution prior to the filtering,
and the bottom plot shows the result of the smoothing with the median filter. The true velocity distribution
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Figure 7.2: The velocity profile before (top) and after (bottom) application of the M2 filter on simulated
data.
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Figure 7.3: The true velocity profile for the diastolic frame in Fig. 7.2.

is plotted in Fig. 7.3. An improvement can be seen. The resulting velocity distribution is not as smooth as
the true velocity distribution, but it is more consistent with the true profile.

The filter has been applied to in-vivo data acquired with a dedicated sampling system, which has a 30
MHz sampling frequency and 12 bits resolution [61]. Data from the carotid artery were recorded with a
7.5 MHz convex array. The vessel lies at an angle of 35o. The frame rate was 18 frames/s, and 10 seconds
of data were recorded. The 2nd order HP echo-canceling filter is used for the echo-canceling prior to the
estimation. The estimates are obtained with the autocorrelation estimator. A scan conversion is performed
prior to the post-processing, so the velocity estimates are given for the rectangular imaging grid. Figure 7.4
shows an example of the performance of the M2 filter. An improvement is obtained. Some of the transitions
between velocity levels are still very steep though, which represents a problem. These noisy variations
will attract the eye and distract the observer. Other methods for minimization of the variations should be
investigated.

7.2 Post-processing filter based on optical flow theory

The median filter represents a simple filter, which uses that the velocity estimate is confined to lie within
the amplitude range spanned by its neighbors. No assumptions on the relations between the velocities in
a bounded spatial and temporal neighborhood are made. No restrictions on the transitions between the
velocities in a neighborhood are given. Therefore the steep transitions between velocity levels can occur.
A filter, which employs the spatial and temporal correlation and introduces assumptions on the transitions,
is introduced in the following. The mechanics of non-turbulent, fluid motion introduces restrictions on
the possible flow patterns for blood. This aspect was discussed in Chapter 6 and verified for the carotid
artery. The transition from one velocity to another in a neighboring point in time and space must follow
a continuous and smooth function. The smoothness property is the link to introducing restrictions on the
variations possible between neighboring velocity estimates in time and space. A filter, which incorporates
the smoothness property, can be derived from statistics. The filter computes an estimate of the true velocities
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Figure 7.4: The velocity profile before (top) and after application of the M2 filter (bottom) on in-vivo data.
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7.2. POST-PROCESSING FILTER BASED ON OPTICAL FLOW THEORY

�V c � ��vc�x1�z1� t f �� �����vc�xN �zM� t f �� in the image. The available information for the filter is the estimated
velocities, �V e � ��ve�x1�z1�� �����ve�xN �zM��, for the present and previous image, and the smoothness property.

The filter is designed by employing Bayesian theory [62]. A conditional, posterior probability density
function, p��V c��V e�, for the true velocities is derived:

p��V c��V e� �
p��V c�p��V e��V c�

p��V e�
� (7.2)

p��V c� is the a priori probability density, and p��V e��V c� is the model specific probability. p��V e� is the prob-
ability density of the estimated velocities. This factor is not dependent on the true velocities, and therefore
does not influence the estimation of the true velocities. The expressions for p��V c� and p��V e��V c� are derived
in the following.

An a priori knowledge is given on the true estimates, when the smoothness property is accepted. It
has to be within a certain range relative to the neighboring velocities to fulfill the property. Applying
the theory of optical flow [63] from image processing makes it possible to define a set of mathematical
relations, which determines, when the transitions between velocity levels obey the smoothness property.
One set of relations are the spatial and temporal derivatives. A smooth transition will be characterized by
having small derivatives, as the velocity levels in neighboring locations will be fairly similar. One way of
formulating the smoothness constraint is by using a Markov random field (MRF) model [63], [64], [65].
The Markov property states that the true velocity in a given location �x�z� tf � depends on the velocities in a
finite neighborhood of �x�z� tf �. By implementing the derivatives as finite differences the Markov property
is obeyed:

�vdx�x�z� t f � � �vc�x�Δx�z� t f ���vc�x�z� t f �

�vdz�x�z� t f � � �vc�x�z�Δz� t f ���vc�x�z� t f �

�vdt�x�z� t f � � �vc�x�z� t f �Tf rame���vc�x�z� t f �� (7.3)

where�vdx��vdz, and�vdt denote the spatial and temporal derivatives, and Δ describes a spatial distance between
neighbors. As an MRF model has been used to describe the local relations, the Hammersfield-Clifford theo-
rem [63], [66] states that the distribution of the derivatives is a Gibbs distribution. The resulting probability
density function is:

p��V c�t f �� �
1
Z

exp ��αE1�t f �� γE2�t f ��� (7.4)

where Z is a normalization factor, which assures that
�

p��V c�d�V c � 1. The variables α and γ are scale factors
that weight the contributions from the spatial and temporal derivatives, respectively. E1�t f � and E2�t f � are
energy terms defined by:

E1�t f � �

� �
����vdx�x�z� t f ���2 � ���vdz�x�z� t f ���2�dxdz

E2�t f � �

� �
���vdt�x�z� t f ���2dxdz� (7.5)

Two energy terms are used with different scaling factors to allow for the level of spatial and temporal
correlation to be different. An a priori probability density has been obtained based on the a priori knowledge
saying that transitions should occur smoothly. The a priori probability density assigns a high probability to a
choice of the true velocities close to the levels of the neighboring true velocities and vice versa. The chosen
definition of the derivatives represents a first-order neighborhood [63].

In the above definition of the smoothness constraints the physical situation at hand was not discussed. The
constraints have been chosen merely from a mathematical point of view [63], and the spatial and temporal
velocity variations are assumed Gaussian distributed. The investigations in Chapter 6 show that this is only
approximately true. Still, the assumption will be employed in the following.
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The smoothness property is not the only information available. Although the velocity estimates are
encumbered with uncertainty, their values give an indication of what interval of possible velocities the
true velocity belongs to. This can be used to define a conditional probability density p��V e��V c�, which
introduces a relation between the estimates and the true velocities. A relation describing a measure of error
is introduced. A Gibbs distribution is often assumed for the error distribution and will be used here. The
energy term is defined by:

E3�t f � � β
� �

�ω1�x�z� t f ��v
c
1�x�z� t f �� ve

1�x�z� t f ��
2 � ���

�ωD�x�z� t f ��v
c
D�x�z� t f �� ve

D�x�z� t f ��
2�dxdz� (7.6)

where β is a weighting parameter like α and γ. The index D indicates the dimension of the velocity vector.
The scale factor ωi�x�z� t f � (i � �1� ���D�) is introduced to account for ones faith in the velocity estimates. If
the estimate is encumbered with high uncertainty, it is not a good indicator for the level of the true velocity,
and its influence in the post-processing should be weighted down. When employing Kasai’s autocorrelation
method (see Section 6.3) for estimating the velocities, a measure of the variance on the estimate can be
determined. In this case one could set ωi�x�z� t f � proportional to the inverse of the standard deviation. The
different components in the velocity vector might have been obtained with different estimators, and therefore
ω is dependent hereof. The weighting parameters are restricted by α�β� γ � 1, and each of them takes a
value between 0 and 1.

At this point a posterior, conditional probability density for the true velocities has been derived. An
estimate of the true velocities, v̂c�x�z� t f � can be obtained by maximization of the obtained a posteriori
density, p��V c��V e�, with respect to �V c. In statistics this estimate is referred to as the MAP estimate [33].
As the posterior density is expressed by an exponential, the maximization of (7.2) equals minimization
of the sum E � αE1 � γE2 � βE3. The energy terms are computed by integrating over the whole image,
which makes the optimization very cumbersome. Besag [67] has derived a method termed the Iterated
Conditional Mode (ICM) to ease the optimization. Through iterations the global posterior probability in
(7.2) is maximized by maximizing the local posterior probability. Rather than working on the whole image,
the maximization process is carried out on each of the pixels on an iterative basis. The term E in the
exponential represents a quadratic form [33], [62]. When the quadratic form is positive-definite, it is ensured
that only one minimum exists [63]. The single minimum and the Markov property ensure that the ICM
method will converge to the estimates obtained, if the global posterior distribution was maximized. A simple
filter is obtained, which computes an estimate of the true velocity, v̂c, in a given location from the values of
the velocity in the neighboring locations in space and time. The velocity estimates ve in the neighborhood
are used as initial guesses of the true velocities. The best filtering and thereby estimate of the true velocity
is obtained, if the neighboring velocities are true, or at least as close to the true value as possible. With
this in mind the new, filtered estimate in a given location should be used in the subsequent filtering of its
neighbors, as soon as it has been determined [66]. This assumption is fully valid, if one can ensure that a
better and more true estimate is obtained in each iteration. This is not always the case, and then the filtering
order is not indifferent. Consider the following: the estimation of v̂ck�x�z� t f � is followed by the estimation
of v̂c

k�x�Δx�z� t f �, where k represents the iteration number. One iteration in the filtering of the image will
then follow the procedure (written as pseudo computer code):

for j = 1 : number of rows in image
for j = 1 : number of columns in image

perform filtering of pixel in location �xi�z j�
end

end

If a poor estimate of v̂c
k�x�z� t f � is computed, this will influence the estimation of v̂c

k�x�Δx�z� t f � negatively.
A defective estimate of v̂c

k�x � Δx�z� t f � is obtained, which again will influence the estimation of v̂ck�x �
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Figure 7.5: Chessboard pattern.

2Δx�z� t f �. The initial poor estimate gets to influence all other estimates, so the error will spread. The
influence of a poor estimate can be reduced by employing a different filtering order [66], which matches
the distribution of black and white squares (equal to image pixels) on a chessboard (see Fig. 7.5). First,
the estimates of v̂c are computed for the velocities in all the locations indicated by black (white). Then the
filtering is performed on the velocities in all the remaining locations, which are represented by white (black)
pixels. Here the estimates from the first filtering are used in the second filtering. Each iteration consists of
two filterings. The poor estimate of v̂c

k�x�z� t f � will still influence v̂c
k�x�Δx�z� t f �, but the error will not be

passed on to v̂c
k�x�2Δx�z� t f � and the rest of the image. In most commercial scanners today only the velocity

along the axial direction is estimated, so the velocity vector is one-dimensional (D � 1). The filter equations
for this situation for iteration k�1 become:

v̂c
k�1�x�z� t f � �

1
4α�βω� γ

�
� α�vc

k�x�Δx�z� t f �� vc
k�x�Δx�z� t f �� vc

k�x�z�Δz� t f �� vc
k�x�z�Δz� t f � �

� γvc�x�z� t f �Tf rame�

� βω�x�z� t f �v
e�x�z� t f � �� (7.7)

when the first filtering is performed, and:

v̂c
k�1�x�z� t f � �

1
4α�βω� γ

�
� α�vc

k�1�x�Δx�z� t f �� vc
k�1�x�Δx�z� t f �� vc

k�1�x�z�Δz� t f �� vc
k�1�x�z�Δz� t f � �

� γvc�x�z� t f �Tf rame�

� βω�x�z� t f �v
e�x�z� t f � �� (7.8)

for the second filtering. The number of iterations required are dependent on the situation and will be dis-
cussed in Section 7.2.2.

In the above it has been assumed that the same scale factors are used for all images. Investigations of the
velocity profile throughout the cardiac cycle reveal that the velocity levels and the levels of the temporal and
spatial derivatives vary over the cardiac cycle. Therefore it might be beneficial to let the scale factors vary
over the cardiac cycle. The value of the scale factors become dependent on time: α�tf ��β�t f �, and γ�t f �.
This aspect is investigated in this study.

The filter is applied to the whole image. A complete neighborhood does not exist for the edge pixels, as
one or more neighbors do not exist. These pixels can either be left un-filtered, or a modified filter, which
does not use the missing pixels, can be used. In this study these pixels will not be filtered.

7.2.1 Determination of filter parameters

The optimum scale factors can be determined by minimization of the absolute error:

Θ̂ � arg min
Θ

F

∑
f�1

N

∑
j�1

M

∑
i�1

��vc�xi�z j� t f �� v̂c�xi�z j� t f ���� (7.9)
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SNR 0 5 10 15 20 30 40

α 0.77 0.89 0.80 0.39 0.22 0.15 0.13
β 0.00 0.00 0.13 0.59 0.77 0.85 0.87
γ 0.23 0.11 0.07 0.02 0.01 0.00 0.00

Table 7.3: The best choice of the scale parameters (α�β�γ) for a range of SNRs ([dB]).

where Θ is a vector, which consists of the scale parameters (α, β, γ). A set of F 2D images must be
available, where the true and the estimated velocities are known. The integration has been substituted with a
summation, as the 2D images consist of a finite number of pixels. The absolute error was preferred over the
RMS error for the determination of the scale factors. This choice was based on investigations. The squaring
operation in the computation of the RMS error causes high amplitude errors to have more weight in the
sum of errors. The optimization thereby puts more weight on eliminating the high amplitude errors, which
proved to be inexpedient. Optimization using the RMS error eliminates the influence from the estimates
ve�x�z� t f � in the filtering, as the value of β approaches or is set equal to 0. This result was obtained even
at higher SNRs, where the standard deviation on the estimates is low. The information in the estimates is
discarded, which is not desirable. Instead the absolute error was employed for optimization, which weights
the errors equally.

The simulated data used for evaluating the median filter will be employed for the determination of the
scale parameters for the statistical filter. The temporal resolution is dictated by the frame rate, which is
10 frames/s. The spatial resolution Δ along the axial and lateral direction equals 0.8 mm and 0.4 mm,
respectively. The scale parameters have been determined for a range of SNRs. The results, when the scale
parameters are kept constant over the cardiac cycle, are listed in Table 7.3. The value of the scale parameters
are dependent on the SNR. At low SNRs the filter only uses the neighboring velocities in time and space.
The estimated velocities, Ve, have a high uncertainty, and therefore they should not contribute much in the
filtering. An averaging over the spatial and temporal neighbors is performed, where the contribution from
the spatial neighbors is weighted higher than the temporal neighbors. As the SNR increases, the uncertainty
on the estimate decreases. The estimated velocities are close to the truth, and therefore should play a big role
in the post-processing. The spatial neighbors influence the post-processing more than the temporal neighbor.
This is to be expected, as the spatial neighbors originate from the same frame, and the velocities are similar.
The temporal correlation is dependent on frame rate. For the current scan situation the results show that the
temporal correlation is low compared to the spatial correlation due to the low frame rate. At higher frame
rates one should expect an increase in the temporal correlation. The importance of the temporal and spatial
neighbors decreases with increasing SNR. At high SNRs the temporal influence disappears. In practice one
will never set any of the scale parameters to zero. Instead a low but non-zero value will be used.

As discussed previously it might be beneficial to let the scale parameters vary over the cardiac cycle.
This was investigated, and the best choice of the scale parameters for each frame are listed in Tables 7.4-7.6.
The scale parameters have not been determined for frame 1, as it is the first frame in the set of frames, so
the temporal correlation cannot be included. The results clearly show that the best choice of the scale
parameters varies over the cardiac cycle. Frame 11 and 21 contain the systolic phase of the cardiac cycle,
where the velocity changes fast to reach the peak velocity within a short period of time. Therefore the
amplitudes of the spatial derivatives are high, and the spatial correlation is low. The spatial neighbors
should contribute less to the filtering, and therefore α is low. The temporal derivative will be high too, as
the previous frame contained velocity estimates from the last part of the diastolic phase, where the velocity
levels are lower. The temporal correlation will be low, and this explains why γ is set equal to 0. The filtering
mainly relies on the estimates �V e to produce the new estimates of the velocities. The influence from the
estimates �V e increases as the SNR increases for all frames. The level of temporal and spatial correlation
varies for the different frames and the SNR, and the choice of the scale parameters α and γ varies. The
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SNR [dB]
Frame 0 5 10 15 20 30 40

α 0.8 0.32 0.16 0.09 0.13 0.12 0.11
2 β 0.2 0.68 0.83 0.9 0.87 0.88 0.89

γ 0 0 0 0 0 0 0

α 0.98 0.52 0.26 0.2 0.15 0.17 0.17
3 β 0 0.48 0.74 0.8 0.85 0.83 0.83

γ 0.02 0 0 0 0 0 0

α 0.84 0.66 0.4 0.24 0.17 0.16 0.17
4 β 0 0.18 0.47 0.7 0.76 0.76 0.75

γ 0.16 0.16 0.13 0.06 0.07 0.08 0.08

α 0.53 0.41 0.21 0.09 0.06 0.06 0.06
5 β 0 0.18 0.46 0.71 0.76 0.76 0.75

γ 0.47 0.41 0.33 0.2 0.18 0.18 0.19

α 0.57 0.64 0.51 0.25 0.15 0.13 0.14
6 β 0 0 0 0.44 0.54 0.57 0.55

γ 0.43 0.36 0.49 0.31 0.31 0.3 0.31

α 0.83 0.84 0.86 0.41 0.2 0.23 0.2
7 β 0 0 0 0.23 0.47 0.46 0.52

γ 0.17 0.16 0.14 0.36 0.33 0.31 0.28

α 0.58 0.68 0.45 0.32 0.21 0.13 0.12
8 β 0 0 0 0 0.01 0.14 0.15

γ 0.42 0.32 0.55 0.68 0.78 0.73 0.73

α 0.52 0.45 0.34 0.38 0.25 0.14 0.13
9 β 0 0 0 0 0 0.4 0.39

γ 0.48 0.55 0.66 0.62 0.75 0.46 0.48

α 0.57 0.67 0.71 0.67 0.54 0.29 0.33
10 β 0 0 0 0 0 0.1 0.13

γ 0.43 0.33 0.29 0.33 0.46 0.61 0.54

α 0.3 0.19 0.11 0.09 0.07 0.08 0.08
11 β 0.7 0.81 0.89 0.91 0.93 0.92 0.92

γ 0 0 0 0 0 0 0

Table 7.4: The best choice of the scale parameters for the frames 2-11 for a range of SNRs ([dB]).
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SNR [dB]
Frame 0 5 10 15 20 30 40

α 0.91 0.51 0.25 0.11 0.12 0.12 0.13
12 β 0 0.45 0.7 0.87 0.86 0.86 0.86

γ 0.09 0.04 0.05 0.02 0.02 0.02 0.01

α 1 0.59 0.37 0.21 0.18 0.18 0.18
13 β 0 0.41 0.63 0.79 0.82 0.82 0.82

γ 0 0 0 0 0 0 0

α 0.98 0.5 0.28 0.18 0.13 0.13 0.14
14 β 0 0.44 0.65 0.73 0.8 0.79 0.77

γ 0.02 0.06 0.07 0.09 0.07 0.08 0.09

α 0.53 0.28 0.16 0.09 0.07 0.08 0.08
15 β 0 0.31 0.6 0.66 0.78 0.78 0.78

γ 0.47 0.41 0.24 0.25 0.15 0.14 0.14
α 0.56 0.59 0.39 0.16 0.08 0.07 0.07

16 β 0 0 0.26 0.59 0.75 0.71 0.69
γ 0.44 0.41 0.35 0.25 0.17 0.22 0.24

α 0.56 0.56 0.45 0.28 0.15 0.09 0.07
17 β 0 0 0 0.22 0.38 0.49 0.51

γ 0.44 0.44 0.55 0.5 0.47 0.42 0.42

α 0.67 0.62 0.34 0.21 0.11 0.08 0.09
18 β 0 0 0 0 0 0 0

γ 0.33 0.38 0.66 0.79 0.89 0.92 0.91

α 0.47 0.52 0.49 0.35 0.22 0.18 0.16
19 β 0 0 0 0 0.21 0.12 0.17

γ 0.53 0.48 0.51 0.65 0.57 0.7 0.67

α 0.71 0.66 0.64 0.62 0.54 0.61 0.23
20 β 0 0 0 0 0.03 0.08 0.54

γ 0.29 0.34 0.36 0.38 0.43 0.31 0.23

α 0.28 0.17 0.09 0.07 0.05 0.05 0.05
21 β 0.72 0.83 0.91 0.93 0.95 0.95 0.95

γ 0 0 0 0 0 0 0

Table 7.5: The best choice of the scale parameters for the frames 12-21 for a range of SNRs ([dB]).

166
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SNR [dB]
Frame 0 5 10 15 20 30 40

α 0.77 0.59 0.3 0.23 0.21 0.21 0.21
22 β 0 0.26 0.6 0.68 0.69 0.7 0.7

γ 0.23 0.15 0.1 0.09 0.1 0.09 0.09

α 0.79 0.87 0.49 0.24 0.18 0.17 0.17
23 β 0 0.13 0.51 0.76 0.82 0.83 0.83

γ 0.21 0 0 0 0 0 0

α 0.8 0.53 0.24 0.12 0.14 0.13 0.13
24 β 0 0.27 0.67 0.82 0.8 0.81 0.79

γ 0.2 0.2 0.09 0.06 0.06 0.06 0.08

α 0.42 0.57 0.2 0.1 0.09 0.07 0.06
25 β 0 0.02 0.51 0.66 0.66 0.71 0.71

γ 0.58 0.41 0.29 0.24 0.25 0.22 0.23

α 0.59 0.56 0.4 0.12 0.09 0.07 0.06
26 β 0 0 0.12 0.63 0.67 0.69 0.7

γ 0.41 0.44 0.48 0.25 0.24 0.24 0.24

α 0.55 0.53 0.5 0.45 0.15 0.07 0.06
27 β 0 0 0.02 0.05 0.43 0.61 0.62

γ 0.45 0.47 0.48 0.5 0.42 0.32 0.32

α 0.63 0.7 0.42 0.26 0.17 0.06 0.04
28 β 0 0 0 0 0.1 0.04 0.09

γ 0.37 0.3 0.58 0.74 0.73 0.9 0.87

α 0.56 0.57 0.53 0.22 0.16 0.1 0.12
29 β 0 0 0 0 0 0.2 0.18

γ 0.44 0.43 0.47 0.78 0.84 0.7 0.7

Table 7.6: The best choice of the scale parameters for the frames 22-29 for a range of SNRs ([dB]).
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temporal correlation is higher than the spatial correlation for some frames, and the opposite for other frames.
The level of the temporal and spatial correlation can change for the same frame, as the SNR changes. The
importance of the spatial neighbors decreases with increasing SNR. Again, in an implementation a scale
parameter will never be set equal to zero. A low but non-zero value will be used. In Fig. 7.6 the values of
the scale parameters are plotted as a function of the frame number for a SNR of 15 dB. The values fluctuate
throughout the cardiac cycle, and some fluctuation is also seen between the 3 cardiac cycles. The latter is
due to the influence from the noise and the value of the frame rate. The frame rate is actually 9.87 frame/s in
the current simulation, so the velocity distributions in the so-called systolic frames (frame 11 and frame 21)
will not be 100 % identical. The same holds for the rest of the frames, so the velocity distribution will not
be identical in any two frames. Implementation of the filter therefore becomes very complicated. The exact
content in the image with respect to the velocity levels and the position in the cardiac cycle must be known,
so the proper set of scale parameters can be used. The value of the scale parameters will be dependent on
the choice of the spatial and temporal resolution. Therefore the scale parameters must be determined for all
possible settings of the resolution, if only the absolute best performance is accepted. The post-processing
has become very complicated. It will probably be possible to pursue this approach but it does not seem very
attractive. Instead a model, which follows the overall trends in the variation, could be used. A model will
be derived in the following for the scale factors, when the SNR is 15 dB. The scale parameter α shows the
least variation of the three, and only for two frames does it deviate a lot. Therefore α will be modeled as a
constant, which is equal to the mean of all estimated values of α. Before moving on to modeling γ and β one
should remember that α�β�γ � 1 at all time instances. Additionally, none of the scale factors should take
the value zero at any time instance. The fluctuations of β and γ will be modeled by linear functions, which
have an increasing and decreasing slope, respectively. Other functions (e.g. a sinusoid) might be usable too.
In this study a simple function has been chosen, where the relations between the scale parameters and some
of the properties (SNR, resolution) can be introduced in a simple way. The model for the scale factors are:

α � 0�24 (7.10)

β � 0�7�0�066 � � f �1�

γ � 0�06�0�066 � � f �1��

where f represents a frame number from 1-10, which relates to the frame rate for the current simulation.
The first frame contains the initial systolic phase in the cardiac cycle. In Fig. 7.7 the models for the scale
factors for each frame are plotted. The optimum values of the scale factors are repeated, so a comparison
can be performed. The modeled scale factors take values that are either higher or lower than the optimum
values. Still the overall trends are represented by the model. As the SNR decreases, the fluctuation of α
increases and the mean value increases. If the same approach for the modeling of the scale parameters is
employed, the value of α increases, which causes the slopes of the linear relations for β and γ to decrease.

7.2.2 Performance on simulated and in-vivo data

As the true velocities are known, a measure of the performance of the filter can be obtained by computing
the RMS error before and after application of the filter. In this study only one iteration is performed. This
choice has been made for two reasons. The improvement obtained after just one iteration is quite high,
which will become clear in the following. This argument alone does not justify to perform one iteration
only. The generated images have a finite spatial resolution, so some variation might be present and should
be preserved. The flow profile for the femoral artery will contain some variations, as the velocities take
both positive and negative values as shown in Fig. 7.8. One should be careful not to remove this valuable
information. It has therefore been decided to perform one iteration only in this study. Then a question
arises with respect to the filtering order. Should the filter be applied to the black or white pixels first? Is the
performance independent on this choice? The answer to the last question is no, and the discussion in the
following will make this clear. Consider the following situation. The velocity in a white pixel deviates from
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Figure 7.6: The values of the scale parameters as a function of frame number for a SNR of 15 dB.
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Figure 7.7: Model of the scale parameters (o) as a function of frame number for a SNR of 15 dB. The best
choices of the scale parameters are indicated with the solid line (—).
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Figure 7.8: The velocity profile at 4 time instances (0, 0.25, 0.5, 0.75 s) for the femoral artery based on
Womersley’s model (see Chapter 3).

its neighbors. It can either be a wrong estimate (e.g. an aliased estimate), or the true estimate, which arises
due to turbulence or the properties of the velocity profile for the given vessel. An example of the latter could
be an estimate obtained from the femoral artery. If the filter is applied first on the white pixels, the filter’s
estimate of the velocity in this pixel will be closer to the velocity values of the neighbors. The original
deviating estimate will influence the filtering of its neighbors in the black pixels less, as it has already been
filtered. This is beneficial if the original estimate is wrong but information will be removed, if the variation
should be present. If the black pixels were filtered first, the deviating estimate gets to influence its neighbors,
and the valuable information or wrong estimate is preserved. As the nature of the deviating velocity estimate
is unknown a priori, both approaches must be evaluated. In this study the filtering is performed twice, and
the resulting estimates are the average of the two evaluations.

Table 7.7 lists the RMS error before and the improvement in % obtained after application of the filter,
Stat1, when the same set of scale parameters (see Table 7.3) are used for all frames, and ω is equal to one.
The results show that improvements are obtained for all SNRs and range from 15-53 %. The improvement
is highest for low SNRs. A choice of which set of scaling factors to use must be made, if the level of SNR
is unknown a priori. Results of using the scale factors for 15 dB on all the data sets are listed as Stat2 in
Table 7.7. The improvement is slightly smaller than for the first case. For high SNRs it seems as if the Stat2
filter performs better than the Stat1 filter, which of course is not true. The reason for these results is that the
performance evaluation is carried out using the RMS error, whereas the scale parameters were determined
by employing the absolute error. If the absolute errors were listed instead of the RMS errors, one will see
that the performance of the Stat1 filter is better than the Stat2 filter for all SNRs.

The performance of the statistical filter and the M1 and M2 median filters has been compared. The im-
provement obtained with the median filters are repeated in the last two columns in Table 7.7. The statistical
filter out performs the median filters for all SNRs. The improvement is a factor of 2 higher at low SNRs,
and it approaches a factor of 4 as the SNR increases. Plots of the original velocity profile and the resulting
velocity profile after application of the Stat2 filter on the simulated data are shown in Fig. 7.9. The true
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SNR RMSbe f ore Stat1 Stat2 M1 M2

0 0.125 52.6 46.0 11.0 27.1
5 0.096 44.3 40.0 8.4 21.8

10 0.076 34.9 32.4 5.0 15.2
15 0.061 26.6 26.6 2.2 9.9
20 0.054 20.6 21.1 0.0 6.0
30 0.049 16.9 17.6 -0.8 3.9
40 0.048 15.8 16.5 -0.4 4.1

Table 7.7: The RMS error ([m/s]) before and the improvement in % after application of the statistical and
median filters.

velocity profile was plotted in Fig. 7.3. A more smooth profile has been obtained, which more closely
resembles the true velocity profile. The filter was applied to the acquired in-vivo data introduced in Section
7.1.1. An example of the original and filtered CFM image is plotted in Fig. 7.10, when the Stat2 filter was
used. A more smooth profile has been obtained with the Stat2 filter. The steep transitions obtained with
median filtering have been removed.

The above discussion considered the performance, when the same set of scale parameters were used for
all frames. The investigations in Section 7.2.1 clearly revealed that the value of the scale parameters vary as
a function of the frame number and thereby the temporal position in the cardiac cycle. A better performance
by means of a lower error will be obtained, if the scale parameters vary with time. The complexity of
the time variation was reduced by modeling the variation in a more simple form, which will be easier to
implement and control for different settings. The feasibility of the model is determined by comparing the
absolute errors after application of the filter with time-varying (Stat2e f ) and constant (Stat2) scale factors
for each frame. The absolute error (AE) is employed as it was the basis for determining the scale parameters.
It will not give misleading improvement values as is the case for the RMS error. The absolute errors are
compared by computing:

Rabs �
AEc�AEe f

AEe f
� (7.11)

for each frame, where AEc and AEe f are the error after application of the Stat2 and the Stat2e f filters,
respectively. Figure 7.11 shows plots of Rabs (in %) for the SNRs 0, 10, 20, and 30 dB. For a positive value
of Rabs the best performance is obtained, when the filtering is performed with the Stat2e f filter. The sign and
the amplitude of Rabs vary as a function of frame number and SNR. Employment of the Stat2e f filter does
not always give the lowest error. For certain frames the Stat2 filter is to be preferred over the Stat2e f filter.
The three cardiac cycles approximately span the frames 1-10, 11-20, and 21-30 (frame 30 not simulated).
The following trends exist:

� the best performance for the first 4 frames in the cardiac cycle is obtained with the Stat2 filter,

� the best performance for the next 5 frames is obtained with the Stat2e f filter.

This means that the Stat2e f filter performs best on the frames at the end of the diastolic phase. For a
SNR of 0 dB the Stat2e f filter lowers the error quite a bit for these frames. The summed absolute errors
over all frames for the Stat2 and the Stat2e f filters have been compared. The results reveal that the overall
improvement, when the Stat2e f filter is employed, ranges from 1.7-5.0 %, when the SNR is varied from 0-40
dB. The improvement decreases as the SNR increases. If the exact values of the scale factors for each frame
are used, the improvement ranges from 3.1-5.4 %. The scale parameters for the 15 dB case are used for all
data sets (independent of the SNR). The largest improvement is obtained for a SNR of 20 dB, and the lowest
for 0 dB. The employment of the simple linear model for the scale parameters slightly degrades the overall
improvement obtained by using time-varying scale parameters. The levels of the improvement (both when

172



7.2. POST-PROCESSING FILTER BASED ON OPTICAL FLOW THEORY

0

5

10

15

20

25

30

35

40

45

−0.5

0

0.5

1

1.5 2 2.5 3 3.5

0

20

40

60

Axial position [cm]

V
el

oc
ity

 [c
m

/s
]

Lateral
position
[cm]

0

5

10

15

20

25

30

35

40

45

−0.5

0

0.5

1

1.5 2 2.5 3 3.5

0

20

40

60

Axial position [cm]

V
el

oc
ity

 [c
m

/s
]

Lateral
position
[cm]

Figure 7.9: The velocity profile before (top) and after (bottom) application of the post-processing filter
Stat2 on simulated data.
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Figure 7.10: The velocity profile before (top) and after (bottom) application of the post-processing filter
Stat2 on in-vivo data.
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Figure 7.11: Ratio of the absolute errors, when the Stat2e f and the Stat2 filters are used, as a function of
frame number.

using the model and the exact time-varying values of the scale parameters) are so low that it does not seem
worth introducing the time-varying scale parameters. Employment of the time-varying scale parameters
requires a determination of the position in the cardiac cycle, which can be done by 1) recording the ECG-
signal and synchronizing the processing to this signal, or 2) inspection of the magnitudes of the spatial and
temporal derivatives to determine the position in the cardiac cycle. Given the above investigations the scale
parameters determined by minimizing the absolute error over all frames should be used in the filter, when
the SNR in the RF-signals is not determined prior to the processing.

7.3 Summary

Post-processing of the velocity estimates must be performed, so velocity profiles can be displayed, which are
more consistent with the true profile. Two post-processing filters have been introduced and evaluated here.
A median filter can be applied to reduce the noisy variations, and the performance of two median filters have
been determined on simulated data resembling RF-signals from the carotid artery. The best performance was
obtained, when the filter employed all 4 spatial neighbors along the lateral and axial directions in the image.
The resulting velocity profiles are more consistent with the true velocity profiles. The RMS error on the
velocity estimates was lowered by 3.9-27.1 %. The highest improvement was obtained at low SNRs. The
median filter was applied to in-vivo data from the carotid artery. The obtained velocity profiles still contain
some steep transitions between velocity levels, which is not desirable.

The second post-processing filter represents a new approach, which employs Bayesian image analysis
to derive a filter based on statistics. The filter incorporates features of fluid flow. These features introduce
restrictions on the variations allowed between the velocities in neighboring spatial and temporal locations.
A posterior probability density function is determined. It consists of an a priori density term, which sets up
restrictions for the variations, and a model specific term. The latter incorporates the information available
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from the given estimates prior to the post-processing. The posterior density is maximimzed on an iterative
basis. In each iteration a new estimate of the velocity is computed as a linear combination of the original
estimate and the velocity estimates in the spatial and temporal neighborhood. The scale factors in the filter
vary for different levels of the SNR. This should be employed, if the SNR is determined prior to acquiring
and processing data for blood velocity estimation. Otherwise one set of values should be used for all. In
this study the parameters determined for the 15 dB case were used. When the same set of scale factors are
used throughout the cardiac cycle, the improvements on the RMS error are 16.5-46.0 % on the simulated
data. The highest improvement is obtained for low values of the SNR. The filter was applied to in-vivo data
from the carotid artery. A more smooth velocity profile was obtained after the post-processing. The scale
parameters vary as a function of the temporal location in the cardiac cycle. If a simple linear model for
the variation of the scale parameters for a SNR of 15 dB are used on all data sets (independent on SNR)
only very little overall improvement is obtained. It does not seem worth introducing the time-varying scale
parameters under these circumstances.

The results above show that the statistical filter out performs simple median filters and produces less
noisy velocity images. The filtering is computationally very simple. Memory capacity has to be set aside
for storing the previous CFM image though. The temporal and spatial correlation property between the
velocities contain valuable information for the post-processing of the estimates and therefore should be
incorporated in the post-processing filter.

The values of the scale factors are dependent on the spatial and temporal resolution in the images. The
temporal resolution is determined by the frame rate. In this study the scale factors have been determined
for one realization of the possible set of resolution values. More realizations should be investigated to
determine the importance and influence of the resolution on the values of the scale factors. In this study
the scale factors were determined for a frame rate of 10 frames/s. Still, a successful post-processing of the
in-vivo data, where the frame rate is 18 frames/s, was performed.

The performance of the statistical filter has been evaluated on the velocity profile of the carotid artery.
This profile is very smooth and does not contain both positive and negative velocities in neighboring lo-
cations. Investigations are to be carried out, which determine the scale parameters and the performance
of the filter on other velocity profiles. Data from the femoral artery are of interest, as both positive and
negative velocities are seen in neighboring locations. These variations should not be removed by the filter.
One unique filter, which can handle all velocity profiles, might not exist. This is not seen as a limitation
of this approach. An input from the clinician, which determines the anatomical site being scanned, will
enable employment of different filters for different anatomical locations. The aspect of employing process-
ing schemes, which are specific for an anatomical site, is already used in todays scanners. In case of the
statistical post-processing filter, the basic algorithm will be identical for all situations, but the scale factors
will vary with the anatomical site.

Highly deviating estimates are produced by some estimators, and the performance of the statistical filter
should be evaluated under these circumstances. The filters capability of minimizing the amplitude of these
estimates should be determined. The number of iterations performed in the filtering might have to be more
than one under these circumstances. A measure for ones faith in the estimates should be determined and
included. A relation (or lookup table) between this measure and the scaling factor ω should be determined.
In this way the highly deviating estimates get to influence the outcome of the filtering less. This should
result in new, filtered estimates, which are more consistent with the true velocities.

The discussion and investigations in this chapter reveal that it is beneficial to incorporate the features of
fluid mechanics in the post-processing algorithm. One filter, which incorporates the spatial and temporal
correlation between the blood velocities, has been derived here. Other filters should also be considered, but
they should all incorporate the correlation property.
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Conclusion

The discussion in the following summarizes the work and results obtained within this Ph.D. project. The
project has mainly been concerned with developing algorithms, which are to be used in the processing of
acquired ultrasound RF-signals. The aim of the processing is to obtain estimates of the blood velocities in
the human cardiovascular system. The processing can be split up in three main steps. First, the RF-signals
are pre-processed to improve the basis for the estimation. Then the actual estimation is carried out, and
estimates of the velocity profile in the vessels are achieved. The computed estimates come with a level of
inaccuracy, which results in a noisy and non-smooth appearance of the velocity profiles. Post-processing of
the estimates is therefore performed, before the estimates are displayed. New algorithms to be used in these
processing steps have been investigated.

Apart from the development of new algorithms, the issue of performance evaluation has also been ad-
dressed. A proper set of data are required to evaluate the performance of an algorithm. Simulated data are
often preferred, since they are well-defined. The data must be representative of the in-vivo situation. The
features of the in-vivo situation and especially the features, which will influence the performance, should
be incorporated. Tissue motion is one feature of importance, and it is induced by breathing, the beating of
the heart, and the pulsation of the vessel walls. The aspect of tissue motion and the incorporation hereof in
the generation of simulated data have been investigated. The presence of tissue motion was verified through
inspection of in-vivo data. The tissue motion is on the order of a few millimeter per second close to the
motion inducer. Models have been derived for each motion contributor. Each model consists of two terms.
The first describes the temporal course of the motion next to the inducer. This is determined by the motion
pattern of the inducer (e.g. heart beat rate, breathing rate, level of breathing). The second term describes the
damping of the motion in space. As the distance increases from the inducer to a point in space, the level of
the motion decreases. Simulations have been performed to verify the models. A comparison between the
in-vivo and simulated data reveals a good qualitatively agreement.

Given a proper basis for the performance evaluation the development and evaluation of new algorithms
were carried out.

Non-zero estimates are computed for both the blood and tissue regions. Only the blood velocity esti-
mates are of interest in CFM-mode. A discriminator must be applied that determines, which segments of the
RF-signals that carry blood velocity information. If the discrimination is performed prior to the actual blood
velocity estimation, the computational load can be decreased, as only segments, which carry blood velocity
information, should be processed by the estimators. Two new discriminators have been developed within this
project. They are based on maximum likelihood theory and neural networks, respectively. A set of features,
which distinguish segments that do and do not carry blood velocity information, have been determined. The
features are I) the energy content in the segments before and after echo-canceling, and II) the amplitude
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variations between segments in consecutive RF-lines before and after echo-canceling. A performance eval-
uation of the discriminators shows that these features contain valuable information for the discrimination.
The discriminators process the values of the features and computes a probability value, which determines
whether the segment under investigation carry blood velocity information. The results were compared to a
simple amplitude discriminator, which has previously been used in commercial scanners. This discrimina-
tor bases its classification on the average amplitude value in the segment. All three discriminators have a
high success rate on determining the segments, which do not carry blood velocity information. The number
of correctly classified segments are above 91 %. The amplitude discriminator has a poor performance on
the segments, which do carry blood velocity information. Less than 50 % of these segments are classified
correctly. The new methods can rectify this problem to some extent. The incorporation of more features and
the employment of more advanced algorithms result in a better basis for the discrimination. The success
rate on the discrimination increases significantly. For SNRs above 0 dB the success rate reaches a minimum
of 91 %. As the SNR increases above 10 dB, more than 94 % of the segments, which carry blood velocity
information, can be classified correct. It can be concluded that it is beneficial to incorporate more features
and to employ more advanced algorithms in the discrimination. Further investigations into this area should
be carried out. This includes determining more or other features, which distinguish the information content
in the segments well.

Several blood velocity estimators have been developed in the past. None of them incorporate the features
of fluid mechanics, which predicts that the velocities are correlated in time and space. The possibility of
incorporating this aspect has been investigated. An estimator based on maximum likelihood theory has been
derived, which incorporates the correlation property by introducing an a priori probability density in the
distribution describing the acquired signals. The functionality of the a priori distribution is to determine, if
the velocity value under investigation is likely, when the velocities in a bounded spatial and temporal neigh-
borhood are known. The performance of this new estimator (the CMLE estimator) has been evaluated and
compared to a selection of the previous developed estimators. The introduction of the correlation property
has a positive effect on the estimation. No estimates, which deviate significantly from its neighbors, are
computed. This is consistent with the true velocity profiles. The estimated velocity profiles comply with
the features of fluid mechanics. The occurrence of deviating estimates is often experienced with the other
estimators, so the correlation property contains valuable information for the estimation. The estimator is
not able to follow the fine variations across the axial extent of the vessel, but the velocity estimates follow
the overall variations throughout the cardiac cycle well. None of the evaluated estimators perform perfectly
in the sense of computing exact estimates. Different trends are experienced, and each of them have their
advantages and disadvantages. These have been determined and discussed in this project. But overall the
CMLE estimator can compete with and out perform quite a few of the previously developed estimators. This
conclusion is based on a comparison of the RMS errors and the measure of the number of highly deviating
estimates. The work carried out in this project has determined that the flow physics should be incorporated
in the estimation scheme.

A second blood velocity estimator has been developed in this project. It combines two of the previously
developed estimators in order to minimize the computational load, overcome some of the limitations of
the individual estimators, and exploit the advantages of the individual estimators. The idea of combining
two estimators is not new. The EAM estimator combines the autocorrelation and the cross-correlation
estimators. The estimator presented here combines the autocorrelation and the BST estimators. It has been
named the AB estimator. The reason for combining the autocorrelation estimator with the BST or the
cross-correlation estimators is to overcome the aliasing problem of the autocorrelation estimator. This can
be achieved with the EAM and AB estimators, but unfortunately the estimators also introduce estimates,
which deviate significantly from the true velocities. When inspecting the estimated velocity profiles the AB
estimator out performs the EAM estimator. The number of highly deviating estimates are on the order of 4
%. The same measure for the EAM estimator is a factor of 4 higher. The combination of the autocorrelation
and the BST estimators has been advantages for the estimation. The problems of the EAM estimator is
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due to the limitations of the cross-correlation analysis, and these has been overcome to some extent by the
variance analysis performed with the BST estimator. Post-processing of the estimates, which incorporates
the features of fluid mechanics, can remove some of the highly deviating estimates and thereby improve the
performance of the AB and the EAM estimators. The non-highly deviating estimates follow the variations
across the axial extent of the vessel and throughout the cardiac cycle well. This makes the AB estimator a
very powerful estimator, which should be considered used for blood velocity estimation. The AB estimator
out perform most of the estimators discussed and evaluated. This conclusion is based on a comparison of
the RMS error and the measure of the number of highly deviating estimates. The visual inspection of the
velocity profiles supports this conclusion.

The velocity estimates come with a level of inaccuracy, which results in a noisy and non-smooth ap-
pearance of the velocity profiles. When the individual frames are shown right after each other at a high
frame rate, this noise attracts the eye and removes the observers attention from the important information.
Post-processing is performed before the estimated velocity profiles are displayed. The features of fluid me-
chanics should be incorporated in the post-processing filter. This idea has been pursued, and a filter based
on optical flow theory has been derived. The filter employs the estimated velocity values in a temporal
and spatial neighborhood along with the estimate in the location currently being filtered to produce a new
estimate. The filter relation is linear, and a set of scaling factors weight the contributions for the spatial and
temporal neighbors and the original estimate. The performance has been evaluated on simulated data for the
carotid artery. The velocity profiles are smoothened by the filter, and the resulting, filtered velocity profiles
are more consistent with the true velocity profiles. The filter out performs post-processing performed with
median filters. The RMS error has been improved by a factor of 2-4. Incorporation of the features of fluid
mechanics has been beneficial for the post-processing.

The above discussion can be summarized in two sentences. The outcome of this Ph.D. project is a set of
algorithms, which should be considered employed in the pre-processing of the RF-signals, the actual estima-
tion of the blood velocity estimates, and the post-processing of the estimates. The features of the RF-signals
and the blood flow, which have been incorporated in the new algorithms, contain valuable information for
the processing.
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Appendix A

Papers presented and published within the
Ph.D. project

A copy of the papers presented and published during the Ph.D. project are available from the directory
”MSchlaikjer Papers” on the enclosed CD-rom in Appendix D. The format of the papers is PostScript (*.ps).

The papers are:

”Tissue motion in blood velocity estimation and its simulation”, presented at the IEEE International Ul-
trasonics Symposium, Sendai, Japan, 1998.
Authors: M. Schlaikjer, S. Torp-Pedersen, J. A. Jensen, and P. F. Stetson.
Proc. IEEE Ultrasonic Symp., pages 1495-1499, 1998.
Name of postscript-file: ieee uffc symp1998.ps .

”Simulation of RF data with tissue motion for optimizing stationary echo canceling filters”, presented at
the Ultrasonics International ’99 and 1999 Congress on Ultrasonics, Copenhagen, Denmark, 1999.
Authors: M. Schlaikjer, S. Torp-Pedersen, and J. A. Jensen.
To be published in Ultrasonics, 2002.
Name of postscript-file: UI WCU 1999.ps .

”Neural Network for RF Decomposition in Ultrasound”, presented at the International ICSC Symposium
on Neural Computation, Berlin, Germany, 2000.
Authors: M. Schlaikjer and J. A. Jensen,
Proc. of Neural Computation, pages 628-633, 2000.
Name of postscript-file: nc2000.ps .

”Pre- and Post-processing Filters for Improvement of Blood Velocity Estimation”, presented at the IEEE
International Ultrasonics Symposium, San Juan, Puerto Rico, 2000.
Authors: M. Schlaikjer, S. Torp-Pedersen, and J. A. Jensen.
Proc. of IEEE Ultrasonic Symp., vol.2, pages 1531-1536, 2000.
Name of postscript-file: ieee uffc symp2000.ps .
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”Joint Probability Discrimination between Stationary Tissue and Blood Velocity Signals”, presented at
the IEEE International Ultrasonics Symposium, Atlanta, Georgia, 2001.
Authors: M. Schlaikjer and J. A. Jensen.
To be published in Proc. of IEEE Ultrasonic Symp., 2001.
Name of postscript-file: ieee uffc symp2001a.ps .

”A New Maximum Likelihood Blood Velocity Estimator Incorporating Spatial and Temporal Correla-
tion”, presented at the IEEE International Ultrasonics Symposium, Atlanta, Georgia, 2001.
Authors: M. Schlaikjer and J. A. Jensen.
To be published in Proc. of IEEE Ultrasonic Symp., 2001.
Name of postscript-file: ieee uffc symp2001b.ps .
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Appendix B

Performance of the blood velocity
estimators on synthetic data

In Chapter 6 a selection of blood velocity estimators were introduced and evaluated. The performance on
the synthetic data was determined for a range of values of the parameters:

� the sampling frequency ( fs),

� the number of samples used in the estimation,

� the number of RF-lines available,

� the SNR.

The influence of the echo-canceling filter was determined, as the evaluation was performed for three filters:
no echo-canceling filter, the 2nd order HP echo-canceling filter, and the regression line echo-canceling filter.
Four velocities - v � �10�20�30�40� cm/s were investigated. A listing of the mean and the standard deviation
for all the combinations of the parameters, the echo-canceling filters, and the velocities will take up hun-
dreds of pages. Therefore it has been decided to include the generated tables on the enclosed CD-rom (see
Appendix D). For each combination of the parameters the mean µ and the standard deviation σ are listed as
µ	σ.

A directory structure has been designed to make it easier to read the results. The results are located in the
directory /VelEstimators/SyntheticData. The tables for each estimator are located in their own subdirectory:

AutocorEst : The results for the autocorrelation estimator.
CrosscorEst : The results for the cross-correlation estimator.
EamEst : The results for the EAM estimator.
BstEst : The results for the BST estimator.
AbEst : The results for the AB1 estimator.
MleEst : The results for the MLE estimator.
CmleEst : The results for the CMLE estimator.

The file names are related to the name of the estimator, the SNR, and the velocity investigated. An
example hereof is ”tablesab0dbv1.ps”, which refers to the results obtained with the AB1 estimator, when
the true velocity is 10 cm/s, and the SNR is 0 dB. In the tables the following abbreviation for the echo-
canceling (Echo-can.) filters are used:
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� No echo-canceling filter : None,

� the 2nd order HP echo-canceling filter : HP,

� the regression line filter : Hoeks.

188



Appendix C

Performance of the blood velocity
estimators on simulated data

In Chapter 6 a selection of blood velocity estimators were introduced and evaluated. A selection of the
resulting CFM-mode images for each estimator is plotted in the dissertation. The performance on all 10
frames in the cardiac cycle is included on the enclosed CD-rom (see Appendix D). The images of the
estimated and true velocity profiles are combined in one PostScript file.

A directory structure has been designed to make it easier to read the results. The results are located in
the directory /VelEstimators/SimulatedData. The postscript-files for each estimator are located in their own
subdirectory:

AutocorEst : The results for the autocorrelation estimator.
CrosscorEst : The results for the cross-correlation estimator.
EamEst : The results for the EAM estimator.
BstEst : The results for the BST estimator.
AbEst : The results for the AB2 estimator.
MleEst : The results for the MLE estimator.
CmleEst : The results for the CMLE estimator.

One postscript-file are present in each directory (except for the AB2 and the EAM estimators, where
2 files are present). The name of the file is ”EstVelFrame1 10??.ps”. The ”??” refers to the name of the
estimator, and the following possibilities are present: � Autocor, Ab2, Bst, Crosscor, Eam, Mle, Cmle �.
In case of the AB2 and EAM estimator 2 files are present, as the performance on the data set generated
from a long and a short pulse is given. The postscript-file, which represents the results with a short pulse, is
named ”EstVelFrame1 10?? S.ps”, whereas the file, which contains the results with a long pulse is named
”EstVelFrame1 10??.ps”.

The results were obtained for the simulated data resembling the carotid artery. The SNR is 20 dB, and
the 2nd order HP echo-canceling filter was applied prior to the blood velocity information.
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Appendix D

Enclosed CD-rom

The CD-rom, which contains the papers presented and published during the Ph.D. project, and the perfor-
mance results of the blood velocity estimators, is enclosed here. Please refer to Appendix A-C for informa-
tion on the directory structure and the specific content on this CD-rom.
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