

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Fast Multi Operand Decimal Adders using Digit Compressors with Decimal Carry
Generation

Dadda, Luigi; Nannarelli, Alberto

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Dadda, L., & Nannarelli, A. (2009). Fast Multi Operand Decimal Adders using Digit Compressors with Decimal
Carry Generation. Kgs. Lyngby: Technical University of Denmark, DTU Informatics, Building 321. (IMM-
Technical Report-2009-05).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13716565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/fast-multi-operand-decimal-adders-using-digit-compressors-with-decimal-carry-generation(f4313f8e-959f-4ba5-b30d-e982cdab80b8).html

Fast Multi Operand Decimal Adders using Digit Compressors
with Decimal Carry Generation

Luigi Dadda Alberto Nannarelli
Politecnico di Milano, Italy Technical University of Denmark

Abstract: We consider multi operand decimal adders designed with an architecture

implementing first the addition of all the digits of each column (i.e. with the same decimal weight)
and then combining in various ways such column sums for obtaining the final result. Different and
efficient architectures can be conceived on the basis of compressors of a number of digits (e.g.
three) generating a smaller number of digits (e.g. two) and, simultaneously, a decimal carry to be
accounted for by the next (to the left) column. A suitable scheme has been proposed by Vazquez,
Antelo and Montuschi, capable not only to generate the decimal carry but also to accept an
incoming carry from the column at the right, if any. Such unit has been designed for decimal digit
in BCD-4221 code. We show in this paper an improved theory and a compact notation of such
compressor permitting the design of schemes using a large number of cells. A comparison is also
made between multi-operand adders of different architectures.

1 – Introduction

Decimal arithmetic has been used extensively in the earliest computer era [1] and it has been
recently [2] revived due to the need of processing large amounts of decimal data in Internet and
financial applications and in fields like statistics.

Recently, three papers have treated the same subject of this paper (the simultaneous addition
of several decimal numbers) using different approaches. Kenney and Schulte [3,4] proposed three
different methods, two called speculative approaches, based on purely decimal arithmetic on BCD-
8421 coded numbers, a third based on an initial binary addition with subsequent corrections. Choi
[5] solved the problem using a binary tree of fast carry-look-ahead decimal adders. Dadda [6]
proposed a hybrid method based on parallel fast binary addition of all the digits in each decimal
column, with subsequent binary-to-decimal conversion and the addition of column-sums for
obtaining the final result. With such a procedure all the decimal carries in each column are
accounted for.

In [7] Vazquez, Antelo and Montuschi proposed a new kind of 3-to-2 digit compression with
generation of a decimal carry to be transmitted to the next decimal column. The cell, called VAM
by the authors’ initials in the following, has been conceived with the scope of designing fast
decimal multipliers through the addition of the set of partial products. Clearly, the same cell can be
applied to the simpler case of multi-operand adders.

We will show an abstract representation of the VAM cell that makes easier to draw schemes
based essentially on it. Such representation could equally well be applied to the multiplier design.
We consider useful to show in this paper its use in the simpler case of multi-operand decimal
addition. A comparison with the results obtained in previously proposed schemes will also be
shown.

2 – The basic compressor cell

Fig. 1.a) shows the compression cell introduced by Vazquez, Antelo and Montuschi in [7]. It
assumes that the input and output decimal numbers are BCD-4221.

A four bit decimal column of weight 100 (composed from the corresponding bit-columns
with weights 4,2,2,1 respectively) is shown. Two bits columns of the adjacent 101 (left) and 10-1
decimal columns are also shown.

Three digits A1, A2, A3 are input, the output being represented with two digits, S and C, S
in the same decimal column, while C is composed from the three least significant bits weighed 4, 2,
2 in the input’s column, while the most significant bit (weight = 10) is generated in the decimal
column at the left (weight = 10).

(4) (2) (2) (1)(10) (0.4)

3:2 3:2 3:2 3:2

(10)
(4) (2) (2) (1)

10,4,2,2 Decoder

(4) (2) (2) (1)(10) (0.4)

(2)

3:2 3:2 3:2 3:2

(10)
(4) (2) (2) (1)

a2,4
a1,2'

a3,2
a2,2
a1,2

a3,1
a2,1
a1,1Input

digits a3,4

a1,4

a3,2'
a2,2'

a3,2
a2,2
a1,2

a3,1
a2,1
a1,1

BCD-4221

(2) (2) (2)
s4 s2' s2

c4 c2' c2 c-inc-out

s1
c4 c2' c2 c1

A1
A2
A3

S
C

C

B
in

ar
y

C
o
m

p
re

ss
o
r 1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 1 1 1

+

=
+

S
C

C

A1
A2
A3

a) b)

4 2 2 110 d
ec

im
al

9
9
9

9

18

Fig 1: a): The scheme of a Vazquez-Antelo-Montuschi (VAM) Decimal Compression cell, composed from a Binary
Compressor and a Decoder. The inputs are the A1, A2, A3 digits, the output the S and C digits. A decimal carry c-in from

the decimal column at the right can be placed in the least significant bit of C. A similar carry c-out is generated for the
decimal column at the left; b) example of addition 9+9+9.

The internal structure of the cell is composed from two parts.

- a Binary Compressor, composed from a set of four full adders (3:2), one for each binary
column, each fed by the three bits of the addends and generating (in the same binary
column) a sum bit and a carry bit.
- a 10, 4,2,2 Decoder, i.e. a combinational network fed from the four carry bits given by the
Binary Compressor, and generating four output bits (c2, c2’, c4 and c-out) representing the
input’s value with output bits weighed 10, 4, 2, 2 respectively.

 Three digits in the central column are added with the four full adders (3:2).
 The four Sum outputs bits compose the first output digit, S.
 The four carry bits are marked with weight “(2)” since they are generated

within the same bit column.
Note that the values of the carry-bits produced by the four full adders can have value 2

(carry output true) or 0 (carry output false). The total numerical value represented by such carry-bits
is therefore always an even number. The task of the decoder is to represent such value with bits
having the weights 10, 4, 2, 2. No output in the rightmost binary column of weight 1 will be
generated from the decoder.

For all inputs of the decoder greater than 9, a 1 will be generated for the 10 weighed output.
The remaining part of the input value to the decoder, smaller that 10 and even, has to be coded with
the weights 4, 2, 2.

Note that the bit weighed “10” in binary column (10) of the decimal column at the right is
certainly available, for what has been said before.

An example (worst case): the three input digits are valued 9 (1111 in 4221 code), is shown
in Fig. 1.b). The output digit Sum is also valued 9 (1111 in 4221 code). Since the total input value is
3*9=27, the value of the bits composing the Carry is: 27-9=18. This cannot be represented by a
decimal digit (no matter in which code). It can be decided to send a 1 in a cell belonging to the next
(at the left) binary column (with weight 10 since it belongs to the 101 decimal column). The
remaining three bits in the input decimal column, weighed 4, 2 and 2 respectively, are valued 8 in
total. Added to the ten in column weighed 1010, sent previously, it gives 18. Adding it to S=9, we
get 27 = 3*9.

2

Note finally that the weights written close to the inputs and the outputs can be divided by 2
(all being even). It can then be said that the decoder recodes the inputs according to the weights
5,2,1,1.

The just described decoder will be denoted dec2 (or x2 as suggested in [7]) since its inputs
have weight equal to 2.

x 4 2 2 1 2x 10 4 2 2 1
0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 2 0 0 1 0
2 0 0 1 0 4 0 1 0 0
2 0 1 0 0 4 0 1 0 0
3 0 0 1 1 6 0 1 1 0
3 0 1 0 1 6 0 1 1 0
4 0 1 1 0 8 0 1 1 1
4 1 0 0 0 8 0 1 1 1
5 1 0 0 1 10 1 0 0 0
5 0 1 1 1 10 1 0 0 0
6 1 1 0 0 12 1 0 0 1
6 1 0 1 0 12 1 0 0 1
7 1 1 0 1 14 1 1 0 0
7 1 0 1 1 14 1 1 0 0
8 1 1 1 0 16 1 1 1 0
9 1 1 1 1 18 1 1 1 1

Table 1: Truth –table of the dec2 decoder

Table 1 shows the truth table of the dec2 decoder of Fig. 1.a). The input variables are paired

according to their decimal values (column x). In column 2x the corresponding doubled values are
given. The columns marked 10, 4, 2, 2, contain the coding of all the given values. Note that the
value 2 is available in two adjacent columns. When a single 2 is needed, the left column 2 has been
chosen for placing a 1. Note again that the column weighed 1 is not used in the described recoding,
being available for the recoding in the decimal column to the right (weighed 10-1).

We will see in Chapter 4 that decoders with higher multiplicative factors can be defined
In the multi-operand adder schemes that will be illustrated in the next chapter we need to use

quite a number of identical compression cells. It is thus convenient to adopt a simplified notation of
such cells, in which the internal structure is ignored. A proposal for such a notation is shown in
Fig.2. 2). In such a notation three input registers, A1, A2 and A3, store the three input digits, coded
in accord with the code used in the compression cell, i.e. the BCD-4221 code.

A line separates the input registers A1, A2 and A3 from the output registers S and C. Note
that the least significant c1 bit–cell is loaded with the bit c-in generated as c-out from a
compression cell in the decimal column at the right, if any; otherwise it will be put to 0.

3

A1
A2
A3

S

S

1)

2)

3)

c2c2'c4

s4 s2' s2 s1

a3,4 a3,2' a3,2 a3,1

a2,4 a2,2' a2,2 a2,1

a1,4 a1,2' a1,2 a1,1 A1
A2
A3

S

S

c-out c-in

1)

2)

3)

c2c2'c4

s4 s2' s2 s1

a3,4 a3,2' a3,2 a3,1

a2,4 a2,2' a2,2 a2,1

a1,4 a1,2' a1,2 a1,1

c4 c2c4

C

Fig. 2: 2) A compact notation of Fig. 1 compression cell.

3) A more compact notation.

In Fig. 2.3) a simplified notation is shown, in which the two-bit columns s4 c4, s2’ c2’, s2
c2 are compressed in the space allotted for a single column. This obtains more compact drawings.

 2.1 Characterisation of the compression cell
For using the cell in the network that we intend to design it is important to know its

properties abstracting as far as possible from its internal architecture. In a decimal compressor we
would expect, for instance, that knowing the decimal input digits (3 in our case) we could tell that
the decimal carry is found simply by adding the three input digits and finding out that the carry is 0
or 1 or 2. This is not the case for the VAM compressor, as it can be seen by computing its result “by
hand” on the basis of its internal structure, or by simulating its operation as done in [8]. .

A few examples follow. If we load three digits all equal to 5 we get a decimal carry, the
register S containing 5 and the register C a zero.

If we load A1=6, A2=5 and A3=4 we get a zero carry, C=8 and S=7. The whole sum, 15, is
therefore stored in the registers S and C. This behaviour does not invalidate the compressor, since
those values, transferred to another compressor in a column of compressors will eventually generate
one or more carries. The final result of a network of compressors will be composed by couples of
digits, to be added in a carry-propagate decimal adder (of a carry-look-ahead type for speed reason).

This will be seen in the schemes of the next chapter.
We will use in some cases a property of the compression cell concerning the addition of a

BCD-4221 digit valued 8 or 9, with one or two digits valued 1. In such cases no decimal carry will
be generated. If a digit 9 is added to one smaller digit, no carry will be generated if the input Sum is
smaller that 14.

Note finally that the compressors proposed in [6], valid for 8421-BCD coding, obtain the
sum of the column to be compressed (composed by 2 or more digits) and give the value of the digit
in the same column and the total value of the carries in the next column(s).

3 – Schemes of multi-operand decimal adders

Fig. 3 shows some schemes for multi-operand adders composed from the just described
compressor, represented in compact form, for different operand number N of 8 digit each. We
briefly describe the schemes in Fig. 3.

N=3: each input decimal column is composed with three digits. A single cell in each column
obtains a two-lines equivalent set of numbers, with a carry into the column 108, i.e. an
overflow. A parallel decimal adder (not shown in the figure) will obtain the final sum (9
digit long).

4

N=4: in the first stage we input the first three addends to a linear array of 8 cells. In the
second stage we add the fourth addend to the two outputs from the first stage. We will
discuss later the case of overflows.
N=8: we have 4 stages. In the first one, we obtain 4 outputs from 6 inputs, leaving
unchanged 2 of the input addends. In the second stage we associate these addends to the four
outputs from the first stage, obtaining 4 outputs equivalent to the 8 input addends. Those 4
numbers are then reduced to two via two more stages (as in the N=4 case).
N=16: we reduce in the first stage 15 addends to 10 numbers, via a set of 5 linear arrays of
compressors, leaving unchanged the 16th addend. In the second stage we have 11 numbers,
to be operated by 3 linear arrays leaving unchanged 2 numbers (2*3+2=8). We obtain in the
third stage 2*2+2=6 numbers. These will be processed as in the case N=8. The number of
stages for obtaining two equivalent numbers will be 6.

01245678 3

1

2

3

4

5

1

2

3

1

2

1

1

1

N=16

1

2

3

4

5

6

2

1

2

1

1

1

N=8

1

2

3

4

2

1

1

N=4

1

2

N=3

01245678 3

o.f.o.f.

o.f.o.f.o.f.o.f.

o.f.

o.f.

o.f.

o.f.

o.f.

o.f.

o.f.

o.f.

a

b

A

B

d

e

f

g

o.f.

o.f.

c

h

f

g

o.f.

i h

i

a

b

c

d c

d

d

e

A

B

a

b

c

d

e

Fig. 3: Schemes for multi operand decimal adders, composed from compressors in compact notation (Fig. 3.3),

for N=3, N=4, N=8 and N=16 operands of 8 digit.

 3.1 Processing the overflows
In some applications we can assume that the total Sum doesn’t exceed the length in digit

allotted for each addend. In general, however, this will not be true. In the worst case we allow each
addend to reach the maximum value of all digits equal to 9. In such a case there will be in all stages
the generation of c-out, i.e. of overflows (o.f.). Multi-operand adders previously proposed [4,5,6]
don’t consider explicitly this problem since their architectures include its solution. This is not the
case in the scheme described in this paper.

5

The task of the o.f. column(s) is to count the decimal carries generated from the last,
adjacent column of the adder (whose tasks are: the addition of the input digits, the addition of the

decimal carries generated from the column at its right, the generation of the decimal carries to be
added in its adjacent column at its left).

We will show a solution based on the same compression cells used for all the other columns.
Note first that the addition of N numbers composed from n>1digits equal to 9, the number nc

of the decimal carries is: nc = N-1. This means that for N ≤ 10 a single o.f. column will be needed,
while for N ranging from 11 to 99 two columns are needed.

A very simple (but excessively expensive) solution is to provide one additional column in
the cases of Fig. 3, N=3, N=4 and N=8, and two columns in Fig.3, N=16 case. It can easily be seen
that a number of compression units can be removed without affecting the operation of the circuit.
This has been done in Fig. 4 schemes.

N=3: By removing the compressor in column 8 leaves there the c-out from column 7.
Nothing else is needed.
N=4: The removal of the o.f. compressor from stage 1 leaves in column 8 in the same stage
a single bit. A compressor unit in stage 2 would obtain the result of transferring such bit on
top if the c-out bit from column 7. Such compressor is therefore useless, being possible to
replace it with a simple transfer via a direct connection.
N=8: The removal of two cells in stage 1 leaves two bits in column 8: the same bits can be
transferred in stage 2, aligned with the two c-out bits generated in the same stage. The top
three bits in column 8 can be represented by the two bits of a full adder in stage 3, while the
fourth bit is transferred to stage 3, where a new c-out bit is also generated. The three lines of
column 8 stage 3 are then input to a cell in stage 4.

78

1

2

3

4

5

1

2

3

1

2

1

1

1

N=16

1

2

3

4

5

6

2

78

o.f.o.f.o.f.o.f.

o.f.

o.f.

o.f.

o.f.

o.f.

a

b

A

B

d
e

f

o.f.

o.f.

VAM-addc

c

h

f

g

i h

i

a

b

c

d
C f.a.

d

d

e

A

B

d

e

fa

ha

1

2

1

1

1

N=8

1

2

3

4

2

1

1

N=4

1

2

N=3

ha

Fig. 4: Schemes of Fig. 3 (most significant digits) with optimized overflows addition

6

N=16: In this case, we see a full and a half adder in stage 2, representing the content of the
five c-out in stage 1. In stage 3 we see two compression cells in column 8. The first one is
fed by the three lines marked as “d” in stage 2, while the second is fed only with the two bits
marked as “e”. Note that the second c-out in “d” is the 10th decimal carry generated in
column 8. It can then generate a first bit in column 9. This could happen also for the c-out
generated in all the following stages. Note that no c-out is assumed to be generated in all the
preceding stages. Since the final value in column 9 cannot be larger than 1, we can obtain
the final value in column 9 with the circuit shown in the figure, composed by cascaded two-
inputs OR gates.

4 -An area optimized scheme

The above described schemes use the column compressor of Fig. 1.a) in which a set of four
full adders (a 3:2 binary compressor) is always associated with a 10,4,2,2 decoder. It has been
stated in [7] that a saving in area can be obtained if the compression process is split in two
consecutive parts: in the first, the compression is performed using only binary compressors, the
recoding being done in the second part using a network of decoders (called x2, equivalent to dec2 of
this paper) and binary compressors.

We will show here a modified scheme, in which the first part is identical to the scheme
given in [7], while the second part is composed by decoders only. Note that the first part is such that
no more binary compressors can be used. This first stage is followed by similar second, third, …
stages, until a two-digit output (in a column with the same decimal weight of the input column) is
obtained. Note also that the decoders used in all stages generate decimal carries. The value of the
two decimal digits and of all the carries (generated from the decoders) must be obviously identical
to the sum of the original decimal column plus the carries received from the decimal column (if
any) at the right.

Coming now back to the binary compressors, we notice that the decimal carries cannot be
generated by them, since each full adder composing it generates a binary sum and a binary carry
within the same binary column. Their values can be affected only by changing their respective
binary values (0 or 1) or their weights. It is important to note that the weights are not represented
within a compressor. Their values depend on the weights of the inputs (that, again, are nor written
in them). The weights must therefore be tagged to the box containing each compressor. In our case
we will use two integers for each compressor, denoting the weight of the sum S and of the carry C,
(which is twice the weight of S).

Only one of the two digits, S or C, needs in principle to be marked. We found useful, for
practical reason, to mark both digits with their respective weights.

Each of the two parts of a binary compressor will be represented by two adjacent squares.
The input to the compressor will be in one of the two extremes of the common side of the two
squares, while each output could use one of the corners of the square in which the respective weight
is written.

4
5
6
7

3
2
1 2

1

2
1

4
2

2
1 4

3

2
1 2

1

4 2 2 1
1
0

4 2 2 1
1
0

2
0

8 5

2
1

3

2

1

2
1

4 2 2 1
1
0

S1 S2 S3

N=8

from decimal column 10-1
VAM1d

Fig. 5: Compressing an 8 digit column to 2 digit, with the generation of 7 decimal carries, obtained in three
stages S1, S2 and S3, each composed with binary compressors and dec2 and dec4 decoders. Each square in
bold represents a digit (with weight given by the digit written in the square) “merged” with the corresponding
decoder (dec2 or dec4). Fig. 6 represents the Compression Boxes for N=16, 8, 7, 5, 4, 3.

7

8

As an example consider, see Fig. 5, a column of 8 digits, to be added. This is done with the
generation of 7 decimal carries obtained in three stages S1, S2 and S3, each composed with binary
compressors and dec2 and dec4 decoders. In Fig. 5, each square in bold represents a digit (with
weight given by the digit written in the square) and the corresponding decoder.

We feed three of the input digits to a 2:1 binary compressor, three more digits to another
compressor. A third 2:1 compressor uses the 8th input digit and two digit of same weight output
from the two preceding compressors. The two digits weighed 2 from the first two compressors and
a third digit weighed 2 from the third compressor feed a compressor tagged 4:2. One of its output is
therefore a digit weighed 2 (the S digit) while the second digit (its C digit) is weighed 4. The
decoder dec2 (implicitly represented by the bold square) will feed three bits in the 4221 column and
one bit weighed 10 in the “40,20,20,10” column. The second digit generated from the 4:2
compressor will feed a dec4 decoder: this in turn will feed three bit in “4, 2, 2, 1” column and two
bit in “40, 20, 20, 10” column.

As an example, we assume now for the input digits the value 9 (1111)4221. The maximum
output from the dec4 decoder will be 4*9=36; from dec2 it will be 2*9=18. The remaining two
digits (see Fig.5) will give the value 18. In total we get 72, i.e. the input value.

Note that dec4 will give a decimal carry valued 30, requiring two bits in the same decimal
column weighed 1010. The carry from dec2 will be 10, placed in the same column. The structure of
stages S2 and S3 is obvious. The number of inputs to S2 is assumed to be 5 since we consider that
in decimal column of weight 100 we assume a carry from a 10-1 column.

 Adding the four carries seen in Fig.5 we get a total of 7, to which we must add a further
possible carry in the final decimal adder (not shown in the figure). This does not mean that the total
generated carry will be 80. It will be instead 70 (with the assumed value of 9 for all the input digits).
We must consider that, even in that case, the values in the digits in the stages S2 and S3 will be in
the average smaller that 9. This can be verified by computing all those digits. For brevity we will
not report here such results.

If we consider the summation of more than 8 digits we need to introduce compressors
handling inputs of weight 8, 16, …

Note that in Fig. 5 each of the lines connecting the various components represents in general
a number of wire connections. Those numbers can easily be found by inspection. Note also that the
parts of the figures representing a decimal column (or a part of it) play the sole role of making
easier for the reader to understand the operation of the implemented algorithm. More precisely, they
permit to identify the origin and the destination of each connection between two cascaded stages.

We now consider the design of the decoders.
In TABLE A we see the truth tables of dec2, dec4, dec8, dec16 and dec32. The rules for

building such truth-tables are very simple. We start with the columns listing all the combinations of
the four input variables in columns marked 4, 2’, 2, 1. In column x we have the value of each
combination, computed as the sum of the weight of bits valued 1. In column 2x we place the double
of the values listed in column x. In column 4x we place the values x multiplied by 4. Similarly we
write columns 8x, 16x and 32x.

In the two decimal columns (weighed 40,20,20,10 and 4,2,2,1) following the 2x column, we
write the code of the most significant (1 bit)-digit, and the code of the least significant (3 bit) digit
of the values 2x. We do the same for the values 4x, 8x, 16x and 32x. In the latter two cases we need
three decimal columns.

Note also that in the 8x case we can choose the code of the most significant digit in such a
way that only one of the column weighed 20 is needed, so reducing the number of functions
required for the corresponding decoder. For a dec2 four functions are required, for a dec4 decoder
five functions, six for a dec8, eight for dec16 and nine for dec32.

The same method can be used, if necessary, for designing higher order decoders.
Data concerning area and time will be given in Chapter 7.

We consider worth noting that, due to the VAM cell architecture, the network of Binary
Compressors composing a Compressor Box can be considered an overlapping of 4 identical layers.
No communication exists between them within the box. The decoders generate 4 or more bits, each
one being a function of 4 bits from 4 different full adders belonging to the different layers.

Inputs Output Functions for dec2, dec4, dec8, dec16, dec32 decoders
x 4 2 2 1 2x 10 4 2 2 1 4x 20 10 4 2 2 1 8x 40 20 20 10 4 2 2 1

0 0
1 0 0 0 1 2 0 0 1 0 4 0 0 1 0 0 8 0 0 0 1 1 1
2 0 0 1 0 4 0 1 0 0 8 0 0 1 1 1 16 0 0 1 1 1 0
2 0 1 0 0 4 0 1 0 0 8 0 0 1 1 1 16 0 0 1 1 1 0
3 0 0 1 1 6 0 1 1 0 12 0 1 0 1 0 24 0 1 0 1 0 0
3 0 1 0 1 6 0 1 1 0 12 0 1 0 1 0 24 0 1 0 1 0 0
4 0 1 1 0 8 0 1 1 1 16 0 1 1 1 0 32 0 1 1 0 1 0
4 1 0 0 0 8 0 1 1 1 16 0 1 1 1 0 32 0 1 1 0 1 0
5 1 0 0 1 10 1 0 0 0 20 1 0 0 0 0 40 1 0 0 0 0 0
5 0 1 1 1 10 1 0 0 0 20 1 0 0 0 0 40 1 0 0 0 0 0
6 1 1 0 0 12 1 0 0 1 24 1 0 1 0 0 48 1 0 0 1 1 1
6 1 0 1 0 12 1 0 0 1 24 1 0 1 0 0 48 1 0 0 1 1 1
7 1 1 0 1 14 1 1 0 0 28 1 0 1 1 1 56 1 0 1 1 1 0
7 1 0 1 1 14 1 1 0 0 28 1 0 1 1 1 56 1 0 1 1 1 0
8 1 1 1 0 16 1 1 1 0 32 1 1 0 1 0 64 1 1 0 1 0 0
9 1 1 1 1 18 1 1 1 1 36 1 1 1 1 0 72 1 1 1 0 1 0

x 4 2 2 1 16x 100 40 20 20 10 4 2 2 1 32x 200 100 40 20 20 10 4 2 2 1
0 0
1 1 0 0 0 16 0 0 0 0 1 1 1 0 32 0 0 0 0 1 1 0 0 1
2 0 0 1 0 32 0 0 0 1 1 0 1 0 64 0 0 1 0 1 0 1 0 0
2 0 1 0 0 32 0 0 0 1 1 0 1 0 64 0 0 1 0 1 0 1 0 0
3 0 0 1 1 48 0 1 0 0 0 1 0 0 96 0 0 1 1 1 1 1 0 1
3 0 1 0 1 48 0 1 0 0 0 1 0 0 96 0 0 1 1 1 1 1 0 1
4 0 1 1 0 64 0 1 1 0 0 1 0 0 128 0 1 0 0 1 0 1 1 1
4 1 0 0 0 64 0 1 1 0 0 1 0 0 128 0 1 0 0 1 0 1 1 1
5 1 0 0 1 80 0 1 1 1 0 0 0 0 160 0 1 1 0 1 0 0 0 0
5 0 1 1 1 80 0 1 1 1 0 0 0 0 160 0 1 1 0 1 0 0 0 0
6 1 1 0 0 96 0 1 1 1 1 1 1 0 192 0 1 1 1 1 1 0 0 1
6 1 0 1 0 96 0 1 1 1 1 1 1 0 192 0 1 1 1 1 1 0 0 1
7 1 1 0 1 112 1 0 0 0 1 0 1 0 224 1 0 0 0 1 0 1 0 0
7 1 0 1 1 112 1 0 0 0 1 0 1 0 224 1 0 0 0 1 0 1 0 0
8 1 1 1 0 128 1 0 1 0 0 1 1 1 256 1 0 1 0 0 1 1 0 1
9 1 1 1 1 144 1 1 0 0 0 1 0 0 288 1 0 1 0 0 1 1 0 1

TABLE A: Output functions for the dec2, dec4, dec8, dec16 and dec32 decoders.

We define a Compression Box as the combinational network implementing a stage. It

transforms a set of decimal digits of same weight into a smaller set of decimal digits of suitable
weights. More precisely, assuming the input’s digits weight = 1, the sequence of the output digits is
composed by.

d1 = 1 or 2 digits of weight =1 (not requiring decoder)
d2 = 1 or 2 digits of weight =2 (requiring 1 or 2 dec2)
d4 = 1 or 2 digits of weight =4 (requiring 1 or 2 dec4)
d8 = 1 or 2 digits of weight =8 (requiring 1 or 2 dec8)
d16 = 1 or 2 digits of weight =16 (requiring 1 or 2 dec16)
……………

It can be shown that an assigned set of output’s digits represents the number N of input’s digits:
N =d1 + 2d2 + 4d4 + 8d8 + 16d16 +….

Consequently, the set {d1, d2 , d4 , d8 , d16, …} of the indices dk can be assumed for
representing a Compression Box . In Fig. 7 we show the Compression Boxes later used in Fig. 8, 9
and 10.

Each compression box can be represented as in Fig. 7 by a rectangle where in the upper right
corner we write the number of input digits, N, and at the left side we write the sequence of the
indexes of the decoders outputs.

The design of a Compression Box for an assigned N can be done with the following
algorithm.

9

Determine the integer quotient q1,0= └N/3┘: This gives the number of (2:1) Binary
Compressors: q1,0 is the number of Binary Compressors weighed (2;1), each composed
from a digit weighed 2 and of a digit weighed 1).
Compute m1,0=MOD1i (N;3); m1,0 smaller than 3,is the remainder of the division. It is the
number of un-processed input digits.
Numbers q1,i and m1,i (i=0,1,2,3,…) compose the rows q1 and m1 in Fig.6 scheme.
The sum of the output of the above transformation, q1,0 + m1,0, is (taking care of the weights)
equivalent to the sum of the inputs.

The total number of weighed 1 digits generated in this step is D11,i=q1,i+ m1,i.
The total number of weighed 2 digits generated in this step is D21,i=q1,i..

The above simple algorithm is the basic step to be repeatedly used for obtaining the complete
Compressor Box. If we apply it to the weighed 1 digits, we will reach a situation in which the result
will be 1 or 2: it is the d1 value defined previously. If we apply it to the digits weighed 2 we will
obtain the value of d2 seen before.
 Note that the algorithm will obtain also digits weighed 4, 8, 16, …. depending on the initial
N those digits will be, beyond a certain index, all zeros.
 The above algorithm has been implemented with a spreadsheet program, i.e. a tool for the
automatic design of Compressor Boxes [8]. Fig. 6 represents the result of such program for the case
N=16.

Fig.6: Results of the spreadsheet program for designing the Compression Box for N=16.

 In the top-left corner we see the synthetic representation of the box, with the main
parameters: the number N of the input digits, the number of logical levels, the number of the Binary
Compressors, the set {d1, d2, d4, d8, d16, d32} previously described. The rectangle below the top-
left corner in the figure, depicts an example of the basic computation step, with reference to the

10

main array containing the whole computation. The row marked BC at the bottom represents the
BCs generated in each column (i.e. in each logical level). It is used also for computing ll, the
number of the logical levels. The following last row in the figure, marked “columns values”
represents the values computed in each column: all the results are equal the input N, confirming the
invariance of the transformation.
 Note that the drawing of the actual scheme is not fully automatic: it must be done by hand,
using the data in the array: the number of BCs composing each level (represented by a column) and
the fact that such numbers are certainly compatible in the sense that the outputs generated by a
column find compatible inputs in the adjacent column. Note also that the remainders represent
connections across the column in which has been generated.
 It was noted that the rows representing variables qi,j represent both digits of a Binary
Compressors. They are considered as representing the smaller weighed value whenever are added to
the underlying mi,j remainder, while they represent the higher weight when added to the variables in
the same column to generate the Sum represented in bold.
Note finally that the spreadsheet instruction for generating the integer quotient is:

qi,j=ROUNDDOWN(n/3;0); for generating a remainder we write: mi,j=MOD(n;3).

4.1 Designing multi-operand adders
Using the decoders of TABLE A and the Compression Boxes (CB) of Fig. 7, we have designed
multi-operand adders for N=4, N=8 and N=16, four digit long, represented in Fig. 8 for N=4, Fig.9,
for N=8 and Fig.10 for N=16.
Fig. 8, 9 and 10 have been drawn according to the following criteria.

The first (top) CB of each column is fed by the digits to be added and generates at its left
side the bits generated within the CB by the decoders, to be transmitted to the 4bits registers
belonging to the column of the input digits, or (for the carries) to registers belonging to the next to
the left column(s).

In these schemes we abstract from the internal operation of the Compression Boxes,
concentrating our attention to the relation between the Compression Boxes, implemented
exclusively through wiring.

A column compression drawn as in Fig. 5 gives a clear representation of the processing flow
along the column. It suffers, nevertheless, from a drawback: both the input’s column and the carry-
column are represented repeatedly in each stage. A better representation is obtained if only the
input’s column is represented, assuming that the column in each column scheme is shared with the
preceding column scheme, i.e. it can accept carries from the preceding column.

.

4
3
2
1 2

1

12240000
124

4
3
2
1 2

1

12240000
1224

1

24
3
2
1 2

1

12240000
124

4
3
2
1 2

1

12240000
1224

1

3

3
2
1 2

1

12240000
124

3
2
1 2

1

12240000
124

1

23
2
1 2

1

12240000
124

3
2
1 2

1

12240000
1224

1

2 1

4

1 1

3

1 1

1 1

4
5
6
7
8
9

10
11
12
13
14
15
16

3
2
1 2

1

2
1

2
1

2
1

2
1

4
2

2
1

8
44

2

12240000
1224

2
14

5
6
7
8
9

10
11
12
13
14
15
16

3
2
1 2

1

2
1

2
1

2
1

2
1

4
2

2
1

8
44

2

12240000
1224

1

5

6

3
4

7

2
1
2
1

4
2
4
2 2 1 1 1

16
5 11

4
5
6
7
8

3
2
1 2

1

2
1

4
2

2
1

12240000
124

4
5
6
7
8

3
2
1 2

1

2
1

4
2

2
1

12240000
1224

1
2

5

3

4

4
5
6
7
8

3
2
1 2

1

2
1

4
2

2
1

12240000
124

4
5
6
7
8

3
2
1 2

1

2
1

4
2

2
1

12240000
1224

1
2

5

3

4 2 1 1

8
3 4

4
5
6
7

3
2
1 2

1

2
1

4
2

2
1

12240000
124

4
5
6
7

3
2
1 2

1

2
1

4
2

2
1

12240000
1224

1
2

3

4

4
5
6
7

3
2
1 2

1

2
1

4
2

2
1

12240000
124

4
5
6
7

3
2
1 2

1

2
1

4
2

2
1

12240000
1224

1
2

3

4

4
5
6

3
2
1 2

1

2
1

12240000
124

4
5
6

3
2
1 2

1

2
1

12240000
1224

1

2

4

4
5
6

3
2
1 2

1

2
1

12240000
124

4
5
6

3
2
1 2

1

2
1

12240000
1224

1

4
3

4
5

3
2
1 2

1

12240000
124

4
5

3
2
1 2

1

12240000
1224

1

24
5

3
2
1 2

1

12240000
124

4
5

3
2
1 2

1

12240000
1224

1

3

2
1
2
1
2
1
2
1

1 1 1

7

2 2

6

1 2

5

3 4

1 2

2 2

2 1 1

8
3 5

N

BCll

d1,d2,d4

Fig.7: The Compression Boxes used in Fig.8, Fig. 9 and Fig.10

11

The arrows used in Fig. 8, 9 and 10 permit to determining clearly the origin of each binary
variable, with the following rules:

- A line originating from a d1 output (no decoder) is composed from 4 variables, all
directed to the same input’s column.

- A line originated from a d2 (from a dec2) output is composed from 4 variables,
three directed at the three most significant bits of the input’s column, one
directed to the least significant bit in the left column

Fig. 8 scheme (N =4) uses only the above d1 and d2 outputs. Note that in each column the
same digit can host the three most significant variables generated in a column and the most
significant bit generated as a carry from the column at the right.
 In Fig. 9 and Fig. 10 we find also outputs d4 (from dec4):

- A line originating from a d4 output is composed from 5 variables, three directed
at the three most significant bits of the input’s column, two directed to the two
least significant bits in the next left column. Note that it is not possible to host the
three least significant variables and the two most significant ones in the same
digit: see Fig. 9 and 10 schemes.

- A line originating from a d8 output is composed from 7 variables, three directed
at the three most significant bits of the input’s column, three directed to the next,
left column as carries. One of the three variables is directed to the most
significant bit in the left column, another to the least significant bit of the same
left column, another to one of the two bits of the left column having the same
weight (e.g. 20). See the Fig. 10 scheme.

It is worth noting that while in the Fig. 8 scheme (N = 4) all columns have the same
composition; this is not true for Fig. 9 (N = 8) and Fig. 10 (N = 16). In Fig. 9 all columns are the
same except the last rightmost one, in Fig. 10 the two rightmost columns differ among them and are
different from the other columns. The least significant columns of each scheme is considerably
simpler than those of the successive columns, due to the lack of carries from preceding columns.

Note that we must add to the four input’s column one or more columns for computing the
overflows, as done for the case of the standard schemes. Note also that the two final lines in all
schemes are obtained as the final step of the reduction algorithm used for obtaining the preceding
steps.

The schemes have been important for determining their respective complexity and
behaviour, with the evaluation of area and timing data. Such data have been used for comparing the
two types of schemes shown in this paper and other schemes published previously [4, 5, 6].

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

3
2

2
1 4

1

3
2

2
1 4

1

3
2

2
1 4

1
40 20 20 104

0
0

2
0
0

2
0
0

1
0
0

3
2
1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0 40 20 20 10

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

2
1 4

1

1
1

3
1

3
1
1

3
1
1

3
1
1

3

2
1

10 4 10 3 10 2
10 1 10 0

100101102103

104

4 addends
of 4 digit each

overflow

4 2 2 1

3
2

4 2 2 1

2
1

2
1

2
1

2
1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

Fig. 8: The adder of N=4 four digit numbers

12

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0 40 20 20 10

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

2
1
1

8

2
1

4
5

3

2
1 4

1

1
1

3

d4
d2
d1

d4
d2
d1

d4
d2
d1

d4
d2
d1

d2
d1 d2

d1
d2
d1

d2
d1

d2
d0

d2
d1

d2
d1

d2
d1

d2
d1

d2
d0

1102103

104

8 addends
of 4 digit each

overflow

4
5

3

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

2
1
1

2
1
1

8

2
1

4
5

3

1
2

5
1
1 2

1
1

3

2
1

10 4 10 3 10 2
10 1 10 0

10010

1
2

5

1

3

1
2

5

1
1

3
1
1

3
1
1

3

2
1
1

8

2
1
1

2
1
1

8

2
1

2
1

4
5

3
2
1

3
2
1

3
2
1

3
2
1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0

40 20 20 10

3
2
1

4 2 2 1

3
2

4 2 2 1

2
1

2
1

2
1

4 2 2 1

4
5

3
2
1

40 20 20 10

Fig. 9: The adder of N=8 four digit numbers

4
5
6
7

3

1
2

2
1
1
1 16

2
1

d8
d4
d2
d1

d8
d4
d2
d1

d8
d4
d2
d1

d8
d4
d2
d1

d4
d2
d1

d4
d2
d1

d4
d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

1
1 2

2
1

10 5 10 4 10 3 10 2

10 1 10 0

100101102103

104

105

overflow

16 addends
of 4 digit each

overflow
2
1
1
1 16

2
1

4
5
6
7

3

1
1
1 7

1
1 3

1
1 3

2
1

5

1

1
1

3
2
1

4

2
1
1
1 16

2
1
1
1 16

2
1
1
1 16

2
1

4
5
6
7

3

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

2
1
1
1 16

1
1
1 7

1

3

1
1
1 7

2
1

4
1
1

3

1
1

3
1
1

3

4 2 2 1

3
2

4 2 2 1

2
1

2
1

2
1

3

4 2 2 1

4
5
6
7

3
2
1

1

3

2
1

2
1

2

40 20 20 10

40 20 20 10

3
2
1

4
5
6
7

3
2
1

4
3
2
1

4
3
2
1

3
2
1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0 40 20 20 10

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

Fig. 10: The adder of N=16 four digit numbers

13

 14

For greater N we will need to adopt decoders whose carries outputs must be placed in two
columns at the left of the input’s column. This is shown in TABLE A for dec16 and dec32 truth
tables.

5 –Schemes using Binary Compressors and x2 (dec2) only decoder
In the schemes of adders just discussed we adopt decoders that use digit multiples with

multiplicity factors m = 2, 4, 8, 16, 32. It has been found that such decoders have a complexity
moderately increasing with m.
The Adder scheme proposed in [7] uses one type only of decoder, namely x2 (dec2). We are going
now to show how such schemes (not fully treated in [7]1) can be developed, in order to compare
them with the schemes using all decoders shown in the preceding chapter. The basic arrangement
(shown in [7]) consists in cascading 2 or more x2 decoders: precisely, given the multiplicity m of a
digit, the number of x2 needed being equal to log2m.
Each of the outputs of a Compression Box will therefore feed log2m cascaded x2. Note that the digit
issued from the last decoder of the cascade is characterized by a multiplicity factor m=1. In Fig. 11
schemes each x2 unit is represented with a small square. The input digit is applied to the (top)
corner. The output digit appears at the opposite (bottom) corner. The c-in bit is applied to the right
corner, the c-out bit appears at the opposite, left corner.

It is important to note that Compression Boxes in Fig. 11 schemes do not include any
decoder. Decoding is done on their output, consisting in BCD-4221 digits bj associated to
multiplicity factors j (2, 4, 8, 16, ..). In outputs b1 no decoder is needed. In b2 a single dec2 decoder
is needed, 2 of them for b4 outputs, 3 for b8, 4 for b16, ….., as in Fig.11 cases. All columns are
identical, except those having the task of computing the overflows digits.

Note that the c-out binary outputs feed the corresponding dec2 in next column. This could
suggest that a propagation occurs in such connecting lines, but it is not true. In effect, see Fig. 1, a
c-in bit is associated with the three most significant bits composing the C digit (characterized by a
weight (or multiplicity factor) and sent downward to the next decoder if any, or to the next
Compression Box.

The carries generated from the last Nth column represent the total overflow. In performing
the overflow calculation we must take into account the binary value of each carry. Representing
each c-out with a digit and adding them for obtaining the total overflow would be certainly correct
but also expensive. A better solution can be obtained by associating more carries in a number of
BCD-4221 digits. This has been done in Fig.11, taking into account the binary value of each carry.

Those generated by the last (at the bottom of the cascaded decoders) have weight “1”, the
next (moving upward) decoders generate bit of weight 2, the next generate a bit weighed 4, and so
on. In the case N=16 of Fig.10 we reach the maximum weigh equal to 8 (from the first decoder in
the d16 output).

1 In paper [7] the case is illustrated by figure 6a, which seems to be drawn with the following criteria: first use a
number of Binary Compressors. At a certain point (it isn’t said at which point the first phase is finished) start
using VAM cells (each one of them generating a decimal carry‐bit) combining them with BCs, until two‐terms
only are generated. This appears an interesting, very flexible approach. The problem of treating the carries from
the preceding column does not seem to be explicitly considered.

3
:2

 c
o
u
n
te

r

8
4
2
1

81
9388

m
ax

 v
al

u
es

2
1

4

1 2
1 1 1 221 1 1 2

4
1616

1 1 2

8

1 1
2 112

3
55

1 2

4

1 111

33

1 1

3

1 1 1 221 1 1 2

1616

2 112

55

1 111

33

1

3

1

1

3

1

1 1 2

8

1 2

4

1 1

3

1 1 2

8

1 2

4

1 1

3

1 1 2

8

1 2

4

1 1

3

1 2

4

1 1

3

1 2

4

1 1

3

1 2

4

1 1

3

1 1

3

0

221 2

66

1 2

4

1 1

3

1 222

66

2

4

1

1

3

1

1 1 1 2

32

11 1 1 2

32

11 1 1 2

32

11 1 1 2

32

1

2

1 2

4

1 1

3

1 2

4

1 1

3

1 2

4

1 1

3

2 1

5

N=4

N=32

N=16

N=8

2 1

Fig.11 Adder schemes using decoders of type dec2 (or x2).

6 – Optimisation
In the development of the schemes so far shown we had the opportunity to identify and to

apply a few methods intended to improve their operation. We show in the following the ones that
seem the most efficient and of general applicability.

The carry-merging takes advantage of a general property of the carries generated from all
types of decoders illustrated in Section 3: it was shown that three least significant bits belong to the
same decimal column of the compressor of a VAM cell; 1-bit carry is generated from dec2
decoders, 2-bit carry from dec4, 3-bit carry from dec8, 4-bit carry from dec16. We show in Fig. 8, 9
and 10 how those carries are treated. We see in particular that the 1-bit carry from dec2 can be
hosted in the 3 bit digits generated by dec2 in the next column.

In case of dec4 and dec8 their 2bit or 3bit carries require a specific digit to be allotted in the
left column, while for dec16 the most significant carry bit must be placed in the second left column.
In case of dec16 present in all columns, the intermediate 3 carry bits can be placed in a second row,
while the most significant carry bit can be hosted with the 3 bit generated in the same column by the
respective dec16 decoder. This means that for dec16 two rows will suffice for hosting all the carry
bits generated by the dec16 decoders present in each column. Also for dec4 and dec8 we have to
provide two rows each.

However, if a dec8 is also present, the 2bits carry of a dec4 can be hosted: the least
significant 101 weighed carry bit with the 3bit digit generated from dec4 or dec8 (and also from
dec2 if still available), while the 2*101 bit can be hosted from the equal weight bit in the dec8, 3 bit
carry digit. Fig.12 shows an example taken from Fig. 10.

15

4 2 2 1

4
5
6
7

3
2
1

40 20 20 10

2
1
1
1 16

2
1

4
5
6
7

3

2
1
1
1 16

100101

d8
d4
d2
d1

d8
d4
d2
d1

Fig.12: Showing how a 2bit carry from a dec4 in column 100

 can be stored in column 101 in line 6 (from a
dec8 in same column) and in line 7 as a 2*101 bit within a 3bit carry from a dec8 in column 100.

The Logical levels minimization is a scope of any procedure aiming at reducing the delay in

Compression Boxes.
The design of a Compression Box for a prescribed number N of BCD-4221 digits of same

weight can be performed according to the algorithm described in Chapter 3. The scheme is
composed from a number of Binary Compressors (each composed from four full adders). The
output is a set of n digits with different weights, more precisely d1 digits of weight 1, d2 digits of
weight 2, etc.:

N = 20*d1+21*d2+…..
dj={1,2}.

In the following Table B we have listed the main parameters of Compression Boxes for N=2 to
N=39. Those parameters include the non-zero dj, the number BC of the Binary Compressors, the
number ll of logical levels, the number n of the outputs digits (the sums of the dj). All those
parameters have been computed automatically as shown previously (fig.6).

For a number of cases a second lines of parameters is given: the delays of the n outputs.
When dj=2 the greater delay value must be used in the evaluation of the critical path delay. Note
also that the delay in d1 is not relevant since in that output, weighted 1, no decoding is needed.
Looking at the maximum delays (and to the related logical levels), we notice that these parameters
do not increase monotonically with N.
We have pinpointed the case of:

N=6 (ll=1) following N=5 (ll=2)
N=9 (ll=2) following N=7 and 8 (ll=3)
N=12 (ll=3) following N=11 (ll=4)
N=18 (ll=4) following N=15, 16 and 17 (ll=5)
N=27 (ll=4) following N=23 to 26 (ll=5)
N=34 (ll=6) following N=31, 32 and 33 (ll=7)

We call these cases “(naturally) minimal”. It seems worth noting that their respective schemes
appear more regular than their neighbours: look, as an example, at the schemes for N=6 and N=5 in
Fig.7.

In order to take advantage of the minimal cases we implement them and use for some of the
cases preceding each of them. For example we could replace cases N=33, N=32, N=31 and N=30
with the naturally minimal N=34, feeding with zeros some (1, or 2, or 3 or 4) input variables,
correspondingly. It is however more convenient to remove the corresponding inputs (and the
attached circuitry) in order to save area. More precisely after the removal of an input variable (from

16

the triplets of variables feeding a Binary Compressor) we replace all the four full adders of a Binary
Compressor with half adders. The rest of the circuitry can be left as it is.

The simplest rule is to remove only one variable from a triplet. We could decide to remove
two or three variables from a triplet (in the latter case the corresponding BC would be entirely
removed). We will not consider here for brevity the choice of the optimal strategy.

Table B Parameters of Compression Boxes
 N d1 d2 d4 d8 d16 BC ll n N d1 d2 d4 d8 d16 BC ll n

2 2 0 1 2 21 1 2 2 1 15 4 6
6 1,7 6,6 5

3 1 1 1 1 2 22 2 2 2 1 15 4 7
2 1 2 0,6 1,7 6,6 5 1.5

4 2 1 1 1 3 23 1 1 1 2 18 5 5
0,2 1 2 6 7 8 5,7

5 1 2 2 2 3 24 2 1 1 2 18 5 6
4 3,1 2 2,6 7 8 3,7 1.6

6 2 2 2 1 4 25 1 2 1 2 19 5
2,

6
2 1,1 2 6 5,7 8 5,7

7 1 1 1 4 3 3 26 2 2 1 2 19 5 7
4 5 4 1.33 0,6 5,7 8 5,7 1.6

8 2 1 1 4 3 4 27 1 1 2 2 21 4 6
0,4 5 4 1.67 6 7 6 5,3

9 1 2 1 5 2 4 28 2 1 2 2 21 4 7
4 3,3 2 2 0,6 7 6,6 5,3 1.75

10 2 2 1 5 2 5 29 1 2 2 2 22 4 7
0,4 3,3 2 2 7 6,7 6,6 3,5

11 1 1 2 7 4 4 30 2 2 2 2 22 4 8
6 7 6,2 1.75 2,6 1,7 6,6 5,3 1.75

12 2 1 2 7 3 5 31 1 1 1 1 1 26 7 5
2,4 5 4,2 1.67 8 9 10 11 10 1.57

13 1 2 2 8 3 5 32 2 1 1 1 1 26 7 6
6 5,5 4,2 2 2,6 9 10 11 10 1.57

14 2 2 2 8 3 6 33 1 2 1 1 1 27 7 6
4,4 3,5 4,2 1.67 8 7,9 10 11 10

15 1 1 1 1 11 5 4 34 2 2 1 1 1 27 6 7
6 7 8 7 1.6 6,4 7,5 8 9 8

16 2 1 1 1 11 5 5 35 1 1 2 1 1 29 6 6
 4,4 7 8 7 1.6

17 1 2 1 1 12 5 5 36 2 1 2 1 1 29 6 7
2 7,5 6 5 1.4

18 2 2 1 1 12 4 6 37 1 2 2 1 1 30 6 7
4,4 3,5 6 5 1.5

19 1 1 2 1 14 4 5 38 2 2 2 1 1 30 6 8
6 6,7 6 5

20 2 1 2 1 14 4 6 39 1 1 1 2 1 31 6 6
0,6 7 6,6 5 1.75

VAMtables1
N: input n° BC: Binary Comprssors ll logical layers n: output n°
d1: output n° we9ghed 1 d2: output n° weighed 2 d4: output n° weighed 4
d8: output n° weighed 8 d16: output n° weighed 16
DELAYS: in the following row. 1 for a carry, 2 for the sum from a Full Adder
In col. ll: the ratio max.Delay / ll (max=2) naturally minimal CB

TABLE B: Parameters of Compression Boxes.

It is then convenient to call the new CBs with their original number-name followed “f”, so that
N=16 CB will be replaced with N=16f CB.

17

In TABLE C we show the non-minimal cases N=7, 8, 11, 16 and 32, followed by the
parameters of the new “faster” schemes marked 7f, 8f, 11f, 16f and 32f. We notice that the
corresponding max delay (excluding d1) is 2 units below the original ones.
 The BC, ll and n values have been corrected accordingly

Table C: Fast Compression Boxes parameters
 N d1 d2 d4 d8 d16 BC ll n

7 1 1 1 4 3
4 5 4

7f 1 2 1 4 2
4 3,

3

4
3 2

8 2 1 1 4 3
 0,4 5 4

8f 1 2 1 4.5 2 4
4 3,

4

3 2
11 1 1 2 7 4 4

6 7 6,2
11f 2 1 2 6.5 3 5

 2,4 5 4,2
16 2 1 1 1 11 5

 4,4 7 8 7
16f 2 2 1 1 11 4

 4,4 3,5

5

6
6 5

32 2 1 1 1 1 26 7
 2,6 9 10 11 10

32f 2 2 1 1 1 26 6
 6,4 7,5 8 9 8

VAMtables1

6

7

TABLE C: Parameters of standard Compression Boxes for N=7, 8, 11, 16, 32

 and of the corresponding fast versions N=7f, 8f, 11f , 16f, 32f.

The inputs removal reduces also the delays of all the paths including it. The delays of the

outputs will not be affected if we remove just few inputs, as in our examples.
The method is however characterized by an increase of the number of the outputs, requiring

therefore more inputs for the next compression box in the considered column and consequently a
greater number of stages and a larger total column delay. This problem has to be carefully
considered, checking the effects of each change.

The experience shows that in several practical cases the method leads to acceptable
solutions. A case in which a difficulty might arise (not included in TABLE C) is N=6. It is faster
then N=5 (the logical levels are respectively 1 and 2). N=6 gives 4 outputs, while N=5 gives 3
outputs. Assuming as a faster Box for N=5 the scheme of N=6 will certainly obtains a smaller
delay, but also it would require an additional stage for reducing the four outputs to three. This
would offset the delay reduction achieved by the N=6 box.

In drawing the new faster schemes we have followed the same rules used for the standard
schemes using also very few Binary Compressors composed from Half Adders. The parameters
given in TABLE B for N=2 do not include any delay, since a column of 2 digit doesn’t require any
processing. When a half adder is used in a Binary Compressor it must, instead, operate and must be
represented as a full adder in TABLE B: with a Sum and a Carry outputs characterized by delays
equal to 1 and to 0.15 time-units, respectively.

18

4
5
6
7
8

3
2
1 2

1

2
1

4
2

2
1

12240000

4
5
6
7
8

3
2
1 2

1

2
1

4
2

2
1

12240000

1
2

5

3

4

4
5
6
7
8

3
2
1 2

1

2
1

4
2

2
1

12240000

4
5
6
7
8

3
2
1 2

1

2
1

4
2

2
1

12240000

1
2

5

3

4

4
5
6
7

3
2
1 2

1

2
1

4
2

2
1

12240000
124

4
5
6
7

3
2
1 2

1

2
1

4
2

2
1

12240000
1224

1
2

3

4

4
5
6
7

3
2
1 2

1

2
1

4
2

2
1

12240000
124

4
5
6
7

3
2
1 2

1

2
1

4
2

2
1

12240000
1224

1
2

3

4

1 2 1

8f

1 2 1

7f

2 4.5

2 4

2

3
4

2
1
2
1
2
1
2
1

2

3
3

4

2
1
2
1
2
1
2
1

2
1
2
1
2
1
2
1

Binary Compressor

composed from 4 Half-Adders Cb.dwg

Fig.13: Fast schemes for N=7 and N=8 (see in Fig.6 the corresponding standard versions)

Note also that the outputs in scheme N=8f are composed from {d1, d2, d4}={1, 2, 1}, while

from the standard N=8 scheme (Fig.6) they are: {d1, d2, d4}={2,1,1} . This requires an additional
dec2, besides and additional “half Adder” binary Compressor, see fig.13.

In the fast N=7f scheme the outputs are composed as in the N=8f scheme, while in the N=7
standard scheme the output is composed as {d1, d2, d4}={1, 1, 1}. The increase in the number of
digits output from a N=7f compressor must be carefully considered in an adder design, since it
could entail the need for an additional reduction stage.

The outputs from the N=8f and N=7f schemes are identical to those of a standard N=9
scheme, also in their delays. The generating networks are nevertheless (slightly) different. The N=9
standard scheme is composed exclusively of full adders, while N=8f and N=7f include 1 and 2,
respectively, Binary Compressors made of half adders.

An example

Let us consider the scheme of Fig. 10, i.e. an Adder for N=16. It has been drawn using the
simplest procedure: starting from the first, less significant input column of 16 digits, then choosing
the N=16 Compression Box of Table B, placing it as in Fig.10; and then tracing the connection
scheme and the various output of the CB. The following CB in the same column is chosen after
counting the digits generated by the first CB, i.e. 5. In the second column we do the same, taking
into account also the carries generated by the first column.

In Fig. 15 we show the scheme for N=16, drawn by choosing, when useful and possible, the
fast version of the CBs. We start by choosing the fast version of the N=16 CB, since the N=16 CB
previously chosen is not a “naturally minimal” CB: it is the 16f CB of Fig.12, offering a maximum
delay of 6 units, instead of 8. The number of outputs in the same column, see Fig. 15, is 6 (instead
of 5).

We place a CB for N=6 in sequence of the CB N=16f in the same column, followed by a
N=4 CB and finally with the N= 3 CB to complete the first column.

We start then the second column using again a CB for N=16f. Their output will be merged
with the carries generated by the first column, for a total of 7 digits. Note that two digit can be
merged according to the Fig. 12 procedure.

Since the N=7 CB is not minimal, we decide to adopt the fast CB for N=7f, see Table C. We
will find its output, merged with the carries, being 5. We are not going to replace it with the nearest
minimal CB, N=6, since this would require two more additional CBs (N=4 and N=3) to complete
the column, with a total of 5 CB with no advantages in time. The second column will then be
completed with 2 more CBs: for N=5 followed with a N=3 CB as the last. Following the same rules
we complete the Adder scheme as shown in Fig.14.

19

4
5

11

4
33

5

4 2 2 1

4
5
6
7

3
2

1

40 20 20 10

40 20 20 10

3
2
1

4 2 2 1

3
2

4 2 2 1

2
1

2
12

1

3

2
1

2
1

3

2
1

4
5
6
7

3
2
1

4
3
2
1

2
1

1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0 40 20 20 10

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

2
1
1

2

1

4
5
6
7

3

2
2 6

1

1

1

1

1
2
1

1

1
1

3
1
1

3

2
1

2
1
1

1
1

2
1
1

2

1

4
5
6
7

3

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

2
1
1
1
1

2

1

4
5
6
7

3

1
2
11

2
1

1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

1
1 2

2
1

10 5 10 4 10 3 10 2 10 1 10 0

100101102103

104

overflow

16 addands
of 4 digit each

overflow

d8
d4
d2
d0

d8
d4
d2
d0

d8
d4
d2
d0

d8
d4
d2
d0

d4
d2
d0

d4
d2
d0

d4
d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

4 2 2 1

4
5
6
7

3
2

1

40 20 20 10

40 20 20 10

3
2
1

4 2 2 1

3
2

4 2 2 1

2
1

2
12

1

3

2
1

2
1

3

2
1

4
5
6
7

3
2
1

3
2
1

2
1

4
3

1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0 40 20 20 10

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

2
2
1
1

16f

2

1

4
5
6
7

3

2

1

2
1

4

1
2
1 7f

1

1 7f

1
2

5
2
1

4

1
1

3
1
1

3

2
1

5

2
2
1
1

16f1
1 16f

2
2
1
1

2

1

4
5
6
7

3

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

2
1
1 16f

2

1
1

2

1

4
5
6
7

3

1

1 7f1 4

1 4

3

1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

1
1 2

2
1

10 5 10 4 10 3 10 2 10 1 10 0

100101102103

104

overflow

of 4 digit each

overflow

d8
d4
d2
d0

d8
d4
d2
d0

d8
d4
d2
d0

d8
d4
d2
d0

d4
d2
d0

d4
d2
d0

d4
d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

d2
d0

2

2

4 2 2 1

2
1

2
1

40 20 20 10

1
1

1

3
1
1d2

d0
d2
d0

4 2 2 1

2
1

2
1

40 20 20 10

1
1

3
11
1d2

d0
d2
d0

33
2

Fig.14: A faster adder of N=16 four digit numbers (a variant of Fig. 10 scheme)

 We show in Fig. 15 the scheme for the computation of delay for the schemes of Fig. 9 (using
non minimal CBs) and of Fig.14, just described. The scheme of the delay computation in Fig.15 is
composed from the scheme in each stage (corresponding to Compression Boxes) and to the addition
of the delay of all stages.

In each stage we find:
- In the first row the set of CB outputs (e.g.: 2,1,1,1)
- In second row the sequence of the corresponding delays, from Table B

(e.g.:3,7,8,7) in units equal to 50ps
- In third row the delay in ps (the values of the preceding row multiplied by 50)
- In fourth row the sequence of the delays in the corresponding decoders (e.g. 200,

210, 200 ps). Note that d1 has no decoder)
- In the fifth row the additions, in each column, of the two preceding rows, i.e. the

total delay generated in the stage on all the decoders outputs.
In the rightmost cell of the last row we get the sum of the maximum values generated in each stage.
The area is computed with a program using data in Table B, Table C and Table D, the final area
values being reported in Fig.15 at the top-right corners.
We see that the total delay in Fig.10 scheme is 1660ps, while the delay in Fig.14 scheme is 1460ps.

The area of a Compression Box can be computed on the basis of data contained in Table B
and in Table C: they give the number of BC and the number of each decoders (dec2, dec4, dec8,

20

dec16, dec32). Table C gives the numerical values of time and area data for a CMOS Standard Cell
90nm library [9]. The details of the library and the tools used to obtain the values of Table C are
given in the next section.

 STAGE 1 STAGE 2 STAGE 3 STAGE 4
canonical 16 2 1 1 1 7 1 1 1 5 1 2 3 1 1 8417
ADD 3 7 8 7 4 5 4 4 3 2 1 µm^2

Vam delay 150 350 400 350 200 250 200 200 150 100 50
xj delay 200 210 200 200 210 200 200 ps

150 550 610 550 200 450 410 200 350 100 250 1660
fast 16f 2 2 1 1 7f 1 2 1 5 1 2 3 1 1 9179
ADD 4 5 6 5 4 3 2 4 3 2 1 µm^2
VAM delay 200 250 300 250 200 150 100 200 150 100 50
xj delay 200 210 200 200 210 200 200 ps

200 450 510 450 200 350 310 200 350 0 100 250 1460

Fig.15: The delay and area computation scheme for Fig. 10 and Fig.14 adders

The fast solution gives a total delay of 1460 ps, 13% smaller than the standard one. The area of the
fast method (9179 µm2) is 9% higher than the standard scheme. The schemes for N=32 and N=32f
are shown in the Appendix. The area of the fast scheme is 15509 µm2, 6.4% higher than for the
standard scheme. The delay of the fast scheme, 1600ps, is 12% smaller than in the standard scheme.

7 – Delay and Area: comparison of different schemes
 In this section we evaluate delay and area for the schemes presented above. The evaluation
is based on the characterization of the basic components: the Binary Compressor (composed of four
full adders), and the decoders for digits of multiplicity (or weight) 2, 4, 8 or 16. The
characterization is carried out by synthesizing the components with Synopsys Design Compiler for
minimum delay. The library used is the STM 90 nm standard cell library [9]. The results are shown
in TABLE D.

 BC dec2 dec4 dec8 dec16
Delay 1002 200 210 200 200 ps
Area 360 290 240 370 380 μm2

TABLE D: Delay and area for building blocks

.
Once the basic components have been characterized, the delay and area of the different

schemes are determined by a spread-sheet or any similar tool. This approach with respect to logical
effort, used for example in [7], is easier to apply because it does not require to know what specific
gates implement a logic function. Moreover, this method takes into account the synthesizer
optimization strategies, such as grouping and buffering, that are not considered in logical effort.

We assume, as the simplest solution, that Binary Compressors and decoders are
implemented separately: the decimal compressor, Fig. 1, can be obtained by connecting in cascade a
binary compressor with a dec2 decoder.

An important area reduction could be obtained by synthesizing in a single step the whole
adder scheme. A good improvement can be reached by synthesizing suitable small groups of

21
2 The fast path (carry-in to output) in the full-adder composing the BCs is 50 ps.

elementary components. In our case it can be shown that a convenient choice is to merge a decoder
with the related binary compressor. We will adopt this choice.

The merging of a binary compressor (4 full adders) and a dec2 (x2) decoder shows a
negligible effect on delay and a reduction in area of 123µm2.

We have then computed separately each Compression Box of the various schemes,
connecting then the ones composing the various columns. Note that the data related to the
generation of the two final digits of each column are included in the column data. In the calculation
of the delays of each stage, the delay of each stage output is computed independently and the
highest, worst value is adopted for the stage delay. The minimum delay has been obtained adopting
the "fast” version when appropriate.

Table E shows the results obtained for the three schemes using the VAM approach: VAM
standard (A), VAM minArea using decoders for various multiplicity factors (B), VAM minArea
using x2 decoders only (C).

Comparison
data for 1 column; compression to 2 addends
addends N= 3 4 8 16 32
VAM standard 1 2 6 14 30 cells

A) 1 2 4 6 8 stages

 delay ps 245 490 980 1470 1960 dec2 merged
 area μm^2 528 1056 3168 7392 15840
VAM minArea dec2,dec4,

B) delay ps 490 850 1460 1600 dec8,dec16
 area μm^2 1056 3433 9179 15509 merged
VAM dec2 only dec2 first in

C) delay ps 500 1020 1550 2050 column merged
 area μm^2 1696 6636 9601 17730
hybrid method {6}
D) delay ps 400 556 836 1390 1850
 area μm^2 815 1156 2626 6060 12630
copyVAMtablesA -1.6 -5 13.5 %delay

-30.7 -51.4 -22.7 %area
TABLE E: comparison among three VAM schemes and the hybrid scheme.

Data of a different architecture [6] have been added (D) for comparison purposes. The

architectures offering for each N (the addends number) the best performance (both in delay and
area) are marked with grey.
Comparing the three VAM based architectures:

• For N=3 and N=4 the delay of the VAM standard scheme is smaller than the corresponding
values of the hybrid scheme. Take into account that the input numbers are in BCD-4221
format for the VAM architectures, in BCD-8421 for the hybrid one. In VAM architectures a
single Fig.1 VAM cell suffices.

• For N=32 the delay of the B) VAM schemes is considerably smaller than in all other
schemes. The areas in the D) schemes appear smaller than those required in the VAM
schemes. The delays in the N=8 and N=16 B) VAM are close to the values in the hybrid
schemes, while the areas are considerably higher.

The above data contradict the denomination minimal Area given in [7] to such scheme. There is, in
effect, no proof of this property. The scheme was rather inspired by the idea of using, as far as
possible, Binary Compressors, smaller and faster than Decimal Compressors (due to the added
decoders).

22

23

Conclusions
We have shown how the basic compression scheme proposed by Vazquez, Antelo and

Montuschi [7], with suitable notations and additional improvements, can be conveniently applied to
the design of multi-operand decimal adders. We have computed the values of the basic parameters
(delay, area) and have compared them with the corresponding parameters of the scheme based on
binary-decimal arithmetic using binary-to-decimal conversions (hybrid schemes). For numbers N of
addends equal to 8 and16 the hybrid schemes offer smaller delay and area, while for N=32 the
VAM minArea scheme offers a smaller delay and correspondingly requires a larger area.

References
[1] K.K. Richards, Arithmetic Operation in Digital Computers, Van Nostrand, 1955
[2] M.F. Cowlishaw, Decimal Floating Point Algorithms for Computers, Proc. 16th IEEE Symp. on
Computer Arithmetic, pp.104-111, June 2003.
[3] M.A. Erle, M.J. Schulte, Decimal Multiplication via Carry-Save Addition, Proc. IEEE Int’l
Conf. Application Specific Architectures and Processors, pp. 348-358, June 2003
[4] Kenney, R.D., Schulte, M.J. High speed multioperand decimal adders, IEEE Trans. On
Computers, vol.54, n.8, pp.953-963, August 2005
[5] Choi, H., Kim, Y.D., You, Y. Dynamic Decimal Adder Circuits Design by using the Carry
Look-Ahead, Proc. Design and Diagnostic of Electronic Circuits and Systems, pp. 242-244, Apr.
2006
[6] Dadda, L. A Multioperand Decimal Adder: a mixed binary and BCD approach, IEEE Trans. on
Computers, vol. 56, n. 9. pp. 1320-1328, September 2007
[7] Vazquez, A., Antelo, E., Montuschi, P. A new family of high performance Parallel Decimal
Multipliers, Proc. of 18th Symposium on Computer Arithmetic, pp. 195-204, 25-28 June, 2007
[8] Dadda, L. Spreadsheet program for designing the Compresssion Boxes using the Vazquez-
Antelo-Montuschi cell. http://www.alari.ch/
[9] STMicroelectronics. 90nm CMOS090 Design Platform. [Online]. Available:
http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm

http://www.alari.ch/
http://www.st.com/stonline/prodpres/dedicate/soc/asic/90plat.htm

Appendix

A: Computing the critical paths delays
We show here how a given Compression Box scheme can be redrawn as a spreadsheet
scheme for computing the critical path delay of each output variable. The method, shown
here as an example applied to the N=16 Compression Box (shown in Fig. 7) has been used
for obtaining the delay data for the Compression Boxes shown in Table B.
 The topology of a delay-scheme is identical to the topology of the given logical-
scheme: compare the following delay-scheme of a N=16 CB as in Fig.7.

Fig. A1: The delay-scheme of a N=16 Compression Box, whose logical scheme is shown in Fig. 7

 Each box in Fig.7 representing a Binary Compressor (with an attached weight) is
replaced in Fig. A1 with three aligned spreadsheet cells. The Central cell is implemented
with an instruction MAX(iA;iB;iC) generating the maximum value of the three input
variables iA, iB, iC. The top-cell generates the sum of the max input value with the carry-
delay of the assumed full adders. The bottom cell generates the sum of the max-input with
the sum–delay. This property assures that the outputs values are the total max delay of the
paths connecting the Compression Box inputs with its outputs.
 The delays shown in Fig. A1 assume the same rule given for Table B. All the input
variables are assumed to be applied simultaneously at time 0.

The spreadsheet program permits also to simulate the effects of additional delays for
one or more input variables.

24

B: Schemes for Adders of N=32 decimal numbers

40 20 20 10

40 20 20 10

3
2
1

4 2 2 1

3
2

2
1

3

2
1

2
1

3

2
1

4
5
6
7

3
2
1

4
3
2
1

4
3
2
1

3
2
1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

2
1

4
5
6
7

3

2
2 6

1

2
1

4

2
1
1 8

2
1
1 8

1
2

5
2
1

4

1
1

3
1
1

3

1
2

5

2
1
1
1

32

2
1
1 8

1
2 5

2
1 4

2
1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

1
1 3

2
1

10 5 10 4 10 3 10 2 10 1 10 0

101

104

overflow

32 addends
of 4 digit each

overflow

d8
d4
d2
d1

d4
d2
d1

d4
d2
d1

d4
d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

1d16

4 2 2 1

2
1

4
5
6
7

3

2
1
1
1

32
100

d8
d4
d2
d1

1d16

8
9
8
9

8
9

2
1

4
5
6
7

3

2
1
1
1

32
102

d8
d4
d2
d1

1d16

8
9

4
0
0

2
0
0

2
0
0

1
0
0

2
1

4
5
6
7

3

2
1
1
1

32
103

d8
d4
d2
d1

1d16

8
9

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

5 5
4 4

2
1

3
2
1

3

40 20 20 10 4 2 2 1

2
1

2
1

1
1

3
1
1

3 d2
d1

d2
d1

40 20 20 10 4 2 2 1

1
2

FA

Fig. A1: Standard scheme for N=32 decimal numbers

40 20 20 10

40 20 20 10

3
2
1

4 2 2 1

3
2

2
1

3

2
1

2
1

3

2
1

4
5
6
7

3
2
1

4
3
2
1

4
3
2
1

3
2
1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0

2
0
0

2
0
0

1
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

2
1

4
5
6
7

3

1
1

7

1

1
1

3

1
2
1 9

1
2
1 9

1
2

5
1
2

5

1
1

3
1
1

3

1
2

5

2
2
1
1

32f$

1
2
1 9

2
2 6

1
2 5

2
1

4
0
0
0
0

2
0
0
0
0

2
0
0
0
0

1
0
0
0
0

1
1 3

2
1

10 5 10 4 10 3 10 2 10 1 10 0

101

104

overflow

32 addends
of 4 digit each

overflow

d8
d4
d2
d1

d4
d2
d1

d4
d2
d1

d4
d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

d2
d1

1d16

4 2 2 1

2
1

4
5
6
7

3

2
2
1
1

32f

100

d8
d4
d2
d1

1d16

8
9
8
9

8
9

2
1

4
5
6
7

3

2
2
1
1

32f

102

d8
d4
d2
d1

1d16

8
9

4
0
0

2
0
0

2
0
0

1
0
0

2
1

4
5
6
7

3

2
2
1
1

32f

103

d8
d4
d2
d1

1d16

8
9

4
0
0
0

2
0
0
0

2
0
0
0

1
0
0
0

5 5 5
4

2
1

3
2
1

3

40 20 20 10 4 2 2 1

2
1

1
1

3
d2
d1

40 20 20 10

1
2

101010108

1d4

4

4:2
'_pan '_zoom

Fig.A2: A faster adder for N=32 decimal numbers

25

 STAGE 1 STAGE 2 STAGE 3 STAGE 4
canonical 32 2 1 1 1 8 2 1 1 5 1 2 3 1 1 14567
ADD 6 9 10 11 4 5 4 4 3 2 1 µm^2
VAM delay 300 450 500 550 200 250 200 200 150 100 50
xj delay 200 210 200 200 200 200 200 ps

300 650 710 750 200 450 400 200 350 100 250 1800
variant 32f 2 2 1 1 9 1 2 1 5 1 2 3 1 1 15509
ADD 4 7 8 9 4 3 2 4 3 2 1 µm^2
VAM delay 200 350 400 450 200 150 100 200 150 0 100 50
xj delay 200 200 200 200 200 200 200 200 ps

200 550 600 650 200 350 300 200 350 200 100 250 1600

Fig.A3: delay and area computation for Fig. A1 and Fig.A2 schemes

26

	

