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Abstract

This report is intented as a supplement or an extension to the material used in
connection to or after the courses Stochastic Adaptive Control (02421)
and Static and Dynamic Optimization (02711) given at the Depart-
ment of Informatics and Mathematical Modelling, The Technical
University of Denmark.

The focus is in this report related to the problem of handling a set point
or a constant reference in a state space setting. In principle just about any
(state space control) design methodology may be applied. Here the presen-
tation is based on LQ design, but other types such as poleplacement can be
applied as well.

This is the Monte Petriolo paper which is a compilation of results gathered
from the litterature. A major part of the results are collected from the basic
control litterature during a sabatical year at Oxford university and is further
compiled and reported in Monte Petriolo (Umbria, Italy).

1 Introduction

The focus in this report is set point control or control of a dynamic system with
a piece wise constant reference. This problem is sparsely handled in the literature
despite its practical application. This is obviously due to its lack of theoretical
contents and interest.

We will in this report try to give the simplest presentation and illustrate the exten-
tion including more general frameworks. For that matter we will in the first part
of the report assume that system is scalar (SISO or single input single output).
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2 2 The standard regulation problem

The reference is in this report assumed to be constant or piece wise constant, which
off course include the standard step change in the reference. This problem has two
major interest. The first problem is the regulation problem in which the set point
is constant and the problem is to match the setpoint. The next focus area is the
closed loop properties in connection to setpoint changes. This is the servo problem
in connection to a step changes.

Related problem which are not addressed in this report are problems related to
constant (or piece wise constant) disturbances. Moreover, constraints in the control
actions (or related signals) or states are also omitted in this report. Obviously,
other types of variations (eg. harmonic) in the reference signal are also omitted
here.

In this report we will consider the problem of controlling a system given as:

xi+1 = Axi + Bui x0 = x0

such that output
yi = Cxi + Dui

match a set point (w). Often is it not only the output that enters into the objective
function. In general we can focus on

zi = Czxi + Dzui

The choice Cz = I, Dz = 0 is quite frequent. In the following nx will denote the
system order and the number of state, nu is the number of inputs and ny is the
number of outputs.

2 The standard regulation problem

The object in regulation is to reduce the influence from disturbances or simple to
keep the system close to the origin.

The standard regulation problem has several formulations. The most common ver-
sion is an LQ formulation in which the cost function is quadratic in the states and
the control actions. In the H2 formulation the cost function is also a quadratic cost,
but in an augmented output vector which contains elements of the errors (objective)
and the control actions (costs).

2.1 The LQ formulation

The standard LQ problem is to find an input sequence ui that take the system

xi+1 = Axi + Bui x0 = x0

from an initial state x0 along a trajectory such that the cost index

J =

N
∑

i=0

xT
i Qxi + uT

i Rui

is minimized. Eventually the horizon, N , is infinite i.e. N = ∞. The solution to
this problem (see [2]) can be formulated as a state feedback solution

ui = −Lxi (1)
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or as a time function

ui = −LΦix0 Φ = A − BL

depending only on the initial state and age (i.e. i). In a deterministic setting the
two solutions are identical, but in an uncertain environment the first (the state feed
back version) is more robust with respect to uncertainty and noise. The results can
be found in Appendix D.1.

The LQ results are not restricted to the standard presentation given above. It can,
as indicated in Appendix D.2, also include cross terms in the cost function.

J =

N
∑

i=0

xT
i Qxi + uT

i Rui + 2xT
i Sui =

N
∑

i=0

[

xT
i uT

i

]

[

Q S

S
T R

] [

xi

ui

]

The results are quite similar to the ones in (1) except off course for the dependence
on S.

2.2 Output control

Often the problem is to control the output of a system

yi = Cxi

with due respect to the control effort. This is often formulated as a (LQ) problem
in which the cost functions

J =
N

∑

i=0

y2
i + ρ2u2

i (2)

has to be minimized. Here ρ2 is a design parameter. In the LQ framework this is
equivalent to

Q = CT C R = ρ2

This problem also emerge if we want to minimize

J =

N
∑

i=0

y2
i subject to

N
∑

i=0

u2
i ≤ Cu

where Cu is the design parameter. In that case ρ2 is a Lagrange multiplier. In prac-
tice the two approaches are much more related than expected by a first inspection.

The problem in (2) can also be formulated as a minimization of

J =

N
∑

i=0

‖zi‖
2
q

where

zi =

[

yi

ui

]

q =

[

1 0
0 ρ2

]

In general formulation of the H2 problem is a minimization of the cost function

J =

N
∑

i=0

‖zi‖
2
q

where
zi = Czxi + Dzui



4 2 The standard regulation problem

There is a tight connection between Cz , Dz, q and Q, R, S. For example, the cost
function in (2) appears when

Cz =

[

C

0

]

Dz =

[

0
1

]

q =

[

1 0
0 ρ2

]

In general the H2 problem can be transformed into the LQ problem through:

[

Q S

S
T R

]

=

[

CT
z

DT
z

]

q
[

Cz Dz

]

On the other hand the H2 problem can emerge from the LQ problem if

Q =

[

Q S

S
T R

]

is factorized into

Q =

[

CT
z

DT
z

]

q
[

Cz Dz

]

This factorization is by no means unique. A factor can for example either be in q

or in Cz and Dz.

In continuous time the problem is to control the system

ẋt = Axt + But x0 = x0

such that the cost function

J =
1

2
xT

T PxT +
1

2

Z T

0
xT

t Qxt + uT
t Rut dt

is minimized. The solution to this problem is in stationarity (T → ∞) given by:

ut = −Lxt

where:
0 = SA + AT S + Q − SBR−1BT S

and
L = R−1BT S

If the cost function has a cross term

J = xT
T PxT +

Z T

0
xT

t Qxt + xT
t Qxt + 2xT

t Sut dt

then the solution is

ut = −R−1(BT S + S
T )xt

where:
0 = StA + AT St + Q − (StB + S)R−1(BT St + S

T )

The realtion between the LQ and H2 problem is the same in continuous time as in discrete time.
»

Q S

S
T R

–

=

»

CT
z

DT
z

–

W
ˆ

Cz Dz

˜

As in the discrete time case this will typically be the case if the problem arise from a minimization
of

J =

Z T

0
|yt|

2
W dt

which is a weighted (W ) integral square of the output

yt = Czxt + Dzut

i.e. the H2 problem. 2
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3 Feed forward

Let us now turn the the focus area of this report, namely control of a system such
that its output vector match the reference vector. We assume that a set point wi

exists, is piecewise constant and the dimension equals nx.

Probably the most obvious way of introducing the reference (see eg. [1]) is to include
a feed forward term (M, nu × ny) in the control. That is to use control law

ui = Mwi − Lxi

In this case the closed loop becomes

xi+1 = Φx + BMwi

where
Φ = A − BL

The feed forward term, M , can be chosen such that the output match the reference
in stationarity, i.e.

y =
[

C(I − Φ)−1B + D
]

Mw

Let us denote the DC gain through the system as

κ = C(I − Φ)−1B + D

and assume that it is non zero (i.e. invertible). In the normal case where nu = ny

we can use:
M = κ−1

If nu > ny we have an extra flexibility and can use

M = κT (κκT )−1

On the other hand if nu < nu we can’t fulfill our objective. If we will minimize the
distance between our objective (w) and our possibility (KMw) then we can use:

M = (κT κ)−1κT

It is well known that this solution is sensitive to modelling errors. If the DC gain
in the system model is wrong, then the closed loop will have a similar error.

In continuous time the discription is
ẋ = Ax + Bu

y = Cx + Du

and we have the same result just is the DC gain is given by

κ = CA−1B + D

2
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4 Target values

Another very classical way of handling the set point is to consider the standard
problem as a deviation away from a stationary point. This method has been ex-
tensively been used in [3]. We will the denote this point as a target point. That is
to consider the problem as a redefinition of origin according to the reference. That
means the control is given by:

ui = u0 − L(xi − x0)

where the target point x0, u0 has to be a stationary point i.e. to fulfill

x0 = Ax0 + Bu0

The target point also have to match the set point, i.e. to fulfill

w = Cx0 + Du0

In total the stationary point should satisfy the following equation
[

A − I B

C D

] [

x0

u0

]

=

[

0
I

]

w

This indicates that both x0 and u0 is proportional to the set point and

Mw = u0 + Lx0

where M was discussed in the previous section. This solution has, as the feed
forward method, a high sensitivity to modelling errors. The classical way of handling
this problem is use integral action as we will return to in Section 9. Here we will
pursuit another type of approach.

If we look at the problem of modelling errors, we can handle it in stationarity. One
way to tackle the problem is to include a (constant) disturbance in the input or the
output.

xi+1 = Axi + B(ui + d)

yi = Cxi + D(ui + d)

The input disturbance has be estimated with an observer or a Kalman filter. In
that way, the disturbance will express the modelling error at DC.

Another, but similar, approach is to include en output disturbance and operate
with a design model

xi+1 = Axi + Bui

yi = Cxi + Dui + d

Also here the disturbance has to be estimated.

The two approaces can be merged into the general form

xi+1 = Axi + Bui + Gd (3)

yi = Cxi + Dui + Hd

where G and H are matrices of appropriate dimensions. In that case we can find
the target values from:

[

A − I B

C D

] [

x0

u0

]

+

[

G

H

]

d =

[

0
I

]

w
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where d has to be estimated.

If we assume that the disturbance closely is constant we can model it by the following
model

di+1 = di + ξi ξi ∈ Niid (0, Rd)

and augment the stochasic version of (3).

[

x

d

]

i+1

=

[

A G

0 I

] [

x

d

]

i

+

[

B

0

]

ui +

[

v

ξ

]

(4)

yi =
[

C H
]

[

x

d

]

i

+ Dui + ei

then d (and state x) can be estimated by means of an observer or a Kalman filter.

In continuous time the system is described by

d

dt
x = Ax + Bu + Gd

y = Cx + Du + Hd

and the target values can be determined by:
»

A B

C D

– »

x0

u0

–

+

»

G

H

–

d =

»

0
I

–

w

The state variable which is not neccesarely known can be estimated from

d

dt
d = ξ

the description
d

dt

»

x

d

–

=

»

A G

0 I

–

+

»

B

0

–

ut +

»

v

ξ

–

t

2

5 Optimal tracking

In this section we will extend the standard discrete time LQ control problem to
include a reference signal. This approach is based on the presentation and results
in [2]. In this presentation we wil restrict the approach and assume that the reference
signal is constant (ie. is a set point). Consider the problem of controlling a dynamic
system in discrete time

xi+1 = Axi + Bui x0 = x0 (5)

such that the cost function

J = ‖yN − rN‖2
P +

N−1
∑

i=0

‖Cxi − ri‖
2
Q + ‖ui‖

2
R

is minimized.

In steady state (N → ∞, ri = r) the solution is given by

ui = −Lxi + Kv

where
L =

[

R + BT SB
]−1

BT SA K =
[

R + BT SB
]−1

BT
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and S is the solution to the algebraic Ricatti equation;

S = CT QC + AT SA − AT SB
[

R + BT SB
]−1

BT SA

and v found from

v = (I − ΦT )−1CT Qr where Φ = A − BL

Unless the system has (or has been imposed) a pure integration, this strategy will
result in a steady state error (for R > 0).

In continuous time the problem is to control the system

ẋt = Axt + But x0 = x0

such that the cost function

J = ‖yT − rT ‖2
P +

Z T

0
‖Cxt − rt‖

2
Q + ‖ut‖

2
R dt

is minimized. In steady state (T → ∞, rt = r) the solution is given by

ut = −Lxt + Kv

where
L = R−1BT St K = R−1BT

and S is the solution to the algebraic Ricatti equation;

0 = SA + AT S + CT QC − SBR−1BT S

and v found from
v = Φ−T CT Qr where Φ = A − BL

Consider the problem of controlling a dynamic system in continuous time given by (20) such that
the cost function

J = ‖C̄xT − rT ‖2
P +

Z T

0
‖zt − rt‖

2
Q dt

where
zt = Cxt + Dut

is minimized.

In steady state (T → ∞) the solution is given by

ut = −Lxt + Kv + Mr

where
Lt =

ˆ

DT QD
˜−1

(DT QC + BT St)

Kt =
ˆ

DT QD
˜

−1
BT Mt =

ˆ

DT QD
˜

−1
DT Q

and S is the solution to the algebraic Ricatti equation;

0 = StA + AT St + CT QC − (CT QD + SB)(DT QD)−1(DT QC + BT St)

and v found from
v = Φ−T (C − DL)T Qr

2

6 Internal model principle (IMP)

Yet another way of transforming the set point problem (and other type reference
problems) into a standard regulation problem is to use the socalled Internal Model
Principle (IMP). I that case a model of the set point variance is created and build
into an augmented system description.
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The model
ri+1 = ri + ξi

where ξi is a white noise sequence, is a suitable model for set points variation
(with unknown changes and unknown instants of changes). In that case the total
description becomes

[

x

r

]

i+1

=

[

A 0
0 1

] [

x

r

]

i

+

[

B

0

]

u +

[

0
1

]

ξi

yi =
[

−C 1
]

[

x

r

]

i

One obvious problem in this approach is that the system description is not contro-
lable. That often results often results in problems when using standard software for
solving the Ricatti equation. The solution exists due to the fact that the uncontrol-
lable part of the state space is not visible in the cost function. The solution

ui = −
[

Lx Lz

]

[

x

r

]

i

can be compared with the solution in section 5.

In continuous time the system

d

dt
xt = Axt + But x0 = x0

has to be controlled such the output is close to the reference. The model

d

dt
rt = ξt

where ξt is white noise is a suitable model for a setpoint signal. The total model can be given as:

d

dt

»

x

r

–

t

=

»

A 0
0 0

– »

x

r

–

t

+

»

B

0

–

ut +

»

0
1

–

ξt

and the task is to minimize the error

yt =
ˆ

−C 1
˜

»

x

r

–

t

(in some sense and with respect to the control power). The solution is

ut = −
ˆ

Lx Lz

˜

»

x

r

–

t

which is a feedback from the state and a feedforward from the set point signal. 2

7 Control moves

In this section we will discuss control formulated in terms control moves. This
can be regarded as if the decision variable is the velocity of the control. It can be
extended to include the derivative of the control action to any order.

If an optimal control strategy from section 5 or 6 is applied on a system (without
an integral action) then a non zero set point will result in a steady state error.
This is due a conflict between steady state error and steady state control action.
One remedy is to discharge the DC component of the control action in the cost
function. The most direct and simples way of doin this is to consider the control
moves (control velocity) rather than the control action itself.
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7.1 Velocity control

The problem of controlling a dynamic system

xi+1 = Axi + Bui

yi = Cxi

such that the output is close to a certain (constant) set point, r, has some challenges.
In order to avoid the problem of a steady state error we can formulate the objective
in terms of the control moves vi. If the control moves are constant between samples
then:

ui = zi + Tsvi where zi+1 = zi + Tsvi

and the description of the system can be written as:

[

x

z

]

i+1

=

[

A B

0 1

] [

x

z

]

i

+

[

BTs

Ts

]

vi (6)

yi =
[

C 0
]

[

x

z

]

i

This is more or less the same as introducing (a discrete time) integration in front
of the system. The problem is then to control the system in (6) according to the
method described in section 5 and 6. In that case the cost is changed and the
control related cost in the objective function is shifted in frequency and the weight
is put on the control velocity. The control action can also be

7.2 Acceleration control

The method can be extended and the problem formulated such that the decision
variable is the acceleration, ai, then (if the acceleration is constant between sam-
ples):

ui = zi + Tsvi +
1

2
T 2

s ai

where

zi+1 = zi + Tsvi +
1

2
T 2

s ai vi+1 = vi + Tsai

and the system can be written as:





x

z

v





i+1

=





A B BTs

0 1 Ts

0 0 1









x

z

v





i

+





1

2
BT 2

s
1

2
T 2

s

Ts



 ai (7)

yi =
[

C 0 0
]





x

z

v





i

This is the same as introducing two integration in front of the system.
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7.3 General velocity control

These ideas can be extended to just about any order. Let us illustrate this in a
forth order case. Let u be the control action and let u4 be the forth order derivative.
Then (if u4 is constant between samples):

u = z + Tsu1 +
1

2
T 2

s u2 +
1

6
T 3

s u3 +
1

24
T 4

s u4

where








z

u1

u2

u3









i+1

=









z + Tsu1 + 1

2
T 2

s u2 + 1

6
T 3

s u3 + 1

24
T 4

s u4

u1 + Tsu2 + 1

2
T 2

s u3 + 1

6
T 3

s u4

u2 + Tsu3 + 1

2
T 2

s u4

u3 + Tsu4









or stated otherwise:








z

u1

u2

u3









i+1

=









1 Ts
1

2
T 2

s
1

6
T 3

s

0 1 Ts
1

2
T 2

s

0 0 1 Ts

0 0 0 1

















z

u1

u2

u3









i

+









1

24
T 4

s
1

6
T 3

s
1

2
T 2

s

Ts









u4

The total system description becomes:












x

z

u1

u2

u3













i+1

=













A B BTs
1

2
BT 2

s
1

6
BT 3

s

0 1 Ts
1

2
T 2

s
1

6
T 3

s

0 0 1 Ts
1

2
T 2

s

0 0 0 1 Ts

0 0 0 0 1

























x

z

u1

u2

u3













i

+













1

24
BT 4

s
1

24
T 4

s
1

6
T 3

s
1

2
T 2

s

Ts













u4

yi =
[

C 0 0 0 0
]













x

z

u1

u2

u3













i

This method can be extented to any order.

7.4 Generelized velocity control

In the previuous sections we solved the problem of matching the set point by means
of using a higher order derivative as the decision variable. In this section we will
use a combinations of higher order derivatives as decision variables. That means
the control decision is a blend of different frequencies.

7.4.1 part 1

Let us first focus on the problem when we use the control move, vi and the control
level, ũi, as decision variable. In that case:

ui = ũi + zi + Tsvi where zi+1 = zi + Tsvi

or simply:
[

x

z

]

i+1

=

[

A B

0 1

] [

x

z

]

i

+

[

B BTs

0 Ts

] [

ũ

v

]

i

yi =
[

C 0
]

[

x

z

]

i



12 7 Control moves

7.4.2 Part 2

If the decision variables are the acceleration, the level of the control move (velocity)
and the control level, then we can introduce

vi+1 = vi + ṽi + Tsai

zi+1 = zi + Ts(vi + ṽi) +
1

2
T 2

s ai

where ũi and ṽi are perturbations on the control and control move respectively. The
decision consists of the vector





ũ

ṽ

a





i

In that case:

ui = ũi + zi + Ts(vi + ṽi) +
1

2
T 2

s ai

Consequently, the acceleration model in (7) can be transformed into





x

z

v





i+1

=





A B BTs

0 1 Ts

0 0 1









x

z

v





i

+





B BTs
1

2
BT 2

s

0 Ts
1

2
T 2

s

0 1 Ts









ũ

ṽ

a





i

(8)

yi =
[

C 0 0
]





x

z

v





i

7.4.3 Part 3

The method can, as the simple method from the previous sections, be extended to
any finite order. For n = 4 we have the resulting system description:













x

z

u1

u2

u3













i+1

=













A B BTs
1

2
BT 2

s
1

6
BT 3

s

0 1 Ts
1

2
T 2

s
1

6
T 3

s

0 0 1 Ts
1

2
T 2

s

0 0 0 1 Ts

0 0 0 0 1

























x

z

u1

u2

u3













i

+













B BTs
1

2
BT 2

s
1

6
BT 3

s
1

24
BT 4

s

0 Ts
1

2
T 2

s
1

6
T 3

s
1

24
T 4

s

0 1 Ts
1

2
T 2

s
1

6
T 3

s

0 0 1 Ts
1

2
T 2

s

0 0 0 1 Ts

























ũ

ũ1

ũ2

ũ3

u4













yi =
[

C 0 0 0 0
]













x

z

u1

u2

u3













i

In continuous time the problem is to control the system

d

dt
xt = Axt + But x0 = x0

y = Cxt
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such that the output match the reference.

Velocity control: If we want to use the control velocity

d

dt
ut = vt

rather than the control signal itself as the decision variable then the system can be described as:

d

dt

»

x

u

–

=

»

A B

0 0

– »

x

u

–

t

+

»

0
1

–

vt

y =
ˆ

C 0
˜

»

x

u

–

t

Acceleration control: If we want to use the control acceleration

d

dt
ut = vt

d

dt
vt = at

as the decision variable then the system can be described as:

d

dt

2

4

x

u

v

3

5 =

2

4

A B 0
0 0 1
0 0 0

3

5

2

4

x

u

v

3

5

t

+

2

4

0
0
1

3

5 at

y =
ˆ

C 0 0
˜

2

4

x

u

v

3

5

t

General velocity control: As in descrete time these idears can be generalized to any order. Let
the decision variable be

v = u(n)

where

u(n) =
dn

dtn
u

Then for n = 4 we have the description:

d

dt

2

6

6

6

6

4

x

u

u(1)

u(2)

u(3)

3

7

7

7

7

5

=

2

6

6

6

4

A B 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

3

7

7

7

5

2

6

6

6

6

4

x

u

u(1)

u(2)

u(3)

3

7

7

7

7

5

t

+

2

6

6

6

4

0
0
0
0
1

3

7

7

7

5

vt

y =
ˆ

C 0 0 0
˜

2

6

6

6

6

4

x

u

u(1)

u(2)

u(3)

3

7

7

7

7

5

t

Generalized velocity control:

If we will use a high order derivative as well as pertubations of its integrals, we can use the following
agmentation scheme. The for n = 4 we have the description:

d

dt

2

6

6

6

6

4

x

u

u(1)

u(2)

u(3)

3

7

7

7

7

5

=

2

6

6

6

4

A B 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

3

7

7

7

5

2

6

6

6

6

4

x

u

u(1)

u(2)

u(3)

3

7

7

7

7

5

+

2

6

6

6

4

B 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

3

7

7

7

5

2

6

6

6

6

4

ũ

ũ(1)

ũ(2)

ũ(3)

ũ(4)

3

7

7

7

7

5

y =
ˆ

C 0 0 0
˜

2

6

6

6

6

4

x

u

u(1)

u(2)

u(3)

3

7

7

7

7

5

t

2
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8 Frequency weighting

The reason for introducing velocity control and its related is to let the control
signal enters into the performance in such a way that the resulting controller can
compensate for the setpoint change in an appropriate manner.

Now assume the the signals in the performance index are filtered version of the
original signals, such as the output, yt, control ut.

J̄ = E

{

N
∑

t=0

(

y
f⊤
t u

f⊤
t

)

[

O1 O12

O⊤
12 O2

](

y
f
t

u
f
t

)

}

where
y

f
t = Hy(q)yt u

f
t = Hu(q)ut

These frequency weights or filters has a state space representation such as:

x
y
t+1 = Ayx

y
t + Byyt xu

t+1 = Auxu
t + Buut

y
f
t = Cyx

y
t + Dyyt u

f
t = Cuxu

t + Duut

If the system is given by:
xi+1 = Axi + Bui

y = Cxi + Dui

then the system description can be augmented to include the filtered versions of the
signals:





x

xy

xu





t+1

=





A 0 0
ByC Ay 0

0 0 Au









x

xy

xu





t

+





B

ByD

Bu



ut

For the filthered output we have

y
f
t = DyCxt + Cyx

y
t + DyDut

=
(

DyC Cy 0 DyD
)









xt

x
y
t

xu
t

ut









In a similar way is

u
f
t =

(

0 0 Cu Du
)









xt

x
y
t

xu
t

ut









If the augmented state vector

x̄t =





xt

x
y
t

xu
t





is introduced the we can write:

[

y
f
t

u
f
t

]

=

(

DyC Cy 0 DyD

0 0 Cu Du

) [

x̄t

ut

]
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Instead of minimizing the original cost we can minimize

J̄ = E

{

N
∑

t=0

(

x̄⊤

t u⊤

t

)

[

Q1 Q12

Q⊤
12 Q2

] (

x̄t

ut

)

}

where
[

Q1 Q12

Q⊤
12 Q2

]

=









CT (Dy)T 0
(Cy)T 0

0 (Cu)T

DT (Dy)T (Dy)T









[

O1 O12

O⊤
12 O2

] [

DyC Cy 0 DyD

0 0 Cu Du

]

Now the continuous time version of the problem just mentioned. Assume the the signals in the
performance index are filtered version of the original signals, such as the output, yt, control ut.

J̄ = E

(

Z T

t=0

“

y
f⊤

t u
f⊤

t

”

»

O1 O12

O⊤

12 O2

–

 

y
f
t

u
f
t

!

dt

)

where
y

f
t = Hy(p)yt u

f
t = Hu(p)ut

These frequency weights or filters has a state space representation such as:

d

dt
xy = Ayx

y
t + Byyt

d

dt
xu = Auxu

t + Buut

y
f
t = Cyx

y
t + Dyyt u

f
t = Cuxu

t + Duut

If the system is given by:
d

dt
xt = Axt + But

yt = Cxt + Dut

then the system description can be augmented to include the filtered versions of the signals:

d

dt

2

4

x

xy

xu

3

5 =

2

4

A 0 0
ByC Ay 0

0 0 Au

3

5

2

4

x

xy

xu

3

5

t

+

2

4

B

ByD

Bu

3

5ut

For the filthered output we have

y
f
t = DyCxt + Cyx

y
t + DyDut

=
`

DyC Cy 0 DyD
´

2

6

6

4

xt

x
y
t

xu
t

ut

3

7

7

5

In a similar way is

u
f
t =

`

0 0 Cu Du
´

2

6

6

4

xt

x
y
t

xu
t

ut

3

7

7

5

If the augmented state vector

x̄t =

2

4

xt

x
y
t

xu
t

3

5

is introduced the we can write:

"

y
f
t

u
f
t

#

=

„

DyC Cy 0 DyD

0 0 Cu Du

«»

x̄t

ut

–

Instead of minimizing the original cost we can minimize

J̄ = E

 Z T

t=0

“

x̄⊤

t u⊤

t

”

»

Q1 Q12

Q⊤

12 Q2

–„

x̄t

ut

«

dt

ff
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where

»

Q1 Q12

Q⊤

12 Q2

–

=

2

6

6

4

CT (Dy)T 0
(Cy)T 0

0 (Cu)T

DT (Dy)T (Dy)T

3

7

7

5

»

O1 O12

O⊤

12 O2

– »

DyC Cy 0 DyD

0 0 Cu Du

–

2

9 Integral action

Within the control area there are a few methods to avoid a steady state errors.
One of the standard tricks in control is to introduce an integral action. In the state
space setting it involves a state which integrate the error, ie.

zi+1 = zi + (ri − yi)

That results in an augmented system given by
[

x

z

]

i+1

=

[

A 0
−C 1

] [

x

z

]

i

+

[

B

0

]

ui +

[

0
1

]

r

yi =
[

C 0
]

[

x

z

]

i

If the controller is given by

ui = u0 − L

[

xi − x0

zi − z0

]

then the closed loop is given by
[

x

z

]

i+1

=

[

A − BLx −BLz

−C 1

] [

x

z

]

i

+

[

B

0

]

u0 +

[

B

0

]

L

[

x0

z0

]

+

[

0
1

]

r

This can also be formulated as:

ui = Mri − L

[

xi

zi

]

which results in
[

x

z

]

i+1

=

[

A − BLx −BLz

−C 1

] [

x

z

]

i

+

[

BM

1

]

r

e =
[

−C 0
]

[

x

z

]

i

+ r

The problem is to determine M such that the response is optimal.

Within the control area there are a few methods to avoid a steady state errors. One of the standard
tricks in control is to introduce an integral action. In the state space setting it involves a state
which integrate the error, ie.

d

dt
z = rt − yt
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That results in an augmented system given by

d

dt

»

x

z

–

=

»

A 0
−C 1

– »

x

z

–

i

+

»

B

0

–

ui +

»

0
1

–

r

yt =
ˆ

C 0
˜

»

x

z

–

t

If the controller is given by

ut = u0 − L

»

xt − x0

zt − z0

–

then the closed loop is given by

d

dt

»

x

z

–

t

=

»

A − BLx −BLz

−C 1

– »

x

z

–

t

+

»

B

0

–

u0 +

»

B

0

–

L

»

x0

z0

–

+

»

0
1

–

r

This can also be formulated as:

ut = Mrt − L

»

xt

zt

–

which results in

d

dt

»

x

z

–

t

=

»

A − BLx −BLz

−C 1

– »

x

z

–

t

+

»

BM

1

–

r

e =
ˆ

−C 0
˜

»

x

z

–

t

+ r

The problem is to determine M such that the response is optimal. 2

10 Conclusion

In this paper we have reviwed different control methods for handling set points in
a state space setting. The methods covers area from feed forward and target values
to frequency weights and integral action. The paper is held in discrete time, but
the results is also given in continuous time.
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18 B Quadratic forms II

A Quadratic optimization I

Consider the problem of minimizing a quadratic cost function

J =
[

xT uT
]

[

h11 h12

hT
12 h22

] [

x

u

]

= xT h11x + 2xT h12u + uT h22u

It is quite elementary to find the derivative of the cost function

d

dt
uJ = 2xT h12 + 2uT h22 (9)

and the stationary point must fulfill

hT
12x + h22u = 0

The stationary point

u = −h−1
22 hT

12x

is a minimum to the cost function if h22 is possitive definite. Furthermore, the
minimum of the cost function is quadratic in x. If we use (9) and complete the

square then:

J∗ = xT h11x − (u∗)T h22u
∗

= xT
(

h11 − h12h
−1

22 hT
12

)

x

= xT Sx

where

S = h11 − h12h
−1
22 hT

12

B Quadratic forms II

Let us now consider the more complex problem of minimizing

J =
[

xT uT
]

[

h11 h12

hT
12 h22

] [

x

u

]

+
[

gT
x gT

u

]

[

x

u

]

+ σ

or simply:
J = xT h11x + 2xT h12u + uT h22u + gT

x x + gT
u u + σ

A standard result gives the minimum as

2xT h12 + 2uT h22 + gT
u = 0 (10)

or

u = −h−1

22

[

hT
12x +

1

2
gu

]

Applying (10) gives the optimal cost:

J∗ = xT h11x + gT
x x + σ − (u∗)T h22u

∗

= xT (h11 − h12h
−1

22 hT
12)x + (gT

x − gT
u h−1

22 hT
12)x + σ −

1

4
gT

u h−1

22 gu

= xT h̃11x + g̃T
x x + σ̃
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where

h̃11 = h11 − h12h
−1

22 hT
12

g̃ = gx − h12h
−1

22 gu

σ̃ = σ −
1

4
gT

u h−1
22 gu

C Feed forward

This appendix is a straith forward extention of section 3 and is valid both in a
descrete and continuous time framework.

In closed loop and in stationarity we have

ȳ = Kū

where K ∈ R
ny×nu is the DC gain through the system. Our objective is to find ū

such that

ȳ = w

In the feedforward strategy we use

ū = Mw

where M ∈ R
nu×ny .

C.1 The balanced problem

If ny = nu and if K is nonsingular then it is trivial that

ū = K−1w

or

M = K−1

C.2 The overflexible problem

Firstly, let nu > ny. That means we have a surplus of flexibility to achieve our
objective. We can then choice to find that stationary control which has the lowest
size (and still achieve our objective). This can be formulated as minimizing

J =
1

2
ūT ū

subject to
w = Kū

The Lagrange function for this problem is

JL =
1

2
ūT ū + λT (Kū − w)
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which is stationary wrt. ū for

ūT + λT K = 0 or for ū = −KT λ

In order to achieve our objective we must have

λ = −(KKT )−1w

or
ū = KT (KKT )−1w

This results in

M = KT (KKT )−1

C.3 The restricted problem

Let us then focus on the situation where nu < ny ie. when we have less control
flexibility. In that case we can’t achieve our objective (ȳ = w) but have to find a ū

(or a M) such that the distance between the objective and the possible is minimized.
In other word we will find an ū such that

J =
1

2
εT ε where ε = w − Kū

is minimized. This is obtained for

I = −εT K = −(w − Kū)T K = 0

or if
ū = (KT K)−1KT w

This results in:

M = (KT K)−1KT

D The Discrete Time LQ control problem

In this section we will review the results related to control of a linear time invariant
dynamic system

xi+1 = Axi + Bui x0 = x0 (11)

such that a quadratic cost function is minimized.

D.1 The Standard DLQ Control Problem

Let us first focus on the standard problem. In this context we will control the
system in (11) such that the (standard LQ) cost function

J = xT
NPxN +

N−1
∑

i=0

xT
i Qxi + uT

i Rui (12)

is minimized. The Bellman equation will in this case be

Vi(xi) = min
ui

[

xT
i Qxi + uT

i Rui + Vi+1(xi+1)
]

(13)
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with the end point constraints

VN (xN ) = xT
NPxN

If we test the candidate function

Vi(xi) = xT
i Sixi

then the inner part of the minimization in (13) will be

I =
[

xT
i uT

i

]

[

Q + AT Si+1A AT Si+1B

BT Si+1A R + BT Si+1B

] [

xi

ui

]

The minimum for the this function is according to Appendix A given by

ui = −Lixi Li =
[

R + BT Si+1B
]−1

BT Si+1A

and the candidate function is in fact a solution to the Bellman equation in (13) if

Si = Q + AT Si+1A − AT Si+1B
[

R + BT Si+1B
]−1

BT Si+1A SN = P

If the gain, Li, is used in the recursion for Si

Si = Q + AT Si+1(A − BLi) SN = P

As a simple implication from the proof we have that

V0(x0) = J⋆ = xT
0 S0x0

which is usefull in connection to an interpretation of S.

D.2 DLQ and cross terms

In order to connect the (very) related LQ formulation and H2 formulation we will
augment the standard problem with cross terms in the cost function. Assume that
a discrete time (LTI) system is given as in (11) and the cost function (instead of
(12)) is:

J = xT
NPxN +

N−1
∑

i=0

xT
i Qxi + uT

i Rui + 2xT
i Sui

or

J = xT
NPxN +

N−1
∑

i=0

[

xT
i uT

i

]

[

Q S

S
T R

] [

xi

ui

]

The situation becomes a bit more complicated. The cross terms especially occurs if
the control problem is formulated as a problem in which (the square of) an output
signal

yi = Cxi + Dui

is minimized, i.e.

J =

N−1
∑

i=0

|yi|
2
W

In that case
[

Q S

S
T R

]

=

[

CT

DT

]

W
[

C D
]
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The Bellman equation becomes in the special case

Vi(xi) = min
ui

[

[

xT
i uT

i

]

[

Q S

S
T R

] [

xi

ui

]

+ Vi+1(xi+1)

]

VN (xN ) = xT
NPxN

and again we will try the follwoing candidate function

Vi(xi) = xT
i Sixi

This can be solved head on or by transforming the problem into the standard one.

D.2.1 Using transformation technique

If R is invertible then we can intoduce a new decision variable, vi, given by:

ui = vi − R−1
S

T xi

The instanuous loss term (first term in the Bellman equation) can be expressed as:

[

xT
i uT

i

]

[

Q S

S
T R

] [

xi

ui

]

= xT
i Q̄xi + vT

i Rvi

where
Q̄ = Q − SR−1

S
T

In similar way we find for the dynamics

xi+1 = Axi + Bui

= (A − BR−1
S)xi + Bvi

= Āxi + Bvi

where
Ā = A − BR−1

S

For the future cost to go (the second term in the Bellman equation) we have:

Vi+1(xi+1) = xT
i+1Si+1xi+1 = (Āxi + Bvi)

T Si+1(Āxi + Bvi)

We have now transformed the problem to the standard form and the inner mini-
mization in the Bellman equation

Vi(xi) = min
ui

[

xT
i Qxi + uT

i Rui + Vi+1(xi+1)
]

is then simply:

I =
[

xT
i vT

i

]

[

Q̄ + ĀT Si+1Ā ĀT Si+1B

BT Si+1Ā R + BT Si+1B

] [

xi

vi

]

with the solution

vi = −L̄ixi L̄i =
[

R + BT Si+1B
]−1

BT Si+1Ā

The candidate function is a solution to the Bellman equation if

Si = Q̄ + ĀT Si+1Ā − ĀT Si+1B
[

R + BT Si+1B
]−1

BT Si+1Ā (14)

= ĀT Si+1(Ā − BL̄i) + Q̄

This means that

ui = −
[

L̄i + R−1
S
]

xi L̄i =
[

R + BT Si+1B
]−1

BT Si+1Ā
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D.2.2 Direct method

If R is not invertible then we are forced to use a more direct approach which results
in the following inner minimization (minimization of the inner part in the Bellman
equation):

I =
[

xT
i uT

i

]

[

Q̄ + ĀT Si+1Ā S + ĀT Si+1B

S
T + BT Si+1Ā R + BT Si+1B

] [

xi

ui

]

with the solution

ui = −Lixi Li =
[

R + BT Si+1B
]−1 [

S
T + BT Si+1A

]

and a Riccati equation

Si = Q + AT Si+1A −
[

S + AT Si+1B
] [

R + BT Si+1B
]−1 [

S
T + BT Si+1A

]

(15)

Notice, that (14) is the standard Riccati equation, whereas (15) contains (directly)
the cross term S. The transformation method do require that R is invertible.

D.3 Optimal tracking

In this section we will extend the standard discrete time LQ control problem to
include a reference signal. Later on in this presentation, we wil restrict the approach
and assume that the reference signal is constant (ie. is a set point). Consider the
problem of controlling a dynamic system in discrete time given by (11) such that
the cost function

J = ‖yN − rN‖2
P +

N−1
∑

i=0

‖Cxi − ri‖
2
Q + ‖ui‖

2
R

is minimized. This equivalent to the LQ cost function

J = (CxN − rN )T P (CxN − rN ) +

N−1
∑

i=0

(Cxi − ri)
T Q(Cxi − ri) + uT

i Rui (16)

is to be minimized.

The Bellman equation will in case be

Vi(xi) = min
ui

[

(Cxi − ri)
T Q(Cxi − ri) + uT

i Rui + Vi+1(xi+1)
]

(17)

with the end point constraints

VN (xN ) = (CxN − rN )T P (CxN − rN )

If we test the candidate function

Vi(xi) = xT
i Sixi − 2vT

i xi + σi

where
SN = CT PC vN = CT PrN σN = rT

NPrN

then the inner part of the minimization in (17) will be

I = (Cxi − ri)
T Q(Cxi − ri) + uT

i Rui

+(Axi + Bui)
T Si+1(Axi + Bui) − 2vT

i+1(Axi + Bui) + σi+1

= xT
i (CT QC + AT Si+1A)xi + uT

i (R + BT Si+1B)ui + rT
i Qri

+2xT
i AT Si+1Bui − 2(rT

i QC + vT
i+1A)xi − 2vT

i+1Bui + σi+1
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The minimum for the this function is according to Appendix B given by

ui = −
[

R + BT Si+1B
]−1 [

BT Si+1A xi − BT vi+1

]

and the candidate function is in fact a solution to the Bellman equation in (17) if

Si = CT QC + AT Si+1A − AT Si+1B
[

R + BT Si+1B
]−1

BT Si+1A

vi = AT vi+1 + CT Qri − AT Si+1B
[

R + BT Si+1B
]−1

BT vi+1

σi = σi+1 + rT
i Qri − vT

i+1B
[

R + BT Si+1B
]−1

BT vi+1

If we introduce the gains

Li =
[

R + BT Si+1B
]−1

BT Si+1A Ki =
[

R + BT Si+1B
]−1

BT

then the control law can be written as

ui = −Lixi + Kivi+1

and the Ricatti equations becomes

Si = CT QC + AT Si+1(A − BLi) SN = P

vi = (A − BLi)
T vi+1 + CT Qri vN = CT PrN

σi = σi+1 + rT
i Qri − vT

i+1BKivi+1 σN = rT
NPrN

In steady state (N → ∞, ri = r) the solution is given by

ui = −Lxi + Kv

where
L =

[

R + BT SB
]−1

BT SA K =
[

R + BT SB
]−1

BT

and S is the solution to the algebraic Ricatti equation;

S = CT QC + AT SA − AT SB
[

R + BT SB
]−1

BT SA

and v found from

v = (I − ΦT )−1CT Qr where Φ = A − BL

Unless the system has (or has been imposed) a pure integration, this strategy will
result in a steady state error (for R > 0).

D.4 Reference control with cross term

In this section we will extend the result from the previous section a bit further.
Consider the problem of controlling a dynamic system in discrete time given as in
(11) such that the cost function

J = ‖C̄xN − rN‖2
P +

N
∑

i=0

‖zi − ri‖
2
Q
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where
zi = Cxi + Dui

is minimized. This equivalent to the (standard LQ) cost function

J = (C̄xN − rN )T P (C̄xN − rN ) (18)

+
N

∑

i=0

(Cxi + Dui − ri)
T Q(Cxi + Dui − ri)

is to be minimized. The Bellman equation will in this case be

Vi(xi) = min
ui

[

(Cxi + Dui − ri)
T Q(Cxi + Dui − ri) + Vi+1(xi+1)

]

(19)

with the end point constraints

VN (xN ) = (C̄xN − rN )T P (C̄xN − rN )

If we test the candidate function

Vi(xi) = xT
i Sixi − 2vT

i xi + σi

where
SN = C̄T PC̄ vN = C̄T PrN σN = rT

NPrN

then the inner part of the minimization in (19) will be

I = (Cxi + Dui − ri)
T Q(Cxi + Dui − ri)

+(Axi + Bui)
T Si+1(Axi + Bui) − 2vT

i+1(Axi + Bui) + σi

= xT (CT QC + AT SA)x + rT Qr + uT (DT QD + BT SB)u

+ 2xT
i (CT QD + AT SB)ui − 2(rT

i QD + vT
i+1B)ui − 2vT

i+1Axi + σi+1

The minimum for the this function is according to Appendix B given by

ui = −
[

DT QD + BT SB
]−1(

(DT QC + BT SA) xi − BT vi − DT Qri

)

If we apply the results in Appendix B then we can see that the candidate function
is in fact a solution to the Bellman equation in (25) if

Si = AT SA + CT QC −
(

CT SD + AT SB
)[

DT QD + BT SB
]−1(

DT QC + BT SA
)

vi = AT vi+1 −
(

CT SD + AT SB
)[

DT QD + BT SB
]−1(

BT vi+1 + DT Qri

)

σi = σi+1 + rT Qr −
(

rT
i QD + vT

i+1B
)[

DT QD + BT SB
]−1(

DT Qri + BT vi+1

)

The initial (or rather terminal) conditions are:

SN = CT PC vN = CT PrT σN = rN
T PrN

If we introduce the gains

Li =
[

DT QD + BT SB
]−1(

DT QC + BT SA
)

Ki =
[

DT QD + BT SB
]−1

BT Mi =
[

DT QD + BT SB
]−1

DT Q

then the control law can be written as

ui = −Lixi + Kivi + Miri
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and the Ricatti equations becomes

Si = AT S(A − BL) + CT QC − CT SDL

vi = (A − BLt)
T v + LT DQr

σi = σi+1 + rT Qr −
(

rT
i QD + vT

i+1B
)[

DT QD + BT SB
]−1(

DT Qri + BT vi+1

)

In steady state (T → ∞, ri = r) the solution is given by

ut = −Lxt + Kv + Mr

where
L =

[

DT QD + BT SB
]−1(

DT QC + BT SA
)

K =
[

DT QD + BT SB
]−1

BT M =
[

DT QD + BT SB
]−1

DT Q

and S is the solution to the algebraic Ricatti equation;

S = AT SA + CT QC −
(

CT SD + AT SB
)[

DT QD + BT SB
]−1(

DT QC + BT SA
)

and v found from

v = [I − ΦT ]−1LT DQr where Φ = A − BL

E The Continuous Time LQ Control

In this section we will review the results given in the previous sections but in
continuous time. We will start with the standard LQ problem and then in order to
connect with the H2 formulation review the LQ problem with a cross term in the
cost function. The problem is to control the LTI system given in continuous time

d

dt
xt = Axt + But x0 = x0 (20)

such that some objectives are meet.

E.1 The Standard CLQ Control problem

Consider the problem of controlling a continuous time LTI system in (20) such that
the performance index

J = xT
T PxT +

∫ T

0

xT
t Qxt + xT

t Qxt dt

is minimized. The Bellman equation is for this situation

−
d

dt
tVt(xt) = min

ut

[

xT
t Qxt + uT

t Rut +
d

dt
xVt(xt) (Axt + But)

]

with
VT = xT

T PxT

as boundary condition. For the candidate function

Vt(xt) = xT
t Stxt
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this (Bellman) equation becomes

−xT
t Ṡtxt = min

ut

[

xT
t Qxt + uT

t Rut + 2 xT
t StAxt + 2 xT

t StBut

]

This is fulfilled for

ut = −R−1BT Stxt

The candidate function is indead a Bellman function if St is the solution to the
Riccati equation

−Ṡt = StA + AT St + Q − StBR−1BT St ST = P

In terms of the gain
Lt = R−1BT St

the Riccati equation can also be expressed as

−Ṡt = StA + AT St + Q − LT
t RLt

−Ṡt = St(A − BLt) + AT St + Q = (A − BLt)
T St + StA + Q

−Ṡt = St(A − BLt) + (A − BLt)
T St + Q + LT

t RLt

It can be shown that
J = xT

0 S0x0

E.2 CLQ and cross terms

Let us now focus on the problem where performance index has a cross term, i.e.
where

J = xT
T PxT +

∫ T

0

xT
t Qxt + xT

t Qxt + 2xT
t Sut dt

As in the discrete time case this will typically be the case if the problem arise from
a minimization of

J =

∫ T

0

|yt|
2
W dt

which is a weighted (W ) integral square of the output

yt = Cxt + Dut

i.e. the H2 problem. In that case

[

Q S

S
T R

]

=

[

CT

DT

]

W
[

C D
]

The Bellman equation is now for this situation

−
d

dt
tVt(xt) = min

ut

[

[

xT
t uT

t

]

[

Q S

S
T R

] [

xt

ut

]

+
d

dt
xVt(xt) (Axt + But)

]

(21)
with

VT = xT
T PxT

as boundary condition. Again we can go directly for a solution, but if R is invertible,
we can tranform the problem to the standard form.
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E.2.1 Using transformation technique

If we use the same method as in the discrete time and introduce a new decision
variable, vt through

ut = vt − R−1
S

T xt

then instantanuous loss term is rewritten to

[

xT
t uT

t

]

[

Q S

S
T R

] [

xt

ut

]

= xT
t Q̄xt + vT

t Rvt

where
Q̄ = Q − SR−1

S
T

Furthermore the dynamics is transformed to

Axt + But = (A − BR−1
S

T )xt + Bvt = Āxt + Bvt

where
Ā = (A − BR−1

S
T )

The Bellman equation is now in the newly introduced variable

−
d

dt
tVt(xt) = min

vt

[

xT
t Q̄xt + vT

t Rvt +
d

dt
xVt(xt)

(

Āxt + Bvt

)

]

with
VT = xT

T PxT

as boundary condition. For the candidate function

Vt(xt) = xT
t Stxt

this Bellman equations becomes

−xT
t Ṡtxt = min

vt

[

xT
t Q̄xt + vT

t Rvt + 2 xT
t StĀxt + 2 xT

t StBvt

]

The solution to this problem is

vt = −L̄txt L̄t = R−1BT St

where

−Ṡt = StĀ + ĀT St + Q̄ − StBR−1BT St ST = P (22)

The last equation ensures that the candidate function indeed is a solution. The
total solution is consequently given as

ut = −(L̄t + R−1
S

T )xt L̄t = R−1BT St

or simpy as
ut = −R−1(BT St + S

T )xt

Notice, that (22) is the same Riccati equation that arise from the standard problem
except for the transformation of A and Q. Furthermore L̄ is the same as arise from
the standard problem.
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E.2.2 Direct method

If R is not invertible then (21) must be solved directly. For the candidate function

Vt(xt) = xT
t Stxt

the Bellman equation, (21), becomes

−xT
t Ṡtxt = min

ut

[

xT
t Qxt + uT

t Rut + 2xT
t Sut + 2 xT

t StAxt + 2 xT
t StBut

]

which is minimized for

ut = −R−1(BT St + S
T )xt

where

−Ṡt = StA + AT St + Q − (StB + S)R−1(BT St + S
T ) ST = P (23)

It is quite easy to check that (for R being invertible) the solutions to (23) and (22)
are identical.

E.3 Reference control

In this section we will extend the standard discrete time LQ control problem to
include a reference signal. Consider the problem of controlling a dynamic system
in continuous time given by (20) such that the cost function

J = ‖yT − rT ‖
2
P +

∫ T

0

‖Cxt − rt‖
2
Q + ‖ut‖

2
R dt

is minimized. This equivalent to the (standard LQ) cost function

J = (CxT − rT )T P (CxT − rT ) +

∫ T

0

(Cxt − rt)
T Q(Cxt − rt) + uT

t Rut dt (24)

is to be minimized. The Bellman equation will in this case be

−
d

dt
tVt(xt) = min

ut

[

(Cxt − rt)
T Q(Cxt − rt) + uT

t Rut +
d

dt
xVt(xt)(Axt + But)

]

(25)
with the end point constraints

VT (xT ) = (CxT − rT )T P (CxT − rT )

If we test the candidate function

Vt(xt) = xT
t Stxt − 2vT

t xt + σt

where
ST = CT PC vT = CT PrT σT = rT

T PrT

then the inner part of the minimization in (25) will be

I = (Cxt − rt)
T Q(Cxt − rt) + uT

t Rut + 2
[

xT S − vT
]

(Ax + Bu)

= xT (CT QC + AS + SAT )x + rT Qr + uT Ru

− 2
[

rT QC + vT A
]

xt + 2(xT S − vT )But
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The minimum for the this function is according to Appendix A given by

ut = −R−1BT [St xt − vt]

The candidate function is in fact a solution to the Bellman equation in (25) if

−Ṡt = StA + AT St + CT QC − StBR−1BT St ST = CT PC

−v̇ = (A − BR−1BT S)T v + CT Qr vT = CT PrT

−σ̇ = rT Qr − vT BR−1BT v σT = rT
T PrT

If we introduce the gains

Lt = R−1BT St Kt = R−1BT

then the control law can be written as

ut = −Ltxt + Ktvt

and the Ricatti equations becomes

−Ṡt = StA + AT St + CT QC − LT
t RLt ST = CT PC

−v̇ = (A − BLt)
T v + CT Qr vT = CT PrT

−σ̇ = rT Qr − vT KT
t RKtvt σT = rT

T PrT

In steady state (T → ∞, rt = r) the solution is given by

ut = −Lxt + Kv

where
L = R−1BT St K = R−1BT

and S is the solution to the algebraic Ricatti equation;

0 = SA + AT S + CT QC − SBR−1BT S

and v found from

v = Φ−T CT Qr where Φ = A − BL

E.4 Reference control with cross term

In this section we will extend the results related to reference control and include
a possible cross term. Consider the problem of controlling a dynamic system in
continuous time given by (20) such that the cost function

J = ‖C̄xT − rT ‖
2
P +

∫ T

0

‖zt − rt‖
2
Q dt

where
zt = Cxt + Dut

is minimized. This equivalent to the (standard LQ) cost function

J = (C̄xT − rT )T P (C̄xT − rT ) +

∫ T

0

(Cxt + Dut − rt)
T Q(Cxt + Dut − rt) dt (26)
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is to be minimized.

The Bellman equation will in case be

−
d

dt
tVt(xt) = min

ut

[

(Cxt + Dut − rt)
T Q(Cxt + Dut − rt) +

d

dt
xVt(xt)(Axt + But)

]

(27)
with the end point constraints

VT (xT ) = (C̄xT − rT )T P (C̄xT − rT )

If we test the candidate function

Vt(xt) = xT
t Stxt − 2vT

t xt + σt

where
ST = C̄T PC̄ vT = C̄T PrT σT = rT

T PrT

then the inner part of the minimization in (27) will be

I = (Cxt + Dut − rt)
T Q(Cxt + Dut − rt) + 2

[

xT S − vT
]

(Ax + Bu)

= xT (CT QC + AS + SAT )x + rT Qr + uT DT QDu

+ 2xT CT QDut − 2rT
t QDut

− 2
[

rT QC + vT A
]

xt + 2(xT S − vT )But

= xT (CT QC + AS + SAT )x + rT Qr − 2
[

rT QC + vT A
]

xt

+uT DT QDu + 2xT CT QDut − 2rT
t QDut + 2(xT S − vT )But

The minimum for the this function is according to Appendix A given by

ut = −
[

DT QD
]−1(

(DT QC + BT St) xt − BT vt − DT Qrt

)

The candidate function is in fact a solution to the Bellman equation in (25) if

−Ṡt = StA + AT St + CT QC − (CT QD + SB)(DT QD)−1(DT QC + BT St)

−v̇ = (A − B(DT QD)−1(DT QC + BT St))
T v + CT Qr − (CT QD + SB)(DT QD)−1DT Qr

−σ̇ = rT Qr − (vT B + rT QD)(DT QD)−1(BT vt + DT Qrt)

The terminal conditions are:

ST = CT PC vT = CT PrT σT = rT
T PrT

If we introduce the gains

Lt =
[

DT QD
]−1

(DT QC + BT St)

Kt =
[

DT QD
]−1

BT Mt =
[

DT QD
]−1

DT Q

then the control law can be written as

ut = −Ltxt + Ktvt + Mtrt

and the Ricatti equations becomes
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−Ṡt = StA + AT St + CT QC − LT
t (DT QD)Lt ST = CT PC

−v̇ = (A − BLt)
T v + (C − DL)T Qr vT = CT PrT

−σ̇ = rT Qr − (vT
t KT

t + rT
t MT )(DT QD)(Ktvt + Mtrt) σT = rT

T PrT

In steady state (T → ∞, rt = r) the solution is given by

ut = −Lxt + Kv + Mr

where
Lt =

[

DT QD
]−1

(DT QC + BT St)

Kt =
[

DT QD
]−1

BT Mt =
[

DT QD
]−1

DT Q

and S is the solution to the algebraic Ricatti equation;

0 = StA + AT St + CT QC − (CT QD + SB)(DT QD)−1(DT QC + BT St)

and v found from

v = Φ−T (C − DL)T Qr where Φ = A − BL


