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Rolling Sto
k Re
overy ProblemJulie Jespersen Grotha,b, Jens Clausena,b, and Jesper LarsenbaDSB S-tog, DenmarkbInformati
s and Mathemati
al Modelling, Te
hni
al University of Denmark,DK-2800 Kongens Lyngby, DenmarkFebruary 23, 2009Abstra
tReal time de
ision support in railway operations is an area whi
hhas so far re
eived limited attention. In this paper we address realtime re
overy of a rolling sto
k plan. Given a disturbed rolling sto
kplan the obje
tive is to return qui
kly and inexpensively to the originalrolling sto
k plan. Ea
h train unit is hen
e rerouted through the trainnetwork so that ea
h terminal departure is 
overed suÆ
iently wrt.seats relative to demand and so that the train unit paths are feasiblewith respe
t to 
onne
tions.We address the rolling sto
k re
overy problem using a method basedon de
omposition where �rst the number and order of train units forea
h departure are determined. Given this knowledge we �nd the trainpath for ea
h train unit. The experimental results show promisingsolution times and quality indi
ating appli
ability in pra
ti
e.1 Introdu
tionDuring the last years there has been an in
reased fo
us on developing tools toaid the planning pro
ess in railway transportation. The tools are 
omputersoftware, whi
h 
an fully or partially automate parts of the planning pro
ess.As in other industries the initial fo
us has been on strategi
, ta
ti
al andoperational planning. Only lately fo
us has turned to the area of short termand real time planning. This paper 
on
entrates on the area of rolling sto
k1



real time planning. All models are based on the suburban railway networkin Copenhagen, Denmark. The railway operator operating the network isDSB S-tog A/S.The areas of operational, short-term and real time planning, 
an with respe
tto rolling sto
k be des
ribed as follow.Operational The operational planning pro
ess is based on the ta
ti
alplan, whi
h de�nes the number of train units and whi
h type is as-signed to ea
h de�ned train task. A train task in this 
ontext is de�nedby a departure from a station and an arrival at another station.Thestations most often are rolling sto
k depots. Rolling sto
k unit typesare assigned to train tasks in su
h a way that later, train unit routes
an be build for physi
al units that enables ea
h train unit to visit themaintenan
e 
enter within the prede�ned safety time and kilometerlimit.Also, in operational planning adjustments are made with respe
t toinfrastru
ture maintenan
e works. This happens between the ta
ti
aland the operational rolling sto
k planning.Short-term Short-term planning in the railway business 
on
erns the rout-ing of the physi
al train units 1-3 days in advan
e of operation. Alsoin this phase small adjustments to the number and type of train unitsassigned to ea
h train task may be ne
essary.Real time The major di�eren
e from operational to short-term planning ofrolling sto
k is that for the latter information of the physi
al train ID'sare in
luded. This level of detail is maintained also in real time. Realtime planning is 
ondu
ted during the operation. Real time rollingsto
k planning is the re-planning or re
overy of the plan for physi
altrain units after disruption has o

urred. This is also 
alled rollingsto
k disruption management.In pra
ti
e rolling sto
k dispat
hers monitor the operation of the rollingsto
k plan and the depot plans. In the 
ases where the operation does notrun a

ording to the rolling sto
k plan, the rolling sto
k dispat
her makesreal time de
isions on the re-assignments of train units to train tasks. Often2



suboptimal de
isions are made due to the 
omplexity of the task of manuallyestablishing an integrated solution taking into 
onsideration the re
overy ofseveral trains.There is a substantial 
ost of re-allo
ating train units after a disruption in therolling sto
k plan. The reallo
ation is ne
essary to meet end-of-day depotbalan
e requirements and the maintenan
e requirements of ea
h individualtrain unit. Furthermore, if too many train units are allo
ated to trainsending up at parti
ular depot there may not be suÆ
ient physi
al spa
e inthe depot to park all the train units.Today, when a disruption has o

urred the depot balan
es are often o�implying that the rolling sto
k plan for the following day is also disrupted.Thus, either some train task must be 
overed insuÆ
iently or not 
overedat all resulting in a 
an
ellation of the task.Next, in Se
tion 2 a review of related literature is given. In Se
tion 3, we givean introdu
tion to the terms of rolling sto
k planning. Hereafter, in Se
tion4 we de�ne terms 
on
erning disruption. We introdu
e the Train positionmodel in Se
tion 5, in Se
tion 6 the Train sequen
e model is presented andin Se
tion 7 the Train unit routing model is presented. Finally, in Se
tions8 and 9 we present the Computational results and give a 
on
lusion.2 Literature reviewThe resear
h within the area of rolling sto
k s
hedule optimization has upto re
ently mainly fo
used on the planning phases prior to the day of oper-ation. Only little emphasis has been on the area of real time rolling sto
kre
overy, see Nielsen [10℄. Huisman et al. [8℄ give a survey on state-of-the-artOperations Resear
h methods for solving passenger railway related planningproblems. The real time handling of rolling sto
k is brie
y mentioned andreferen
e is made to the problems of short time planning, whi
h resemblesthe real-time situation. Short-term rolling sto
k planning is done on a day-to-day basis, also adjusting the rolling sto
k plans a

ording to 
hanges inthe timetable due to e.g. rail network maintenan
e work, or adjusting a
-
ording to passenger 
ows, whi
h may have 
hanged the need for rollingsto
k assigned to ea
h train task. 3



Other re
ent surveys on rail operation models are given by Cordeau et al.[5℄, and T�ornquist [14℄.At S-tog, the depots are physi
ally not very large, and only one workshop isavailable for maintenan
e 
he
ks. Already in the initial operational rollingsto
k plan, the paths for the train units lead them pass to the workshop atregular intervals in time and distan
e.The problem of planning rolling sto
k 
an be divided into two subproblems:Firstly, �nding the 
ompositions for ea
h train task in the network and se
-ondly, �nding the paths for ea
h virtual train unit ensuring depot feasibilityand regular maintenan
e 
he
ks. The 
ompositions indi
ate the type, num-ber and order of train units assigned to a train task. The paths ensure thatall train units are routed to pass the workshop at regular intervals.The �rst problem of determining 
ompositions is widely explored. There is adistin
tion between the problems of allo
ating rolling sto
k when the 
eet is
omposed by train units 
ompared to when it is 
omposed by train 
arriagesand train lo
omotives. Papers 
on
erning the lo
omotive s
heduling problemare Cordeau et al. [4℄, Lingaya et al. [9℄ and Bru
ker et al. [3℄.The �rst paper 
on
erning the problem with self-propelled train units isS
hrijver [13℄. In this paper a minimum 
ir
ulation of rolling sto
k on asingle train line running from Amsterdam to Vlissingen and vi
e versa isdetermined. The obje
tive is to ensure suÆ
ient seats available for ea
h traintask. The model does not take the train unit order within a 
omposition intoa

ount. The problem is solved with 
ommer
ial software for respe
tivelyone and two train unit types.In Ben-Khedher [2℄ the problem of 
apa
ity adjustment is dis
ussed. Itis based on the problem of �nding railway 
apa
ity for high speed trainsrunning in the TGV network of SNCF, Fran
e. The model is based on theseat reservation system and the obje
tive is to maximize expe
ted pro�t.Al�eri et al. [1℄ address the problem of 
onstru
ting 
ir
ulations of trainunits. Fo
us is again on a single line. The model 
ouples and de
ouplestrain units from trains as the depots are passed. The order within ea
h
omposition is taken into 
onsideration. The model is tested for two traintypes. The solution approa
h is based on a hierar
hi
al de
omposition intosub problems. First, the model, not taking 
ompositions into 
onsideration,4



is solved. Se
ond, it is 
he
ked whether there is a feasible solution for the
omposition problem.Peeters and Kroon [11℄ present a bran
h-and-pri
e algorithm for solvingthe allo
ation of train units to a single line or a set of intera
ting trainlines. The model is tested on several real-life instan
es of the railway op-erator, NS Reizigers. Obje
tives 
onsidered are those of minimizing trainunit km shortage, minimizing number shunting operations and number ofdriven train unit km. The model is based on a transition graph as is themodel des
ribed in Al�eri et al. [1℄. The authors apply a Dantzig-Wolfede
omposition, reformulating so that a variable is asso
iated with ea
h paththrough the transition graph of all trains.In Fioole et al. [6℄ a model for �nding the 
ompositions of train units on traintasks is presented. Ea
h solution is feasible with respe
t to 
omposition orderin depots and with respe
t to depot 
apa
ities. The model additionally takesinto 
onsideration 
ombining and splitting of trains in depot jun
tions. It isan extension of the model des
ribed in Peeters and Kroon [11℄. The obje
tive
onsiders minimizing with respe
t to eÆ
ien
y, servi
e and robustness. Themodel is implemented and solved in the 
ommer
ial integer programmingsolver CPLEX. This pro
edure improved the solution used in pra
ti
e withup to 6 % with respe
t to number of driven train unit kilometers.Given that the 
omposition problem is solved at short term or real time levelthe problem of �nding paths resembles the problem of �nding work plans(lines of work) for 
rew. The train tasks form a time and spa
e restri
tedpath. Extensive resear
h within the area of 
rew planning has been 
arriedout. Within the area of rail we refer to the survey of Huisman et al. [8℄.In Nielsen [10℄ a generi
 framework for modelling the real time rolling sto
kre-s
heduling problem is des
ribed. This is the problem of re-balan
ing theuse of rolling sto
k on train tasks in real time. Rolling sto
k is 
onsideredat train type level. The modelling is based on the 
omposition model pre-sented in Fioole et al. [6℄ and expanded to 
onsider the end-of-day balan
esof rolling sto
k. The model have the obje
tives of minimizing number of
an
elled trips, 
hanges to the rolling sto
k depot plans and the end-of-dayo� balan
es. The model is solved using CPLEX 10.1. Computation timesvaries from few se
onds up to a minute depending on the problem instan
es5



solved. All 
omputational results are based on data from the Dut
h railwayoperator NS Reizigers.A re
ent paper, Rezanova and Ryan [12℄, on the Train Driver Re
overyProblem approa
hes the problem of re
overing a train driver plan in realtime given that some disturban
es have disrupted the plan. The problem issolved using a set partitioning formulation. Fra
tional solutions for the LPrelaxation of the IP problem is solved used 
onstraint bran
hing, however,most solutions are integer due to strong integer properties of the model.Solutions are found within few se
onds.Another interesting paper on railway re
overy is Walker et al. [15℄. In thispaper a model is des
ribed for simultaneous re
overy of the train timetableand the 
orresponding 
rew plan. Promising results are presented for asingle line of a New Zealand operator.The 
urrent paper addresses the area of real time rolling sto
k re
overy. Noprior resear
h is available on this subje
t. We introdu
e a de
ompositionmethod for the problem whi
h provides good quality solutions qui
kly.3 Basi
 elements of a rolling sto
k planTrain operation runs a

ording to a timetable 
onsisting of terminal depar-tures with prede�ned stopping patterns. Terminal departures are assembledin Trains. Ea
h train is represented by a set of Train tasks forming a Trainsequen
e, see �gures 1(a) and 1(b). The train tasks of a train sequen
e forma prede�ned work plan for the train in whi
h ea
h train task, ex
ept for the�rst and the last, have a known prede
essor and su

essor. This means thatfor two subsequent tasks t1 and t2, ArrivalT ime(t1) < DepartureT ime(t2)and ArrivalDepot(t1) = DepartureDepot(t2), see �gure 2. In the modelspresented later in this paper we exploit the prede
essor/su

essor relationbetween the train tasks.Both rolling sto
k and 
rew operate a

ording to plans whi
h are detailedto a daily level i.e. for ea
h train task it is known whi
h spe
i�
 driverand whi
h spe
i�
 train units will 
over the train task. The rolling sto
kand 
rew plans are assumed optimal for the situation without disturban
es.Therefore, given a disturban
e to either of the plans, we seek to return to6
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Figure 2: Illustration of a train sequen
e in a time-spa
e network
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the original plan as soon as possible. Returning to the original plan meansthat ea
h train unit returns to its originally planned path, whi
h eventuallywill route the train unit to the maintenan
e 
enter.A set of trains with the same stopping pattern and a uniform frequen
ybetween trains form a Train line. The train line 
on
ept is �rst of all usedexternally for representing the timetable to the 
ustomers, but it is also usedinternally for planning and prioritizing.A rolling sto
k s
hedule 
onsists of a set of Train unit routes where ea
hroute refer to a spe
i�
 train unit and 
overs a path of train tasks. Thesetrain tasks may or may not belong to the same train sequen
e.When a train unit leaves or is added to a train sequen
e it is said to bede
oupled from or 
oupled to the train task. The set of train units assignedto a train is 
alled a 
omposition. As mentioned earlier, the 
ompositionde�nes the number of ea
h type of train units and the order in whi
h theyare 
oupled. At S-tog there are two di�erent train unit types. These 
anbe 
oupled in all possible 
ombinations limited by a maximum length of thetrain.At S-tog 
oupling/de
oupling always o

urs at only one end of the traindepending on the depot at whi
h the 
oupling/de
oupling o

urs i.e. thetrain is only open for 
oupling/de
oupling in one end. The route of a trainunit must be feasible with respe
t to the open end of the train. That is, ifa train unit is to be de
oupled from a train, it must be in the open end ofthe 
omposition. When 
oupling a train unit to a train, the train unit mustalso be assigned to the open end of the train. The open versus the 
losedend of a 
omposition at a terminal is illustrated in Figure 3.4 De�ning a disruptionIn
idents o

ur in real time that disturb the planned operation. Some ofthese in
idents are of su
h a size that also the rolling sto
k plan is disturbed.For a more detailed des
ription of the e�e
t disruptions have on the S-togtimetable see Hofman et al. [7℄.To minimize the impa
t of an in
ident, network 
ontrollers employed by8
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Figure 3: Illustration of the open and 
losed end of a 
omposition at theterminal stationthe infrastru
ture owner reroute trains to get operation ba
k to normal asqui
kly as possible.The delays disturbing the timetable may, as mentioned, be of a size thatalso disrupts the rolling sto
k and 
rew s
hedules.A rolling sto
k s
hedule is disrupted when train units are not able to 
overthe train tasks they were expe
ted to 
over. The rolling sto
k s
hedule isa�e
ted by the delays both dire
tly and indire
tly. An example of a dire
tlydisrupting e�e
t is the break down of a train unit thereby 
ausing the trainunit not to be able to 
over its s
heduled train task. Indire
tly, the rollingsto
k s
hedule is a�e
ted by the a
tions of the train route dispat
hers tryingto return the departures to normal.There are several potential negative 
onsequen
es of a disruption in therolling sto
k s
hedule. A rolling sto
k disruption may imply an imbalan
ein the rolling sto
k available at the rolling sto
k depots. This again maylead to train tasks being insuÆ
iently 
overed a

ording to their expe
tedpassenger demand. Another se
ondary disruptive e�e
t 
an be that thereallo
ation of train units to train tasks other than the originally s
heduledones may lead to broken maintenan
e 
onstraints for individual train units.The set of train units being assigned extraordinarily to 
over another trainsequen
e are not ne
essarily of the same type and number as the set of9



train units originally intended for that train sequen
e. Hen
e, future 
ou-plings/de
ouplings on the train sequen
e and other trains running on thesame route may also be a�e
ted.4.1 Obje
tives when minimizing rolling sto
k disruptionThe rolling sto
k dispat
her does not have the time to take into a

ountseveral obje
tives when minimizing the extent of a disruption to the rollingsto
k plan. He tries to minimize the number of departures not 
overed and
hooses the �rst feasible solution he dis
overs in the manual solution pro
ess.Several obje
tives are interesting to in
lude in a rolling sto
k re
overy model.Fioole et al. [6℄ mention seat shortage, eÆ
ien
y and robustness as relevantfor the operational planning phase. These are also relevant in real time.Seat shortage refers to the di�eren
e between the number of seats on thetrain units allo
ated to a train task and the expe
ted seat demand of thetrain task. Maximizing the eÆ
ien
y means that we do not want to operatea train task with more train units assigned than ne
essary, either 
onsideringthe number of ex
ess seats or the number of train unit kilometers driven.The two obje
tives of seat shortage and eÆ
ien
y 
an be 
on
i
ting and willhen
e have to be weighted. Robustness in a rolling sto
k re
overy plan istranslated dire
tly to the number of 
ouplings and de
ouplings planned ina re
overy plan. A re
overy plan with many 
ouplings and de
ouplings isless robust than one that has fewer. We wish to maximize robustness in aplan given that we still weigh the obje
tives of seat shortage and eÆ
ien
yagainst ea
h other. Robustness is therefore also assigned a weight in the�nal obje
tive fun
tion.Seat shortage, eÆ
ien
y and robustness are all obje
tives 
on
erning theassignment of train unit types to train tasks. Other obje
tives 
on
ern thephysi
al train units. In real time the aim is to re
over to the original rollingsto
k plan. However, it may not be possible within the time window ofre
overy or even within the same day of operation to route the train unitsba
k to their original work plans. Hen
e, an obje
tive to in
lude in theobje
tive is the di�eren
e in end depot balan
e between the original and there
overed plan. 10



Type Length No SeatsSE 46 150SA 86 336Table 1: rolling sto
k types4.2 Basi
 
on
epts in a disruptionIt is likely that several delays 
all for re
overy o

ur during the day. In thereal-time situation time is a 
riti
al fa
tor and re
overy de
isions must bemade fast. For ea
h re
overy s
enario we therefore solve within a spe
i�edtime window e.g. two hours and in
lude a limited set of train units. Thestart and end of the time window is the 
onsidered start and end time ofthe disruption.Typi
ally, all train units, k 2 K, assigned to the train lines of the a�e
tedtrain units are in
luded in the re
overy s
enario plus possibly some of theother lines running on the same route and sharing the same depots. Also,all train units lo
ated on the a�e
ted depots at the start time of disruptionwill be in
luded in the set of train units to be replanned for.Ea
h train unit has a kilometer limit,KmLimitk. It indi
ates the maximumnumber of kilometers that the distan
es of the tasks assigned to the trainunit during re
overy must sum up to. Ea
h train unit has a seat 
apa
itymat
hing its train type. For ea
h train unit the start depot, Æ�(k), and apreferred end depot, Æ!(k), are given.At all times two rolling sto
k types, m 2M , are available. These are shortand long train units named SE and SA respe
tively. Sizes of the two rollingsto
k types are listed in Table 1.The train tasks, t 2 T , 
onsidered are those left un
overed, those whi
h areinsuÆ
iently 
overed w.r.t. demand and those for whi
h the assigned trainunits have been in
luded in the re
overy s
enario.For ea
h train task, t, the start and end time, �d(t) and �a(t), and start andend depot, Æd(t) and Æa(t), are known. Ea
h t is asso
iated with a lengthin kilometers, Kmt, and a duration measured in se
onds, T imet. The setof tasks having no prede
essors 
onstitutes T0. The train tasks having no11



su

essors 
onstitute T1. The su

essor of the train task t is denoted �(t).Ea
h train task has a seat demand, Demandt.The set of depots involved in the re
overy s
enario, D, is de�ned by theroutes of the train lines in
luded. For ea
h depot, d 2 D, in
luded in there
overy s
enario the start 
apa
ity of ea
h type of train unit m is given byDepotCapd;m. Composition Order NO seats Length0 SE 150 461 SE - SE 300 922 SA 336 863 SE - SA 486 1324 SA - SE 486 1325 SA - SA 672 172Table 2: CompositionsThe maximum length of the 
omposition assigned to a train is equivalentto the length of two SA train units. Given this maximum length, in fa
t a
omposition 
onsisting of three SE train units or a 
omposition 
onsisting oftwo SE and one SA train unit are appli
able in pra
ti
e. Even though thesetrain 
omposition 
onsisting of three train units are feasible, we omit themfrom our model. Seen from a modelling perspe
tive our model is signi�
antlyredu
ed in size when redu
ing the number of allowed train units from threeto two. Seen from a pra
ti
al perspe
tive, only few train tasks at S-tog willnormally be assigned three train units. More spe
i�
ally, at the ta
ti
alplanning level no train tasks will be assigned more than two units. In are
overy situation three units on a train task o

urs not even on a dailybasis.In the �rst model we will not permit train ex
hanges. That is, de
ouplingof all train units after a train task and 
oupling of an entirely new set oftrain units to the train task su

essor is not possible.It is an important fa
t that all depots in the S-tog network are open for
oupling/de
oupling in only one end of the platform tra
ks. This enablesus to use the position in a train and information of whi
h end of the tra
ksis open for 
oupling/de
oupling to de
ide whether a 
omposition 
hange is12



valid.5 The train unit position modelIn this se
tion we introdu
e the variables, obje
tive, and 
onstraints of theTrain Unit Position model (the Position model). The main variables of themodel des
ribe the assignment of train type to train task and position.Xmtp = ( 1 If a train unit of type m is assigned to task t in position p0 OtherwiseFrom these X-variables the L-variables are derived. The Lmt variables areinventory variables indi
ating the number of train units of type m presentat the departure depot of t immediately before the departure of t.Finally, Omt and Nmt are variables indi
ating whether respe
tively 
ouplingand de
oupling is 
arried out between the tasks t and �(t). Both sets ofvariables are binary.L0 are the start inventory parameters. L0dm indi
ates the number of trainunits of type m lo
ated in depot d at the beginning of the disruption. L1dmare the end 
apa
ity variables indi
ating the number of train units of typem present at depot d in the end of the 
onsidered re
overy period. A desiredend depot 
apa
ity is given by the parameter E[
ap℄md . The variables Emdindi
ate the shortage of train units of type m in depot d in the end of there
overy period.Lmt are 
al
ulated from L0dm and Xmtp . As both are integers, the L-variableswill automati
ally be integer. Therefore, we only require that Lmt 2 <+; 8t 2T;m 2M .The relevant aspe
ts we in
lude in the obje
tive of the positioning modelare seat shortage, number of 
omposition 
hanges, the 
ost of 
overing traintasks with train units and the sum of di�eren
es to the originally s
heduled
apa
ity on the depots, see Eq. 1.
13



Minimize OBJ =W1 �Pt2T (Demandt �Pm2M;p2P Seatsm �Xmtp )+W2 �Pt2T;p2P;m2M Kmt �Xmtp+W3 �Pt2T (Pm2M;p2P Seatsm �Demandt �Xmtp )+W4 �Pt2T;m2M Omt +W5 �Pd2D;m2M Emd (1)
As a train has a maximum length ea
h train task 
annot be 
overed by morethan the maximum number of train units per train. This is guaranteed byEq. 2. 1 �Pm2M;p2P Xmtp �MaxTrainLength; 8 t 2 T (2)Physi
ally at most one train unit 
an be assigned to ea
h position of a traintask. Eq. 3 ensures this.Pm2M Xmtp � 1; 8 t 2 T; p 2 P (3)We 
ontrol the in
oming and outgoing 
ow of depots by three sets of inven-tory 
onstraints, see Eq. 4 to 6.The �rst set of 
onstraints 
ontrols that the initial inventory level is notviolated. This means that for ea
h depot d the tasks departing before the�rst arriving task 
an not use more 
apa
ity than what is present initiallygiven by L0dm. The set of departing tasks before the �rst arrival task ondepot d is denoted �d for all d 2 D. See Eq. 4.Pp2P;t2�d Xmtp � L0dm; 8 d 2 D;m 2M (4)The inventory in a depot of train unit type m immediately after the arrivalof a train task t is given by the start 
apa
ity on the depot minus the sumof every train unit of type m 
oupled to train tasks at that depot before andin
luding t and plus the sum of every train unit de
oupled from train tasksat that depot before and in
luding t. This is handled by Eq. 5.

14



Lmt = L0Æa(t)m �Pp2P;t02T�d(t0)��a(t)Æd(t0)=Æa(t)Xmt0p+Pp2P;t02T�a(t0)��a(t)Æa(t0)=Æa(t)Xmt0p; 8 t 2 T;m 2M (5)The last set of inventory 
onstraints 
on
erns the end 
apa
ity. The end
apa
ity, L1dm, of train unit type m in depot d is given by Lmt for whi
h t isthe last train task arriving on d, �d. See Eq. 6.L1dm = Lm�d ; 8 d 2 D;m 2M (6)We wish to 
ontrol the end depot balan
e by minimizing in the obje
tivefun
tion the shortage of train units de�ned by variables Emd . These arede�ned in Eq. 7Emd � E[
ap℄md � L1dm; 8 d 2 D;m 2M (7)Ea
h depot has an individual upper 
apa
ity on the number of units that
an be stored at that depot. The upper 
apa
ity is estimated by 
ontrollingthe length of the rolling sto
k stored at ea
h depot relative to the lengthof the depot tra
ks, DepotCapd. Eq. 8 
ontrols the 
apa
ity of ea
h depotright after the departure of ea
h task, that is, Æd(t) is the departing depotof t. 0 �Pm Lengthm � Lmt � DepotCapd(t); 8 t 2 T (8)The 
oupling and de
oupling variables are determined in Eq. 9 and 10. Weuse a 
onstant M to �nd the Omt and Nmt variables. This is potentially veryexpensive 
onsidering 
omputation time when M has a high value, however,M 
an be limited to the maximum train length plus one and as the maximumtrain length is 2 units M has a low value.M � Omt � Lm�(t) � Lmt ; 8 t 2 TnT 1;m 2M (9)M �Nmt � Lmt � Lm�(t); 8 t 2 TnT 1;m 2M (10)15



To ensure that no train unit is de
oupled from a train if it is positioned inthe 
losed end of the train 
omposition, we one of the set of equations inEq. 11 depending on the value of the 0-1 parameter ChangePositiont. Thisparameter indi
ate whether open position is 
hanged from one end of thetrain to the other after train task t.
ChangePositiont = 8>><>>: 1 If 
losed position of task t is di�erent from
losed position of su

essor �(t)0 OtherwiseIf ChangePositiont = 1Xmtp �Pp02P;p0!=pXm�(t)p0 +W�(t)Xmtp �Pp02P;p0=pXm�(t)p0 + V�(t)else Xmtp � Xm�(t)p (11)Vt andWt are length indi
ator variables. Vt is one if one train unit is assignedto task t and zero otherwise for all t 2 T . Wt is one if two train units areassigned to task t and zero otherwise for all t 2 T . They are determinedthrough Eq. 12 and 13.Wt �Pp2P;m2M Xmtp � 1 � 2 �Wt; 8 t 2 T (12)Vt +Wt = 1; 8 t 2 T (13)The results a
hieved when solving the TUP model are 
omparable to theresults that are a
hieved when solving the model des
ribed in Fioole et al.[6℄. The di�eren
e between the two models lie in the handling of the 
ompo-sitions. In the Fioole model the 
ompositions are handle as set of train unittypes i.e. a 
omposition is assigned to ea
h train task and binary variablesdes
ribes spe
i�
ally the transformation from 
omposition to 
ompositionon 
onse
utive train tasks on the same train sequen
e. In our model wehandle the positions in the train's 
omposition spe
i�
ally. The Positionmodel is a feasible 
hoi
e due to that the maximum length of 
ompositionson train tasks is limited to 2 train units.16



5.1 Size of modelGiven a time window of the disruption of two hours and in
luding all trainlines interse
ting the most dense part of the S-tog network, a total of 550train tasks result. We have restri
ted the problem to only 
onsider 
ompo-sitions up to two unit as opposed to the real restri
tion of three units. TheTrain unit position model has therefore approx. 6500 variables and approx.6500 
onstraints. An expanded model for the problem 
onsidering 
omposi-tions of up to three train units (the S-tog maximum length of 
omposition)will have approx. 8000 variables and approx. 8500 
onstraints. This is anestimate as Equation 3 must be 
hanged a

ording to the new maximum
omposition length.In 
omparison the Fioole model in 
omparison has approx. 27000 variablesand 12000 
onstraints when 
onsidering 
ompositions up to two train unitsand approx. 41000 variables and 16000 
onstraints when 
onsidering 
om-positions up to three train units.5.2 Solution approa
h for Train unit position modelThe model is implemented in C# using Con
ert Te
hnology from ILOG andsolved using Cplex 10.0. Given the size of the problem we expe
t solutionsto be a
hieved within a

eptable 
omputation times.6 Train sequen
e modelWhen a train unit's path 
onsists of one train sequen
e it is 
ertain that thetrain unit is not de
oupled or 
oupled at any time. That is, 
oupling andde
oupling refer to train unit 
ows to and from the train sequen
e. Bothare time demanding and in a periodi
 timetable there will not ne
essarilybe suÆ
ient time for performing these. It is assumed that if the number of
ouplings/de
ouplings are de
reased the robustness of the rolling sto
k planis in
reased. That is, the rolling sto
k plan will be less sensitive towardsminor interferen
es in the operation.This se
tion des
ribes the Train sequen
e model (Sequen
e model). Themodel is an assignment model, whi
h if possible assigns a single, physi
al17



train unit to ea
h train sequen
e in the disruption s
enario, su
h that thetrain unit 
an feasibly 
over the entire train sequen
e. In this way the modelmirrors qualities that are part of solutions known to work well in pra
ti
e.The 
onsequen
e of only 
overing the set of train sequen
es with one trainunit ea
h (if in fa
t a train unit exists that 
an make a feasible 
over) isthat for a set of train tasks the demand will not be fully 
overed. For someof the train tasks one train unit will be assigned but the demand ex
eedsthe seat 
apa
ity of that train unit. For some train tasks no train unit willbe assigned and the demand not 
overed at all. The set of train tasks not
overed suÆ
iently will be addressed in a third model.There is a preferen
e of whi
h train unit type to assign in the pro
ess ofassigning train units to train sequen
es. The preferred train unit type is
hosen given the results from the Train unit position model. Re
all thatthis model gives information regarding number and type of train unit typesassigned to ea
h train task. For ea
h train sequen
e the train unit type 
ho-sen as the preferable 
overage is the type being present on ea
h 
ompositionof the train tasks of the train sequen
e.The Train sequen
e model has one set of variables, �ks , whi
h assign physi
altrain units to train sequen
es.�ks = ( 1 If train unit k is assigned to train sequen
e s0 OtherwiseThe obje
tive fun
tion of the Train sequen
e model is to maximize the sumof preferen
es of train units, k, assigned to train sequen
es, s, see Eq. 14. Asmany train sequen
es are assigned a train unit as possible provided that atrain unit exists for the train sequen
e that 
ontributes to a feasible solution.The preferen
e of assigning train unit k to train sequen
e s is 
ks . It takesthe value of 1 if train unit k is a possible mat
h for sequen
e s and -1 if itis not. Maximize Ps2S;k2K 
ks � �ks (14)Ea
h train 
an be 
overed by at most one train unit. The train unit, k, musthave the same start and end depot, Æ�(k) and Æ!(k), as the train sequen
e.18



Start and end depot of the train sequen
e s are denoted Æ�(s) and Æ!(s).This is ensured by Eq. 15.P k2K;Æ�(s)=Æ�(k)Æ!(s)=Æ!(k) �ks � 1; 8 s 2 S (15)For the train unit 
overing a train sequen
e maintenan
e requirements mustbe respe
ted. This is easily in
luded in the Sequen
e model, see Eq. 16.EndRuns is a parameter indi
ating the number of kilometers whi
h areleft after re
overy until the depot is rea
hed. This 
an be derived fromthe original rolling sto
k plan. KmBeforek is a parameter indi
ating thenumber of kilometers that the unit has driven before the start of the re
overyplan.Ps2S (Kms +EndRuns) � �ks � KmLimitk �KmBeforek; 8 k 2 K(16)The 550 train tasks mentioned in the dimensioning of the Train unit positionmodel groups into less than 70 train sequen
es. Available for 
overing theproblem are at most 130 train units. This results in approximately 9000variables and less than 350 
onstraints.Again the model is not of 
onsiderable size and we solve it using Cplex 10.0and Con
ert Te
hnology where the model is implemented in C#.7 The train Routing modelAs mentioned in the previous se
tion 6 the Train sequen
e model will only
over some of the train tasks a

ording to their respe
tive demands. Somewill either be left un
overed or 
overed insuÆ
iently a

ording to demand.These must be 
overed by valid train task paths using the train units not yetassigned to a train path. This is done by the Train Routing Model, whi
his an assignment model 
onsidering ea
h train task individually.The main variables of the Train Routing model are, qkt . These variablesassign train units to train tasks. 19



qkt = ( 1 If train unit k is assigned to train task t0 OtherwiseTo 
ontrol the solutions of the model a se
ond set of variables is introdu
ed,�kt . The �kt variables are used to 
ontrol the number of 
ouplings/de
ouplingsin the solution.�kt = ( 1 If train unit k is assigned to train task t and to the su

essor of t, �(t)0 OtherwiseA set of arti�
ial tasks are added to the problem representing the sour
es,Tso, and sinks, Tsi, of train tasks. There are jKj sour
es and jDj � jKjsinks. The set of train tasks are in the set Ttasks. The joint set of tasks isT = TtasksSTsoSTsi.The obje
tive fun
tion maximizes the total sum of 
overed demand and thesum of 
ouples of 
onse
utive tasks 
overed by the same train unit. The useof physi
al train units also in
luded in the obje
tive by the sum of sour
esand sinks. All terms are weighted using weights, W1 to W4. See Eq. 17.Maximize W1 �Pt2Ttasks;k2K qkt +W2 �Pt2Tso;k2K qkt+W3 �Pt2Tsi;k2K qkt +W4 �Pt2Ttasks;k2K �kt (17)Ea
h train task must be 
overed at most 
orresponding to the number ofea
h train unit type assigned to the task in the Position model, see Eq. 18and 19. The parameter 
arsm represent the number of 
ars on train unittype m. 
onstraining the number of 
ars and the number of train units on atrain task to be the same in the Routing model as in the Position model, weare ensured that the right train 
omposition is assigned to the train task.Pk2K;typek=m 
arsm(k) � qkt �Pp2P;m2M 
arsm �Xm;pt ; 8 t 2 Ttasks(18)Pk2K;typek=m qkt �Pp2P;m2M �Xm;pt ; 8 t 2 Ttasks (19)20



The �kt variables are de�ned in Eq. 20.2 � �kt � qkt + qk�(t); 8 k 2 K; t 2 Ttasks n T 1 (20)The train tasks assigned to a train unit must form a valid train route i.e. apath through the network, whi
h is feasible with respe
t to time and pla
eof ea
h adja
ent pair of train tasks on the route. Also, the train route forea
h individual train unit must be valid with respe
t to any required startand end depots of the train unit. We add a set of virtual nodes to thenetwork, one set representing the sour
e nodes, Nso, of ea
h individual trainunit and one set representing the sink nodes, Nsi, of ea
h individual trainunit. For ea
h train unit there is a sink node for ea
h depot i.e. there arejDepotsj � jTrainunitsj sinks in total.The 
onstraints ensuring valid paths are in Eq. 21 to 25. Eq. 21 ensuresthat if the sour
e of a train unit is not 
overed, the train unit is not 
overingany of the train tasks. Eq. 22 ensures that if the sour
e is 
overed for a trainunit, then so is exa
tly one of the sinks of the train unit. Eq. 23 and 24 areequivalent to the 
ow 
onstraints of a multi 
ommodity 
ow model. Theyensure that if train unit k is 
overing train task t then at least one of theprede
essors, pred(t), respe
tively su

essors, su

(t) are 
overed. Finally,Eq. 25 ensure that if train unit k is assigned to t then it 
an 
over none ofthe train tasks parallel in time to t. Time parallelism is illustrated in Fig.4. The four tasks t1 to t4 are all time parallel to t be
ause they interse
t thetime interval between departure time and arrival time of t. The parametern in Eq. 25 indi
ates the maximum number of train tasks present within thetime interval of t on any other sequen
e in the relevant problem instan
e.See Fig. 5.qkt � qkt0 ; 8 k 2 K; t0 2 Tsour
e(k); t 2 Ttasks n Tsour
e(k) (21)Pt2Tsinks(k) qkt � qkt0 = 0; 8 k 2 K; t0 2 Tsour
e(k) (22)Pt02Tpred(t) qkt0 � qkt ; 8 k 2 K; t 2 Ttasks (23)21
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Figure 4: Illustrating time parallelism: t1; :::; t4 are all time parallel with tPt02Tsu
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Figure 5: Illustrating the meaning of parameter n: Three train tasks arepresent in the train sequen
e during the time span of t22



tages when in
luded in the solution pro
ess. First, it heavily redu
es thenumber of variables that must be taken into a

ount in the Train routingmodel. Se
ond, we de
rease the number of broken 
omposition 
onstraints.The disadvantage is that de
omposing into three models instead of two maygive a solution farther from optimal. However, the train sequen
e modelimitates features of solutions working well in pra
ti
e. When the train se-quen
e model is in
luded in the solution pro
ess the 
onstraints in Eq. 26are in
luded in the train routing model ensuring that train unit k is assignedto train task t if t is in train sequen
e s and s has been 
overed by k in theSequen
e model.�ks = 1) qkt = 1; 8 k 2 K; t 2 Ttasks (26)We implement the model using Con
ert Te
hnology and solve the modelwith Cplex. There are, however, potentially more than 75,000 variables andsolving the model with Cplex is expe
ted to be too time 
onsuming. Thelarge number of variables stem mainly from the qkt variables, whi
h a

ountfor 60,500 of the total. The rest are the auxiliary variables.8 Computational resultsExtensive experiments have been 
arried out for the de
omposed approa
h.We �rst dis
uss experiments with the main purpose of 
hoosing a settingof the weights in the obje
tive fun
tion of the Position model. The weightsmust provide a suÆ
iently good solution quality and a suÆ
iently short 
om-putation time. The se
ond set of experiments aims at determining a weightsetting for the Routing model obje
tive fun
tion. Finally, we present exper-iments illustrating the di�erent results a
hieved when respe
tively in
ludingand ex
luding the Sequen
e model in the solution approa
h.8.1 Experimental results for Position modelA set of experiments on various weight settings for the obje
tive fun
tion ofthe Position model form the basis for further experiments. The aim of the23



Fa
tor TypeA Standing passengersB Train unit kilometersC Ex
ess seatD Composition ChangesE End 
apa
ity di�eren
eF Instan
e sizeTable 3: The fa
tors with varying weights.Level A B C D E F0 0 0 0 0 0 C1 1 1 1 1 104 A, A+2 10 10 1000 1053 100 100Table 4: The di�erent levels used for fa
tor experiments.experiments is to derive a set of weights for whi
h solution quality and 
om-putational time are both a

eptable. The experiments will be 
onstru
tedas a statisti
al design of experiments (DOE), see ? ℄.Two sets of fa
tor experiments is 
ondu
ted ea
h having a statisti
al DOE.In the �rst set of experiments six fa
tors of varying levels are in
luded, seeTab. 3. The se
ond set of experiments in
ludes fa
tors A to E. Fa
tor A toE represent the weights of the obje
tive fun
tion of the Position model asdes
ribed in Tab. 3.We have used the values presented in Tab. 4 for ea
h weight.A full design of experiments 
ontains 288 instan
es without fa
tor F and 576in
luding fa
tor F. We have used a design limiting the number of experimentsto 72 for all experiments where ea
h of the 72 experiments is equivalent toa spe
i�
 weight setting of the obje
tive fun
tion.The disruptions are based on real-life data from the timetable in 2006. Adata set is 
hosen with low pun
tuality and in whi
h train units endedup in wrong lo
ations a

ording to their individually planned end station.A disruption is limited within a time window. The train tasks in
ludedin the disruption interse
t the time window and are in
luded in the train24



sequen
es of a set of train lines given as input. The train units in
luded inthe disruption are those being assigned to the in
luded train tasks plus thetrain units being lo
ated at the depots of the train lines at the start of thedisruption time window.We run two types of experiments. In the �rst type, fa
tor F is in
luded atthe levels shown in Tab. 4. In the se
ond type we ex
lude fa
tor F. Wehave run 4 di�erent sets of lines, A&A+, C, E and H&H+ for the type 2experiments1. The experiments were run with an upper limit on the solutiontime on 300 se
onds.We have used the method des
ribed in ? ℄, to develop the DOE. A statisti
alfun
tion for a general linear model is derived using information from the 72experiments. The fun
tion 
an be used for estimating the 
ontribution ofea
h fa
tor to the obje
tive for some parameter setting. We assume thatthe 
ontributions from third order 
orrelations and higher are negligible.For a DOE with three fa
tors, the statisti
al fun
tion is shown in Eq. 27.A fun
tion for 6 fa
tors A to F follows the same stru
ture.FOBJ = A+B + C +AB +AC +BC + " (27)The basi
 idea of using DOE is to redu
e the number of experiments ne
es-sary to gain information on the 
ontribution and importan
e of ea
h term inthe obje
tive. By 
al
ulating the value of the statisti
al obje
tive fun
tionand 
omparing it to the values observed in the results, we get an impres-sion of how well the 
hosen experiments des
ribe the e�e
t from ea
h fa
tor.If the average error, ", is low the 
hosen experiments are assumed repre-sentable for 
hoosing a weight set for the obje
tive fun
tion of the mathe-mati
al model that 
an be used in further experiments. We also evaluate the
ontributions from ea
h fa
tor on ea
h of the terms in the obje
tive. If the
ontribution is as expe
ted, we assume the experiments representable andthereby a suÆ
ient basis for 
hoosing a weight set for the obje
tive fun
tionof the mathemati
al model that 
an be used in further experiments.We use the statisti
al fun
tion to 
al
ulate the 
ontribution of fa
tor Ato E, the 
omputational time and the joint obje
tive fun
tion. In Tab.1The S-tog lines are illustrated in the S-tog network in Fig. 625



Figure 6: The S-tog network
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Fa
tor "Type1 "A&A+Type2 "CType2 "EType2 "H&H+Type2A 7.93 6.05 6.05 8.75 4.50B 1.50 3.71 3.09 2.47 1.46C 1.29 11.90 10.44 8.61 4.90D 2.23 9.32 4.48 4.41 5.16E 1.32 27.91 64.08 14.40 9.82Table 5: The average error 
ontribution for the di�erent terms in the obje
-tives given the estimated obje
tive fun
tion.5 the average error 
ontributions measured in per
entage of the averageobservation are listed for all experiments.Type1 experiments: For experiments of Type1 we see that the averageerror 
ontributions for all terms are lower than those of Type2 ex
ept forfa
tor A. The low error 
ontributions indi
ate that the Type1 experimentsare representative, however, evaluating the 
ontributions from ea
h fa
toron all terms in the obje
tive we observe that the 
ontributions 
annot bereasonably explained. For example, fa
tor C at the high levels 
ontributesto the kilometer term of the obje
tive fun
tion of the Position model, seeAppendix E.A. This is a 
ontradi
tion as fa
tor C relates to the standingpassengers. If the number of standing passengers are de
reased by the modelmore train units are used and hen
e the number of train unit kilometers isin
reased. Another example of a 
ontradi
tion is that fa
tor C punish itselfat all levels. The �rst order fa
tor 
ontributions are en
losed in AppendixE.A.Be
ause of the la
k of 
onsisten
y between expe
ted and a
tual 
ontributionswe 
on
lude that Type1 experiments are not representative.Type2 experiments: Considering the Type2 experiments we make the fol-lowing observations on the error 
ontributions and the �rst order fa
tor
ontributions2:A&A+ : The error 
ontributions are espe
ially high for fa
tor E and C.Also, if we 
onsider the di�erent 
ontributions that the fa
tors make2The �rst order fa
tor 
ontributions are en
losed in Appendix E.B27



to ea
h term in the obje
tive there are 
ontradi
tions similar to theones observed for Type1 results.C : The error 
ontributions are espe
ially high for fa
tor E and C. The
ontributions from ea
h fa
tor on ea
h term in the obje
tive are all asexpe
ted.EandH&H+ : For both the experiments on E and H&H+ the error 
on-tributions are espe
ially high for fa
tor E. The 
ontributions from ea
hfa
tor on ea
h term in the obje
tive are all as expe
ted.For all line 
ombinations but A&A+ the instan
es solve to optimality withinthe 
omputation time limit of 300 se
onds. A large part of the A&A+instan
es do not �nd the optimal solution within the 300 se
onds. Theerror 
ontribution and the la
k of ability to des
ribe the 
ontributions ofthe A&A+ instan
es indi
ate that these are not representative. As they arenot representative, we will not use them for determining the weight set usedfor further experiments.Given the average error 
ontributions in Tab. 5 and the evaluation of theexpe
ted versus the a
tual 
ontributions 
ommented above, we base our
hoi
e of a weight setting for further experiments on the instan
es of C, Eand H&H+.We also investigated whether one 
an tra
e dependen
y between the 
om-putational time and the weight setting used for the obje
tive. However,results show that there is no 
onne
tion. When we use the statisti
al fun
-tion for estimating the 
omputational time the average error 
ontributionvaries from 20 to 75 %.Choi
e and validation of weight settingWe have 
hosen the set of weights by �ltrating the experimental results withrespe
t to the 
riteria listed below.1. Choose a subset of instan
es with lowest end 
apa
ity di�eren
e.
28



2. Choose a subset of instan
es where the maximum number of standingpassengers is low. Preferably the maximum number of standing pas-senger should not ex
eed 36. This is 10 per
ent of the seat 
apa
ity inan SA train unit.3. Choose the experiments whi
h has the lowest average values of ex
essseats.4. Choose the set of instan
es with lowest number of driven train unitkilometers.Given a sele
tion of instan
es, whi
h are based on the 
riteria above, we as-sume that results are satisfa
tory with respe
t to all terms in the obje
tivefun
tion. Based on the sorting and �ltration we have 
hosen the instan
ethat has a short 
omputation time. The �nal 
hoi
e of weight setting usedfor all further experiments is the 
ombinationWeights1 = (100; 1; 10; 0; 104).Furthermore we have 
hosen one more weight set,Weights2 = (1; 1; 1; 100; 105),for 
omparison. Weights1 = (W1;W2;W3;W4;W5)1 andWeights2 = (W1;W2;W3;W4;W5)2are parameters used for the obje
tive fun
tion in the Position model whereWi is the weight on the ith term in the obje
tive fun
tion. We expe
t thatWeights1 emphasizes spe
i�
ally the number of standing passenger whereaswe expe
t that Weights2 puts a higher emphasis on number of driven kilo-meters and the amount of ex
ess seats, though standing passengers are stillgiven some importan
e.We have run a set of experiments on ea
h of the two weight sets. Thepurpose of the experiments is to verify the expe
ted di�eren
e of obje
tivesfor ea
h of the two weight settings and to see if Weights1 are more likely tohave a short 
omputation time than Weights2. Ea
h experiment is de�nedby a set of lines and re
overy time window. The line sets are representedin Tab. 6. The re
overy windows are respe
tively 1, 2 and 3 hours in themorning peak hour starting from 7 o'
lo
k. The line 
ombinations listed inTab. 6 
ombined with the three di�erent time periods gives 63 experimentalinstan
es. As explained these instan
es are run for two weight sets whi
hgives a total of 126 experiments. The upper limit on 
omputational time forea
h instan
e is 3600 se
onds. 29



LinesACEHA+H, H+A, A+C, H+H, CC, A+E, A+E, AE, A, A+C, H, H+E, H+, CE, A+, CE, H+, AE, C, A+, AE, C, H, H+H, H+, C, A+, AH, H+, C, A+, A, ETable 6: Lines in
luded in experiments, see Fig. 6.
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(b) Weights2 = (1; 1; 1; 100; 105)Figure 7: Ea
h point in the plots is the average for a solution over all itstrain tasks of number of respe
tively standing passenger and ex
ess seatsIn both plots in Fig. 7 the average ex
ess seats versus the average standingpassengers for ea
h of the 63 experimental instan
es are illustrated. Ea
hpoint in the plots relates to a solution. Noti
e that it is possible in a solutionto have both an average number of ex
ess seats and an average number ofstanding passengers larger than zero as we average over all train tasks inthat solution. For a single train task the number of respe
tively standingpassengers and ex
ess seats 
annot both ex
eed zero.If we inspe
t the two �gures in 7 we see that the instan
es illustrated in7(a) as expe
ted in general have mu
h fewer standing passengers on averagethan the instan
es in 7(b). The average numbers of ex
ess seats in theWeights1 solutions are not mu
h higher than numbers of ex
ess seats in theWeights2 solutions. For both �gures the relationship between the averagenumber of standing passengers and the average number of ex
ess seats seemsapproximately linear.In Fig. 8 the two plots show the sum of ex
ess seats versus the numberof 
omposition 
hanges for ea
h experimental instan
e. The numbers of
omposition 
hanges only vary little from the Weights1 solutions to theWeights2 solutions. Both Fig. 8(a) and 8(b) indi
ate a linear relationshipbetween 
omposition 
hanges and ex
ess seats.The two plots in Fig. 9 shows the sum of standing passengers versus thenumber of end 
apa
ity di�eren
es for ea
h experimental instan
e. There31
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(b) Weights2 = (1; 1; 1; 100; 105)Figure 8: Sum of ex
ess seats versus number of 
omposition 
hanges.
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(b) Weights2 = (1; 1; 1; 100; 105)Figure 9: Sum of standing passengers versus number of end 
apa
ity di�er-en
es.are mu
h fewer standing passengers in theWeights1 solutions, see Fig. 9(a)than in the Weights2 solutions, see Fig. 9(b). The number of depot end
apa
ity di�eren
es only vary little, however, a tenden
y shows that a highemphasis on few standing passengers results in relatively more end 
apa
itydi�eren
es. The number of end 
apa
ity di�eren
es do not in
rease mu
h inthe Weights1 solutions.We have 
hosen Weights1 partly be
ause these weights lead to low 
om-putation time. We are interested in whether the low 
omputation timeobserved in the initial experiments is low in general. We therefore 
ompare
omputation times of Weights1 results with those of Weights2. In Fig.32
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Figure 10: The di�eren
e in 
omputation time for ea
h instan
e versus thenumber of train tasks.10 the di�eren
es in solution time between the Weights1 solutions and theWeights2 solutions are illustrated. Generally there is little di�eren
e be-tween the solution time for the two weight sets, however, there is a set of8 to 10 problems that solve in mu
h shorter time for Weights1. Solutiontimes for Weights1 are approximately 90% faster than those of Weights2.There is only one instan
e where Weights2 is mu
h faster than Weights1.General 
omments on Position model resultsThere is a large variation in the results of the experiments with respe
t todepot end 
apa
ities. The quality with respe
t to standing passengers andex
ess seats varies independently of the depot end 
apa
ities. Finding a goodbalan
e between standing passengers and ex
ess seats may e�e
t the depotend 
apa
ities. A high weight on depot end 
apa
ity will often in
rease boththe number of standing passengers and the ex
ess seats. When we assign alow weight to the number of standing passengers we experien
e an in
reasein ex
ess seats.In pra
ti
e it is subje
tive whether emphasis must be on e.g. low numberof standing passengers or low end 
apa
ity di�eren
es on depots. How theweights are set will a�e
t the 
omputation time.
33



8.2 Experimental results for Routing model obje
tive fun
-tion weightsAs for the Position model we have for the Routing model run experimentalinstan
es for a set of di�erent weight sets. We have used three setups, seeTab. 7. The �rst setup in
ludes the Sequen
e model solutions in ea
h run ofan instan
e. The se
ond setup dis
ards the Sequen
e model solution. Thethird setup varies the use of the Sequen
e model over in
luding the model,ex
luding the model or in
luding the model as preferen
es in the obje
tivefun
tion. In the latter 
ase, preferen
es are generated from the result of theSequen
e model. That is, if a train unit has been assigned to a train sequen
ein the Sequen
e model, there is in the Routing model a high preferen
e forassigning the same train unit to the train tasks of the train sequen
e in theRouting model.For ea
h of the setups presented in Tab. 7 we have used a fa
torial design toperform a set of experiments. The fa
tors are the weights in the obje
tivefun
tion. The weight of 
overing a task is named fa
tor A, the weightassigned to sour
es is named fa
tor B, sinks are named C and the weight ofthe binary variables telling whether two subsequent train tasks are assignedto the same train unit is named D. In the instan
es following the third setupthe varying use of the Sequen
e model is in
luded as a fa
tor E. The valuelevels of ea
h fa
tor used are listed in Tab. 8.We run instan
es based on the A&A+ and C train lines des
ribed in Se
tion8.1. A full DOE 
ontains 35 = 243 experiments for Setup3 and 81 for Setup1and Setup2. By using the DOE the number of runs has been redu
ed forea
h Setup a

ording to Tab. 7.As we are interested in a reasonable solution quality within a short 
om-putation time we put an upper limit on the 
omputation time of ea
h run.Prior to ea
h run of the Routing model an exe
ution of the Position model�nds the number of train units of ea
h type to assign to ea
h train task.Hereafter, the Sequen
e model is run. The upper limits on the 
omputationtime of the Position model is 600 se
onds. The Sequen
e model is solved atan aggregated level and needs no upper limit as it always solves to optimal-ity in less than 1 se
ond for the instan
es 
hosen in our test setups. Finally,we have set the upper limit on the Routing model 
omputation time to 360034



Number Setup Number of runsSetup1 In
luding the Sequen
e model in ea
h experiment 53Setup2 Ex
luding the Sequen
e model in ea
h experiment 53Setup3 Varying the use of Sequen
e model as a fa
tor 72Table 7: Experimental setups used for the routing parameter 
hoi
e experi-ments. Level A B C D E0 0 0 0 0 In
l. Seq.1 100 -10 -10 1000 Pref. from Seq.2 1000 -50 -50 10000 Ex
l. Seq.Table 8: The di�erent levels used for fa
tor experiments of the Routingmodel.se
onds.In Tab. 9 the error 
ontributions in per
entage of the average obje
tive arelisted for �ve di�erent measures for ea
h of the experimental setups3. Thehighest average error 
ontributions are of the tests on Setup3 where fa
torE is in
luded. For Setup2 the error 
ontributions are higher for instan
eson train lines A&A+ than those on C. All average error 
ontributions arehigh when estimating 
omputation time.The results suggest that an estimate has a high error if many of the runsin the experiment 
annot be solved to optimality. Also, if the use of thesequen
e model is varied, the error 
ontribution will be high. Even thoughthe average error 
ontributions are low on various obje
tives of the experi-mental setup, the average error 
ontribution on the estimate of 
omputationtime is high indi
ating that 
omputation time 
annot be predi
ted with thestatisti
al fun
tion. Given these observations we have 
hosen to use theexperiments based on setup 1 from Tab. 7 to base the 
hoi
e of weight setused for further experiments.Given the experiments 
orresponding to setup1 we have �ltered the solu-tion data relative to the maximum di�eren
e in depot end 
apa
ity, themaximum number of standing passengers and the maximum average num-3For information on fa
tor 
ontributions see Appendix E.C35



Obje
tive Setup3 Setup2 Setup1C A, A+ C A, A+ C A, A+Standing passengers 45:78 23:85 0:27 5:14 1:98 � 10�13 0:93Ex
ess seats 6:84 4:12 0:38 5:32 2:49 � 10�12 0:22Driven kilometers 7:22 5:00 0:13 3:37 0 0:07End 
apa
ity di�. 4:60 4:85 0:88 4:02 2:36 � 10�12 1:59Computation time 16:38 14:05 16:44 0:01 18:96 15:01Table 9: The average error 
ontribution on di�erent obje
tives given theestimated obje
tive fun
tion.ber of standing passengers. Based on the �ltering for train lines A&A+,we have 
hosen the weight set, Weights1 = (100; 0;�50; 1000), for fur-ther experiments. We have 
hosen not to use the results for line C onsetup1 as there is too little di�eren
e in the solutions i.e. it is very easy toa
hieve a good solution. For 
omparisons we have 
hosen the weight set,Weights2 = (100;�10;�10; 1000). We expe
t that Weights2 will providethe same quality in results as Weights1 as they give similar weights to sinksand sour
es and the same weights on train tasks and subsequent 
overs. Wewant to verify this and to see if there is any di�eren
e in 
omputationaltime.Weights1 and Weights2 have been used in two separate experiments of36 runs 
ounting 12 line 
ombinations and three time periods. The line
ombinations are listed in Tab. 10. The time periods are all starting at 7o'
lo
k and are of respe
tively 1, 2 and 3 hours of duration. In the 36 runsthe Sequen
e model is in
luded in the solution pro
ess.In 5 instan
es out of the 36 instan
es a solution for the underlying Positionproblem 
ould not be found within 600 se
onds. We will dis
ard these whenevaluating the quality of the Routing model.In Fig. 11 two plots are given of the average ex
ess seats versus the averagestanding passengers. There is only little di�eren
e between the Weights1solutions in Fig. 11(a) and the Weights2 solutions in Fig. 11(b).Fig. 12 shows two plots of the sum of standing passengers versus the di�er-en
e in depot end 
apa
ities. As for the plots in Fig. 11 there is only littledi�eren
e between the Weights1 solutions in Fig. 12(a) and the Weights236



Nr. Lines1 A2 C3 E4 A, A+5 C, A+6 E, A+7 E, A+, A8 C, H+, H9 E, H+, C10 A+, H, H+, C11 H+, H, C, A+, A12 H+, H, C, A+, A, ETable 10: Lines in
luded in experiments, see Fig. 6.
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(a) Weights1 = (100; 0;�50; 1000) 0 50 100 150 200
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(b) Weights2 = (100;�10;�10; 1000)Figure 11: Average ex
ess seats versus average standing passengers.
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(b) Weights2 = (100;�10;�10; 1000)Figure 12: Sum of standing passengers vs. di�eren
e in end 
apa
ity.
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Figure 13: The di�eren
e between Weights1-solutions and Weights2-solutions for the Position solution di�eren
es.solutions in Fig. 12(b).The di�eren
e between Weights1 solutions and Weights2 solutions for thePosition solution di�eren
es is illustrated in Fig. 13. We see that thereis a di�eren
e to the Position solution when either the type of train unitassigned in the Routing model does not mat
h the type assigned in thePosition model or the number of train units assigned in the Position modeldoes not mat
h the number of train units assigned in the Routing model.We see that there is only little di�eren
e in the di�eren
es from Weights1solutions to Weights2 solutions. The average di�eren
e over all runs indi�eren
e to Position solution is �Pos1 = 3:0556 for Weights1 solutionsand �Pos2 = 3:0833 for Weights2 solutions.38
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Figure 14: The number of train tasks versus the di�eren
e in solution timefor ea
h instan
e.Fig. 14 illustrates the number of train tasks on ea
h run versus the di�eren
ein 
omputation time between the Weights1 solutions and the Weights2solutions. The di�eren
e in 
omputation times in the two sets of solutionsis with but one ex
eption less than 8 se
onds. Considering the 
omputationtimes of the problem instan
es only three of these have a 
omputation timehigher than 15 se
onds. The immediate reason for the deviating results isprobably that only few assignments were made in the intermediate step ofthe Sequen
e model whi
h of 
ourse de
reased the number of preassignedvariables in the Routing model.There is a a marginal di�eren
e in ex
ess seats and standing passengers.In the Weights1 solutions there are slightly fewer standing passengers thanthe Weights2 solutions. In the Weights2 solutions there are slightly fewerex
ess seats than the Weights1 solutions. This 
an all be tra
ed to thedi�eren
e in deviations from the Position model.There is only little di�eren
e in 
omputation time for the two weight sets.The total average 
omputation time is 215.81 for Weights1 and 214.10 forWeights2. Only three of the instan
es 
onsidered have ex
eedingly high
omputation times. One of these solve to optimality in 531.25 se
onds forWeights1 and 474.56 se
onds for Weights2. Dis
arding these three in-stan
es whi
h results in a high 
omputation time the mean 
omputationtime is 1.34 se
onds for Weights1 and 1.18 se
onds for Weights2.Running the two instan
es that do not solve to optimality within an hour39



Parameter Line Length of Opt. gap Opt. gap Opt. gapset set time interval 60 se
. (%) 3600 se
. (%) 28800 se
. (%)Weights1 9 2 0.88 0.70 0.61Weights1 10 1 0.82 0.62 0.38Weights2 9 2 0.90 0.68 0.59Weights2 10 1 2.01 1.09 0.02Table 11: Computational time and optimality gap for 8 hour runs.for a longer period of 8 hours for both Weights1 and Weights2 we get theresults in Tab. 11. We see that in
reasing the upper time limit on runningtime does not result in optimal solutions. In fa
t, the solution quality onlyimproves very little in the 7 hours in
reased solution time. Hen
e, a solution
lose to the optimal solution is obtained within the �rst 60 se
onds for bothinstan
es. This indi
ate that the Routing model even for these instan
es ispra
ti
al appli
able.8.3 E�e
t of in
luding the Sequen
e modelIn this se
tion we analyze the 3 � 36 experiments run for Weights1. Testinstan
es are 
onstru
ted given the three time windows of 1, 2 and 3 hoursstarting from 7 o'
lo
k and the line 
ombinations in Tab. 10. Ea
h of the 36instan
es are solved using three di�erent approa
hes, ex
luding the Sequen
emodel, in
luding the Sequen
e model and in
luding the Sequen
e model aspreferen
e in the obje
tive fun
tion.We will in the following refer to the solution approa
h where the Sequen
emodel solution is in
luded in the Routing solution pro
edure as AIn
l:. Thesolution approa
h where the Sequen
e model used as preferen
es in the Rout-ing solution pro
edure we refer to as APref:. Last, the solution approa
hwhere we ex
lude the Sequen
e model solution we refer to as AEx
l:.Fig. 15 shows respe
tively the sum of standing passengers for ea
h run forAIn
l: & APref: and for AIn
l: & AEx
l:. For AIn
l: and APref:, see Fig.15(a), the sum of standing passengers are quite 
lose. For AEx
l: the sum ofstanding passengers is in general mu
h higher. Note the di�eren
e in s
aleon the y-axis. 40
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(b) AIn
l: and AEx
l:Figure 15: Sum of standing passengers for ea
h run.
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(b) AIn
l: and AEx
l:Figure 16: Sum of ex
ess seats for ea
h run.Fig. 16 illustrates the sum of ex
ess seats for ea
h run for respe
tively AIn
l:& APref: and for AIn
l: & AEx
l:. Again the sum of ex
ess seats for AIn
l:and APref: are 
lose, see Fig. 16(a). As the sum of ex
ess seats is often a
on
i
ting obje
tive to the sum of standing passengers it is expe
ted thatAEx
l: has the same or fewer ex
ess seats than AIn
l:. This is also what weobserve in Fig. 16(b).The di�eren
e in end 
apa
ity is illustrated in Fig. 17. Again, we see thatthere is a little di�eren
e in quality regarding AIn
l: and APref:. Whenregarding AEx
l: the quality de
reases.Fig. 18 shows the distribution of the results with respe
t to 
omputationtime. AIn
l: has the most short running times and only few very high running41
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Figure 17: The di�eren
e to the position model solution for ea
h run.
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Figure 18: The distribution of runs with respe
t to 
omputation time.times. The general mean 
omputation time for AIn
l:, APref: and AEx
l: isrespe
tively �In
l: = 250:61, �Pref: = 510:34 and �Ex
l: = 1865:06.When for AIn
l: disregarding the two runs where an optimal solution 
annot be found with in the 1 hour time limit the mean 
omputation time is�ModifiedIn
l: = 19:62 se
onds. For APref: there are three runs where an optimalsolution 
an not be found within the 1 hour time limit. A modi�ed meantime limit is �ModifiedPref: = 179:29.Summing up the observations we have presented in this se
tion it seems thatthe solution quality for respe
tively AIn
l: and APref: are 
omparable. Thesolution quality of AEx
l: is lower, most likely be
ause the optimal solution
annot be found within the Routing model running time limit. Even thoughthe APref: renders the same solution quality as AIn
l: its 
omputation time ison average more than 50% higher. Hen
e, if we want to obtain an a

eptable42



solution time and quality in real time we must in
lude the Sequen
e modelin the solution pro
ess.In the APref: instan
es there is a higher degree of freedom for assigningvalues to variables than in the AIn
l: instan
es. However, it is observedthat even when APref: solves to optimality, the solution quality is at mostmarginally better on the 
hosen measures. This indi
ates that the in
lusionof the Sequen
e model de
reases the solution quality only marginally.9 Con
lusionIn this paper we have addressed the RSRP. We have formulated a solu-tion approa
h based on de
omposition and 
onsisting of three models to besolved iteratively. The models are implemented with 
ommer
ial softwareand initial 
omputational results indi
ate that the models provide a feasibleapproa
h for pra
ti
al problems up to at least 100 train tasks.The sequen
e model is an important step in the solution approa
h. The av-erage solution time when leaving out the sequen
e model is 1865.06 se
onds.When the Sequen
e model is in
luded and the variables are lo
ked a

ord-ingly the average solution time is 250.61. Furthermore, when the Sequen
emodel is left out the solution quality deteriorates, that is, fewer problem in-stan
es solve to optimality within the upper time limit set on 
omputationtime.The quality of solutions when using the Sequen
e model as preferen
es 
om-pared to lo
king the variables in the Routing model is the same or onlymarginally better. We therefore 
on
lude that the Sequen
e model 
an bein
luded without deteriorating the solution quality more than marginally.This is desirable as the 
omputation time is de
reased 50 % when lo
kingthe Routing model variables.Further resear
h 
on
erns other solution methods for the RSRP. An inte-grated solution approa
h may be a heuristi
 approa
h solving the Positionand Routing problem in one. Also, repla
ing the Sequen
e and Routingproblems with a 
olumn generation approa
h is interesting.
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Appendix E.A Fa
tor 
ontributions, Position model:6 fa
tors in
ludedIn Tab. 12 the �rst order fa
tor 
ontributions are listed for the fa
tor ex-periments on the position model having 6 fa
tors. The fa
tors, A to F, arelisted below.A Weight on the term of the sum of ex
ess seats in the Position modelobje
tive fun
tion.B Weight on the term of the sum train unit kilometers in the Position modelobje
tive fun
tion.C Weight on the term of the sum of standing passengers in the Positionmodel obje
tive fun
tion.D Weight on the term of the sum of 
ouplings in the Position model obje
-tive fun
tion.E Weight on the term of the sum of depot end 
apa
ities in the Positionmodel obje
tive fun
tion.F Experimental instan
e input.First order 
ontributions are 
al
ulated for 6 di�erent measures. For ea
hmeasure the 
ontribution from a fa
tor is listed for ea
h level higher than 0e.g. the 
ontribution of A1 to the sum of standing passengers indi
ates thatfa
tor A on the �rst level higher than zero has a high de
reasing e�e
t onthe sum of standing passengers, see Tab. 4.Standing passengers The sum of standing passengers on all train tasks.Train unit kilometers The sum of train unit kilometers on all train tasks.Ex
ess seats The sum of ex
ess seats on all train tasks.Composition 
hanges The sum of 
ouplings on all train tasks.End 
apa
ity di�eren
es The sum of di�eren
es to the s
heduled end
apa
ity on all depots by the end of re
overy.44



Computation timeStanding Train unit Ex
ess Composition End 
apa
ity Comp.pass. Km seats 
hanges di�eren
es timeA1 -1507.3 -199.3 -2981.6 9.1 -0.4 -85.3A2 -590.4 -292.7 -3638.7 4.3 0.3 76.4A3 943.3 -340.4 -3621.4 9.9 -2.2 -106.3B1 3809.3 -795.7 -9364.4 10.4 2.1 41.1C1 -934.1 19.0 928.7 5.9 5.5 2.8C2 1304.5 -345.5 -3529.1 -4.4 5.9 168.7C3 811.4 -374.8 -4224.8 0.5 1.4 116.9D1 -164.1 -347.6 -2688.1 -1.9 1.4 187.1D2 919.2 -436.9 -2838.2 -4.8 5.7 178.0E1 1610.6 -305.7 -1929.3 9.3 -3.4 120.6E2 2463.5 -520.6 -3896.3 7.6 -1.9 158.5F1 3042.9 1580.0 5958.7 15.0 6.7 130.2Table 12: 1. order fa
tor 
ontributions, 6 fa
tor experiments, Position model

45



Appendix E.B Fa
tor 
ontributions, Position model:5 fa
tors in
ludedIn Tab. 13 to 16 the �rst order fa
tor 
ontributions are listed for the fa
torexperiments on the position model having 5 fa
tors. The fa
tors, A to E,and the measures are des
ribed in Appendix 9.Composition End 
ap. Ex
ess Train unit Standing Comp.
hanges di�eren
es seats Km pass. timeA1 5.7 -1.6 -4500.2 -216.1 33.2 -0.9A2 4.8 -2.3 -5191.8 -265.1 67.1 -0.8A3 4.2 -3.3 -4468.2 -234.2 80.1 -0.6B1 4.6 -0.8 -5068.3 -260.2 61.0 -0.4C1 1.6 -0.9 -86.7 13.8 -7.5 0.0C2 2.0 1.5 -802.7 -40.2 -71.9 0.3C3 4.0 0.8 -1735.3 -83.6 -38.0 -0.3D1 -1.8 -0.8 -1432.4 -60.6 56.5 0.1D2 -4.2 1.3 -698.0 -13.5 6.5 0.3E1 2.2 -2.3 -1504.4 -69.8 14.9 -0.6E2 1.3 -2.1 -1851.5 -79.1 32.5 -0.7Table 13: 1. order fa
tor 
ontributions, 5 fa
tor experiments, Positionmodel, Line C instan
es
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Composition End 
ap. Ex
ess Train unit Standing Comp.
hanges di�eren
es seats Km pass. timeA1 -2.2 -7.9 1332.6 -62.4 142.6 -71.3A2 -17.3 -2.5 871.4 44.6 -197.2 -202.0A3 6.2 -9.7 1171.8 134.0 -807.9 -47.3B1 2.7 1.2 -242.7 315.0 -6286.1 -102.7C1 3.3 -8.1 448.2 46.7 -39.2 -204.1C2 -2.9 -3.7 -1405.9 88.4 -1105.6 -149.4C3 -9.6 -6.8 2411.2 212.6 -1576.8 -21.5D1 8.4 0.0 -1798.3 18.0 -1714.9 -158.5D2 -11.3 4.3 -944.4 17.8 -536.4 -22.6E1 7.3 -5.8 2109.9 1.9 737.9 52.5E2 -0.5 -7.4 2239.4 187.2 -1236.2 -177.2Table 14: 1. order fa
tor 
ontributions, 5 fa
tor experiments, Positionmodel, line A and A+ instan
esComposition End 
ap. Ex
ess Train unit Standing Comp.
hanges di�eren
es seats Km pass. timeA1 3.7 1.3 -4757.1 -481.4 -75.4 -1.6A2 5.0 1.8 -6011.4 -662.6 327.2 -2.2A3 5.5 2.6 -6442.8 -648.4 -27.1 0.5B1 0.8 0.3 -4159.1 -475.8 254.8 -4.1C1 0.8 -0.2 -1492.9 -135.2 -378.9 -2.5C2 -1.5 -0.7 -103.9 36.6 -723.1 -3.6C3 -1.3 -0.8 870.9 133.0 -823.2 -5.0D1 1.0 0.3 -1813.3 -232.7 162.9 -3.8D2 -3.2 -0.2 -1663.3 -214.9 -5.3 -2.2E1 -3.3 -3.0 -937.4 -87.2 -116.2 5.1E2 -1.3 -3.3 -1806.6 -234.1 97.8 0.6Table 15: 1. order fa
tor 
ontributions, 5 fa
tor experiments, Positionmodel, Line H and H+ instan
es 47



Composition End 
ap. Ex
ess Train unit Standing Comp.
hanges di�eren
es seats Km pass. timeA1 2.7 -0.2 -7436.6 -661.5 498.2 -0.1A2 1.8 -0.6 -8354.2 -780.0 935.1 -0.1A3 2.3 -0.4 -7983.8 -734.3 929.9 -0.1B1 0.5 -0.3 -7642.5 -703.4 852.1 -0.1C1 1.7 -0.3 -148.5 -6.3 -16.2 0.0C2 1.5 0.1 1485.6 176.6 -669.8 -0.1C3 -0.2 -0.6 1638.9 188.9 -510.8 -0.1D1 -1.9 -0.5 -2598.8 -269.6 574.5 0.0D2 -2.1 -0.7 -2666.3 -291.4 568.5 0.0E1 2.4 -2.6 -849.2 -67.5 -36.3 0.0E2 1.1 -2.4 -1863.5 -162.4 218.9 -0.1Table 16: 1. order fa
tor 
ontributions, 5 fa
tor experiments, Position model
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Appendix E.C Fa
tor 
ontributions, Routing modelIn Tab. 17 to 22 the �rst order fa
tor 
ontributions are listed for the fa
torexperiments on the Routing model. The fa
tor experiments relative to Tab.17 to 18 have 5 fa
tors A to E. The fa
tor experiments relative to Tab. 19to 22 have 4 fa
tors A to D. The fa
tors are des
ribed below. Levels of thefa
tors are des
ribed in Tab. 8.A Weight on the term of the tasks in the Routing model obje
tive fun
tion.B Weight on the term of the sour
es in the Routing model obje
tive fun
-tion.C Weight on the term of the sinks in the Routing model obje
tive fun
tion.D Weight on the term of the 
onse
utive 
overed tasks in the Routing modelobje
tive fun
tion.E Use of the train Sequen
e model.The �rst order 
ontributions are 
al
ulated for 6 di�erent measures.Di�eren
e to Position solution The sum of assignments made in theRouting solution whi
h di�ers from the assignments in the Positionsolution.Di�eren
e to end 
apa
ity The sum of di�eren
es to the s
heduled end
apa
ity on all depots by the end of re
overy.Ex
ess seats The sum of ex
ess seats on all train tasks.Train unit kilometers The sum of train unit kilometers on all train tasks.Standing passengers The sum of standing passengers on all train tasks.Computation time
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Di�eren
e to Di�. to Ex
ess Train unit Standing Comp.Pos. solution end 
ap. seats Km pass. timeA1 1,4 0,4 -222,9 -27,4 293,2 0,0A2 11,6 3,7 -1735,6 -205,1 2175,9 0,1B1 -9,3 -2,5 1384,4 153,6 -1306,8 0,1B2 -8,9 -2,4 1315,1 145,2 -1217,2 0,0C1 -3,0 -0,8 520,6 66,6 -716,3 0,0C2 -1,8 -0,4 327,6 43,0 -464,2 0,0D1 -3,0 -0,8 499,1 63,1 -677,4 0,0D2 -2,4 -0,6 415,5 53,7 -578,5 0,0E1 -8,1 -2,1 1188,5 129,6 -1051,1 0,0E2 -7,9 -2,1 1148,9 124,7 -998,2 0,0Table 17: 1. order fa
tor 
ontributions, fa
tor experiments, Routing model,Line C instan
es, Choi
e of Sequen
e model
Di�eren
e to Di�. to Ex
ess Train unit Standing Comp.Pos. solution end 
ap. seats Km pass. timeA1 3,3 0,5 -308,9 -89,9 1021,7 -22,3A2 41,1 12,4 -4370,6 -822,7 10348,4 144,1B1 -46,6 -6,5 4835,9 950,1 -8807,7 89,9B2 -44,7 -5,1 4810,2 919,8 -8575,5 81,8C1 -4,1 -1,3 364,3 154,6 -1822,4 51,0C2 -2,3 -0,6 108,8 83,6 -1263,3 33,9D1 -7,9 -0,3 738,7 173,4 -2553,3 50,4D2 -1,5 -1,0 8,1 76,4 -1009,2 42,9E1 -44,0 -3,8 4459,4 893,2 -8058,4 70,0E2 -43,7 -5,2 4533,3 873,6 -8062,8 65,8Table 18: 1. order fa
tor 
ontributions, fa
tor experiments, Routing model,Line A and A+ instan
es, Choi
e of Sequen
e model50



Di�eren
e to Di�. to Ex
ess Train unit Standing Comp.Pos. solution end 
ap. seats Km pass. timeA1 0,2 -6,4 3579,0 426,4 -4227,3 0,2A2 0,2 -6,4 3587,0 426,8 -4229,7 0,2B1 0,2 -0,4 64,0 2,6 -18,7 0,2B2 0,1 -0,4 56,0 2,3 -16,3 0,1C1 0,0 0,0 0,0 0,0 0,0 0,0C2 -0,1 0,2 -32,0 -1,3 9,3 -0,1D1 0,2 -6,4 3579,0 426,4 -4227,3 0,2D2 0,2 -6,4 3587,0 426,8 -4229,7 0,2Table 19: 1. order fa
tor 
ontributions, fa
tor experiments, Routing model,Line C instan
es, No use of Sequen
e model
Di�eren
e to Di�. to Ex
ess Train unit Standing Comp.Pos. solution end 
ap. seats Km pass. timeA1 -68,3 -6,3 6909,6 1616,3 -18028,4 299,6A2 -66,3 -8,4 7119,2 1691,5 -18514,8 299,5B1 -2,3 -2,4 76,1 21,1 113,1 0,0B2 1,0 -2,3 -30,2 16,2 0,8 0,0C1 3,4 -0,7 -271,1 -59,9 459,3 0,0C2 2,3 0,6 -189,9 -46,7 277,1 0,1D1 -71,8 -9,4 7387,9 1718,0 -18662,1 299,5D2 -72,0 -10,4 7465,6 1665,5 -18739,4 299,5Table 20: 1. order fa
tor 
ontributions, fa
tor experiments, Routing model,Line A and A+ instan
es, No use of Sequen
e model
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Di�eren
e to Di�. to Ex
ess Train unit Standing Comp.Pos. solution end 
ap. seats Km pass. timeA1 -4,0 -1,0 494,0 41,6 -106,0 0,0A2 -4,0 -1,0 494,0 41,6 -106,0 0,0B1 0,0 0,0 0,0 0,0 0,0 0,0B2 0,0 0,0 0,0 0,0 0,0 0,0C1 0,0 0,0 0,0 0,0 0,0 0,0C2 0,0 0,0 0,0 0,0 0,0 0,0D1 -4,0 -1,0 494,0 41,6 -106,0 0,0D2 -4,0 -1,0 494,0 41,6 -106,0 0,0Table 21: 1. order fa
tor 
ontributions, fa
tor experiments, Routing model,Line C instan
es, Use of Sequen
e model
Di�eren
e to Di�. to Ex
ess Train unit Standing Comp.Pos. solution end 
ap. seats Km pass. timeA1 -38,0 -5,1 4079,4 681,9 -5340,6 0,6A2 -38,0 -3,4 4062,2 674,0 -5357,8 0,6B1 0,0 0,1 53,4 -4,0 53,4 0,4B2 0,0 0,1 20,1 -3,2 20,1 0,3C1 0,0 -0,2 -32,7 -1,6 -32,7 0,1C2 0,0 -0,2 -40,8 0,8 -40,8 -0,1D1 -38,0 -2,8 3972,8 670,0 -5447,2 0,7D2 -38,0 -3,7 3973,6 669,2 -5446,4 0,5Table 22: 1. order fa
tor 
ontributions, fa
tor experiments, Routing model,Line A and A+ instan
es, Use of Sequen
e model
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