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Abstract

Real time decision support in railway operations is an area which
has so far received limited attention. In this paper we address real
time recovery of a rolling stock plan. Given a disturbed rolling stock
plan the objective is to return quickly and inexpensively to the original
rolling stock plan. Each train unit is hence rerouted through the train
network so that each terminal departure is covered sufficiently wrt.
seats relative to demand and so that the train unit paths are feasible
with respect to connections.

We address the rolling stock recovery problem using a method based
on decomposition where first the number and order of train units for
each departure are determined. Given this knowledge we find the train
path for each train unit. The experimental results show promising

solution times and quality indicating applicability in practice.

1 Introduction

During the last years there has been an increased focus on developing tools to
aid the planning process in railway transportation. The tools are computer
software, which can fully or partially automate parts of the planning process.
As in other industries the initial focus has been on strategic, tactical and
operational planning. Only lately focus has turned to the area of short term

and real time planning. This paper concentrates on the area of rolling stock



real time planning. All models are based on the suburban railway network
in Copenhagen, Denmark. The railway operator operating the network is
DSB S-tog A/S.

The areas of operational, short-term and real time planning, can with respect

to rolling stock be described as follow.

Operational The operational planning process is based on the tactical
plan, which defines the number of train units and which type is as-
signed to each defined train task. A train task in this context is defined
by a departure from a station and an arrival at another station.The
stations most often are rolling stock depots. Rolling stock unit types
are assigned to train tasks in such a way that later, train unit routes
can be build for physical units that enables each train unit to visit the
maintenance center within the predefined safety time and kilometer
limit.

Also, in operational planning adjustments are made with respect to
infrastructure maintenance works. This happens between the tactical

and the operational rolling stock planning.

Short-term Short-term planning in the railway business concerns the rout-
ing of the physical train units 1-3 days in advance of operation. Also
in this phase small adjustments to the number and type of train units

assigned to each train task may be necessary.

Real time The major difference from operational to short-term planning of
rolling stock is that for the latter information of the physical train ID’s
are included. This level of detail is maintained also in real time. Real
time planning is conducted during the operation. Real time rolling
stock planning is the re-planning or recovery of the plan for physical
train units after disruption has occurred. This is also called rolling

stock disruption management.

In practice rolling stock dispatchers monitor the operation of the rolling
stock plan and the depot plans. In the cases where the operation does not
run according to the rolling stock plan, the rolling stock dispatcher makes

real time decisions on the re-assignments of train units to train tasks. Often



suboptimal decisions are made due to the complexity of the task of manually
establishing an integrated solution taking into consideration the recovery of

several trains.

There is a substantial cost of re-allocating train units after a disruption in the
rolling stock plan. The reallocation is necessary to meet end-of-day depot
balance requirements and the maintenance requirements of each individual
train unit. Furthermore, if too many train units are allocated to trains
ending up at particular depot there may not be sufficient physical space in

the depot to park all the train units.

Today, when a disruption has occurred the depot balances are often off
implying that the rolling stock plan for the following day is also disrupted.
Thus, either some train task must be covered insufficiently or not covered

at all resulting in a cancellation of the task.

Next, in Section 2 a review of related literature is given. In Section 3, we give
an introduction to the terms of rolling stock planning. Hereafter, in Section
4 we define terms concerning disruption. We introduce the Train position
model in Section 5, in Section 6 the Train sequence model is presented and
in Section 7 the Train unit routing model is presented. Finally, in Sections

8 and 9 we present the Computational results and give a conclusion.

2 Literature review

The research within the area of rolling stock schedule optimization has up
to recently mainly focused on the planning phases prior to the day of oper-
ation. Only little emphasis has been on the area of real time rolling stock
recovery, see Nielsen [10]. Huisman et al. [8] give a survey on state-of-the-art
Operations Research methods for solving passenger railway related planning
problems. The real time handling of rolling stock is briefly mentioned and
reference is made to the problems of short time planning, which resembles
the real-time situation. Short-term rolling stock planning is done on a day-
to-day basis, also adjusting the rolling stock plans according to changes in
the timetable due to e.g. rail network maintenance work, or adjusting ac-
cording to passenger flows, which may have changed the need for rolling

stock assigned to each train task.



Other recent surveys on rail operation models are given by Cordeau et al.
[5], and Tornquist [14].

At S-tog, the depots are physically not very large, and only one workshop is
available for maintenance checks. Already in the initial operational rolling
stock plan, the paths for the train units lead them pass to the workshop at

regular intervals in time and distance.

The problem of planning rolling stock can be divided into two subproblems:
Firstly, finding the compositions for each train task in the network and sec-
ondly, finding the paths for each virtual train unit ensuring depot feasibility
and regular maintenance checks. The compositions indicate the type, num-
ber and order of train units assigned to a train task. The paths ensure that

all train units are routed to pass the workshop at regular intervals.

The first problem of determining compositions is widely explored. There is a
distinction between the problems of allocating rolling stock when the fleet is
composed by train units compared to when it is composed by train carriages
and train locomotives. Papers concerning the locomotive scheduling problem

are Cordeau et al. [4], Lingaya et al. [9] and Brucker et al. [3].

The first paper concerning the problem with self-propelled train units is
Schrijver [13]. In this paper a minimum circulation of rolling stock on a
single train line running from Amsterdam to Vlissingen and vice versa is
determined. The objective is to ensure sufficient seats available for each train
task. The model does not take the train unit order within a composition into
account. The problem is solved with commercial software for respectively

one and two train unit types.

In Ben-Khedher [2] the problem of capacity adjustment is discussed. It
is based on the problem of finding railway capacity for high speed trains
running in the TGV network of SNCF, France. The model is based on the

seat reservation system and the objective is to maximize expected profit.

Alfieri et al. [1] address the problem of constructing circulations of train
units. Focus is again on a single line. The model couples and decouples
train units from trains as the depots are passed. The order within each
composition is taken into consideration. The model is tested for two train
types. The solution approach is based on a hierarchical decomposition into

sub problems. First, the model, not taking compositions into consideration,



is solved. Second, it is checked whether there is a feasible solution for the

composition problem.

Peeters and Kroon [11] present a branch-and-price algorithm for solving
the allocation of train units to a single line or a set of interacting train
lines. The model is tested on several real-life instances of the railway op-
erator, NS Reizigers. Objectives considered are those of minimizing train
unit km shortage, minimizing number shunting operations and number of
driven train unit km. The model is based on a transition graph as is the
model described in Alfieri et al. [1]. The authors apply a Dantzig-Wolfe
decomposition, reformulating so that a variable is associated with each path

through the transition graph of all trains.

In Fioole et al. [6] a model for finding the compositions of train units on train
tasks is presented. Each solution is feasible with respect to composition order
in depots and with respect to depot capacities. The model additionally takes
into consideration combining and splitting of trains in depot junctions. It is
an extension of the model described in Peeters and Kroon [11]. The objective
considers minimizing with respect to efficiency, service and robustness. The
model is implemented and solved in the commercial integer programming
solver CPLEX. This procedure improved the solution used in practice with

up to 6 % with respect to number of driven train unit kilometers.

Given that the composition problem is solved at short term or real time level
the problem of finding paths resembles the problem of finding work plans
(lines of work) for crew. The train tasks form a time and space restricted
path. Extensive research within the area of crew planning has been carried

out. Within the area of rail we refer to the survey of Huisman et al. [8].

In Nielsen [10] a generic framework for modelling the real time rolling stock
re-scheduling problem is described. This is the problem of re-balancing the
use of rolling stock on train tasks in real time. Rolling stock is considered
at train type level. The modelling is based on the composition model pre-
sented in Fioole et al. [6] and expanded to consider the end-of-day balances
of rolling stock. The model have the objectives of minimizing number of
cancelled trips, changes to the rolling stock depot plans and the end-of-day
off balances. The model is solved using CPLEX 10.1. Computation times

varies from few seconds up to a minute depending on the problem instances



solved. All computational results are based on data from the Dutch railway

operator NS Reizigers.

A recent paper, Rezanova and Ryan [12], on the Train Driver Recovery
Problem approaches the problem of recovering a train driver plan in real
time given that some disturbances have disrupted the plan. The problem is
solved using a set partitioning formulation. Fractional solutions for the LP
relaxation of the IP problem is solved used constraint branching, however,
most solutions are integer due to strong integer properties of the model.

Solutions are found within few seconds.

Another interesting paper on railway recovery is Walker et al. [15]. In this
paper a model is described for simultaneous recovery of the train timetable
and the corresponding crew plan. Promising results are presented for a

single line of a New Zealand operator.

The current paper addresses the area of real time rolling stock recovery. No
prior research is available on this subject. We introduce a decomposition

method for the problem which provides good quality solutions quickly.

3 Basic elements of a rolling stock plan

Train operation runs according to a timetable consisting of terminal depar-
tures with predefined stopping patterns. Terminal departures are assembled
in Trains. Each train is represented by a set of Train tasks forming a Train
sequence, see figures 1(a) and 1(b). The train tasks of a train sequence form
a predefined work plan for the train in which each train task, except for the
first and the last, have a known predecessor and successor. This means that
for two subsequent tasks ¢, and to, ArrivalTime(t;) < DepartureTime(ts)
and ArrivalDepot(t;) = DepartureDepot(ts), see figure 2. In the models
presented later in this paper we exploit the predecessor/successor relation

between the train tasks.

Both rolling stock and crew operate according to plans which are detailed
to a daily level i.e. for each train task it is known which specific driver
and which specific train units will cover the train task. The rolling stock
and crew plans are assumed optimal for the situation without disturbances.

Therefore, given a disturbance to either of the plans, we seek to return to
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the original plan as soon as possible. Returning to the original plan means
that each train unit returns to its originally planned path, which eventually

will route the train unit to the maintenance center.

A set of trains with the same stopping pattern and a uniform frequency
between trains form a Train line. The train line concept is first of all used
externally for representing the timetable to the customers, but it is also used

internally for planning and prioritizing.

A rolling stock schedule consists of a set of Train unit routes where each
route refer to a specific train unit and covers a path of train tasks. These

train tasks may or may not belong to the same train sequence.

When a train unit leaves or is added to a train sequence it is said to be
decoupled from or coupled to the train task. The set of train units assigned
to a train is called a composition. As mentioned earlier, the composition
defines the number of each type of train units and the order in which they
are coupled. At S-tog there are two different train unit types. These can
be coupled in all possible combinations limited by a maximum length of the

train.

At S-tog coupling/decoupling always occurs at only one end of the train
depending on the depot at which the coupling/decoupling occurs i.e. the
train is only open for coupling/decoupling in one end. The route of a train
unit must be feasible with respect to the open end of the train. That is, if
a train unit is to be decoupled from a train, it must be in the open end of
the composition. When coupling a train unit to a train, the train unit must
also be assigned to the open end of the train. The open versus the closed

end of a composition at a terminal is illustrated in Figure 3.

4 Defining a disruption

Incidents occur in real time that disturb the planned operation. Some of
these incidents are of such a size that also the rolling stock plan is disturbed.
For a more detailed description of the effect disruptions have on the S-tog

timetable see Hofman et al. [7].

To minimize the impact of an incident, network controllers employed by
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the infrastructure owner reroute trains to get operation back to normal as

quickly as possible.

The delays disturbing the timetable may, as mentioned, be of a size that

also disrupts the rolling stock and crew schedules.

A rolling stock schedule is disrupted when train units are not able to cover
the train tasks they were expected to cover. The rolling stock schedule is
affected by the delays both directly and indirectly. An example of a directly
disrupting effect is the break down of a train unit thereby causing the train
unit not to be able to cover its scheduled train task. Indirectly, the rolling
stock schedule is affected by the actions of the train route dispatchers trying

to return the departures to normal.

There are several potential negative consequences of a disruption in the
rolling stock schedule. A rolling stock disruption may imply an imbalance
in the rolling stock available at the rolling stock depots. This again may
lead to train tasks being insufficiently covered according to their expected
passenger demand. Another secondary disruptive effect can be that the
reallocation of train units to train tasks other than the originally scheduled

ones may lead to broken maintenance constraints for individual train units.

The set of train units being assigned extraordinarily to cover another train

sequence are not necessarily of the same type and number as the set of



train units originally intended for that train sequence. Hence, future cou-
plings/decouplings on the train sequence and other trains running on the

same route may also be affected.

4.1 Objectives when minimizing rolling stock disruption

The rolling stock dispatcher does not have the time to take into account
several objectives when minimizing the extent of a disruption to the rolling
stock plan. He tries to minimize the number of departures not covered and

chooses the first feasible solution he discovers in the manual solution process.

Several objectives are interesting to include in a rolling stock recovery model.
Fioole et al. [6] mention seat shortage, efficiency and robustness as relevant

for the operational planning phase. These are also relevant in real time.

Seat shortage refers to the difference between the number of seats on the
train units allocated to a train task and the expected seat demand of the
train task. Maximizing the efficiency means that we do not want to operate
a train task with more train units assigned than necessary, either considering
the number of excess seats or the number of train unit kilometers driven.
The two objectives of seat shortage and efficiency can be conflicting and will
hence have to be weighted. Robustness in a rolling stock recovery plan is
translated directly to the number of couplings and decouplings planned in
a recovery plan. A recovery plan with many couplings and decouplings is
less robust than one that has fewer. We wish to maximize robustness in a
plan given that we still weigh the objectives of seat shortage and efficiency
against each other. Robustness is therefore also assigned a weight in the

final objective function.

Seat shortage, efficiency and robustness are all objectives concerning the
assignment of train unit types to train tasks. Other objectives concern the
physical train units. In real time the aim is to recover to the original rolling
stock plan. However, it may not be possible within the time window of
recovery or even within the same day of operation to route the train units
back to their original work plans. Hence, an objective to include in the
objective is the difference in end depot balance between the original and the

recovered plan.
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Type | Length | No Seats
SE 46 150
SA 86 336

Table 1: rolling stock types

4.2 Basic concepts in a disruption

It is likely that several delays call for recovery occur during the day. In the
real-time situation time is a critical factor and recovery decisions must be
made fast. For each recovery scenario we therefore solve within a specified
time window e.g. two hours and include a limited set of train units. The
start and end of the time window is the considered start and end time of

the disruption.

Typically, all train units, k € K, assigned to the train lines of the affected
train units are included in the recovery scenario plus possibly some of the
other lines running on the same route and sharing the same depots. Also,
all train units located on the affected depots at the start time of disruption

will be included in the set of train units to be replanned for.

Each train unit has a kilometer limit, K'm Limat. 1t indicates the maximum
number of kilometers that the distances of the tasks assigned to the train
unit during recovery must sum up to. Each train unit has a seat capacity
matching its train type. For each train unit the start depot, d,(k), and a
preferred end depot, d,(k), are given.

At all times two rolling stock types, m € M, are available. These are short
and long train units named SE and SA respectively. Sizes of the two rolling

stock types are listed in Table 1.

The train tasks, ¢ € T, considered are those left uncovered, those which are
insufficiently covered w.r.t. demand and those for which the assigned train

units have been included in the recovery scenario.

For each train task, ¢, the start and end time, 74(¢) and 7,(¢), and start and
end depot, d4(t) and d,(t), are known. Each ¢ is associated with a length
in kilometers, Km;, and a duration measured in seconds, T%ime;. The set

of tasks having no predecessors constitutes 7p. The train tasks having no

11



successors constitute 77. The successor of the train task ¢ is denoted v ().

Each train task has a seat demand, Demand;.

The set of depots involved in the recovery scenario, D, is defined by the
routes of the train lines included. For each depot, d € D, included in the

recovery scenario the start capacity of each type of train unit m is given by

DepotCapg .
Composition | Order NO seats | Length
0 SE 150 46
1 SE - SE 300 92
2 SA 336 86
3 SE - SA 486 132
4 SA - SE 486 132
5 SA - SA 672 172

Table 2: Compositions

The maximum length of the composition assigned to a train is equivalent
to the length of two SA train units. Given this maximum length, in fact a
composition consisting of three SE train units or a composition consisting of
two SE and one SA train unit are applicable in practice. Even though these
train composition consisting of three train units are feasible, we omit them
from our model. Seen from a modelling perspective our model is significantly
reduced in size when reducing the number of allowed train units from three
to two. Seen from a practical perspective, only few train tasks at S-tog will
normally be assigned three train units. More specifically, at the tactical
planning level no train tasks will be assigned more than two units. In a
recovery situation three units on a train task occurs not even on a daily

basis.

In the first model we will not permit train exchanges. That is, decoupling
of all train units after a train task and coupling of an entirely new set of

train units to the train task successor is not possible.

It is an important fact that all depots in the S-tog network are open for
coupling/decoupling in only one end of the platform tracks. This enables
us to use the position in a train and information of which end of the tracks

is open for coupling/decoupling to decide whether a composition change is

12



valid.

5 The train unit position model

In this section we introduce the variables, objective, and constraints of the
Train Unit Position model (the Position model). The main variables of the

model describe the assignment of train type to train task and position.

1 If a train unit of type m is assigned to task ¢ in position p
Xip = )
0 Otherwise

From these X-variables the L-variables are derived. The L}* variables are
inventory variables indicating the number of train units of type m present

at the departure depot of ¢ immediately before the departure of .

Finally, Oj" and N/" are variables indicating whether respectively coupling
and decoupling is carried out between the tasks ¢ and v(t). Both sets of

variables are binary.

LY are the start inventory parameters. Lgm indicates the number of train
units of type m located in depot d at the beginning of the disruption. L}im
are the end capacity variables indicating the number of train units of type
m present at depot d in the end of the considered recovery period. A desired
end depot capacity is given by the parameter E[cap|'. The variables E7’
indicate the shortage of train units of type m in depot d in the end of the

recovery period.

L are calculated from LY =~ and Xiy. As both are integers, the L-variables
will automatically be integer. Therefore, we only require that L}” € R, Vte
T,me M.

The relevant aspects we include in the objective of the positioning model
are seat shortage, number of composition changes, the cost of covering train
tasks with train units and the sum of differences to the originally scheduled

capacity on the depots, see Eq. 1.

13



Minimize OBJ =

Wi 3 ier(Demandy — 3 vy pep Seats™ - Xi0)+

Wa -3 et pepmen Kmi - X (1)
W3- ZtET(ZmEM,pEP Seats™ — Demand; - Xg;)—i-

Wy - ZtET,mEM O + Ws - ZdED,mGM Egn

As a train has a maximum length each train task cannot be covered by more
than the maximum number of train units per train. This is guaranteed by
Eq. 2.

1< ZmEMpEP Xiy < MazTrainLength, N teT (2)

Physically at most one train unit can be assigned to each position of a train

task. Eq. 3 ensures this.

Yomen Xip <1, V teT,peP (3)

We control the incoming and outgoing flow of depots by three sets of inven-

tory constraints, see Eq. 4 to 6.

The first set of constraints controls that the initial inventory level is not
violated. This means that for each depot d the tasks departing before the
first arriving task can not use more capacity than what is present initially
given by LY . The set of departing tasks before the first arrival task on
depot d is denoted ¢4 for all d € D. See Eq. 4.

S pepico, Xin < LY V deDmeM (4)

dm>

The inventory in a depot of train unit type m immediately after the arrival
of a train task ¢ is given by the start capacity on the depot minus the sum
of every train unit of type m coupled to train tasks at that depot before and
including ¢ and plus the sum of every train unit decoupled from train tasks
at that depot before and including ¢. This is handled by Eq. 5.

14



Li" = Lga(t)m — Ypeprer Xppt
74 (t')<7a(t)

64 (t')=da(t) (5)
Yopepper Xify V teT,meM
Ta(t)<Ta(t)
da (t')=0a(t)

The last set of inventory constraints concerns the end capacity. The end
capacity, L(llm, of train unit type m in depot d is given by L} for which ¢ is

the last train task arriving on d, 6,. See Eq. 6.

Ly,=Ly., ¥ deDmeM (6)

We wish to control the end depot balance by minimizing in the objective
function the shortage of train units defined by variables E}'. These are
defined in Eq. 7

E™ > Elcap)? — L} YV de D,meM (7)

dm>

Each depot has an individual upper capacity on the number of units that
can be stored at that depot. The upper capacity is estimated by controlling
the length of the rolling stock stored at each depot relative to the length
of the depot tracks, DepotCapy. Eq. 8 controls the capacity of each depot
right after the departure of each task, that is, d4(¢) is the departing depot
of t.

0 <>, Lengthy, - Li* < DepotCapy), N teT (8)

The coupling and decoupling variables are determined in Eq. 9 and 10. We
use a constant M to find the O and /" variables. This is potentially very
expensive considering computation time when M has a high value, however,
M can be limited to the maximum train length plus one and as the maximum

train length is 2 units M has a low value.

M- Op > Ly, — LT, Vv teT\T'meM 9)

M-N™> L™ — L™

sy, ¥V teT\T'meM (10)

15



To ensure that no train unit is decoupled from a train if it is positioned in
the closed end of the train composition, we one of the set of equations in
Eq. 11 depending on the value of the 0-1 parameter ChangePosition;. This
parameter indicate whether open position is changed from one end of the

train to the other after train task .

1 If closed position of task ¢ is different from
ChangePosition; = closed position of successor v(t)
0 Otherwise

If ChangePosition; =1

Xip < X peppi=p X T Wow

X5 < Syenyp Xy + Vot )
else

Xip < Xl

Vi and W; are length indicator variables. V; is one if one train unit is assigned
to task t and zero otherwise for all ¢ € T'. W; is one if two train units are

assigned to task ¢ and zero otherwise for all ¢ € T'. They are determined
through Eq. 12 and 13.

Wi <3 epmen Xip —1<2- Wy, Vv teT (12)

Vi+W,=1, Y teT (13)

The results achieved when solving the TUP model are comparable to the
results that are achieved when solving the model described in Fioole et al.
[6]. The difference between the two models lie in the handling of the compo-
sitions. In the Fioole model the compositions are handle as set of train unit
types i.e. a composition is assigned to each train task and binary variables
describes specifically the transformation from composition to composition
on consecutive train tasks on the same train sequence. In our model we
handle the positions in the train’s composition specifically. The Position
model is a feasible choice due to that the maximum length of compositions

on train tasks is limited to 2 train units.

16



5.1 Size of model

Given a time window of the disruption of two hours and including all train
lines intersecting the most dense part of the S-tog network, a total of 550
train tasks result. We have restricted the problem to only consider compo-
sitions up to two unit as opposed to the real restriction of three units. The
Train unit position model has therefore approx. 6500 variables and approx.
6500 constraints. An expanded model for the problem considering composi-
tions of up to three train units (the S-tog maximum length of composition)
will have approx. 8000 variables and approx. 8500 constraints. This is an
estimate as Equation 3 must be changed according to the new maximum

composition length.

In comparison the Fioole model in comparison has approx. 27000 variables
and 12000 constraints when considering compositions up to two train units
and approx. 41000 variables and 16000 constraints when considering com-

positions up to three train units.

5.2 Solution approach for Train unit position model

The model is implemented in C# using Concert Technology from ILOG and
solved using Cplex 10.0. Given the size of the problem we expect solutions

to be achieved within acceptable computation times.

6 Train sequence model

When a train unit’s path consists of one train sequence it is certain that the
train unit is not decoupled or coupled at any time. That is, coupling and
decoupling refer to train unit flows to and from the train sequence. Both
are time demanding and in a periodic timetable there will not necessarily
be sufficient time for performing these. It is assumed that if the number of
couplings/decouplings are decreased the robustness of the rolling stock plan
is increased. That is, the rolling stock plan will be less sensitive towards

minor interferences in the operation.

This section describes the Train sequence model (Sequence model). The

model is an assignment model, which if possible assigns a single, physical

17



train unit to each train sequence in the disruption scenario, such that the
train unit can feasibly cover the entire train sequence. In this way the model

mirrors qualities that are part of solutions known to work well in practice.

The consequence of only covering the set of train sequences with one train
unit each (if in fact a train unit exists that can make a feasible cover) is
that for a set of train tasks the demand will not be fully covered. For some
of the train tasks one train unit will be assigned but the demand exceeds
the seat capacity of that train unit. For some train tasks no train unit will
be assigned and the demand not covered at all. The set of train tasks not

covered sufficiently will be addressed in a third model.

There is a preference of which train unit type to assign in the process of
assigning train units to train sequences. The preferred train unit type is
chosen given the results from the Train unit position model. Recall that
this model gives information regarding number and type of train unit types
assigned to each train task. For each train sequence the train unit type cho-
sen as the preferable coverage is the type being present on each composition

of the train tasks of the train sequence.

The Train sequence model has one set of variables, ¢*, which assign physical

train units to train sequences.

o 1 If train unit £ is assigned to train sequence s
S 0 Otherwise

The objective function of the Train sequence model is to maximize the sum
of preferences of train units, k, assigned to train sequences, s, see Eq. 14. As
many train sequences are assigned a train unit as possible provided that a
train unit exists for the train sequence that contributes to a feasible solution.
The preference of assigning train unit & to train sequence s is cf. It takes
the value of 1 if train unit k£ is a possible match for sequence s and -1 if it

is not.

Mazimize 3 . qrex k.t (14)

Each train can be covered by at most one train unit. The train unit, k&, must

have the same start and end depot, d,(k) and d,(k), as the train sequence.
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Start and end depot of the train sequence s are denoted d,(s) and dy,(s).
This is ensured by Eq. 15.

ba(s)=0a (k) (15)

For the train unit covering a train sequence maintenance requirements must
be respected. This is easily included in the Sequence model, see Eq. 16.
EndRung is a parameter indicating the number of kilometers which are
left after recovery until the depot is reached. This can be derived from
the original rolling stock plan. KmBeforey is a parameter indicating the
number of kilometers that the unit has driven before the start of the recovery

plan.

Y oscs (Kmg + EndRuny) - % < KmLimit, — KmBefore*, V keK
(16)

The 550 train tasks mentioned in the dimensioning of the Train unit position
model groups into less than 70 train sequences. Available for covering the
problem are at most 130 train units. This results in approximately 9000

variables and less than 350 constraints.

Again the model is not of considerable size and we solve it using Cplex 10.0

and Concert Technology where the model is implemented in C#.

7 The train Routing model

As mentioned in the previous section 6 the Train sequence model will only
cover some of the train tasks according to their respective demands. Some
will either be left uncovered or covered insufficiently according to demand.
These must be covered by valid train task paths using the train units not yet
assigned to a train path. This is done by the Train Routing Model, which

is an assignment model considering each train task individually.

The main variables of the Train Routing model are, qf. These variables

assign train units to train tasks.
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q

1 If train unit £ is assigned to train task ¢
- 0 Otherwise

To control the solutions of the model a second set of variables is introduced,
pF. The p§ variables are used to control the number of couplings/decouplings

in the solution.

{ 1 If train unit & is assigned to train task ¢ and to the successor of t, v(t)
p =

0 Otherwise

A set of artificial tasks are added to the problem representing the sources,
Ty, and sinks, T;, of train tasks. There are |K| sources and |D| x |K|
sinks. The set of train tasks are in the set Ty,4ks. The joint set of tasks is
T = Thasks U Tso U Tsi-

The objective function maximizes the total sum of covered demand and the
sum of couples of consecutive tasks covered by the same train unit. The use
of physical train units also included in the objective by the sum of sources

and sinks. All terms are weighted using weights, Wy to Wy. See Eq. 17.

. . k k
Maximize Wy - ZteTtasks,keK q; + Wy - ZteTw,keK qr +

. . (17)
W3 ' ZteTsiakeK qt + W4 ' ZteT‘)&asIcsykel( pt

Each train task must be covered at most corresponding to the number of
each train unit type assigned to the task in the Position model, see Eq. 18
and 19. The parameter cars,, represent the number of cars on train unit
type m. constraining the number of cars and the number of train units on a
train task to be the same in the Routing model as in the Position model, we

are ensured that the right train composition is assigned to the train task.

ZkeK,typek:m Carsm(k) - a; < ZpeP,meM carsy, - X, Vot € Tiasks
(18)
ZkEK,typek:m qf < Zpep,meM 'Xtm’pa V te Ttasks (19)

20



The pf variables are defined in Eq. 20.

2pf§qf+qu€(t)a v keKatETtaskS\Tl (20)

The train tasks assigned to a train unit must form a valid train route i.e. a
path through the network, which is feasible with respect to time and place
of each adjacent pair of train tasks on the route. Also, the train route for
each individual train unit must be valid with respect to any required start
and end depots of the train unit. We add a set of virtual nodes to the
network, one set representing the source nodes, Ny,, of each individual train
unit and one set representing the sink nodes, Ng;, of each individual train
unit. For each train unit there is a sink node for each depot i.e. there are

|Depots| - | Trainunits| sinks in total.

The constraints ensuring valid paths are in Eq. 21 to 25. Eq. 21 ensures
that if the source of a train unit is not covered, the train unit is not covering
any of the train tasks. Eq. 22 ensures that if the source is covered for a train
unit, then so is exactly one of the sinks of the train unit. Eq. 23 and 24 are
equivalent to the flow constraints of a multi commodity flow model. They
ensure that if train unit k£ is covering train task ¢ then at least one of the
predecessors, pred(t), respectively successors, succ(t) are covered. Finally,
Eq. 25 ensure that if train unit & is assigned to ¢ then it can cover none of
the train tasks parallel in time to ¢. Time parallelism is illustrated in Fig.
4. The four tasks ¢, to ¢4 are all time parallel to ¢ because they intersect the
time interval between departure time and arrival time of ¢. The parameter
n in Eq. 25 indicates the maximum number of train tasks present within the
time interval of £ on any other sequence in the relevant problem instance.
See Fig. 5.

qf < qf’? V keK, t'e Tsource(k)a t € Tyasks \Tsource(k) (21)
ZteTsinks(k) Qf - Qf' =0, V keK, t'e Tsource(k) (22)
ZtleTpred(t) Qf/ 2 Qf, V ke K,t € Tiasks (23)
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Departure time Arrival time
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Figure 4: Illustrating time parallelism: %1, ...,%4 are all time parallel with ¢

Sveryg @b af ¥ k€Kt € T (24)

St W S — (=1 qf, ¥ k€K tE T, (25)

Note that the Train position model and the Train ID model can function

without the Train Sequence model. The Train sequence gives us two advan-

Departure time Arrival time

\

Figure 5: Illustrating the meaning of parameter n: Three train tasks are

present in the train sequence during the time span of ¢
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tages when included in the solution process. First, it heavily reduces the
number of variables that must be taken into account in the Train routing
model. Second, we decrease the number of broken composition constraints.
The disadvantage is that decomposing into three models instead of two may
give a solution farther from optimal. However, the train sequence model
imitates features of solutions working well in practice. When the train se-
quence model is included in the solution process the constraints in Eq. 26
are included in the train routing model ensuring that train unit & is assigned
to train task ¢ if ¢ is in train sequence s and s has been covered by £ in the

Sequence model.

(bk:1:>qf:17 N kEKateTtasks (26)

S

We implement the model using Concert Technology and solve the model
with Cplex. There are, however, potentially more than 75,000 variables and
solving the model with Cplex is expected to be too time consuming. The
large number of variables stem mainly from the qf variables, which account
for 60,500 of the total. The rest are the auxiliary variables.

8 Computational results

Extensive experiments have been carried out for the decomposed approach.
We first discuss experiments with the main purpose of choosing a setting
of the weights in the objective function of the Position model. The weights
must provide a sufficiently good solution quality and a sufficiently short com-
putation time. The second set of experiments aims at determining a weight
setting for the Routing model objective function. Finally, we present exper-
iments illustrating the different results achieved when respectively including

and excluding the Sequence model in the solution approach.

8.1 Experimental results for Position model

A set of experiments on various weight settings for the objective function of

the Position model form the basis for further experiments. The aim of the
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Factor | Type

A Standing passengers
Train unit kilometers
Excess seat
Composition Changes

End capacity difference

0 EH O QW

Instance size

Table 3: The factors with varying weights.

Level | A |B| C D E F
0 0 0 0 0 0 C

1 1 |11 1 | 10* | A, A+
2 10 10 | 1000 | 10°
3 100 100

Table 4: The different levels used for factor experiments.

experiments is to derive a set of weights for which solution quality and com-
putational time are both acceptable. The experiments will be constructed

as a statistical design of experiments (DOE), see 7 |.

Two sets of factor experiments is conducted each having a statistical DOE.
In the first set of experiments six factors of varying levels are included, see
Tab. 3. The second set of experiments includes factors A to E. Factor A to
E represent the weights of the objective function of the Position model as
described in Tab. 3.

We have used the values presented in Tab. 4 for each weight.

A full design of experiments contains 288 instances without factor F and 576
including factor F. We have used a design limiting the number of experiments
to 72 for all experiments where each of the 72 experiments is equivalent to

a specific weight setting of the objective function.

The disruptions are based on real-life data from the timetable in 2006. A
data set is chosen with low punctuality and in which train units ended
up in wrong locations according to their individually planned end station.
A disruption is limited within a time window. The train tasks included

in the disruption intersect the time window and are included in the train
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sequences of a set of train lines given as input. The train units included in
the disruption are those being assigned to the included train tasks plus the
train units being located at the depots of the train lines at the start of the

disruption time window.

We run two types of experiments. In the first type, factor F is included at
the levels shown in Tab. 4. In the second type we exclude factor F. We
have run 4 different sets of lines, A&A+, C, E and H&H+ for the type 2
experiments'. The experiments were run with an upper limit on the solution

time on 300 seconds.

We have used the method described in ? |, to develop the DOE. A statistical
function for a general linear model is derived using information from the 72
experiments. The function can be used for estimating the contribution of
each factor to the objective for some parameter setting. We assume that
the contributions from third order correlations and higher are negligible.
For a DOE with three factors, the statistical function is shown in Eq. 27.

A function for 6 factors A to F follows the same structure.

Fopj=A+B+C+AB+AC+BC+c¢ (27)

The basic idea of using DOE is to reduce the number of experiments neces-
sary to gain information on the contribution and importance of each term in
the objective. By calculating the value of the statistical objective function
and comparing it to the values observed in the results, we get an impres-
sion of how well the chosen experiments describe the effect from each factor.
If the average error, €, is low the chosen experiments are assumed repre-
sentable for choosing a weight set for the objective function of the mathe-
matical model that can be used in further experiments. We also evaluate the
contributions from each factor on each of the terms in the objective. If the
contribution is as expected, we assume the experiments representable and
thereby a sufficient basis for choosing a weight set for the objective function

of the mathematical model that can be used in further experiments.

We use the statistical function to calculate the contribution of factor A

to E, the computational time and the joint objective function. In Tab.

!The S-tog lines are illustrated in the S-tog network in Fig. 6
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Figure 6: The S-tog network

26



cAkAt 1 O cE cH&H*
Typea Types Types T'ypes

A 7.93 6.05 6.05 8.75 4.50
B 1.50 3.71 3.09 247 1.46
C 1.29 11.90 | 10.44 8.61 4.90
D 2.23 9.32 4.48 4.41 5.16
E 1.32 27.91 | 64.08 | 14.40 9.82

Factor | erype,

Table 5: The average error contribution for the different terms in the objec-

tives given the estimated objective function.

5 the average error contributions measured in percentage of the average

observation are listed for all experiments.

Type; experiments: For experiments of T'ype; we see that the average
error contributions for all terms are lower than those of T'ypes except for
factor A. The low error contributions indicate that the T'ype; experiments
are representative, however, evaluating the contributions from each factor
on all terms in the objective we observe that the contributions cannot be
reasonably explained. For example, factor C at the high levels contributes
to the kilometer term of the objective function of the Position model, see
Appendix E.A. This is a contradiction as factor C relates to the standing
passengers. If the number of standing passengers are decreased by the model
more train units are used and hence the number of train unit kilometers is
increased. Another example of a contradiction is that factor C punish itself

at all levels. The first order factor contributions are enclosed in Appendix

E.A.

Because of the lack of consistency between expected and actual contributions

we conclude that T'ype; experiments are not representative.

Typeys experiments: Considering the Types experiments we make the fol-
lowing observations on the error contributions and the first order factor
contributions?:

A& A+ : The error contributions are especially high for factor E and C.

Also, if we consider the different contributions that the factors make

2The first order factor contributions are enclosed in Appendix E.B
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to each term in the objective there are contradictions similar to the

ones observed for Type; results.

C : The error contributions are especially high for factor E and C. The
contributions from each factor on each term in the objective are all as

expected.

FEandH&H+ : For both the experiments on £ and H& H+ the error con-
tributions are especially high for factor E. The contributions from each

factor on each term in the objective are all as expected.

For all line combinations but A& A+ the instances solve to optimality within
the computation time limit of 300 seconds. A large part of the A& A+
instances do not find the optimal solution within the 300 seconds. The
error contribution and the lack of ability to describe the contributions of
the A& A+ instances indicate that these are not representative. As they are
not representative, we will not use them for determining the weight set used

for further experiments.

Given the average error contributions in Tab. 5 and the evaluation of the
expected versus the actual contributions commented above, we base our
choice of a weight setting for further experiments on the instances of C', £
and H&H +.

We also investigated whether one can trace dependency between the com-
putational time and the weight setting used for the objective. However,
results show that there is no connection. When we use the statistical func-
tion for estimating the computational time the average error contribution

varies from 20 to 75 %.

Choice and validation of weight setting

We have chosen the set of weights by filtrating the experimental results with

respect to the criteria listed below.

1. Choose a subset of instances with lowest end capacity difference.
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2. Choose a subset of instances where the maximum number of standing
passengers is low. Preferably the maximum number of standing pas-
senger should not exceed 36. This is 10 percent of the seat capacity in

an SA train unit.

3. Choose the experiments which has the lowest average values of excess

seats.

4. Choose the set of instances with lowest number of driven train unit

kilometers.

Given a selection of instances, which are based on the criteria above, we as-
sume that results are satisfactory with respect to all terms in the objective
function. Based on the sorting and filtration we have chosen the instance
that has a short computation time. The final choice of weight setting used
for all further experiments is the combination Weights, = (100, 1, 10,0, 10%).
Furthermore we have chosen one more weight set, Weightso = (1,1,1,100,10%),
for comparison. Weights; = (W1, Wo, W3, Wy, W5)1 and Weightsy = (W1, Wa, Wy, Wy, W5)o
are parameters used for the objective function in the Position model where
W; is the weight on the ith term in the objective function. We expect that

W eights, emphasizes specifically the number of standing passenger whereas
we expect that Weightso puts a higher emphasis on number of driven kilo-
meters and the amount of excess seats, though standing passengers are still

given some importance.

We have run a set of experiments on each of the two weight sets. The
purpose of the experiments is to verify the expected difference of objectives
for each of the two weight settings and to see if Weights, are more likely to
have a short computation time than Weightss. Each experiment is defined
by a set of lines and recovery time window. The line sets are represented
in Tab. 6. The recovery windows are respectively 1, 2 and 3 hours in the
morning peak hour starting from 7 o’clock. The line combinations listed in
Tab. 6 combined with the three different time periods gives 63 experimental
instances. As explained these instances are run for two weight sets which
gives a total of 126 experiments. The upper limit on computational time for

each instance is 3600 seconds.
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Lines

A
C

E

H

A+

H, H+

A, A+

C, H+

H, C

C, A+

E, A+

E, A

E, A, A+

C, H, H+

E, H+, C

E, A+, C

E, H+, A

E, C, A+, A

E, C, H, H+

H, H+, C, A+, A
H, H+, C, A+, A, E

Table 6: Lines included in experiments, see Fig. 6.
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Figure 7: Each point in the plots is the average for a solution over all its

train tasks of number of respectively standing passenger and excess seats

In both plots in Fig. 7 the average excess seats versus the average standing
passengers for each of the 63 experimental instances are illustrated. Each
point in the plots relates to a solution. Notice that it is possible in a solution
to have both an average number of excess seats and an average number of
standing passengers larger than zero as we average over all train tasks in
that solution. For a single train task the number of respectively standing

passengers and excess seats cannot both exceed zero.

If we inspect the two figures in 7 we see that the instances illustrated in
7(a) as expected in general have much fewer standing passengers on average
than the instances in 7(b). The average numbers of excess seats in the
Weights; solutions are not much higher than numbers of excess seats in the
Weightsy solutions. For both figures the relationship between the average
number of standing passengers and the average number of excess seats seems

approximately linear.

In Fig. 8 the two plots show the sum of excess seats versus the number
of composition changes for each experimental instance. The numbers of
composition changes only vary little from the Weights; solutions to the
Weightss solutions. Both Fig. 8(a) and 8(b) indicate a linear relationship

between composition changes and excess seats.

The two plots in Fig. 9 shows the sum of standing passengers versus the

number of end capacity differences for each experimental instance. There
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Figure 9: Sum of standing passengers versus number of end capacity differ-

ences.

are much fewer standing passengers in the Weights; solutions, see Fig. 9(a)
than in the Weightsy solutions, see Fig. 9(b). The number of depot end
capacity differences only vary little, however, a tendency shows that a high
emphasis on few standing passengers results in relatively more end capacity
differences. The number of end capacity differences do not increase much in

the Weights; solutions.

We have chosen Weights; partly because these weights lead to low com-
putation time. We are interested in whether the low computation time
observed in the initial experiments is low in general. We therefore compare

computation times of Weights; results with those of Weightsy. In Fig.
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Figure 10: The difference in computation time for each instance versus the

number of train tasks.

10 the differences in solution time between the Weights; solutions and the
Weightsy solutions are illustrated. Generally there is little difference be-
tween the solution time for the two weight sets, however, there is a set of
8 to 10 problems that solve in much shorter time for Weights;. Solution
times for Weights, are approximately 90% faster than those of Weights,.

There is only one instance where Weightss is much faster than Weights;.

General comments on Position model results

There is a large variation in the results of the experiments with respect to
depot end capacities. The quality with respect to standing passengers and
excess seats varies independently of the depot end capacities. Finding a good
balance between standing passengers and excess seats may effect the depot
end capacities. A high weight on depot end capacity will often increase both
the number of standing passengers and the excess seats. When we assign a
low weight to the number of standing passengers we experience an increase

in excess seats.

In practice it is subjective whether emphasis must be on e.g. low number
of standing passengers or low end capacity differences on depots. How the

weights are set will affect the computation time.

33



8.2 Experimental results for Routing model objective func-

tion weights

As for the Position model we have for the Routing model run experimental
instances for a set of different weight sets. We have used three setups, see
Tab. 7. The first setup includes the Sequence model solutions in each run of
an instance. The second setup discards the Sequence model solution. The
third setup varies the use of the Sequence model over including the model,
excluding the model or including the model as preferences in the objective
function. In the latter case, preferences are generated from the result of the
Sequence model. That is, if a train unit has been assigned to a train sequence
in the Sequence model, there is in the Routing model a high preference for
assigning the same train unit to the train tasks of the train sequence in the

Routing model.

For each of the setups presented in Tab. 7 we have used a factorial design to
perform a set of experiments. The factors are the weights in the objective
function. The weight of covering a task is named factor A, the weight
assigned to sources is named factor B, sinks are named C and the weight of
the binary variables telling whether two subsequent train tasks are assigned
to the same train unit is named D. In the instances following the third setup
the varying use of the Sequence model is included as a factor E. The value

levels of each factor used are listed in Tab. 8.

We run instances based on the A& A+ and C train lines described in Section
8.1. A full DOE contains 3° = 243 experiments for Setups and 81 for Setup;
and Setups. By using the DOE the number of runs has been reduced for
each Setup according to Tab. 7.

As we are interested in a reasonable solution quality within a short com-
putation time we put an upper limit on the computation time of each run.
Prior to each run of the Routing model an execution of the Position model
finds the number of train units of each type to assign to each train task.
Hereafter, the Sequence model is run. The upper limits on the computation
time of the Position model is 600 seconds. The Sequence model is solved at
an aggregated level and needs no upper limit as it always solves to optimal-
ity in less than 1 second for the instances chosen in our test setups. Finally,

we have set the upper limit on the Routing model computation time to 3600
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Number | Setup Number of runs
Setup; | Including the Sequence model in each experiment 53
Setups | Excluding the Sequence model in each experiment 53
Setupsz | Varying the use of Sequence model as a factor 72

Table 7: Experimental setups used for the routing parameter choice experi-

ments.

Level | A B C D E
0 0 0 0 0 Incl. Seq.
1 100 | -10 | -10 | 1000 | Pref. from Seq.
2 1000 | -50 | -50 | 10000 Excl. Seq.

Table 8: The different levels used for factor experiments of the Routing

model.

seconds.

In Tab. 9 the error contributions in percentage of the average objective are
listed for five different measures for each of the experimental setups®. The
highest average error contributions are of the tests on Setups where factor
E is included. For Setupy the error contributions are higher for instances
on train lines A& A+ than those on C. All average error contributions are

high when estimating computation time.

The results suggest that an estimate has a high error if many of the runs
in the experiment cannot be solved to optimality. Also, if the use of the
sequence model is varied, the error contribution will be high. Even though
the average error contributions are low on various objectives of the experi-
mental setup, the average error contribution on the estimate of computation
time is high indicating that computation time cannot be predicted with the
statistical function. Given these observations we have chosen to use the
experiments based on setup 1 from Tab. 7 to base the choice of weight set

used for further experiments.

Given the experiments corresponding to setup; we have filtered the solu-
tion data relative to the maximum difference in depot end capacity, the

maximum number of standing passengers and the maximum average num-

3For information on factor contributions see Appendix E.C
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o Setups Setups Setup,

Objective

C |AJA+| C | A A+ C A, A+
Standing passengers | 45.78 | 23.85 | 0.27 | 5.14 | 1.98-107'3 | 0.93
Excess seats 6.84 | 412 | 038 | 532 |249-1072 | 0.22
Driven kilometers 7.22 5.00 0.13 3.37 0 0.07
End capacity diff. 460 | 4.85 | 0.88 | 4.02 |236-107'2 | 1.59
Computation time 16.38 | 14.05 | 16.44 0.01 18.96 15.01

Table 9: The average error contribution on different objectives given the

estimated objective function.

ber of standing passengers. Based on the filtering for train lines A& A+,
we have chosen the weight set, Weights; = (100,0,—50,1000), for fur-
ther experiments. We have chosen not to use the results for line C on
setupy as there is too little difference in the solutions i.e. it is very easy to
achieve a good solution. For comparisons we have chosen the weight set,
Weightss = (100, —10, —10,1000). We expect that Weights, will provide
the same quality in results as Weights; as they give similar weights to sinks
and sources and the same weights on train tasks and subsequent covers. We
want to verify this and to see if there is any difference in computational

time.

Weights, and Weightss have been used in two separate experiments of
36 runs counting 12 line combinations and three time periods. The line
combinations are listed in Tab. 10. The time periods are all starting at 7
o’clock and are of respectively 1, 2 and 3 hours of duration. In the 36 runs

the Sequence model is included in the solution process.

In 5 instances out of the 36 instances a solution for the underlying Position
problem could not be found within 600 seconds. We will discard these when

evaluating the quality of the Routing model.

In Fig. 11 two plots are given of the average excess seats versus the average
standing passengers. There is only little difference between the Weights;
solutions in Fig. 11(a) and the Weightsy solutions in Fig. 11(b).

Fig. 12 shows two plots of the sum of standing passengers versus the differ-
ence in depot end capacities. As for the plots in Fig. 11 there is only little
difference between the Weights; solutions in Fig. 12(a) and the Weights,
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Nr. | Lines

1 | A

2 | C

3 | E

4 | A, A+

5 | C, A+

6 | E, A+

7 | E, A+, A

8 | C,H+, H

9 | E, H+, C

10 | A+, H, H+, C

11 | H+, H, C, A+, A
12 | H+,H, C, A+, A E

Table 10: Lines included in experiments, see Fig. 6.
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Figure 11: Average excess seats versus average standing passengers.
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Figure 13: The difference between Weightsi-solutions and Weightsso-

solutions for the Position solution differences.

solutions in Fig. 12(b).

The difference between Weights, solutions and Weightsy solutions for the
Position solution differences is illustrated in Fig. 13. We see that there
is a difference to the Position solution when either the type of train unit
assigned in the Routing model does not match the type assigned in the
Position model or the number of train units assigned in the Position model
does not match the number of train units assigned in the Routing model.
We see that there is only little difference in the differences from Weights,
solutions to Weightso solutions. The average difference over all runs in
difference to Position solution is APos; = 3.0556 for Weights; solutions
and APosy = 3.0833 for Weightss solutions.
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Figure 14: The number of train tasks versus the difference in solution time

for each instance.

Fig. 14 illustrates the number of train tasks on each run versus the difference
in computation time between the Weights; solutions and the Weightssy
solutions. The difference in computation times in the two sets of solutions
is with but one exception less than 8 seconds. Considering the computation
times of the problem instances only three of these have a computation time
higher than 15 seconds. The immediate reason for the deviating results is
probably that only few assignments were made in the intermediate step of
the Sequence model which of course decreased the number of preassigned

variables in the Routing model.

There is a a marginal difference in excess seats and standing passengers.
In the Weights, solutions there are slightly fewer standing passengers than
the Weightss solutions. In the Weightso solutions there are slightly fewer
excess seats than the Weights; solutions. This can all be traced to the

difference in deviations from the Position model.

There is only little difference in computation time for the two weight sets.
The total average computation time is 215.81 for Weights; and 214.10 for
Weightsy. Only three of the instances considered have exceedingly high
computation times. One of these solve to optimality in 531.25 seconds for
Weights, and 474.56 seconds for Weightsy. Discarding these three in-
stances which results in a high computation time the mean computation

time is 1.34 seconds for Weights; and 1.18 seconds for Weightss.

Running the two instances that do not solve to optimality within an hour
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Parameter | Line Length of Opt. gap Opt. gap Opt. gap

set set | time interval | 60 sec. (%) | 3600 sec. (%) | 28800 sec. (%)
Weightsy | 9 2 0.88 0.70 0.61
Weights, | 10 1 0.82 0.62 0.38
Weightsy | 9 2 0.90 0.68 0.59
Weightsy | 10 1 2.01 1.09 0.02

Table 11: Computational time and optimality gap for 8 hour runs.

for a longer period of 8 hours for both Weights; and Weightss we get the
results in Tab. 11. We see that increasing the upper time limit on running
time does not result in optimal solutions. In fact, the solution quality only
improves very little in the 7 hours increased solution time. Hence, a solution
close to the optimal solution is obtained within the first 60 seconds for both
instances. This indicate that the Routing model even for these instances is

practical applicable.

8.3 Effect of including the Sequence model

In this section we analyze the 3 - 36 experiments run for Weights;. Test
instances are constructed given the three time windows of 1, 2 and 3 hours
starting from 7 o’clock and the line combinations in Tab. 10. Each of the 36
instances are solved using three different approaches, excluding the Sequence
model, including the Sequence model and including the Sequence model as

preference in the objective function.

We will in the following refer to the solution approach where the Sequence
model solution is included in the Routing solution procedure as Aj,q.. The
solution approach where the Sequence model used as preferences in the Rout-
ing solution procedure we refer to as Ap,.s. Last, the solution approach

where we exclude the Sequence model solution we refer to as Agye.-

Fig. 15 shows respectively the sum of standing passengers for each run for
Arner. & Apreg. and for Appe & Apgea.. For Arpg. and Apg.y., see Fig.
15(a), the sum of standing passengers are quite close. For A, the sum of
standing passengers is in general much higher. Note the difference in scale

on the y-axis.
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Figure 15: Sum of standing passengers for each run.
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Figure 16: Sum of excess seats for each run.

Fig. 16 illustrates the sum of excess seats for each run for respectively Ap,q.
& Apyep. and for Arpe. & Apgq.. Again the sum of excess seats for Ag,q.
and Ap,.s. are close, see Fig. 16(a). As the sum of excess seats is often a
conflicting objective to the sum of standing passengers it is expected that
Ap.q. has the same or fewer excess seats than Aj,. . This is also what we
observe in Fig. 16(b).

The difference in end capacity is illustrated in Fig. 17. Again, we see that
there is a little difference in quality regarding Ar,.. and Ap,.;. When

regarding Ag,q. the quality decreases.

Fig. 18 shows the distribution of the results with respect to computation

time. Ar,e. has the most short running times and only few very high running
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Figure 18: The distribution of runs with respect to computation time.

times. The general mean computation time for Aj,c., Apres. and Agge. is

respectively pir,q. = 250.61, pprer. = 510.34 and ppgq. = 1865.06.

When for Ay, disregarding the two runs where an optimal solution can
not be found with in the 1 hour time limit the mean computation time is
,u%z;ilifwd = 19.62 seconds. For Ap,.;. there are three runs where an optimal
solution can not be found within the 1 hour time limit. A modified mean
time limit is o2/ = 179.29.

Summing up the observations we have presented in this section it seems that
the solution quality for respectively Aj,.. and Ap,.s are comparable. The
solution quality of Ag,. is lower, most likely because the optimal solution
cannot be found within the Routing model running time limit. Even though
the Ap,.s renders the same solution quality as Ay, its computation time is

on average more than 50% higher. Hence, if we want to obtain an acceptable
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solution time and quality in real time we must include the Sequence model

in the solution process.

In the Ap,qs. instances there is a higher degree of freedom for assigning
values to variables than in the Ay, instances. However, it is observed
that even when Ap,.s solves to optimality, the solution quality is at most
marginally better on the chosen measures. This indicates that the inclusion

of the Sequence model decreases the solution quality only marginally.

9 Conclusion

In this paper we have addressed the RSRP. We have formulated a solu-
tion approach based on decomposition and consisting of three models to be
solved iteratively. The models are implemented with commercial software
and initial computational results indicate that the models provide a feasible

approach for practical problems up to at least 100 train tasks.

The sequence model is an important step in the solution approach. The av-
erage solution time when leaving out the sequence model is 1865.06 seconds.
When the Sequence model is included and the variables are locked accord-
ingly the average solution time is 250.61. Furthermore, when the Sequence
model is left out the solution quality deteriorates, that is, fewer problem in-
stances solve to optimality within the upper time limit set on computation

time.

The quality of solutions when using the Sequence model as preferences com-
pared to locking the variables in the Routing model is the same or only
marginally better. We therefore conclude that the Sequence model can be
included without deteriorating the solution quality more than marginally.
This is desirable as the computation time is decreased 50 % when locking

the Routing model variables.

Further research concerns other solution methods for the RSRP. An inte-
grated solution approach may be a heuristic approach solving the Position
and Routing problem in one. Also, replacing the Sequence and Routing

problems with a column generation approach is interesting.

43



Appendix E.A Factor contributions, Position model:

6 factors included

In Tab. 12 the first order factor contributions are listed for the factor ex-
periments on the position model having 6 factors. The factors, A to F, are

listed below.

A Weight on the term of the sum of excess seats in the Position model

objective function.

B Weight on the term of the sum train unit kilometers in the Position model

objective function.

C Weight on the term of the sum of standing passengers in the Position

model objective function.

D Weight on the term of the sum of couplings in the Position model objec-

tive function.

E Weight on the term of the sum of depot end capacities in the Position

model objective function.

F Experimental instance input.

First order contributions are calculated for 6 different measures. For each
measure the contribution from a factor is listed for each level higher than 0
e.g. the contribution of A1l to the sum of standing passengers indicates that
factor A on the first level higher than zero has a high decreasing effect on

the sum of standing passengers, see Tab. 4.

Standing passengers The sum of standing passengers on all train tasks.
Train unit kilometers The sum of train unit kilometers on all train tasks.
Excess seats The sum of excess seats on all train tasks.

Composition changes The sum of couplings on all train tasks.

End capacity differences The sum of differences to the scheduled end

capacity on all depots by the end of recovery.
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Computation time

Standing | Train unit | Excess | Composition | End capacity | Comp.
pass. Km seats changes differences time
Al | -1507.3 -199.3 -2981.6 9.1 -0.4 -85.3
A2 | -590.4 -292.7 -3638.7 4.3 0.3 76.4
A3 943.3 -340.4 -3621.4 9.9 -2.2 -106.3
B1 | 3809.3 -795.7 -9364.4 10.4 2.1 41.1
C1 -934.1 19.0 928.7 5.9 5.5 2.8
C2 | 1304.5 -345.5 -3529.1 -4.4 5.9 168.7
C3 811.4 -374.8 -4224.8 0.5 1.4 116.9
D1 | -164.1 -347.6 -2688.1 -1.9 1.4 187.1
D2 919.2 -436.9 -2838.2 -4.8 5.7 178.0
E1l 1610.6 -305.7 -1929.3 9.3 -3.4 120.6
E2 | 2463.5 -520.6 -3896.3 7.6 -1.9 158.5
F1 3042.9 1580.0 5958.7 15.0 6.7 130.2

Table 12: 1. order factor contributions, 6 factor experiments, Position model
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Appendix E.B Factor contributions, Position model:

5 factors included

In Tab. 13 to 16 the first order factor contributions are listed for the factor
experiments on the position model having 5 factors. The factors, A to E,

and the measures are described in Appendix 9.

Composition | End cap. | Excess | Train unit | Standing | Comp.
changes differences | seats Km pass. time

Al 5.7 -1.6 -4500.2 -216.1 33.2 -0.9
A2 4.8 -2.3 -5191.8 -265.1 67.1 -0.8
A3 4.2 -3.3 -4468.2 -234.2 80.1 -0.6
B1 4.6 -0.8 -5068.3 -260.2 61.0 -0.4
C1 1.6 -0.9 -86.7 13.8 -7.5 0.0
C2 2.0 1.5 -802.7 -40.2 -71.9 0.3
C3 4.0 0.8 -1735.3 -83.6 -38.0 -0.3
D1 -1.8 -0.8 -1432.4 -60.6 56.5 0.1
D2 -4.2 1.3 -698.0 -13.5 6.5 0.3
E1 2.2 -2.3 -1504.4 -69.8 14.9 -0.6
E2 1.3 -2.1 -1851.5 -79.1 32.5 -0.7

Table 13: 1. order factor contributions, 5 factor experiments, Position

model, Line C instances
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Composition | End cap. | Excess | Train unit | Standing | Comp.
changes differences | seats Km pass. time

Al -2.2 -7.9 1332.6 -62.4 142.6 -71.3
A2 -17.3 -2.5 871.4 44.6 -197.2 -202.0
A3 6.2 -9.7 1171.8 134.0 -807.9 -47.3
B1 2.7 1.2 -242.7 315.0 -6286.1 | -102.7
C1 3.3 -8.1 448.2 46.7 -39.2 -204.1
C2 -2.9 -3.7 -1405.9 88.4 -1105.6 | -149.4
C3 -9.6 -6.8 2411.2 212.6 -1576.8 -21.5
D1 8.4 0.0 -1798.3 18.0 -1714.9 | -158.5
D2 -11.3 4.3 -944.4 17.8 -536.4 -22.6
E1 7.3 -5.8 2109.9 1.9 737.9 52.5
E2 -0.5 -7.4 2239.4 187.2 -1236.2 | -177.2

Table 14: 1. order factor contributions, 5 factor experiments, Position

model, line A and A+ instances

Composition | End cap. | Excess | Train unit | Standing | Comp.
changes differences | seats Km pass. time

Al 3.7 1.3 -4757.1 -481.4 -75.4 -1.6
A2 5.0 1.8 -6011.4 -662.6 327.2 -2.2
A3 5.5 2.6 -6442.8 -648.4 -27.1 0.5
B1 0.8 0.3 -4159.1 -475.8 254.8 -4.1
C1 0.8 -0.2 -1492.9 -135.2 -378.9 -2.5
C2 -1.5 -0.7 -103.9 36.6 -723.1 -3.6
C3 -1.3 -0.8 870.9 133.0 -823.2 -5.0
D1 1.0 0.3 -1813.3 -232.7 162.9 -3.8
D2 -3.2 -0.2 -1663.3 -214.9 -5.3 -2.2
E1 -3.3 -3.0 -937.4 -87.2 -116.2 5.1
E2 -1.3 -3.3 -1806.6 -234.1 97.8 0.6

Table 15: 1. order factor contributions, 5 factor experiments, Position

model, Line H and H+ instances
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Composition | End cap. | Excess | Train unit | Standing | Comp.
changes differences | seats Km pass. time
Al 2.7 -0.2 -7436.6 -661.5 498.2 -0.1
A2 1.8 -0.6 -8354.2 -780.0 935.1 -0.1
A3 2.3 -0.4 -7983.8 -734.3 929.9 -0.1
B1 0.5 -0.3 -7642.5 -703.4 852.1 -0.1
C1 1.7 -0.3 -148.5 -6.3 -16.2 0.0
C2 1.5 0.1 1485.6 176.6 -669.8 -0.1
C3 -0.2 -0.6 1638.9 188.9 -510.8 -0.1
D1 -1.9 -0.5 -2598.8 -269.6 574.5 0.0
D2 -2.1 -0.7 -2666.3 -291.4 568.5 0.0
E1l 2.4 -2.6 -849.2 -67.5 -36.3 0.0
E2 1.1 -24 -1863.5 -162.4 218.9 -0.1

Table 16: 1. order factor contributions, 5 factor experiments, Position model
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Appendix E.C Factor contributions, Routing model

In Tab. 17 to 22 the first order factor contributions are listed for the factor
experiments on the Routing model. The factor experiments relative to Tab.
17 to 18 have 5 factors A to E. The factor experiments relative to Tab. 19
to 22 have 4 factors A to D. The factors are described below. Levels of the
factors are described in Tab. 8.

A Weight on the term of the tasks in the Routing model objective function.

B Weight on the term of the sources in the Routing model objective func-

tion.
C Weight on the term of the sinks in the Routing model objective function.

D Weight on the term of the consecutive covered tasks in the Routing model

objective function.

E Use of the train Sequence model.
The first order contributions are calculated for 6 different measures.

Difference to Position solution The sum of assignments made in the
Routing solution which differs from the assignments in the Position

solution.

Difference to end capacity The sum of differences to the scheduled end

capacity on all depots by the end of recovery.
Excess seats The sum of excess seats on all train tasks.
Train unit kilometers The sum of train unit kilometers on all train tasks.
Standing passengers The sum of standing passengers on all train tasks.

Computation time
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Difference to | Diff. to | Excess | Train unit | Standing | Comp.

Pos. solution | end cap. | seats Km pass. time
Al 1,4 0,4 -222.9 -27.4 293,2 0,0
A2 11,6 3,7 -1735,6 -205,1 2175,9 0,1
B1 -9,3 -2,5 1384,4 153.6 -1306,8 0,1
B2 -8,9 -24 1315,1 145,2 -1217,2 0,0
C1 -3,0 -0,8 520,6 66,6 -716,3 0,0
C2 -1,8 -0,4 327,6 43,0 -464,2 0,0
D1 -3,0 -0,8 4991 63,1 -677.,4 0,0
D2 -24 -0,6 415,5 53,7 -578.5 0,0
E1 -8,1 2,1 1188.,5 129.6 -1051,1 0,0
E2 -7,9 2,1 1148.9 1247 -998,2 0,0

Table 17: 1. order factor contributions, factor experiments, Routing model,

Line C instances, Choice of Sequence model

Difference to | Diff. to | Excess | Train unit | Standing | Comp.

Pos. solution | end cap. | seats Km pass. time
Al 3,3 0,5 -308,9 -89,9 1021,7 -22,3
A2 41,1 12,4 -4370,6 -822,7 10348.,4 1441
B1 -46,6 -6,5 4835,9 950,1 -8807,7 89,9
B2 -44.7 -5,1 4810,2 919,8 -8575,5 81,8
C1 -4.1 -1,3 364,3 154,6 -1822,4 51,0
C2 -2,3 -0,6 108,8 83,6 -1263,3 33,9
D1 -7,9 -0,3 738,7 173,4 -2553,3 50,4
D2 -1,5 -1,0 8,1 76,4 -1009,2 42,9
E1 -44.0 -3.8 4459,4 893,2 -8058,4 70,0
E2 -43,7 -5,2 4533,3 873,6 -8062,8 65,8

Table 18: 1. order factor contributions, factor experiments, Routing model,

Line A and A+ instances, Choice of Sequence model
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Difference to | Diff. to | Excess | Train unit | Standing | Comp.

Pos. solution | end cap. | seats Km pass. time
Al 0,2 -6,4 3579,0 426.4 -4227.3 0,2
A2 0,2 -6,4 3587,0 4268 -4229,7 0,2
B1 0,2 -0,4 64,0 2,6 -18.,7 0,2
B2 0,1 -0,4 56,0 2,3 -16,3 0,1
C1 0,0 0,0 0,0 0,0 0,0 0,0
C2 -0,1 0,2 -32,0 -1,3 9,3 -0,1
D1 0,2 -6,4 3579,0 4264 -4227,3 0,2
D2 0,2 -6,4 3587,0 426.8 -4229.7 0,2

Table 19: 1. order factor contributions, factor experiments, Routing model,

Line C instances, No use of Sequence model

Difference to | Diff. to | Excess | Train unit | Standing | Comp.

Pos. solution | end cap. | seats Km pass. time
Al -68,3 -6,3 6909,6 1616,3 -18028,4 | 299.6
A2 -66,3 -84 7119,2 1691,5 -18514,8 | 299.5
B1 -2,3 -24 76,1 21,1 113,1 0,0
B2 1,0 -2,3 -30,2 16,2 0,8 0,0
C1 3.4 -0,7 -271,1 -59.,9 459,3 0,0
C2 2,3 0,6 -189.9 -46,7 2771 0,1
D1 -71,8 -94 73879 1718,0 -18662,1 | 299,5
D2 -72,0 -10,4 7465,6 1665,5 -18739,4 | 299.5

Table 20: 1. order factor contributions, factor experiments, Routing model,

Line A and A+ instances, No use of Sequence model
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Difference to | Diff. to | Excess | Train unit | Standing | Comp.

Pos. solution | end cap. | seats Km pass. time
Al -4,0 -1,0 494,0 41,6 -106,0 0,0
A2 -4.0 -1,0 494.0 41,6 -106,0 0,0
B1 0,0 0,0 0,0 0,0 0,0 0,0
B2 0,0 0,0 0,0 0,0 0,0 0,0
C1 0,0 0,0 0,0 0,0 0,0 0,0
C2 0,0 0,0 0,0 0,0 0,0 0,0
D1 -4.0 -1,0 494.0 41,6 -106,0 0,0
D2 -4,0 -1,0 494,0 41,6 -106,0 0,0

Table 21: 1. order factor contributions, factor experiments, Routing model,

Line C instances, Use of Sequence model

Difference to | Diff. to | Excess | Train unit | Standing | Comp.

Pos. solution | end cap. | seats Km pass. time
Al -38,0 -5,1 4079.4 681,9 -5340,6 0,6
A2 -38,0 -3,4 4062,2 674,0 -5357,8 0,6
B1 0,0 0,1 53,4 -4,0 53,4 0,4
B2 0,0 0,1 20,1 -3,2 20,1 0,3
C1 0,0 -0,2 -32,7 -1,6 -32,7 0,1
C2 0,0 -0,2 -40,8 0,8 -40,8 -0,1
D1 -38.,0 -2,8 3972,8 670,0 -5447,2 0,7
D2 -38.,0 -3,7 3973,6 669,2 -5446,4 0,5

Table 22: 1. order factor contributions, factor experiments, Routing model,

Line A and A+ instances, Use of Sequence model
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