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Rolling Stok Reovery ProblemJulie Jespersen Grotha,b, Jens Clausena,b, and Jesper LarsenbaDSB S-tog, DenmarkbInformatis and Mathematial Modelling, Tehnial University of Denmark,DK-2800 Kongens Lyngby, DenmarkFebruary 23, 2009AbstratReal time deision support in railway operations is an area whihhas so far reeived limited attention. In this paper we address realtime reovery of a rolling stok plan. Given a disturbed rolling stokplan the objetive is to return quikly and inexpensively to the originalrolling stok plan. Eah train unit is hene rerouted through the trainnetwork so that eah terminal departure is overed suÆiently wrt.seats relative to demand and so that the train unit paths are feasiblewith respet to onnetions.We address the rolling stok reovery problem using a method basedon deomposition where �rst the number and order of train units foreah departure are determined. Given this knowledge we �nd the trainpath for eah train unit. The experimental results show promisingsolution times and quality indiating appliability in pratie.1 IntrodutionDuring the last years there has been an inreased fous on developing tools toaid the planning proess in railway transportation. The tools are omputersoftware, whih an fully or partially automate parts of the planning proess.As in other industries the initial fous has been on strategi, tatial andoperational planning. Only lately fous has turned to the area of short termand real time planning. This paper onentrates on the area of rolling stok1



real time planning. All models are based on the suburban railway networkin Copenhagen, Denmark. The railway operator operating the network isDSB S-tog A/S.The areas of operational, short-term and real time planning, an with respetto rolling stok be desribed as follow.Operational The operational planning proess is based on the tatialplan, whih de�nes the number of train units and whih type is as-signed to eah de�ned train task. A train task in this ontext is de�nedby a departure from a station and an arrival at another station.Thestations most often are rolling stok depots. Rolling stok unit typesare assigned to train tasks in suh a way that later, train unit routesan be build for physial units that enables eah train unit to visit themaintenane enter within the prede�ned safety time and kilometerlimit.Also, in operational planning adjustments are made with respet toinfrastruture maintenane works. This happens between the tatialand the operational rolling stok planning.Short-term Short-term planning in the railway business onerns the rout-ing of the physial train units 1-3 days in advane of operation. Alsoin this phase small adjustments to the number and type of train unitsassigned to eah train task may be neessary.Real time The major di�erene from operational to short-term planning ofrolling stok is that for the latter information of the physial train ID'sare inluded. This level of detail is maintained also in real time. Realtime planning is onduted during the operation. Real time rollingstok planning is the re-planning or reovery of the plan for physialtrain units after disruption has ourred. This is also alled rollingstok disruption management.In pratie rolling stok dispathers monitor the operation of the rollingstok plan and the depot plans. In the ases where the operation does notrun aording to the rolling stok plan, the rolling stok dispather makesreal time deisions on the re-assignments of train units to train tasks. Often2



suboptimal deisions are made due to the omplexity of the task of manuallyestablishing an integrated solution taking into onsideration the reovery ofseveral trains.There is a substantial ost of re-alloating train units after a disruption in therolling stok plan. The realloation is neessary to meet end-of-day depotbalane requirements and the maintenane requirements of eah individualtrain unit. Furthermore, if too many train units are alloated to trainsending up at partiular depot there may not be suÆient physial spae inthe depot to park all the train units.Today, when a disruption has ourred the depot balanes are often o�implying that the rolling stok plan for the following day is also disrupted.Thus, either some train task must be overed insuÆiently or not overedat all resulting in a anellation of the task.Next, in Setion 2 a review of related literature is given. In Setion 3, we givean introdution to the terms of rolling stok planning. Hereafter, in Setion4 we de�ne terms onerning disruption. We introdue the Train positionmodel in Setion 5, in Setion 6 the Train sequene model is presented andin Setion 7 the Train unit routing model is presented. Finally, in Setions8 and 9 we present the Computational results and give a onlusion.2 Literature reviewThe researh within the area of rolling stok shedule optimization has upto reently mainly foused on the planning phases prior to the day of oper-ation. Only little emphasis has been on the area of real time rolling stokreovery, see Nielsen [10℄. Huisman et al. [8℄ give a survey on state-of-the-artOperations Researh methods for solving passenger railway related planningproblems. The real time handling of rolling stok is briey mentioned andreferene is made to the problems of short time planning, whih resemblesthe real-time situation. Short-term rolling stok planning is done on a day-to-day basis, also adjusting the rolling stok plans aording to hanges inthe timetable due to e.g. rail network maintenane work, or adjusting a-ording to passenger ows, whih may have hanged the need for rollingstok assigned to eah train task. 3



Other reent surveys on rail operation models are given by Cordeau et al.[5℄, and T�ornquist [14℄.At S-tog, the depots are physially not very large, and only one workshop isavailable for maintenane heks. Already in the initial operational rollingstok plan, the paths for the train units lead them pass to the workshop atregular intervals in time and distane.The problem of planning rolling stok an be divided into two subproblems:Firstly, �nding the ompositions for eah train task in the network and se-ondly, �nding the paths for eah virtual train unit ensuring depot feasibilityand regular maintenane heks. The ompositions indiate the type, num-ber and order of train units assigned to a train task. The paths ensure thatall train units are routed to pass the workshop at regular intervals.The �rst problem of determining ompositions is widely explored. There is adistintion between the problems of alloating rolling stok when the eet isomposed by train units ompared to when it is omposed by train arriagesand train loomotives. Papers onerning the loomotive sheduling problemare Cordeau et al. [4℄, Lingaya et al. [9℄ and Bruker et al. [3℄.The �rst paper onerning the problem with self-propelled train units isShrijver [13℄. In this paper a minimum irulation of rolling stok on asingle train line running from Amsterdam to Vlissingen and vie versa isdetermined. The objetive is to ensure suÆient seats available for eah traintask. The model does not take the train unit order within a omposition intoaount. The problem is solved with ommerial software for respetivelyone and two train unit types.In Ben-Khedher [2℄ the problem of apaity adjustment is disussed. Itis based on the problem of �nding railway apaity for high speed trainsrunning in the TGV network of SNCF, Frane. The model is based on theseat reservation system and the objetive is to maximize expeted pro�t.Al�eri et al. [1℄ address the problem of onstruting irulations of trainunits. Fous is again on a single line. The model ouples and deouplestrain units from trains as the depots are passed. The order within eahomposition is taken into onsideration. The model is tested for two traintypes. The solution approah is based on a hierarhial deomposition intosub problems. First, the model, not taking ompositions into onsideration,4



is solved. Seond, it is heked whether there is a feasible solution for theomposition problem.Peeters and Kroon [11℄ present a branh-and-prie algorithm for solvingthe alloation of train units to a single line or a set of interating trainlines. The model is tested on several real-life instanes of the railway op-erator, NS Reizigers. Objetives onsidered are those of minimizing trainunit km shortage, minimizing number shunting operations and number ofdriven train unit km. The model is based on a transition graph as is themodel desribed in Al�eri et al. [1℄. The authors apply a Dantzig-Wolfedeomposition, reformulating so that a variable is assoiated with eah paththrough the transition graph of all trains.In Fioole et al. [6℄ a model for �nding the ompositions of train units on traintasks is presented. Eah solution is feasible with respet to omposition orderin depots and with respet to depot apaities. The model additionally takesinto onsideration ombining and splitting of trains in depot juntions. It isan extension of the model desribed in Peeters and Kroon [11℄. The objetiveonsiders minimizing with respet to eÆieny, servie and robustness. Themodel is implemented and solved in the ommerial integer programmingsolver CPLEX. This proedure improved the solution used in pratie withup to 6 % with respet to number of driven train unit kilometers.Given that the omposition problem is solved at short term or real time levelthe problem of �nding paths resembles the problem of �nding work plans(lines of work) for rew. The train tasks form a time and spae restritedpath. Extensive researh within the area of rew planning has been arriedout. Within the area of rail we refer to the survey of Huisman et al. [8℄.In Nielsen [10℄ a generi framework for modelling the real time rolling stokre-sheduling problem is desribed. This is the problem of re-balaning theuse of rolling stok on train tasks in real time. Rolling stok is onsideredat train type level. The modelling is based on the omposition model pre-sented in Fioole et al. [6℄ and expanded to onsider the end-of-day balanesof rolling stok. The model have the objetives of minimizing number ofanelled trips, hanges to the rolling stok depot plans and the end-of-dayo� balanes. The model is solved using CPLEX 10.1. Computation timesvaries from few seonds up to a minute depending on the problem instanes5



solved. All omputational results are based on data from the Duth railwayoperator NS Reizigers.A reent paper, Rezanova and Ryan [12℄, on the Train Driver ReoveryProblem approahes the problem of reovering a train driver plan in realtime given that some disturbanes have disrupted the plan. The problem issolved using a set partitioning formulation. Frational solutions for the LPrelaxation of the IP problem is solved used onstraint branhing, however,most solutions are integer due to strong integer properties of the model.Solutions are found within few seonds.Another interesting paper on railway reovery is Walker et al. [15℄. In thispaper a model is desribed for simultaneous reovery of the train timetableand the orresponding rew plan. Promising results are presented for asingle line of a New Zealand operator.The urrent paper addresses the area of real time rolling stok reovery. Noprior researh is available on this subjet. We introdue a deompositionmethod for the problem whih provides good quality solutions quikly.3 Basi elements of a rolling stok planTrain operation runs aording to a timetable onsisting of terminal depar-tures with prede�ned stopping patterns. Terminal departures are assembledin Trains. Eah train is represented by a set of Train tasks forming a Trainsequene, see �gures 1(a) and 1(b). The train tasks of a train sequene forma prede�ned work plan for the train in whih eah train task, exept for the�rst and the last, have a known predeessor and suessor. This means thatfor two subsequent tasks t1 and t2, ArrivalT ime(t1) < DepartureT ime(t2)and ArrivalDepot(t1) = DepartureDepot(t2), see �gure 2. In the modelspresented later in this paper we exploit the predeessor/suessor relationbetween the train tasks.Both rolling stok and rew operate aording to plans whih are detailedto a daily level i.e. for eah train task it is known whih spei� driverand whih spei� train units will over the train task. The rolling stokand rew plans are assumed optimal for the situation without disturbanes.Therefore, given a disturbane to either of the plans, we seek to return to6
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the original plan as soon as possible. Returning to the original plan meansthat eah train unit returns to its originally planned path, whih eventuallywill route the train unit to the maintenane enter.A set of trains with the same stopping pattern and a uniform frequenybetween trains form a Train line. The train line onept is �rst of all usedexternally for representing the timetable to the ustomers, but it is also usedinternally for planning and prioritizing.A rolling stok shedule onsists of a set of Train unit routes where eahroute refer to a spei� train unit and overs a path of train tasks. Thesetrain tasks may or may not belong to the same train sequene.When a train unit leaves or is added to a train sequene it is said to bedeoupled from or oupled to the train task. The set of train units assignedto a train is alled a omposition. As mentioned earlier, the ompositionde�nes the number of eah type of train units and the order in whih theyare oupled. At S-tog there are two di�erent train unit types. These anbe oupled in all possible ombinations limited by a maximum length of thetrain.At S-tog oupling/deoupling always ours at only one end of the traindepending on the depot at whih the oupling/deoupling ours i.e. thetrain is only open for oupling/deoupling in one end. The route of a trainunit must be feasible with respet to the open end of the train. That is, ifa train unit is to be deoupled from a train, it must be in the open end ofthe omposition. When oupling a train unit to a train, the train unit mustalso be assigned to the open end of the train. The open versus the losedend of a omposition at a terminal is illustrated in Figure 3.4 De�ning a disruptionInidents our in real time that disturb the planned operation. Some ofthese inidents are of suh a size that also the rolling stok plan is disturbed.For a more detailed desription of the e�et disruptions have on the S-togtimetable see Hofman et al. [7℄.To minimize the impat of an inident, network ontrollers employed by8
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Figure 3: Illustration of the open and losed end of a omposition at theterminal stationthe infrastruture owner reroute trains to get operation bak to normal asquikly as possible.The delays disturbing the timetable may, as mentioned, be of a size thatalso disrupts the rolling stok and rew shedules.A rolling stok shedule is disrupted when train units are not able to overthe train tasks they were expeted to over. The rolling stok shedule isa�eted by the delays both diretly and indiretly. An example of a diretlydisrupting e�et is the break down of a train unit thereby ausing the trainunit not to be able to over its sheduled train task. Indiretly, the rollingstok shedule is a�eted by the ations of the train route dispathers tryingto return the departures to normal.There are several potential negative onsequenes of a disruption in therolling stok shedule. A rolling stok disruption may imply an imbalanein the rolling stok available at the rolling stok depots. This again maylead to train tasks being insuÆiently overed aording to their expetedpassenger demand. Another seondary disruptive e�et an be that therealloation of train units to train tasks other than the originally sheduledones may lead to broken maintenane onstraints for individual train units.The set of train units being assigned extraordinarily to over another trainsequene are not neessarily of the same type and number as the set of9



train units originally intended for that train sequene. Hene, future ou-plings/deouplings on the train sequene and other trains running on thesame route may also be a�eted.4.1 Objetives when minimizing rolling stok disruptionThe rolling stok dispather does not have the time to take into aountseveral objetives when minimizing the extent of a disruption to the rollingstok plan. He tries to minimize the number of departures not overed andhooses the �rst feasible solution he disovers in the manual solution proess.Several objetives are interesting to inlude in a rolling stok reovery model.Fioole et al. [6℄ mention seat shortage, eÆieny and robustness as relevantfor the operational planning phase. These are also relevant in real time.Seat shortage refers to the di�erene between the number of seats on thetrain units alloated to a train task and the expeted seat demand of thetrain task. Maximizing the eÆieny means that we do not want to operatea train task with more train units assigned than neessary, either onsideringthe number of exess seats or the number of train unit kilometers driven.The two objetives of seat shortage and eÆieny an be oniting and willhene have to be weighted. Robustness in a rolling stok reovery plan istranslated diretly to the number of ouplings and deouplings planned ina reovery plan. A reovery plan with many ouplings and deouplings isless robust than one that has fewer. We wish to maximize robustness in aplan given that we still weigh the objetives of seat shortage and eÆienyagainst eah other. Robustness is therefore also assigned a weight in the�nal objetive funtion.Seat shortage, eÆieny and robustness are all objetives onerning theassignment of train unit types to train tasks. Other objetives onern thephysial train units. In real time the aim is to reover to the original rollingstok plan. However, it may not be possible within the time window ofreovery or even within the same day of operation to route the train unitsbak to their original work plans. Hene, an objetive to inlude in theobjetive is the di�erene in end depot balane between the original and thereovered plan. 10



Type Length No SeatsSE 46 150SA 86 336Table 1: rolling stok types4.2 Basi onepts in a disruptionIt is likely that several delays all for reovery our during the day. In thereal-time situation time is a ritial fator and reovery deisions must bemade fast. For eah reovery senario we therefore solve within a spei�edtime window e.g. two hours and inlude a limited set of train units. Thestart and end of the time window is the onsidered start and end time ofthe disruption.Typially, all train units, k 2 K, assigned to the train lines of the a�etedtrain units are inluded in the reovery senario plus possibly some of theother lines running on the same route and sharing the same depots. Also,all train units loated on the a�eted depots at the start time of disruptionwill be inluded in the set of train units to be replanned for.Eah train unit has a kilometer limit,KmLimitk. It indiates the maximumnumber of kilometers that the distanes of the tasks assigned to the trainunit during reovery must sum up to. Eah train unit has a seat apaitymathing its train type. For eah train unit the start depot, Æ�(k), and apreferred end depot, Æ!(k), are given.At all times two rolling stok types, m 2M , are available. These are shortand long train units named SE and SA respetively. Sizes of the two rollingstok types are listed in Table 1.The train tasks, t 2 T , onsidered are those left unovered, those whih areinsuÆiently overed w.r.t. demand and those for whih the assigned trainunits have been inluded in the reovery senario.For eah train task, t, the start and end time, �d(t) and �a(t), and start andend depot, Æd(t) and Æa(t), are known. Eah t is assoiated with a lengthin kilometers, Kmt, and a duration measured in seonds, T imet. The setof tasks having no predeessors onstitutes T0. The train tasks having no11



suessors onstitute T1. The suessor of the train task t is denoted �(t).Eah train task has a seat demand, Demandt.The set of depots involved in the reovery senario, D, is de�ned by theroutes of the train lines inluded. For eah depot, d 2 D, inluded in thereovery senario the start apaity of eah type of train unit m is given byDepotCapd;m. Composition Order NO seats Length0 SE 150 461 SE - SE 300 922 SA 336 863 SE - SA 486 1324 SA - SE 486 1325 SA - SA 672 172Table 2: CompositionsThe maximum length of the omposition assigned to a train is equivalentto the length of two SA train units. Given this maximum length, in fat aomposition onsisting of three SE train units or a omposition onsisting oftwo SE and one SA train unit are appliable in pratie. Even though thesetrain omposition onsisting of three train units are feasible, we omit themfrom our model. Seen from a modelling perspetive our model is signi�antlyredued in size when reduing the number of allowed train units from threeto two. Seen from a pratial perspetive, only few train tasks at S-tog willnormally be assigned three train units. More spei�ally, at the tatialplanning level no train tasks will be assigned more than two units. In areovery situation three units on a train task ours not even on a dailybasis.In the �rst model we will not permit train exhanges. That is, deouplingof all train units after a train task and oupling of an entirely new set oftrain units to the train task suessor is not possible.It is an important fat that all depots in the S-tog network are open foroupling/deoupling in only one end of the platform traks. This enablesus to use the position in a train and information of whih end of the traksis open for oupling/deoupling to deide whether a omposition hange is12



valid.5 The train unit position modelIn this setion we introdue the variables, objetive, and onstraints of theTrain Unit Position model (the Position model). The main variables of themodel desribe the assignment of train type to train task and position.Xmtp = ( 1 If a train unit of type m is assigned to task t in position p0 OtherwiseFrom these X-variables the L-variables are derived. The Lmt variables areinventory variables indiating the number of train units of type m presentat the departure depot of t immediately before the departure of t.Finally, Omt and Nmt are variables indiating whether respetively ouplingand deoupling is arried out between the tasks t and �(t). Both sets ofvariables are binary.L0 are the start inventory parameters. L0dm indiates the number of trainunits of type m loated in depot d at the beginning of the disruption. L1dmare the end apaity variables indiating the number of train units of typem present at depot d in the end of the onsidered reovery period. A desiredend depot apaity is given by the parameter E[ap℄md . The variables Emdindiate the shortage of train units of type m in depot d in the end of thereovery period.Lmt are alulated from L0dm and Xmtp . As both are integers, the L-variableswill automatially be integer. Therefore, we only require that Lmt 2 <+; 8t 2T;m 2M .The relevant aspets we inlude in the objetive of the positioning modelare seat shortage, number of omposition hanges, the ost of overing traintasks with train units and the sum of di�erenes to the originally sheduledapaity on the depots, see Eq. 1.
13



Minimize OBJ =W1 �Pt2T (Demandt �Pm2M;p2P Seatsm �Xmtp )+W2 �Pt2T;p2P;m2M Kmt �Xmtp+W3 �Pt2T (Pm2M;p2P Seatsm �Demandt �Xmtp )+W4 �Pt2T;m2M Omt +W5 �Pd2D;m2M Emd (1)
As a train has a maximum length eah train task annot be overed by morethan the maximum number of train units per train. This is guaranteed byEq. 2. 1 �Pm2M;p2P Xmtp �MaxTrainLength; 8 t 2 T (2)Physially at most one train unit an be assigned to eah position of a traintask. Eq. 3 ensures this.Pm2M Xmtp � 1; 8 t 2 T; p 2 P (3)We ontrol the inoming and outgoing ow of depots by three sets of inven-tory onstraints, see Eq. 4 to 6.The �rst set of onstraints ontrols that the initial inventory level is notviolated. This means that for eah depot d the tasks departing before the�rst arriving task an not use more apaity than what is present initiallygiven by L0dm. The set of departing tasks before the �rst arrival task ondepot d is denoted �d for all d 2 D. See Eq. 4.Pp2P;t2�d Xmtp � L0dm; 8 d 2 D;m 2M (4)The inventory in a depot of train unit type m immediately after the arrivalof a train task t is given by the start apaity on the depot minus the sumof every train unit of type m oupled to train tasks at that depot before andinluding t and plus the sum of every train unit deoupled from train tasksat that depot before and inluding t. This is handled by Eq. 5.
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Lmt = L0Æa(t)m �Pp2P;t02T�d(t0)��a(t)Æd(t0)=Æa(t)Xmt0p+Pp2P;t02T�a(t0)��a(t)Æa(t0)=Æa(t)Xmt0p; 8 t 2 T;m 2M (5)The last set of inventory onstraints onerns the end apaity. The endapaity, L1dm, of train unit type m in depot d is given by Lmt for whih t isthe last train task arriving on d, �d. See Eq. 6.L1dm = Lm�d ; 8 d 2 D;m 2M (6)We wish to ontrol the end depot balane by minimizing in the objetivefuntion the shortage of train units de�ned by variables Emd . These arede�ned in Eq. 7Emd � E[ap℄md � L1dm; 8 d 2 D;m 2M (7)Eah depot has an individual upper apaity on the number of units thatan be stored at that depot. The upper apaity is estimated by ontrollingthe length of the rolling stok stored at eah depot relative to the lengthof the depot traks, DepotCapd. Eq. 8 ontrols the apaity of eah depotright after the departure of eah task, that is, Æd(t) is the departing depotof t. 0 �Pm Lengthm � Lmt � DepotCapd(t); 8 t 2 T (8)The oupling and deoupling variables are determined in Eq. 9 and 10. Weuse a onstant M to �nd the Omt and Nmt variables. This is potentially veryexpensive onsidering omputation time when M has a high value, however,M an be limited to the maximum train length plus one and as the maximumtrain length is 2 units M has a low value.M � Omt � Lm�(t) � Lmt ; 8 t 2 TnT 1;m 2M (9)M �Nmt � Lmt � Lm�(t); 8 t 2 TnT 1;m 2M (10)15



To ensure that no train unit is deoupled from a train if it is positioned inthe losed end of the train omposition, we one of the set of equations inEq. 11 depending on the value of the 0-1 parameter ChangePositiont. Thisparameter indiate whether open position is hanged from one end of thetrain to the other after train task t.
ChangePositiont = 8>><>>: 1 If losed position of task t is di�erent fromlosed position of suessor �(t)0 OtherwiseIf ChangePositiont = 1Xmtp �Pp02P;p0!=pXm�(t)p0 +W�(t)Xmtp �Pp02P;p0=pXm�(t)p0 + V�(t)else Xmtp � Xm�(t)p (11)Vt andWt are length indiator variables. Vt is one if one train unit is assignedto task t and zero otherwise for all t 2 T . Wt is one if two train units areassigned to task t and zero otherwise for all t 2 T . They are determinedthrough Eq. 12 and 13.Wt �Pp2P;m2M Xmtp � 1 � 2 �Wt; 8 t 2 T (12)Vt +Wt = 1; 8 t 2 T (13)The results ahieved when solving the TUP model are omparable to theresults that are ahieved when solving the model desribed in Fioole et al.[6℄. The di�erene between the two models lie in the handling of the ompo-sitions. In the Fioole model the ompositions are handle as set of train unittypes i.e. a omposition is assigned to eah train task and binary variablesdesribes spei�ally the transformation from omposition to ompositionon onseutive train tasks on the same train sequene. In our model wehandle the positions in the train's omposition spei�ally. The Positionmodel is a feasible hoie due to that the maximum length of ompositionson train tasks is limited to 2 train units.16



5.1 Size of modelGiven a time window of the disruption of two hours and inluding all trainlines interseting the most dense part of the S-tog network, a total of 550train tasks result. We have restrited the problem to only onsider ompo-sitions up to two unit as opposed to the real restrition of three units. TheTrain unit position model has therefore approx. 6500 variables and approx.6500 onstraints. An expanded model for the problem onsidering omposi-tions of up to three train units (the S-tog maximum length of omposition)will have approx. 8000 variables and approx. 8500 onstraints. This is anestimate as Equation 3 must be hanged aording to the new maximumomposition length.In omparison the Fioole model in omparison has approx. 27000 variablesand 12000 onstraints when onsidering ompositions up to two train unitsand approx. 41000 variables and 16000 onstraints when onsidering om-positions up to three train units.5.2 Solution approah for Train unit position modelThe model is implemented in C# using Conert Tehnology from ILOG andsolved using Cplex 10.0. Given the size of the problem we expet solutionsto be ahieved within aeptable omputation times.6 Train sequene modelWhen a train unit's path onsists of one train sequene it is ertain that thetrain unit is not deoupled or oupled at any time. That is, oupling anddeoupling refer to train unit ows to and from the train sequene. Bothare time demanding and in a periodi timetable there will not neessarilybe suÆient time for performing these. It is assumed that if the number ofouplings/deouplings are dereased the robustness of the rolling stok planis inreased. That is, the rolling stok plan will be less sensitive towardsminor interferenes in the operation.This setion desribes the Train sequene model (Sequene model). Themodel is an assignment model, whih if possible assigns a single, physial17



train unit to eah train sequene in the disruption senario, suh that thetrain unit an feasibly over the entire train sequene. In this way the modelmirrors qualities that are part of solutions known to work well in pratie.The onsequene of only overing the set of train sequenes with one trainunit eah (if in fat a train unit exists that an make a feasible over) isthat for a set of train tasks the demand will not be fully overed. For someof the train tasks one train unit will be assigned but the demand exeedsthe seat apaity of that train unit. For some train tasks no train unit willbe assigned and the demand not overed at all. The set of train tasks notovered suÆiently will be addressed in a third model.There is a preferene of whih train unit type to assign in the proess ofassigning train units to train sequenes. The preferred train unit type ishosen given the results from the Train unit position model. Reall thatthis model gives information regarding number and type of train unit typesassigned to eah train task. For eah train sequene the train unit type ho-sen as the preferable overage is the type being present on eah ompositionof the train tasks of the train sequene.The Train sequene model has one set of variables, �ks , whih assign physialtrain units to train sequenes.�ks = ( 1 If train unit k is assigned to train sequene s0 OtherwiseThe objetive funtion of the Train sequene model is to maximize the sumof preferenes of train units, k, assigned to train sequenes, s, see Eq. 14. Asmany train sequenes are assigned a train unit as possible provided that atrain unit exists for the train sequene that ontributes to a feasible solution.The preferene of assigning train unit k to train sequene s is ks . It takesthe value of 1 if train unit k is a possible math for sequene s and -1 if itis not. Maximize Ps2S;k2K ks � �ks (14)Eah train an be overed by at most one train unit. The train unit, k, musthave the same start and end depot, Æ�(k) and Æ!(k), as the train sequene.18



Start and end depot of the train sequene s are denoted Æ�(s) and Æ!(s).This is ensured by Eq. 15.P k2K;Æ�(s)=Æ�(k)Æ!(s)=Æ!(k) �ks � 1; 8 s 2 S (15)For the train unit overing a train sequene maintenane requirements mustbe respeted. This is easily inluded in the Sequene model, see Eq. 16.EndRuns is a parameter indiating the number of kilometers whih areleft after reovery until the depot is reahed. This an be derived fromthe original rolling stok plan. KmBeforek is a parameter indiating thenumber of kilometers that the unit has driven before the start of the reoveryplan.Ps2S (Kms +EndRuns) � �ks � KmLimitk �KmBeforek; 8 k 2 K(16)The 550 train tasks mentioned in the dimensioning of the Train unit positionmodel groups into less than 70 train sequenes. Available for overing theproblem are at most 130 train units. This results in approximately 9000variables and less than 350 onstraints.Again the model is not of onsiderable size and we solve it using Cplex 10.0and Conert Tehnology where the model is implemented in C#.7 The train Routing modelAs mentioned in the previous setion 6 the Train sequene model will onlyover some of the train tasks aording to their respetive demands. Somewill either be left unovered or overed insuÆiently aording to demand.These must be overed by valid train task paths using the train units not yetassigned to a train path. This is done by the Train Routing Model, whihis an assignment model onsidering eah train task individually.The main variables of the Train Routing model are, qkt . These variablesassign train units to train tasks. 19



qkt = ( 1 If train unit k is assigned to train task t0 OtherwiseTo ontrol the solutions of the model a seond set of variables is introdued,�kt . The �kt variables are used to ontrol the number of ouplings/deouplingsin the solution.�kt = ( 1 If train unit k is assigned to train task t and to the suessor of t, �(t)0 OtherwiseA set of arti�ial tasks are added to the problem representing the soures,Tso, and sinks, Tsi, of train tasks. There are jKj soures and jDj � jKjsinks. The set of train tasks are in the set Ttasks. The joint set of tasks isT = TtasksSTsoSTsi.The objetive funtion maximizes the total sum of overed demand and thesum of ouples of onseutive tasks overed by the same train unit. The useof physial train units also inluded in the objetive by the sum of souresand sinks. All terms are weighted using weights, W1 to W4. See Eq. 17.Maximize W1 �Pt2Ttasks;k2K qkt +W2 �Pt2Tso;k2K qkt+W3 �Pt2Tsi;k2K qkt +W4 �Pt2Ttasks;k2K �kt (17)Eah train task must be overed at most orresponding to the number ofeah train unit type assigned to the task in the Position model, see Eq. 18and 19. The parameter arsm represent the number of ars on train unittype m. onstraining the number of ars and the number of train units on atrain task to be the same in the Routing model as in the Position model, weare ensured that the right train omposition is assigned to the train task.Pk2K;typek=m arsm(k) � qkt �Pp2P;m2M arsm �Xm;pt ; 8 t 2 Ttasks(18)Pk2K;typek=m qkt �Pp2P;m2M �Xm;pt ; 8 t 2 Ttasks (19)20



The �kt variables are de�ned in Eq. 20.2 � �kt � qkt + qk�(t); 8 k 2 K; t 2 Ttasks n T 1 (20)The train tasks assigned to a train unit must form a valid train route i.e. apath through the network, whih is feasible with respet to time and plaeof eah adjaent pair of train tasks on the route. Also, the train route foreah individual train unit must be valid with respet to any required startand end depots of the train unit. We add a set of virtual nodes to thenetwork, one set representing the soure nodes, Nso, of eah individual trainunit and one set representing the sink nodes, Nsi, of eah individual trainunit. For eah train unit there is a sink node for eah depot i.e. there arejDepotsj � jTrainunitsj sinks in total.The onstraints ensuring valid paths are in Eq. 21 to 25. Eq. 21 ensuresthat if the soure of a train unit is not overed, the train unit is not overingany of the train tasks. Eq. 22 ensures that if the soure is overed for a trainunit, then so is exatly one of the sinks of the train unit. Eq. 23 and 24 areequivalent to the ow onstraints of a multi ommodity ow model. Theyensure that if train unit k is overing train task t then at least one of thepredeessors, pred(t), respetively suessors, su(t) are overed. Finally,Eq. 25 ensure that if train unit k is assigned to t then it an over none ofthe train tasks parallel in time to t. Time parallelism is illustrated in Fig.4. The four tasks t1 to t4 are all time parallel to t beause they interset thetime interval between departure time and arrival time of t. The parametern in Eq. 25 indiates the maximum number of train tasks present within thetime interval of t on any other sequene in the relevant problem instane.See Fig. 5.qkt � qkt0 ; 8 k 2 K; t0 2 Tsoure(k); t 2 Ttasks n Tsoure(k) (21)Pt2Tsinks(k) qkt � qkt0 = 0; 8 k 2 K; t0 2 Tsoure(k) (22)Pt02Tpred(t) qkt0 � qkt ; 8 k 2 K; t 2 Ttasks (23)21
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Figure 4: Illustrating time parallelism: t1; :::; t4 are all time parallel with tPt02Tsu(t) qkt0 � qkt ; 8 k 2 K; t 2 Ttasks (24)Pt02Tparallel(t) qkt0 � n� (n� 1) � qkt ; 8 k 2 K; t 2 Ttasks (25)Note that the Train position model and the Train ID model an funtionwithout the Train Sequene model. The Train sequene gives us two advan-
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Figure 5: Illustrating the meaning of parameter n: Three train tasks arepresent in the train sequene during the time span of t22



tages when inluded in the solution proess. First, it heavily redues thenumber of variables that must be taken into aount in the Train routingmodel. Seond, we derease the number of broken omposition onstraints.The disadvantage is that deomposing into three models instead of two maygive a solution farther from optimal. However, the train sequene modelimitates features of solutions working well in pratie. When the train se-quene model is inluded in the solution proess the onstraints in Eq. 26are inluded in the train routing model ensuring that train unit k is assignedto train task t if t is in train sequene s and s has been overed by k in theSequene model.�ks = 1) qkt = 1; 8 k 2 K; t 2 Ttasks (26)We implement the model using Conert Tehnology and solve the modelwith Cplex. There are, however, potentially more than 75,000 variables andsolving the model with Cplex is expeted to be too time onsuming. Thelarge number of variables stem mainly from the qkt variables, whih aountfor 60,500 of the total. The rest are the auxiliary variables.8 Computational resultsExtensive experiments have been arried out for the deomposed approah.We �rst disuss experiments with the main purpose of hoosing a settingof the weights in the objetive funtion of the Position model. The weightsmust provide a suÆiently good solution quality and a suÆiently short om-putation time. The seond set of experiments aims at determining a weightsetting for the Routing model objetive funtion. Finally, we present exper-iments illustrating the di�erent results ahieved when respetively inludingand exluding the Sequene model in the solution approah.8.1 Experimental results for Position modelA set of experiments on various weight settings for the objetive funtion ofthe Position model form the basis for further experiments. The aim of the23



Fator TypeA Standing passengersB Train unit kilometersC Exess seatD Composition ChangesE End apaity di�ereneF Instane sizeTable 3: The fators with varying weights.Level A B C D E F0 0 0 0 0 0 C1 1 1 1 1 104 A, A+2 10 10 1000 1053 100 100Table 4: The di�erent levels used for fator experiments.experiments is to derive a set of weights for whih solution quality and om-putational time are both aeptable. The experiments will be onstrutedas a statistial design of experiments (DOE), see ? ℄.Two sets of fator experiments is onduted eah having a statistial DOE.In the �rst set of experiments six fators of varying levels are inluded, seeTab. 3. The seond set of experiments inludes fators A to E. Fator A toE represent the weights of the objetive funtion of the Position model asdesribed in Tab. 3.We have used the values presented in Tab. 4 for eah weight.A full design of experiments ontains 288 instanes without fator F and 576inluding fator F. We have used a design limiting the number of experimentsto 72 for all experiments where eah of the 72 experiments is equivalent toa spei� weight setting of the objetive funtion.The disruptions are based on real-life data from the timetable in 2006. Adata set is hosen with low puntuality and in whih train units endedup in wrong loations aording to their individually planned end station.A disruption is limited within a time window. The train tasks inludedin the disruption interset the time window and are inluded in the train24



sequenes of a set of train lines given as input. The train units inluded inthe disruption are those being assigned to the inluded train tasks plus thetrain units being loated at the depots of the train lines at the start of thedisruption time window.We run two types of experiments. In the �rst type, fator F is inluded atthe levels shown in Tab. 4. In the seond type we exlude fator F. Wehave run 4 di�erent sets of lines, A&A+, C, E and H&H+ for the type 2experiments1. The experiments were run with an upper limit on the solutiontime on 300 seonds.We have used the method desribed in ? ℄, to develop the DOE. A statistialfuntion for a general linear model is derived using information from the 72experiments. The funtion an be used for estimating the ontribution ofeah fator to the objetive for some parameter setting. We assume thatthe ontributions from third order orrelations and higher are negligible.For a DOE with three fators, the statistial funtion is shown in Eq. 27.A funtion for 6 fators A to F follows the same struture.FOBJ = A+B + C +AB +AC +BC + " (27)The basi idea of using DOE is to redue the number of experiments nees-sary to gain information on the ontribution and importane of eah term inthe objetive. By alulating the value of the statistial objetive funtionand omparing it to the values observed in the results, we get an impres-sion of how well the hosen experiments desribe the e�et from eah fator.If the average error, ", is low the hosen experiments are assumed repre-sentable for hoosing a weight set for the objetive funtion of the mathe-matial model that an be used in further experiments. We also evaluate theontributions from eah fator on eah of the terms in the objetive. If theontribution is as expeted, we assume the experiments representable andthereby a suÆient basis for hoosing a weight set for the objetive funtionof the mathematial model that an be used in further experiments.We use the statistial funtion to alulate the ontribution of fator Ato E, the omputational time and the joint objetive funtion. In Tab.1The S-tog lines are illustrated in the S-tog network in Fig. 625



Figure 6: The S-tog network
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Fator "Type1 "A&A+Type2 "CType2 "EType2 "H&H+Type2A 7.93 6.05 6.05 8.75 4.50B 1.50 3.71 3.09 2.47 1.46C 1.29 11.90 10.44 8.61 4.90D 2.23 9.32 4.48 4.41 5.16E 1.32 27.91 64.08 14.40 9.82Table 5: The average error ontribution for the di�erent terms in the obje-tives given the estimated objetive funtion.5 the average error ontributions measured in perentage of the averageobservation are listed for all experiments.Type1 experiments: For experiments of Type1 we see that the averageerror ontributions for all terms are lower than those of Type2 exept forfator A. The low error ontributions indiate that the Type1 experimentsare representative, however, evaluating the ontributions from eah fatoron all terms in the objetive we observe that the ontributions annot bereasonably explained. For example, fator C at the high levels ontributesto the kilometer term of the objetive funtion of the Position model, seeAppendix E.A. This is a ontradition as fator C relates to the standingpassengers. If the number of standing passengers are dereased by the modelmore train units are used and hene the number of train unit kilometers isinreased. Another example of a ontradition is that fator C punish itselfat all levels. The �rst order fator ontributions are enlosed in AppendixE.A.Beause of the lak of onsisteny between expeted and atual ontributionswe onlude that Type1 experiments are not representative.Type2 experiments: Considering the Type2 experiments we make the fol-lowing observations on the error ontributions and the �rst order fatorontributions2:A&A+ : The error ontributions are espeially high for fator E and C.Also, if we onsider the di�erent ontributions that the fators make2The �rst order fator ontributions are enlosed in Appendix E.B27



to eah term in the objetive there are ontraditions similar to theones observed for Type1 results.C : The error ontributions are espeially high for fator E and C. Theontributions from eah fator on eah term in the objetive are all asexpeted.EandH&H+ : For both the experiments on E and H&H+ the error on-tributions are espeially high for fator E. The ontributions from eahfator on eah term in the objetive are all as expeted.For all line ombinations but A&A+ the instanes solve to optimality withinthe omputation time limit of 300 seonds. A large part of the A&A+instanes do not �nd the optimal solution within the 300 seonds. Theerror ontribution and the lak of ability to desribe the ontributions ofthe A&A+ instanes indiate that these are not representative. As they arenot representative, we will not use them for determining the weight set usedfor further experiments.Given the average error ontributions in Tab. 5 and the evaluation of theexpeted versus the atual ontributions ommented above, we base ourhoie of a weight setting for further experiments on the instanes of C, Eand H&H+.We also investigated whether one an trae dependeny between the om-putational time and the weight setting used for the objetive. However,results show that there is no onnetion. When we use the statistial fun-tion for estimating the omputational time the average error ontributionvaries from 20 to 75 %.Choie and validation of weight settingWe have hosen the set of weights by �ltrating the experimental results withrespet to the riteria listed below.1. Choose a subset of instanes with lowest end apaity di�erene.
28



2. Choose a subset of instanes where the maximum number of standingpassengers is low. Preferably the maximum number of standing pas-senger should not exeed 36. This is 10 perent of the seat apaity inan SA train unit.3. Choose the experiments whih has the lowest average values of exessseats.4. Choose the set of instanes with lowest number of driven train unitkilometers.Given a seletion of instanes, whih are based on the riteria above, we as-sume that results are satisfatory with respet to all terms in the objetivefuntion. Based on the sorting and �ltration we have hosen the instanethat has a short omputation time. The �nal hoie of weight setting usedfor all further experiments is the ombinationWeights1 = (100; 1; 10; 0; 104).Furthermore we have hosen one more weight set,Weights2 = (1; 1; 1; 100; 105),for omparison. Weights1 = (W1;W2;W3;W4;W5)1 andWeights2 = (W1;W2;W3;W4;W5)2are parameters used for the objetive funtion in the Position model whereWi is the weight on the ith term in the objetive funtion. We expet thatWeights1 emphasizes spei�ally the number of standing passenger whereaswe expet that Weights2 puts a higher emphasis on number of driven kilo-meters and the amount of exess seats, though standing passengers are stillgiven some importane.We have run a set of experiments on eah of the two weight sets. Thepurpose of the experiments is to verify the expeted di�erene of objetivesfor eah of the two weight settings and to see if Weights1 are more likely tohave a short omputation time than Weights2. Eah experiment is de�nedby a set of lines and reovery time window. The line sets are representedin Tab. 6. The reovery windows are respetively 1, 2 and 3 hours in themorning peak hour starting from 7 o'lok. The line ombinations listed inTab. 6 ombined with the three di�erent time periods gives 63 experimentalinstanes. As explained these instanes are run for two weight sets whihgives a total of 126 experiments. The upper limit on omputational time foreah instane is 3600 seonds. 29



LinesACEHA+H, H+A, A+C, H+H, CC, A+E, A+E, AE, A, A+C, H, H+E, H+, CE, A+, CE, H+, AE, C, A+, AE, C, H, H+H, H+, C, A+, AH, H+, C, A+, A, ETable 6: Lines inluded in experiments, see Fig. 6.
30
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(b) Weights2 = (1; 1; 1; 100; 105)Figure 7: Eah point in the plots is the average for a solution over all itstrain tasks of number of respetively standing passenger and exess seatsIn both plots in Fig. 7 the average exess seats versus the average standingpassengers for eah of the 63 experimental instanes are illustrated. Eahpoint in the plots relates to a solution. Notie that it is possible in a solutionto have both an average number of exess seats and an average number ofstanding passengers larger than zero as we average over all train tasks inthat solution. For a single train task the number of respetively standingpassengers and exess seats annot both exeed zero.If we inspet the two �gures in 7 we see that the instanes illustrated in7(a) as expeted in general have muh fewer standing passengers on averagethan the instanes in 7(b). The average numbers of exess seats in theWeights1 solutions are not muh higher than numbers of exess seats in theWeights2 solutions. For both �gures the relationship between the averagenumber of standing passengers and the average number of exess seats seemsapproximately linear.In Fig. 8 the two plots show the sum of exess seats versus the numberof omposition hanges for eah experimental instane. The numbers ofomposition hanges only vary little from the Weights1 solutions to theWeights2 solutions. Both Fig. 8(a) and 8(b) indiate a linear relationshipbetween omposition hanges and exess seats.The two plots in Fig. 9 shows the sum of standing passengers versus thenumber of end apaity di�erenes for eah experimental instane. There31
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(b) Weights2 = (1; 1; 1; 100; 105)Figure 8: Sum of exess seats versus number of omposition hanges.
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(b) Weights2 = (1; 1; 1; 100; 105)Figure 9: Sum of standing passengers versus number of end apaity di�er-enes.are muh fewer standing passengers in theWeights1 solutions, see Fig. 9(a)than in the Weights2 solutions, see Fig. 9(b). The number of depot endapaity di�erenes only vary little, however, a tendeny shows that a highemphasis on few standing passengers results in relatively more end apaitydi�erenes. The number of end apaity di�erenes do not inrease muh inthe Weights1 solutions.We have hosen Weights1 partly beause these weights lead to low om-putation time. We are interested in whether the low omputation timeobserved in the initial experiments is low in general. We therefore ompareomputation times of Weights1 results with those of Weights2. In Fig.32
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Figure 10: The di�erene in omputation time for eah instane versus thenumber of train tasks.10 the di�erenes in solution time between the Weights1 solutions and theWeights2 solutions are illustrated. Generally there is little di�erene be-tween the solution time for the two weight sets, however, there is a set of8 to 10 problems that solve in muh shorter time for Weights1. Solutiontimes for Weights1 are approximately 90% faster than those of Weights2.There is only one instane where Weights2 is muh faster than Weights1.General omments on Position model resultsThere is a large variation in the results of the experiments with respet todepot end apaities. The quality with respet to standing passengers andexess seats varies independently of the depot end apaities. Finding a goodbalane between standing passengers and exess seats may e�et the depotend apaities. A high weight on depot end apaity will often inrease boththe number of standing passengers and the exess seats. When we assign alow weight to the number of standing passengers we experiene an inreasein exess seats.In pratie it is subjetive whether emphasis must be on e.g. low numberof standing passengers or low end apaity di�erenes on depots. How theweights are set will a�et the omputation time.
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8.2 Experimental results for Routing model objetive fun-tion weightsAs for the Position model we have for the Routing model run experimentalinstanes for a set of di�erent weight sets. We have used three setups, seeTab. 7. The �rst setup inludes the Sequene model solutions in eah run ofan instane. The seond setup disards the Sequene model solution. Thethird setup varies the use of the Sequene model over inluding the model,exluding the model or inluding the model as preferenes in the objetivefuntion. In the latter ase, preferenes are generated from the result of theSequene model. That is, if a train unit has been assigned to a train sequenein the Sequene model, there is in the Routing model a high preferene forassigning the same train unit to the train tasks of the train sequene in theRouting model.For eah of the setups presented in Tab. 7 we have used a fatorial design toperform a set of experiments. The fators are the weights in the objetivefuntion. The weight of overing a task is named fator A, the weightassigned to soures is named fator B, sinks are named C and the weight ofthe binary variables telling whether two subsequent train tasks are assignedto the same train unit is named D. In the instanes following the third setupthe varying use of the Sequene model is inluded as a fator E. The valuelevels of eah fator used are listed in Tab. 8.We run instanes based on the A&A+ and C train lines desribed in Setion8.1. A full DOE ontains 35 = 243 experiments for Setup3 and 81 for Setup1and Setup2. By using the DOE the number of runs has been redued foreah Setup aording to Tab. 7.As we are interested in a reasonable solution quality within a short om-putation time we put an upper limit on the omputation time of eah run.Prior to eah run of the Routing model an exeution of the Position model�nds the number of train units of eah type to assign to eah train task.Hereafter, the Sequene model is run. The upper limits on the omputationtime of the Position model is 600 seonds. The Sequene model is solved atan aggregated level and needs no upper limit as it always solves to optimal-ity in less than 1 seond for the instanes hosen in our test setups. Finally,we have set the upper limit on the Routing model omputation time to 360034



Number Setup Number of runsSetup1 Inluding the Sequene model in eah experiment 53Setup2 Exluding the Sequene model in eah experiment 53Setup3 Varying the use of Sequene model as a fator 72Table 7: Experimental setups used for the routing parameter hoie experi-ments. Level A B C D E0 0 0 0 0 Inl. Seq.1 100 -10 -10 1000 Pref. from Seq.2 1000 -50 -50 10000 Exl. Seq.Table 8: The di�erent levels used for fator experiments of the Routingmodel.seonds.In Tab. 9 the error ontributions in perentage of the average objetive arelisted for �ve di�erent measures for eah of the experimental setups3. Thehighest average error ontributions are of the tests on Setup3 where fatorE is inluded. For Setup2 the error ontributions are higher for instaneson train lines A&A+ than those on C. All average error ontributions arehigh when estimating omputation time.The results suggest that an estimate has a high error if many of the runsin the experiment annot be solved to optimality. Also, if the use of thesequene model is varied, the error ontribution will be high. Even thoughthe average error ontributions are low on various objetives of the experi-mental setup, the average error ontribution on the estimate of omputationtime is high indiating that omputation time annot be predited with thestatistial funtion. Given these observations we have hosen to use theexperiments based on setup 1 from Tab. 7 to base the hoie of weight setused for further experiments.Given the experiments orresponding to setup1 we have �ltered the solu-tion data relative to the maximum di�erene in depot end apaity, themaximum number of standing passengers and the maximum average num-3For information on fator ontributions see Appendix E.C35



Objetive Setup3 Setup2 Setup1C A, A+ C A, A+ C A, A+Standing passengers 45:78 23:85 0:27 5:14 1:98 � 10�13 0:93Exess seats 6:84 4:12 0:38 5:32 2:49 � 10�12 0:22Driven kilometers 7:22 5:00 0:13 3:37 0 0:07End apaity di�. 4:60 4:85 0:88 4:02 2:36 � 10�12 1:59Computation time 16:38 14:05 16:44 0:01 18:96 15:01Table 9: The average error ontribution on di�erent objetives given theestimated objetive funtion.ber of standing passengers. Based on the �ltering for train lines A&A+,we have hosen the weight set, Weights1 = (100; 0;�50; 1000), for fur-ther experiments. We have hosen not to use the results for line C onsetup1 as there is too little di�erene in the solutions i.e. it is very easy toahieve a good solution. For omparisons we have hosen the weight set,Weights2 = (100;�10;�10; 1000). We expet that Weights2 will providethe same quality in results as Weights1 as they give similar weights to sinksand soures and the same weights on train tasks and subsequent overs. Wewant to verify this and to see if there is any di�erene in omputationaltime.Weights1 and Weights2 have been used in two separate experiments of36 runs ounting 12 line ombinations and three time periods. The lineombinations are listed in Tab. 10. The time periods are all starting at 7o'lok and are of respetively 1, 2 and 3 hours of duration. In the 36 runsthe Sequene model is inluded in the solution proess.In 5 instanes out of the 36 instanes a solution for the underlying Positionproblem ould not be found within 600 seonds. We will disard these whenevaluating the quality of the Routing model.In Fig. 11 two plots are given of the average exess seats versus the averagestanding passengers. There is only little di�erene between the Weights1solutions in Fig. 11(a) and the Weights2 solutions in Fig. 11(b).Fig. 12 shows two plots of the sum of standing passengers versus the di�er-ene in depot end apaities. As for the plots in Fig. 11 there is only littledi�erene between the Weights1 solutions in Fig. 12(a) and the Weights236



Nr. Lines1 A2 C3 E4 A, A+5 C, A+6 E, A+7 E, A+, A8 C, H+, H9 E, H+, C10 A+, H, H+, C11 H+, H, C, A+, A12 H+, H, C, A+, A, ETable 10: Lines inluded in experiments, see Fig. 6.
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(a) Weights1 = (100; 0;�50; 1000) 0 50 100 150 200
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(b) Weights2 = (100;�10;�10; 1000)Figure 11: Average exess seats versus average standing passengers.
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(b) Weights2 = (100;�10;�10; 1000)Figure 12: Sum of standing passengers vs. di�erene in end apaity.
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Figure 13: The di�erene between Weights1-solutions and Weights2-solutions for the Position solution di�erenes.solutions in Fig. 12(b).The di�erene between Weights1 solutions and Weights2 solutions for thePosition solution di�erenes is illustrated in Fig. 13. We see that thereis a di�erene to the Position solution when either the type of train unitassigned in the Routing model does not math the type assigned in thePosition model or the number of train units assigned in the Position modeldoes not math the number of train units assigned in the Routing model.We see that there is only little di�erene in the di�erenes from Weights1solutions to Weights2 solutions. The average di�erene over all runs indi�erene to Position solution is �Pos1 = 3:0556 for Weights1 solutionsand �Pos2 = 3:0833 for Weights2 solutions.38
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Figure 14: The number of train tasks versus the di�erene in solution timefor eah instane.Fig. 14 illustrates the number of train tasks on eah run versus the di�erenein omputation time between the Weights1 solutions and the Weights2solutions. The di�erene in omputation times in the two sets of solutionsis with but one exeption less than 8 seonds. Considering the omputationtimes of the problem instanes only three of these have a omputation timehigher than 15 seonds. The immediate reason for the deviating results isprobably that only few assignments were made in the intermediate step ofthe Sequene model whih of ourse dereased the number of preassignedvariables in the Routing model.There is a a marginal di�erene in exess seats and standing passengers.In the Weights1 solutions there are slightly fewer standing passengers thanthe Weights2 solutions. In the Weights2 solutions there are slightly fewerexess seats than the Weights1 solutions. This an all be traed to thedi�erene in deviations from the Position model.There is only little di�erene in omputation time for the two weight sets.The total average omputation time is 215.81 for Weights1 and 214.10 forWeights2. Only three of the instanes onsidered have exeedingly highomputation times. One of these solve to optimality in 531.25 seonds forWeights1 and 474.56 seonds for Weights2. Disarding these three in-stanes whih results in a high omputation time the mean omputationtime is 1.34 seonds for Weights1 and 1.18 seonds for Weights2.Running the two instanes that do not solve to optimality within an hour39



Parameter Line Length of Opt. gap Opt. gap Opt. gapset set time interval 60 se. (%) 3600 se. (%) 28800 se. (%)Weights1 9 2 0.88 0.70 0.61Weights1 10 1 0.82 0.62 0.38Weights2 9 2 0.90 0.68 0.59Weights2 10 1 2.01 1.09 0.02Table 11: Computational time and optimality gap for 8 hour runs.for a longer period of 8 hours for both Weights1 and Weights2 we get theresults in Tab. 11. We see that inreasing the upper time limit on runningtime does not result in optimal solutions. In fat, the solution quality onlyimproves very little in the 7 hours inreased solution time. Hene, a solutionlose to the optimal solution is obtained within the �rst 60 seonds for bothinstanes. This indiate that the Routing model even for these instanes ispratial appliable.8.3 E�et of inluding the Sequene modelIn this setion we analyze the 3 � 36 experiments run for Weights1. Testinstanes are onstruted given the three time windows of 1, 2 and 3 hoursstarting from 7 o'lok and the line ombinations in Tab. 10. Eah of the 36instanes are solved using three di�erent approahes, exluding the Sequenemodel, inluding the Sequene model and inluding the Sequene model aspreferene in the objetive funtion.We will in the following refer to the solution approah where the Sequenemodel solution is inluded in the Routing solution proedure as AInl:. Thesolution approah where the Sequene model used as preferenes in the Rout-ing solution proedure we refer to as APref:. Last, the solution approahwhere we exlude the Sequene model solution we refer to as AExl:.Fig. 15 shows respetively the sum of standing passengers for eah run forAInl: & APref: and for AInl: & AExl:. For AInl: and APref:, see Fig.15(a), the sum of standing passengers are quite lose. For AExl: the sum ofstanding passengers is in general muh higher. Note the di�erene in saleon the y-axis. 40
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(b) AInl: and AExl:Figure 15: Sum of standing passengers for eah run.
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(b) AInl: and AExl:Figure 16: Sum of exess seats for eah run.Fig. 16 illustrates the sum of exess seats for eah run for respetively AInl:& APref: and for AInl: & AExl:. Again the sum of exess seats for AInl:and APref: are lose, see Fig. 16(a). As the sum of exess seats is often aoniting objetive to the sum of standing passengers it is expeted thatAExl: has the same or fewer exess seats than AInl:. This is also what weobserve in Fig. 16(b).The di�erene in end apaity is illustrated in Fig. 17. Again, we see thatthere is a little di�erene in quality regarding AInl: and APref:. Whenregarding AExl: the quality dereases.Fig. 18 shows the distribution of the results with respet to omputationtime. AInl: has the most short running times and only few very high running41
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Figure 17: The di�erene to the position model solution for eah run.
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Figure 18: The distribution of runs with respet to omputation time.times. The general mean omputation time for AInl:, APref: and AExl: isrespetively �Inl: = 250:61, �Pref: = 510:34 and �Exl: = 1865:06.When for AInl: disregarding the two runs where an optimal solution annot be found with in the 1 hour time limit the mean omputation time is�ModifiedInl: = 19:62 seonds. For APref: there are three runs where an optimalsolution an not be found within the 1 hour time limit. A modi�ed meantime limit is �ModifiedPref: = 179:29.Summing up the observations we have presented in this setion it seems thatthe solution quality for respetively AInl: and APref: are omparable. Thesolution quality of AExl: is lower, most likely beause the optimal solutionannot be found within the Routing model running time limit. Even thoughthe APref: renders the same solution quality as AInl: its omputation time ison average more than 50% higher. Hene, if we want to obtain an aeptable42



solution time and quality in real time we must inlude the Sequene modelin the solution proess.In the APref: instanes there is a higher degree of freedom for assigningvalues to variables than in the AInl: instanes. However, it is observedthat even when APref: solves to optimality, the solution quality is at mostmarginally better on the hosen measures. This indiates that the inlusionof the Sequene model dereases the solution quality only marginally.9 ConlusionIn this paper we have addressed the RSRP. We have formulated a solu-tion approah based on deomposition and onsisting of three models to besolved iteratively. The models are implemented with ommerial softwareand initial omputational results indiate that the models provide a feasibleapproah for pratial problems up to at least 100 train tasks.The sequene model is an important step in the solution approah. The av-erage solution time when leaving out the sequene model is 1865.06 seonds.When the Sequene model is inluded and the variables are loked aord-ingly the average solution time is 250.61. Furthermore, when the Sequenemodel is left out the solution quality deteriorates, that is, fewer problem in-stanes solve to optimality within the upper time limit set on omputationtime.The quality of solutions when using the Sequene model as preferenes om-pared to loking the variables in the Routing model is the same or onlymarginally better. We therefore onlude that the Sequene model an beinluded without deteriorating the solution quality more than marginally.This is desirable as the omputation time is dereased 50 % when lokingthe Routing model variables.Further researh onerns other solution methods for the RSRP. An inte-grated solution approah may be a heuristi approah solving the Positionand Routing problem in one. Also, replaing the Sequene and Routingproblems with a olumn generation approah is interesting.
43



Appendix E.A Fator ontributions, Position model:6 fators inludedIn Tab. 12 the �rst order fator ontributions are listed for the fator ex-periments on the position model having 6 fators. The fators, A to F, arelisted below.A Weight on the term of the sum of exess seats in the Position modelobjetive funtion.B Weight on the term of the sum train unit kilometers in the Position modelobjetive funtion.C Weight on the term of the sum of standing passengers in the Positionmodel objetive funtion.D Weight on the term of the sum of ouplings in the Position model obje-tive funtion.E Weight on the term of the sum of depot end apaities in the Positionmodel objetive funtion.F Experimental instane input.First order ontributions are alulated for 6 di�erent measures. For eahmeasure the ontribution from a fator is listed for eah level higher than 0e.g. the ontribution of A1 to the sum of standing passengers indiates thatfator A on the �rst level higher than zero has a high dereasing e�et onthe sum of standing passengers, see Tab. 4.Standing passengers The sum of standing passengers on all train tasks.Train unit kilometers The sum of train unit kilometers on all train tasks.Exess seats The sum of exess seats on all train tasks.Composition hanges The sum of ouplings on all train tasks.End apaity di�erenes The sum of di�erenes to the sheduled endapaity on all depots by the end of reovery.44



Computation timeStanding Train unit Exess Composition End apaity Comp.pass. Km seats hanges di�erenes timeA1 -1507.3 -199.3 -2981.6 9.1 -0.4 -85.3A2 -590.4 -292.7 -3638.7 4.3 0.3 76.4A3 943.3 -340.4 -3621.4 9.9 -2.2 -106.3B1 3809.3 -795.7 -9364.4 10.4 2.1 41.1C1 -934.1 19.0 928.7 5.9 5.5 2.8C2 1304.5 -345.5 -3529.1 -4.4 5.9 168.7C3 811.4 -374.8 -4224.8 0.5 1.4 116.9D1 -164.1 -347.6 -2688.1 -1.9 1.4 187.1D2 919.2 -436.9 -2838.2 -4.8 5.7 178.0E1 1610.6 -305.7 -1929.3 9.3 -3.4 120.6E2 2463.5 -520.6 -3896.3 7.6 -1.9 158.5F1 3042.9 1580.0 5958.7 15.0 6.7 130.2Table 12: 1. order fator ontributions, 6 fator experiments, Position model
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Appendix E.B Fator ontributions, Position model:5 fators inludedIn Tab. 13 to 16 the �rst order fator ontributions are listed for the fatorexperiments on the position model having 5 fators. The fators, A to E,and the measures are desribed in Appendix 9.Composition End ap. Exess Train unit Standing Comp.hanges di�erenes seats Km pass. timeA1 5.7 -1.6 -4500.2 -216.1 33.2 -0.9A2 4.8 -2.3 -5191.8 -265.1 67.1 -0.8A3 4.2 -3.3 -4468.2 -234.2 80.1 -0.6B1 4.6 -0.8 -5068.3 -260.2 61.0 -0.4C1 1.6 -0.9 -86.7 13.8 -7.5 0.0C2 2.0 1.5 -802.7 -40.2 -71.9 0.3C3 4.0 0.8 -1735.3 -83.6 -38.0 -0.3D1 -1.8 -0.8 -1432.4 -60.6 56.5 0.1D2 -4.2 1.3 -698.0 -13.5 6.5 0.3E1 2.2 -2.3 -1504.4 -69.8 14.9 -0.6E2 1.3 -2.1 -1851.5 -79.1 32.5 -0.7Table 13: 1. order fator ontributions, 5 fator experiments, Positionmodel, Line C instanes
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Composition End ap. Exess Train unit Standing Comp.hanges di�erenes seats Km pass. timeA1 -2.2 -7.9 1332.6 -62.4 142.6 -71.3A2 -17.3 -2.5 871.4 44.6 -197.2 -202.0A3 6.2 -9.7 1171.8 134.0 -807.9 -47.3B1 2.7 1.2 -242.7 315.0 -6286.1 -102.7C1 3.3 -8.1 448.2 46.7 -39.2 -204.1C2 -2.9 -3.7 -1405.9 88.4 -1105.6 -149.4C3 -9.6 -6.8 2411.2 212.6 -1576.8 -21.5D1 8.4 0.0 -1798.3 18.0 -1714.9 -158.5D2 -11.3 4.3 -944.4 17.8 -536.4 -22.6E1 7.3 -5.8 2109.9 1.9 737.9 52.5E2 -0.5 -7.4 2239.4 187.2 -1236.2 -177.2Table 14: 1. order fator ontributions, 5 fator experiments, Positionmodel, line A and A+ instanesComposition End ap. Exess Train unit Standing Comp.hanges di�erenes seats Km pass. timeA1 3.7 1.3 -4757.1 -481.4 -75.4 -1.6A2 5.0 1.8 -6011.4 -662.6 327.2 -2.2A3 5.5 2.6 -6442.8 -648.4 -27.1 0.5B1 0.8 0.3 -4159.1 -475.8 254.8 -4.1C1 0.8 -0.2 -1492.9 -135.2 -378.9 -2.5C2 -1.5 -0.7 -103.9 36.6 -723.1 -3.6C3 -1.3 -0.8 870.9 133.0 -823.2 -5.0D1 1.0 0.3 -1813.3 -232.7 162.9 -3.8D2 -3.2 -0.2 -1663.3 -214.9 -5.3 -2.2E1 -3.3 -3.0 -937.4 -87.2 -116.2 5.1E2 -1.3 -3.3 -1806.6 -234.1 97.8 0.6Table 15: 1. order fator ontributions, 5 fator experiments, Positionmodel, Line H and H+ instanes 47



Composition End ap. Exess Train unit Standing Comp.hanges di�erenes seats Km pass. timeA1 2.7 -0.2 -7436.6 -661.5 498.2 -0.1A2 1.8 -0.6 -8354.2 -780.0 935.1 -0.1A3 2.3 -0.4 -7983.8 -734.3 929.9 -0.1B1 0.5 -0.3 -7642.5 -703.4 852.1 -0.1C1 1.7 -0.3 -148.5 -6.3 -16.2 0.0C2 1.5 0.1 1485.6 176.6 -669.8 -0.1C3 -0.2 -0.6 1638.9 188.9 -510.8 -0.1D1 -1.9 -0.5 -2598.8 -269.6 574.5 0.0D2 -2.1 -0.7 -2666.3 -291.4 568.5 0.0E1 2.4 -2.6 -849.2 -67.5 -36.3 0.0E2 1.1 -2.4 -1863.5 -162.4 218.9 -0.1Table 16: 1. order fator ontributions, 5 fator experiments, Position model
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Appendix E.C Fator ontributions, Routing modelIn Tab. 17 to 22 the �rst order fator ontributions are listed for the fatorexperiments on the Routing model. The fator experiments relative to Tab.17 to 18 have 5 fators A to E. The fator experiments relative to Tab. 19to 22 have 4 fators A to D. The fators are desribed below. Levels of thefators are desribed in Tab. 8.A Weight on the term of the tasks in the Routing model objetive funtion.B Weight on the term of the soures in the Routing model objetive fun-tion.C Weight on the term of the sinks in the Routing model objetive funtion.D Weight on the term of the onseutive overed tasks in the Routing modelobjetive funtion.E Use of the train Sequene model.The �rst order ontributions are alulated for 6 di�erent measures.Di�erene to Position solution The sum of assignments made in theRouting solution whih di�ers from the assignments in the Positionsolution.Di�erene to end apaity The sum of di�erenes to the sheduled endapaity on all depots by the end of reovery.Exess seats The sum of exess seats on all train tasks.Train unit kilometers The sum of train unit kilometers on all train tasks.Standing passengers The sum of standing passengers on all train tasks.Computation time
49



Di�erene to Di�. to Exess Train unit Standing Comp.Pos. solution end ap. seats Km pass. timeA1 1,4 0,4 -222,9 -27,4 293,2 0,0A2 11,6 3,7 -1735,6 -205,1 2175,9 0,1B1 -9,3 -2,5 1384,4 153,6 -1306,8 0,1B2 -8,9 -2,4 1315,1 145,2 -1217,2 0,0C1 -3,0 -0,8 520,6 66,6 -716,3 0,0C2 -1,8 -0,4 327,6 43,0 -464,2 0,0D1 -3,0 -0,8 499,1 63,1 -677,4 0,0D2 -2,4 -0,6 415,5 53,7 -578,5 0,0E1 -8,1 -2,1 1188,5 129,6 -1051,1 0,0E2 -7,9 -2,1 1148,9 124,7 -998,2 0,0Table 17: 1. order fator ontributions, fator experiments, Routing model,Line C instanes, Choie of Sequene model
Di�erene to Di�. to Exess Train unit Standing Comp.Pos. solution end ap. seats Km pass. timeA1 3,3 0,5 -308,9 -89,9 1021,7 -22,3A2 41,1 12,4 -4370,6 -822,7 10348,4 144,1B1 -46,6 -6,5 4835,9 950,1 -8807,7 89,9B2 -44,7 -5,1 4810,2 919,8 -8575,5 81,8C1 -4,1 -1,3 364,3 154,6 -1822,4 51,0C2 -2,3 -0,6 108,8 83,6 -1263,3 33,9D1 -7,9 -0,3 738,7 173,4 -2553,3 50,4D2 -1,5 -1,0 8,1 76,4 -1009,2 42,9E1 -44,0 -3,8 4459,4 893,2 -8058,4 70,0E2 -43,7 -5,2 4533,3 873,6 -8062,8 65,8Table 18: 1. order fator ontributions, fator experiments, Routing model,Line A and A+ instanes, Choie of Sequene model50



Di�erene to Di�. to Exess Train unit Standing Comp.Pos. solution end ap. seats Km pass. timeA1 0,2 -6,4 3579,0 426,4 -4227,3 0,2A2 0,2 -6,4 3587,0 426,8 -4229,7 0,2B1 0,2 -0,4 64,0 2,6 -18,7 0,2B2 0,1 -0,4 56,0 2,3 -16,3 0,1C1 0,0 0,0 0,0 0,0 0,0 0,0C2 -0,1 0,2 -32,0 -1,3 9,3 -0,1D1 0,2 -6,4 3579,0 426,4 -4227,3 0,2D2 0,2 -6,4 3587,0 426,8 -4229,7 0,2Table 19: 1. order fator ontributions, fator experiments, Routing model,Line C instanes, No use of Sequene model
Di�erene to Di�. to Exess Train unit Standing Comp.Pos. solution end ap. seats Km pass. timeA1 -68,3 -6,3 6909,6 1616,3 -18028,4 299,6A2 -66,3 -8,4 7119,2 1691,5 -18514,8 299,5B1 -2,3 -2,4 76,1 21,1 113,1 0,0B2 1,0 -2,3 -30,2 16,2 0,8 0,0C1 3,4 -0,7 -271,1 -59,9 459,3 0,0C2 2,3 0,6 -189,9 -46,7 277,1 0,1D1 -71,8 -9,4 7387,9 1718,0 -18662,1 299,5D2 -72,0 -10,4 7465,6 1665,5 -18739,4 299,5Table 20: 1. order fator ontributions, fator experiments, Routing model,Line A and A+ instanes, No use of Sequene model

51



Di�erene to Di�. to Exess Train unit Standing Comp.Pos. solution end ap. seats Km pass. timeA1 -4,0 -1,0 494,0 41,6 -106,0 0,0A2 -4,0 -1,0 494,0 41,6 -106,0 0,0B1 0,0 0,0 0,0 0,0 0,0 0,0B2 0,0 0,0 0,0 0,0 0,0 0,0C1 0,0 0,0 0,0 0,0 0,0 0,0C2 0,0 0,0 0,0 0,0 0,0 0,0D1 -4,0 -1,0 494,0 41,6 -106,0 0,0D2 -4,0 -1,0 494,0 41,6 -106,0 0,0Table 21: 1. order fator ontributions, fator experiments, Routing model,Line C instanes, Use of Sequene model
Di�erene to Di�. to Exess Train unit Standing Comp.Pos. solution end ap. seats Km pass. timeA1 -38,0 -5,1 4079,4 681,9 -5340,6 0,6A2 -38,0 -3,4 4062,2 674,0 -5357,8 0,6B1 0,0 0,1 53,4 -4,0 53,4 0,4B2 0,0 0,1 20,1 -3,2 20,1 0,3C1 0,0 -0,2 -32,7 -1,6 -32,7 0,1C2 0,0 -0,2 -40,8 0,8 -40,8 -0,1D1 -38,0 -2,8 3972,8 670,0 -5447,2 0,7D2 -38,0 -3,7 3973,6 669,2 -5446,4 0,5Table 22: 1. order fator ontributions, fator experiments, Routing model,Line A and A+ instanes, Use of Sequene model
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