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Department of Mechanical Engineering
Technical University of Denmark
2800 Lyngby, Denmark
Email: hbb@mek.dtu.dk

ABSTRACT

This contribution presents our recent progress on develop-
ing an efficient solution for fully nonlinear wave-struattinter-
action. The approach is to solve directly the three-dimeamai
(3D) potential flow problem. The time evolution of the wave
field is captured by integrating the free-surface boundamyadi-
tions using a fourth-order Runge-Kutta scheme. A coor@inat
transformation is employed to obtain a time-constant spati
computational domain which is discretized using arbitrarder
finite difference schemes on a grid with one stretching irheac
coordinate direction. The resultant linear system of etpret
is solved by the GMRES iterative method, preconditioned us-
ing a multigrid solution to the linearized, lowest-ordersien of
the matrix. The computational effort and required memony us
are shown to scale linearly with increasing problem sizéafto
number of grid points). Preliminary examples of nonlineave
interaction with variable bottom bathymetry and simpletbot
mounted structures are given.

INTRODUCTION

This paper describes a flexible-order, finite-differencedoh
solution of the exact potential flow problem for nonlineanves
on a fluid of variable depth. The time-varying physical domai
is mapped to a time-invariant boundary-fitted computatidioa
main to obtain time-constant discrete differential opersat The
application of this basic technique is widespread, anddesfar
the simulation of unsteady free-surface flows goes backaat le
to [1]. Related applications were later done by [2-7] among
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others. For comprehensive reviews of the nonlinear wateewa
problem see.g.[8-10].

Ten years ago, [11] developed a multigrid solution to the
second-order finite-difference based discretization &f ginob-
lem on a uniform grid. More recently, [12] extended this ap-
proach to allow arbitrary order finite-difference schemssvall
as non-uniform grid spacing. They found a significant advan-
tage for high-order schemes on a vertically clustered geid r
ative to second-order schemes on a uniform grid. In facg thi
conclusion should not be surprising since the advantagéegbf h
order schemes for solving this problem was pointed outythirt
years ago by [1]. Instead of using multigrid, [12] solved the
sultant sparse linear system of equations using the Gézexlal
Minimum Residual (GMRES) method of [13], preconditioned
by a direct solution of the linear (time-invariant) secaorder
discretized system matrix. This led to optimal scaling & Ho-
lution effort in two-dimensions (2D).

In 3D, a direct solution of the preconditioning problem Isad
to a super-linear scaling of the solution effort with incsig
problem size. To retain optimal scaling for 3D problems, we
employ multigrid to solve the preconditioning problem eesd.
The motivation for using multigrid only for the preconditimg
step is that the preconditioning matrix is time-constart Hus
the multigrid operators need only be built once during thah
set-up, which increases the efficiency of the subsequewe sol
steps. We also expect this strategy to be more robust than ap-
plying multigrid directly to the full high-order, nonlineaystem.
We conclude that the use of just one multigrid V-cycle, witteo
pre- and one post-smoothing operation, is most effectivthias
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provides a nearly equal distribution of effort between thenix-
vector product and the preconditioning. Total iterationmts are
typically from five to ten to satisfy a relative residual t@ace

of 108, At this stage, the cross-over point where multigrid be-
comes faster than a direct solution of the preconditionitegp s
is found to lie betweem = 10* andn = 1 total grid points,
although further optimization of the code may well reducis th
number.

In the following sections we outline our implementation of
the method, highlighting several discretizaton issuesciviaire
important for stable and robust solution of the problem. \lge a
present some preliminary results for 3D wave-bottom andewav
structure interaction problems. A more complete desaiptf
this work can be found in [14].

FORMULATION

A Cartesian coordinate system is adopted withxixplane
located at the still water level and tlzeaxis pointing upwards.
The still water depth is given bla(x) with x = (x,y) the hori-
zontal coordinate. The position of the free surface is défime
z=n(x,t) and the acceleration due to gravigy= 9.82n?/s is
assumed to be constant.

Assuming an inviscid fluid and an irrotational flow, the fluid
velocity (u,w) = (u,v,w) = (O, d,0) is defined by the gradient
of a scalar velocity potentiap(x, z,t), whereld = (dy,dy) is the
horizontal gradient operator. The evolution of the fredaue is
governed by the kinematic and dynamic boundary conditions

on = —0n - 0@+W(1+0n-0On),
. 1, -~ o~
p=—on— (0¢-O—WA(1+On-0n)),

(1a)
(1b)

which are expressed in terms of the free surface quantjties
@(x,n,t) andw = 0,9|,—,. To find W and evolve these equa-
tions forward in time requires solving the Laplace equaiion
the fluid volume with a knownp, together with the kinematic
bottom boundary condition

9=0¢ z=n, (2a)
chp+ aZZ(p = 07 _h S z< na (2b)
0,0+ 0h-Op=0, z=-h. (2¢)

Since the free surface is a time-dependent moving boundiény w
ana priori unknown position, it is convenient to make a change
of variable in the vertical direction which maps the solatio

a time-invariant domain using the following (non-orthogfro-
coordinate transformation

z+h(x)
n(x.t) +h(x)

_ z+hx) 3)

° ax.t

The Laplace problem in the transformed computational domai
becomes

P=0 o=1, (4a)

20 4 0%0(05P) + 200 - 0(9P) +
(Jo-00 + (8,0)?)dsc® =0, 0<0o <1, (4b)
(0,0 +0h-00)(0sP) +0Oh-0P =0, 0=0, (4c)

where®(x,0,t) = @(X,z,t) and the derivatives of the coordinate
o can be written

Dg:¥mh—gmn, (52)

g % (Dzh_ Dh(—th) _g (Dzn B DnaDn)(sb)
flaizzcmhﬂnf%%DthDﬂ)

0,0 = % (5¢)

All of these nonlinear coefficients can be determined from th
known free surface and bottom positions.

At the structural boundaries of the domain, the flow field
must be everywhere parallel to the boundary surfaces, imgply
that the velocity potentiap must satisfy the slip condition

(n,ny)-(0,0,)9=0, (x,2) €0Q, (6)

where (n,n;) = (ny,ny,nz) is an outward pointing normal vec-
tor to the solid boundary surfac@€). At present, we assume
that all structural boundaries except the fluid bottom angi-ve
cal, bottom-mounted and aligned with one of the horizontal ¢
ordinates. The extension to general boundaries is conalyptu
straightforward, although it introduces many practicahgdica-
tions related to 3D grid generation. We are now in the prooéss
designing such an extension in order to allow general sirast
and domain boundaries to be treated.

Having obtained a solution for the functioh in the o-
domain, the physical internal flow kinematics are obtaingd v
the chain rule

u(x,z,t) = Og(x,zt) = OP(x,0,t) + DodsP(X,0,t) (7a)
w(X,zt) = 0,D(X,zt) = 0sP(X,0,t)0,0. (7b)

NUMERICAL SOLUTION
A method of lines approach is used for the discretization of
the continuous problem stated above. For the time-intexgratf
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the free-surface conditions (1) we employ the classicaligxp
four-stage, fourth-order Runge-Kutta scheme @sgg15]). For

the spatial discretization, a grid @Ny,Ny) points is defined
along the horizontaky-axes at which the free surface variables
n and @ are to be evolved. At the structural boundaries of the
domain,i.e. at the bottom and wall sides, Neumann (specified
normal component of velocity) conditions, (4c) and (6), iane
posed. The imposition of Neumann-type boundary conditions
turns out to be very important to the stability of the resgti
method and critical for robust iterative solution of theteys us-

ing multigrid, as is discussed further below.

For the solution of the transformed Laplace problem £4),
points are defined in the vertical below each horizontal fnee
face grid point, arbitrarily spaced in9Q o < 1. The grid is thus
structured, but with one arbitrarily spaced set of valuemgl
each of the coordinate directions. Choosingiearby points
allows order ( — 1) finite difference schemes for the 1D first
and second derivatives ifx,y,o) to be developed in the stan-
dard way using Taylor series expansion (&eg.[16]). Thus
there are a total of 8 x-derivative, 2, y-derivative and R}, o-
derivative schemes to be computed and stored during thelinit
set-up stage.

By keeping the order of the spatial discretization schemes
flexible, two convergence strategies are available, ngrmegnd
p-adaptivity where either the spatial resolution or the orfehe
scheme is increased respectively.

Spatial Discretization Issues

For the spatial one-dimensional first- and second-deveati
in each coordinate, = a 4+ 3+ 1 points are used whereindi-
cates the number of points in the positive coordinate dagct
and 3 the number of points in the negative direction from the
point of interest. For interior points all derivatives arentrally
discretized witha = 3 in each coordinate direction. For points
where a centered stencil would reach beyond the last computa
tional point in the domain, the stencils become off-certdme
use only the available grid points. In [11] and [12], computa
tional points were distributed along the solid boundaried ia-
side the fluid domain, and each boundary point gave rise to one
equation for imposing the boundary condition. Thus the aepl
equation at the boundary point was exchanged for the boyndar
condition.

Along Neumann-type boundaries this exchange tends to
weaken stability, and the effect is accentuated by shalle~y w
ter physics, large bottom gradients, and high anisotropthén
grid. A more robust strategy is to ensure the satisfactiomoif
the Laplace equation and the boundary condition at all bound
ary points. We do this by introducing extra computationahfs
outside the physical domain, and using the associated d&tra
grees of freedom to impose both equations at the solid bound-
aries. This is intuitively a nice feature, and it turns outb®

critical for obtaining robust multigrid solutions.

In the special case of a vertical wall aligned with one of the
horizontal axes, we simply takg and@ to be symmetric about
the boundary and reflect the centered finite difference seBem
for an even function to eliminate the ghost points from the-sy
tem. For boundaries not aligned with the coordinates such as
the bottom boundary, only one layer of ghost points is intro-
duced and it is used to satisfy the boundary condition, wthiée
Laplace equation is imposed using the equations correapgpnd
to the boundary points themselves. This is discussed in more
detail below.

Having developed all one-dimensional derivative opegtor
including boundary conditions, second-derivatives araioled
by successive application of these operators. In the caaalif
rect solution where a matrix must be formed, second-order-op
ators are obtained by matrix multiplication of the discreBeop-
erators, which gives 2D stencils of at mo$points. In this way,
all derivatives are formally accurate ©(AX.~1) whereAx. is
the maximum grid spacing in eithgry or . This approach also
leads naturally to a stable treatment of structural corptased
inside the fluid domain.

The result of this discretization procedure can be expresse
as the rankr = NyNyN, linear system of equations

AP =D, (8)
whereA is the coefficient matrixgp a vector of the unknown po-
tential values at each grid point, abda vector holding zeros,
except at those points corresponding to inhomogeneousdboun
ary conditions.

For the solution of (8) we employ the GMRES method pre-
conditioned on the left by the linearized second-order eateu
version of the coefficient matri& which we refer to a$w. This
matrix is time constant and has a relatively simple bandegtst
ture. One initial LU-factorization (after re-ordering tammize
fill-in) and subsequent back-substitution for each predamrd
ing step is effective up to a point, but for large problems the
fill-in becomes excessive and this strategy leads to a dimpsar
scaling of both CPU time and RAM memory use. To retain an
optimal scaling in 3D, we replace the direct solution of the-p
conditioning step with a multigrid solver.

Linear Stability Analysis on a Constant Depth

The above described discretization procedure can be ana-
lyzed for stability in the standard way using the 2D, linead
problem on a constant depth. Linearizing based on small am-
plitude waves we can express the time-stepping problemein th

HEERIH
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0 -9
J 0

(9)
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Figure 1. MAXIMUM EIGENVALUES OF THE JACOBIAN MATRIX FOR

THE TWO DISCRETIZATION SCHEMES ALONG SOLID BOUNDARIES.

where for the linear problenp = @(x,0,t), and we have solved
explicitly for the vertical free-surface velocity to get

W=J0 Ji =DOA PO, (10)
Here DY is the matrix operator which takes the vertical deriva-
tive of @(x,z) onz= 0 andPP is the operator which builds the
right hand side vectds from the values of(x). For small values
of Ny andN;, we can build the discrete matrix operathrand
hence the complete Jacobian matrix in (9). The largest magni
tude of the eigenvalues of the Jacobian, in combination tkigh
stability region of a particular time-integration schema| then
determine the stability of the method.

As discussed above, there are two strategies forimposéng th
kinematic boundary conditions along solid boundaries: &) R
place the Laplace equation at the boundary points with the-ki
matic boundary condition (as was done by [11] and [12]), Wwhic
we will refer to as strategy “BC”. 2) Impose both the Laplace
equation and the boundary condition at all boundary poigts b
adding ghost points outside of the fluid boundaries, which we
will refer to as strategy “BC+LAPLACE”".

Figure 1 plots the maximum magnitude of the eigenvalues
of the Jacobian for these two boundary condition strategges
functions of the relative water deptyL whereL is the domain
length. This plot has been made ushg=17 and\, =9, but the
picture is unchanged for different numbers of grid point&isT
shows that the two methods have the same stability requiteme
in deep water but they are dramatically different in shaleater.
The eigenvalues of the discrete system are very nearly mag-i
inary, so stability under fourth-order Runge-Kutta tintepping
is governed byt |A|max < 2v/2, (i.e. the extent of the imagi-
nary axis included by the stability region.) For example whe
h=1L/100, strategy BC will require a time step which is approx-
imately ten times smaller than the one requiredHoes L. On

the other hand, for strategy BC+LAPLACE the stability raqui
ments are roughly independent of relative water depth.

Only the treatment of the enclosing vertical wall boundary
conditions influences this stability analysis, and theupiets the
same whether the bottom boundary condition is implemerged u
ing strategy BC or BC+LAPLACE. Gauss-Seidel iteration (and
hence multigrid) on the other hand, turns out to be sensitive
the treatment of the bottom boundary condition as is dismliss
further below.

Imposing the Kinematic Bottom Boundary Condition

The two discretization strategies mentioned above are ap-
plied to the bottom boundary condition as pictured in Fig2ire
For illustration, consider the 2D case with a uniform gridsing
(Ax,Ac) and second-order finite difference operators. gt
represent the discrete value @fx,zt) at grid location(x;, ok)
and take the ordering of the grid points to follow the cooaté
direction. For strategy BC shown in Figure 2 (a)k corresponds
to the bottom boundary point itself and the bottom boundaryc
dition takes the form

el

by
2Ac

(*3¢j.k +4Dj ki1 — cbj,k+2) SAX

(®jr1k— Pj_1x) =0
(11)

wherea; = (1+ blz)/[h(xj) +n(xj,t)] andbj = dxh|x—x; are the
factors appearing in (4c) and the classical even-grid, reco
order schemes have been applied. For strategy BC+LAPLACE
shown in Figure 2 (b),j,k corresponds to the ghost point be-
low the bottom boundary which is obtained by reflecting thetne
grid point above the bottom aboat= 0. In this case the bottom
boundary condition takes the form

el

b.
PAG (P i2—Pjk) + Kjx (Pj11k41— Pj-1x41) =0. (12)

For strategy BC, the Laplace equation (4b) is imposed one
grid point above the bottom boundary as shown in Figure 3 (a).
As the expressions are rather lengthy, we avoid writing them
down here, but note that the four corner points of the stencil
have been introduced by the mixed- x derivative. For strategy
BC+LAPLACE, the equation corresponding to the grid point on
the bottom boundary itself is the Laplace equation, and tire-s
cil for this equation is shown in Figure 3 (b). Equation (18) i
now used to solve explicitly for the ghost point values imtsiof
their neighbors inside the fluid domain. Their contribusaran
then be eliminated from the expressions for the Laplacetegjua
at the boundary points to arrive at the stencil shown in Fadgr
(c). The full expression is again rather lengthy, but in ihatlof

Copyright (© 2008 by ASME
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Figure 2. DISCRETIZATION OF THE BOTTOM BOUNDARY CONDI-
TION. (a) STRATEGY BC, (b) STRATEGY BC+LAPLACE. SQUARES IN-
DICATE GHOST POINTS, THE EQUATION IS IMPOSED AT THE FILLED
CIRCLE.

L]
(b) () (d)

a linear problem on a constant depth the bottom equatioer, aft ( )
the elimination procedure, simplifies to

1 1 1 1
A)@¢j_l’k2(A>@+r12Ac52> Pkt @ Pk ©

(13) Figure 3. DISCRETIZATION OF THE LAPLACE EQUATION NEAR
THE BOUNDARY. (a) STRATEGY BC. (b) STRATEGY BC+LAPLACE.
(c) STRATEGY BC+LAPLACE AFTER ELIMINATION OF THE GHOST
POINTS.

2
+W¢j,k+l =0

where the indexk corresponds to the filled dot in 3 (c).

This can be immediately identified as the Laplace equa-
tion with the boundary condition built in. Thus this strateg ) ) )
makes the boundary equations essentially the same asehieint ~ Order accurate version of the system matrix used for preeond
point equations and the resultant matrix becomes mildigatia ~ tioning. Starting with the initial guess of the solutigr (ob-
nally dominant in the limit of linear waves on a constant tiept ~ tained using linear extrapolation from the previous twoetim
Gauss-Seidel iteration is thus guaranteed to be conveiryéfis steps) the initial residual is computed, = A®o — b. The GM-
limit [17]. Although a non-zero bottom slope will generaiprk RE_S procedure then builds up the Krylov subspace _to drive the
to reduce the diagonal dominance in the system, we have so farésidual down to the convergence tolerance and provideracor
not found any divergent examples regardless of the phyp@al tion to the initial guess. This process requires one preitiond

rameters and/or the grid anisotropy [14]. On the other hemel, ~ INg operation per iteration solving a system of the form
exchange of the Laplace equation for the bottom boundary con

dition inherent in strategy BC, apparently reduces the ahiagy AoUm = I'm, (15)
dominance of the matrix to such a degree that Gauss-Sesda it

tion becomes divergent, even at relatively small valuesottidon wherem indicates the iteration number.

slope and/or grid anisotropy. We apply geometric multigrid [17, 18] to solve this precon-

ditioning problem with an initial zero guess fop. Multigrid
exploits the smoothing properties of the basic station@native
methods which efficiently remove the high-frequency ertors
not the low-frequency ones. Transferring low-frequenaypieto

a coarser grid makes it higher frequency and restores tlee-eff
tiveness of the basic iterative method.

MULTIGRID PRECONDITIONING
With left preconditioning, our GMRES iterative solution of
the Laplace problem is written symbolically as

Ayt {AD = b} (14) A set of K increasingly finer grids{G* : G¥ € Qg,k =
1,2,...,K} is thus defined, wherke denotes the grid levek the
where® is the solution vectot the right hand sideA the non- finest grid andQg = [0,Ly] x [O,Ly] x [0,1] the computational

linear flexible-order system matrix ard the linearized, second-  domain. To move quantities back and forth between the grids,
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prolongation and restriction operators are defined

Plaut U, RO Ul k=2,....K.  (16)

Each grid level must also have a matrix operadr The two
classical approaches for determining the coarse grid mna&é
are: the Direct Coarse grid Approximation (DCA) where the op
erator is built on the coarse grid in exactly the same way as is
done on the finest grid; and the Galerkin Coarse grid Apprexim
tion (GCA) where the coarse grid operator is built as the podd
of the fine grid operator#¥{~* = RKAKPX [17]. We have tried
both methods and not found any significant difference, ws thu
use DCA since it is slightly more efficient and straightford/éo
implement matrix-free.

The restriction to each coarse grid point is determined in
d dimensions by tensor products of the one-dimensional re-
striction operators for each coordinate direction. Diserene-
dimensional first order full-weighting operators are ded\from
the discrete version of the volume-preserving condition

d)k(x,o)ko:/ R¢DX(x,0)dQK, (17)
of of

for QY = [ — AXK X + AXE] x [y — AyK,vK + Ayk] x [off —
Ack,of + Ack] on the fine grid, which accommodates the use
of uneven grids. The trapezoidal rule is used to approxirtrete
left-hand side of the integral and the midpoint rule for thght-
hand side.

The discrete full-weighting operators are modified at bound
ary points by imposing the boundary conditions using theesam
ghost point method that was used for the spatial discréizat
of the governing equations as discussed above. For réstisct
at the bottom boundary we approximate the kinematic bottom

strategy BC, while all forms are robust and convergent faatst
egy BC+LAPLACE. No significant difference in convergence
rates was found between the different flavors, so we use point
Gauss-Seidel as it is more efficient. Different multigridages-
gies,e.g. V-, W-, and F-cycles, with different numbers of pre-
and post-smoothing operatiorie( on the way down or up the
tree of grid levels respectively) were also evaluated irséhce-
ports. The conclusion was that one V-cycle with one post- and
one pre-smoothing was most efficient and we have thus adopted
this strategy. (A V-cycle involves one pass down and therhap t
tree of grid levels for each multigrid iteration.)

For the moment, we restritd, andNy to be powers of two,
but the extension to allow arbitrary combinationsNyfand Ny
is straightforward, consisting of one special coarsentegp $o
bring these values down to the nearest power of two. Since suf
ficient accuracy is generally obtained by us®@LO) grid points
in the vertical, typical applications of the model will haweany
more points in the horizontal directions than in the veitidde
spatial resolution will thus be dominated by the plane direc
tions and therefore strongly coupled along these lines,vemd
can expect the discrete equation system to become anigntrop
This can lead to poor convergence rates for the smootheds, an
therefore semi-coarsening is employed. This strategy $&da
on a combined semi- and standard-coarsening strategy. - Semi
coarsening is done independently along each horizontal coo
dinate until the spatial resolution (measured by the nunaber
points) matches the spatial resolution in the vertical. réhe
after, standard-coarsening is employed until the coagg@sts
reached.

Figure 4 plots the CPU time per iteration and the total RAM
memory use vs.n on a log-log scale for a test problem which
has been designed to exercise all the features of the model. F
this test case, we fix the length of the domain in both horizon-

boundary condition with a homogeneous Neumann boundary tal directions to bd. and let the bottom vary smoothly in both

conditionds® = 0. This approximation is only strictly correct
for a flat bottom, but it is convenient in terms of implementa-
tion and does not appear to effect the overall performancleof
method.

The prolongation operators are determined using bi-linear
interpolation from the coarse to the fine grid for standardrse
ening, and linear interpolation for semi-coarsening. Thiuhe
fine and coarse grid points coincide along one of the cootéina
directions, then direct injection is used in that coordinat

directions such that local relative water depths are in tree
n< kh < .5. The initial condition is a 2D linear standing wave
with ky = ky = 211/L and a height such that it would be linear at
the deep end but significantly nonlinear at the shallow erite T
Courant numbe€; = At/Ax = 0.5 is held fixed and the temporal
integration is carried out over 100 time steps. Figure 4 shaw
sults using both multigrid and a direct factorization toveothe
preconditioning problem. Multigrid can be seen to give aggid
O(n)-scaling of both CPU time and memory use, while the di-

The Gauss-Seidel method is used as the basic iterative rect solution scales super-linearly. The break-even petrgre

scheme (the smoother) on which the multigrid solution istbui
A careful study of the convergence properties of differeat fl
vors of Gauss-Seidel (point, line, red-black, etc.,) fas fhrob-
lem using the two bottom boundary discretization strategi@s
been carried out and is reported in [14, 19]. The conclusion o
this study is that no form of Gauss-Seidel iteration is rolias

multigrid preconditioning becomes more efficient than threat
method, can be seen to be approximately 6- 10, although
further optimization/improvement of the multigrid preabtion-

ing could well reduce this number. These calculations weaden
on one AMD Opteron node with two dual-core processors run-
ning at 2.6 GHz
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Figure 4. SCALING OF (a) COMPUTATIONAL EFFORT, AND (b) RAM Figure 5. WAVES SHOALING ON A CIRCULAR BAR COMPARED
MEMORY USE. WITH THE EXPERIMENTS OF [20], T = 1s CASE. (a) SNAPSHOT AT

t = 50s (EXAGGERATED 15 TIMES), (b) 1st, 2nd & 3rd HARMONICS
ALONG THE CENTER LINE.
APPLICATIONS
Some sample applications of the method are provided here.
First we consider the experiments of [20] for waves shoating ~ With T =1 andT = 2s and 30< x < 40mfor T = 3s. The gener-
a semi-circular bar. A snapshot of the calculations afteeady- ation zone also absorbs any reflected waves returning tevtaed
state has been reached is shown in Figure 5(a). The bar regionwave maker. The time step was sefMo= 0.03s, and the spatial
causes the waves (incoming from the left) to refract anddpcu domain discretized with 257x33x10 points for fhie- 2, 3s cases
accumulating bound harmonics which are released on thé shel and 513x33x10 points for tHE = 1s case. These resolutions are
Three cases are considered with wave periodd ef 1,2,3s sufficient to resolve the first three free harmonics everyehe
and incident wave heights ¢1 = 0.039,0.015, & 0.0136 me- The vertical grid was stretched to cluster points towarestee-
ters. In the numerical model the wave generation and absorp- surface, and fourth-order discrete operators were used.
tion of these fully nonlinear waves are handled using a relax Figures 5(b) & 6 show a harmonic analysis of the computed
ation method due to [21] together with the highly-accuraks, and measured time series along the tank center line. This has
riodic solutions of [22]. The waves are generated in theaiegi  been performed by making a least squares fit to a sum of sinu-
0 < x < 5mand absorbed in the region 30x < 35m for cases soids at the first 6 harmonic frequencies. The first three barm
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Figure 6. EXPERIMENTS OF [20] FIRST 3 HARMONICS FOR WAVE

PERIODS (a) T=2s, (b) T=3s.

ics can be seen to be in good agreement with the experimental
data. The computed results are also in good agreement vaigh ot
high-accuracy numerical results from the literature.

A preliminary example of a problem including a structure is
given in Figure 7 which shows linear diffraction of waves hwit
lengthL through a gap of widtlb in an infinitely thin and long
breakwater. The calculations are compared to the theatete
sult from [23] which are based on the theory of [24]. A snapisho
of the solution after steady-state is shown in the top pldtijev
the bottom plot shows the contours of the amplification fatto

40

b/L=2.00

e = = -
Sponge layer

Figure 7. LINEAR GAP DIFFRACTION THROUGH AN INFINITELY
THIN BREAKWATER. TOP: SNAPSHOT, BOTTOM: AMPLIFICATION
FACTOR CONTOURS. GREY LINES WITH LEVELS INDICATE THE-
ORY.

the dark black line the end of the computational domain. The
grey lines with contour levels show the theory, while theckla
contours show the calculations.

Conclusions

A flexible-order finite difference solution to the exact po-
tential flow problem for waves interacting with structures @
variable depth fluid has been described and some sample appli
cations given. The model is robust, with no need for filteramg
smoothing, and the solution effort scales directly witthe total
number of grid points used. When fourth- or sixth-order accu-
rate discrete operators are applied, only about 10 gridtpqier
free-harmonic wavelength, with 5-10 points in the vertiaad

the shadow region behind the breakwater. The red dashed curv required to obtain sufficiently accurate solutions for ergiring

on this plot indicates the start of the wave absorption zontk a

purposes. Variable grid spacing is also supported to allwv t

Copyright (© 2008 by ASME



resolution to be tuned to the local wavelength and/or the-pre

ence of structures. Together, these features lead to afeaffic

analysis tool for many coastal and ocean engineering pmoble
At this point the basic solver is in place and we are fo-

2008. “An efficient flexible-order model for 3D nonlinear
water waves”.Submitted

[15] Iserles, A. A., 1996A first course in the numerical analysis
of differential equationsCambridge University Press.

cused on designing and implementing the extension to a-multi [16] Fornberg, B. A., 1998A practical guide to pseudospectral

block description of the geometry with boundary-fitted aber
nates also in the horizontal directions to allow the intrctchn of

more general structures and/or enclosing boundaries téutite
domain.
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