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ABSTRACT
This contribution presents our recent progress on develop-

ing an efficient solution for fully nonlinear wave-structure inter-
action. The approach is to solve directly the three-dimensional
(3D) potential flow problem. The time evolution of the wave
field is captured by integrating the free-surface boundary condi-
tions using a fourth-order Runge-Kutta scheme. A coordinate-
transformation is employed to obtain a time-constant spatial
computational domain which is discretized using arbitrary-order
finite difference schemes on a grid with one stretching in each
coordinate direction. The resultant linear system of equations
is solved by the GMRES iterative method, preconditioned us-
ing a multigrid solution to the linearized, lowest-order version of
the matrix. The computational effort and required memory use
are shown to scale linearly with increasing problem size (total
number of grid points). Preliminary examples of nonlinear wave
interaction with variable bottom bathymetry and simple bottom
mounted structures are given.

INTRODUCTION
This paper describes a flexible-order, finite-difference based

solution of the exact potential flow problem for nonlinear waves
on a fluid of variable depth. The time-varying physical domain
is mapped to a time-invariant boundary-fitted computational do-
main to obtain time-constant discrete differential operators. The
application of this basic technique is widespread, and its use for
the simulation of unsteady free-surface flows goes back at least
to [1]. Related applications were later done by [2–7] among

others. For comprehensive reviews of the nonlinear water wave
problem seee.g.[8–10].

Ten years ago, [11] developed a multigrid solution to the
second-order finite-difference based discretization of this prob-
lem on a uniform grid. More recently, [12] extended this ap-
proach to allow arbitrary order finite-difference schemes as well
as non-uniform grid spacing. They found a significant advan-
tage for high-order schemes on a vertically clustered grid rel-
ative to second-order schemes on a uniform grid. In fact, this
conclusion should not be surprising since the advantage of high-
order schemes for solving this problem was pointed out thirty
years ago by [1]. Instead of using multigrid, [12] solved there-
sultant sparse linear system of equations using the Generalized
Minimum Residual (GMRES) method of [13], preconditioned
by a direct solution of the linear (time-invariant) second-order
discretized system matrix. This led to optimal scaling of the so-
lution effort in two-dimensions (2D).

In 3D, a direct solution of the preconditioning problem leads
to a super-linear scaling of the solution effort with increasing
problem size. To retain optimal scaling for 3D problems, we
employ multigrid to solve the preconditioning problem instead.
The motivation for using multigrid only for the preconditioning
step is that the preconditioning matrix is time-constant and thus
the multigrid operators need only be built once during the initial
set-up, which increases the efficiency of the subsequent solve
steps. We also expect this strategy to be more robust than ap-
plying multigrid directly to the full high-order, nonlinear system.
We conclude that the use of just one multigrid V-cycle, with one
pre- and one post-smoothing operation, is most effective asthis
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provides a nearly equal distribution of effort between the matrix-
vector product and the preconditioning. Total iteration counts are
typically from five to ten to satisfy a relative residual tolerance
of 10−8. At this stage, the cross-over point where multigrid be-
comes faster than a direct solution of the preconditioning step
is found to lie betweenn = 104 andn = 105 total grid points,
although further optimization of the code may well reduce this
number.

In the following sections we outline our implementation of
the method, highlighting several discretizaton issues which are
important for stable and robust solution of the problem. We also
present some preliminary results for 3D wave-bottom and wave-
structure interaction problems. A more complete description of
this work can be found in [14].

FORMULATION
A Cartesian coordinate system is adopted with thexy-plane

located at the still water level and thez-axis pointing upwards.
The still water depth is given byh(x) with x = (x,y) the hori-
zontal coordinate. The position of the free surface is defined by
z = η(x, t) and the acceleration due to gravityg = 9.82m2/s is
assumed to be constant.

Assuming an inviscid fluid and an irrotational flow, the fluid
velocity (u,w) = (u,v,w) = (∇φ,∂zφ) is defined by the gradient
of a scalar velocity potentialφ(x,z, t), where∇ = (∂x,∂y) is the
horizontal gradient operator. The evolution of the free surface is
governed by the kinematic and dynamic boundary conditions

∂tη = −∇η ·∇φ̃+ w̃(1+∇η ·∇η), (1a)

∂t φ̃ = −gη− 1
2

(

∇φ̃ ·∇φ̃− w̃2(1+∇η ·∇η)
)

, (1b)

which are expressed in terms of the free surface quantitiesφ̃ =
φ(x,η, t) and w̃ = ∂zφ|z=η. To find w̃ and evolve these equa-
tions forward in time requires solving the Laplace equationin
the fluid volume with a knowñφ, together with the kinematic
bottom boundary condition

φ = φ̃, z= η, (2a)

∇2φ+∂zzφ = 0, −h≤ z< η, (2b)

∂zφ+∇h·∇φ = 0, z= −h. (2c)

Since the free surface is a time-dependent moving boundary with
ana priori unknown position, it is convenient to make a change
of variable in the vertical direction which maps the solution to
a time-invariant domain using the following (non-orthogonal) σ-
coordinate transformation

σ ≡ z+h(x)

η(x, t)+h(x)
=

z+h(x)

d(x, t)
. (3)

The Laplace problem in the transformed computational domain
becomes

Φ = φ̃, σ = 1, (4a)

∇2Φ+∇2σ(∂σΦ)+2∇σ ·∇(∂σΦ) +

(∇σ ·∇σ+(∂zσ)2)∂σσΦ = 0, 0≤ σ < 1, (4b)

(∂zσ+∇h·∇σ)(∂σΦ)+∇h·∇Φ = 0, σ = 0, (4c)

whereΦ(x,σ, t) = φ(x,z, t) and the derivatives of the coordinate
σ can be written

∇σ =
1−σ

d
∇h− σ

d
∇η, (5a)

∇2σ =
1−σ

d

(

∇2h− ∇h·∇h
d

)

− σ
d

(

∇2η− ∇η ·∇η
d

)

(5b)

−1−2σ
d2 ∇h·∇η− ∇σ

d
· (∇h+∇η)

∂zσ =
1
d

. (5c)

All of these nonlinear coefficients can be determined from the
known free surface and bottom positions.

At the structural boundaries of the domain, the flow field
must be everywhere parallel to the boundary surfaces, implying
that the velocity potentialφ must satisfy the slip condition

(n,nz) · (∇,∂z)φ = 0, (x,z) ∈ ∂Ω, (6)

where(n,nz) = (nx,ny,nz) is an outward pointing normal vec-
tor to the solid boundary surfaces∂Ω. At present, we assume
that all structural boundaries except the fluid bottom are verti-
cal, bottom-mounted and aligned with one of the horizontal co-
ordinates. The extension to general boundaries is conceptually
straightforward, although it introduces many practical complica-
tions related to 3D grid generation. We are now in the processof
designing such an extension in order to allow general structures
and domain boundaries to be treated.

Having obtained a solution for the functionΦ in the σ-
domain, the physical internal flow kinematics are obtained via
the chain rule

u(x,z, t) = ∇φ(x,z, t) = ∇Φ(x,σ, t)+∇σ∂σΦ(x,σ, t) (7a)

w(x,z, t) = ∂zΦ(x,z, t) = ∂σΦ(x,σ, t)∂zσ. (7b)

NUMERICAL SOLUTION
A method of lines approach is used for the discretization of

the continuous problem stated above. For the time-integration of
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the free-surface conditions (1) we employ the classical explicit
four-stage, fourth-order Runge-Kutta scheme (seee.g.[15]). For
the spatial discretization, a grid of(Nx,Ny) points is defined
along the horizontalxy-axes at which the free surface variables
η and φ̃ are to be evolved. At the structural boundaries of the
domain,i.e. at the bottom and wall sides, Neumann (specified
normal component of velocity) conditions, (4c) and (6), areim-
posed. The imposition of Neumann-type boundary conditions
turns out to be very important to the stability of the resulting
method and critical for robust iterative solution of the system us-
ing multigrid, as is discussed further below.

For the solution of the transformed Laplace problem (4),Nz

points are defined in the vertical below each horizontal freesur-
face grid point, arbitrarily spaced in 0≤ σ ≤ 1. The grid is thus
structured, but with one arbitrarily spaced set of values along
each of the coordinate directions. Choosingr nearby points
allows order (r − 1) finite difference schemes for the 1D first
and second derivatives in(x,y,σ) to be developed in the stan-
dard way using Taylor series expansion (seee.g. [16]). Thus
there are a total of 2Nx x-derivative, 2Ny y-derivative and 2Nz σ-
derivative schemes to be computed and stored during the initial
set-up stage.

By keeping the order of the spatial discretization schemes
flexible, two convergence strategies are available, namely, h- and
p-adaptivity where either the spatial resolution or the order of the
scheme is increased respectively.

Spatial Discretization Issues
For the spatial one-dimensional first- and second-derivatives

in each coordinate,r = α + β + 1 points are used whereα indi-
cates the number of points in the positive coordinate direction,
and β the number of points in the negative direction from the
point of interest. For interior points all derivatives are centrally
discretized withα = β in each coordinate direction. For points
where a centered stencil would reach beyond the last computa-
tional point in the domain, the stencils become off-centered to
use only the available grid points. In [11] and [12], computa-
tional points were distributed along the solid boundaries and in-
side the fluid domain, and each boundary point gave rise to one
equation for imposing the boundary condition. Thus the Laplace
equation at the boundary point was exchanged for the boundary
condition.

Along Neumann-type boundaries this exchange tends to
weaken stability, and the effect is accentuated by shallow wa-
ter physics, large bottom gradients, and high anisotropy inthe
grid. A more robust strategy is to ensure the satisfaction ofboth
the Laplace equation and the boundary condition at all bound-
ary points. We do this by introducing extra computational points
outside the physical domain, and using the associated extrade-
grees of freedom to impose both equations at the solid bound-
aries. This is intuitively a nice feature, and it turns out tobe

critical for obtaining robust multigrid solutions.
In the special case of a vertical wall aligned with one of the

horizontal axes, we simply takeη andφ to be symmetric about
the boundary and reflect the centered finite difference schemes
for an even function to eliminate the ghost points from the sys-
tem. For boundaries not aligned with the coordinates such as
the bottom boundary, only one layer of ghost points is intro-
duced and it is used to satisfy the boundary condition, whilethe
Laplace equation is imposed using the equations corresponding
to the boundary points themselves. This is discussed in more
detail below.

Having developed all one-dimensional derivative operators,
including boundary conditions, second-derivatives are obtained
by successive application of these operators. In the case ofa di-
rect solution where a matrix must be formed, second-order oper-
ators are obtained by matrix multiplication of the discrete1D op-
erators, which gives 2D stencils of at mostr2 points. In this way,
all derivatives are formally accurate toO(∆xr−1

∗ ) where∆x∗ is
the maximum grid spacing in eitherx, y or σ. This approach also
leads naturally to a stable treatment of structural cornersplaced
inside the fluid domain.

The result of this discretization procedure can be expressed
as the rankn = NxNyNz linear system of equations

AΦ = b, (8)

whereA is the coefficient matrix,Φ a vector of the unknown po-
tential values at each grid point, andb a vector holding zeros,
except at those points corresponding to inhomogeneous bound-
ary conditions.

For the solution of (8) we employ the GMRES method pre-
conditioned on the left by the linearized second-order accurate
version of the coefficient matrixA which we refer to asA2. This
matrix is time constant and has a relatively simple banded struc-
ture. One initial LU-factorization (after re-ordering to minimize
fill-in) and subsequent back-substitution for each precondition-
ing step is effective up to a point, but for large problems the
fill-in becomes excessive and this strategy leads to a super-linear
scaling of both CPU time and RAM memory use. To retain an
optimal scaling in 3D, we replace the direct solution of the pre-
conditioning step with a multigrid solver.

Linear Stability Analysis on a Constant Depth
The above described discretization procedure can be ana-

lyzed for stability in the standard way using the 2D, linearized
problem on a constant depth. Linearizing based on small am-
plitude waves we can express the time-stepping problem in the
form

∂
∂t

[

φ̃
η

]

=

[

0 −g
J1 0

][

φ̃
η

]

(9)
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Figure 1. MAXIMUM EIGENVALUES OF THE JACOBIAN MATRIX FOR

THE TWO DISCRETIZATION SCHEMES ALONG SOLID BOUNDARIES.

where for the linear problem̃φ = φ(x,0, t), and we have solved
explicitly for the vertical free-surface velocity to get

w̃ = J1φ̃, J1 = D0
z A−1P0. (10)

HereD0
z is the matrix operator which takes the vertical deriva-

tive of φ(x,z) on z = 0 andP0 is the operator which builds the
right hand side vectorb from the values of̃φ(x). For small values
of Nx andNz, we can build the discrete matrix operatorJ1 and
hence the complete Jacobian matrix in (9). The largest magni-
tude of the eigenvalues of the Jacobian, in combination withthe
stability region of a particular time-integration scheme,will then
determine the stability of the method.

As discussed above, there are two strategies for imposing the
kinematic boundary conditions along solid boundaries: 1) Re-
place the Laplace equation at the boundary points with the kine-
matic boundary condition (as was done by [11] and [12]), which
we will refer to as strategy “BC”. 2) Impose both the Laplace
equation and the boundary condition at all boundary points by
adding ghost points outside of the fluid boundaries, which we
will refer to as strategy “BC+LAPLACE”.

Figure 1 plots the maximum magnitude of the eigenvalues
of the Jacobian for these two boundary condition strategiesas
functions of the relative water depthh/L whereL is the domain
length. This plot has been made usingNx = 17 andNz = 9, but the
picture is unchanged for different numbers of grid points. This
shows that the two methods have the same stability requirement
in deep water but they are dramatically different in shallowwater.
The eigenvalues of the discrete system are very nearly pure imag-
inary, so stability under fourth-order Runge-Kutta time-stepping
is governed by∆t |λ|max≤ 2

√
2, (i.e. the extent of the imagi-

nary axis included by the stability region.) For example when
h= L/100, strategy BC will require a time step which is approx-
imately ten times smaller than the one required forh = L. On

the other hand, for strategy BC+LAPLACE the stability require-
ments are roughly independent of relative water depth.

Only the treatment of the enclosing vertical wall boundary
conditions influences this stability analysis, and the picture is the
same whether the bottom boundary condition is implemented us-
ing strategy BC or BC+LAPLACE. Gauss-Seidel iteration (and
hence multigrid) on the other hand, turns out to be sensitiveto
the treatment of the bottom boundary condition as is discussed
further below.

Imposing the Kinematic Bottom Boundary Condition
The two discretization strategies mentioned above are ap-

plied to the bottom boundary condition as pictured in Figure2.
For illustration, consider the 2D case with a uniform grid spacing
(∆x,∆σ) and second-order finite difference operators. LetΦ jk

represent the discrete value ofΦ(x,z, t) at grid location(x j ,σk)
and take the ordering of the grid points to follow the coordinate
direction. For strategy BC shown in Figure 2 (a),j,k corresponds
to the bottom boundary point itself and the bottom boundary con-
dition takes the form

a j

2∆σ
(

−3Φ j,k +4Φ j,k+1−Φ j,k+2
)

+
b j

2∆x

(

Φ j+1,k−Φ j−1,k
)

= 0

(11)

wherea j = (1+b2
j )/[h(x j)+ η(x j , t)] andb j = ∂xh|x=x j are the

factors appearing in (4c) and the classical even-grid, second-
order schemes have been applied. For strategy BC+LAPLACE
shown in Figure 2 (b),j,k corresponds to the ghost point be-
low the bottom boundary which is obtained by reflecting the next
grid point above the bottom aboutσ = 0. In this case the bottom
boundary condition takes the form

a j

2∆σ
(

Φ j,k+2−Φ j,k
)

+
b j

2∆x

(

Φ j+1,k+1−Φ j−1,k+1
)

= 0. (12)

For strategy BC, the Laplace equation (4b) is imposed one
grid point above the bottom boundary as shown in Figure 3 (a).
As the expressions are rather lengthy, we avoid writing them
down here, but note that the four corner points of the stencil
have been introduced by the mixedσ−x derivative. For strategy
BC+LAPLACE, the equation corresponding to the grid point on
the bottom boundary itself is the Laplace equation, and the sten-
cil for this equation is shown in Figure 3 (b). Equation (12) is
now used to solve explicitly for the ghost point values in terms of
their neighbors inside the fluid domain. Their contributions can
then be eliminated from the expressions for the Laplace equation
at the boundary points to arrive at the stencil shown in Figure 3
(c). The full expression is again rather lengthy, but in the limit of
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a linear problem on a constant depth the bottom equation, after
the elimination procedure, simplifies to

1
∆x2 Φ j−1,k−2

(

1
∆x2 +

1
h2∆σ2

)

Φ j,k +
1

∆x2 Φ j+1,k

+
2

h2∆σ2 Φ j,k+1 = 0 (13)

where the indexjk corresponds to the filled dot in 3 (c).
This can be immediately identified as the Laplace equa-

tion with the boundary condition built in. Thus this strategy
makes the boundary equations essentially the same as the interior
point equations and the resultant matrix becomes mildly diago-
nally dominant in the limit of linear waves on a constant depth.
Gauss-Seidel iteration is thus guaranteed to be convergentin this
limit [17]. Although a non-zero bottom slope will generallywork
to reduce the diagonal dominance in the system, we have so far
not found any divergent examples regardless of the physicalpa-
rameters and/or the grid anisotropy [14]. On the other hand,the
exchange of the Laplace equation for the bottom boundary con-
dition inherent in strategy BC, apparently reduces the diagonal
dominance of the matrix to such a degree that Gauss-Seidel itera-
tion becomes divergent, even at relatively small values of bottom
slope and/or grid anisotropy.

MULTIGRID PRECONDITIONING
With left preconditioning, our GMRES iterative solution of

the Laplace problem is written symbolically as

A−1
2 {AΦ = b} (14)

whereΦ is the solution vector,b the right hand side,A the non-
linear flexible-order system matrix andA2 the linearized, second-

bc

bc

bc

bc

bc

bc
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bcb

(a)

bc bc

bc bc bc

rs rs rs

b

(b)

bc bc bc

bc bc bc
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Figure 3. DISCRETIZATION OF THE LAPLACE EQUATION NEAR

THE BOUNDARY. (a) STRATEGY BC. (b) STRATEGY BC+LAPLACE.

(c) STRATEGY BC+LAPLACE AFTER ELIMINATION OF THE GHOST

POINTS.

order accurate version of the system matrix used for precondi-
tioning. Starting with the initial guess of the solutionΦ0 (ob-
tained using linear extrapolation from the previous two time-
steps) the initial residual is computed,r0 = AΦ0−b. The GM-
RES procedure then builds up the Krylov subspace to drive the
residual down to the convergence tolerance and provide a correc-
tion to the initial guess. This process requires one precondition-
ing operation per iteration solving a system of the form

A2um = rm, (15)

wherem indicates the iteration number.
We apply geometric multigrid [17, 18] to solve this precon-

ditioning problem with an initial zero guess foru0. Multigrid
exploits the smoothing properties of the basic stationary iterative
methods which efficiently remove the high-frequency errorsbut
not the low-frequency ones. Transferring low-frequency error to
a coarser grid makes it higher frequency and restores the effec-
tiveness of the basic iterative method.

A set of K increasingly finer grids{Gk : Gk ∈ Ωσ,k =
1,2, ...,K} is thus defined, wherek denotes the grid level,K the
finest grid andΩσ = [0,Lx]× [0,Ly]× [0,1] the computational
domain. To move quantities back and forth between the grids,
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prolongation and restriction operators are defined

Pk : uk−1 → uk, Rk : uk → uk−1, k = 2, ...,K. (16)

Each grid level must also have a matrix operatorAk
2. The two

classical approaches for determining the coarse grid operator Ak
2

are: the Direct Coarse grid Approximation (DCA) where the op-
erator is built on the coarse grid in exactly the same way as is
done on the finest grid; and the Galerkin Coarse grid Approxima-
tion (GCA) where the coarse grid operator is built as the product
of the fine grid operatorsAk−1

2 = RkAk
2Pk [17]. We have tried

both methods and not found any significant difference, we thus
use DCA since it is slightly more efficient and straightforward to
implement matrix-free.

The restriction to each coarse grid point is determined in
d dimensions by tensor products of the one-dimensional re-
striction operators for each coordinate direction. Discrete one-
dimensional first order full-weighting operators are derived from
the discrete version of the volume-preserving condition

Z

Ωk
f

Φk(x,σ)dΩk =
Z

Ωk
f

RkΦk(x,σ)dΩk, (17)

for Ωk
f = [xk

i − ∆xk
1,x + ∆xk

2] × [yk
j − ∆yk

1,y
k
j + ∆yk

2] × [σk
k −

∆σk
1,σ

k
k + ∆σk

2] on the fine grid, which accommodates the use
of uneven grids. The trapezoidal rule is used to approximatethe
left-hand side of the integral and the midpoint rule for the right-
hand side.

The discrete full-weighting operators are modified at bound-
ary points by imposing the boundary conditions using the same
ghost point method that was used for the spatial discretization
of the governing equations as discussed above. For restrictions
at the bottom boundary we approximate the kinematic bottom
boundary condition with a homogeneous Neumann boundary
condition∂σΦ = 0. This approximation is only strictly correct
for a flat bottom, but it is convenient in terms of implementa-
tion and does not appear to effect the overall performance ofthe
method.

The prolongation operators are determined using bi-linear
interpolation from the coarse to the fine grid for standard coars-
ening, and linear interpolation for semi-coarsening. Thus, if the
fine and coarse grid points coincide along one of the coordinate
directions, then direct injection is used in that coordinate.

The Gauss-Seidel method is used as the basic iterative
scheme (the smoother) on which the multigrid solution is built.
A careful study of the convergence properties of different fla-
vors of Gauss-Seidel (point, line, red-black, etc.,) for this prob-
lem using the two bottom boundary discretization strategies has
been carried out and is reported in [14, 19]. The conclusion of
this study is that no form of Gauss-Seidel iteration is robust for

strategy BC, while all forms are robust and convergent for strat-
egy BC+LAPLACE. No significant difference in convergence
rates was found between the different flavors, so we use point
Gauss-Seidel as it is more efficient. Different multigrid strate-
gies,e.g. V-, W-, and F-cycles, with different numbers of pre-
and post-smoothing operations (i.e. on the way down or up the
tree of grid levels respectively) were also evaluated in those re-
ports. The conclusion was that one V-cycle with one post- and
one pre-smoothing was most efficient and we have thus adopted
this strategy. (A V-cycle involves one pass down and then up the
tree of grid levels for each multigrid iteration.)

For the moment, we restrictNx andNy to be powers of two,
but the extension to allow arbitrary combinations ofNx andNy

is straightforward, consisting of one special coarsening step to
bring these values down to the nearest power of two. Since suf-
ficient accuracy is generally obtained by usingO(10) grid points
in the vertical, typical applications of the model will havemany
more points in the horizontal directions than in the vertical. The
spatial resolution will thus be dominated by the plane direc-
tions and therefore strongly coupled along these lines, andwe
can expect the discrete equation system to become anisotropic.
This can lead to poor convergence rates for the smoothers, and
therefore semi-coarsening is employed. This strategy is based
on a combined semi- and standard-coarsening strategy. Semi-
coarsening is done independently along each horizontal coor-
dinate until the spatial resolution (measured by the numberof
points) matches the spatial resolution in the vertical. There-
after, standard-coarsening is employed until the coarsestgrid is
reached.

Figure 4 plots the CPU time per iteration and the total RAM
memory use vs.n on a log-log scale for a test problem which
has been designed to exercise all the features of the model. For
this test case, we fix the length of the domain in both horizon-
tal directions to beL and let the bottom vary smoothly in both
directions such that local relative water depths are in the range
π ≤ kh≤ .5. The initial condition is a 2D linear standing wave
with kx = ky = 2π/L and a height such that it would be linear at
the deep end but significantly nonlinear at the shallow end. The
Courant numberCr = ∆t/∆x= 0.5 is held fixed and the temporal
integration is carried out over 100 time steps. Figure 4 shows re-
sults using both multigrid and a direct factorization to solve the
preconditioning problem. Multigrid can be seen to give an ideal
O(n)-scaling of both CPU time and memory use, while the di-
rect solution scales super-linearly. The break-even pointwhere
multigrid preconditioning becomes more efficient than the direct
method, can be seen to be approximatelyn = 6 · 104, although
further optimization/improvement of the multigrid precondition-
ing could well reduce this number. These calculations were made
on one AMD Opteron node with two dual-core processors run-
ning at 2.6 GHz
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Figure 4. SCALING OF (a) COMPUTATIONAL EFFORT, AND (b) RAM

MEMORY USE.

APPLICATIONS
Some sample applications of the method are provided here.

First we consider the experiments of [20] for waves shoalingon
a semi-circular bar. A snapshot of the calculations after a steady-
state has been reached is shown in Figure 5(a). The bar region
causes the waves (incoming from the left) to refract and focus,
accumulating bound harmonics which are released on the shelf.
Three cases are considered with wave periods ofT = 1,2,3s
and incident wave heights ofH = 0.039,0.015, & 0.0136 me-
ters. In the numerical model the wave generation and absorp-
tion of these fully nonlinear waves are handled using a relax-
ation method due to [21] together with the highly-accurate,pe-
riodic solutions of [22]. The waves are generated in the region
0 ≤ x ≤ 5m and absorbed in the region 30≤ x ≤ 35m for cases

(a)
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Figure 5. WAVES SHOALING ON A CIRCULAR BAR COMPARED

WITH THE EXPERIMENTS OF [20], T = 1s CASE. (a) SNAPSHOT AT

t = 50s (EXAGGERATED 15 TIMES), (b) 1st, 2nd & 3rd HARMONICS

ALONG THE CENTER LINE.

with T = 1 andT = 2s and 30≤ x≤ 40m for T = 3s. The gener-
ation zone also absorbs any reflected waves returning towards the
wave maker. The time step was set to∆t = 0.03s, and the spatial
domain discretized with 257x33x10 points for theT = 2,3s cases
and 513x33x10 points for theT = 1s case. These resolutions are
sufficient to resolve the first three free harmonics everywhere.
The vertical grid was stretched to cluster points towards the free-
surface, and fourth-order discrete operators were used.

Figures 5(b) & 6 show a harmonic analysis of the computed
and measured time series along the tank center line. This has
been performed by making a least squares fit to a sum of sinu-
soids at the first 6 harmonic frequencies. The first three harmon-
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Figure 6. EXPERIMENTS OF [20] FIRST 3 HARMONICS FOR WAVE

PERIODS (a) T=2s, (b) T=3s.

ics can be seen to be in good agreement with the experimental
data. The computed results are also in good agreement with other
high-accuracy numerical results from the literature.

A preliminary example of a problem including a structure is
given in Figure 7 which shows linear diffraction of waves with
lengthL through a gap of widthb in an infinitely thin and long
breakwater. The calculations are compared to the theoretical re-
sult from [23] which are based on the theory of [24]. A snapshot
of the solution after steady-state is shown in the top plot, while
the bottom plot shows the contours of the amplification factor in
the shadow region behind the breakwater. The red dashed curve
on this plot indicates the start of the wave absorption zone and
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Figure 7. LINEAR GAP DIFFRACTION THROUGH AN INFINITELY

THIN BREAKWATER. TOP: SNAPSHOT, BOTTOM: AMPLIFICATION

FACTOR CONTOURS. GREY LINES WITH LEVELS INDICATE THE-

ORY.

the dark black line the end of the computational domain. The
grey lines with contour levels show the theory, while the black
contours show the calculations.

Conclusions
A flexible-order finite difference solution to the exact po-

tential flow problem for waves interacting with structures on a
variable depth fluid has been described and some sample appli-
cations given. The model is robust, with no need for filteringor
smoothing, and the solution effort scales directly withn the total
number of grid points used. When fourth- or sixth-order accu-
rate discrete operators are applied, only about 10 grid points per
free-harmonic wavelength, with 5-10 points in the verticalare
required to obtain sufficiently accurate solutions for engineering
purposes. Variable grid spacing is also supported to allow the
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resolution to be tuned to the local wavelength and/or the pres-
ence of structures. Together, these features lead to an efficient
analysis tool for many coastal and ocean engineering problems.

At this point the basic solver is in place and we are fo-
cused on designing and implementing the extension to a multi-
block description of the geometry with boundary-fitted coordi-
nates also in the horizontal directions to allow the introduction of
more general structures and/or enclosing boundaries to thefluid
domain.
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