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a deformable trailing edge control system. The focus of the 
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the aeroelastic stability of a 2D airfoil section. A simulation tool 
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determined, and, in the second part of the work, a deformable 
trailing edge flap is applied. Stability is investigated for the 
uncontrolled flap, and for three different control algorithms. The 
three controls are tuned for fatigue load alleviation and they are 
based on, respectively, measurement of the heave displacement 
and velocity, measurement of the local angle of attack, 
measurement of the pressure difference between the two sides of 
the airfoil. The stability of the aeroservoelastic system in a 
defined equilibrium state, and for a given flow speed, is then 
determined by solving an eigenvalue problem. 

Results show that the trailing edge control system modifies 
significantly the stability limits of the section. In the investigated 
case, increased flutter limits are reported when the elastic flap is 
left without control, whereas, by applying any of the control 
algorithms, the flutter velocity is reduced. Nevertheless, only in 
the heave control case the flutter limit becomes critically close to 
normal operation flow speeds. Furthermore, a marked 
dependence of the stability limits on the control gain is also 
observed and, by tuning the gain parameters, flutter and 
divergence can be suppressed for flow speed even above the 
flutter velocity encountered with uncontrolled flap.  
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Notation

Roman Letter

A Coefficient matrix for linear terms. Eq.(2.27),(5.23)
Ai Indicial response constant, Eq.(2.21)
Ay Heave flap control, proportional term gain parameter
By Heave flap control, differential term gain parameter
bhc airfoil half-chord length m
bi Indicial response constant, Eq.(2.21)
Cd Static drag coefficient –
Cl Static lift coefficient –
Cm Static pitching moment coefficient –
Cp Static pressure difference coefficient –
cdof Structural viscous damping, Section 2.1.3 kg/(ms)
Daed Drag force N/m
f Constant terms vector in matrix equations. Eq.(2.27),(5.23)
GFaed Generalized forces acting on the flap. Eq.(5.7) N/m
Iea Second moment of area, with respect to the Elastic Axis kgm2/m
Imsfl Flap inertial coupling term. Eq.(5.4) kg/m
Insfl Flap inertial coupling term. Eq.(5.3) kg/m
Laed Lift Force N/m
Maed Pitching Moment Nm/m
M Coefficient matrix for first order terms. Eq.(2.27),(5.23)
mtot Airfoil Section total mass per unit span kg/m
mmod Flap modal mass in generalized coordinates. Eq.(5.6) kgm/m
nlag Number of terms for indicial response approximation
rα Dimensionless Radius of Gyration, Sect. 2.1.2 –
rβ Dimensionless 2nd moment of area for plain flap –
Sα Moment of static unbalance, Sect. 2.1.2 Nm/m
t1/2 Control Time Lag, half reaction time s

U0 Free stream flow speed m/s
UF Flow speed at which flutter occur m/s
ufl Flap deflection, deformation mode shape m
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w Equivalent downwash speed at the 3/4 chord
Xα Dimensionless Moment of static unbalance, Sect. 2.1.2 –
Xβ Dimensionless position of flap centre of gravity –
x Vector with system state variables. Eq.(2.26),(5.24)
x Streamwise (horizontal) coordinate, degree of freedom m
y Heave (vertical) coordinate, degree of freedom m
zi Aerodynamic state variables for wake induced time lag

Greek Letter

α Pitch (torsion) rotation coordinate, dof; angle of attack rad
αeff Equiv. effective (unsteady effects) angle of attack rad
α3/4 Equiv. quasi-steady angle of attack at 3/4 chord. Eq.(2.24) rad

αlift,0 Steady angle of attack corresponding to zero static lift rad
β Flap Deflection generalized coordinate. –
∆P Pressure difference between suction and pressure sides Pa
δ Logarithmic damping ratio, structure and modes, Eq.(B.1) –
ε Chordwise dimensionless coordinate –
ε10% Point at 10% chord distance from the leading edge –
εcnst Point where static CL/CP is constant. App. C –
λ Complex eigenvalue
ξdof Structural Damping Ratio, Section 2.1.3 –
ρ2D Density along the chord, for unit span kg/m2

ρ Fluid mass. For air: ρ = 1.225 kg/m3 kg/m3

Φ Matrix collecting the complex eigenvectors
ϕ Indicial function of lift
φ Complex eigenvector, modal shape
ω Frequency, natural-uncoupled or modal. rad/s

Subscripts

0, sts Related to the steady state used to linearize the system
circ Circulatory
cg Centre of Gravity
ctrl Output of the whole control system (eventually with time lag)
ea Elastic Axis
eff see αeff
fl Related to the flap structure, and flap deflection dof
hp Flap ‘hinge point’, first point with ufl 6= 0 (also as superscript)
le Leading Edge
nc Non circulatory
nl Non linear formulation
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set Output of the ideal control algorithm (no time lag)
te Trailing Edge
x Related to Streamwise dof
y Related to Heave dof
α Related to Pitch-Torsion dof
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Chapter 1

Introduction

An important issue in the design of modern wind turbine blades is the fa-
tigue damage related to fluctuations in the aerodynamic forcing, produced,
for instance, by wind turbulence, wind shear, tower shadow or yaw misalign-
ment. Larsen [18] investigates the possibility of alleviating fatigue loads by
modifying the ‘traditional’ blade pitching system, and he reaches to the con-
clusion that by adopting a cyclic blade pitching the flapwise fatigue loads
can be reduced up to 15 % with respect to the normal collective pitch, and
a reduction up to 28 % would be instead achieved by pitching each blade
independently.

Pitching the whole blade, though, may become inadequate as wind tur-
bine blades increase in size and become more flexible, further load reduction
would hence require a faster control, able to intervene on the aerodynamic
forces locally along the blade span. The aerodynamic forces can be then
controlled by changing the geometry of the lifting surface, in this case by
deforming parts of the blade airfoil section.

A control based on the same principle is successfully and elegantly ‘ap-
plied’ by some falcon birds, as the kestrel (Figure 1.1), when they are hov-
ering during the hunt. This raptor is in fact able to maintain a still position
in the wind stream, by continuously adapting the geometry of its lifting
surfaces (wings and tail), so to compensate for turbulences in the incoming
flow; changes of geometry in wings and tail are then realized through rapid
movements of the feathers, which could be seen as fast controllers acting
locally along the ‘blade’ span. Less ‘rural’ examples are also found in the
aeronautic field: aileron and flaps are well known devices to modify the
aerodynamic forces on a wing by changing the airfoil geometry (Figure 1.2).

A similar concept can be applied to control a wind turbine blade by de-
forming its trailing edge geometry (Figure 1.3). Investigations in this sense
have been first carried out on a 2D airfoil section by Basualdo [6], using a
panel method, and by Troldborg [24] with a CFD analysis. Troldborg also
concludes that an optimal deformation shape should be non linear, giving

7 Risø-R-1663(EN)



Figure 1.1: Variable airfoil geometry in nature: a kestrel is ‘hovering’.

Figure 1.2: Variable airfoil geometry in aeronautics: flaps, aileron and deflectors on
aircraft wing.

Figure 1.3: Variable airfoil geometry in wind turbine blade: deformable trailing edge
geometry. The non linear deflection shape is obtained with piezoelectric laminae.

Risø-R-1663(EN) 8



1. Introduction

thus a smooth and continuous deflection of the aft part of the airfoil. The
trailing edge flap that is actually investigated is hence different from a ‘clas-
sic’ rigid plain flap with a linear deformation shape, as found on aircrafts,
and, instead of rotating around an hinge point, it deforms continuously,
according to non linear deflection mode shapes (Figure 1.3).

The load reduction potential achievable with a deformable trailing edge
control has been also assessed through simulations of a 2D airfoil section [8]
and a full blade [4], using, in both cases, the unsteady aerodynamic model
developed by Gaunaa [9] for thin airfoil and potential flow. Later investi-
gations expand the model to take into account also the effects from fluid
viscosity [2], as well as that, the interaction with a wind turbine standard
control system has been also investigated [3]. In any case, simulations indi-
cate that the load alleviation potential achievable with deformable trailing
edge flaps is significant, and the more realistic model [3] reports a reduction
in the blade flapwise fatigue loads up to 40 %.

The present study contributes to the investigation of the deformable
trailing edge flap control by analysing its effect on the system stability. The
focus is on how the relative flow speed, at which aeroelastic instabilities
such as flutter and divergence occur, would be modified by the presence of
the deformable elastic trailing edge and by the algorithms that control its
deflection.

Flutter instabilities in wind turbine applications have been investigated
by Lobitz [19], and he concludes that, for an isolated blade of a 1.5 MW tur-
bine, flutter would occur at a rotor speed twice the nominal one. Similar re-
sults are also reported in Hansen’s [14] stability analysis of the 5 MW NREL
reference turbine, Hansen [14, 13] also concludes that similar flutter limits
are predicted with full turbine and isolated blade analysis. The predicted
flutter limits are hence sufficiently high and do not represent a constraint
for current wind turbine blades. Flutter may indeed become problematic
if, due to the flap control, the stability limit would lower and drift to flow
speeds encountered in normal operation. It is thus important to predict the
effects of the trailing edge control system on the stability limits.

The work presents a first simplified approach. Stability is, in fact, anal-
ysed through an aeroservoelastic investigation of a representative 2D airfoil
section equipped with a trailing edge flap. A similar approach is also re-
ported in the classic flutter studies from Theodorsen and Garrick [22], where
stability limits are initially computed using a 2D wing section model, similar
results are then obtained from subsequent wind tunnel experiments of full
wing flutter.

The report is organized in two parts:
In the first part, stability analysis is carried out for an undeformable airfoil
section, the flap is not considered and the problem reduces to a classic

9 Risø-R-1663(EN)



aeroelastic stability investigation of a 2D section. Terms of comparison
and validation are thus available, furthermore, it is also possible to rapidly
investigate how the stability limits vary depending on the input parameters
and on the approximations introduced in the model. The results obtained
for the undeformable airfoil section also provide a useful term of comparison
to later asses the effects of a flap control.

The aeroelastic system is represented through a structural model coupled
with an aerodynamic one. The behaviour of the structure is described by a
set of differential equations of motion, which represents the rigid motion of
the airfoil suspended by linear spring and dampers. The aerodynamic forces
acting on the airfoil are computed using an unsteady aerodynamic model
[15], and inviscid fluid and fully attached flow are assumed. The complete
set of aeroelastic equations is linearised with respect to an assigned steady
state, and the stability of the system at the specified state is assessed using an
eigenvalue approach. The original set of equations, prior to linearisation, is
also solved with a time marching integration, and the resulting time histories
are used to validate the stability results from the eigenvalue analysis.

In the second part the airfoil section is equipped with a trailing edge
flap. As in the previous load reduction investigations, the flap consists in a
smooth deformation of the airfoil aft part, described by a non linear deflec-
tion shape. The structural model includes an extra degree of freedom for the
elastic flap deflection, which is modelled using a generalized coordinates ap-
proach applied to the assigned deformation shape. The aerodynamic part is
based on Gaunaa’s [9] potential flow model, which allows to determine forces
and pressure distribution on a thin airfoil undergoing arbitrary motion and
deformation. Stability is firstly investigated for the case of an uncontrolled
elastic flap, and, afterwards, control models are applied. The control ac-
tuator is here represented as an extra elastic term in the flap equation of
motion, and it responds to control algorithms based on measurements of the
heave displacement and velocity, on the angle of attack and on the pres-
sure difference between the two sides of the airfoil. Control time lag is also
included in the model as a first order filter.

Similarly to the undeformable airfoil part, the full set of equations de-
scribing the aeroservoelastic system is analysed for stability using an eigen-
value approach. A time marching simulation is also carried out to verify the
predicted stability limits.

A stability tool will be implemented to predict the relative flow speeds
at which instabilities, as divergence and flutter, are expected to occur for an
airfoil section actively controlled by a deformable trailing edge; the effects of
the trailing edge control on the section stability will be thereby determined.

Risø-R-1663(EN) 10



Part I

Undeformable airfoil
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Chapter 2

Model and method

In this first part, aeroelastic stability is investigated for an airfoil section
that is assumed to be undeformable. In other words, the control system and
the trailing edge flap, which will be introduced in the second part, are not
present here, and the airfoil section can only perform in plane rigid motions.

The assumption simplifies the investigation to a ‘classic’ aeroelastic sta-
bility problem, for which thorough descriptions and solutions can be found
in literature [7, 22]. Terms of comparison are thus available to validate the
model and its implementation. Furthermore, the undeformable airfoil also
allows a rapid sensitivity analysis on the parameters affecting the stability
limits. The analysis covers not only the influence of the numerical values
assigned to the system characteristic parameters (mass, stiffness, damping,
etc.); but also, investigations are carried out to determine in which extend
different aspects and assumptions involved in the aeroelastic model may
affect the results.

The aeroelastic system represents the behaviour of the airfoil section
immersed in fluid, and is described through a structural model coupled with
an aerodynamic one. Since the airfoil performs only in plane rigid motion,
three degrees of freedom (dof) are sufficient to fully define the dynamic
behaviour of the structure: 2 dof are used to describe rigid body translation
and 1 for rotation.

The forces that originate from the interaction between the airfoil and the
fluid are described by an unsteady aerodynamic model. The model assumes
incompressible fluid and fully attached flow, and an approximation for the
indicial function of lift is employed.

Stability analysis is carried out in the frequency domain by applying an
eigenvalue approach. The results are then verified in the time domain by
solving the system of aeroelastic equations with a time marching integration.

The following sections describe the different parts of the aeroelastic
model for the undeformable airfoil and the approaches employed to solve
the system in the frequency and time domains. The validation of the model

Risø-R-1663(EN) 12



2. Model and method

is presented in the following chapter, together with a discussion of the ob-
tained numerical results.

2.1 Structural model

2.1.1 Reference systems

The position of the points on the airfoil section are given according to a local
reference system. The reference frame extends along the airfoil chord (Figure
2.1), it has origin at the half chord point and positive direction toward the
trailing edge. The coordinates on the system are given in dimensionless
form, distances from the origin are in fact normalized with respect to the
half chord length bhc; the coordinates for the leading and trailing edge are
hence, respectively εle = −1 and εte = +1, while the quarter-chord and
three-quarter-chord have coordinates ε1/4 = −0.5 and ε3/4 = +0.5.

Figure 2.1: Local chord dimensionless coordinate system. The origin is at the half chord
point, the point positions are normalized with respect to the half chord length bhc

In this first part of the investigation, the airfoil is considered as rigid, it
can not deform and it moves in the plane, the motion is hence fully described
by three degrees of freedom, defined according to the global coordinates
system represented in Figure 2.2. The streamwise motion is defined with
respect to the x axis, which is parallel to the free stream flow direction
(assumed constant) and it points aft (toward the te). The heaving motion
is defined on the y axis, positive upwards, and a third degree of freedom
describes the torsion or pitch rotation of the airfoil as the angle α between
the airfoil chord and the x axis. The axis of rotation coincides with the airfoil
elastic axis, which passes by the point of coordinate εea, that can be thus
seen as the section hinge point. A positive torsion-pitch angle corresponds to
a clockwise, ‘nose up’, rotation around this point and, since the free stream
flow direction is assumed to be constant, the pitch angle α is also equal to
the static angle of attack.

The 2D airfoil section is considered as representative of a transversal
section, normal to the span axis, of a wind turbine blade; from this point

13 Risø-R-1663(EN)



2.1. Structural model

Figure 2.2: Global reference system. The rigid motion of the airfoil section in the plane
is defined by three degrees of freedom: x stream wise, y heave, α pitch rotation
(positive nose up)

of view, the heave displacement of the section can be roughly related to the
flapwise bending of the blade, the streamwise to the edgewise bending and
the pitch rotation to the blade torsion.

2.1.2 Dimensionless parameters

In literature [7, 22] the structural characteristics of an airfoil section are
often expressed in normalized form by using dimensionless parameters. The
parameters that appear more frequently in this work are described in the
following lines, their symbols and definitions are similar to the ones given in
the quoted references.

• Dimensionless static unbalance xα. The moment of static unbalance
Sα is normalized with respect to the airfoil mass and the half chord
length, the parameter is thus equal to the distance between the elastic
axis and the centre of gravity, expressed in half chord units. It is
positive if the centre of gravity lies aft of the elastic axis.

xα = Sα/(mtotbhc) = εcg − εea, (2.1)
Sα = mtot(εcg − εea)bhc. (2.2)

• Dimensionless radius of gyration rα. It is the second moment of area

Risø-R-1663(EN) 14



2. Model and method

Iea with respect to the elastic axis, normalized by the mass,

rα =

√
Iea

mtotb2hc
, (2.3)

Iea =
∫ te

le
ρ2D(ε− εea)2b2hcdε

= Icg +mtot(εcg − εea)2b2hc. (2.4)

Where, ρ2D is the density along the chord of the airfoil section, referred
to a unit span, it is hence measured in kg/m2. The total mass of the
airfoil section for a unit span, in kg/m, is thus

mtot =
∫ +1

−1
ρ2Dbhc dε. (2.5)

• Section density ratio. The mass per unit span of the section is divided
by the mass of the surrounding fluid,

mtot/(πρb2hc). (2.6)

• Heave-torsion frequency ratio.

ωy/ωα, (2.7)

where the frequencies ω refer to the uncoupled natural frequencies in
the heave (ωy) and torsion (ωα) degrees of freedom:

ωy =
√
ky/mtot, (2.8)

ωα =
√
kα/Iea. (2.9)

Similarly, the streamwise-torsion frequency ratio is defined as the ratio
between the streamwise degree of freedom uncoupled natural frequency
ωx and the torsion one ωα.

• Reduced wind speed. The wind speed is normalized by the half-chord
length and the torsion natural frequency,

RedU = U/(bhcωα). (2.10)

2.1.3 Equations of motion

The structure consists of a rigid airfoil section suspended by elastic springs
with linear damping and is similar to the model described by Buhl et al. in
[8]. The three degrees of freedom that describe the motion of the rigid airfoil

15 Risø-R-1663(EN)



2.2. Aerodynamic model

in the plane (Fig.2.2) yield to three equations of motion: two to define the
translation in the heave y and streamwise x degrees of freedom, and one for
the rotation specified by the pitch-torsion degree of freedom α.

The first two equations of motion are obtained from the balance of in-
ertial, damping, elastic and aerodynamic forces along the horizontal x and
the vertical y axes, while the third equation results from the balance of the
pitching moments acting on the airfoil. The dynamic of the structure is thus
described by a set of three second order differential equations:

mtotẍ− Sα sin(α)α̈+ cxẋ+ kxx = Daed, (2.11)
mtotÿ − Sα cos(α)α̈+ cyẏ + kyy = Laed, (2.12)
− Sα sin(α)ẍ− Sα cos(α)ÿ + Ieaα̈+ cαα̇+ kαα = Maed. (2.13)

Where: mtot is the total mass of the airfoil referred to unit span; Sα is
the moment of static unbalance; Iea is the second moment of area with
respect to the elastic axis; cdof is the viscous damping coefficient (cdof =
2ξdofωdofmtot)and kdof is the stiffness of the linear-elastic springs.

Daed, Laed and Maed are instead, respectively, the drag, the lift and the
pitching moment. They represent the interaction between the structure and
the fluid and they express the coupling between the structural model and
the aerodynamic one, presented in the following section.

2.2 Aerodynamic model

From the interaction between the airfoil and the surrounding fluid, aerody-
namic forces are originated and act on the airfoil itself, as a lift Laed, a drag
Daed and a pitching moment Maed. An unsteady aerodynamic model defines
the forces under the assumptions of 2D incompressible flow, moderate (but
arbitrary) movements of the airfoil and fully attached potential flow. The
latter restriction limits the validity of the model to small angles of attack
where no stall occurs on the airfoil, which is anyway a realistic hypothesis
for an airfoil mounted on the outer section of a pitch regulated blade.

The model is implemented following the formulation given by Hansen
et al. in [15]. The drag and the moment are related to the unsteady lift.
Furthermore, since the expressions for the aerodynamic forces are not linear
due to the streamwise degree of freedom x, they are linearised with respect to
a specified steady state, prior to stability analysis in the frequency domain.

2.2.1 Lift Force

The total lift on the moving airfoil is split into a circulatory contribution
and a non-circulatory one. The latter, also known as virtual or added mass
contribution, returns the force that would anyway act on the airfoil in motion
even if no circulation were produced. The non-circulatory terms arise, in
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fact, from the inertial forces of the fluid mass accelerated with the airfoil,
consequently, they are not affected by the wake memory effects and they
only depend on the actual instantaneous motion of the airfoil [25]. The
non-circulatory contribution to the lift is computed as:

Lnc = ρb2hcπ(U0 − ẋ) α̇

− ρb2hcπ ÿ − ρb3hcπεea α̈. (2.14)

Where, ρ is the fluid specific weight (1.225 kg/m3), and U0 is the undisturbed
free-stream flow velocity in the x direction; the flow velocity relative to the
airfoil is then equal to the free-stream speed decreased by the ẋ component
of the airfoil motion: U0 − ẋ.

The circulatory contribution to the lift takes into account also the un-
steady time lag effects caused by the vorticity shed into the wake. In the
implemented model, this is achieved by introducing the term αeff , which
represents the equivalent effective angle of attack that, if set in steady con-
ditions, would produce a lift force equivalent to the circulatory unsteady-
instantaneous one. The circulatory contribution to the lift force is thus
computed as

Lcirc = (2π)ρbhc(U0 − ẋ)2(αeff − αlift,0), (2.15)

where, 2π is the linear static lift coefficient (∂Cl∂α ) for a flat plate, and αlift,0
is the angle of attack corresponding to a null static lift coefficient, and is 0
for flat plate and not cambered airfoils. The effective angle of attack αeff is
then determined by using an approximation for the indicial function of lift,
as presented in section 2.2.4.

2.2.2 Drag force

The total drag force is given, as in Hansen et al. [15], by the sum of a static
contribution and an induced drag. The former is simply retrieved from the
static drag curve of the airfoil at the effective angle of attack αeff , and is
null whenever the airfoil is approximated by a thin flat plate and the viscous
drag is neglected. The induced drag is instead given by the circulatory lift
(2.15) component in the x-direction, this drag component is thus the result
of the angular difference between the (unsteady) effective angle of attack
and the (steady) geometric one.

Daed = Dstatic + ∆Dinduced, (2.16)

Dstatic = ρbhc(U0 − ẋ)2Cd(αeff ), (2.17)

∆Dinduced = Lcirc(α− αeff ). (2.18)

17 Risø-R-1663(EN)



2.2. Aerodynamic model

2.2.3 Pitching Moment

The aerodynamic pitching moment is also computed as a sum of non circu-
latory and circulatory contributions. The non circulatory, or added mass,
pitching moment for the airfoil hinged at the elastic axis point, is computed
as

Mnc = −ρb3hcπ(U0 − ẋ)(0.5− εea) α̇− ρb3hcπεea αẍ
− ρb3hcπεea ÿ − ρb4hcπ(1/8 + εea) α̈. (2.19)

The circulatory part originates from the circulatory lift and the drag
forces, which are considered acting at the quarter-chord point ε = −0.5,
furthermore, in case of cambered airfoil, a term expressing the static moment
at the effective angle of attack is also present:

Mcirc = (εea + 0.5) cos(α) Lcirc + (εea + 0.5) sin(α) Daed

+ ρb2hc(U0 − ẋ)Cm(αeff ). (2.20)

For small torsion angles α, the drag contribution to the moment can be
neglected.

2.2.4 Unsteady wake effects: indicial function approach

The effective angle of attack αeff is expressed through an indicial function
of lift ϕ that models the deficiency in the instantaneous lift, compared to
the steady one, and it represents the effects of the vorticity shed into the
wake by the airfoil undergoing arbitrary motion. In the case of interest,
the arbitrary motion is described as a superposition of step changes in the
airfoil angle of attack, the corresponding indicial function ϕ is referred to as
Wagner’s indicial function and consists in a Fourier’s superposition integral.

This integral can not be represented in a simple analytical form, the
indicial function is thus approximated by a series of exponential time-lag
terms [15, 9, 25, 7]:

ϕ(τ) ≈ 1−
nlag∑
i=1

Aie
−biτ , (2.21)

where, τ is a dimensionless time variable, τ = t/(bhcUmean), corresponding
to the distance, expressed in half-chords, that the airfoil has travelled with
respect to the flow. The coefficients Ai and bi are instead parameters that
describe the response of the specific airfoil according to the chosen indicial
function approximation, as presented in the following paragraph.

By applying the exponential approximation of the indicial function pre-
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sented in Eq. (2.21), the effective angle of attack is then computed as

αeff = α3/4 ϕ(0) +
nlag∑
i=1

zi = α3/4

(
1−

nlag∑
i=1

Ai

)
+
nlag∑
i=1

zi. (2.22)

The zi terms are nlag additional state variables that describe the time lag
effects of the wake and they are computed from nlag first order differential
equations:

żi = −
(
U0 − ẋ
bhc

bi −
ẍ

U0 − ẋ

)
zi +

U0 − ẋ
bhc

biAiα3/4. (2.23)

Here, as in the previous equation (2.22), α3/4 is the ‘quasi steady’ angle of
attack, evaluated at the three-quarter chord point:

α3/4 = α− ẏ

U0 − ẋ
+

0.5− εea
U0 − ẋ

α̇. (2.24)

It is worth to notice that due to the streamwise degree of freedom x, also
the equations for the time lag variables, as well as the expressions for the
lift, the drag and the moment, are not linear in the system state variables.
Consequently, to represent the aeroelastic system in a linear formulation, the
expressions need to be linearised by means of a Taylor series expansion, the
resulting equations are found in Hansen et al. [15] and reported in Appendix
A.

Indicial function approximations

The indicial function of lift, approximated to a series of nlag exponential
terms, is characterized by nlag couples of coefficients Ai and bi. Numerical
values for the Ai and bi coefficients have been first calculated by Jones ([17],
quoted in [15]) for a two terms approximation of the flat plate response.

A different set of values is computed by Gaunaa [15] and it is based
on the simulation of the response of a flat plate undergoing step change of
angle of attack, computed by means of a panel code; the Ai,bi coefficients are
then determined seeking the best fitting between the response approximated
by the exponential terms series and the actually simulated one. The same
method is also applied to simulate the response of an airfoil with finite
thickness and compute the coefficients for the series of exponential terms
that approximate such response [15, 8]. The number of terms in the series
can be arbitrarily chosen, the higher it is, the closer will be the fitting,
but also the more differential equations will be introduced in the system to
compute the aerodynamic state variables.

As remarked in Hansen et al. [15], the possibility of applying indicial
function approximations to the response of non-flat airfoils has not been
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formally proved. Nevertheless, the unsteady responses of airfoils with finite
thickness computed with the approximated method shows good agreement
with results from Navier-Stokes numerical solutions [15].

Table 2.1 reports the coefficients of exponential terms series that ap-
proximate the response of a flat plate, with two (Jones) and three (Gaunaa)
terms, and also the coefficients computed by Gaunaa [8] for the Risø B1-18
airfoil, which has been employed in the previous aeroelastic studies of a flap
equipped section. The corresponding approximated lift indicial functions
are plotted in Figure 2.3 versus the dimensionless time.

Flat Plate Risø B1-18
Jones Gaunaa 2 terms 3 terms

A1 0,1650 0,0182 0,2446 0,0821
A2 0,3350 0,2411 0,3743 0,1429
A3 – 0,2407 – 0,3939
b1 0,0455 3,02E − 06 0,0519 0,0199
b2 0,3000 0,3989 0,3371 0,7817
b3 – 0,0818 – 0,1453

Table 2.1: Approximated indicial function of lift ϕ(τ) for the response to a step change
in the angle of attack. Coefficients for the terms in the exponential series, for flat
plate (Jones [17] and Gaunaa [15]) and Risø B1-18 airfoil (Gaunaa [8]) responses.

It can be observed (Figure 2.3) that the response curves referred to the
airfoil with finite thickness are below the flat plate ones, showing a slower
response in the airfoil case. Furthermore, the 2 and 3 terms approximations
in the flat plate case return similar responses, while the effects of introducing
a third term are more evident in the B1-18 airfoil response.

2.3 Aeroelastic system

The aeroelastic behaviour of the airfoil interacting with the surrounding
flow is described by the presented equations of motion, together with the
expressions for the aerodynamic forces and for the wake time lag variables.

The equations of motion consists in three, one for every degrees of free-
dom, second order differential equations, that, by variable substitution of
the second order derivatives, are reformulated in a set of three plus three
first order equations (state-space formulation). In addition, the aerodynamic
model also introduces in the system nlag time lag variables zi and the same
number of first order equations (2.23).

The complete set of equations describing the aeroelastic system can be
written in matrix formulation as

Mnlẋ = Anlx+ f
nl
, (2.25)
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2. Model and method

Figure 2.3: Approximated indicial function of lift ϕ(τ) versus dimensionless time, step
responses for a flat plate and a Risø B1-18 airfoil. 2 and 3 terms series approxima-
tions.
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where, x is a vector that collects the state variables of the system in the
state-space formulation, and, in case of a three terms approximation of the
lift indicial function ϕ, it may looks like

x =
{
x, y, α, ẋ, ẏ, α̇, z1, z2, z3

}T
. (2.26)

In this formulation, the square matrices Mnl and Anl and the force
vector f

nl
are also functions of the system state variables contained in x,

as a consequence, the system is non linear. While non linearities can be
handled by a time marching solver, the stability analysis carried out in the
frequency domain requires the system to be linearized.

2.3.1 Time domain solution

A time domain solution method can be applied to non linear systems, there-
fore, as just mentioned, the aeroelastic behaviour of the structure is de-
termined in the time domain by solving directly the non linear system of
differential equations, as presented in the matrix formulation of Eq.(2.25).

The implemented time marching code solves the system of first order
differential equations by means of a time step numerical integration. The
integration is carried out using the Matlab built-in function ode45, which
is based on an explicit Runge-Kutta method of the fourth and fifth order,
with a variable time step. The required initial conditions are specified by
assigning the values of the system state variables in x, at time zero. In all
the simulations, the initial condition vector xt=0 is chosen so to represent a
steady state (derivatives terms are hence zero) close to the equilibrium one,
but not equal.

The results of the time marching solution are, in fact, time histories of
the system state variables contained in the vector x(t) and their first order
time derivatives ẋ(t). By choosing an initial condition slightly different from
the equilibrium one, it is possible to observe how the time histories evolves in
time and if the variables tends to their equilibrium value, and thus determine
if the system is stable or not.

The stability results obtained for the linearised system in the frequency
domain can be hence checked versus the stability observed in the correspond-
ing non linear system, solved in the time domain by the time marching code.

2.3.2 Frequency domain solution

If the primer concern of the aeroelastic investigation is the stability of the
system in a defined state, the analysis can be more efficiently carried out in
the frequency domain [23, 12, 11]. In fact, the advantage of such approach
is that the computationally expensive time step numerical integration that
is required to determine the system behaviour in the time domain, can be
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skipped. On the other hand, the frequency domain solution, which is based
on an eigenvalue problem, only applies to a linear system.

The aeroelastic system (2.25) is thus linearised with respect to a pre-
defined equilibrium steady state by applying a Taylor’s series expansion
around the same equilibrium state. The obtained linearised equations are
reported in Appendix A, where the linearised expressions for the aerody-
namic forces are retrieved from Hansen et al. [15]. The equilibrium state,
around which the system is linearised, is defined by a state variables vec-
tor x0,sts, the vector describes a steady condition, the derivatives terms are
therefore null, and, among the structural degrees of freedom only the pitch
angle α0,sts is actually affecting the system proprieties.

The set of linearized equations can be presented in matrix formulation

M̃ẋ = Ãx+ f0. (2.27)

The system is then assumed to have a solution in the form

x = φeλt, (2.28)

which, substituted into the linearised system matrix equation (2.27), yields
to the generalized eigenvalue problem:

(Ã− λM̃)φ = 0. (2.29)

The eigenproblem is solved numerically by means of the built-in Matlab
function eig and it results in a set of complex eigenvalues λj and respective
eigenvectors φ

j
. The imaginary part of every eigenvalue j Im(λj) is equal

to the modal frequency, in rad/s, of mode j and is referred to as frequency
parameter, while the real part Re(λj) is known as stability parameter and
is related to the logarithmic damping associated to mode j. A negative
eigenvalue real part corresponds to a positively damped modal contribution,
the modal logarithmic damping is in fact computed as

δj = −Re(λj)
Im(λj)

. (2.30)

Stability analysis is thus carried out in the frequency domain by verifying
that for an assigned steady state of the system and a given wind speed U0, all
the modes are positively damped (stable condition). The flow speed at which
any of the modes turns unstable (negatively damped) then corresponds to
the stability limit for the specified system.

Mode tracking

The generalized eigenproblem for the linearised system is solved in a series
of points, or steps, with increasing wind speed. The solution consists in a
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set of eigenvalues λj and corresponding eigenvectors φ
j
, the order given to

the modes at every step can be arbitrary, but it is here chosen to ordinate
them according to a ‘self-similarity’ principle applied to the modal shapes.
In other words, for successive flow speed steps the modes are numbered so
that the shape vectors corresponding to the same mode number are the most
similar.

In fact, while the eigenvalues convey information about the modes sta-
bility and frequency, the eigenvectors determine the corresponding modal
shape. Only the eigenmodes corresponding to a non-negative frequency pa-
rameter (Im(λj)) are retained, and the respective modal vectors are collected
in the matrix

Φ =
{
φ

1
,φ

2
, . . . ,φ

n

}
. (2.31)

The similarity of the mode shapes is then determined by means of a
Modal Assurance Criterion (MAC). The criterion, as defined in [1], produces
a number between 0 and 1, and is an index of the degree of similarity between
‘test’ and ‘reference’ modal vectors. If two vectors are identical or they are
linear combinations of the same vector, a unit MAC value is obtained. The
classic expression to compute the MAC value between two vectors [1] is
modified to operate directly on the modal shape matrices Φ. The result is
also a matrix MACΦ,

MACΦ =

(
ΦH
RefΦTest

)
•
(
ΦH
TestΦRef

)T
diag

(
ΦH
RefΦRef

)
diag

(
ΦH
RefΦTest

)T . (2.32)

The • symbol indicates an element by element product, as well as that, also
the quotient given by the fraction should be intended as an element-wise
operation. The H superscript is used for the conjugate-transpose operation,
the T one for the transpose.

The reference modal shapes matrix ΦRef contains the eigenvectors from
the previous time step, already ordered. The test matrix ΦTest collects
the modal shapes from the actual step. Every element of the result matrix
MACΦi,j gives the correlation between the pair of modal shapes φ

i
and φ

j
,

where the former, corresponding to the row number, is the reference modal
shape, and the latter is the test one. The n-th column in the ordered modal
matrix Φ is thus assigned to the modal shape vector corresponding to the
maximum value (highest similarity) in the n-th row of the MACΦ matrix.
The reference vector for the very first time step has an arbitrarily chosen
order, and in this case a decreasing modal frequency criterion is adopted.

By using the similarity criterion is possible to track and identify the dif-
ferent modes in the full range of investigated wind speed despite the changes
of frequencies or degrees of freedom contributions. In this way, a mode of
particular interest, as for instance the mode causing flutter, can be traced
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back and related to the mode that is more similar to it in no flow conditions.

2.4 Aeroelastic instabilities

The stability of a system is determined in relation to an equilibrium state.
If the system, undergoing small perturbations, tends to re-assume the same
equilibrium state then is stable. If others, or even none, equilibrium points
are reached, the system in the specified conditions is unstable [23].

From a practical point of view, instability would yield to not ordinary
structural deformations that, even though in some cases possibly limited
by non linear effects, may result in structural failures or anyway important
reduction of the component life time.

Two kind of instabilities can occur in the described aeroelastic system:
divergence and flutter. The following paragraphs define their characteristics
and how they appear both in the time and frequency domain solutions.

Divergence Divergence is a static phenomenon and it depends on the
equilibrium between the aerodynamic pitching moment and the torsion spring
restoring moment. In the time marching solution it appears as an expo-
nential growth in the pitch-torsion degree of freedom, with none or damped
oscillations in case of pure divergence. In the eigenproblem solution, a diver-
gence instability is instead characterized by one mode with negative modal
damping (positive Re(λ)j̃) and, since the phenomenon is static, the respec-
tive modal frequency is null (Im(λ)j̃ = 0). If the instability is purely given
by divergence, all the other modes are positively damped (negative Re(λ)).

As mentioned, divergence occur at flow speeds for which the increase in
the aerodynamic pitching moment is greater than the respective torsional
restoring moment. The divergence limit can be thus computed through an
analytical expression that only depends on the torsion spring stiffness kα
and the location of the elastic axis εea [7]. The expression reads

UDiv =

√
kα

(2π)ρb2hc(0.5 + εea)
, (2.33)

and, in reduced dimensionless form:

UDiv
bhcωα

=

√
mtot r2

α

(2π)ρb2hc(0.5 + εea)
. (2.34)

Where, 2π is the linear static lift coefficient (∂Cl∂α ) for a flat plate; ωα is the
uncoupled natural frequency in the pitch degree of freedom: ωα =

√
kα/Iea.

The term rα is instead the radius of gyration, given by the section moment
of inertia Iea normalized with respect to the mass, section 2.1.2.
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Flutter Flutter is a more complex dynamic phenomenon that involves the
coupling of two, or more, degrees of freedom, typically the heave and the
torsion. In the responses obtained by the time marching tool, flutter is
characterized by oscillations around the equilibrium value, with an ampli-
tude that would indefinitely increase, unless limited by non linear effects. In
the frequency domain, instead, flutter is characterized by at least one mode
with a positive eigenvalue real part (negative modal damping) and a positive
frequency parameter Im(λ), which is referred to as flutter frequency.

Due to the complexity of the dynamic instability, the limit flow speed at
which flutter may start to occur can not be computed by simple analytical
equations, nevertheless, Theodorsen [22] proposes an empirical equation to
approximate the flutter limit. The validity of the expression is limited to
heavy sections and small values of the ratio between the heave and torsion
uncoupled natural frequencies (ωy/ωα). The empirical equations in dimen-
sional and dimensionless forms read:

UF =

√
kα

πρb2hc(1 + 2εcg)
, (2.35)

UF
bhcωα

=

√
mtot r2

α

πρb2hc (1 + 2εcg)
. (2.36)

The empirical approximation for the flutter speed is a function of the tor-
sional stiffness and the position of the centre of gravity, it does not depends
on the elastic axis position, which instead determines the divergence limit.
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Chapter 3

Undeformable airfoil.
Results and discussion

The model described in the previous chapter is now employed to investigate
the aeroelastic stability of two different airfoil sections. First, stability curves
are computed for the ‘typical section’ described by Theodorsen and Garrick
[22], which consists in a suspended thin flat plate with defined structural
characteristics (validation case section). The results are then compared with
the ones presented in literature for this same case, and the model and its
implementation are thereby validated. The same thin plate section is also
employed to verify the sensitivity of the stability limits to variations in the
structural parameters and in the formulation of the aerodynamic model.

The second section being investigated (reference case section) is the one
that, in the second part of the work, will be ‘equipped’ with the deformable
trailing edge flap control. The section is chosen so to have the same char-
acteristics, both structural and aerodynamic, as the one studied in the pre-
vious 2D works concerning the load reduction potential achievable with the
trailing edge flap [4, 8].

The flutter limit computed for the undeformable section will thus serve
as comparison term in the following investigations of the flap effects. As well
as that, an analysis of the influence of the streamwise degree of freedom on
the stability limits is also carried out using the same section as input.

3.1 Airfoil section for validation case

The implemented stability tool is validated by solving some of the instability
cases that classic literature reports for undeformable airfoil sections. The
term of comparison is in fact given by Theodorsen and Garrick’s [22] analysis
of the ‘flexure-torsion’ flutter on wing sections, modelled as flat plates.

The same set of structural proprieties is adopted both for validation and
for a first sensitivity analysis, and it corresponds to the case identified as
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(q) in Theodorsen and Garrick [22], in Graph I-A, and then also reported in
Bisplinghoff [7] in Figure 9–5(A). The dimensionless parameters that define
the structural proprieties are reported in table 3.1, while the aerodynamic
model adopts Jones’ coefficients (Table 2.1) in the approximation of the
indicial response of a thin flat plate, unless specified otherwise.

Parameter Symbol Value
Elastic axis εea −0.3
Distance c.g. Xα 0.2 (0.1)
Rad.Gyrat. sq. r2 0.25
Density ratio mtot/(πρbhc) 20
Heave-Tor. ratio ωy/ωα 0→ 1.7

Table 3.1: Dimensionless structural parameters for the validation case section. The
section is employed for validation, by comparison with the results obtained by
Theodorsen and Garrick with the same inputs, case (q) in [22], and for a first sensi-
tivity analysis.

3.1.1 Validation results

Stability limits are then computed and plotted as function of a range of
heave-torsion frequency ratios ωy/ωα (Fig. 3.1). The resulting flutter speeds
are found to be in agreement with Theodorsen and Garrick’s original results
only for low frequency ratios, in fact, as the ratio approaches unit value, the
actual curves drift to generally lower speeds.

The mismatch is probably due to numerical inaccuracies in the curves
presented in the original work. In fact, according to Zeiler [26], Theodorsen
and Garrick’s results may be biased by a low numerical accuracy, most likely
referable to the scarce computational power available at the time. For the
same wing section, Zeiler reports flutter speeds very close to the computed
ones, square marks in Fig. 3.1. The results of the present model are also
found to be in good agreement with the ones obtained by Gaunaa’s [10]
reimplementation of the same method described in Theodorsen and Garrick’s
report.

The model and its implementation are hence validated. Besides that,
it is also observed that the streamwise degree of freedom x, included in
the present model and not in Zeiler and Gaunaa’s computations, does not
modify the stability limits computed in this case.

3.1.2 Flutter limits sensitivity

The same airfoil section specified in the validation case (Table 3.1) is now
used to asses the sensitivity of the computed flutter limits to variations in the
structural inputs and also to determine how different approximation in the

Risø-R-1663(EN) 28



3. Undeformable airfoil. Results and discussion

Figure 3.1: Reduced flutter speed limits and divergence limits vs. heave-torsion fre-
quency ratio for the validation case section. Validation of the model by comparison
with Theodorsen’s results and Zeiler’s correction.
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aerodynamic model may affect the result. Since the sensitivity to structural
inputs is a rather classic issue and is well represented in literature [7, 22], the
actual section focuses more on the aerodynamic model influence and only
summarizes the effects of structural parameters, referring to Appendix B for
a more detailed presentation.

Sensitivity to structural parameters

The effects of the dimensionless parameters that describe the structure are
investigated by varying only a single parameter per time, for instance, if the
mass ratio is increased, the natural frequencies are constant, and hence the
springs stiffness need to be raised. This approach, even though difficult to
actuate in practice, is the same followed by Theodorsen and Garrick [22],
since it allows to isolate the effects of each parameter.

Flutter curves are computed in the investigated frequency range for dif-
ferent elastic axis position, mass density ratio, radius of gyration and struc-
tural damping ratios; plots are reported in Appendix B.

It is observed that, in the range of low heave-torsion frequency ratios,
which is the one of more interest for wind turbine blades, the flutter speed
depends on the position of the section centre of gravity εcg and not on the
elastic axis location εea. As well as that, structural damping has no effect on
the stability limits for low heave frequencies, the flutter speed of the blade
section is in fact nearly not varied even though strong structural damping
is introduced.

Sensitivity to aerodynamic model

The flutter limits reported in the previous plots are all computed using
the full unsteady formulation for the aerodynamic model, as described in
the previous chapter, section 2.2; Jones’ coefficients are employed in the
indicial function of lift. Now, different approximations and hypothesis in
the aerodynamic modelling are employed, and the sensitivity of the stability
limits to this variations is determined. Flutter speeds are computed for a
section with the same structural proprieties as defined in the validation case
(Table 3.1), the results are then plotted in Figure 3.2.

First, the effects of assuming a thin plate response are assessed, thus
the indicial function approximation is changed from the flat plate one (blue
curves) to the function tuned to match the response of the Risø B1-18 airfoil
(red lines), two (dashed lines) and three terms (full lines) approximations
are investigated; the values for the coefficients Ai and bi of the exponential
terms in the response function approximation, are reported in Table 2.1,
page 20.

A part from that, a common simplification in the aerodynamic modelling
is to assume a ‘quasi-steady’ response, and thus avoid the computation of
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the indicial function ϕ and set it to a constant unit value; the flutter limits
computed according to this hypothesis are represented by the green curves
in Figure 3.2. The stability curves reported with dotted lines are instead
obtained by neglecting the contribution of the added mass acceleration terms
(α̈ and ÿ) in the non circulatory lift, eq. (2.14), and moment, eq. (2.19).

Figure 3.2: Flutter limits for the section defined in the validation case, with xα = 0.2.
Sensitivity of the stability curves to approximations of the indicial response function:
flat plate (blue) and Risø B1-18 airfoil (red) response, 2 (dashed lines) and 3 (full
line) terms approximation. Quasi-steady response assumption (green): ϕ = 1.
Effects of neglecting acceleration terms in the non circulatory lift and moment
(dotted lines).

The stability limits computed by using a two terms approximation of
the indicial response function are slightly underestimated (nearly 1% at a
frequency ratio of 0.1) in the low frequencies range, for both the flat plate
and the non-flat airfoil case. Although, as the frequency ratio increases, the
stability limits for the flat plate are still similar for both the 2 and 3 terms
approximations, but in the case of airfoil with finite thickness, the 2 terms
approximation results in higher flutter speeds (non conservative).

The indicial response function of the flat plate yields to flutter limits
(blue lines in Fig.3.2) that are generally lower than the ones based on the
Risø B1-18 indicial function approximation (red lines). The flat plate flutter
velocity is, for instance, about 5% lower then the one predicted with a tick
airfoil response, at a frequency ratio of 0.1. Besides that, in the B1-18 case
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3.2. Airfoil section for basic reference case

a small region of instability is reported for high frequencies and low reduced
speeds (marked with thin black lines): the system is unstable for very low
wind speeds, but by increasing the speed it turns stable again until the
flutter limit is reached. A very low structural damping (ξ = 5 · 10−5) is
sufficient to cancel out the instability region.

The quasi-steady hypothesis (green line in fig.3.2) leads to a largely un-
derestimated flutter limit (nearly half), which, although conservative, may
negatively affect design choices. The acceleration terms contribution to the
non circulatory lift and moment is scarcely affecting the flutter limit for low
frequencies. Indeed, neglecting the acceleration terms in the higher range of
frequencies ratios (dotted lines) produces in all the cases non conservative
over estimations of the flutter limit. The contribution to non circulatory lift
and moment from the angular velocity terms Uα̇ is instead essential in the
whole range of frequencies. If it is neglected, the stability of the system is
strongly decreased and completely biased flutter limits are reported.

It can be thus concluded that an unsteady aerodynamic model is nec-
essary in stability simulations. It is also observed that a flat plate indi-
cial response approximation shows a slightly underestimated flutter speed
when compared to simulations based on the response of an airfoil with finite
thickness. Furthermore, for low frequency ratios, only small variations in
the curves derives from the number of terms used in the indicial function
approximation and also from the acceleration terms contribution to non cir-
culatory forces.

In case of airfoil section with structural characteristics different from the
investigated ones, the conclusions may be not directly apply from a quanti-
tative point of view, but, still, the same qualitative trends are expected.

3.2 Airfoil section for basic reference case

The validated stability tool is now employed to investigate the stability for
the same airfoil section that has been considered in the previous 2D studies
[8], where the load reduction potential of the flap equipped section was
investigated. The section that is adopted as basic reference case, in fact, has
the same structural characteristics specified in Buhl [8] and can be described
by the dimensionless parameters given in Table 3.2. The airfoil has a Risø
B1-18 profile, hence, the response function in the aerodynamic model is
based on a three terms approximation, and the coefficients computed by
Gaunaa [8] for the same profile are applied, their values are here reported in
Table 2.1. The camber of the profile is initially neglected and only afterwards
introduced to determine the effects in relation to the streamwise degree of
freedom.

The analysis returns the stability limits for the same section that in the
following part, as in the previous studies, will be equipped with the trailing
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Parameter Symbol Value Unit
Chord Length 2bhc 1 m
Distance Elastic Axis–LE 0.3 m
Distance Center Gravity–LE 0.35 m
Total Mass mtot 40 kg/m
Moment of Inertia wrt CG Icg 2 kgm2

Heave natural frq. ωy/(2π) 1 Hz
Torsion natural frq. ωα/(2π) 10 Hz
Stream wise natural frq. ωx/(2π) 2 Hz

Dimensionless parameters
Elastic Axis position εea −0.4 –
Distance CG-EA Xα 0.1 –
Radius of Gyration squared r2 0.2 –
Density Ratio mtot/(πρbhc) 41.58 –
Heave-Torsion frq. ratio ωy/ωα 0.1 –
Stream-Torsion frq. ratio ωx/ωα 0.2 –

Table 3.2: Structural characteristics and dimensionless parameters for the airfoil section
used as basic reference computational case. The structural proprieties are the same
as in Buhl et al. [8].

edge flap; the results represent hence a term of comparison that will be
useful in the later investigation of the effects of the elastic and controlled
flap on stability.

Furthermore, the same reference section is also used to determine how
the presence of the streamwise x degree of freedom in the model affects the
computed stability limits. In case of small influence, would be in fact con-
venient to neglect the movement of the section in the streamwise direction,
and simplify thus the aerodynamic model to linear expressions.

3.2.1 Flutter limits

In the investigation that follows, the camber of the airfoil is neglected, that
is to say that for zero angle of attack the aerodynamic forces are null, hence,
the equilibrium state that is used to linearise the system is characterized by
a zero pitch angle α0,sts = 0. Nevertheless, the same results can be extended
also to the cambered profile case, since, as presented in the following section,
neglecting the airfoil camber does not affect the stability limits, whenever a
realistic structural damping in the streamwise x direction is considered.

The heave-torsion frequency ratio of the reference case section, is fixed
and is rather small, the flutter limits are hence depending on the position of
the centre of gravity and not of the elastic axis; furthermore, since the mass
density ratio is rather high, the case is in the range of validity of Theodorsen’s
empirical equation for the flutter speed (2.36). It is thus chosen to compute
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3.2. Airfoil section for basic reference case

and plot the flutter speed for different centre of gravity positions, the posi-
tion corresponding to the basic reference case (εcg = 0.3) is then highlighted
by a vertical dashed black line (Fig.3.3). The flutter speeds obtained with
flat plate indicial function approximation, quasi-steady assumption, and ne-
glecting the acceleration terms are also reported.

Aerodyn. Model B1-18 Flat Plate Quasi-steady No Acc. Emp.Eq.
Flutter Vel.[m/s] 142.2 139.6 111.2 144.3 146.7

Table 3.3: Predicted Flutter velocities with the different aerodynamic model approxima-
tions. Reference conditions: ωy/ωα = 0.2, εcg = −0.3.

Figure 3.3: Flutter and divergence limits for the airfoil section of the basic reference
case, at the vertical dashed black line. The reduced flutter speed is computed for
different centre of gravity positions while the torsional stiffness is constant, thus,
the torsional frequency varies. Indicial response approximations for Risø B1-18,
flat plate and quasi-steady response. Limits computed with Theodorsen’s empirical
equations are also plotted (black line).

The flutter speed of the undeformable reference section is 142.2 m/s and
the empirical equation in spite of its simplicity returns, in this particular
case, flutter limits relatively close to the one computed by the stability tool,
the overestimation is only about 5 % (Table 3.3).

Besides, as also observed in the section used for validation, the limit
computed with a flat plate response is slightly underestimated (nearly 1.8%),
while the quasi-steady response assumption (green line in Fig.3.3) would
yield to a much lower flutter speed, 22% less in this case. The effect of
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neglecting the acceleration terms in the non circulatory forces and moment
(dotted lines) is again a small overestimation (0.7%) in the flutter speed
(Table 3.3).

It can be then generally observed that the sensitivity to the aerodynamic
model for the actual reference airfoil section is lower than the one reported
in the previous validation case, probably due to an higher density ratio,
nevertheless, still the same qualitative trends are observed.

3.2.2 Influence of the streamwise dof

The streamwise x degree of freedom (dof) seems to have a scarce influence
on the stability of the airfoil section, and, at the same time, introduces non
linearities in the aerodynamic model. It is thus interesting to investigate
in which conditions the movement in the streamwise direction could be ne-
glected so to obtain a simpler formulation, without affecting the accuracy of
the computed stability limits.

Influence for non-cambered airfoil

A non-cambered airfoil is symmetric and has no lift or pitching moment
acting on it when the angle of attack is zero; consequently, one equilibrium
state corresponds to a null pitch angle, and this condition is applied in the
steady state with respect to which the system is linearised: α0,sts = 0. A flat
plate can be considered as a particular kind of non-cambered airfoil, and, in
the stability computations carried out for the validation section (see 3.1.1),
it is observed that the streamwise degree of freedom, included in the actual
model but not in the ones used as reference, does not modifies the stability
limits.

The analysis in the reference section case yields to the same conclusion:
if the camber of the profile is neglected, the flutter limits are not affected
by the streamwise degree of freedom. Furthermore, it is also observed that
the mode related to this degree of freedom does not influence the dynamic
of the other modes involved in the system.

In fact, by plotting the modal frequencies as function of the wind speed
for the reference case structure (Fig. 3.4), it is observed that the mode
related to the x dof maintains a constant frequency, which is equal to the
uncoupled natural one, in all the range of wind speeds. On the contrary,
the other two modes show the ‘classic flutter’ trend: they start from a value
close to the respective natural frequencies, then, as the wind speed increases
they show coupling effects and the frequencies get closer, up to a point just
before the flutter limit; the flow speed at which flutter occur is marked by
the vertical dashed line, Figure 3.4.

Similar behaviour is observed in the modal damping (Fig.3.5): once again
the value for the second mode, related to the x dof, is constant in all the
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3.2. Airfoil section for basic reference case

Figure 3.4: Modal frequencies vs. wind speed. Reference case structure, Risø B1-18
indicial response function, neglected camber. Flutter limit: 142.2 m/s, marked
by dash-and-dot black line. The streamwise x degree of freedom do not show any
coupling effects and influence on the other modes.
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range. The third mode, which at zero wind speed is related to the heave
dof, is the one responsible for flutter, in fact, at a wind speed of 142.2
m/s it turns unstable. A further comment on the same plot concerns the
‘static modes’, which are represented by the black full lines. One of them
turn unstable at a wind speed of 207 m/s, and this corresponds to the
divergence limit; also, the static modes have a null frequency parameter, so
the definition of logarithmic damping does not apply, hence, the reported
figures are simply the opposites of the eigenvalues real parts, that is to say
that a unitary frequency is arbitrarily assigned to the static modes only for
plotting purposes.

Figure 3.5: Modal damping vs. wind speed. Reference case structure, Risø B1-18 indi-
cial response function, neglected camber. The streamwise x degree of freedom do
not show any coupling effects and influence on the other modes. Flutter is given by
the mode related to the heave degree of freedom (red line), that turns unstable at
a wind speed of 142.2 m/s, dash-and-dot black line.

Finally, it can be concluded that, in case of non-cambered airfoil, the
streamwise degree of freedom do not influence the dynamic of the other
modes and hence it does not have any consequences on the stability limits.
A confirm is also given by the analysis of the mode shapes, in fact, the mode
with frequency corresponding to the x one (green lines in Fig.3.4 and 3.5)
presents a modal shape with contribution from only the x dof, which is then
null and constant in all the other modal shapes.
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3.2. Airfoil section for basic reference case

Influence for cambered airfoil

The camber of the airfoil profile is now taken into consideration and static
coefficients different from zero are assigned to lift, drag and moment. The
reference case is again given by a Risø B1-18 airfoil and the coefficients are
retrieved from the airfoil static curves at zero angle of attack, Table 3.4;
the same values are here maintained also when the system is linearized at a
different pitch-torsion angle.

Parameter Symbol Value
Angle of Null Lift αlift,0 -3.512
Lift Curve lin.coeff. ∂Cl/∂α 2π
Drag Coeff. at 0o Cd0 0.0074
Drag Curve lin.coeff. ∂Cd/∂α 0
Moment Coeff. at 0o Cm0 -0.112
Moment Curve lin.coeff. ∂Cd/∂α 0

Table 3.4: Static aerodynamic coefficients for the cambered profile. From the static
curves of Risø B1-18 airfoil. The linear coefficients are all computed at 0o angle of
attack.

For non-cambered airfoils it is shown in the previous section that the
streamwise degree of freedom x and the corresponding mode are not affecting
the stability of the system. In the cambered profile case, instead, the mode
related to the x dof may become unstable and cause flutter for wind speeds
that are below the limits previously computed; the flutter speed is hence now
depending also on the x natural frequency, Figure 3.6. The mode related
to the streamwise degree of freedom also shows stability regions: at certain
frequency ratios, it turns unstable (dotted lines), but then at higher flow
speeds it becomes stable again (circled line), so the system is also stable
until flutter occurs in the other modes (black line). It is then observed that
the mode related to the x dof, when unstable, has a modal damping that,
although negative, is rather small. As a consequence, by applying a minor
structural damping (0.5 ∼ 1% logarithmic damping) in the streamwise dof,
the mode is ensured stability.

The wind speed at which the other modes turn unstable is still equal
to the non-cambered case, and is not influenced either by the streamwise
frequency, either by the camber characteristics (Fig. 3.6).

In a non-cambered airfoil the stability limits are not depending on the
steady state pitch angle α0,sts, with respect to which the system is linearized;
but this is not the case when static coefficients different from zero are used to
model the profile camber. In fact, the wind speed at which the mode related
to the streamwise degree of freedom turns unstable, varies depending on the
assigned steady state angle. Figure 3.7 reports the flutter speed as function
of the steady state angle, again, a small structural damping suppresses the
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Figure 3.6: Flutter speed vs. streamwise-torsion frequency ratio, Risø B1-18 response
and camber characteristics, null steady state pitch angle, reference case structural
proprieties. The mode related to the streamwise degree of freedom can cause insta-
bilities at lower wind speed than the other modes, but a small structural damping
in the x dof is sufficient to suppress this instability. The wind speed at which one
of the other modes turns unstable (black line) is not influenced either by the x
frequency, either by the camber characteristics.
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3.2. Airfoil section for basic reference case

instability related to the x degree of freedom, and the stability limit reported
for the other modes is not depending on the angle of pitch used to linearise
the system.

Figure 3.7: Flutter speed vs. steady state pitch angle α0,sts, Risø B1-18 response and
camber characteristics, reference case structural proprieties. The mode related to
the streamwise degree of freedom can cause instabilities at lower wind speed than
the other modes, and the flutter speed depends on the steady state angle used to
linearized the system. Again a small structural damping in the x dof is sufficient
to suppress this instability. The wind speed at which one of the other modes turns
unstable (black line) is not influenced by the steady state angle.

It can be hence concluded that, in a stability analysis, the movement
of the section in the streamwise direction can be neglected in case of non-
cambered airfoil profiles. Besides that, the same assumption can be also
extended to cambered profile, where the effects of the streamwise degree
of freedom on the stability limits are still negligible if a realistic structural
damping applies in the same degree of freedom. Furthermore, it is also
observed that, once the movements of the section in the streamwise direction
are disregarded in the model, the stability limits are not any more depending
either on the camber proprieties either on the steady state angle that is used
to linearise the system.
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Chapter 4

Undeformable airfoil.
Summary of findings

A model to determine the aeroelastic stability of a 2D undeformable airfoil
section is implemented, and is then validated by solving Theodorsen and
Garrick’s [22] problem for flexure-torsion flutter of a 2D wing section. The
obtained stability curves are in good agreement with the results reported
by more recent solutions of the same problem [26], whereas the original
figures from Theodorsen and Garrick are found to be biased, probably due to
errors related to the scarce computational power available at that time. The
stability limits computed with the implemented eigenvalue linear approach
are also in good agreement with the ones found by applying a non linear
time marching solution.

Two different kind of airfoil sections have been investigated for stability,
the first one describes a flat plate, which is also used in the validation case,
while the second one consists in the same airfoil section on which the flap
control will be afterwards applied. The numerical results are found to be
very depending on the structural proprieties of the particular section, but
some qualitative conclusions, presented in the following lines, can probably
hold for a wider range of cases.

In both cases is in fact observed that the vorticity shed into the wake has
a stabilizing effect that can not be neglected; the quasi-steady approxima-
tion of the indicial function of lift to unit is hence not applicable in stability
analysis, since it would yield to greatly underestimated flutter limits. Fur-
thermore, flutter limits different from the flat plate ones are obtained if the
indicial function is tuned so to match the response of an airfoil with finite
thickness. In this case, flutter would occur at slightly higher flow speeds,
even though, in the investigated cases, the differences are rather small (less
than 5 %). Concerning instead the non circulatory aerodynamic forces, the
acceleration terms (α̈ and ÿ) contributions are found to have scarce influ-
ence, on the contrary, the stabilizing effect introduced by the pitch ratio
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term Uα̇ is of major importance.
The streamwise degree of freedom x is found to have no influence on the

stability limits computed for non-cambered profiles, furthermore, even when
the camber is taken into consideration, the effects are small and becomes
negligible if a realistic structural damping is applied to that degree of free-
dom. Neglecting movements of the airfoil in the streamwise direction can be
hence considered a valid assumption in this stability analysis, yielding thus
a simplified linear formulation in the aerodynamic model.

To conclude, the analysis of the undeformable airfoil section produces
a convenient background for the following investigation of the deformable
trailing edge case, both in means of numerical results to use as comparison,
and as background for the approximation of negligible movements in the
streamwise degree of freedom.
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Part II

Flap equipped airfoil
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Chapter 5

Model and method

In this second part of the work, a trailing edge flap is applied on the 2D
airfoil section. The flap allows to rapidly modify the aerodynamic forces
acting on the airfoil, and it can be controlled so to reduce the blade fatigue
loads [4, 8]. The focus of the current investigation is to assess how the
presence of the controlled flap may affect the stability limits of the airfoil
section.

As mentioned in the introduction, the flap is not intended as a classic
plain flap that rigidly rotates around its hinge point, but, on the contrary, is
represented by a continuous and smooth deformation of the airfoil trailing
edge part, specified through a non linear deflection shape.

To asses the stability of the flap equipped airfoil an aero-servo-elastic
model is implemented. The model comprises structural (‘elastic’), aerody-
namic (‘aero’) and control (‘servo’) parts, all interacting and coupled among
them. The structural behaviour is described by three equations of motion,
one for each degree of freedom (dof) of the structure. The first degree of
freedom is simply a rigid translation in the heave direction, while the second
is a rigid body rotation around the elastic axes that gives the airfoil angle of
pitch. The deformation of the airfoil aft part induced by the flap deflection
is represented by the third degree of freedom, using a mode shape added to
the camberline. The movements in the streamwise direction are neglected,
since, as concluded in the undeformable airfoil analysis, their influence on
stability is of scarce importance.

The aerodynamic part determines the forces that originates from the in-
teraction of the airfoil with the flow, Gaunaa’s [9] potential flow model for
the aerodynamic forces on a thin airfoil undergoing arbitrary motion and
deformation is employed. Concerning the control part, the actuator is mod-
elled as an extra elastic term in the flap equation of motion, and the desired
flap deflection is determined according to different control algorithms.

An eigenvalue approach is then used to investigate the stability of the
system, and, since the equations are now linear in the system state variables,
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the analysis applies directly to the full aeroservoelastic system of equations,
represented in a state-space matrix formulation. The same system is then
also solved with a time marching integration, so to verify the results obtained
in the eigen-analysis. A further validation of the model for the uncontrolled
elastic flap is obtained by comparison with analogous cases reported in lit-
erature.

In the following sections each part of the model is presented, while the
numerical results are reported and discussed in the following chapter.

5.1 Structural model

5.1.1 Reference system

The local reference system is the same described in the rigid undeformable
airfoil case (section 2.1.1) it extends along the chord and is normalized with
respect to half chord length bhc, thus its dimensionless coordinates ε ranges
from −1 at the leading edge to +1 at the trailing edge. The deformable part
of the airfoil extends from a point that, in analogy to the ‘classic’ plain flap
case, is referred to as hinge point and has the dimensionless coordinate εhpfl .
As in the previous studies [8], the flap length is 10% of the chord, the hinge
is hence located in the point εhpfl = 0.8.

The motion and deflection of the flap equipped airfoil are described by
three degrees of freedom (Figure 5.1): y for the rigid body translation in
the heave direction, α for the rigid rotation that describes the airfoil pitch-
torsion and β to represent the flap deflection. As concluded in the rigid
undeformable airfoil analysis, chapter 4, the streamwise degree of freedom
x has a scarce influence on the stability of the system and is therefore ne-
glected in this investigation. The heave coordinate y is positive upwards,
and both the pitch α and flap β coordinates are considered positive in clock-
wise direction, resulting in positive motions when the airfoil pitches nose up
and the flap deflects downward.

The deflection of the trailing edge flap is described by means of a defor-
mation mode shape ufl, which defines the shape of the flap by describing
the position of the deformed airfoil camberline when a unit deflection coor-
dinate β is assumed. The mode shape is thus only function of the chordwise
position ε. In this investigations, as in Buhl et al. [8], the flap extends for a
length of 10 % of the chord and its mode shape is the one that Troldborg’s
[24] CFD investigations returns as optimal.

The deflection shape ufl (blue line in Figure 5.2) is curved, giving a
smooth trailing edge deformation, which yields to better aerodynamic per-
formances when compared to a ‘classic’ rigid and linear flap. The mode
shape is then scaled so that the coordinate β corresponds, for small deflec-
tion, to the angle between the undeformed camberline and the line connect-
ing the deformed trailing edge position to the hinge point (red line in Figure
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Figure 5.1: Global reference system used to define the airfoil motion. Degrees of freedom:
heaving y positive upwards, pitching α positive nose up, flap deflection β positive
flap downwards.

5.2), a unit value of the β coordinate corresponds to an angle of 1 degree.

5.1.2 Equations of motion

The equations of motion for rigid body translation in the heave coordinate
and rotation are similar to the ones used in the undeformable airfoil model,
section 2.1.3, with the addition of the inertial terms linked to the flap de-
flection. In the assumption of small pitch angle α, using the same notation
as Gaunaa’s [9], they read:

mtotÿ − Sαα̈+ bhcInsfl β̈ + cyẏ + kyy = Laed, (5.1)

− Sαÿ + Ieaα̈+ (εeab2hcInsfl − b2hcImsfl) β̈ + cαα̇+ kαα = Maed. (5.2)

Where most of the terms are the same as defined in the undeformable airfoil
part, with the exception of Insfl and Imsfl, which give the inertial couplings
of the flap deflection. The two terms describe in fact the virtual work done
by the inertial forces generated by unit acceleration in, respectively, the
heave and the pitch degrees of freedom; the displacement for the virtual
work is given by the deflection mode shape. The terms are hence computed
as chordwise integral functions of the deflection shape ufl, the unit-span
mass distribution ρ2D and the chord dimensionless coordinate ε [9]:

Insfl =
∫ 1

−1
ufl ρ

2D dε, (5.3)

Imsfl =
∫ 1

−1
ufl ρ

2D ε dε. (5.4)
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Figure 5.2: Flap Deflection mode shape ufl. The trailing edge deformation is smooth,
β = 1 results in 1◦ angle between the trailing edge-hinge point line and the unde-
formed camberline. The plot shows camberline deflection corresponding to β = 5◦.

Since they are constant, as far as the deflection mode shape or the mass
distribution are not modified, they can be computed only once before the
simulation and stored.

The deformation induced by the flap is modelled by using the pre-
assigned deflection mode shape, and the respective equation of motion is thus
defined following a generalized coordinates approach, according to which
the equilibrium between inertial, elastic, damping and aerodynamic forces
is found in terms of virtual works, where the displacement is given by the
deflection mode shape.

The action of the controller on the flap is instead modelled as an extra
elastic term in the equation of motion, so that the elastic force is propor-
tional to the difference between the flap actual deflection β and the deflection
required by the control actuator βctrl. In other words, if no external (aero-
dynamic) forces are acting on the flap, the controller elastic term modifies
the flap equilibrium position from no deflection to a deflection equal to βctrl.

Finally, the equation of motion for the elastic controlled flap, undergoing
inertial, damping and aerodynamic forces is:

bhcInsfl ÿ + (εeab2hcInsfl − b2hcImsfl) α̈+mmod β̈ + cfl β̇ + kfl (β−βctrl) = GFaed,
(5.5)

where, mmod is the modal mass of the flap deflection mode shape, and it is
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computed from the chordwise integral:

mmod =
∫ 1

−1
uflρ

2Dufl dε. (5.6)

The stiffness of the flap is given by the natural frequency ωfl of the deflec-
tion mode shape: kfl = mmod ω

2
fl; while the viscous damping coefficient is

computed as cfl = 2mmodωflξfl.
The effect of the aerodynamic forces on the flap is given in terms of

the generalized force GFaed, which corresponds to the virtual work done
by a force originated from the pressure difference between the suction and
pressure sides of the airfoil, displaced according to the deflection shape,
everything integrated along the chord:

GFaed =
∫ 1

−1
ufl∆P dε. (5.7)

The structural behaviour of the airfoil is now fully described by the three
second order differential equations of motion: equation (5.1) for the heave
degree of freedom, eq. (5.2) for the pitch and eq. (5.5) for the trailing edge
flap deformation. The terms related to the aerodynamic effects Laed, Maed,
GFaed and the control actuator βctrl will be defined in the following sections.

5.2 Aerodynamic model

The model used to describe the unsteady aerodynamic behaviour of the flap
equipped airfoil, developed by Gaunaa [9], allows to compute the aerody-
namic forces and their distribution for a 2D airfoil undergoing arbitrary
motion and deformation of the camberline. Furthermore, the model has a
linear state-space formulation that makes it computationally efficient and
suitable for stability analysis.

Two main assumptions underlie the formulation: thin airfoil and poten-
tial flow. The former assumption implies that the airfoil is represented by
its camberline, that is to say, that the thickness is neglected and the airfoil
position, motion and deformation are only given by the camberline points.
Furthermore, the validity of the model is limited to potential flow condition:
the airfoil interacts with an incompressible and inviscid fluid, and the flow
is fully attached. Flow separation and stall are not included in the model
and hence the validity range is restricted to small flap deflections and an-
gles of attack, which is anyway a realistic condition for an airfoil mounted
on a pitch regulated turbine. In addition, in the present investigation, the
airfoil camberline is assumed to move only in the heave direction since the
streamwise x degree of freedom is neglected.

Under this assumptions, the pressure difference between the suction and
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pressure sides of the airfoil is determined from the velocity potential field
and aerodynamic forces and pitching moment are then found by integrating
the pressure differences along the chord. The process involves integral of
functions of the deflection mode shape and its slope, the integrals are rather
complex but, since the deflection shape is not time dependent, they can be
computed once with numerical methods and then stored.

As in the undeformable airfoil case, section 2.2, the aerodynamic forces
can be split into a non-circulatory and a circulatory contribution. The non
circulatory forces depend on the added mass terms, and hence only on the
instantaneous motion of the airfoil. On the contrary, wake memory effects
are involved in the circulatory contributions, and they are modelled by the
term weff .

The term weff represents in fact an equivalent effective downwash speed
at the three-quarter chord that takes into account the time lag effects caused
by the vorticity shed into the wake. Similarly to the effective angle of at-
tack for the undeformable airfoil model (2.2.4), it is computed using an
indicial response function approximation; the expression for weff involves
the quasi-steady equivalent downwash speed w3/4 and a number nlag of ad-
ditional aerodynamic state variables, which are determined from nlag first
order differential equations added to the system.

The indicial response function, used in this part of the investigation, is
the three terms (nlag = 3) one, that is tuned to match the step response of
the Risø B1-18 airfoil (section 2.2.4), the corresponding numerical values for
the Ai and bi coefficients are given in Buhl et al. [8], and also reported here
in table 2.1, page 20.

A more detailed description of the aerodynamic model is given in Gau-
naa’s report [9], and, by adapting the model to the present investigation
case, the expressions for the unsteady lift force Laed, the pitching moment
Maed and the flap deflection generalized forces GFaed simplifies to:

Laed = ρb2hcπU0 α̇+ ρb2hc
1
π
U0Fdydx,LE β̇

− ρb2hcπ ÿ − ρb3hcπεea α̈+ ρb2hc
1
π
Fy,LE β̈

+ 2ρbhcπU0 weff , (5.8)

Maed = ρb2hcU
2
0

(
1
π
Fdydx,LE +

1
2
Hdydx

)
β

+ ρb3hcπU0(0.5− εea) α̇

+ ρb2hcU0

(
−bhc
π
Gdydx,LE +

bhc
π
εeaFdydx,LE +

1
π
Fy,LE +

1
2
Hy

)
β̇

− ρb3hcπεea ÿ − ρb4hcπ
(
1/8 + ε2

ea

)
α̈− ρb3hc

1
π

(Gy,LE − εeaFy,LE) β̈

+ 2ρb2hcπU0(0.5 + εea) weff , (5.9)
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GFaed = ρbhc
1
π
U2

0 (PI8 −HdydxPI7) β

+ ρb2hcU0(2PI1 − PI6) α̇+ ρbhc
1
π
U0(bhcPI3 −HyPI7 + PI9) β̇

− 2ρb2hcPI1 ÿ + ρb3hc(−2εeaPI1 + PI4) α̈+ ρb2hc
1
π
PI2 β̈

− 2ρbhcU0PI5 weff . (5.10)

Where the PIn, F..., f..., G..., H... terms are the integrals of the deflection
mode shape functions that have been computed in numerical way and stored,
their expressions are also given in [9].

The effective equivalent downwash speed weff that takes into account
the unsteady wake effects is computed using an indicial response function
approximation (section 2.2.4), and in case of a three terms approximation,
it reads

weff = w3/4(1−A1 −A2 −A3) + z1 + z2 + z3. (5.11)

Where w3/4 is the quasi-steady equivalent downwash speed at the three
quarter chord point,

w3/4 = U0 α−
1

2π
U0Hdydx β

− ẏ + bhc(0.5− εea) α̇−
1

2π
Hy β̇. (5.12)

The zi terms are additional aerodynamic state variables that represent
the time lag effects of the vorticity shed in to the wake (section 2.2.4), and
they are obtained from three first order differential equations, which are
added to the system:

żi = − 1
bhc

U0bi zi +
1
bhc

U0biAi w3/4. (5.13)

The Ai and bi terms in equations (5.11) and (5.13) are the coefficients
that defines the indicial response function and for the considered case of the
Risø B1-18 airfoil profile.

The aerodynamic model determines also the pressure difference between
suction and pressure sides of the airfoil for a specified point εp along the
chord, the difference is then used as input for one of the flap control algo-
rithms.
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The pressure difference in an arbitrary point εp is determined as

∆P (εp) = −ρ 1
π
U2

0

 εp√
1− ε2

p

Hdydx − ∂fdydx,εp

 β

+ ρbhcU0

2
√

1− ε2
p +

(2εp + 1)(1− εp)√
1− ε2

p

 α̇

+ ρ
1
π
U0

bhcfdydx,εp − εp√
1− ε2

p

Hy + ∂fy,εp

 β̇

− 2ρbhc
√

1− ε2
p ÿ + ρb2hc

√
1− ε2

p (−2εea + εp) α̈+ ρbhc
1
π
fy,εp β̈

− 2ρU0
εp − 1√
1− ε2

p

weff . (5.14)

where the integral functions f...,εp are also evaluated in the point of interest
εp; their expressions are given in Gaunaa [9].

The aerodynamic model yields to a set of expressions that are all linear
in the system state variables it is thus possible to cast the equations of
motion, coupled with the aerodynamic expressions, in a linear state-space
formulation.

5.3 Control system model

The control system can be described as a logic block, where the input is
a set of measurements that describe the state of the aeroelastic system.
The output of the control system is an angle βctrl (Figure 5.3) that, by
changing the deflection of the flap actuator, modifies the condition of the
same aeroelastic system, so that a different state is reached, resulting in new
measurements and thus a new control output, and so on.

The full control system block can be then ideally split in two smaller
operation blocks (Figure 5.3), the first one contains the control algorithm,
the second, the time lag part. The control algorithm is a function that
relates the inputs from the aeroelastic system to the deflection angle βset
that is expected to produce the desired changes in the system. Whereas, the
second block describes all the time lag that may affect the control system,
from the acquisition of the sensor inputs to the elaboration of the output. In
mathematical terms, the time lag corresponds to a function that transforms
the desired βset to the deflection angle βctrl that actually controls the flap
actuator.
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Figure 5.3: Control system logic ‘blocks’. The input to the control system is a set of
variables describing the state of the aeroelastic system. The input is first processed
by the control algorithm block that returns the desired flap deflection βset, the
second time lag block models the delay in the control. The control system output
is the deflection angle βctrl, that actuates the flap in the aeroelastic system.

5.3.1 Control algorithms

In the previous studies, two controls algorithms were found to be particu-
larly effective in achieving good level of load reduction [8]. The first one is
a proportional differential control, based on measurements of the heave dis-
placement y and its time derivative ẏ, while the second one is proportional
to the local angle of attack α. Both controls are implemented in the current
model and their gain values, at basic reference conditions, are equal to the
ones that in Buhl [8] return the higher load alleviation, for a turbulent wind
flow with a total relative speed close to 60 m/s.

In addition, a third control strategy is introduced, and it employs as
input measurements of the pressure difference between the suction and the
pressure side of the airfoil. Two different location for the pressure tap sensors
are investigated, and control gains are assigned with a simple Ziegler-Nichols’
tuning.

Heave displacement control algorithm

The y control algorithm describes a proportional differential control and, as
in [8], the relation between the measured input and the angle output, can
be expressed by the function,

βset = Ayy +Byẏ −AyyI . (5.15)

The terms Ay and By are, respectively, the proportional and differential gain
parameters, in the baseline reference case they have the values, reported in
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table 5.1, that in Buhl et al. [8] return the highest load alleviation.
The term yI is the heave displacement running mean, computed by inte-

gration over a ∆T window. Since the current analysis is focused on stability,
the variations of the aeroelastic state can be assumed to be fast and, thus,
on a much smaller time scale than the amplitude ∆T of the integration win-
dow. As a consequence, the integral terms can be considered constant, and
thus neglected in stability analysis. The function that expresses the control
algorithm is hence linear in y and ẏ.

Angle of attack control algorithm

The control algorithm based on measurement of the local angle of attack is
implemented by considering that, in steady state condition, the flap deflec-
tion should compensate for changes in the angle of attack, so to maintain
constant the lift coefficient CL. In fact, in steady condition, for inviscid
incompressible flow, the variations on the lift depends only on the angle of
attack α and the flap deflection β, Eq.(5.8), the variations in the dimension-
less steady lift coefficient CL, can be hence computed as

∆CL = 2π · α−Hdydx · β. (5.16)

Where, 2π is the linear static lift coefficient for a flat plate ∂CL
∂α . Similarly,

the term −Hdydx is the analogous slope for the static lift curve versus flap
deflection, ∂CL

∂β and is given by integrals of the deflection shape along the
section chord, as presented in [9].

The output of the control algorithm is then the flap deflection that com-
pensates for the measured variation in the angle of attack, yielding to

βset = Aα
2π

Hdydx
α−Aα

2π
Hdydx

αI +AαβI . (5.17)

As already mentioned, all the integral terms, denoted by the subscript I ,
are assumed to be constant, the equation is hence a linear function of the
angle of attack, here equal to the torsional pitch angle α. The control gain
factor Aα, in the baseline reference case is equal to one (Table 5.1), so to
completely compensate for the variations in the steady case.

Pressure difference control algorithm

The main interest in investigating a controller based on measurements of the
pressure difference between the sides of the airfoil, lies in the fact that this
kind of system would be able to operate with more simple sensor set-ups. In
fact, the input to the controller can be provided by pressure taps embedded
in the airfoil, without requiring more complex devices as leading edge Pitot’s
tubes for the angle of attack or optical measurements to assess the heave
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displacement.

To reduce the lift fluctuations, the control strategy consists in operating
the flap so to maintain a constant pressure difference in the measurement
point. In analogy to the α control, the algorithm is developed assuming a
steady state aerodynamic, in fact, in this condition, the equation for the
pressure difference along the airfoil (5.14) reduces to a more simple function
of the angle of attack α, the deflection angle β, the dimensionless chord posi-
tion ε and the wind speed U0. The pressure difference can be then normalized
by the flow dynamic pressure, yielding to the dimensionless coefficient CP ,
which, in steady condition, can be expressed as a linear combination of α
and β, and the terms ∂CP

∂α
∂CP
∂β , which are both non linear functions of the

chordwise position ε:

CP =
∆P

0.5ρU2
0

=

=
∂CP
∂α

∣∣∣∣
ε

· α+
∂CP
∂β

∣∣∣∣
ε

· β =

= −4
ε− 1√
1− ε2

· α+
2
π

(
∂fdydx −

Hdydx√
1− ε2

)
· β. (5.18)

The term ∂fdydx is also function of ε and represents a derivative along the
chord of an integral function of the deflection shape, as in Gaunaa [9].

The control algorithm is then obtained by imposing the condition that
the flap deflection compensates the unbalance between the actual pressure
difference ∆P and the desired equilibrium one ∆P eq, resulting in the equa-
tion

∆P −∆P eq

0.5ρU2
0

= −A∆p
∂CP
∂β

∣∣∣∣
ε

(βset − βeq) =⇒

βset = −A∆p
1

∂CP /∂β · (0.5ρU2
0 )
·∆P + (. . .)eq. (5.19)

As in the previous algorithms, all the terms that refer to an equilibrium
state (. . .)eq are computed by moving mean integrals, and, within the as-
sumption of fast variations compared to the integration window, they can
be considered constant, and hence without any effect on the stability. As a
consequence, since the pressure difference (5.14) is a linear function of the
aeroelastic state variables, the control algorithm is also linear.

A part from that, the pressure difference measured by the sensors is nor-
malized with respect to the dynamic pressure, consequently, also the wind
speed U0 should be known, and it can be considered as a factor that vari-
ates the control gain. An additional gain factor A∆P is also introduced to
better tune the response of the algorithm, and, as described in the follow-
ing paragraph, its value is assigned by applying a simple Ziegler-Nichols’
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method.
The control tries to reduce the fluctuations in the pressure difference

measured at one specific point, the relation that links the static pressure
difference to the static lift force is then different depending on where, along
the chord, the measurements are taken. In the actual investigation, two
points are taken into consideration as possible locations for the pressure
taps and a different pressure control algorithm is defined in each of the two
points.

The first point εcnst is characterized by the fact that, in steady condi-
tions, the ratio between lift coefficients CL and pressure coefficient CP εcnst
is constant for every angle of attack α and flap β, when evaluated in this
point. For the considered airfoil section and flap deformation shape, the
point is located near to the half chord εcnst = −0.029, Appendix C reports
the steady state investigation that justifies the point specific location.

The second point (ε10%) is located at 10% chord distance from the lead-
ing edge and its position is simply the results of a trial and error procedure.
In fact, the unsteady pressure distribution is investigated for the airfoil un-
dergoing assigned oscillations, it is thus found that the ratio between the
unsteady lift and the pressure coefficient measured in proximity of the 10%
point, even though not constant, shows less violent oscillations than in other
locations. Consequently, while the εcnst position appears as optimal accord-
ing to a static analysis, the ε10% location actually seems more convenient
when dynamic effects are taken into account.1

Ziegler-Nichols tuning The gain factors used in the y and α control al-
gorithms are the ones that, in Buhl et al. [8], corresponds to an optimal load
alleviation efficiency. In the case of the pressure control, at the time writing
an optimal gain for load reduction is not yet available, and the gain fac-
tors are hence tuned with a simple Ziegler-Nichols method for proportional
controller [20].

The method is implemented by using a time marching solution of the
aero-servo-elastic system, the structure of the airfoil is the baseline reference
one, as it will be defined in the following chapter (Table 6.2, page 64), and
the flow speed is set to 60 m/s, in analogy with [8]. Simulations are carried
out for each of the two pressure control algorithms, the gain factor A∆P are
progressively increased until they reach their critical values Acr for which
the system starts to be unstable. The obtained critical gain factors are:
0.26 for pressure taps located at ε10%, and 1.12 for εcnst. According to
the Ziegler-Nichols method, the gain assigned to the control algorithm are
half the critical ones, yielding, in the two cases, to A∆P ε10% = 0.13 and

1The load alleviation potential achievable by controlling the flap with pressure differ-
ence measurements is a very recent issue, which requires deeper investigation. A study in
this sense is currently being carried out by Andersen [5].
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A∆P εcnst = 0.56. The gain factors corresponding to the baseline reference
case of each control algorithm are all collected in Table 5.1.

Type of Control Gain Symbol Gain factor
y, prop. term Ay -500
y, deriv. term By -25
α, prop. Aα 1
∆P , at ε10% Aε,10%

∆P 0.13
∆P , at εcnst Aε,cnst∆P 0.56

Table 5.1: Gain factors corresponding to the baseline reference case for each control
algorithm. The y and α gains corresponds to the highest load reduction in Buhl et
al. [8]. The ∆P gains are obtained by Ziegler-Nichols tuning.

5.3.2 Time lag

The time lag part of the control system models the delay that affects all
the control operation, from the sensors to the actuator. In fact, if time
delay is considered in the model and a step change occurs in the measured
states, the control output βctrl does not react immediately to the change,
but it lags behind the new value βset, corresponding to the new state, and
it converges to βset only as the time goes to infinity. In mathematical terms
the control delay is represented by a function that relates the output of the
control algorithm βset to the variable βctrl that controls the flap actuator.

In the ideal condition of a control system without any time lag, the
response of the control output to steps in the input is immediate, and hence
the delay function simply reduces to the equation

βctrl = βset. (5.20)

As a consequence, the linear expressions for βset defined for each control
algorithm (Section 5.3.1) can be directly substituted in the elastic term of
the flap equation of motion (5.5), resulting again in a linear combination of
aeroelastic state variables.

If the system is instead affected by control delay, the time lag is modelled
as a first order filter, as in Gaunaa [10], the delay function is then a first
order differential equation :

β̇ctrl =
ln(0.5)
t1/2

βctrl −
ln(0.5)
t1/2

βset, (5.21)

where t1/2, reaction half time, represents the control lag in terms of the
time required by the control output βctrl to reach half of its final value βset.
Besides, this formulation can not model the null time lag condition, since
that would cause equation (5.21) to become infinitely stiff.
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The time lag differential equation (5.21) is an extra equation added to
the aeroservoelastic system, and, as well as that, its variable βctrl is also
included in the vector of the system state variables and is then inserted in
the elastic term of the flap equation of motion (5.5). As in the case without
lag, βset is simply a linear combination of state variables as given by the
control algorithms, hence the time lag differential equation (5.21) is also
linear.

5.4 Aeroservoelastic system

As mentioned in the previous sections, all the equations describing the
aeroservoelastic system are linear in the system variables. The full set of
equation can be hence written in matrix form as

M∗ẍ∗ + C∗ẋ∗ + K∗x∗ = f0
∗, (5.22)

and, by introducing a variable substitution for the second order derivatives of
the structural variables, the set of equations can be then directly represented
in a linear state-space formulation as a first order matrix equation:

Mẋ = Ax+ f0. (5.23)

Where the vector x collects all the aerodynamic, control and structural vari-
ables; in a general case of three terms indicial response approximation and
controller with time lag, the system would involve 10 first order differential
equations: 3 for variable substitution, 3 equations of motion, 3 aerodynamic
state equations and 1 for the control time lag model; the system variables
vector could be hence organized as

x =
{
ẏ, α̇, β̇, y, α, β, z1, z2, z3, βctrl

}
. (5.24)

5.4.1 Time and frequency domain solutions

As in the rigid undeformable airfoil part (section 2.3.1), the system of equa-
tions is solved in the time domain by applying a numerical time marching
integration based on the ordinary differential equation solver ode45, in Mat-
lab. Initial conditions are assigned so to represent a steady state close to the
equilibrium one, and the resulting time histories for the system variables x(t)

indicate if the state of the system is stable or not, so to verify the solution
obtained with the eigenvalue approach.

The stability analysis is carried out also in the frequency domain, as
presented in the undeformable airfoil case, section 2.3.2. In this case, though,
the system of equations is already linear, the generalized eigenvalue problem
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can be hence formulated directly from eq.(5.23),

(A− λM) φ = 0. (5.25)

The resulting eigenvalues λ convey information about the frequency of the
system mode (Im(λ)) and their stability (Re(λ)), the analysis is then carried
out in the same way that was presented for the undeformable airfoil (Section
2.3.2).

5.5 Static aeroelasticity: control reversal

The presence of the trailing edge flap on an elastically supported airfoil may
give rise to a static aeroelastic phenomenon known as control reversal [7].
In fact, a deflection of the flap, for instance downward, originates not only a
change in lift, normally an increase, but also a nose down pitching moment
that decreases the angle of attack. The pitching moment increases with the
square of the wind speed while the counteracting elastic torque from the
spring of stiffness kα is constant. Thus, as the wind speed increases, the
gain in lift given by the flap downward deflection becomes lower due to the
simultaneous decrease in the angle of attack (loss of control efficiency). For a
flow speed equal to the reversal one, the flap has no effects on the lift, since
every variation would be counterbalanced by an equivalent change in the
angle of attack; if the wind speed is then higher, the flap effect is reversed :
a downward deflection now decreases the lift.

The control reversal is a static phenomenon that only depends on the
equilibrium between the flap and the structure pitching moments, the rever-
sal speed can be hence predicted analytically, as

URev =

√√√√ −∂CL
∂β kα

2ρb2hc(2π)∂CM∂β
. (5.26)

Where ∂CL/∂β is the change in the static lift coefficient due to a unit change
in the flap deflection coordinate β and ∂CM/∂β is the analogous change in
the static pitching moment. Their values can be computed from the lift (5.8)
and moment (5.9) equations, simplified by assuming steady state conditions:

∂CL
∂β

= −Hdydx,

∂CM
∂β

=
1

2π
Fdydx,LE +

1
4
Hdydx. (5.27)

For the basic reference airfoil section, with a curved 10% chord flap and a

Risø-R-1663(EN) 58



5. Model and method

torsional frequency of 10 Hz the reversal speed is found to be

URev = 95.5 m/s.
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Chapter 6

Flap equipped airfoil.
Results and discussion

A tool to investigate the aeroservoelastic stability of an airfoil section with
flap is implemented according to the model described in the previous chapter.
At first, the control part of the model is not considered and the tool is
validated by comparison with a reimplementation of the case presented by
Theodorsen and Garrick [22] for a three degrees of freedom flutter of a wing
section with aileron. The verification of the full controlled case is instead
carried out against time marching solutions.

The stability effects of the flap are then assessed for a baseline reference
airfoil section with the same structural proprieties considered in the previous
studies on the flap load alleviation potential [8]. Stability limits are first
investigated for an uncontrolled elastic flap in the baseline reference case,
and effects of different flap characteristics, as stiffness and mass distribution,
are assessed. Then the control algorithms are also applied and stability
limits for the same baseline airfoil section are computed, first without any
time delay in the control, and then considering also the control time lag.

6.1 Model validation

The model and its implementation are validated, for uncontrolled elastic flap,
against Gaunaa’s [10] reimplementation of the flutter problem presented by
Theodorsen and Garrick [22] for a three degrees of freedom (dof) system.
The system consists of a flat rigid plate that translates in the heave direction
(y dof) and rotates around the elastic axis (α dof), and of a flat rigid flap
that rotates around its hinge point (β dof). The flap is hinged to the aft
part of the plate and linear springs constrain the movements in all the three
degrees of freedom.

In order to model the flat flap rotation, the deflection mode shape is
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specified by a linear function of the chordwise position:

ufl =

{
−
(
ε− εhpfl

)
if ε > εhpfl ,

0 otherwise.
(6.1)

where, ε is the dimensionless chordwise coordinate and εhpfl is the coordinate

of the point where the flap is hinged. In the validation case εhpfl = 0.6, which
corresponds to a flap lenght of 20% of the chord.

The terms Imsfl (5.4), Insfl (5.3), and mmod (5.6), evaluated according
to the flat flap deformation shape (6.1), return relations that link the struc-
tural terms used in the actual model to the inputs that in Theodorsen’s
formulation specify the structural characteristics of the flap. The modal
mass is equal, in fact, to the second moment of area of the flap around its
hinge point:

mmod = Ifl,hp = mtotb
2
hc r

2
β, (6.2)

where r2
β refers to the notation used in Theodorsen and Garrick’s report

[22] and is a dimensionless parameter for the flap second moment of area,
normalized with respect to the total airfoil mass. The terms coupling the
flap rotation to the airfoil heave and pitch are instead computed as

Insfl = −mflap(ε
cg
fl − ε

hp
fl ) = −mtotXβ,

Imsfl = − 1
b2hc

(
Ifl,hp − Insflεhpfl bhc

)
. (6.3)

Where, εcgfl is the position of the centre of gravity of only the flap part,
measured from the half chord point; and Xβ is the respective dimensionless
parameter in Theodorsen’s notation. The inputs used in the validation case
are specified in Table 6.1.

Parameter Symbol Value
Elastic axis εea −0.4
Distance c.g. Xα 0.2
Rad.Gyrat. sq. r2 0.25
Density ratio mtot/(πρbhc) 4
Heave-Tor. ratio ωy/ωα 0.2
Flap Hinge pt. εhpfl 0.6
Flap Rad.Gyr. r2

fl 0.0012
Flap c.g.-Hinge dist. Xβ 0
Flap-Tor. ratio ωfl/ωα 0→ 2

Table 6.1: Dimensionless structural inputs for the validation computations. Flat rigid
flap and flat plate airfoil. Comparison with ‘three degrees of freedom’ flutter case in
Theodorsen and Garrick, Figure 8 in [22].
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Theodorsen and Garrick’s flutter computation refers to a flat plate airfoil,
the indicial response function used in the model is hence tuned accordingly.
Two approximations for the flat plate response are used, the first one is based
on the ‘classic’ two terms expansion by Jones, while the second one is a three
terms approximation by Gaunaa; the numerical values for the respective
exponential series coefficients are here reported in Table 2.1, section 2.2.4.

The flutter speed, normalized with respect to the half chord and the
torsional frequency, is computed for a range of flap-torsion frequency ratios
from zero up to two (Figure 6.1). The results obtained with the two and
three terms indicial function approximations are close to each other, but
far from the flutter limits reported by Theodorsen and Garrick (black line
with stars, in Figure 6.1). The cause, as in the undeformable airfoil part,
probably lies in a scarce numerical accuracy in the original computations.

In fact, a reimplementation by Gaunaa[10] of the same method described
in Theodorsen’s paper yields to flutter speeds (black lines with circles) in
very good agreement with the ones found with the actual model. It is also ob-
served that the three terms indicial function approximation (red line) seems
slightly more precise than the one based on Jones’s two terms coefficients
(blue line).

To conclude, the actual model of a suspended airfoil equipped with an
elastic not controlled flap is validated by comparing the results with Gau-
naa’s reimplementation of Theodorsen and Garrick’s method. The control
part is instead validated afterwards against the results obtained with time
marching simulations.

6.2 Baseline reference airfoil section

The structural proprieties of the airfoil section are the same used in the
previous investigations on the flap load reduction potential, as described in
Buhl et al. [8]. In order to define the structure, the characteristics of both
the airfoil section and the flap part should be specified.

The structure of the airfoil section is completely described by seven pa-
rameters, already introduced in the undeformable airfoil investigation (sec-
tion 3.2), their values in the baseline reference case match the ones from
Buhl [8], and they are here reported in Table 6.2.

The flap part of the structure is described by the natural frequency
associated to the deflection shape, which is five time the torsional one in the
baseline reference. But also, due to the generalized coordinates formulation,
the mass distribution per unit span (ρ2D in kg/m2) needs to be specified
along all the flap: in the baseline case, it decreases linearly from the hinge
point to the trailing edge, as reported in Figure 6.2, the same distribution
is adopted in Buhl et al. [8].

Furthermore, the baseline section corresponds to an airfoil with a Risø
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Figure 6.1: Model validation. Reduced flutter speed vs. flap-torsion frequency ratio.
Comparison with Theodorsen and Garrick’s method [22], original results (black
line with stars) and Gaunaa’s[10] reimplementation (black line with circles). Flat
rigid flap and flat plate airfoil, indicial response function approximations: 2 terms
Jones’ (dashed blue line) and 3 terms Gaunaa’s (full red line).
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Parameter Symbol Value Unit
Chord Length 2bhc 1 m
Distance Elastic Axis–LE 0.3 m
Distance Center Gravity–LE 0.35 m
Total Mass mtot 40 kg/m
Moment of Inertia wrt CG Icg 2 kgm2

Heave natural frq. ωy/(2π) 1 Hz
Torsion natural frq. ωα/(2π) 10 Hz

Flap Mass mflap 1.62 kg/m
Flap natural frq. ωflap/(2π) 50 Hz

Table 6.2: Structural characteristics and dimensionless parameters for airfoil and flap
system corresponding to baseline reference case, as in Buhl et al. [8].

Figure 6.2: Flap unit-span mass distribution, baseline reference. The unit span density
decreases linearly from 18.85 kg/m2 at the hinge point, to 14 kg/m2 at the trailing
edge. Total flap mass 1.62 kg/m.

B1-18 profile. Consequently, as in the latter cases of the undeformable airfoil
investigation (section 3.2), the indicial response function is approximated
with a three terms exponential series and the corresponding coefficients are
the ones computed by Gaunaa [8], and here reported in Table 2.1.

6.3 Uncontrolled flap

A stability analysis is first carried out for the baseline reference airfoil,
equipped with elastic flap and without any control applied. The flap is
now described by the assigned non linear deflection shape (section 5.1.1), it
deforms under the action of aerodynamic and inertial forces, and the con-
trol actuator term βctrl in the flap equation of motion (5.5) is constant and
equal to zero, the flap elastic reaction forces are hence null in the undeflected
position. Flutter curves are first computed for the baseline case and the sen-
sitivity to the number of integration points used to discretize the deflection
shape along the chord is assessed, afterwards, the effects of different flap
mass distributions are also investigated.
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The flutter limits are computed for a range of different flap stiffness and
plotted against flap-torsion frequency ratios (Figure 6.3), the stability limit
computed for the undeformable airfoil with the previous model (section 3.2)
is also reported (dash-dotted black line).

Figure 6.3: Flutter limit vs. flap-torsion frequency ratio. Baseline reference structure.
A reasonably stiff flap increases the flutter limit, a flutter speed of 159.2 m/s is
reported at the baseline reference frequency ratio, vertical starred black line. The
curve converges, for increasing flap stiffness, to the rigid undeformable airfoil flutter
velocity 142.2 m/s.

It is observed (Figure 6.3) that, by adding an elastic flap to the airfoil
section, the stability limits are modified and they vary depending on the
stiffness of the mounted flap. Generally, a twofold effect is obtained, if
the flap is sufficiently stiff, the stability limit is increased, compared to
the undeformable airfoil; for instance, in the baseline case frequency ratio
(ωflap/ωα = 5), the flutter speed increases nearly 12 %, from 142.2 m/s
in the undeformable airfoil case to 159.2 m/s. The flap stabilizing effect is
then reduced as its stiffness increases, and the flutter speed approaches, from
above, the undeformable airfoil stability limit of 142.2 m/s, which ideally
corresponds to an airfoil equipped with an infinitely stiff flap.

On the other hand, if the flap is too soft, even though the stabilizing
effect on the heaving and torsion modes is still present (red dashed line in
Figure 6.3), flutter is reported for wind speeds below the rigid airfoil one; in
this cases, is the mode related to the flap that causes the system to become
unstable.
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6.3.1 Sensitivity to number of integration points

The aerodynamic model contains coefficients given by integrals of functions
of the deflection shape along the airfoil chord. Since the integration is per-
formed in numerical way and the functions are generally not linear, the re-
sults depend on the number of point used to discretize the deflection shape
along the chord. It is observed that also the stability limits are sensitive to
the number of points used in the numerical integration (Figure 6.4).

Figure 6.4: Flutter limit vs. flap-torsion frequency ratio. Effects of the number of point
used to discretize the deflection shape for numerical integrations. In the actual case,
the results obtained with 2000 points is considered sufficiently accurate.

By increasing the number of evaluation points, the resulting stability
curves become closer and the difference among them converges to zero. In
the actual case, a sufficient accuracy is reached for a number of discretiza-
tion points equal or greater than 2000. If the number of points is too low,
overestimated flutter limit may be reported (dashed green line in Figure
6.4), it is also observed that the curves are more sensitive to the number
of integration points in that range of low frequencies ratios where the flap
mode is responsible for instability.

6.3.2 Sensitivity to flap mass

In this section the effects of the flap mass distribution on the system stability
are investigated. In order to take into account the influence of the flap mass
on the airfoil undeformed part of the structure, as, for instance, variations in
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the centre of gravity position or in the rotational inertia parameter, a mass
distribution shape needs to be assigned not only to the flap but also to the
whole airfoil, along the full chord length.

Figure 6.5: Case 0. Airfoil unit span mass distribution shape. Compared to the reference
case, the same total mass and CG position are maintained, the second moment of
area is increased and the flap mass is reduced.

The mass distribution adopted as basic case in this investigations is
named as case 0 and its shape along the chord is reported in Figure 6.2.
The total mass of the reference case airfoil (40 kg/m) is maintained, as well
as that, the centre of gravity is positioned in the same point and the natu-
ral frequencies are unchanged. Table 6.3 reports the structural parameters
computed accordingly to the case 0 mass distribution.

It is observed that the second moment of area is slightly higher than the
reference case one (Table 6.2 and 6.3), as a consequence, since the torsional
natural frequency is kept constant, also the torsional stiffness is increased.
The higher stiffness results in generally increased flutter limits, in fact, the
case 0 undeformable airfoil flutter speed is 150 m/s, nearly 8 m/s higher
than in the baseline reference case. As well as that, the reduced flap mass
yields to an increased stability of the flap related mode, as it will be better
observed in the following paragraphs.

Parameter Symbol Value Unit
Distance Center Gravity–LE 0.35 m
Total Mass mtot 40 kg/m
Moment of Inertia wrt CG Icg 2.31 kgm2

Flap Mass mflap 1.5 kg/m

Heave natural frq. ωy/(2π) 1 Hz
Torsion natural frq. ωα/(2π) 10 Hz
Flap natural frq. ωflap/(2π) 50 Hz

Table 6.3: Case 0. Structural characteristics as computed from the assumed mass dis-
tribution. In comparison to the baseline reference, the total mass and CG position
are unchanged, while the second moment of area is increased and the flap mass is
reduced.
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Flap centre of gravity

At first, the total mass of the flap part is kept constant, but its distribution
is varied, still assuming a linear variation of the 2D mass distribution, from
the flap hinge point to the trailing edge. The effects can be represented in
analogy to a conventional flat rigid flap as a variation of the dimensionless
distance between the flap hinge point and the centre of gravity of the isolated
flap (εflapCG ). Table 6.4 describes the investigated cases in terms of unit span
density at hinge and trailing edge points and the respective flap centre of
gravity positions and modal masses.

ρ2D
hinge ρ2D

TE Flap Mass εflapCG Modal Mass
[kg/m2] [kg/m2] [kg/m] [–] [kg ·m]

Case 0. 18 12 1.5 0.093 5.4 · 10−7

Case 1. Aft CGflap 12 18 1.5 0.107 7.4 · 10−7

Case 2. Fore CGflap 26.7 3.3 1.5 0.074 2.7 · 10−7

Case 3. Aft CGflap 3.3 26.7 1.5 0.126 1.0 · 10−6

Case 0. Mass x 2 36 24 3 0.093 1.1 · 10−6

Case 0. Mass / 2 9 6 0.75 0.093 2.7 · 10−7

Table 6.4: Sensitivity to flap mass variations. Flap mass distribution characteristics for
the investigated cases.

As already mentioned, due to the increased torsional stiffness, the flutter
curves are generally higher than the reference case one, besides, the lighter
flap results in a more stable flap mode, so that the low stability range of
frequencies does not extend over a ratio of 1.2 (Figure 6.6). Furthermore, it
is also observed that the flap mode is unstable only in a region of low wind
speed, for higher speeds it turns stable again (dotted lines in Figure 6.6)
until flutter occurs in the heaving or torsion modes.

Concerning the effects of the flap mass distribution, it can be generally
concluded that, similarly to the behaviour observed for the undeformed air-
foil, the more aft is the flap centre of gravity, the less stable is the mode
related to the flap degree of freedom. For instance, case 3 (dashed red line,
Figure 6.6), where more weight is located closer to the trailing edge than
to the hinge point, is unstable for frequencies up to nearly six time the tor-
sional one. It is also observed that, since the flap mass is not changed and
is relatively light compared to the full airfoil, the effects of the flap mass on
the dynamics of the rest of the airfoil are negligible, in fact, for increasing
frequency ratios, all the three cases converge to the same rigid airfoil value.

Flap mass scaling

The flap total mass is now varied by scaling the case 0 distribution by
a factor of two and by half; the position of the flap center of gravity is
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Figure 6.6: Flap mass effects. Constant flap mass, different positions of the flap center
of gravity. Mass distributions corresponding to flap with aft center of gravity have
a less stable flap mode. All the cases converge to the same rigid airfoil flutter speed
(150 m/s).
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unchanged and its mass is respectively double and half the previous cases
one, Table 6.3.

Concerning the variations induced by the flap mass on the undeformed
part of the airfoil structure, two approaches are adopted. The first one (full
lines in Figure 6.7) neglects the effects of the flap on the overall mass dis-
tribution, so that the undeformed airfoil is described by the same structural
parameters as used in case 0 (total mass mtot, center of gravity position Xα,
second moment of area Icg). The second approach, more realistic, takes into
account how the flap mass affects the structural proprieties of the rest of the
airfoil (dashed lines in Figure 6.7), hence, the airfoil structural parameters
are now computed from the modified mass distribution. For instance, if the
flap mass is increased, the whole airfoil center of gravity moves aft and the
second moment of area increases.

As a consequence, by increasing the flap stiffness, the flutter limits com-
puted using the first approach all converge to the same undeformable air-
foil flutter speed (black dash-dotted line), which is the same as in case 0,
whereas, different limits are obtained if the second approach is adopted (red
and blue dashed-dotted lines). A lighter flap, and hence a centre of gravity
closer to the leading edge, results in a more stable section: the flutter limit
for the rigid case is increased up to 160 m/s. On the contrary when the
weight of the flap is doubled, the rigid airfoil flutter speed is reduced to
nearly 135 m/s, as effect of the modified mass distribution.

Furthermore, it is observed that the heavier flap (blue lines in Figure
6.7) has a much larger region of instability, which extends up to a frequency
ratio of 7.2, and the stability curve translates even lower, if the effects on the
airfoil are taken into consideration. The lighter flap has instead a smaller low
stability region, but the stabilizing effects on the heave and torsion modes
are also slightly reduced; on the other hand, the whole curve arises if the
airfoil structural parameters are computed according to the modified mass
distribution.

6.3.3 Uncontrolled flap. Summary

To conclude, an elastic flap modifies the aeroelastic stability limits of an
airfoil section even if no control is applied. In the considered cases, flut-
ter limit are increased by a reasonably stiff flap, and stability is generally
enhanced by a light flap with a centre of gravity close to its hinge point.
On the contrary, soft flap, with heavy masses and aft centre of gravity are
found to reduce the flutter speed, in some cases even considerably below the
undeformable airfoil one.
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Figure 6.7: Flap mass effects. The flap mass is doubled (blue lines) and scaled to half
(red lines), stability limits are computed both neglecting (full lines) and considering
(dashed lines) the effects on the airfoil structure.

6.4 Controlled flap

The flow speeds at which aerodynamic instability occur may vary not only
due to the flap structure, but also depending on the flap control. This factor
of influence is now assessed in the baseline reference case and with the flap
controlled according to the algorithms previously described (section 5.3).

The function of the trailing edge flap is to alleviate the loads during
normal turbine operation, consequently, the control gain in the present in-
vestigations are the ones tuned to give optimal load reduction for a wind
speed of 60 m/s. The gain factors are kept constant all over the wind speed
range, and no factor scheduling applies; besides, as mentioned in section 5.3,
the gain for heave and angle of attack controls are actually the results of
a thorough optimization process, carried out in the previous studies [4, 8],
whereas, the gain factor for the pressure difference control are assigned with
a simple Ziegler-Nichols’ tuning.

Stability limits are first computed assuming a null control delay, and
afterwards, since the control time lag was found to be a factor of considerable
importance in the load alleviation studies, the effects of introducing a control
delay are also investigated. The stability tool that includes control and time
delay models is validated against the results obtained with time marching
simulations.
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6.4.1 Control algorithms

The flutter speeds obtained with a controlled flap are plotted (Figure 6.8)
versus the flap torsion frequencies ratios for different control algorithm cases,
the uncontrolled flap flutter curve is also reported (black full line). The
structural characteristics corresponds to the baseline reference case, and so
do the control gain parameters, tuned for load alleviation at 60 m/s, a null
control time lag is also assumed.

It is observed that the stability curves present similar qualitative trends
for all the control algorithms, and they also resembles the uncontrolled case
one: in a range of low frequency ratios, the flap related mode provokes flutter
and here the critical speed increases almost linearly with the frequency ratio,
until instability occur in the heaving or torsion related modes (frequency
ratio above 3.5 in the not controlled case).

Figure 6.8: Controlled flap stability limits. Flutter speed vs. flap-torsion frequency
ratios for the different control algorithms. Null time lag is assumed, the control
gain parameters are the baseline reference ones, as well as the structural parameters.
The baseline reference frequency ratio is highlighted by the dashed black line.

From a quantitative point of view, instead, all the cases return flutter
limits lower than the uncontrolled flap one at the baseline frequency ratio,
and different variations are then reported depending on the algorithm used
to control the flap. The pressure difference control ∆P seems to be the
more stable and, especially in the case of taps located at the 10 % chord,
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Type of Control y, ẏ α ∆Pεcnst ∆Pε10% No Ctrl. No Flap
Flutter limit [m/s] 74.9 106.8 128.1 143.1 159.3 142.2

Table 6.5: Flutter flow speed at reference condition ωflap/ωα = 5. Flap controlled by
the presented algorithms, tuned for load alleviation at 60 m/s, null control time lag.
The flutter limit computed without control acting on the flap and the limit for the
airfoil without flap (undeformed airfoil) are also reported as comparison.

shows only a moderate reduction of the flutter speed (Table 6.5). Lower
flutter limits are reported with the angle of attack α control algorithm, but
the stability threshold is still above the range of wind speed encountered in
normal wind turbine operation. The control based on heave displacement
and velocity appears instead as the less stable, and, in the baseline reference
case, flutter is reported to occur at a wind speed nearly half the one of the
airfoil without flap; the flap control would hence yield to critically low sta-
bility limits and the airfoil might encounter flutter even at normal operation
flow speeds.

As second note, the slopes of the stability also differ depending on the
control algorithm, for instance, stiffer flaps than the reference one, would
return slightly lower flutter speeds in almost all the control cases, with the
only exception of the heave control, where the stability curve maintain a
positive slope up to a frequency ratio of 6.2. A part from that, for low
frequency ratios, all the curves show an almost linear trend, and the α and
the ∆P (at the εcnst point) ones have a rather steep slope, so that, for very
soft flaps, the flutter limit is increased with respect to the not controlled
case. The y controlled section has instead a milder slope and is completely
unstable for very soft flaps. The control based on pressure measurements at
the 10 % chord is the one that gives the higher stability limit for frequency
ratios greater than four, but also, the same control strategy is unstable in a
range of low flow speeds, from zero to the dotted line in Figure 6.8.

6.4.2 Control time lag

In the previous studies [8, 4], the control time lag was found to be a major
factor affecting the load alleviation potential of a controlled trailing edge
flap and it was clearly outlined that, as the time lag increase the achieved
load reduction decreases. The influence of the control delay on the stability
limits is instead not straightforward. In fact, although it can be concluded
that the flow speed at which instability occurs is actually modified by the
presence of control delay, the effects are found to be rather dissimilar in each
of the considered control strategies (Figure 6.9). Besides that, the results
would probably vary depending on how the time lag is implemented in the
model.

Figure 6.9 reports, for the different control algorithms, the flutter speeds
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computed and plotted as function of the control time lag, expressed as reac-
tion half time t1/2. The structural proprieties and the gain parameters are
the baseline reference one.

Figure 6.9: Flap stability limits as function of the control time lag, the flutter speed is
plotted versus the control reaction half time. The control gains and the structural
parameters are at reference condition, ωflap/ωα = 5.

The flutter limit for the angle of attack α control increases slightly for
small time lags, and then, for t1/2 longer than 30ms, is completely unaffected
by further increase of the control lag. The pressure difference control also
gives an increase in the stability limit as the time lag arises, but only for the
case of pressure tap located at the 10 % chord (dashed blue line in Figure
6.9). Whereas, in the εcnst pressure control case (full blue line), the flutter
speed drops as a small time lag is introduced, and the system is completely
unstable in the range of reaction half time from 3 to 11 ms. For longer time
delays, stability is again achieved, but only within a range of wind speeds,
which become broader as the reaction time increases (from dotted to full
blue lines).

The stability curve of the y controlled case presents a peculiar trend.
For very small time lags the stability limit is increased up to the reversal
speed (green line ‘plateau’ at 95.5 m/s), but then, if larger control delays
are simulated, the flutter speeds reduces and, when the reaction half time
of 20 ms is passed, it drops below 10 m/s.
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The flutter limits are now computed as function of the flap frequency
and for different time lags (0, 5 and 20 ms half reaction times, Figure 6.10).
The obtained results are somehow a combination of the curves reported in
the two previous plots (Figures 6.8 and 6.9). In fact, in the α and ∆Pε10%

cases, the control delay increases the flutter limit, and hence, curves higher
than the one obtained without control delay are reported for almost all the
investigated frequency ratios (Figure 6.10.b and .d). Instead, the section
controlled with pressure taps located at εcnst (Figure 6.10.c) is unstable in
the whole range of ratios for the small time lag case (t1/2 = 0.005 s), while
for larger time lags a stability region appears for frequency ratios greater
than 3. The y-controlled flap still presents a ‘plateau’ at the reversal speed
if the small time lag is considered (red line), while for the larger control
delays flutter is reported for wind speeds close to 10 m/s.

Figure 6.10: Stability limits vs. flap-torsion frequency ratio considering control time lag.
Control half time t1/2 = 0.005 s (red lines) and t1/2 = 0.02 s (green lines). The
control gains and the other structural parameters are at reference conditions, the
stability limits computed without time lag are reported with blue lines.

75 Risø-R-1663(EN)



6.4. Controlled flap

6.4.3 Controlled flap. Summary

The trailing edge flap modifies the stability limits of the airfoil section, and
the effects depend not only on the structural proprieties of the flap, but also
on the control algorithm used to actuate it.

Lower flutter limit than the one computed for the uncontrolled elastic
flap, are reported with any of the considered control algorithm, all tuned
for load alleviation at 60 m/s. The flutter limits are anyway above the flow
speeds encountered in normal operation for the controls based on angle of
attack or pressure measurements, the latter being the more stable. Whereas,
critically low stability limits are reported for the heave control. In this case,
the flow speed at which flutter is expected to occur could be raised to a
safer range either by intervening on the structure (stiffer and lighter flap,
fore centre of gravity, etc.), or by reducing the control gain magnitude.

It is thus observed that all the controlled flap cases show lower flutter
limit than the uncontrolled one, which in turn is higher than the unde-
formable airfoil case. Consequently, whenever the flow speed approaches a
critical limit, a convenient way to avoid, or at least postpone, the rise of
instability would be to exclude the control of the flap, if this can be done
without reducing its stiffness.

The control time delay has an influence on the stability limits, but the
effects are different in each of the investigated control algorithms, and a
common trend among them is hardly recognizable.

As well as that, the stability limits depend also, in a marked and not
trivial fashion, on the structure characteristics; therefore, the results, and
perhaps even some of the conclusions, may not apply to different airfoil
sections. Each specific case could be anyway investigated separately by
applying the presented stability tool.
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Chapter 7

Gain tuning for stability
enhance

The analysis of the stability limits of an airfoil section with a movable trailing
edge highlights how the critical flow speed at which flutter arises depends on
the algorithms employed to control the flap, but also on the gain parameters
used in the controllers.

It is thus possible to increase the flutter speeds reported in the investi-
gated cases by tuning the gain parameters, the control would in this case aim
to enhance stability, and not primarily to alleviate the fatigue loads. From a
practical point of view, a wind turbine blade would reach flow speeds above
the computed stability limits only in extraordinary conditions, with the ex-
ception of the heave control case. Therefore, the gain tuning that appear
more convenient would consist in simply turning all the gain parameters to
zero whenever not ordinary flow speeds are encountered, due for instance to
rotor overspeeding, and raise thus the limits to the uncontrolled flap flutter
velocity.

The present chapter investigates anyway the potentiality of a slightly
more elaborated gain tuning to control the flap as to raise the stability
limits, eventually even above the not controlled case one. The stability tool
is hence applied to determine, for increasing flow speeds, the gain parameters
range that would maintain the system stable. The method is applied to the
baseline reference structure, and the presented algorithms are considered
with a null control delay. Results are then verified against the time marching
solution.

7.1 Gain tuning method

So far the stability of the system has been assessed by computing the damp-
ing of the modes as function of the wind speed, the point then, where at
least one of the mode becomes negatively damped sets the stability limit.
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In the tuning approach, instead, the wind speed is fixed and the damping
of the mode is evaluated as function of the controller gain.

Figure 7.1: Modal damping plotted as function of the controller gain factor. ∆Pε,cnst
control at 60 m/s, baseline reference condition structure. Stable gain factor range
from -0.14 to 1.12, the upper limit match the critical gain found in the time marching
tuning.

Figure 7.1 reports, for example, the modal damping plotted versus the
gain factor for the ∆Pεcnst control, at the same wind speed (60 m/s) that
was used in the time marching tuning, Section 5.3.1. The interval on the ab-
scissa where all the modes, both dynamic and static, are positively damped
indicates in which range the gain factor should be maintained to achieve a
stable equilibrium at the investigated wind speed, the same procedure can
be then repeated for different wind speed conditions. In the reported exam-
ple (Figure 7.1), the stable range extends from a gain factor -0.14 to 1.12,
and the upper limit corresponds to the critical gain that was found with the
time marching tool during the Ziegler-Nichols control tuning.

It may be interesting to consider the sign of the gain parameters from
a physical point of view. In this sense, a negative gain factor (positive in
the y proportional control) would correspond, for wind speed that are below
the control reversal one (95.5 m/s), to a controller that, although eventually
stable, operates contrary to the desired way, and increases the fluctuations
of the lift steady component, yielding thus, most likely, to increased fatigue
loads on the structure. The same undesired effect is obtained for wind speed
above the reversal limit if the signs of the gain factors are not inverted. Thus,
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the gain factors that have been specified in the reference baseline cases cor-
respond to a flap control that ‘alleviate loads’ only for wind speeds below 95
m/s, for higher speeds, which are anyway not likely to be encountered during
normal operation of a wind turbine, the control would actually ‘aggravate’
the steady lift fluctuations, and thus probably also the fatigue loads.

7.2 Heave control

The gain tuning method is applied to the control algorithm that takes as in-
put measurements of the heave coordinate y and its velocity ẏ. The control
algorithm, tuned for load alleviation at 60 m/s, involves both the propor-
tional and differential terms. For simplicity reasons, though, the gain param-
eters related to the two terms are, for now, investigated separately: during
the gain analysis of the proportional term (Figure 7.2, top), the derivative
term gain is set to zero, and the other way around when the differential term
is considered (Figure 7.2, bottom). The combined effects of both the gain
parameters are later investigated for two selected flow speeds.

Figure 7.2: Gain tuning for heave control. Top: stability range of proportional gain
factor vs flow speed, differential gain set to 0. Bottom: stability range for differential
gain factor, proportional gain set to 0. Reference case structure, null time lag.

The value assigned in the baseline case to the gain for the differential
term (By = −25) exits the stability region at a flow speed (74.9 m/s) that
corresponds to the reported flutter velocity (Figure 7.2, bottom), the sta-
bility limit seems hence related to the differential gain. It is also observed
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that with only proportional control, the gain assigned in the baseline case
(Ay = −500) would be out of the stable region for nearly every flow speed
(Figure 7.2, top).

The stability range of the proportional gain parameter (Figure 7.2, top)
extends almost exclusively in the negative semi-plane for wind speeds below
the reversal one, whereas a positive gain is required to maintain stability for
flow speed above the reversal one. The control algorithm proportional to
the heave displacement is the only case, among the investigated ones, where
reversal have consequence on the stability of the section. The increase in
magnitude of the stable gain values close to the reversal condition, as though
close to a vertical asymptote, can be related to the control effectiveness. In
fact, at reversal wind speed the lift, and hence the y displacement, are not
affected by the flap, the control effectiveness is equal to zero, thus large gain
value can be assigned without loss of stability.

The range of stable gains, for both the proportional and differential con-
trol, narrows around zero as the wind speed is increased. The flutter limit of
the y controlled section can be thus increased by gradually tuning to zero the
gain parameters, but, in any case, the flutter velocity of the not controlled
section (159.3 m/s) is not exceeded. It is also observed that for a wind speed
of 60 m/s the section controlled by only the proportional term is unstable
for gain factors less than -100, which is relatively close to the critical value
(-70) that was found by Buhl et al. [8] during the time marching study of
the same 2D section undergoing a step change in the incoming wind.

The combined effect of the proportional and differential terms is now
investigated by fixing the flow speed, the range of proportional gain for
which the system is stable is then determined as function of the differential
gain (Figure 7.3).

The plot on the left (Figure 7.3) refers to a flow speed slightly above
the flutter limit reported for the baseline reference tuning. As previously
observed, the flutter limit seems to be related to the differential gain, in fact,
the value assigned to the differential gain at the reference case (By = −25)
corresponds to a line outside the stable region, regardless the value of the
proportional gain. The flutter limit can be increased only by reducing, in
magnitude, the differential gain, and, in this case, the stability limit could
be raised up to 90 m/s (Figure 7.3, right plot) with the same proportional
gain as in the baseline case (Ay = −500). To further increase the flutter
limit, also the proportional gain should be reduced.

A part from that, as also observed in previous studies [4, 8], by introduc-
ing the differential term, the control is more stable. In fact, by ‘increasing’1

the differential gain, the stability range expands and a larger proportional

1In the sense of increasing the magnitude, and maintain the appropriate sign. In this
case, since the gain is negative (below reversal speed), the values are actually decreased,
they move to the left on the plot abscissa.
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Figure 7.3: Heave control, combined effects of the differential and the proportional gain
values. The proportional gain for which the system is stable are computed as
function of the differential gain. Fixed flow speed: left, 75 m/s; right, 90 m/s.
Reference case structure, null time lag.
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7.3. Angle of attack control

gain can be applied.
To conclude, a control based on the heave measurements can not exceed

the flutter speed of the uncontrolled case. Furthermore, it is also observed
that the differential term is necessary to apply large proportional gains, but,
on the other hand, the flutter limit reported in the reference case can be
increased only if the differential gain is reduced.

7.3 Angle of attack control

The relation between gain parameter and stability is now investigated for
the control algorithm based on angle of attack measurements. The baseline
reference case has a control gain equal to one, represented by the horizontal
red line in Figure 7.4. The line exits the stable region at a flow speed of
nearly 107 m/s, which in fact corresponds to the flutter limit reported in
the baseline case (Table 6.5).

In similar way, the line corresponding to a null gain crosses the stability
bound at a wind speed of 159.3 m/s, uncontrolled flap flutter velocity, but,
contrary to the y case, the stable region now extends even beyond this limit,
if negative gains are applied. In fact, by tuning the gain parameter to values
inside the stable range (green area in Figure 7.4), stability can be maintained
for flow speeds up to 219.2 m/s.

For stable gain parameters, all the modes of the system, both dynamic
and static, are positively damped, up to the new limit (219.2 m/s). Hence,
the controlled airfoil is stable for flow speeds, not only, above the uncon-
trolled flap flutter velocity (159.3 m/s), but also, higher than the unde-
formable airfoil divergence limit (207 m/s); even a static instability phe-
nomenon appears thus to be influenced by the control, and the new stability
limit is also confirmed by the implemented time marching tool.

The achieved stability enhance would probably be lower if more realistic
conditions, as control time lag or limited flap deflections, were considered.
It is anyway possible to conclude that with an active control of the flap and
opportune gain parameters, flutter can be suppressed for flow speeds even
above the uncontrolled flap flutter velocity.

7.4 Pressure difference controls

The control algorithms based on pressure measurements are now applied.
In case of pressure taps located at εcnst point (Figure 7.5), the baseline gain
factor (0.56), results in a flutter speed of 128 m/s, which, in Figure 7.5,
corresponds to the point where the red line exits the stable region.

As in the angle of attack case, the stability bound crosses the zero gain
horizontal line at the uncontrolled flap flutter speed (159.3 m/s), and for
negative gain the stability region extends even further. Thus, with pressure
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Figure 7.4: Gain tuning for angle of attack control. The red line indicates the gain
factor used in the reference case (1.0), the dashed vertical black line marks the
flutter limit for the non controlled case. Flutter speed can be extended up to 219.2
m/s, negative gain are required above the uncontrolled flap flutter speed. Reference
case structure is considered, null time lag.

difference measurements at εcnst is possible to control the flap to supress
flutter above the uncontrolled case limit; flow speed up to 183 m/s are
reported in the investigated case, nearly 15 % higher of what would be
obtained by simply excluding the control.

The pressure control based on measurement at the 10% chord appear
again as more stable. In fact, by tuning the gain, the stability limit for the
investigated case can be extended even above 250 m/s (Figure 7.6). As in
the angle of attack case, by actively controlling the flap is possible to rise
the stability limit even beyond the divergence speed.

In both the pressure control cases, as well as with the angle of attack
control, no particular changes are reported at control reversal speed, fur-
thermore, at a flow speed of 60 m/s the upper limits of the stable gain
ranges (1.12 and 0.25) match in both cases the critical gain factors that
were found with the time marching tool, during the Ziegler-Nichols’ control
tuning (Section 5.3.1).

7.5 Gain tuning for stability enhance. Summary

The gain parameters used in the flap control algorithms can alter the sta-
bility of the whole section, and the flutter limits reported in the reference
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Figure 7.5: Gain tuning for pressure difference control, pressure tap at εcnst. The red
line indicates the gain factor used in the reference case (0.56), the dashed vertical
black line marks the flutter limit for the uncontrolled case. Flutter speed can be
extended up to 183.4 m/s. Reference case structure is considered, null time lag.

cases can be extended by properly tuning the parameters.
For the heave control, the gain parameters are tuned by simply reducing

their magnitude, and the stable region is extended up to the uncontrolled flap
flutter velocity, but not further. Whereas, in all the other investigated cases,
by actively controlling the flap is possible to suppress flutter and extend the
stability limit beyond the uncontrolled flap one, and, with angle of attack or
pressure difference (at ε10%) controls, even beyond the undeformable airfoil
divergence velocity.

The stability enhance would be probably lower than the reported ones
if more realistic assumptions were included in the model (as for instance,
control time lag and limited flap deflection), but still it would be possible to
actively control the flap to suppress instabilities above the uncontrolled flap
flutter velocity.
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Figure 7.6: Gain tuning for pressure difference control, pressure tap at 10 % chord. The
red line indicates the gain factor used in the reference case (0.13), the dashed vertical
black line marks the flutter limit for the uncontrolled case. Flutter is suppressed
by the control, the section is stable for flow speeds above 250 m/s with gain factors
within the specified range. Reference case structure is considered, null time lag.
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Chapter 8

Conclusion and future work

A tool to investigate the aeroservoelastic stability of a 2D airfoil section
equipped with a trailing edge flap has been implemented and validated. It
is thereby observed that the presence of the flap control significantly changes
the flow speed at which instabilities such as flutter and divergence occur.

The stability limits are modified by an elastic flap, even without active
control: heavy and soft flaps cause the flutter speed to drop, while sufficiently
stiff flaps yield to higher flutter limits than in the undeformable trailing edge
case. The structure considered in the previous studies on load alleviation
potential [4, 8] presents the latter behaviour: the airfoil section equipped
with the uncontrolled elastic flap is in fact stable for flow speeds above the
undeformable airfoil stability limit.

However, when the control algorithms, which were tuned for fatigue load
alleviation at 60 m/s (reference gain parameters), are applied, lower flutter
limits are reported and the stability diminution vary considerably depending
on the control system. Among the investigated cases, the pressure difference
controls show the highest stability limits, and, between them, the control
with sensor taps at 10 % chord (∆Pε,10%) appear as more stable. As well as
that, the stability limits resulting from the angle of attack control are also
not excessively low.

On the contrary, the flap control based on heave measurements returns
a flutter speed that, in the reference case, is nearly half the undeformable
airfoil one, thus causing the stability limit to drift critically close to flow
speeds encountered on wind turbine blades in normal operation. The flutter
limit, in this case, could be enhanced either by acting on the structure, for
instance by increasing the flap stiffness, or by reducing the control gains.

A marked dependence of the stability limits on the gain parameters is
actually observed for all the controls, and, by acting on the gains, stability
can be maintained for flow speeds higher than the limits reported in the
previous reference cases. In fact, by tuning all gain parameters to zero,
the stability limits would be raised to the uncontrolled flap one, and flutter
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would be thereby avoided in most of the cases likely to be encountered in
practice. Less simple gain scheduling would also allow to suppress flutter at
flow speeds even above the stability limit of the uncontrolled flap, at least
for the investigated pressure difference and angle of attack controls.

In previous studies [4, 8], control time delay was clearly identified as
a limiting factor in the load alleviation potential. In the present stability
analysis, instead, the role of the control delay is not straightforward: it
actually affects the stability limits, but is not possible to outline a more
specific conclusion, since the observed effects vary for each specific case.

As mentioned in the introduction, the present work considered a 2D
airfoil section, which undoubtedly is a rough approximation of a full 3D
system, hence, the exact stability limits, as would be encountered on a full
turbine, can not be predicted by the presented stability tool. Nevertheless,
literature reports cases where the results obtained with simple 2D models
were then found to be quite representative of more complex 3D phenomena,
as, for instance, in Theodorsen and Garrick’s stability investigations [22, 21],
or in the previous studies concerning the load alleviation potential of the flap
control [4].

Therefore, the conclusions outlined with the current stability tool prob-
ably hold also for more complex and realistic cases, and the obtained results
can be anyway considered as a preliminary investigation and term of com-
parison for later development of more refined models.

To conclude, a trailing edge control has a significant influence on the
stability of the airfoil section, and large and non-trivial variations of the
stability limits are reported, depending both on the section structural char-
acteristics and on the control properties. A simulation tool, as presented
here, is hence needed to determine, for each specific case, whether or not
the deformable trailing edge control will yield to a critical reduction of the
flow speed at which instability may occur.

Future work

The idea of applying trailing edge flaps on wind turbine blades is relatively
recent, the amount of unresolved issues is hence considerable. Concerning
the problems related to stability, the presented aeroservoelastic stability
tool should be refined and extended so to handle more complex and realistic
cases: 3D structural model should be included, as well as the interaction
with other control systems installed on a wind turbine. The aerodynamic
model can be also refined to take into account the effects of viscosity in the
fluid [2], and 3D finite span geometry.

Different implementations of the control and the time lag models could
be also investigated, as well as that, interesting results could be obtained
from simulations of the flap actuators that are likely to be employed in full
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scale applications, as, for instance, piezoelectric plates, pneumatic trailing
edges, rubber membranes.

Finally, significant contributions could come from experimental investi-
gations and validation of the flutter limits predicted by the stability models.
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Appendix A

Undeformable airfoil.
Linearized equations

The aeroelastic system is described by a set of non linear differential equa-
tions, but the eigenvalue approach that is used to investigate the stability
of the system requires indeed a linear formulation of the system equations.
The expressions given in the main body of the text (chapter 2) are hence
linearized by using a Taylor’s series expansion with respect to a specified
equilibrium steady state, which is characterized by the steady state pitch
angle α0,sts. The equations presented here to determine the linearized aero-
dynamic forces are retrieved from Hansen’s work [15], where a thorough
description of the approach is also given.

The set of differential equations that describes the aeroelastic system,
chapter 2, in the general non linear formulation is:

mtotẍ− Sα sin(α)α̈+ cxẋ+ kxx = Dstatic + ∆Dind, (A.1)
mtotÿ − Sα cos(α)α̈+ cyẏ + kyy = Lnc + Lcirc, (A.2)

−Sα sin(α)ẍ− Sα cos(α)ÿ + Ieaα̈+ cαα̇+ kαα = Mnc +Mcirc. (A.3)

Where, the left hand sides of the equations represent the inertial, damping
and elastic forces acting on the structure, and the right hand sides the
aerodynamic forces.

A.1 Structural equations

The structural equations are linearised by simply substituting the steady
state pitch-torsion angle α0,sts in the trigonometric terms, so that the equa-
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tions left hand sides read

mtotẍ− Sα sin(α0,sts)α̈+ cxẋ+ kxx, (A.4)
mtotÿ − Sα cos(α0,sts)α̈+ cyẏ + kyy, (A.5)
− Sα sin(α0,sts)ẍ− Sα cos(α0,sts)ÿ + Ieaα̈+ cαα̇+ kαα. (A.6)

A.2 Aerodynamic equations

A.2.1 Effective angle of attack

The expressions for the aerodynamic equations, in order to take into account
the effect of the vorticity shed into the wake, contain terms that depend on
the effective angle of attack αeff . The expression for αeff is also linearised
by applying a Taylor expansion, and the linear term α1

eff , as in Hansen [15],
is:

α1
eff = α1

3/4ϕ0 +
nlag∑
i=1

z1
i (A.7)

All the terms identified by the superscript 1 are first order (linear) terms
from Taylor’s series expansion; hence, z1

i are the linear terms of the wake
time lag variables and they result from the respective first order differential
equations; in linearised form

ż1
i = − U0

bhc
bi · z1

i +
Ai
U0
α0,sts · ẍ

− U0

bhc
biAi · α −

U0

bhc
biAi · α0,sts

− 1
bhc

biAi · ẏ + (0.5− εea)biAi · α̇. (A.8)

Ai and bi indicate the coefficients of the exponential terms series that ap-
proximates the indicial response function (section 2.2.4), the numerical val-
ues assigned in the investigated cases are reported in Table 2.1, on page
20.

In equation (A.7), α1
3/4 is the linear term of the Taylor’s expansion for

the equivalent quasi-steady angle of attack at 3/4 chord:

α1
3/4 = α− α0,sts −

1
U0
ẏ +

(0.5− εea)bhc
U0

α̇, (A.9)

and α0,sts is the pitch angle that characterizes the steady state with respect
to which the system is linearised.

The term ϕ0 instead refers to the approximated indicial response func-
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tion, at time zero, it can be hence computed as

ϕ0 = 1−
nlag∑
i=1

Ai. (A.10)

A.2.2 Lift force

The state, with respect to which the system is linearised, is a static state,
that is to say that all the derivatives terms are null; the linearised expression
for the non circulatory contribution to the lift force is hence simply

Lnc = πρb2hcU0 · α̇− πρb2hc · ÿ − πρb3hcεea · α̈. (A.11)

The circulatory part of the lift is instead split in two contributions: a
first one from the steady state (Llin

C0
L
) and a second one from the linear terms

of the Taylor’s expansion (Llin
α1
eff

),

Llincirc = LlinC0
L

+ Llinα1
eff
. (A.12)

The two terms are then computed as:

LlinC0
L

= + (2π)ρbhc(α0,sts − αlift,0)U2
0

+ (2π)ρbhc(α0,sts − αlift,0)(−2U0) · ẋ, (A.13)

Llinα1
eff

= + (2π)ρbhcU2
0 ·

nlag∑
i=1

z1
i + (2π)ρbhcU2

0ϕ0 · α

− (2π)ρbhcU0ϕ0 · ẏ + (2π)ρb2hcU0ϕ0(0.5− εea) · α̇
− (2π)ρbhcU2

0ϕ0α0,sts. (A.14)

Where 2π is the linear static lift coefficient ∂Cl/∂α.

A.2.3 Drag Force

The linearised expression for the drag force is also split in a steady state
contribution and an induced one:

Dlin
aed = Dlin

stat +Dlin
ind. (A.15)

The steady state part is computed as

Dlin
stat = +ρbhcCd0U

2
0 + ρbhcCd0(−2U0) · ẋ, (A.16)

where Cd0 is the static drag coefficient, retrieved from the airfoil drag curve
at the steady state angle of attack α0,sts.
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A. Undeformable airfoil. Linearized equations

The linearised induced drag is then computed as

Dlin
ind = +(Cdlin − Cl0)ρbhcU2

0ϕ0 α− (Cdlin − Cl0)ρbhcU2
0ϕ0 α0,sts

− (Cdlin − Cl0)ρbhcU0ϕ0 ẏ + (Cdlin − Cl0)ρbhcU0ϕ0(0.5− εea)bhc α̇

+ (Cdlin − Cl0)ρbhcU2
0

nlag∑
i=1

z1
i , (A.17)

where Cdlin is the slope of the curve for the static drag coefficient at an angle
of attack equal to the steady state one, and Cl0 is the static lift coefficient
evaluated at the same angle of attack:

Cdlin − Cl0 =
∂Cd

∂α

∣∣∣∣
α0,sts

− 2π(α0,sts − αlift,0). (A.18)

A.2.4 Pitching moment

As also noted in the lift case, since the velocity and acceleration compo-
nents are all null in the steady state used to linearised, the non circulatory
contributions to the pitching moment in linearised form is simply

M lin
nc = − πρb3hcU0(0.5− εea) · α̇ − πρb4hc(1/8 + εea) · α̈

− πρb3hcεea · ÿ + πρb3hcεeaα0,sts · ẍ. (A.19)

The circulatory pitching moment, then, receives a contribution from the
steady state that only depends on the static moment of the airfoil at the
steady state angle and on the airfoil velocity component in the stream wise
direction ẋ:

M lin
circ,Cm0

= 2ρb2hcCm0U
2
0 − 4ρb2hcCm0U0 · ẋ. (A.20)

A third pitching moment contribution also arises from the lift and drag
forces whenever the hinge point of the section is not located at the quarter
chord point. This contribution is thus given by the product of the linearised
circulatory lift (A.12) and drag (A.15) times, respectively, the cos and sin of
the steady state torsion angle, times the distance of the actual elastic axis
from the hinge point:

M lin
circ,forces = Llincirc cos(α0,sts)(0.5 + εea)bhc +Dlin

aed sin(α0,sts)(0.5 + εea)bhc.
(A.21)

All the expressions are now available in a linearised form, which results
in a set of equations that describes the aeroelastic system in the proximity
of the steady state used in the process. This linearised system of equations
can be then analysed using an eigenvalue approach and thus determine if
that steady state represents a point of stable equilibrium for the specified
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system.
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Appendix B

Undeformable airfoil.
Sensitivity to structural
parameters

The undeformable airfoil section is employed in a rapid sensitivity analysis
of the flutter limits to the values used to define the structural proprieties of
the airfoil section. The characteristics of the structure are defined by means
of dimensionless parameters, as presented in section 3.1, and their effects are
investigated by changing only one parameter per time, while all the others
are kept constant.

The airfoil section used as reference in the following investigation is the
one defined in the validation case, section 3.1, and the set of structural
proprieties are specified in Table 3.1, at page 28.

The flutter speeds are computed over a range of heave-torsion frequency
ratios, and plotted as dimensionless reduced speed, normalized with respect
to the torsional natural frequency and the half chord length.

The sensitivity of the computed flutter limits is investigated by applying
variations to: the position of the section centre of gravity and elastic axis,
the mass density ratio, the radius of gyration and the structural damping.
The obtained plots are reported and discussed in the following paragraphs.

Elastic axis and centre of gravity position Figure B.1 shows how the
flutter speed versus the frequency ratio varies with the elastic axis position
εea and with the distance between elastic axis and centre of gravity xα. By
moving the elastic axis aft (from full to dashed and dotted lines), the flutter
speed is decreased, at least until the frequency ratio reaches up to the ‘dip
point’. Increasing the dimensionless moment of static unbalance (from blue
to red lines) also reduces the flutter limit, in the range of low frequencies
ratios. Furthermore, the static unbalance parameter also modifies the trend
of the whole stability curves. Besides, it may be observed that in the range
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of low frequency ratios, similar flutter limits are reported for sections with
the centre of gravity positioned in the same point εcg = εea +xα. In fact, as
also observed in Theodorsen’s empirical equation, Eq.(2.36) in section 2.4,
the position of the elastic axes is not affecting the flutter speed in the low
frequency range.

Figure B.1: Flutter limit for the test section. Sensitivity to elastic axis position εea and
its distance from the centre of gravity xα. For low frequencies ratios the flutter
limit only depend on the centre of gravity position εcg = εea + xα.

Mass density ratio The density ratio parameter (Fig.B.2) affects the
flutter limit in the same way for the whole investigated range of frequency
ratios: the heavier the section is, the higher the flutter speed, as far as
the frequencies are kept constant, and hence also the stiffness values are
increased. The same trend is confirmed in Theodorsen and Garrick [22].

Radius of gyration The effects of the dimensionless radius of gyration
parameter are shown in Figure B.3. Lower radii of gyration (increased rota-
tional inertia) yield to lower flutter limit in the low frequencies range. The
effect is reversed after a point that in the investigated cases corresponds to
a frequency ratio between 0.8 and 1.

Structural damping The structure is now modified by adding linear
damping (Fig.B.4). The same structural damping is applied to all the three
degrees of freedom, values of logarithmic damping δ of half point percent
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B. Undeformable airfoil. Sensitivity to structural parameters

Figure B.2: Flutter limit for the test section. Sensitivity to the mass ratio. Heavier
section have higher flutter speed (if constant natural frequencies are assumed).

Figure B.3: Flutter limit for the test section. Sensitivity to the dimensionless radius of
gyration. Higher second moments of area (small r parameters) reduce the flutter
limits, in the low frequency range and for fixed natural frequencies.
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and nearly two points percent are investigated. The damping ratios ξ are
0.08% and 0.3%, according to the relation [16]:

δ =
2πξ√
1− ξ2

≈ 2πξ (B.1)

The structural damping is scarcely affecting the flutter speed at low frequen-
cies, but at higher ratios, it considerably increases the flutter limits and it
smooths the curves dip (Fig.B.4).

Figure B.4: Flutter limit for the test section. Sensitivity to structural damping. Damp-
ing is scarcely affecting at low frequency ratios, while it increases the flutter speed
for higher frequencies.

The range of small frequency ratios is the one of more of interest for wind
turbine applications, a summary of how the structural parameters may affect
the stability limits for this range of frequency is hence presented in the main
body of the text, section 3.1.2.
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Appendix C

Pressure measurement point

The aim of the control algorithms is to reduce fluctuations in the lift force.
In the ∆P control case the objective is sought by limiting the variation of
the pressure difference between the two sides of the airfoil in a specified point
along the chord; it is thus implicitly assumed that the pressure difference in
the sensor point can be directly related to the total lift force.

This relation is here analysed by assuming steady state conditions, the
equations for the pressure difference (5.14) and the lift force (5.8) hence
reduce to linear terms in α and β, and in dimensionless form, they result in
the static coefficients,

CL =
Lift

0.5ρU2
0 (2bhc)

= 2π · α−Hdydx · β, (C.1)

CP =
∆P

0.5ρU2
0

= −4
ε− 1√
1− ε2

· α+ 2π
(
∂fdydx −

Hdydx√
1− ε2

)
· β, (C.2)

where the Hdydx and ∂fdydx terms are integral functions of the deflection
shape, as defined in [9].

Both the coefficients are functions of the angle of attack α and the flap
deflection β, but the pressure coefficient CP is also depending on the position
along the chord. The dependence is given not only by the explicit terms in
ε, but also by the integral term ∂fdydx, which is a non linear function of
ε. The distribution of the pressure coefficient along the chord is plotted in
Figure C.1 for few pitch and flap angles.

The criterion used in the choice of the pressure tap position is based on
the ratio between the steady lift and pressure coefficients, along the chord
(Figure C.2). The steady ratio is generally a function of α, β and ε, thereby,
for measurements points located in an arbitrary position along the chord, in
order to relate pressure difference sensed in steady conditions to the steady
lift force, the value of the two state variables α and β should be also known.
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Figure C.1: Pressure Coefficient distribution along the airfoil chord, chordwise dimen-
sionless coordinates ε. Steady conditions, arbitrary values of α and β. The pressure
coefficient is higher close to the leading edge.

In fact, the steady condition ratio is:

CL
CP

=
2π · α−Hdydx · β

−4 ε−1√
1−ε2 · α+ 2π

(
∂fdydx −

Hdydx√
1−ε2

)
· β
. (C.3)

Figure C.2: Lift-pressure coefficients ratio along the airfoil chord, dimensionless chord-
wise coordinates ε. Steady conditions, arbitrary values of α and β. The ratio varies
along the chord and generally depending also from α and β. At the point εcnst
(black dashed line) the ratio CL/CP is constant ∀ α, β.

On the other hand, from the distribution of the CL/CP ratio along the
chord (Figure C.2), it can be observed that exists one point εcnst where
the lift-pressure ratio is constant for any angle of attack and flap deflection.
This proprerty allows, in steady condition, to directly compute the lift force
from measurement of pressure difference in the specific point εcnst, without
requiring the angle of attack α or the flap deflection β.

The point εcnst is found by imposing the condition that the lift-pressure
ratio should not be function of α and β, in the specific point, hence, the
partial derivatives of the CL/CP function (C.3), with respect to α and β,
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C. Pressure measurement point

are zero for any arbitrary value of the angle variables, resulting in the system:{
∂CL/CP

∂α = 0
∂CL/CP

∂β = 0
for ∀ α, β (C.4)

The solution of the system is found in the points of dimensionless coordinates

ε = ±
∂fdydx√

∂f2
dydx +Hdydx2

, (C.5)

where the integral term ∂fdydx is still a function of the chord wise coordinate
ε. Due to the complexity of this function, equation (C.5) is then solved by
graphical means at the intersection between the line υ = 0 and the line the
line υ(ε):

εcnst = ε∗ : υ(ε∗) = ±
∂fdydx,(ε∗)√

∂f2
dydx,(ε∗) +Hdydx2

− ε∗ = 0. (C.6)

The result corresponds to the coordinate εcnst where, in steady condi-
tions, the ratio between the pressure and lift coefficients CL/CP is constant
for every angle of attack and flap deflection, the same point εcnst is used in
one of the pressure difference control algorithm. With computations based
on the actual deflection shape, the point is located at coordinate

εcnst = −0.0289. (C.7)
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