
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Common Exercises in Whole Building HAM Modelling

Rode, Carsten; Woloszyn, Monika

Published in:
Proceedings of the IEA ECBCS Annex 41 Closing Seminar

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Rode, C., & Woloszyn, M. (2008). Common Exercises in Whole Building HAM Modelling. In C. Rode, H. Hens, &
H. Janssen (Eds.), Proceedings of the IEA ECBCS Annex 41 Closing Seminar (pp. 37-48). Copenhagen,
Denmark: Technical University of Denmark, Department of Civil Engineering.

http://orbit.dtu.dk/en/publications/common-exercises-in-whole-building-ham-modelling(5cfbb6f4-39e9-4f1d-b9ff-7d2e230518b6).html


Common Exercises in Whole Building HAM Modelling 
Carsten Rode, Assoc. Prof. 
Technical University of Denmark; 
car@byg.dtu.dk; www.byg.dtu.dk 

Monika Woloszyn, Assoc. Prof. 
Université de Lyon, Lyon, France ; CETHIL; 
monika.woloszyn@insa-lyon.fr; www.insa-lyon.fr 

KEYWORDS: Heat, Air and Moisture; Modelling; Common Exercise; Benchmarking; Model development. 

SUMMARY:  
Subtask 1 of the IEA Annex 41 project had the purpose to advance the development in modelling the integral 
heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling comprises all 
relevant elements of buildings: The indoor air, the building envelope, the inside constructions, furnishing, 
systems and users. The building elements interact with each other and with the outside climate. The Annex 41 
project and its Subtask 1 has not aimed to produce one state-of–the-art hygrothermal simulation model for 
whole buildings but rather to stimulate the participants’ own development of such models, or advanced use of 
related existing models. 

Subtask 1 dealt with modelling principles and the arrangement and execution of so-called common exercises 
with the purpose to gauge how well we can succeed in the modelling. The paper gives an overview of the 
Common Exercises which have been carried out in the Subtask. Based on this activity, some general experiences 
are reported about how well we are able today to carry out such advanced modelling, and some 
recommendations for future developments are indicated. 

1. Introduction 
Indoor air humidity is an important factor influencing air quality, energy consumption of buildings and the 
durability of building materials. Indoor air moisture depends on several factors, such as moisture sources (human 
presence and activity, equipment), airflow, sorption from/to solid materials and possible condensation. As all 
these phenomena are strongly interdependent, numerical predictions of indoor air humidity need to be integrated 
into combined heat-airflow simulation tools. Subtask 1 of IEA Annex 41 has set out to advance the development 
in modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. 

The past few decades have seen the development and professional use of tools which, for some of the processes 
or some of the building elements, describe their building physical conditions.  

For instance, fairly comprehensive tools for transient building energy simulation have been well established for 
more than a decade – see for instance http://www.eere.doe.gov/buildings/tools_directory. Such tools comprise 
the whole building with a granularity going from the suite of rooms that make up the building down to the 
individual building materials and individual parts and controls of the heating, ventilation and air-conditioning 
system. However, the building energy simulation tools are relatively poor tools to describe the moisture transfer 
processes in buildings. 

Air flow simulation tools at building level, e.g. COMIS, CONTAM, or at room level, e.g. CFD codes like 
Fluent, STAR-CD, make good descriptions of air exchange between the zones of a building and the outer 
environment. Some of them deal with airborne moisture transport, and even take into account moisture impact 
on the airflow. They also represent the heat transfer in the air and in the envelope. However most of them do not 
take into account the moisture flow between the air and porous surfaces.  

Detailed, transient tools for combined heat, air and moisture transfer (HAM) within individual building 
components were developed in conjunction with the IEA Annex 24 project, which ran from 1991 to 1995 [Hens 
2002]. The results of calculations with the building envelope HAM-tools may however be very dependent on the 
assumptions made about for instance the climatic boundary conditions. Many HAM-tools for building envelopes 
have fairly good procedures to represent the outdoor environmental exposures, e.g. from weather data files, but 
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building made of lightweight construction, “900” for a heavyweight building, and the code “FF” indicates if the 
building was simulated under free floating thermal conditions without heating or cooling systems. These four 
cases were chosen because they represent well the whole building approach, according to the scope of Annex 41 
without focusing too much on some very specific issues such as solar shading or transfers to the ground.  

Table 1 Four cases tested as Common Exercise 0. 
Case  Building structure  Heating and cooling 
600 FF  plasterboard, insulation, wood  None 
600  plasterboard, insulation, wood   

900 FF  concrete, insulation, wood  None 
900  concrete, insulation, wood  20°C < Tint < 27°C 

13 sets of results were collected coming from 10 institutions from 9 countries using 11 different programs (see 
Table 2). The programs participating in CE0 were both public domain and commercial software, and their 
common feature is continuous development of physical models. For numerical resolution, different solution 
methods were used, such as explicit and implicit finite difference algorithms, or response factor methods. Both 
fixed and auto-adaptive time steps were equally represented. 

Table 2 Overview of the participating institutions and the used simulation tools in CE0 and CE1 
Institution  Country  CE0 

May 2004 
CE 1 
Oct 2004 

CE 1A  
Jan 2005 

CE 1B 
May 2005  

CETHIL  France  Clim2000 
TRNSYS 

Clim2000  ‐  ‐ 

CTH  Sweden  HAM‐Tools  HAM‐Tools  HAM‐Tools  HAM‐Tools 
DTU  Denmark  BSim  BSim  BSim  BSim 
FhG  Germany  Wufi+  Wufi+  Wufi+  Wufi+ 
KIU  Japan  ‐  Xam  Xam  Xam 
KUL  Belgium  TRNSYS 

ESP‐r 
‐  ‐  ‐ 

KYU  Japan  ‐  Original Code  Original Code  Original Code 
ORNL  USA  EnergyPlus  EnergyPlus  ‐  ‐ 
PUCPR  Brazil  ‐  ‐  PowerDomus 1.0  PowerDomus 1.0 
SAS  Slovakia  ‐  Esp‐r+Wufi+NPI  NPI  Esp‐r + NPI 
TTU  Estonia  IDA ICE  IDA ICE  IDA ICE  IDA ICE 
TUD  Germany  ‐  TRNSYS ITT  TRNSYS ITT DELPHIN  TRNSYS ITT DELPHIN 
TUE  Netherlands  HAMLab  HAMLab  HAMBase  HAMLab 
TUW  Austria  ESP‐r  HAM‐VIE  HAM‐VIE  HAM‐VIE 
UCL  UK  EnergyPlus  EnergyPlus  EnergyPlus 

Canute_beta 
EnergyPlus  

UG  Belgium  ‐  (analytical solution)  TRNSYS  1DHAV+ 
TRNSYS 16 

ULR  France  ‐  ‐  TRNSYS 
SPARK 

‐ 

Some differences in the results could be expected because of the differences in the reconstruction of outdoor 
climate from meteorological data. Some programs use linear interpolation while others assume that the climate 
remains constant over the sampling interval.  

All models used include moisture in the balance of the air zone, but at the time of executing CE0 only a few 
programs represent moisture transfer through the envelope.  

The results gathered comprised indoor air temperatures, heating and cooling loads (for cases 900 and 600) as 
well as solar radiation description (incident radiation at all the walls and gains through the windows). Both 
detailed hourly values were collected as well as global results (annual loads, mean temperature, etc.) 

Indoor temperature variation during one day is shown in FIG 2. The difference between heavy- and lightweight 
structures can be clearly seen. Similarly, a spread of several degrees between different sets of results can be seen 
on the graph. The differences are mainly due to different modeling capabilities of the codes, and especially to 
differences in calculating solar gains through windows. However it should be noted that the results concerning 
heating and cooling loads mostly corresponded well with the original range of results from BESTEST. 
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FIG. 3 CE 1A, Case 0A. Analytical test. Isothermal 
exposure. Construction surfaces are tight. The results 
are given as the numerical results compared with the 
analytical consensus solution of the indoor RH. The 
main deviation is due to the way the hourly values are 
given: either actual or mean hourly values. 

FIG. 4 CE 1A, Case 0B. Analytical test. Isothermal 
exposure. Construction surfaces are open. The results 
are here given as the numerical results compared with 
the analytical consensus solution of the indoor RH. 

Results from CE 1A Analytical cases. This exercise applied the simplest conditions in terms of material 
properties and boundary conditions and used properties which facilitate the possibility to solve the case 
analytically. Compared to the original CE1, the following changes were made: Constructions were supposed to 
be made of monolithic aerated concrete with constant/linear properties. Tight membranes on the outside, and in 
case 0A also on the inside, prevented loss of vapour from the building by transport all the way through the walls. 
The exposure was completely isothermal, i.e. the same temperature outside as inside the building. The building 
had no windows. The initial conditions were given, an dthe calculagtoins were run until quasi-steady conditions.. 

It was possible also to solve the cases by using numerical tools. The numerical results are shown in FIG 3 and 
FIG 4 for tight and open surfaces respectively, together with an analytical consensus solution (Bednar and 
Hagentoft, 2005). For this simple case all models used showed a very good agreement with the consensus 
solution. 

Results from CE1B “Realistic” cases. This exercise was the second part of the revised CE 1: The constructions 
were still more simple than in the original CE1 and a more humid location, which is also close to sea level, was 
chosen: Copenhagen. All the envelope constructions were made of monolithic aerated concrete and faced 
outdoor air. There were no coatings or membranes on any sides, not even for the roof. Variations were run either 
for isothermal or non-isothermal conditions, and the non-isothermal conditions were run either with or without 
solar gains in the building. The results were again given as the indoor relative humidity. Given the important 
spread between different numerical solutions, judging the results in terms of “correct” or “not correct” was very 
difficult. It was then preferred to go to Common Exercises 2 and 3 where measured data give target solutions and 
help to validate the modelling approach. 

2.2 Common Exercise 2 - Small climate chamber test 
In order to design residential spaces for indoor humidity control, it is important to investigate the influence of 
ventilation rate and hygrothermal materials. The objective of this common exercise was to simulate the small 
chamber (called “THU test room”) which is located in a climate chamber. Two kinds of experiments were 
carried out. The first examined the influence of ventilation rate, while the second examined the influence of both 
the quantity and location of the hygrothermal materials within the chamber. The moisture buffering material 
investigated was gypsum board (the same gypsum board used in the round robin test of Anbex 4’s Subtask 2).  

Experimental settings. Each experiment consisted of a preconditioning period followed by 6 hours of 
humidification and 12 hours without humidification, during which variations of indoor temperature and humidity 
within the small chamber were evaluated.  
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A schematic view of the test chamber is shown in FIG. 5. The test chamber was located in the climate room at 
the Akita Prefectural University. In the climate room, it is possible to control indoor temperature in a range from 
10 °C to 40 °C. and humidity from 30 %RH to 90%RH. This test chamber is approximately half the size of a 
typical residential room. The internal volume of the test chamber is 4.60 m3 and the area of interior surfaces is 
16.62 m2. The walls, ceiling and floor of the chamber consist of an internal surface of 12.5 mm of gypsum board 
behind which is 100 mm of polystyrene. In order to keep vapour- and airtight conditions in the chamber, an 
aluminium sheet is installed between the polystyrene and the gypsum board. The inlet and outlet for mechanical 
ventilation are located at the bottom and top of two opposite walls respectively. A small ventilation duct is 
connected to the outlet of the chamber to measure the ventilation rate accurately.  

 

FIG. 5 Schematic view of the test chamber, the construction, and the schedule 

Constructions Wall, ceiling and floor constructions are shown in FIG. 5. The gypsum board on the walls, ceiling 
and floor is covered with the vinyl sheet according to the experimental cases in order to prevent moisture 
absorbing and desorbing from the surface. Gypsum board is not installed on the door of the chamber in any of 
the experimental cases. 

Internal Gains and schedules Humidification took place by evaporating moisture from two water reservoirs that 
were heated by an electric heating element. The water reservoir tray was weighed by an electric balance to 
measure the quantity of humidification water. The target moisture production rate was about 20 g/h. The 
experimental schedule is shown in FIG. 5. 

Comparison between simulation and experimental results. In all the cases there was a rise of approximately 
1.5-2°C in the air temperature, due to vapour production. It was correctly represented by all the models except 
one, which assumed almost isothermal conditions. As the power used to heat the water in the reservoirs was not 
known, the participant did not want to “guess” the size of heat source.  

Experimental data were higher than simulated values in all the cases. Moreover:  
• Experimental values agreed well with simulated values in cases which focused on: High ventilation, 

One hygroscopic surface on the wall, and No hygroscopic surfaces.  
• The simulation tools underestimated the peak absolute humidity by approximately 1g/kg in cases with: 

five hygroscopic surfaces, three hygroscopic surfaces on the wall, and 2-5 one hygroscopic surface on 
the ceiling.  

• The simulation tools underestimated the peak absolute humidity by approximately 2g/kg in cases with 
five hygroscopic surfaces and no ventilation, and one hygroscopic surface on the floor. 
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FIG. 6 Comparison between measured values and simulation results (Case 2-3) 

The agreement was better when the impact of moisture buffering is lower (high ventilation and no hygroscopic 
surfaces). The biggest differences occurred in cases with no ventilation and with hygroscopic surface on the 
floor. It may indicate that besides moisture adsorption on hygroscopic surfaces there was some stratification of 
the indoor air. Indeed with no ventilation the air was very still in the test chamber, so there was no mixing. 
Moreover water vapour is lighter than dry air, so it has a tendency to rise, which is a factor to be considered 
when the hygroscopic material is on the floor.   

Conclusion from Common Exercise 2.  Simulation results of humidity in Case 1-3, Case 2-3 and Case 2-6 
indicated comparatively good agreement with the experimental values. When comparing the results of the 
simulation programs, a spread in the range of predicted humidity was noted. The reasons for the differences 
between the experimental and simulation results were not clear but could be due to measurement error and the 
influence of the distribution of indoor temperature 

2.3 Common Exercise 3. Double outdoor climatic chamber test 
The intention of this common exercise was to simulate two real test rooms which are located at the outdoor 
testing site of the Fraunhofer Institute of building physics in Holzkirchen. Tests were carried out during winter 
and spring period with the aim to compare the measurements with the models developed within this Annex 41. 
As moisture buffering material served gypsum boards (the same gypsum board was used as was tested in a round 
robin test from Subtask 2).  

The results of the measurements showed the influence of different materials in comparison to the relative 
humidity in the rooms. In the reference room was used a standard type of gypsum board with a latex paint (sd = 
0.15 m). The walls and the ceiling of the test room were fully coated with aluminium foil. For the experiments 
the test materials can be attached to the walls and ceiling of the room. 

The tests in the rooms were made for the following four steps: 
1. Reference room - Test room only with aluminium foil. During the first test stage no material was attached 
to the walls in the test room and measurements were run for a period of 17 days. This test showed the difference 
between the reference room and the test room with aluminium foil where no sorption effects were possible.  
2. Reference room – Test room with gypsum boards on the walls. In the second step gypsum boards were 
attached on the surface of the walls with aluminium foil in the test room so that it covered the area of the walls, 
this experiment was run for a period of 35 days. For the test were used gypsum boards with or without paint. 
3. Reference room - Test room with gypsum boards on the walls and the ceiling. For this experiment 
additional gypsum boards were installed in the room with aluminium foil, so also the ceiling was covered (in 
total now approximately 65 m²). The test was carried out for a period of 26 days. For this test were again used 
gypsum boards with or without paint. 
4. Same as the previous tests but now also with solar gains in the rooms. In Step 4 the influence of solar 
radiation through the windows are considered and additionally the indoor climate conditions are measured with 
and without a heating system. The test room was empty and only covered with aluminium foil. 
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2.5 Common Exercise 5 
With exercise 5, a practice-related case was introduced within the Annex 41 common exercises. First, the case 
study dwelling is described, then its translation into a common exercise is explained, ending with the reference 
solution and a comparison with the results introduced by the participants. 

 
FIG. 10 The dwelling considered     FIG. 11 Roof section 

The case concerns a low income estate of 48 two storey houses built in the 1970s  (FIG 10). The only difference 
between the 48 dwellings is the orientation of the main façade: 9 NW, 4 NNW, 16 NE, 5 E, 5 SE and 8 SW. All 
had a non-insulated floor on grade, non insulated cavity walls, double glazed aluminium windows on the ground 
floor, single glazed aluminium windows on the first floor and a cathedral ceiling composed of (from inside to 
outside) (1) gypsum boards mounted with open joints, (2) 6 cm thick glass-fibre bats with a vapour retarder on 
the underside, (3) an un-vented air space and (4) corrugated fibre cement plates as roof cover (FIG 11). The two 
floors were linked by an open staircase in the living room. The dwellings were adventitiously ventilated, while 
purge ventilation was provided by opening windows. 

85% of the dwellings showed traces of moisture on the cathedral ceiling, while a large number of inhabitants 
complained about dripping moisture in the bedrooms after cold nights. A detailed inspection of some roofs 
revealed poor installation of the glass-fibre bats, abundant traces of condensation at the underside of the 
corrugated fibre-cement plates, mould on the rafters and traces of condensate at the back of the internal lining. 

The suggested solution was: (1) retrofit the roof in accordance to the better solution; (2) upgrade the overall poor 
insulation quality of the dwellings; (3) equip the dwellings with a purpose designed ventilation system. 

The exercise. The objective of the exercise was not comparing software-based solutions, but evaluating if the 
Annex 41 participants could solve an engineering problem using simplified approaches. For that reason, the 
exercise was kept as a eady state problem, based on a cold week.  

The exercise was split in three successive steps: 
• Step 1: ground floor and first floor heated, daily vapour release constant over the week, air leakage 

through the façade distributed proportional to the surface 
• Step 2: ground floor heated, first floor not, vapour release on both floors given on an hourly basis, air 

buffering only, air leakage through the façade distributed proportional to the window perimeter lengths 
• Step 3: as step 2 plus moisture buffering by the fabric included 

Conclusions from Common Exercise 5.The exercise proved that solving real life problems, using simplified 
methods, is not as simple as expected. One has to know a lot about what could happen before the calculations. 
The simple models used should be physically correct. Nodes for air balance calculations must be chosen 
carefully. Hand calculations of these balances are hard to perform as iteration is needed. Modelling in a 
spreadsheet programme anyhow is easily done. The material or system property values used should be realistic. 
Mass balances for air and vapour must fit. Heat balances should be correctly constructed and solved. And, 
finally, the results have to be interpreted correctly. 



2.6 Common Exercise 6. Two-story test-hut data from Environmental Chamber  
The objective of the experimental study was to generate reliable datasets that will serve first to advance the 
understanding of the whole building response to heat, air, and moisture (HAM), and secondly to validate 
ongoing and future numerical models. For this objective, tests were carried out in a two-story test-hut that was 
assembled inside the Environmental Chamber at Concordia University.  

In the first stage, the test rooms were isolated and the HAM transfer and moisture buffering parameters were 
monitored. Each room was tested independently to study the moisture buffering capacity of two finishing 
materials and furniture, and to study airborne moisture distribution within a room. These tests are referred herein 
as the “single room” tests. In the second stage, the upper and lower rooms were coupled by a horizontal opening 
to study the inter-zonal HAM transport through this opening and the resulting airborne moisture distribution in 
both rooms. These tests are referred herein as the “two-room” tests. 

Environmental Chamber and test-hut construction The Environmental Chamber was used to provide the 
desired outdoor temperature. The temperature condition in this large chamber was controlled by two cooling 
systems and two electric heaters. A blower (5.7 m3/s) and small portable fans provided the air circulation in the 
large chamber. 

A two-story test-hut was built inside the Environmental Chamber (FIG 11A). The test-hut consisted of two 
rooms with internal dimensions of 3.62m x 2.44m x 2.43m each (FIG 11b). The test-hut represents typical wood-
framed construction of Canadian houses. In each floor, a small foyer was built adjacent to the north wall to 
reduce disturbance to the test rooms when doors were opened to set new conditions inside the rooms and to 
house part of the data acquisition system. 

The east and west walls (see FIG 11b) were used to study the moisture buffering capacity of two different 
finishing materials, uncoated gypsum board and pine paneling. The rest of the indoor surfaces were covered with 
aluminum sheets (0.8 mm thickness) to avoid any additional moisture buffering effect. For the non-hygroscopic 
cases, the east and west walls were covered with polyethylene sheets (0.15 mm thickness). 

Materials used in this study were generic. Hygrothermal properties of similar materials were tested at IRC 
(NRCC). Also, surface mass transfer coefficients for uncoated gypsum board and pine paneling were measured 
at the University of Saskatchewan. 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 12 a) Schematic drawing of the two-story test-hut inside the Environmental Chamber. b) Interior 
dimensions of the two-story test-hut and name of the test-hut components (dimensions are in meters) 

Air leakage of the test-hut was measured at operating conditions. Air leakage varied from 0.014 to 0.044 h-1 for 
single room tests, and from 0.018 to 0.027 h-1 for two-room tests. 

Conclusions from Common Exercise 6. Full-scale tests in single rooms and two rooms coupled vertically by a 
horizontal opening were carried out in an environmental chamber. The aim of these tests was to generate 
complete datasets that allow the study of the moisture buffering capacity of two finishing materials and furniture, 
airborne moisture distribution within the rooms and inter-zonal HAM transport through horizontal openings. In 



total, 20 datasets are provided in electronic format, which may be used to validate ongoing and future Whole 
Building HAM and CFD models.  

A complete report with further details and explanations of the experimental setup, test conditions, details of the 
constructions, specifications of sensors and instruments, and the contributions from the University of 
Saskatchewan (Experimental determination of the convective mass surface transfer coefficients for gypsum 
board and pine paneling) and from IRC (Moisture buffering capacities of five North American building 
materials) are provided in the electronic appendix. 

3. Some conclusions to draw from all common exercises  
The Common Exercises have illustrated the complexity of whole building hygrothermal modelling. It was 
possible to find some consensus among solutions only for an extremely simple isothermal case: a monolithic 
building without windows and no contact with the ground. 

But the Common Exercises have stimulated some developments of different software as well as some original 
use of already existing programs. Mainly in CE0 some energy models were improved in more moisture oriented 
programs, and in CE1 moisture modelling was enhanced in more energy oriented tools. The improvement of the 
models was noticed in CE3, when the obtained agreement was much better that in CE1.  

All common exercises showed that there is a need for some consensus data concerning heat and moisture 
properties of the materials, and more generally about all the input data. Same remark concerns the outputs: as 
energy and moisture are closely influenced by each other, some spread in relative humidity values can be easily 
explained by the spread in temperature values. Therefore moisture content should be preferred over relative 
humidity for comparison purposes.  

Also in such an integrated modelling all elements are very important: For example some differences in the 
indoor relative humidity may be induced by modelling of solar gains or long wave radiations, and not at all by 
the differences in the moisture model. Moreover some participants stressed the importance of wall discretization. 
Differences are important for energy vs. moisture modelling; they can lead to numerical divergence.  

A crucial question was raised during the discussion: how can we evaluate if the solution is GOOD or BAD? This 
is especially important when there are no measured data. In such cases, could one say that the consensus 
solutions are good? The question remains open. 

Globally the most encouraging results of all the Common Exercises are:  

• Existing models have been “tested” for their suitability for the whole building hygrothermal simulation  
• New models have been created, including upgrading and developing existing models to be able to 

handle also new aspects in “H”, “A” or “M”. 
• Several existing computational tools were found to be able to deal with coupled heat, moisture and 

ventilation problems at the whole building level - they all give similar results. 
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