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Stretching DNA in polymer nanochannels

fabricated by thermal imprint in PMMA
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Abstract. We present results regarding the fast and inexpensive fabrication of
polymer biochips for investigating the statics and dynamics of DNA confined in
nanochannels. The biochips have been fabricated by means of nanoimprint lithography
(NIL) in low molecular weight polymethyl methacrylate (PMMA) using a 4 inch
diameter two-level hybrid stamp. The fluidic structures were sealed using thermal
polymer fusion bonding. The stamp has nanometer- and micrometer-sized protrusions
defined in a thermally grown SiO2 layer and the sol-gel process derived duromeric
polymer Ormocomp respectively. The stamp is compatible with molecular vapor
deposition (MVD), used for applying a durable chlorosilane based antistiction coating,
and allows for imprint up to a temperature of 270◦C. The extension of YOYO-1 stained
T4 GT7 bacteriophage DNA inside the PMMA nanochannels has been experimentally
investigated using epi-fluorescence microscopy. The measured average extension length
amounts to 20% of the full contour length with a standard deviation of 4%. These
results are in good agreement with results obtained by stretching DNA in conventional
fused silica nanochannels.
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1. Introduction

Currently, lab-on-a-chip (LOC) applications with passive nanofluidic structures are

being utilized for investigating DNA confined inside structures that have dimensions

comparable to the biomolecule persistence length (i.e. P = 50 nm [1]). The work

entails real-time contour length measurements of DNA stretched inside nanochannels [2,

3, 4], filtering of multi-disperse DNA samples [5], investigation of DNA diffusion

in nanoslits [6], entropic recoil effects observed at the interface between micro- and

nanofluidic structures [7] and restriction mapping inside nanochannels using restriction

endonucleases [8]. The major advantage of incorporating nanofluidic structures is the

possibility of probing and investigating single DNA molecules on the appropriate length

scale. This allows for extracting information which is not accessible when the DNA

assumes its bulk solution coiled-up conformation.

(a)

(b)

Figure 1. (a) Schematic of a part of the fabricated two-level hybrid stamp showing the
V-shaped micrometer-sized protrusions (width of 50 µm and height of 1 µm) defined
in Ormocomp and the nanometer-sized protrusions (width and height of 250 nm and
a pitch of 750 nm) defined in a dry thermal SiO2 layer. The distance between the two
V-shaped protrusions is 500 µm. The 4 inch stamp allows for imprinting four identical
biochips with a size of 2.54 cm × 2.54 cm. The inset shows an artistic 3D impression
of the stamp. (b) Schematics showing the conformation of linear DNA when confined
inside the PMMA nanochannels. The DNA molecule stretches out in a series of blobs.
The extension length Lext is proportional to the total contour length L of the molecule
in the de Gennes regime where the DNA persistence length P is smaller than the
cross-sectional dimensions of the confining channel.
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Conventionally, planar processing of fused silica substrates has been employed

for making these LOC applications since this offers an easy route towards fabricating

devices that implements fluidic structures with varying lateral and vertical dimensions.

However, this approach is both slow and expensive which represents an inherent

drawback of the fused silica based fabrication scheme. Nanoimprint lithography

(NIL) [9], also known as thermal imprint, is basically a process in which the inverse

topology of a master stamp is transferred to a polymer, which may be duromeric or

thermoplastic, by means of plastic deformation. During the past decade, extensive

research has been conducted within this field [10, 11], thereby introducing NIL as a

highly versatile and competitive platform for micro- and nanofabrication. Furthermore

new elaborate variants such as roll-to-roll imprint [12] and combined-nanoimprint-and-

photolithography [13] have emerged. The imprinted polymer layer may serve as an

etch mask, a template for lift-off processes or as a functional part of polymer LOC

applications, the latter being the subject of this article. Utilizing NIL to fabricate

cheap and disposable polymer devices in a single imprint is highly appealing. Stamps,

for producing polymer devices with fluidic structures having lateral dimensions ranging

from the nanometer to the micrometer scale, are easily fabricated using a mix-and-match

process [14]. From the fabricational point of view it is less trivial to produce a stamp

where not only the width but also the height of the protrusions varies. We present

a fabrication scheme for making a 4 inch two-level hybrid stamp. Using the stamp,

polymethyl methacrylate (PMMA) biochips, containing microfluidic channels for bulk

sample transport and nanofluidic channels for stretching DNA, have been produced in

a single imprint step followed by thermal polymer fusion bonding. As thermal imprint

in PMMA requires a temperature in excess of the glass transition temperature of 105◦C
and high imprint forces [9], the utilized stamp must be hard and rigid which effectively

prohibits the use of elastomeric materials such as polydimethylsiloxane (PDMS)— an

elastomer that has found widespread use as a mold material capable of replicating

nanoscale features in soft lithography processes [15]. A schematic showing part of the

stamp may be seen in figure 1 (a). Two V-shaped protrusions, having a width of 50 µm

and a height of 1 µm, are bridged by an array of nanometer-sized protrusions having

a width and height of 250 nm. As illustrated in figure 1 (b), DNA molecules, confined

inside the polymer nanochannels, will stretch out in a series of blobs and the extension

length is proportionally related to the overall contour length of the confined molecule [2].

2. Fabrication

The overall process flow for fabricating the polymer biochips is composed of four major

steps as seen in the schematic presented in figure 2. Initially, a 250 nm thick dry thermal

SiO2 layer was grown on a 4 inch silicon substrate with a thickness of 500 µm. The

thickness of the oxide layer determines the final height of the nanoscale protrusions. The

oxidized wafer was dehydrated on a hotplate at 200◦C for 10 min before spin coating

the chemically amplified resist (CAR) formulation SU-8 (MicroChem Corp., SU-8 2002
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diluted with pure cyclopentanone to give a 14.5 wt% solution). SU-8 is a highly sensitive

negative resist with a resolution of approximately 24 nm however, the relatively low

contrast prohibits the use of SU-8 if the pitch is below 300 nm [16]. A pre-exposure

bake at 90◦C for 1 min was performed to drive out the solvent and subsequently 100 kV

electron beam lithography (EBL using JEOL-JBX9300FS) was carried out in order to

define the array of 250 nm wide and 500 µm long lines in the 280 nm thick SU-8 layer.

An optimal dose of 10 µC/cm2 was used. The exposed wafer was given a post-exposure

bake at 90◦C for 1 min before development in propylene glycol monomethyl ether acetate

(i.e. PGMEA). After development the wafer was flushed with isopropanol. Before the

oxide etch, the wafer was subjected to a descumming process [17] in order to remove

residual SU-8 in unexposed areas. The unmasked SiO2 was removed in a CF4/CHF3

based reactive ion etch (RIE) process [14] (STS C010 Multiplex Cluster System) which

has an oxide etch rate of 33 nm/min, a selectivity between SiO2 and SU-8 of 1.6 and a

selectivity between SiO2 and silicon of 6. Defining the array of nanoscale protrusions in

a dry thermal SiO2 layer has two distinct advantages: (i) The thickness of dry thermal

oxides may be controlled on the nanometer scale by changing the growth temperature

and time and furthermore the 4 inch wafer scale thickness variation is negligible [18]

and (ii) due to the relatively high SiO2-Si selectivity, the silicon substrate functions as

an effective etch stop thus minimizing loading effects from the RIE process.

(a)

(b)

(c)

(d)

Figure 2. Schematic of the process flow for producing the polymer biochips: (a)
Dry thermal oxidation and subsequently EBL in SU-8 and RIE to define the array of
nanoscale protrusions, (b) spin coating Ormocomp and performing UVL and thermal
curing to define V-shaped micrometer-sized protrusions, (c) deposition of chlorosilane
based antistiction coating on the stamp using MVD and NIL in 50 k PMMA and (d)
sandblasting liquid access holes in the imprinted wafer followed by thermal polymer
fusion bonding of a Pyrex substrate with a thin 50 k PMMA layer.

The V-shaped micrometer-sized protrusions were defined in Ormocomp (micro

resist technology GmbH, diluted with ma-T 1050 to give a 29 wt% solution) which

is a silicon containing sol-gel process derived duromeric ORMOCERr material [19].

Ormocomp has three advantages as a material for fabricating NIL stamps: (i) It behaves

like a negative CAR formulation and may therefore be patterned using ultraviolet

lithography (UVL) and thermal curing, (ii) a durable antistiction coating may be applied

using molecular vapor deposition (MVD) and (iii) the cured structures should ideally

show no degradation at temperatures below 270◦C. Before spin coating Ormocomp, the
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wafer was dehydrated at 200◦C for 10 min. An approximately 1.1 µm thick Ormocomp

layer was subsequently spin coated and the wafer was pre-exposure baked at 100◦C for

5 min. As the uncured Ormocomp is a viscous liquid, UVL (EVC Aligner AL6-2) was

performed in proximity mode with a gap between mask and substrate of 5 µm. A dose

of 160 mJ/cm2 was utilized. Afterwards the wafer was post-exposure baked at 90◦C
for 3 min before developing in Ormodev (micro resist technology GmbH) and flushing

with isopropanol. To increase the hardness and substrate adhesion of the Ormocomp

structures, a flood exposure, using a dose of 1000 mJ/cm2, was carried out and the wafer

was left on a hotplate at 150◦C for 3 h. The final Ormocomp protrusion height was 1 µm.

Before thermal imprint, a durable antistiction coating was applied using MVD (MVD-

100, Applied Microstructures Inc.). In this process, a conformal monolayer is deposited

when the chlorosilane based precursor (1H,1H,2H,2H-perfluorodecyltriclorsilane) reacts

covalently with hydroxyl groups, formed during an initial oxygen plasma treatment,

on the substrate [20]. The self-assembled monolayer increases the surface energy of

the stamp thereby preventing adhesion of polymer material during imprint. Scanning

electron microscopy (SEM) images of the fabricated stamp may be seen in figure 3 (a).

(a) (b)

Figure 3. (a) SEM image of the fabricated stamp. 10 nm Au has been deposited
prior to inspection and the scale bar is 5 µm. The image shows the interface between
a micrometer-sized protrusion defined in Ormocomp and the array of nanometer-
sized protrusions defined in a dry thermal SiO2 layer. The inset shows a zoom-in
on the slightly isotropic nanometer-sized SiO2 protrusions having a width and height
of 250 nm. (b) SEM image showing an imprint in 50 k PMMA. The image shows the
interface between micro- and nanofluidic channels. 10 nm Al has been deposited prior
to inspection and the scale bar is 10 µm. The inset shows a zoom-in on the imprinted
nanochannels.

Thermal imprint was performed in PMMA (MicroChem Corp., 50 k PMMA

dissolved in pure anisole to give a 30 wt% solution) which is a well known thermoplastic

polymer introduced for NIL by Chou et al. in their pioneering work [9]. PMMA has a

water absorption of 0.3% [21], a glass transition temperature of Tg = 105◦C [9] and a

high optical transmission and low autofluorescence at wavelengths in the interval 400–

1000 nm [22]. The relatively low water absorption and autofluorescence of PMMA makes

it a suitable material for producing biochips. Prior to imprint, a 2.8 µm thick PMMA
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layer was spin coated on a silicon substrate which had been dehydrated at 200◦C for

10 min. In order to drive out the solvent, the thin film coated wafer was left on a

hotplate at 150◦C for 30 min. Thermal imprint (EV Group 520 Hot Embosser) was

performed at a temperature of 190◦C using a piston force of 10 kN and an imprint time

of 15 min. The chamber pressure during imprint was approximately 10−2 mbar and the

stamp was released from the imprint manually at 60◦C. After the NIL process, liquid

access holes, with a diameter of 1 mm, were sandblasted through the silicon substrate

using a dedicated micro-etching tool (Microetcher II, Danville Engineering). In order to

protect the imprint, 70 µm thick Nitto SWT blue film with CO2 laser marked holes was

used as a masking material [18]. SEM images of the imprint are presented in figure 3 (b).

The imprinted micrometer- and nanometer-sized features have a high pattern replication

fidelity.

A vast number of techniques for sealing polymer fluidic applications have been

developed. These include solvent or oxygen plasma assisted bonding, lamination and

thermal polymer fusion bonding [23, 24, 25, 26, 27]. Furthermore Guo et al. introduced

a simple technique in which channel structures are sealed by the stamp itself in a NIL

process relying on incomplete cavity filling [28]. The technique was used for fabricating

sealed nanochannels with a minimum width and height of 75 nm and 120 nm respectively.

However, the method clearly does not allow for reusing the rigid glass or silicon template

and this represents an inherent drawback. Furthermore the technique is incompatible

with the fabrication of homogenous all-polymer nanochannels. We have utilized a simple

thermal polymer fusion bonding scheme in order to seal the imprinted fluidic structures.

PMMA (Microchem Corp., 50 k PMMA dissolved in pure anisole to give a 10 wt%

solution) was spin coated on a 4 inch Pyrex substrate which had been dehydrated at

200◦C for 10 min. The thin film coated Pyrex substrate was subsequently left on a

hotplate at 150◦C for 1.5 min to drive out the solvent. To prevent degradation of the

imprinted structures, bonding should be performed using a low temperature and piston

force. Thermal polymer fusion bonding is believed to be mediated by polymer chain

entanglements at the bonding interface [29]. This suggests that temperature is the vital

parameter in obtaining a durable high strength bond, whereas the applied piston force

should just be sufficient as to ensure conformal contact between the thin film coated

substrates. Experimental investigations of thermal polymer fusion bonding suggests,

that an optimal bond strength of ∼15 MPa can be achieved at a temperature ∼15%

above Tg [27, 29]. For our specific application, the preservation of the imprinted fluidic

structures is more important than an exceedingly high bond strength. Therefore bonding

(EV Group 520 Hot Embosser) was carried out at Tg = 105◦C using a piston force of

3 kN and a bonding time of 10 min. The bond strength has not been investigated

(e.g. by pull-tests) however, the bond is durable enough to withstand dicing and no

indications of liquid leakage has been observed during DNA extension measurements.
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3. DNA preparation and buffer chemistry

In this article, the entropically induced stretching of T4 GT7 bacteriophage DNA

(Nippon Gene Co., Ltd.) inside PMMA nanochannels was investigated. T4 DNA

has 166 kilobase pairs and assuming a spacing between base pairs of 0.34 nm [30]

the fully stretched contour length is L = 56.4 µm. The DNA was stained using the

bisintercalating dimeric cyanine dye YOYO-1 (Molecular Probes) at a ratio of 1 dye

molecule per 5 base pairs. The bisintercalating binding mode has been illustrated in

figure 4. Upon DNA binding, the fluorescence of YOYO-1 is enhanced by a factor

of 3000 [31] making it ideal for high sensitivity epi-fluorescence measurements. The

influence of YOYO-1 bisintercalation on the contour and persistence length of DNA

has been experimentally investigated [32, 33, 34]. These studies suggest that L and P

are increased by 30% at a saturating staining ratio of 1 dye molecule per 4 base pairs.

The increase in L is intuitively understood since YOYO-1, upon binding, causes a local

deformation of the double helix. The increase in P is more subtle. The intercalation

event causes (i) a local mechanical increase in the double helix rigidity which increases P

and (ii) a reduction of the electrostatic interactions between segments of the negatively

charged DNA backbone, due to the positive charge of YOYO-1 [35], which serve as

to reduce P . At our staining ratio, which is 80% of full dying, we will assume a 24%

increase in L and P thus resulting in Ldye ≈ 70 µm and Pdye ≈ 62 nm.

w

Y
O
Y
O
-1

weff

Figure 4. Schematic illustration of the bisintercalation of the fluorescent dye YOYO-
1. Furthermore the inherent double helix width w and the effective width weff are
shown on the figure.

The loading buffer, used for pre-wetting the polymer chips, consisted of 0.0045 M

tris-base, 1 mM ethylenediaminetetraacetic acid (i.e. EDTA) with 0.0045 M boric acid

(commonly abbreviated 0.05× TBE) and 50 mM NaCl. The experimental buffer,

prepared prior to measurements, consisted of YOYO-1 stained T4 DNA dissolved in the

loading buffer and 3% β-mercaptoethanol, 4 mg/ml β-D-glucose, 0.2 mg/ml glucose-
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oxidase and 0.04 mg/ml catalase was added to suppress photo-bleaching of YOYO-1

and photo-nicking of DNA [4]. The intrinsic width w of the DNA double helix is

approximately 2 nm [30]. However, the effective width weff , taking electrical screening

of the negative DNA backbone by ions in the buffer solution into account, is highly

dependant on the monovalent salt content and in a 50 mM NaCl solution, an effective

width of 7.4 nm is predicted [36].

4. DNA extension measurements

In the language of polymer physics, DNA is a semiflexible self-avoiding heteropolymer

which is best described by the Kratky-Porod model [37]. The stiffness of the double

helix makes DNA less flexible than ordinary ideal-chain-like polymers and the negatively

charged phosphate groups on the backbone causes electrostatic repulsions between

neighboring segments. In bulk solution, genomic length stained DNA assumes a coiled-

up conformation with a characteristic radius of gyration Rg =
(
PdyeweffL3

dye

)1/5
[38].

Therefore the YOYO-1 stained T4 DNA, suspended in the experimental buffer, may

be assumed to have Rg ≈ 2.75 µm. Confining DNA inside fluidic structures where the

geometric average of the cross-sectional dimensions D =
√

hw, h and w is the height and

width, is much smaller than Rg, prohibits the retainment of the coiled-up conformation.

In the case where Rg À D À P , often referred to as the de Gennes regime, the DNA

molecule stretches out in a series of blobs along the confining nanochannel as seen in

figure 1 (b). Based on scaling arguments, de Gennes showed that the extension length

Lext is given by [39]

Lext
∼= Ldye

(
weffPdye

D2

) 1
3

. (1)

As seen from (1), Lext is proportional to Ldye and therefore stretching of DNA inside

nanochannels provides (i) a powerful method for determining the DNA size, (ii) the

possibility of probing interaction sites of proteins and enzymes and (iii) valuable

information on the mechanical properties by observation of, for example, the thermal

fluctuations of confined DNA. Based on (1), the expected extension length of confined

T4 DNA is Lext ≈ 13.6 µm

Experimental epi-fluorescence measurements on confined T4 DNA were conducted

on a modified Nikon microscope (Eclipse TE2000-U) coupled to an EMCCD camera

(CascadeII, Photometrics). A 60× N.A.1.0 water immersion objective (Nikon) and a

1.5× lens (Nikon) fitted prior to the camera were used. Furthermore a metal halide

illumination source (Prior Lumen 200W), coupled to the microscope via a liquid light

guide, and a FITC filter (Ex: 465-495, DM: 505, BA: 515-555, Nikon) were used for

excitation and filtering respectively. The polymer biochip was immersed in loading buffer

and degassed for several days in order to ensure total wetting of the fluidic structures.

Prior to measurements, the experimental buffer was injected into the liquid access

holes. Bulk sample transport in the V-shaped microfluidic structures and translation of
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stretched DNA molecules along nanochannels was accomplished by pumping. A Single

DNA molecule was pulled into a nanochannel and the extension was recorded at three

specific locations 100, 250 and 400 µm from the channel entrance. This was done for 10

different molecules. The confined DNA was imaged at a rate of 10 frames per second and

a total of 500 frames were acquired during each measurement. The extension length Lext

of a given DNA molecule in a single frame was extracted using a data analysis scheme

presented in [2]. The average extension length Lav was subsequently taken as the mean

of the 500 different values of Lext. Experimental results are presented in figure 5.
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Figure 5. (a) Graphs showing the average extension length Lav of 10 different T4
DNA molecules. Lav have been measured 100, 250 and 400 µm from the nanochannel
entrance for each molecule. The inset shows a typical intensity time-trace of a T4
molecule confined inside a PMMA nanochannel. The scale bar is 10 µm and the
time span is 50 s. (b) Histogram of the measured extension lengths Lext of DNA
molecule 2 positioned 100 µm from the nanochannel entrance. The average extension
length, based on analysis of 500 consecutive frames, Lav = 13.4 µm and the standard
deviation σav = 1.0 µm. The dashed line shows the Gaussian curve fit. (c) Histogram
of the measured average extensions lengths Lav presented in (a). The overall average
extension length is 13.5 µm with a standard deviation of 0.5 µm.

Graphs showing Lav measured 100, 250 and 400 µm from the nanochannel entrance

for 10 different molecules and a representative fluorescence timetrace are shown in

figure 5 (a). As seen from the timetrace and the histogram in figure 5 (b), thermal

fluctuations of the confined DNA leads to a Gaussian distribution in the measured

values of Lext when considering single molecules. The mean value of the distribution is

well described by (1) and in addition (2) [2] may be used for estimating the standard

deviation σav due to small thermal fluctuations around Lav.

σav
∼=

√
4Ldye

15
(PdyeweffD)

1
3 (2)
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(2) predicts σav ≈ 1 µm which is in excellent accordance with our experiments. Since the

uncertainty in the average extension length uav = σav/
√

N , where N is the number of

frames analyzed, the influence of thermal fluctuations may be suppressed by analyzing

multiple frames. Ideally, this approach devises a route towards determining the contour

length, and hence the number of nucleotides, with an arbitrary precision. In our

experiments, where 500 consecutive frames were analyzed, uav ≈ 45 nm corresponding

to 132 base pairs. However, as seen from figure 5 (a) and (c) there is another spread,

not related to thermal fluctuations, in the measured values of Lav. The overall measured

average extension length and standard deviation is 13.5 µm (20% of Ldye) and 0.5 µm

(4% of Ldye) respectively. This spread is most likely to be caused by (i) variations in

the cross-sectional dimensions of the confining polymer nanochannels, (ii) variations in

the degree of interaction between confined DNA and the bounding surfaces or (iii) the

existence of several stretched DNA conformations. Due to potential stamp bending in

the thermal imprint process and nanochannel sagging during thermal polymer fusion

bonding, it may initially be suspected that the cross-sectional dimensions of the polymer

nanochannels are not constant. This would give rise to systematic entropically induced

variations in the average extension length according to (1). However, measurements

on DNA stretching in fusion bonded fused silica nanochannels [2, 3], that have a high

degree of uniformity in terms of cross-sectional dimensions, exhibit an identical variance

in the measured values of Lav when considering multiple stretched DNA molecules. The

observed spread in the experimentally measured values of Lav in our measurements, is

therefore not assigned to variations in the cross-sectional nanochannel dimensions. The

observed spread in our measurements, and those presented in [2, 3], could be interpreted

in terms of the existence of multiple semistable stretched DNA conformations. This in

turn implies, that even though the random uncertainty, due to thermal fluctuations, may

be minimized by analyzing multiple frames, the overall maximum resolution could be

governed by transitions between different molecular conformations rather than thermal

fluctuations.

5. Conclusion

We have developed a fabrication scheme for producing a two-level hybrid stamp

composed of bulk silicon, dry thermal SiO2 and Ormocomp. The stamp may be

antistiction coated using MVD and allows for performing thermal imprint up to a

temperature of 270◦C. Polymer biochips have been fabricated by NIL in 50 k PMMA

and thermal polymer fusion bonding. The imprinted structures have a high pattern

replication fidelity and no signs of stamp degradation have been observed after a

total of 25 imprints. The entropically induced stretching of YOYO-1 stained T4 GT7

bacteriophage DNA inside PMMA nanochannels was investigated. An average extension

length corresponding to 20% of the full contour length was observed. This value is in

good agreement with an estimate based on de Gennes’ model for a confined semiflexible

self-avoiding polymer. The overall standard deviation in the measured average extension
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lengths of multiple confined DNA molecules is 4% of the full contour length which is

in excellent accordance with similar measurements on DNA confined in fused silica

nanochannels. From the presented results it is evident, that inexpensive and disposable

polymer biochips represent a competitive alternative to conventional fused silica based

applications when it comes to investigating DNA molecules confined inside nanofluidic

structures. The polymer biochips may be fabricated using a simple imprint-and-bond

scheme which is highly suitable for large scale production. Utilizing polymers for

fabricating nanofluidic applications furthermore offers the additional benefit of allowing

for an exploitation of the rich diversity in the chemistry and physical properties of

commonly known thermoplastic polymers.
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