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Abstract

This paper describes a new method for resistant and robust align-
ment of sets of 2D shapes wrt. position, rotation, and iso-tropical scaling.
Apart from robustness a major advantage of the method is that it is for-
mulated as a linear programming (LP) problem, thus enabling the use
of well known and thoroughly tested standard numerical software. The
problem is formulated as the minimization of the norm of a linear vector
function with a contraint of non-zero size. This is achieved by using the
city block distance between points in the plane. Unfortunately the city
block distance is dependent on the orientation of the coordinate system,
i.e. it is not rotationally invariant. However, by simultaneously minimiz-
ing the city block distances in a series of rotated coordinate systems we
are able to approximate the circular equidistance curves of Euclidean dis-
tances with a regular polygonal equidistance curve to the precision needed.
Using 3 coordinate systems rotated 30° we get a 12 sided regular polygon,
with which we achieve deviations from Euclidean distances less than 2 %
over all directions. This new formulation allows for minimization in the
Li-norm using LP. We demonstrate that the use of the Li-norm results
in resistance towards object as well as landmark outliers. Examples that
illustrate the properties of the robust norm are given on simulated as well
as a biological data sets.

1 Introduction

The study of the geometry of classes of objects represented by sets of (cor-
responding) landmark points is usually concerned with the variation up to a
given transformation. The most common set of transformations applied is the
Euclidean similarity transformation, i.e. translation, rotation, and iso-tropical
scale. Using Kendall’s (1) intuitive definition the shape of an object is the
geometrical information that remains when effects due to Euclidean similarity
transformations are filtered out. Analysis of the shape variability across a set



of examples requires the alignment of the shapes to a common frame of refer-
ence. This is usually obtained by means of a generalized Procrustes analysis
(GPA) (25 3; 4). The GPA consists of minimizing the sum of squared distances
between corresponding landmarks on all examples and a reference shape with
respect to the reference shape and similarity transformations of all example
shapes, i.e. GPA is a least squares estimator.

Several problems may occur when aligning a set of shapes. Methods for
extracting landmarks - be they manual, semi-automated, or fully automated -
may result in missing points on some shapes, landmark outliers, and even errors
in the correspondence between landmarks. Object outliers may also be present.

Least squares methods are not particularly good at handling these situations.
Other alignment procedures that handle these problems are therefore necessary.
The insensitivity to outliers - landmark or object - is usually referred to as
resistance, and insensitivity to correspondence errors, i.e. model breakdown, is
called robustness (5).

Other work on robust and resistant alignment has been done. Siegel (6; 7)
used double repeated medians to achieve robust alignment in order to study the
differences in shapes. Dryden and Walker (8) used S-estimators. In more gen-
eral settings Huttenlocher (9) used Hausdorft distances between point sets, and
Fischler and Bolles (10) based the alignment on consensus of random samplings
of subsets of landmarks (i.e. the RANSAC procedure).

A standard way of achieving resistance is to avoid the quadratic penalty of
least squares by applying a linear penalty. We will formulate the 2D alignment
problem as the minimization of the norm of a linear vector function. This
formulation is particular to 2D and does not extend to landmarks in 3 or more
dimensions.

Applying the Lo-norm will result in the usual least squares 2D GPA. Using
the Li-norm will result in the minimization of the city block distance between
corresponding landmarks of all examples and a reference shape. This minimiza-
tion problem is formulated as a linear programming (LP) problem. However, the
use of the city block distance obviously introduces dependence of the orientation
of the chosen coordinate system. In order to achieve rotational independence we
use a linear approximation to Euclidean distance based on averages of city block
distances in equi-angularly rotated coordinate systems. In the Ph.D. thesis by
Fikret Er (11) initial work on Lj-norm 2D GPA is done using the Expectation
Maximization (12) algorithm. In (13) Ordinary L; Procrustes Analysis is shown
to suffer from a non-uniqueness problem.

The main contribution in this work is the formulation of the Li-norm 2D
GPA as an LP problem. Thus allowing the use of standard, numerically stable,
and well understood algorithms guaranteeing to find the global optimum.

2 The alignment task

Let there be given L training examples for a given shape class, and let each
example be represented by a configuration of K > 3 2D landmark points not



all coincident. Let these configurations be represented by complex vectors

71 = (vp +iyn, -, o +iyig), 1=1,...,L.

Assume the generative model (4)
1

2 =—(p+e) = b, (1)
a

i.e. each shape is modelled as a pertubation (¢, € CX) of a modal shape —
= (p1,...,ux)? € CK — that subsequently undergoes a Euclidean similarity
transformation. a; € C represents 2D translation and b; € C scale-rotation.

The alignment problem in 2D (2) consists of estimating the modal shape
and the set of Euclidean similarity parameters for each shape so as to minimize
the size of the residuals, ¢, [ = 1,...,L.. The modal shape can be recovered
up to a Euclidean similarity transformation, and the procedure is called a gen-
eralized Procrustes analysis (GPA). The least squares solution to GPA consists
of minimization of

L K
GPA = ZZ|al2lk+bl — % (2)
1=1 k=1
where the complex norm is given by |z;x| = ‘/%21@ + yfk. In order to avoid the
degenerate solutiona; = b; = 0,1l =1,..., L and p = 0 it is customary to require

that the mean shape, p is centered and of unit size (5), i.e. i = % 22(21 pr =0
and size S(pu) = ||p — plk] = 1.

Let d; and b; be the estimates of pose parameters and fi, the estimated
mean shape resulting from minimization of GPA in Eq. (2). In some situations
it is useful to fix the modal shape at the average scale-rotation (@) and possibly

translation (b) of the set of sample shapes, i.e.

poo= apy+b
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Alternative 1. As an resistant alternative to using least squares we may choose
to minimize the sum of absolute Euclidean lengths of the residuals, i.e. minimize

L K
RGPA; = Z Z \alzlk + b — uk\ (3)

1=1 k=1
w.r.t. the modal shape and Euclidean similarity transformation parameters.
Alternative 2. As a second alternative we may choose to minimize the sum of
city block lengths of the residuals, i.e. minimize

L K

RGPA, = Z Z |[Re{a;zir + br — pr }| + [Im{aizig + by — pi }H, (4)
=1 k=1



where Re and Im denote real and imaginary part of a complex number, respec-
tively.

2.1 Formulation of the RPGA,, minimization problems

Using a multiple linear regression formulation as described in (4) the alignment
problem — RPGA, — consists of the minimization of a vector function F w.r.t.
the L1 norm.

xrn —yn 1 0
- 2,0, S
F = .“_ 2202 where Z; = zik —yix 10
: yu w0 1
u—Z;0p
| ik Tk 0 1 |

wrt. © = [Re{a;},Im{a;},Re{b;},Im{b;}]T, | = 1,...,L and p. The lth
aligned shape is given by Z;0;. Rewriting F, we see that it is linear in the
parameters, ¢ = [@1,0,,...,0r, u|"

b

Z, 0 ... 0 -I gl
0 Z, ... 0 -I 2
F(¢)=| . . : : (5)
: . : o,
0 ... ... Z; -1
g m

An choice of parameters that minimizes any norm of F is to choose ¢ = 0, that
is, collapse everything to a point. The minimization needs to be constrained to
not allow this degenerate solution. A set of restrictions - linear in the parameters
- are

L L L L
ZRe{al} =0 Zlm{al} =y ZRe{bl} =c3 Zlm{bl} =cy
=1 =1 =1 =1

In our examples we will use ¢c; = L, co = 0, and ¢3 = ¢4 = 0, which means
that the modal shape will be centered and have the average scale and rotation
of all original objects.

2.1.1 Formulating the LP problem

The minimization of the norm of F is equivalent to finding a vector o =
[01 02 ... 02kr] whose elements bound the values of the alignment function,
F(¢) of Eq. (5), that is |Fn(@)| < 0m, m =1,...,2KL, or equivalently

—Om S Fm(¢) S Om, (6)



such that the following criterion are minimized

RGPAz: ) om (7)

The values of o, take on the role of the absolute values of the residuals in
each coordinate. Expanding the indices Eq. (6) can be stated as

—0zk < zieRe{ar} — yuIm{ar} + Re{b;} — Re{pr} < oan
—Oyik < yiRe{a;} + zipIm{a;} + Im{b;} + Re{us} < Oylk-

2.1.2 Properties of the solutions

The equidistance curve for the Manhattan distance applied in Eq. (4) are shown
in Fig. 1(a) A strong directional dependency is obvious. In general this depen-
dency may render the alignment of sets of shapes dependent on the choice of
coordinate system. This is obviously undesirable. However, under certain mod-
els rotational invariance is none the less possible.

From the underlying GPA model in Eq. (1) we have

€k = azk + by — (8)

If the distribution of the €’s for fixed [ is circular symmetric then the a change
of coordinate system will not change the optimum of the objective function for
the RGPA, criterion.

Let us assume that we have determined the optimal parameters across all
coordinate systems. For RGPA, at the optimum the coordinates of each py will
be the medians of the distribution of the residuals along the real and imaginary
axis. If the distribution is circular symmetric these medians will not change as
the coordinate system rotates. Therefore in this situation we will find the same
optimum irrespectively of the choice of orientation of the coordinate system.

Moreover, an advantage of using the linear vector function formulation is
that it is easy to deal with missing observations, that is, missing landmarks in
shapes. This is done just by leaving out the rows from the coefficient matrix
that correspond to the missing points.

2.2 Formulation of the RPGA; minimization problems

If circular symmetry of the residuals cannot be assumed we can apply RGPA;.
Here rotational invariance is obtained by using the Euclidean metric, as is illus-
trated by its equi-distance curve in Fig. 1(b). However, this involves substituting
the linear objective function Eq. (7) with a non-linear one.

2 2
E E :\/ Ozij Tt Oyij
it

A linear approximation to the Euclidean equi-distance curve is obtained
by taking the sum of Manhattan distances in a series of rotated coordinate



(a) (b) (c)

Figure 1: Equidistance curves for (a) the Manhattan, (b) the Euclidean, and
(c) the 12 sided polygonal approximation metrics

Figure 2: Coordinate systems used for approximating Euclidean distance. The
systems are rotated 0, 7/6, and 7/3, respectively.

systems. Using the 3 coordinate systems shown in Fig. 2 we achieve the equi-
distance curve shown in Fig. 1(c). The distance between a point (z,y) in the
plane and origo using this sum of Manhattan distances from N equi-angularly
rotated coordinate systems is

N
Z |z cos(nAB) — ysin(nAf)| + |y cos(nAf) + xsin(nAb)|, A= _—.
n=1
It is easily shown that

w/2
/ |z cosf — ysind| + |ycosd + xsin 0|df o /22 + y2.
0

Which means that after suitable normalization increasing N will in the limit
result in the desired Euclidean distance. Using the N = 3 approximation we
achieve deviations from the Euclidean equi-distance curve in the range +1.7%.

2.2.1 Properties of the solution

The minimization of the criterion RGPA; can be viewed as a generalization the
resistant ordinary Procrustes analysis (OPA) defined in (11; 13). OPA consists
of aligning one set of landmarks, z; to a fixed set, 2o using a Fuclidean similarity
transformation, i.e. minimize

K
ROPA = Z \alzlk + b — zok|. (9)
k=1



(b) 11 norm (¢) l2 norm (d) I3 norm

Figure 3: (a) 10 triangles. (b-c) alignment based on the 3 corner points using
the Ly and Lo, respectively. (d-e) aligned as (b-c) but with an additional 18
landmarks distributed equidistantly on the lower side included.

Er (11) developed an expectation maximization algorithm for the optimiza-
tion, and Lima (13) showed that in general the ROPA does not have a unique
minimum. Particularly, if z; is an isosceles triangle a set of optimal solutions
will lie along a line segment in parameter space.

If we examine the RGPA criteria for the L = 2 case we find

K
RGPAl = Z \ag(zlk + ng) — 2b2 — Zlk|

=1

Here we have used the contraints by + b = 0 and a; + as = 1. Thus it is
obvious that the RGPA criteria also will suffer from non-uniqueness in specific
situations. In this particular case from the analogy to ROPA we see that it
occurs when z; + zo is an isosceles triangle.

3 Examples

3.1 Triangles

The choice of landmarks can have high influence on the result of the alignment
of a set of shapes. This is illustrated in Fig. 3 where the alignment of triangles
with different number of landmarks is compared. The triangles were generated
by creating a reference triangle and then adding i.i.d. Gaussian noise to each
corner. They were then aligned in the L; and Ly norms. Then between the
bottom two points of the triangles additional 18 points were added by linear
interpolation. The triangles were then realigned. The extra 18 points are added
to illustrate and study the influence of different annotations of the same shapes.
We see that the L, as well as the L, norm alignment are sensitive to the
chosen representation, In the case of densely sampling the lower side the L;
alignment regards the top corner point as an outlier and disregards it thereby
achieving perfect alignment of the the lower sides. Applying the L; norm iden-
tifies a single landmark as the source of variation between the input shapes.
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Figure 4: (a) 17 boxes with bumps in varying positions; boxes with bumps and
their modal shape after (b) Li-norm GPA, and (c) standard Lo-norm GPA.



(a) (b)

Figure 5: Four hands with animated thumb aligned using (a) L;-norm GPA
and (b) standard La-norm GPA.

3.2 Boxes with bumps

In the second examples we are considering a set of oblong boxes with a bump
in varying position on top. In the initial configuration the boxes are perfectly
aligned, cf. Fig. 4(a).

Now, applying Li-norm alignment based on the approximated RGPA; cri-
terion yields exactly the initial configuration as desired, cf. Fig. 4(b). Applying
standard GPA yields the alignment shown in Figs. 4(c).

The L; norm method has correctly identified the difference between the input
shapes as the position of the bump, whereas standard GPA yields a solution
that has introduced artificial scale and rotational variability. The modal shape
form the Lo-norm experiment has slanting shoulders and is not representative
of the class of shapes. Moreover, the boxes with the bumps in the most extreme
positions are shrunk and rotated, relative to the others.

3.3 Hands with animating thumb

In a similar example a hand is recorded while moving the thumb. Again L;-norm
alignment (cf. Fig. 5(a)) correctly identifies that the input shapes only vary in
terms of thumb orientation, whereas the Ly GPA (cf. Fig. 5(b)) introduces scale
and rotational variation not present in the input data.

4 Conclusion

The alignment of shapes into a common reference frame is a fundamental task
in shape modeling. A natural extension to the general Procrustes alignment
usually employed is to use other norms than the Lo norm. Here the L; norm
has been explored.



A general Procrustes analysis based on absolute Euclidean distances yields a
non-linear optimization problem. However, using a linear approximation based
on averaging the Manhattan distance of a series of equi-angularly rotated coordi-
nate systems we can achieve as near an approximation as desired. Furthermore,
under certain constraints general Procrustes analysis based on the Manhattan
distance gives the same result as a general Procrustes analysis based on absolute
Euclidean distances. In both cases the optimization problem can be formulated
as a linear programming problem. This allows the usage of standard, well un-
derstood numerical methods such as linear programming. Lots of research has
been done in the field of linear programming and the properties of the algo-
rithms used to solve linear programming tasks, such as convergence, are well
understood. The coefficient matrix is very structured and sparse. That can be
exploited when implementing the algorithms to speed up the alignment process.

Examples illustrating the properties of the method are provided - both ar-
tificial and real. An important property is that the resulting alignments form
Li-norm based general Procrustes methods yields solutions that are sparse in
terms of the input (or landmarks).
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