VECTOR INVARIANTS FOR THE TWO DIMENSIONAL MODULAR REPRESENTATION OF A CYCLIC GROUP OF PRIME ORDER

H E A CAMPBELL, R J SHANK, AND D L WEHLAU

Abstract

In this paper, we study the vector invariants of the 2dimensional indecomposable representation V_{2} of the cylic group, C_{p}, of order p over a field \mathbf{F} of characteristic $p, \mathbf{F}\left[m V_{2}\right]^{C_{p}}$. This ring of invariants was first studied by David Richman [21] who showed that the ring required a generator of degree $m(p-1)$, thus demonstrating that the result of Noether in characteristic 0 (that the ring of invariants of a finite group is always generated in degrees less than or equal to the order of the group) does not extend to the modular case. He also conjectured that a certain set of invariants was a generating set with a proof in the case $p=2$. This conjecture was proved by Campbell and Hughes in [3]. Later, Shank and Wehlau in [24] determined which elements in Richman's generating set were redundant thereby producing a minimal generating set.

We give a new proof of the result of Campbell and Hughes, Shank and Wehlau giving a minimal algebra generating set for the ring of invariants $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$. In fact, our proof does much more. We show that our minimal generating set is also a SAGBI basis for $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$. Further, our results provide a procedure for finding an explicit decomposition of $\mathbf{F}\left[m V_{2}\right]$ into a direct sum of indecomposable C_{p}-modules. Finally, noting that our representation of C_{p} on V_{2} is as the p-Sylow subgroup of $S L_{2}\left(\mathbf{F}_{p}\right)$, we describe a generating set for the ring of invariants $\mathbf{F}\left[m V_{2}\right]^{S L_{2}\left(\mathbf{F}_{p}\right)}$ and show that $(p+m-2)(p-1)$ is an upper bound for the Noether number, for $m>2$.

Contents

1. Introduction 2
2. Preliminaries 5
2.2. Relations involving the $u_{i j}$ 6
3. Polarisation 8
4. Partial Dyck Paths 10
5. Lead Monomials 11

[^0]6. A Generating Set 16
7. Decomposing $\mathbf{F}\left[m V_{2}\right]$ as a C_{p}-module 21
8. A First Main Theorem for $S L_{2}\left(\mathbf{F}_{p}\right)$ 24
References 28

1. Introduction

We suppose G is a group represented on a vector space V over a field F. If $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is a basis for the hom-dual, $V^{*}=\operatorname{hom}_{\mathbf{F}}(V, \mathbf{F})$, of V, then we denote the symmetric algebra on V^{*} by

$$
\mathbf{F}[V]=\mathbf{F}\left[x_{1}, x_{2}, \ldots, x_{n}\right]
$$

and we note that G acts on $f \in \mathbf{F}[V]$ by the rule

$$
\sigma(f)(v)=f\left(\sigma^{-1}(v)\right)
$$

As an aside, the notation $\mathbf{F}[V]$ is often used in the literature to denote the ring of regular functions on V. Our notation coincides with the usual notion when the field \mathbf{F} is infinite. However, for example, if $\mathbf{F}=\mathbf{F}_{p}$, the prime field, then the functions x_{1} and x_{1}^{p} coincide on V.

The ring of functions left invariant by this action of G is denoted $\mathbf{F}[V]^{G}$. Invariant theorists often seek to relate algebraic properties of the invariant ring to properties of the representation. For example, when G is finite of order $|G|$ and the characteristic p of \mathbf{F} does not divide $|G|$ - the non-modular case - then $\mathbf{F}[V]^{G}$ is a polynomial algebra if and only if G is generated by reflections (group elements fixing a hyperplane of V). This is a famous result due to Coxeter [8], Shephard and Todd [26], Chevalley [6], and Serre[22]. For another example in the nonmodular case, it is known by work of Noether [19] (when $p=0$), Fogarty [12] and Fleischmann [13] (when $p>0$), that $\mathbf{F}[V]^{G}$ is generated in degrees less than or equal to $|G|$. And, in the non-modular case with G finite, it is well-known that $\mathbf{F}[V]^{G}$ is always Cohen-Macaulay.

The case when $p>0, G$ is finite, V is finite dimensional and p does divide $|G|$ is that of modular invariant theory. Many results that are well understood in the non-modular case are not yet understood or even within reach in the modular case. For example, in the modular case it is known that if $\mathbf{F}[V]^{G}$ is a polynomial algebra then G must be generated by reflections, but this is far from sufficient. For another example, in the modular case $\mathbf{F}[V]^{G}$ is "most often" not Cohen-Macaulay. Finally, in the modular case, there are examples where $\mathbf{F}[V]^{G}$ requires generators of degrees (much) larger than $|G|$, see below: this paper re-examines the first known such example in considerable detail.

There are now several references for modular invariant theory, see Benson [1], Smith[27], Neusel and Smith[18], Derksen and Kemper[9], Campbell and Wehlau[3].

Invariant theorists also seek to determine generators for $\mathbf{F}[V]^{G}$ and, if possible, relations among those generators. A famous example is the case of vector invariants, see Weyl [28]. Here we consider the vector space

$$
m V=\overbrace{V \oplus V \oplus \cdots \oplus V}^{m \text { summands }}
$$

with G acting diagonally. The invariants $\mathbf{F}[m V]^{G}$ are called vector invariants, and in this case, we seek to describe, determine or give constructions for, the generators of this ring, a first main theorem for (G, V). Once this is done a theorem determining the relations among the generators is referred to as a second main theorem for (G, V).

The cyclic group C_{p} has exactly p inequivalent indecomposable representations over a field \mathbf{F} of characteristic p. There is one indecomposable V_{n} of dimension n for each $1 \leq n \leq p$. To see this choose a basis for V_{n} with respect to which a fixed generator, σ, of C_{p} is represented by a matrix in Jordan Normal form. Since V_{n} is indecomposable this matrix has a single Jordan block and since σ has order p the common eigenvalue must be 1 , the only $p^{\text {th }}$ root of unity in a field of characteristic p. Thus σ is represented on V_{n} by the matrix

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
1 & 1 & 0 & \ldots & 0 & 0 \\
0 & 1 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 1 & 1
\end{array}\right) .
$$

In order that this matrix have order p (or 1) we must have $n \leq p$. We call such a basis of V_{n} for which σ is in (lower triangular) Jordan Normal form a triangular basis.

Observe the following chain of inclusions:

$$
V_{1} \subset V_{2} \subset \cdots \subset V_{p} .
$$

If V is any finite dimensional C_{p}-module then V can be decomposed into a direct sum of indecomposable C_{p}-modules:

$$
V \cong m_{1} V_{1} \oplus m_{2} V_{2} \cdots \oplus m_{p} V_{p}
$$

where $m_{i} \in \mathbb{N}$ for all i. This decomposition is far from unique but does have the property that the multiplicities m_{ℓ} are unique.

We are interested in the representation $m V_{2}$ and the action of C_{p} on $\mathbf{F}\left[m V_{2}\right]$. The ring of invariants $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$ was first studied by David Richman [21]. He showed that this ring required a generator of degree $m(p-1)$, showing that the result of Noether in characteristic 0 did not extend to the modular case. He also conjectured that a certain set of invariants was a generating set with a proof in the case $p=2$. This conjecture was proved by Campbell and Hughes in [3]: the proof is long, complex, and counter-intuitive in some respects. Later, Shank and Wehlau in [24] determined which elements in Richman's generating set were redundant thereby producing a minimal generating set.

We will show later (and the proof is not difficult), that $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$ is not Cohen-Macaulay, or see Ellingsrud and Skjelbred [11].

In this paper, we give a new proof of the result of Campbell and Hughes, Shank and Wehlau giving a minimal algebra generating set for the ring of invariants $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$. In fact, our proof does much more. We show that our minimal generating set is also a SAGBI basis for $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$. In our view, this result is extraordinary. Further, our techniques also yield a procedure for finding a decomposition of $\mathbf{F}\left[m V_{2}\right]$ into a direct sum of indecomposable C_{p}-modules.

Our paper is organised as follows. In the second section of our paper, Preliminaries, we provide more details on the the representation theory of C_{p}, our use of graded reverse lexicographical ordering on the monomials in $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$, and define the term $S A G B I$ basis. In the next section, Polarisation, we define the polarisation map $\mathbf{F}[V] \rightarrow \mathbf{F}[m V]$, its (roughly speaking) inverse, known as restitution, and we note that these maps are G-equivariant, hence map G-invariants to G-invariants. These techniques allow us to focus our attention on multi-linear invariants. The next section, Partial Dyck Paths, describes a concept arising in the study of lattices in the plane, see, for example the book by Koshy [17, p. 151], and is followed by a section on Lead Monomials. Here we show that there is a bijection between the set of lead monomials of multi-linear invariants and certain collections of Partial Dyck Paths. This work requires us to count the number of indecomposable C_{p} summands in

$$
\stackrel{m}{\otimes} V_{2}=\overbrace{V_{2} \otimes V_{2} \otimes \cdots \otimes V_{2}}^{m \text { copies }},
$$

and in fact we are able to determine a decomposition of $\stackrel{m}{\otimes} V_{2}$ as a C_{p}-module, see Theorem 5.5. Following this, in section $\S 6$, we prove that we have a generating set for our ring of invariants. The next section describes how our techniques provide a procedure for finding
a decomposition of $\mathbf{F}\left[m V_{2}\right]$ as a C_{p}-module. In the final section, noting that our representation of C_{p} on V_{2} is as the p-Sylow subgroup of $S L_{2}\left(\mathbf{F}_{p}\right)$, we are able to describe a generating set for the ring of invariants $\mathbf{F}\left[m V_{2}\right]^{S L_{2}\left(\mathbf{F}_{p}\right)}$.

We thank the referee for a thorough and careful reading of our paper.

2. Preliminaries

Suppose $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ is a triangular basis for V_{n}. Note that the C_{p}-module generated by e_{1} is all of V_{n}. We also note that the indecomposable module $V_{n}^{*}=\operatorname{hom}\left(V_{n}, \mathbf{F}\right)$ is isomorphic to V_{n} since $\operatorname{dim}\left(V_{n}^{*}\right)=\operatorname{dim}\left(V_{n}\right)$. Because of our interest in invariants we often focus on the C_{p} action on V_{n}^{*} rather than on V_{n} itself. Therefore we will choose the dual basis $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ for V^{*} to the basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. With this choice of basis the matrices representing G are upper-triangular on V^{*}. We note that $\sigma^{-1}\left(x_{1}\right)=x_{1}$ and $\sigma^{-1}\left(x_{i}\right)=x_{i}+x_{i-1}$ for $2 \leq i \leq n$: for convenience, and since σ^{-1} also generates C_{p}, we will change notation and write σ instead of σ^{-1} for the remainder of this paper. With this convention, we note that $(\sigma-1)^{r}\left(x_{n}\right)=x_{n-r}$ for $r<n$ and $\operatorname{dim}\left(V_{n}\right)=n$ is the largest value of r such that $x_{1} \in(\sigma-1)^{r-1}\left(V_{n}^{*}\right)$. We say that the invariant x_{1} has length n in this case and write $\ell\left(x_{1}\right)=n$. We observe that the socle of V_{n} is the line $V_{n}^{C_{p}}$ spanned by $\left\{e_{n}\right\}$. Similarly $\left(V_{n}^{*}\right)^{C_{p}}$ has basis $\left\{x_{1}\right\}$.
Note that the kernel of $\sigma-1: V_{i} \rightarrow V_{i}$ is $V_{i}^{C_{p}}$ which is one dimensional for all i. Thus

$$
\operatorname{dim}\left((\sigma-1)^{j}\left(V_{i}\right)\right)= \begin{cases}0 & \text { if } j-1 \geq i \\ i-j & \text { if } j-1<i\end{cases}
$$

For

$$
V \cong m_{1} V_{1} \oplus m_{2} V_{2} \cdots \oplus m_{p} V_{p}
$$

this gives $(p-j) m_{p}+(p-1-j) m_{p-1}+\cdots+(i-j) m_{i}=\operatorname{dim}\left((\sigma-1)^{j}(V)\right)$ for all $0 \leq j \leq p-1$ and this system of equations uniquely determines the coefficients $m_{1}, m_{2}, \ldots, m_{p}$.

Each indecomposable C_{p}-module, V_{n}, satisfies $\operatorname{dim}\left(V_{n}\right)^{C_{p}}=1$. Therefore the number of summands occurring in a decomposition of V is given by $m_{1}+m_{2}+\cdots+m_{p}=\operatorname{dim} V^{C_{p}}$.

Consider $\operatorname{Tr}:=\sum_{\tau \in C_{p}} \tau$, an element of the group ring of C_{p}. If W is any finite dimensional C_{p}-representation, we also use Tr to denote the corresponding $\mathbf{F}[W]^{C_{p}}$-module homomorphism,

$$
\operatorname{Tr}: \mathbf{F}[W] \rightarrow \mathbf{F}[W]^{C_{p}} .
$$

Similarly we define

$$
\mathrm{N}: \mathbf{F}[W] \rightarrow \mathbf{F}[W]^{C_{p}}
$$

by $\mathrm{N}(w)=\prod_{\tau \in C_{p}} \tau(w)$.
Note that $(\sigma-1)^{p-1}=\sum_{i=0}^{p-1}(-1)^{i}\binom{p-1}{i} \sigma^{i}=\sum_{i=0}^{p-1} \sigma^{i}=\operatorname{Tr}$. It follows that $\operatorname{Tr}(v)=0$ if $v \in V_{n}$ for $n<p$, while $\operatorname{Tr}\left(x_{p}\right)=x_{1}$ in V_{p}.

It is also the case that $V_{p} \cong \mathbf{F} C_{p}$ is the only free C_{p}-module and hence also the only projective.

The next theorem plays an important role in our decomposition of $\mathbf{F}[V]_{\left(d_{1}, d_{2}, \ldots, d_{m}\right)}$ as a C_{p}-module (modulo projectives). A proof in the case $V=V_{n}$ may be found in Hughes and Kemper [14, section 2.3], and a proof of the version cited here is in Shank and Wehlau [25, section 2]

Theorem 2.1 (Periodicity Theorem). Let $V=V_{n_{1}} \oplus V_{n_{2}} \oplus \cdots \oplus V_{n_{m}}$. Let $d_{1}, d_{2}, \ldots, d_{m}$ be non-negative integers and write $d_{i}=q_{i} p+r_{i}$ where $0 \leq r_{i} \leq p-1$ for $i=1,2, \ldots, m$. Then

$$
\mathbf{F}[V]_{\left(d_{1}, d_{2}, \ldots, d_{m}\right)} \cong \mathbf{F}[V]_{\left(r_{1}, r_{2}, \ldots, r_{m}\right)} \oplus t V_{p}
$$

as C_{p}-modules for some non-negative integer t.
Comparing dimensions shows that in the above theorem

$$
t=\left(\prod_{i=1}^{m}\binom{n_{i}+d_{i}-1}{d_{i}}-\prod_{i=1}^{m}\binom{n_{i}+r_{i}-1}{r_{i}}\right) / p
$$

In this paper, we are primarily interested in the case $V=m V_{2}$. We denote the basis for the $i^{\text {th }}$-copy of V_{2}^{*} in this direct sum by $\left\{x_{i}, y_{i}\right\}$ and we have $\sigma\left(x_{i}\right)=x_{i}$ and $\sigma\left(y_{i}\right)=y_{i}+x_{i}$.

For this representation of C_{p}, there is another "obvious" family of invariants, namely the

$$
u_{i j}=x_{i} y_{j}-x_{j} y_{i}=\left|\begin{array}{ll}
x_{i} & y_{i} \\
x_{j} & y_{j}
\end{array}\right|
$$

for $m \geq 2$.
2.2. Relations involving the $u_{i j}$. We will consider now two important families of relations involving the invariants $u_{i j}=x_{i} y_{j}-y_{i} x_{j}$. First we consider algebraic dependencies among the $u_{i j}$. Suppose $m \geq 4$ and let $1 \leq i<j<k<\ell \leq m$. It is easy to verify that $0=$ $u_{i j} u_{k \ell}-u_{i k} u_{j \ell}+u_{i \ell} u_{j k}$. It can be shown that these relations generate all the algebraic relations among the $u_{s t}$.

It is useful to represent products of the various $u_{\text {st }}$ graphically as follows. We consider the vertices of a regular m-gon and label them clockwise by $1,2, \ldots, m$. We represent the factor $u_{i j}$ by an arrow or directed edge from vertex i to vertex j. Thus a product of various $u_{s t}$ is
represented by a number of directed edges joining the labelled vertices of the regular m-gon.

Returning to the relation $u_{i j} u_{k \ell}-u_{i k} u_{j \ell}+u_{i \ell} u_{j k}$, we say that the middle product in this relation, $u_{i k} u_{j \ell}$, is a crossing since the arrows representing the two factors $u_{i k}$ and $u_{j \ell}$ cross (intersect). Rewriting the relation as $u_{i k} u_{j \ell}=u_{i j} u_{k \ell}+u_{i \ell} u_{j k}$, we see that we may replace a crossing with a sum of two non-crossings. As observed by Kempe [16], since the length of two (directed) diagonals representing $u_{i k}$ and $u_{j \ell}$ exceeds both the lengths represented by the sides $u_{i j}$ and $u_{k \ell}$ and the two sides $u_{i \ell}$ and $u_{j k}$, we may repeatedly use "uncrossing" relations to rewrite any product of $u_{s t}$'s by a sum of such products without any crossings. Thus the space generated by the monomials in the $u_{s t}$ of degree d has a basis represented by planar directed graphs on m vertices having d directed edges. Here we allow multiple (or weighted) edges to represent powers such as $u_{i j}^{a}$ for $a \geq 2$.

Now we consider another important class of relations, this time involving the $u_{s t}$ and the x_{r}. Take $m \geq 3$, let $1 \leq i<j<k \leq m$ and consider the matrix

$$
\left(\begin{array}{lll}
x_{i} & x_{j} & x_{k} \\
x_{i} & x_{j} & x_{k} \\
y_{i} & y_{j} & y_{k}
\end{array}\right)
$$

Computing the determinant by expanding along the first row we find $x_{i} u_{j k}-x_{j} u_{i k}+x_{k} u_{i j}=0$. Since x_{1}, x_{2}, x_{3} is a partial homogeneous system of parameters in $\mathbf{F}\left[m V_{2}\right]$ consisting of invariants it is a partial homogeneous system of parameters in $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$. The relation $x_{1} u_{23}-x_{2} u_{13}+x_{3} u_{12}=0$ shows that the product $x_{3} u_{12}$ represents 0 in the quotient ring $\mathbf{F}\left[m V_{2}\right]^{C_{p}} /\left(x_{1}, x_{2}\right)$. Considering degrees, it is easy to see that u_{12} and x_{3} do not lie in the ideal of $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$ generated by $\left(x_{1}, x_{2}\right)$. Thus x_{3} represents a zero divisor in the quotient ring $\mathbf{F}\left[m V_{2}\right]^{C_{p}} /\left(x_{1}, x_{2}\right)$. This shows that the partial homogeneous system of parameters x_{1}, x_{2}, x_{3} in $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$ does not form a regular sequence. Therefore $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$ is not a Cohen-Macaulay ring when $m \geq$ 3. For $m \leq 2$ the ring of invariants $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$ is Cohen-Macaulay since $\mathbf{F}\left[V_{2}\right]^{C_{p}}=\mathbf{F}\left[x_{1}, \mathrm{~N}\left(y_{1}\right)\right]$ is a polynomial ring and $\mathbf{F}\left[2 V_{2}\right]^{C_{p}}=$ $\mathbf{F}\left[x_{1}, x_{2}, u_{12}, \mathrm{~N}\left(y_{1}\right), \mathrm{N}\left(y_{2}\right)\right]$ is a hypersurface ring.

Throughout this paper we will use graded reverse lexicographic term orders. We write $\operatorname{LM}(f)$ for the lead monomial of f and $\operatorname{LT}(f)$ for the lead term of f. We follow the convention that monomials are power products of variables and terms are scalar multiples of power products of variables. If $S=\oplus_{d=0}^{\infty} S_{d}$ is a graded subalgebra of a polynomial ring then we say a set B is a SAGBI basis for S in degree d if for every $f \in S_{d}$
we can write $\operatorname{LM}(f)$ as a product $\operatorname{LM}(f)=\prod_{g \in B} \operatorname{LM}(g)^{e_{g}}$ where each e_{g} is a non-negative integer. If B is a SAGBI basis for S in degree d for all d then we say that B is a SAGBI basis for S. If B is a SAGBI basis for S then B is an algebra generating set for S. The word SAGBI is an acronym for "sub-algebra analogue of Gröbner bases for ideals", and was introduced by Robbianno and Sweedler in [20] and (independently) by Kapur and Madlener in [15]. For a detailed discussion of term orders we direct the reader to Chapter 2 of Cox, Little and O'Shea [7]. For a discussion and application of SAGBI bases in modular invariant theory, we recommend Shank's paper [23].

Given a sequence of variables $z_{1}, z_{2}, \ldots, z_{m}$ and an element $E=$ $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ we write z^{E} to denote the monomial $z_{1}^{e_{1}} z_{2}^{e_{2}} \cdots z_{m}^{e_{m}}$ and we denote the degree $e_{1}+e_{2}+\cdots+e_{m}$ of this monomial by $|E|$.

The following well-known lemma is very useful for computing the lead term of a transfer.

Lemma 2.3. Let t be a positive integer. Then

$$
\sum_{i=0}^{p-1} i^{t}= \begin{cases}-1, & \text { if } p-1 \text { divides } t \\ 0, & \text { if } p-1 \text { does not divide } t\end{cases}
$$

For a proof of this lemma see for example, [5, Lemma 9.4].

3. Polarisation

Let V be a representation of a group G and let $r \in \mathbb{N}$ with $r \geq 2$ and consider the map of G-representations

$$
\nabla^{*}: r V \longrightarrow(r-1) V
$$

defined by $\nabla^{*}\left(v_{1}, v_{2}, \ldots, v_{r}\right)=\left(v_{1}, v_{2}, \ldots, v_{r-2}, v_{r-1}+v_{r}\right)$. We also consider the morphism

$$
\Delta^{*}:(r-1) V \longrightarrow r V
$$

given by $\Delta^{*}\left(v_{1}, v_{2}, \ldots, v_{r-1}\right)=\left(v_{1}, v_{2}, \ldots, v_{r-2}, v_{r-1}, v_{r-1}\right)$. Dual to these two maps we have the corresponding algebra homomorphisms:

$$
\nabla: \mathbf{F}[(r-1) V] \longrightarrow \mathbf{F}[r V]
$$

and

$$
\Delta: \mathbf{F}[r V] \longrightarrow \mathbf{F}[(r-1) V]
$$

given by $\nabla(f)=f \circ \nabla^{*}$ and $\Delta(F)=F \circ \Delta^{*}$. We also define $\nabla_{r}^{*}=$ $\left(\nabla^{*}\right)^{r-1}: r V \rightarrow V$ and $\Delta_{r}^{*}=\left(\Delta^{*}\right)^{r-1}: V \rightarrow r V$.

Thus $\nabla_{r}: \mathbf{F}[V] \longrightarrow \mathbf{F}[r V]$ is given by $\left(\nabla_{r}(f)\right)\left(v_{1}, v_{2}, \ldots, v_{r}\right)=$ $f\left(v_{1}+v_{2}+\cdots+v_{r}\right)$ and $\Delta_{r}: \mathbf{F}[r V] \longrightarrow \mathbf{F}[V]$ is given by $\left(\Delta_{r}(F)\right)(v)=$
$F(v, v, \ldots, v)$. The homomorphism ∇_{r} is called (complete) polarisation and the homomorphism Δ_{r} is called restitution.

The algebra $\mathbf{F}[r V]$ is naturally \mathbb{N}^{r} graded by multi-degree:

$$
\mathbf{F}[r V]=\bigoplus_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right) \in \mathbb{N}^{r}} \mathbf{F}[r V]_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)}
$$

where

$$
\mathbf{F}[r V]_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)} \cong \mathbf{F}[V]_{\lambda_{1}} \otimes \mathbf{F}[V]_{\lambda_{2}} \otimes \cdots \otimes \mathbf{F}[V]_{\lambda_{r}}
$$

For each multi-degree, $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right) \in \mathbb{N}^{r}$ we have the projection $\pi_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)}: \mathbf{F}[r V] \rightarrow \mathbf{F}[r V]_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right)}$. Given a homogeneous element $f \in \mathbf{F}[V]$ of total degree d, i.e., $f \in \mathbf{F}[V]_{d}$, its full polarisation is the multi-linear function $\mathcal{P}(f)=\pi_{(1,1, \ldots, 1)}\left(\nabla_{d}(f)\right) \in \mathbf{F}[d V]_{(1,1, \ldots, 1)}$. Thus $\mathcal{P}: \mathbf{F}[V]_{d} \rightarrow \mathbf{F}[d V]_{(1,1, \ldots, 1)}$.

More generally, we may use isomorphisms of the form $\mathbf{F}[V \oplus W] \cong$ $\mathbf{F}[V] \otimes \mathbf{F}[W]$ to define

$$
\nabla_{r_{1}, r_{2}, \ldots, r_{m}}=\nabla_{r_{1}} \otimes \nabla_{r_{2}} \otimes \cdots \otimes \nabla_{r_{m}}: \mathbf{F}\left[\oplus_{i=1}^{m} W_{i}\right] \longrightarrow \mathbf{F}\left[\oplus_{i=1}^{m} r_{i} W_{i}\right]
$$

Again, for ease of notation, if $f \in \mathbf{F}\left[\oplus_{i=1}^{m} W_{i}\right]_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)}$ we write $\mathcal{P}(f)=$ $\pi_{(1,1, \ldots, 1)}\left(\nabla_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}}(f)\right) \in \mathbf{F}\left[\oplus_{i=1}^{m} \lambda_{i} W_{i}\right]_{(1,1, \ldots, 1)}$. Here again we call the multi-linear function $\mathcal{P}(f)$ the full polarisation of f.

Similarly we define the restitution map

$$
\Delta_{r_{1}, r_{2}, \ldots, r_{m}}=\Delta_{r_{1}} \otimes \Delta_{r_{2}} \otimes \cdots \otimes \Delta_{r_{m}}: \mathbf{F}\left[\oplus_{i=1}^{m} r_{i} W_{i}\right] \longrightarrow \mathbf{F}\left[\oplus_{i=1}^{m} W_{i}\right]
$$

In this setting, if we have co-ordinate variables such as x_{i}, y_{i}, z_{i} for W_{i} we will use the symbols $x_{i j}, y_{i j}, z_{i j}$ with $1 \leq j \leq r_{i}$ to denote the coordinate variables for $r_{i} W_{i}$. In this notation, restitution is the algebra homomorphism determined by $\Delta_{r_{1}, r_{2}, \ldots, r_{m}}\left(x_{i j}\right)=x_{i}, \Delta_{r_{1}, r_{2}, \ldots, r_{m}}\left(y_{i j}\right)=$ $y_{i}, \Delta_{r_{1}, r_{2}, \ldots, r_{m}}\left(z_{i j}\right)=z_{i}$, etc. For this reason, restitution is sometimes referred to as erasing subscripts. For ease of notation, we will write \mathcal{R} to denote the algebra homomorphism $\Delta_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}}$ when restricted to $\mathbf{F}\left[\oplus_{i=1}^{m} \lambda_{i} W_{i}\right]_{(1,1, \ldots, 1)}$. Thus if $F \in \mathbf{F}\left[\oplus_{i=1}^{m} \lambda_{i} W_{i}\right]_{(1,1, \ldots, 1)}$ then $\mathcal{R}(F) \in$ $\mathbf{F}\left[\oplus_{i=1}^{m} W_{i}\right]_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)}$. (However, we will sometimes abuse notation and use \mathcal{R} to denote $\Delta_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}}$ when the indices $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are clear from the context.)

It is a relatively straightforward exercise to verify that for any $f \in$ $\mathbf{F}\left[\oplus_{i=1}^{m} W_{i}\right]_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)}$ we have $\mathcal{R}(\mathcal{P}(f))=\left(\lambda_{1}!, \lambda_{2}!, \ldots, \lambda_{m}!\right) f$.

Since ∇^{*} and Δ^{*} are both G-equivariant, so are all the homomorphisms $\nabla_{r_{1}, r_{2}, \ldots, r_{m}}$ and $\Delta_{r_{1}, r_{2}, \ldots, r_{m}}$. In particular, if f is G-invariant then so is $\mathcal{P}(f)$. Similarly, $\mathcal{R}(F)$ is G-invariant if F is. We also note that since the action of G preserves degree an element f is invariant if and only if all its homogeneous components are invariant.

4. Partial Dyck Paths

In this section we consider a generalization of Dyck paths (see the book by Koshy [17, p. 151] for an introduction to Dyck paths). For us, a lattice path is a finite sequence of steps in the first quadrant of the xy-plane starting from the origin. Each step in the path is given by either the vector $(1,0)$ (an x-step) or the vector $(0,1)$ (a y-step). The number of steps in the path is called its length. The path is said to have height h if h is the largest integer such that the path touches the line $y=x-h$. A lattice path has finishing height h if the final step ends at a point on the line $y=x-h$.

Associated to each lattice path of length d is a word of length d, i.e., an ordered sequence of d symbols each either an x or a y. This word encodes the path as follows: the $i^{\text {th }}$ symbol of the word is x if the $i^{\text {th }}$ step of the path is an x-step and the $i^{\text {th }}$ symbol of the word is a y if the $i^{\text {th }}$ step is a y-step.

We will consider two types of lattice paths: (i) partial Dyck paths and (ii) initial Dyck paths of escape height $p-1$.

Definition 4.1. A partial Dyck path is a lattice path which stays on or below the diagonal (the line with equation $y=x$). A partial Dyck path of finishing height 0 , i.e., which finishes on the diagonal, is called a Dyck path.

Definition 4.2. An initial Dyck path of escape height t is a lattice path of height at least t and which if it crosses above the diagonal does so only after it touches the line $y=x-t$. Expressed another way, these are paths which consist of an partial Dyck path of finishing height t followed by an entirely arbitrary sequence of x-steps and y-steps.

Clearly there are 2^{d} lattice paths of length d. We may associate these paths with the 2^{d} monomials in $\mathbf{F}\left[d V_{2}\right]_{(1,1, \ldots, 1)} \cong \otimes^{d} V_{2}$. The lattice path γ of length d is associated to the word $\gamma_{1} \gamma_{2} \cdots \gamma_{d}$ and is associated to the multi-linear monomial $\Lambda(\gamma)=z_{1} z_{2} \cdots z_{d}$ where $\begin{cases}z_{i}=x_{i}, & \text { if } \gamma_{i}=x ; \\ z_{i}=y_{i}, & \text { if } \gamma_{i}=y .\end{cases}$

We let $\operatorname{PDP}_{\leq q}^{d}$ denote the set of all partial Dyck paths of length d and height at most q. Furthermore, we will denote by $\mathrm{PDP}_{\leq q}^{d}(h)$ the set of partial Dyck paths of length d, height at most q and finishing height h. We write $\operatorname{IDP}_{q}^{d}$ to denote the set of all initial Dyck paths of escape height q and length d.

5. Lead Monomials

We wish to consider the C_{p}-representation $\mathbf{F}\left[d V_{2}\right]_{(1,1, \ldots, 1)} \cong \otimes^{d} V_{2}$. We consider a decomposition of $\otimes^{d} V_{2}$ into a direct sum of indecomposable C_{p}-representations. Each summand V_{h} has a one dimensional socle spanned by an element f and we associate to this summand the monomial $\operatorname{LM}(f)$. We say that the invariant f has length h and we write $\ell(f)=h$. In general a non-zero invariant has length h if $h-1$ is the maximal value of r for which f lies in the image of $(\sigma-1)^{r}$.

In order to study $\mathbf{F}\left[d V_{2}\right]_{(1,1, \ldots, 1)}^{C_{p}} \cong\left(\otimes^{d} V_{2}\right)^{C_{p}}$ we use the graded reverse lexicographic order determined by $y_{1}>x_{1}>y_{2}>x_{2} \cdots>y_{d}>x_{d}$ and consider

$$
M=\left\{\operatorname{LM}(f) \mid f \in\left(\otimes^{d} V_{2}\right)^{C_{p}}\right\}
$$

We will show that the set map

$$
\Lambda: \mathrm{PDP}_{\leq p-2}^{d} \sqcup \mathrm{IDP}_{p-1}^{d} \longrightarrow M
$$

is a bijection.
We begin by showing that the image of Λ lies inside M. In fact we will show that if $\gamma \in \operatorname{PDP}_{\leq p-2}^{d}(h)$ then $\Lambda(\gamma)$ is the lead monomial of an invariant of length $h+1$. Furthermore if $\gamma \in \operatorname{IDP}_{p-1}^{d}$ then $\Lambda(\gamma)$ is the lead monomial of an invariant of length p, i.e, an invariant lying in $\operatorname{Tr}\left(\otimes^{d} V_{2}\right)$.

Consider a path $\gamma \in \operatorname{PDP}_{\leq p-1}^{d}(h)$ and let $\gamma_{1} \gamma_{2} \cdots \gamma_{d}$ be the associated word. We wish to match each symbol γ_{j} which is a y with an earlier symbol $\gamma_{\rho(j)}$ which is an x. We do this recursively as follows. Choose the smallest value j such that $\gamma_{j}=y$ and for which we have not yet found a matching x. Take i to be maximal such that $i<j, \gamma_{i}=x$ and $i \neq \rho(s)$ for all $s<j$. Then we define $\rho(j)=i$. Let $I_{1}=\left\{j \mid \gamma_{j}=y\right\}$, $I_{2}=\rho\left(I_{1}\right)$ and $I_{3}=\{1,2, \ldots, d\} \backslash\left(I_{1} \sqcup I_{2}\right)$. Then $\left|I_{1}\right|=\left|I_{2}\right|=(d-h) / 2$, $\left|I_{3}\right|=h$ and $\gamma_{i}=x$ for all $i \in I_{3}$.

Define

$$
\theta_{0}(\gamma)=\left(\prod_{j \in I_{1}} u_{\rho(j), j}\right) \prod_{i \in I_{3}} x_{i} \text { and } \theta_{0}^{\prime}(\gamma)=\left(\prod_{j \in I_{1}} u_{\rho(j), j}\right) \prod_{i \in I_{3}} y_{i}
$$

Then $\theta_{0}(\gamma) \in\left(\otimes^{d} V_{2}\right)^{C_{p}}$ and

$$
\operatorname{LM}\left(\theta_{0}(\gamma)\right)=\prod_{j \in I_{1}} \operatorname{LM}\left(u_{\rho(j), j}\right) \prod_{i \in I_{3}} x_{i}=\prod_{j \in I_{1}} x_{\rho(j)} y_{j} \prod_{i \in I_{3}} x_{i}=\Lambda(\gamma)
$$

Lemma 5.1. $(\sigma-1)^{h}\left(\theta_{0}^{\prime}(\gamma)\right)=h!\theta_{0}(\gamma)$ and thus $\ell\left(\theta_{0}(\gamma)\right) \geq h+1$.
Proof. We will prove a more general statement. We will show that

$$
(\sigma-1)^{|E|}\left(y^{E}\right)=|E|!x^{E} .
$$

Note that this also implies that $(\sigma-1)^{|E|+1}\left(y^{E}\right)=0$. We proceed by induction on $|E|$. The result is clear for $|E|=0,1$. Assume, without loss of generality, that $e_{i} \geq 1$ for all i and define $Z_{i} \in \mathbb{N}^{d}$ by $x_{i}=x^{Z_{i}}$. For $|E| \geq 2$ we have

$$
\begin{aligned}
& (\sigma-1)^{|E|}\left(y^{E}\right)=(\sigma-1)^{|E|-1}(\sigma-1)\left(y^{E}\right) \\
& \quad=(\sigma-1)^{|E|-1}\left(\sum_{i} e_{i} x_{i} y^{E-Z_{i}}+\text { terms divisible by some } x_{k} x_{\ell}\right) \\
& \quad=(\sigma-1)^{|E|-1}\left(\sum_{i} e_{i} x_{i} y^{E-Z_{i}}\right)
\end{aligned}
$$

$$
\text { since the other terms lie in the kernel of }(\sigma-1)^{|E|-1}
$$

$$
=\sum_{i} e_{i} x_{i}(\sigma-1)^{|E|-1}\left(y^{E-Z_{i}}\right)
$$

$$
=\sum_{i} e_{i} x_{i}(|E|-1)!x^{E-Z_{i}} \text { by induction }
$$

$$
=\sum_{i} e_{i}(|E|-1)!x^{E}=\left(\sum_{i} e_{i}\right)(|E|-1)!x^{E}
$$

$$
=|E|(|E|-1)!x^{E}=|E|!x^{E}
$$

If $\gamma \in \operatorname{PDP}_{\leq p-2}^{d}$ then we define $\theta(\gamma)=\theta_{0}(\gamma)$ and $\theta^{\prime}(\gamma)=\theta_{0}^{\prime}(\gamma)$.
Suppose instead that $\gamma \in \operatorname{IDP}_{p-1}^{d}$ and let $\gamma_{1} \gamma_{2} \cdots \gamma_{d}$ be the word associated to γ. Take s minimal such that the path γ^{\prime} associated to $\gamma_{1} \gamma_{2} \cdots \gamma_{s}$ is a partial Dyck path of finishing height $p-1$. Since $\gamma^{\prime} \in$ $\mathrm{PDP}_{\leq p-1}^{s}(p-1)$, from the above we have $I_{1}=\left\{j \leq s \mid \gamma_{j}=y\right\}$, $I_{2}=\rho\left(I_{1}\right)$ and $I_{3}=\{1,2, \ldots, s\} \backslash\left(I_{1} \sqcup I_{2}\right)$ with $\left|I_{1}\right|=\left|I_{2}\right|=(s-p+1) / 2$, $\left|I_{3}\right|=p-1$ and $\gamma_{i}=x$ for all $i \in I_{3}$. We further define $I_{4}=\{i>s \mid$ $\left.\gamma_{i}=x\right\}$ and $I_{5}=\left\{i>s \mid \gamma_{i}=y\right\}$. Define

$$
\theta^{\prime}(\gamma)=\theta_{0}^{\prime}\left(\gamma^{\prime}\right) \prod_{i \in I_{5}} y_{i} \prod_{i \in I_{4}} x_{i}=\prod_{j \in I_{1}} u_{\rho(j), j} \prod_{i \in I_{3} \cup I_{5}} y_{i} \prod_{i \in I_{4}} x_{i}
$$

and

$$
\theta(\gamma)=\operatorname{Tr}\left(\theta_{0}^{\prime}\left(\gamma^{\prime}\right)\right) \prod_{i \in I_{5}} y_{i} \prod_{i \in I_{4}} x_{i}=\operatorname{Tr}\left(\prod_{i \in I_{3} \cup I_{5}} y_{i}\right) \prod_{j \in I_{1}} u_{\rho(j), j} \prod_{i \in I_{4}} x_{i}
$$

Then $\theta(\gamma) \in \operatorname{Tr}\left(\otimes^{d} V_{2}\right) \subset\left(\otimes^{d} V_{2}\right)^{C_{p}}$ and $\ell(\theta(\gamma))=p$.

By Lemma 2.3

$$
\begin{aligned}
\operatorname{LM}(\theta(\gamma)) & =\left(\prod_{i \in I_{4}} x_{i} \prod_{j \in I_{1}} \operatorname{LM}\left(u_{\rho(j), j}\right)\right) \operatorname{LM}\left(\operatorname{Tr}\left(\prod_{i \in I_{3} \cup I_{5}} y_{i}\right)\right) \\
& =\left(\prod_{i \in I_{4}} x_{i} \prod_{j \in I_{1}} x_{\rho(j)} y_{j}\right) \prod_{i \in I_{3}} x_{i} \prod_{i \in I_{5}} y_{i}=\Lambda(\gamma)
\end{aligned}
$$

In summary, if $\gamma \in \operatorname{PDP}_{\leq p-2}^{d}(h)$ then $\theta(\gamma)$ is an invariant of length at least $h+1$ and lead monomial $\Lambda(\gamma)$. If $\gamma \in \operatorname{IDP}_{p-1}^{d}$ then $\theta(\gamma)$ is an invariant of length p and with lead monomial $\Lambda(\gamma)$. Note that since these lead monomials are all distinct, the maps θ and Λ are injective.

It remains to show that Λ is onto M and to determine the exact length of the invariants $\theta(\gamma)$ when $\gamma \in \operatorname{PDP}_{\leq p-2}^{d}$. We will show that Λ is onto by showing $|M|=\left|\mathrm{PDP}_{\leq p-2}^{d} \sqcup \mathrm{IDP}_{p-1}^{d}\right|$. To determine $|M|$ we examine the number of indecomposable summands in the decomposition of $\otimes^{d} V_{2}$.

Define non-negative integers $\mu_{p}^{d}(h)$ by the direct sum decomposition of the C_{p}-module $\otimes^{d} V_{2}$ over \mathbf{F} :

$$
\bigotimes^{d} V_{2} \cong \bigoplus_{h=1}^{p} \mu_{p}^{d}(h) V_{h}
$$

Using the convention $\otimes^{0} V_{2}=V_{1}$, we have the following lemma.
Lemma 5.2. Let $p \geq 3$. Then

$$
\mu_{p}^{0}(h)=\delta_{h}^{1} \text { and } \mu_{p}^{1}(h)=\delta_{h}^{2}
$$

and

$$
\mu_{p}^{d+1}(h)= \begin{cases}\mu_{p}^{d}(2), & \text { if } h=1 \\ \mu_{p}^{d}(h-1)+\mu_{p}^{d}(h+1), & \text { if } 2 \leq h \leq p-2 \\ \mu_{p}^{d}(p-2), & \text { if } h=p-1 \\ \mu_{p}^{d}(p-1)+2 \mu_{p}^{d}(p), & \text { if } h=p\end{cases}
$$

for $d \geq 1$.
Proof. The initial conditions are clear. The recursive conditions follow immediately from the following three equations which may be found for example in Hughes and Kemper [14, Lemma 2.2]:

$$
\begin{aligned}
& V_{1} \otimes V_{2} \cong V_{2} \\
& V_{h} \otimes V_{2} \cong V_{h-1} \oplus V_{h+1} \text { for all } 2 \leq h \leq p-1 \\
& V_{p} \otimes V_{2} \cong 2 V_{p}
\end{aligned}
$$

Next we count lattice paths. Let $\nu_{q}^{d}(h)=\left|\operatorname{PDP}_{\leq q}^{d}(h)\right|$ for $1 \leq h \leq q$. We also define $\bar{\nu}_{q}^{d}=\left|\operatorname{IDP}_{q}^{d}\right|$. With this notation we have the following lemma.

Lemma 5.3. Let $q \geq 2$. Then

$$
\begin{gathered}
\nu_{q}^{0}(h)=\delta_{h}^{0} \text { and } \nu_{q}^{1}(h)=\delta_{h}^{1}, \\
\bar{\nu}_{q}^{0}=0 \text { and } \bar{\nu}_{q}^{1}=0,
\end{gathered}
$$

and

$$
\nu_{q}^{d+1}(h)= \begin{cases}\nu_{q}^{d}(1), & \text { if } h=0 \\ \nu_{q}^{d}(h-1)+\nu_{q}^{d}(h+1), & \text { if } 1 \leq h \leq q-1 ; \\ \nu_{q}^{d}(q-1), & \text { if } h=q ;\end{cases}
$$

and

$$
\bar{\nu}_{q}^{d+1}=\nu_{q-1}^{d}(q-1)+2 \bar{\nu}_{q}^{d}
$$

for all $d \geq 1$.
Proof. All of these equations are easily seen to hold except perhaps the final one. Its left-hand term $\bar{\nu}_{q}^{d+1}=\left|\operatorname{IDP}_{q}^{d+1}\right|$ is the number of initial Dyck paths of length $d+1$ and escape height q. We divide such paths into two classes: those which first achieve height q on their final step and those which achieve height q sometime during the first d steps. Paths in the first class are partial Dyck paths of length d, height at most $q-1$ and finishing height $q-1$ followed by an x-step for the $(d+1)^{\text {st }}$ step. There are $\nu_{q-1}^{d}(q-1)=\left|\mathrm{PDP}_{\leq q-1}^{d}(q-1)\right|$ such paths. The second class consists of initial Dyck paths of escape height q and length d followed by a final step which may be either an x-step or a y-step. Clearly there are $2\left|\operatorname{IDP}_{q}^{d}\right|=2 \bar{\nu}_{q}^{d}$ paths of this kind.
Corollary 5.4. For all $d \in \mathbb{N}$, all primes p and all $h=1,2, \ldots, p-1$ we have

$$
\mu_{p}^{d}(h)=\nu_{p-2}^{d}(h-1) \quad \text { and } \quad \mu_{p}^{d}(p)=\bar{\nu}_{p-1}^{d} .
$$

Proof. Comparing the recursive expressions and initial conditions for $\mu_{p}^{d}(h)$ and $\nu_{p-2}^{d}(h-1)$ and for $\mu_{p}^{d}(p)$ and $\bar{\nu}_{p-1}^{d}$ given in the previous two lemmas makes the result clear for $p \geq 5$.

For $p=2$ it is easy to see that $\mu_{2}^{d}(1)=\nu_{0}^{d}(0)=\delta_{d}^{0}$ for $d \geq 0$ and $\mu_{2}^{d}(2)=2^{d-1}=\bar{\nu}_{1}^{d}$ for $d \geq 1$.

For $p=3$ and $h=1,2$ we have

$$
\mu_{3}^{d}(h)=\nu_{1}^{d}(h-1)= \begin{cases}1, & \text { if } h+d \text { is odd; } \\ 0, & \text { if } h+d \text { is even } .\end{cases}
$$

Hence $\mu_{3}^{d}(3)=\left\lfloor\frac{2^{d}-1}{3}\right\rfloor$ for $d \geq 0$. From the recursive relation $\bar{\nu}_{2}^{d+1}=$ $\nu_{1}^{d}(1)+2 \bar{\nu}_{2}^{d}$ it is easy to see that $\bar{\nu}_{2}^{d}=\left\lfloor\frac{2^{d}-1}{3}\right\rfloor=\mu_{3}^{d}(3)$.

This corollary implies that the map Λ is a bijection. Furthermore for all d, every element of $\left\{\operatorname{LM}(f) \mid f \in\left(\otimes^{d} V_{2}\right)^{C_{p}}\right\}$ may be written as a product with factors from the set $\{\operatorname{LM}(g) \mid g \in B\}$ where

$$
\begin{aligned}
B: & =\left\{x_{i} \mid 1 \leq i \leq d\right\} \cup\left\{u_{i j} \mid 1 \leq i<j \leq d\right\} \\
& \cup\left\{\operatorname{Tr}\left(\prod_{i=1}^{d} y_{i}^{e_{i}}\right) \mid 0 \leq e_{i} \leq 1, \forall i=1,2, \ldots, d\right\} .
\end{aligned}
$$

We record and extend these results in the following theorem.
Theorem 5.5. Let p be a prime, let $d \in \mathbb{N}$ and suppose $0 \leq h \leq p-2$. Let $\gamma \in P D P_{\leq p-2}^{d} \cup I D P_{p-1}^{d}$. Then
(1) $\operatorname{LM}(\theta(\gamma))=\Lambda(\gamma)$.
(2) If $\gamma \in P D P_{\leq p-2}^{d}(h)$ then the invariant $\theta(\gamma)$ lies in

$$
\mathbf{F}\left[d V_{2}\right]_{(1,1, \ldots, 1)}^{C_{p}} \cong\left(\otimes^{d} V_{2}\right)^{C_{p}}
$$

and has length $h+1$.
(3) If $\gamma \in I D P_{p-1}^{d}$ then the invariant $\theta(\gamma)$ lies in

$$
\mathbf{F}\left[d V_{2}\right]_{(1,1, \ldots, 1)}^{C_{p}} \cong\left(\otimes^{d} V_{2}\right)^{C_{p}}
$$

and has length p.
(4) B is a SAGBI basis in multi-degree $(1,1, \ldots, 1)$ for $\mathbf{F}\left[d V_{2}\right]^{C_{p}}$.

Furthermore, we have the following decomposition of the C_{p} representation $\otimes^{d} V_{2}$ into indecomposable summands:

$$
\bigotimes^{d} V_{2} \cong \bigoplus_{\gamma \in P D P_{\leq p-2}^{d} \cup I D P_{p-1}^{d}} V(\gamma)
$$

where $V(\gamma) \cong V_{h+1}$ is a C_{p}-module generated by $\theta^{\prime}(\gamma)$, with socle spanned by $\theta(\gamma)$ and

$$
h=\ell(\theta(\gamma))-1= \begin{cases}\text { the finishing height of } \gamma ; & \text { if } \gamma \in P D P_{\leq p-2}^{d}(h) \\ p-1 & \text { if } \gamma \in I D P_{p-1}^{d}\end{cases}
$$

Proof. The assertions (1) and (3) have already been proved.
To prove the other assertions we consider the C_{p}-module

$$
W=\sum_{\gamma \in \operatorname{PDP}_{\leq p-2}^{d} \cup \mathrm{IDP}_{p-1}^{d}} V(\gamma)
$$

generated by the set $\left\{\theta^{\prime}(\gamma) \mid \gamma \in \operatorname{PDP}_{\leq p-2}^{d} \cup \operatorname{IDP}_{p-1}^{d}\right\}$. The set of vectors $\left\{\theta(\gamma) \mid \gamma \in \operatorname{PDP}_{\leq p-2}^{d} \cup \operatorname{IDP}_{p-1}^{d}\right\}$ spanning the socles of the $V(\gamma)$ is linearly independent since these vectors have distinct lead monomials. This implies that the above sum is direct:

$$
W=\bigoplus_{\gamma \in \operatorname{PDP}_{\leq p-2}^{d} \mathrm{UIDP}_{p-1}^{d}} V(\gamma)
$$

Thus $\operatorname{dim} W=\left(\sum_{h=0}^{p-2}(h+1) \cdot \nu_{p}^{d}(h)\right)+p \cdot \bar{\nu}_{p}^{d}$. Applying Corollary 5.4, yields $\operatorname{dim} W=\operatorname{dim} \otimes^{d} V_{2}$. Since W is a submodule of $\otimes^{d} V_{2}$ we see that $W=\otimes^{d} V_{2}$. Furthermore, any set of (spanning vectors for the) socles in any direct sum decomposition of $\otimes^{d} V_{2}$ there will be exactly $\nu_{p}^{d}(h)$ invariants of length $h+1$ for $0 \leq h \leq p-2$ (and $\bar{\nu}_{p}^{d}$ of length p). Combining this fact with $\ell(\theta(\gamma)) \geq h+1$ for all $\gamma \in \operatorname{PDP}_{\leq p-2}^{d}(h)$, we get $\ell(\theta(\gamma))=h+1$ for all $\gamma \in \operatorname{PDP}_{\leq p-2}^{d}(h)$, completing the proof of assertion (2) as well as the final assertion of the theorem. Assertion(4) also follows now since we have $\left\{\operatorname{LM}(f) \mid f \in\left(\otimes^{d} V_{2}\right)^{C_{p}}\right\}=\{\operatorname{LM}(\theta(\gamma)) \mid$ $\left.\gamma \in \operatorname{PDP}_{\leq p-2}^{d} \cup \operatorname{IDP}_{p-1}^{d}\right\}$ and each of these lead monomials may be factored into a product of lead monomials of elements of B.

6. A Generating Set

Consider the set

$$
\begin{gathered}
\mathcal{B}=\left\{x_{i}, \mathrm{~N}\left(y_{i}\right) \mid 1 \leq i \leq m\right\} \cup\left\{u_{i j} \mid 1 \leq i<j \leq m\right\} \\
\cup\left\{\operatorname{Tr}\left(y^{E}\right) \mid 0 \leq e_{i} \leq p-1\right\} .
\end{gathered}
$$

We will show that \mathcal{B} is a generating set, in fact a SAGBI basis for $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$. Let $f \in \mathbf{F}\left[m V_{2}\right]^{C_{p}}$ be monic and multi-homogeneous, of multi-degree $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$. Let A denote the subalgebra $\mathbf{F}[\mathcal{B}]$. We proceed by induction on the total degree $d=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{m}$ of f. Clearly if f has total degree 0 then f is constant, $f \in A$ and $\operatorname{LM}(f)=1$ and there is nothing more to prove.

Suppose then that the total degree d of f is positive. First suppose that $\lambda_{i} \geq p$ for some i. We consider f as a polynomial in y_{i} and write $f=\sum_{j=0}^{\lambda_{i}} f_{j} y_{i}^{j}$ where f_{j} is a polynomial which is homogeneous of degree $\lambda_{i}-j$ in x_{i}. Dividing f by $\mathrm{N}\left(y_{i}\right)$ in $\mathbf{F}\left[m V_{2}\right]$ yields $f=q \mathrm{~N}\left(y_{i}\right)+r$ where the remainder r is a polynomial whose degree in y_{i} is at most $p-1$. Applying σ we have $f=\sigma(f)=\sigma(q) \mathrm{N}\left(y_{i}\right)+\sigma(r)$. Since applying σ cannot increase the degree in y_{i}, we see that $\sigma(r)$ also has degree at most $p-1$ in y_{i}. By the uniqueness of remainders and quotients we must have $\sigma(r)=r$ and $\sigma(q)=q$, i.e., $q, r \in \mathbf{F}\left[m V_{2}\right]^{C_{p}}$. Since $\lambda_{i} \geq p$, we see that x_{i} divides r and so we have $f=q \mathrm{~N}\left(y_{i}\right)+x_{i} r^{\prime}$ with
$q, r^{\prime} \in \mathbf{F}\left[m V_{2}\right]^{C_{p}}$. By induction $q, r^{\prime} \in A$ and thus $f \in A$. Also by induction we have that $\mathrm{LM}(q)$ and $\mathrm{LM}\left(r^{\prime}\right)$, hence also $\operatorname{LM}(f)$ may be written as products with factors from $\operatorname{LM}(\mathcal{B})$.

Therefore, we may assume that $\lambda_{i}<p$ for all $i=1,2, \ldots, m$. Then $\kappa=\lambda_{1}!\lambda_{2}!\cdots \lambda_{m}!\neq 0$. Define

$$
F=\mathcal{P}(f) \in \mathbf{F}\left[d V_{2}\right]_{(1,1, \ldots, 1)}^{C_{p}}=\left(\otimes_{i=1}^{d} V_{2}\right)^{C_{p}}
$$

At this point we want to fix some notation. We will use $\left\{x_{i j}, y_{i j} \mid\right.$ $\left.1 \leq i \leq m, 1 \leq j \leq \lambda_{i}\right\}$ as co-ordinate variables for $\lambda_{1} V_{2} \oplus \lambda_{2} V_{2} \oplus$ $\cdots \oplus \lambda_{m} V_{2}$. We write $u_{i j, k \ell}=x_{i j} y_{k \ell}-x_{k \ell} y_{i j}$. We use a graded reverse lexicographic order on $\mathbf{F}\left[\oplus_{i=1}^{m} \lambda_{i} V_{2}\right]$ after ordering these variables such that the following conditions hold

- $y_{i j}>x_{i j}$,
- if $i<k$ then $y_{i j}>y_{k \ell}$ and $x_{i j}>x_{k \ell}$,
- if $j<\ell$ then $y_{i j}>y_{i \ell}$ and $x_{i j}>x_{i \ell}$.

We will first show that \mathcal{B} generates $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$ as an \mathbf{F}-algebra and then show that it is a SAGBI basis. Of course, the former statement follows from the latter but we include a separate proof of the former since the proof is short and illustrates the main idea we will need for the latter proof.

By Theorem 5.5, we may write

$$
F=\sum_{I} \alpha_{I} \prod_{i j} x_{i j} \prod_{i j, k \ell} u_{i j, k \ell} \prod_{E} \operatorname{Tr}\left(\prod_{i j} y_{i j}^{e_{i j}}\right) .
$$

Let $e_{i}=\sum_{j} e_{i j}$.

$$
\begin{aligned}
f & =\kappa^{-1} \mathcal{R}(\mathcal{P}(f))=\kappa^{-1} \mathcal{R}(F) \\
& =\kappa^{-1} \mathcal{R}\left(\sum_{I} \alpha_{I} \prod_{i j} x_{i j} \prod_{i j, k \ell} u_{i j, k \ell} \prod_{E} \operatorname{Tr}\left(\prod_{i j} y_{i j}^{e_{i j}}\right)\right) \\
& =\kappa^{-1} \sum_{I} \alpha_{I} \prod_{i j} \mathcal{R}\left(x_{i j}\right) \prod_{i j, k \ell} \mathcal{R}\left(u_{i j, k \ell}\right) \prod_{E} \mathcal{R}\left(\operatorname{Tr}\left(\prod_{i j} y_{i j}^{e_{i j}}\right)\right) \\
& =\kappa^{-1} \sum_{I} \alpha_{I} \prod_{i j} x_{i} \prod_{i j, k \ell} u_{i k} \prod_{E} \operatorname{Tr}\left(\prod_{i} y_{i}^{e_{i}}\right) \in A
\end{aligned}
$$

where the last equality follows from the following equalities

$$
\begin{aligned}
\mathcal{R}\left(\operatorname{Tr}\left(y^{E}\right)\right) & =\mathcal{R}\left(\sum_{\tau \in C_{p}} \tau\left(y^{E}\right)\right)=\sum_{\tau \in C_{p}} \mathcal{R}\left(\tau\left(y^{E}\right)\right)=\sum_{\tau \in C_{p}} \tau\left(\mathcal{R}\left(y^{E}\right)\right) \\
& =\operatorname{Tr}\left(\mathcal{R}\left(y^{E}\right)\right) .
\end{aligned}
$$

This completes the proof that \mathcal{B} generates $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$ as an \mathbf{F}-algebra. We continue with the proof that \mathcal{B} is a SAGBI basis. First we prove a lemma relating our term orders and polarisation.

Lemma 6.1. Suppose γ_{1}, γ_{2} are two monomials in $\mathbf{F}\left[m V_{2}\right]_{\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)}$ with $\gamma_{1}>\gamma_{2}$. Then $\operatorname{LT}\left(\mathcal{P}\left(\gamma_{1}\right)\right)>\operatorname{LT}\left(\mathcal{P}\left(\gamma_{2}\right)\right)$.
Proof. Write $\gamma_{1}=\prod_{i=1}^{m} x_{i}^{a_{i}} y_{i}^{\lambda_{i}-a_{i}}$ and $\gamma_{2}=\prod_{i=1}^{m} x_{i}^{b_{i}} y_{i}^{\lambda_{i}-b_{i}}$. Choose s such that $a_{s} \neq b_{s}$ but $a_{s+1}=b_{s+1}, \ldots, a_{m}=b_{m}$. Since $\gamma_{1}>\gamma_{2}$ we must have $b_{s}>a_{s}$.

Now
$\operatorname{LT}\left(\mathcal{P}\left(\gamma_{1}\right)\right)=\prod_{i=1}^{m} \prod_{j=1}^{a_{i}} x_{i j} \prod_{j=a_{i}+1}^{\lambda_{i}} y_{i j}$ and $\operatorname{LT}\left(\mathcal{P}\left(\gamma_{2}\right)\right)=\prod_{i=1}^{m} \prod_{j=1}^{b_{i}} x_{i j} \prod_{j=b_{i}+1}^{\lambda_{i}} y_{i j}$.
Writing

$$
\begin{aligned}
& \Gamma_{1}=\prod_{i=1}^{s-1} \prod_{j=1}^{a_{i}} x_{i j} \prod_{j=a_{i}+1}^{\lambda_{i}} y_{i j}, \quad \Gamma_{2}=\prod_{i=1}^{s-1} \prod_{j=1}^{b_{i}} x_{i j} \prod_{j=b_{i}+1}^{\lambda_{i}} y_{i j} \\
& \text { and } \quad \Gamma_{0}=\prod_{i=s+1}^{m} \prod_{j=1}^{a_{i}} x_{i j} \prod_{j=a_{i}+1}^{\lambda_{i}} y_{i j}
\end{aligned}
$$

we have

$$
\operatorname{LT}\left(\mathcal{P}\left(\gamma_{1}\right)\right)=\Gamma_{0} \Gamma_{1} \prod_{j=1}^{a_{s}} x_{s j} \prod_{j=a_{s}+1}^{\lambda_{s}} y_{s j}
$$

and

$$
\operatorname{LT}\left(\mathcal{P}\left(\gamma_{2}\right)\right)=\Gamma_{0} \Gamma_{2} \prod_{j=1}^{b_{s}} x_{s j} \prod_{j=b_{s}+1}^{\lambda_{s}} y_{s j} .
$$

Since $a_{s}<b_{s}$ we see that $\operatorname{LT}\left(\mathcal{P}\left(\gamma_{1}\right)\right)>\operatorname{LT}\left(\mathcal{P}\left(\gamma_{2}\right)\right)$.
Write $f=\gamma_{1}+\gamma_{2}+\cdots+\gamma_{s}$ where each γ_{i} is a term and $\operatorname{LM}(f)=$ $\operatorname{LT}(f)=\gamma_{1}$ since f was assumed to be monic. Define $F=\mathcal{P}(f)$. By Lemma 6.1, $\operatorname{LM}(F)=\operatorname{LM}\left(\mathcal{P}\left(\gamma_{1}\right)\right)$. Furthermore, each monomial of $\mathcal{P}\left(\gamma_{1}\right)$ restitutes to γ_{1}. In particular, $\mathcal{R}\left(\Gamma_{1}\right)=\gamma_{1}$ where $\Gamma_{1}=\operatorname{LM}(F)$. By Proposition 5.5(4), we may write

$$
\begin{aligned}
\Gamma_{1} & =\operatorname{LM}(F)=\operatorname{LM}\left(\prod_{i j} x_{i j} \prod_{i j, k \ell} u_{i j, k \ell} \prod_{E} \operatorname{Tr}\left(\prod_{i j} y_{i j}^{e_{i j}}\right)\right) \\
& =\prod_{i j} x_{i j} \prod_{i j, k \ell} \operatorname{LM}\left(u_{i j, k \ell}\right) \prod_{E} \operatorname{LM}\left(\operatorname{Tr}\left(\prod_{i j} y_{i j}^{e_{i j}}\right)\right) .
\end{aligned}
$$

Restituting we find

$$
\begin{aligned}
\gamma_{1} & =\mathcal{R}\left(\Gamma_{1}\right)=\mathcal{R}\left(\prod_{i j} x_{i j} \prod_{i j, k \ell} \operatorname{LM}\left(u_{i j, k \ell}\right) \prod_{E} \operatorname{LM}\left(\operatorname{Tr}\left(\prod_{i j} y_{i j}^{e_{i j}}\right)\right)\right) \\
& =\prod_{i j} \mathcal{R}\left(x_{i j}\right) \prod_{i j, k \ell} \mathcal{R}\left(\operatorname{LM}\left(u_{i j, k \ell}\right)\right) \prod_{E} \mathcal{R}\left(\operatorname{LM}\left(\operatorname{Tr}\left(\prod_{i j} y_{i j}^{e_{i j}}\right)\right)\right) \\
& =\prod_{i j} x_{i} \prod_{i j, k \ell} \operatorname{LM}\left(u_{i, k}\right) \prod_{E} \operatorname{LM}\left(\operatorname{Tr}\left(\prod_{i} y_{i}^{\sum_{j} e_{i j}}\right)\right)
\end{aligned}
$$

where the last equality follows using Lemma 6.2 below. Thus $\operatorname{LM}(f)$ may be written as a product of factors from $\operatorname{LM}(\mathcal{B})$. This shows that \mathcal{B} is a SAGBI basis for $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$.
Lemma 6.2. Let $y^{E}=\prod_{i=1}^{m} \prod_{j=1}^{\lambda_{i}} y_{i j}^{e_{i j}}$ where $e_{i j} \in\{0,1\}$ for all i, j. Let $e_{i}=\sum_{j=1}^{\lambda_{i}} e_{i j}$. If $e_{i}<p$ for all $i=1,2, \ldots, m$ then

$$
\mathcal{R}\left(\operatorname{LM}\left(\operatorname{Tr}\left(y^{E}\right)\right)\right)=\operatorname{LM}\left(\operatorname{Tr}\left(\mathcal{R}\left(y^{E}\right)\right)\right)
$$

Proof. Let s be minimal such that $e_{1}+e_{2}+\cdots+e_{s} \geq p-1$. (If no such s exists then $\operatorname{Tr}\left(y^{E}\right)=0$ and $\operatorname{Tr}\left(\mathcal{R}\left(y^{E}\right)\right)=0$.) Let r be minimal such that $e_{1}+e_{2}+\cdots+e_{s-1}+e_{s 1}+e_{s 2}+\cdots+e_{s r}=p-1$. By Lemma 2.3

$$
\operatorname{LM}\left(\operatorname{Tr}\left(y^{E}\right)\right)=\left(\prod_{i=1}^{s-1} \prod_{j=1}^{\lambda_{i}} x_{i j}^{e_{i j}}\right) \prod_{j=1}^{r} x_{s j}^{e_{s j}} \prod_{j=r+1}^{\lambda_{s}} y_{s j}^{e_{s j}}\left(\prod_{i=s+1}^{m} \prod_{j=1}^{\lambda_{i}} y_{i j}^{e_{i j}}\right)
$$

Since $\mathcal{R}\left(y^{E}\right)=\prod_{i=1}^{m} y_{i}^{e_{i}}$, again using Lemma 2.3 we see that

$$
\operatorname{LM}\left(\operatorname{Tr}\left(\mathcal{R}\left(y^{E}\right)\right)\right)=\left(\prod_{i=1}^{s-1} x_{i}^{e_{i}}\right) x_{s}^{t} y_{s}^{e_{s}-t}\left(\prod_{i=s+1}^{m} y_{i}^{e_{i}}\right)
$$

where $t=(p-1)-\left(e_{1}+e_{2}+\cdots+e_{s-1}\right)=\sum_{j=1}^{r} e_{i j}$. Thus

$$
\mathcal{R}\left(\operatorname{LM}\left(\operatorname{Tr}\left(y^{E}\right)\right)\right)=\operatorname{LM}\left(\operatorname{Tr}\left(\mathcal{R}\left(y^{E}\right)\right)\right)
$$

as required.
Theorem 6.3. The set

$$
\begin{aligned}
\mathcal{B}^{\prime}=\left\{x_{i},\right. & \left.\mathrm{N}\left(y_{i}\right) \mid 1 \leq i \leq m\right\} \cup\left\{u_{i j} \mid 1 \leq i<j \leq m\right\} \\
& \cup\left\{\operatorname{Tr}\left(y^{E}\right)\left|0 \leq e_{i} \leq p-1,2(p-1)<|E|\right\}\right.
\end{aligned}
$$

is both a minimal algebra generating set and a SAGBI basis for $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$.
Proof. We start by showing \mathcal{B}^{\prime} is a SAGBI basis. We need to see why we do not need invariants of the form $\operatorname{Tr}\left(y^{E}\right)$ where $|E| \leq 2(p-1)$ as generators. To see this, consider such a transfer $\operatorname{Tr}\left(y^{E}\right)$. By Lemma 2.3
its lead term is $x_{r}^{p-1-t+e_{r}} y_{r}^{t-p+1} \prod_{i=1}^{r-1} x_{i}^{e_{i}} \prod_{i=r+1}^{d} y_{i}^{e_{i}}$ where r is minimal such that $t=\sum_{i=1}^{r} e_{i} \geq p-1$. (We may assume that r exists since if $|E|<p-1$ then $\operatorname{Tr}\left(y^{E}\right)=0$.)

Write $\operatorname{LM}\left(\operatorname{Tr}\left(y^{E}\right)\right)=x_{i_{1}} x_{i_{2}} \cdots x_{i_{p-1}} y_{i_{p}} y_{i_{p+1}} \cdots y_{i_{e}}$ where $1 \leq i_{1} \leq$ $i_{2} \leq \cdots \leq i_{e} \leq m$. Consider $f=\prod_{j=1}^{2 p-2-|E|} x_{i_{j}} \prod_{j=1}^{|E|-(p-1)} u_{i_{p-j}, i_{p-1+j}}$. Then $\operatorname{LM}(f)=\operatorname{LM}\left(\operatorname{Tr}\left(y^{E}\right)\right)$. Thus $\left\{\operatorname{LM}(f) \mid f \in \mathcal{B}^{\prime}\right\}$ generates the same algebra as $\{\operatorname{LM}(f) \mid f \in \mathcal{B}\}$ which shows that \mathcal{B}^{\prime} is a SAGBI basis (and hence a generating set) for $\mathbf{F}\left[m V_{2}\right]^{C_{p}}$.

Now we show that \mathcal{B}^{\prime} is a minimal generating set. It is clear that the elements x_{i} and $u_{i j}$ cannot be written as polynomials in the other elements of \mathcal{B}^{\prime}. Furthermore, since $\operatorname{LM}\left(\mathrm{N}\left(y_{i}\right)\right)=y_{i}^{p}$ is the only monomial occuring in any element of \mathcal{B}^{\prime} which is a pure power of y_{i}, we see that $\mathrm{N}\left(y_{i}\right)$ is required as a generator. This leaves elements of the form $\operatorname{Tr}\left(y^{E}\right)$ with $|E|>2(p-1)$. We proceed similarly to the proof of [24, Lemma 4.3]. Assume by way of contradiction that $\operatorname{Tr}\left(y^{E}\right)=$ $\gamma_{1}+\gamma_{2}+\cdots+\gamma_{r}$ where each γ_{i} is a scalar times a product of elements from $\mathcal{B}^{\prime} \backslash\left\{\operatorname{Tr}\left(y^{E}\right)\right\}$ and that $\operatorname{LM}\left(\gamma_{1}\right) \geq \operatorname{LM}\left(\gamma_{2}\right) \cdots \geq \operatorname{LM}\left(\gamma_{r}\right)$. Then $\operatorname{LM}\left(\operatorname{Tr}\left(y^{E}\right)\right) \leq \operatorname{LM}\left(\gamma_{1}\right)$. First we suppose that $\operatorname{LM}\left(\gamma_{1}\right)=\operatorname{LT}\left(\operatorname{Tr}\left(y^{E}\right)\right)$. As above we have

$$
\operatorname{LM}\left(\gamma_{1}\right)=\operatorname{LM}\left(\operatorname{Tr}\left(y^{E}\right)\right)=x^{A} y^{B}=x_{r}^{p-1-t+e_{r}} y_{r}^{t-p+1} \prod_{i=1}^{r-1} x_{i}^{e_{i}} \prod_{i=r+1}^{d} y_{i}^{e_{i}}
$$

where r is minimal such that $t=\sum_{i=1}^{r} e_{i} \geq p-1$.
Since each $e_{i}<p$ and $\operatorname{LM}\left(\mathrm{N}\left(y_{i}\right)\right)=y_{i}^{p}$ we see that $\mathrm{N}\left(y_{i}\right)$ does not divide γ_{1}. But then since $|A|=p-1$ we see that $|A|<|E|-|A|=|B|$ and thus there must be at least one transfer which divides γ_{1}. Conversely since $|A|=p-1$ exactly one transfer (to the first power) may divide γ_{1}. But then the lead monomials of the other factors must divide y^{B} and no element of \mathcal{B}^{\prime} has a lead monomial satisfying this constraint. This shows that for $|E|>2(p-1)$, the monomial $\operatorname{LM}\left(\operatorname{Tr}\left(y^{E}\right)\right)$ cannot be properly factored using lead monomials from \mathcal{B}^{\prime}.

Therefore we must have $\operatorname{LM}\left(\gamma_{1}\right)>\operatorname{LM}\left(\operatorname{Tr}\left(y^{E}\right)\right)$ (and $\operatorname{LM}\left(\gamma_{1}\right)=$ $\left.\mathrm{LM}\left(\gamma_{2}\right)\right)$. Since we may assume that each term of each γ_{i} is homogeneous of degree E, we may write $\operatorname{LM}\left(\gamma_{1}\right)=x^{C} y^{D}$ where $C+D=E$. But $\operatorname{LM}\left(\operatorname{Tr}\left(y^{E}\right)\right)=x^{A} y^{B}$ is the biggest monomial in degree E which satisfies $|A| \geq p-1$. Hence $\operatorname{LM}\left(\gamma_{1}\right)>\operatorname{LM}\left(\operatorname{Tr}\left(y^{E}\right)\right)$ implies that $|C|<p-1$. Therefore γ_{1} must be a product of elements of the form $x_{i}, u_{i j}$ and $\mathrm{N}\left(y_{i}\right)$ from \mathcal{B}^{\prime}. As above, since each $e_{i}<p$, no $\mathrm{N}\left(y_{i}\right)$ can divide γ_{1}. But then $\operatorname{LM}\left(\gamma_{1}\right)$ is a product of factors of the form x_{i}
and $\operatorname{LM}\left(u_{i j}\right)=x_{i} y_{j}$ and this forces $|C| \geq|D|=|E|-|C|$. Therefore $2(p-1)>2|C| \geq|E|$. This contradiction shows that we cannot express $\operatorname{Tr}\left(y^{E}\right)$ as a polynomial in the other elements of \mathcal{B}^{\prime} when $|E|>2(p-1)$.

7. Decomposing $\mathbf{F}\left[m V_{2}\right]$ as a C_{p}-Module

In this section we show that our techniques give a decomposition of the homogeneous component

$$
\mathbf{F}\left[m V_{2}\right]_{\left(d_{1}, d_{2}, \ldots, d_{m}\right)}
$$

as a C_{p}-module. We will describe $\mathbf{F}\left[m V_{2}\right]_{\left(d_{1}, d_{2}, \ldots, d_{m}\right)}$ modulo projectives, i.e., we compute the multiplicities of the indecomposable summands V_{k} of this component for which $k<p$. Having done this, a simple dimension computation will give the complete decomposition.

By the Periodicity Theorem (Theorem 2.1), we may assume that each $d_{i}<p$. Let $d=d_{1}+d_{2}+\cdots+d_{m}$. The symmetric group on d letters, Σ_{d}, acts on $\otimes^{d} V_{2}$ by permuting the factors. This action commutes with the action of C_{p} (in fact with the action of all of $G L\left(V_{2}\right)$). The image of the polarization map consists of those tensors which are fixed by the Young subgroup $Y=\Sigma_{d_{1}} \times \Sigma_{d_{2}} \times \cdots \times \Sigma_{d_{m}}$ of Σ_{d}. Since each $d_{i}<p$, we see that Y is a non-modular group. Maschke's Theorem then implies that polarization embeds $\mathbf{F}\left[m V_{2}\right]_{d}$ into $\otimes^{d} V_{2}$ as a C_{p}-summand. Therefore $\ell(\mathcal{P}(f))=\ell(f)$ for all $f \in \mathbf{F}\left[m V_{2}\right]_{\left(d_{1}, d_{2}, \ldots, d_{m}\right)}^{C_{p}}$ and $\ell(\mathcal{R}(F))=\ell(F)$ for all $F \in\left(\otimes^{d} V_{2}\right)^{C_{p} \times Y}$.

Using the relations given in Section 2.2, it is straightforward to write down a basis, consisting of products of $u_{i j}$'s and x_{i} 's, for the invariants in multi-degree $\left(d_{1}, d_{2}, \ldots, d_{m}\right)$ which lie in the subring generated by $\left\{x_{i} \mid 1 \leq i \leq m\right\} \cup\left\{u_{i, j} \mid 1 \leq i<j \leq m\right\}$. Associated to the lead term of each invariant in this basis is an indecomposable summand of $\mathbf{F}\left[m V_{2}\right]_{\left(d_{1}, d_{2}, \ldots, d_{m}\right)}$. The dimension of this summand may be found using Theorem 5.5. More directly, consider a product of $u_{i j}$'s and x_{i} 's, say

$$
f:=\prod_{i=1}^{m} x_{i}^{a_{i}} \cdot \prod_{1 \leq i<j \leq m} u_{i, j}^{b_{i, j}} \in \mathbf{F}\left[m V_{2}\right]^{C_{p}} .
$$

It is not too difficult to show that $\operatorname{LT}(f)$ is the lead term of an element of the transfer if and only if there exists r with $1 \leq r \leq m$ such that

$$
\sum_{i=1}^{r} a_{i}+\sum_{\substack{1 \leq i \leq r \leq j \leq m \\ i \leq j}}^{r} b_{i j} \geq p-1
$$

If no such r exists then $\ell(f)=1+\sum_{i=1}^{m} a_{i}$ gives the dimension of the associated summand.

Rather than working with the invariants lying in $\mathbf{F}\left[m V_{2}\right]$ directly, one may instead use Theorem 5.5 to decompose $\otimes^{d} V_{2}$. It is then possible to perturb this decomposition so that it is a refinement of the splitting given by polarisation/restitution and thus gives a decomposition of $\mathbf{F}\left[m V_{2}\right]_{\left(d_{1}, \ldots, d_{m}\right)}$.

Example 7.1. As an example we compute the decomposition of

$$
\mathbf{F}\left[4 V_{2}\right]_{(p+1,1,1, p+2)} .
$$

This space has dimension $(p+2)(2)(2)(p+3)=4 p^{2}+20 p+24$. By Theorem 2.1, we know

$$
\mathbf{F}\left[4 V_{2}\right]_{(p+1,1,1, p+2)} \cong \mathbf{F}\left[4 V_{2}\right]_{(1,1,1,2)} \oplus(4 p+20) V_{p}
$$

and we need to compute the decomposition of

$$
\mathbf{F}\left[4 V_{2}\right]_{(1,1,1,2)}=V_{2} \otimes V_{2} \otimes V_{2} \otimes S^{2}\left(V_{2}\right)
$$

We have available the invariants $x_{1}, x_{2}, x_{3}, x_{4}$ and $u_{12}, u_{13}, u_{14}, u_{23}, u_{24}, u_{34}$. Suppose now that $p \geq 7$. The products of these 10 invariants which lie in degree $(1,1,1,2)$ are as follows (sorted by length):
$\ell=2: x_{4} u_{12} u_{34}, x_{4} u_{13} u_{24}, x_{4} u_{14} u_{23}, x_{1} u_{24} u_{34}, x_{2} u_{14} u_{34}, x_{3} u_{14} u_{24}$
$\ell=4: x_{3} x_{4}^{2} u_{12}, x_{1} x_{4}^{2} u_{23}, x_{1} x_{2} x_{4} u_{34}, x_{2} x_{4}^{2} u_{13}, x_{1} x_{3} x_{4} u_{24}, x_{2} x_{3} x_{4} u_{14}$
$\ell=6: x_{1} x_{2} x_{3} x_{4}^{2}$
Consider the invariants of length 2. Among the available relations for those of length 2 we have:

$$
\begin{aligned}
& 0=x_{4}\left(u_{12} u_{34}-u_{13} u_{24}+u_{14} u_{23}\right), \\
& 0=u_{34}\left(x_{1} u_{24}-x_{2} u_{14}+x_{4} u_{23}\right), \text { and } \\
& 0=u_{14}\left(x_{2} u_{34}-x_{3} u_{24}+x_{4} u_{23}\right) .
\end{aligned}
$$

Using these three relations we see that the three invariants

$$
x_{4} u_{13} u_{24}, \quad x_{2} u_{14} u_{34}, \quad x_{3} u_{14} u_{24}
$$

may be expressed in terms of the other three invariants

$$
x_{4} u_{12} u_{34}, \quad x_{4} u_{14} u_{23}, \quad x_{1} u_{24} u_{34}
$$

Furthermore there are no relations involving only these latter three invariants and thus they represent the socles of 3 summands isomorphic to V_{2}.

Among the available relations involving invariants of length 4 we have

$$
\begin{aligned}
& 0=x_{4}^{2}\left(x_{1} u_{23}-x_{2} u_{13}+x_{3} u_{12}\right), \\
& 0=x_{1} x_{4}\left(x_{2} u_{34}-x_{3} u_{24}+x_{4} u_{23}\right), \text { and } \\
& 0=x_{3} x_{4}\left(x_{1} u_{24}-x_{2} u_{14}+x_{4} u_{12}\right) .
\end{aligned}
$$

These allow us to express the three invariants

$$
x_{2} x_{4}^{2} u_{13}, \quad x_{1} x_{3} x_{4} u_{24}, \quad x_{2} x_{3} x_{4} u_{14}
$$

using only

$$
x_{3} x_{4}^{2} u_{12}, \quad x_{1} x_{4}^{2} u_{23}, \quad x_{1} x_{2} x_{4} u_{34} .
$$

Again these there are no relations involving only these latter 3 invariants and so they represent the socles of 3 summands isomorphic to V_{4}.

Since $x_{1} x_{2} x_{3} x_{4}^{2}$ spans the socle of a summand isomorphic to V_{6} we conclude that

$$
\mathbf{F}\left[4 V_{2}\right]_{(1,1,1,2)} \cong 3 V_{2} \oplus 3 V_{4} \oplus V_{6} \quad \text { for } p \geq 7
$$

For $p=5$, the foregoing is all correct except that the lattice paths corresponding to $x_{1} x_{2} x_{3} x_{4}^{2}$ and $x_{1} x_{2} x_{3} x_{4} y_{4}=\operatorname{LT}\left(x_{1} x_{2} u_{34} x_{4}\right)$ both attain height $p-1=4$. Thus in this case these two invariants both represent a projective summand and we have the decomposition

$$
\mathbf{F}\left[4 V_{2}\right]_{(1,1,1,2)} \cong 3 V_{2} \oplus 2 V_{4} \oplus 2 V_{5} \quad \text { for } p=5
$$

For $p=2,3$ all the relevant lattice paths attain height $p-1$ and so the summand is projective. Thus

$$
\begin{aligned}
& \mathbf{F}\left[4 V_{2}\right]_{(1,1,1,2)} \cong 8 V_{3} \quad \text { for } p=3, \text { and } \\
& \mathbf{F}\left[4 V_{2}\right]_{(1,1,1,2)} \cong 12 V_{2} \quad \text { for } p=2
\end{aligned}
$$

We will also illustrate how to use the decomposition of $\otimes^{5} V_{2}$ to find the decomposition of $\mathbf{F}\left[4 V_{2}\right]_{(1,1,1,2)}$. By the results of Section 5, we have $\otimes^{5} V_{2} \cong 5 V_{2} \oplus 4 V_{4} \oplus V_{6}$ for $p \geq 7$. Here the lead monomials are
$\ell=2: x_{1} y_{2} x_{3} y_{4} x_{5}, x_{1} x_{2} y_{3} y_{4} x_{5}, x_{1} y_{2} x_{3} x_{4} y_{5}, x_{1} x_{2} y_{3} x_{4} y_{5}, x_{1} x_{2} x_{3} y_{4} y_{5}$
$\ell=4: x_{1} y_{2} x_{3} x_{4} x_{5}, x_{1} x_{2} y_{3} x_{4} x_{5}, x_{1} x_{2} x_{3} y_{4} x_{5}, x_{1} x_{2} x_{3} x_{4} y_{5}$
$\ell=6: x_{1} x_{2} x_{3} x_{4} x_{5}$
and the corresponding invariants are
$\ell=2: x_{5} u_{12} u_{34}, x_{5} u_{14} u_{23}, x_{4} u_{12} u_{35}, x_{1} u_{23} u_{45}, x_{1} u_{25} u_{34}$
$\ell=4: x_{3} x_{4} x_{5} u_{12}, x_{1} x_{4} x_{5} u_{23}, x_{1} x_{2} x_{5} u_{34}, x_{1} x_{2} x_{3} u_{45}$
$\ell=6: x_{1} x_{2} x_{3} x_{4} x_{5}$

The Young subgroup $Y:=\Sigma_{1} \times \Sigma_{1} \times \Sigma_{1} \times \Sigma_{2}$ acts by simultaneously interchanging x_{4} with x_{5} and y_{4} with y_{5}. Clearly the action preserves length. The $C_{p} \times Y$ invariants are

$$
\begin{aligned}
\ell=2: & x_{5} u_{12} u_{34}+x_{4} u_{12} u_{35}, x_{5} u_{14} u_{23}+x_{4} u_{15} u_{23}, x_{4} u_{12} u_{35}+x_{5} u_{12} u_{34}, \\
& x_{1} u_{23} u_{45}+x_{1} u_{23} u_{54}=0, x_{1} u_{25} u_{34}+x_{1} u_{24} u_{35} \\
\ell=4: & x_{3} x_{4} x_{5} u_{12}, x_{1} x_{4} x_{5} u_{23}, x_{1} x_{2} x_{5} u_{34}+x_{1} x_{2} x_{4} u_{35}, \\
& x_{1} x_{2} x_{3} u_{45}+x_{1} x_{2} x_{3} u_{54}=0 \\
\ell=6: & x_{1} x_{2} x_{3} x_{4} x_{5}
\end{aligned}
$$

We now restitute these $C_{p} \times Y$ invariants to $\mathbf{F}\left[4 V_{2}\right]_{(1,1,1,2)}^{C_{p}}$. We find

$$
\begin{aligned}
& \mathcal{R}\left(x_{5} u_{12} u_{34}+x_{4} u_{12} u_{35}\right)=2 x_{4} u_{12} u_{34}, \\
& \mathcal{R}\left(x_{5} u_{14} u_{23}+x_{4} u_{15} u_{23}\right)=2 x_{4} u_{14} u_{23}, \\
& \mathcal{R}\left(x_{1} u_{25} u_{34}+x_{1} u_{24} u_{35}\right)=2 x_{1} u_{24} u_{34} .
\end{aligned}
$$

Thus we find 3 summands of $\mathbf{F}\left[4 V_{2}\right]_{(1,1,1,2)}$ isomorphic to V_{2}.
Restituting the invariants of length 4 we find

$$
\begin{aligned}
\mathcal{R}\left(x_{3} x_{4} x_{5} u_{12}\right) & =x_{3} x_{4}^{2} u_{12}, \\
\mathcal{R}\left(x_{1} x_{4} x_{5} u_{23}\right) & =x_{1} x_{4}^{2} u_{23}, \text { and } \\
\mathcal{R}\left(x_{1} x_{2} x_{5} u_{34}+x_{1} x_{2} x_{4} u_{35}\right) & =2 x_{1} x_{2} x_{4} u_{34} .
\end{aligned}
$$

Thus we have 3 summands isomorphic to V_{4}. Since $\mathcal{R}\left(x_{1} x_{2} x_{3} x_{4} x_{5}\right)=$ $x_{1} x_{2} x_{3} x_{4}^{2}$, we see that

$$
\mathbf{F}\left[4 V_{2}\right]_{(1,1,1,2)} \cong 3 V_{2} \oplus 3 V_{4} \oplus V_{6} \quad \text { for } p \geq 7
$$

For $p=2,3,5$, the lengths of the above invariants change and we must adjust our conclusions accordingly as we did earlier. For $p=2$ we must also use the Periodicity Theorem again since $d_{4}=2=p$.

8. A First Main Theorem for $S L_{2}\left(\mathbf{F}_{p}\right)$

The purpose of this section is to use the relative transfer homomorphism to describe the ring of vector invariants, $\mathbf{F}\left[m V_{2}\right]^{S L_{2}\left(\mathbf{F}_{p}\right)}$. Let P denote the upper triangular Sylow p-subgroup of $S L_{2}\left(\mathbf{F}_{p}\right)$, giving $\mathrm{N}(y)=\mathrm{N}^{P}(y)=y^{p}-y x^{p-1}$. The ring of invariants of the defining representation of $S L_{2}\left(\mathbf{F}_{p}\right)$ is generated by $L=x \mathrm{~N}(y)$ and $D=$ $\mathrm{N}(y)^{p-1}+x^{p(p-1)}$ (see Dickson [10], Wilkerson [29], or Benson [1, §8.1]). For $\lambda \in \mathbb{N}^{m}$, define $L_{\lambda}=\pi_{\lambda} \nabla_{m}(L)$ and $D_{\lambda}=\pi_{\lambda} \nabla_{m}(D)$, the multidegree λ polarisations. Further define L_{i} to be the polarisation of L corresponding to $\lambda_{i}=p+1$ and $\lambda_{j}=0$ for $j \neq i$. It is easy to verify that $L_{i}=x_{i} y_{i}^{p}-x_{i}^{p} y_{i}$ is the Dickson invariant for the $i^{\text {th }}$ summand.

Let $L_{i j}$ denote the polarisation corresponding to $\lambda_{i}=1, \lambda_{j}=p$, and $\lambda_{k}=0$ otherwise. So, for example, $L_{32}=L_{(0, p, 1,0, \ldots, 0)}$. Define

$$
\mathcal{D}_{m}=\left\{\lambda \in \mathbb{N}^{m} \mid p \text { divides } \lambda_{i} \text { for all } i \text { and } \sum_{i=1}^{m} \lambda_{i}=p(p-1)\right\} .
$$

Further define

$$
\begin{aligned}
\mathcal{S}_{m}= & \left\{u_{i j} \mid i<j \leq m\right\} \cup\left\{L_{i}, L_{i j} \mid i, j \in\{1, \ldots, m\}, i \neq j\right\} \\
& \cup\left\{D_{\lambda} \mid \lambda \in \mathcal{D}_{m}\right\} .
\end{aligned}
$$

Theorem 8.1. The ring of vector invariants, $\mathbf{F}\left[m V_{2}\right]^{S L_{2}\left(\mathbf{F}_{p}\right)}$, is generated by \mathcal{S}_{m} and elements from the image of the transfer.

Note that the elements of \mathcal{S}_{m} are clearly $S L_{2}\left(\mathbf{F}_{p}\right)$-invariant and include a system of parameters. Let A denote the algebra generated by \mathcal{S}_{m} and let \mathfrak{a} denote the ideal in $\mathbf{F}\left[m V_{2}\right]^{P}$ generated by \mathcal{S}_{m}. A basis for the finite dimensional vector space $\mathbf{F}\left[m V_{2}\right]^{P} / \mathfrak{a}$ lifts to a set of A-module generators for $\mathbf{F}\left[m V_{2}\right]^{P}$, say \mathcal{M}. Since the relative transfer homomorphism is a surjective A-module morphism, $\mathbf{F}\left[m V_{2}\right]^{S L_{2}\left(\mathbf{F}_{p}\right)}$ is generated by $\mathcal{S}_{m} \cup \operatorname{Tr}_{P}^{S L_{2}\left(\mathbf{F}_{p}\right)}(\mathcal{M})$. The elements of \mathcal{M} may be chosen to be monomials in the generators of $\mathbf{F}\left[m V_{2}\right]^{P}$. Since we are working modulo the image of the transfer, it is sufficient to consider monomials of the form $\mathrm{N}(y)^{\alpha} x^{\beta}$.

Let \mathfrak{u} denote the ideal in $\mathbf{F}\left[m V_{2}\right]^{P}$ generated by $\left\{u_{i j} \mid i<j \leq m\right\}$.
Lemma 8.2. For $i<j \leq m, L_{i j}=x_{i} \mathrm{~N}\left(y_{j}\right)+u_{i j} x_{j}^{p-1}$ and $L_{j i}=$ $x_{j} \mathrm{~N}\left(y_{i}\right)-u_{i j} x_{i}^{p-1}$, giving $L_{i j} \equiv_{\mathfrak{u}} x_{i} \mathrm{~N}\left(y_{j}\right)$ and $L_{j i} \equiv_{\mathfrak{u}} x_{j} \mathrm{~N}\left(y_{i}\right)$.

Proof. Applying ∇_{m} to L gives

$$
\left(x_{1}+\cdots+x_{m}\right)\left(y_{1}^{p}+\cdots+y_{m}^{p}-\left(y_{1}+\cdots+y_{m}\right)\left(x_{1}+\cdots+x_{m}\right)^{p-1}\right) .
$$

Expanding gives

$$
\left(x_{1}+\cdots+x_{m}\right)\left(y_{1}^{p}+\cdots+y_{m}^{p}\right)-\left(y_{1}+\cdots+y_{m}\right)\left(x_{1}+\cdots+x_{m}\right)^{p} .
$$

Collecting the appropriate multi-degrees gives $L_{i j}=x_{i} y_{j}^{p}-y_{i} x_{j}^{p}$ and $L_{j i}=x_{j} y_{i}^{p}-y_{j} x_{i}^{p}$. Using $u_{i j}=x_{i} y_{j}-x_{j} y_{i}$ and $\mathrm{N}(y)=y^{p}-x^{p-1} y$ gives

$$
x_{i} \mathrm{~N}\left(y_{j}\right)+u_{i j} x_{j}^{p-1}=x_{i} y_{j}^{p}-x_{i} y_{j} x_{j}^{p-1}+x_{i} y_{j} x_{j}^{p-1}-x_{j}^{p} y_{i}=L_{i j}
$$

and

$$
x_{j} \mathrm{~N}\left(y_{i}\right)-u_{i j} x_{i}^{p-1}=x_{j} y_{i}^{p}-x_{j} y_{i} x_{i}^{p-1}-y_{j} x_{i}^{p}+x_{i}^{p-1} x_{j} y_{i}=L_{j i} .
$$

Since $\mathfrak{u} \subset \mathfrak{a}$, the preceding lemma and the formula $L_{i}=x_{i} \mathrm{~N}\left(y_{i}\right)$ show that it is sufficient to compute $\operatorname{Tr}_{P}^{S L_{2}\left(\mathbf{F}_{p}\right)}$ on monomials of the form $\mathrm{N}(y)^{\alpha}$ or x^{β}.

Let B denote the Borel subgroup containing P, i.e., the upper triangular elements of $S L_{2}\left(\mathbf{F}_{p}\right)$. Define a weight function on $\mathbf{F}\left[m V_{2}\right]$ by $\mathrm{wt}\left(x_{i}\right) \equiv_{(p-1)} 1$ and $\operatorname{wt}\left(y_{i}\right) \equiv_{(p-1)}-1$. Note that $\mathrm{N}\left(y_{i}\right)$ is isobaric of weight -1 . Furthermore, $\mathbf{F}\left[m V_{2}\right]^{B}$ consists of the span of the the weight zero elements of $\mathbf{F}\left[m V_{2}\right]^{P}$. The relative transfer $\operatorname{Tr}_{P}^{B}$ is determined by weight:

$$
\operatorname{Tr}_{P}^{B}\left(\mathrm{~N}(y)^{\alpha} x^{\beta}\right)=\left\{\begin{array}{lc}
-\mathrm{N}(y)^{\alpha} x^{\beta}, & \text { if }(|\beta|-|\alpha|) \equiv_{(p-1)} 0 \\
0, & \text { otherwise }
\end{array}\right.
$$

Since $\operatorname{Tr}_{P}^{S L_{2}\left(\mathbf{F}_{p}\right)}=\operatorname{Tr}_{B}^{S L_{2}\left(\mathbf{F}_{p}\right)} \operatorname{Tr}_{P}^{B}$, it is sufficient to compute $\operatorname{Tr}_{B}^{S L_{2}\left(\mathbf{F}_{p}\right)}$ on $\mathrm{N}(y)^{\alpha}$ with $|\alpha|$ a multiple of $p-1$ and x^{β} with $|\beta|$ a multiple of $p-1$. However, if $|\beta| \geq p-1$, then $x^{\beta} \in \operatorname{Tr}^{P}\left(\mathbf{F}\left[m V_{2}\right]\right)$ and $\operatorname{Tr}_{P}^{S L_{2}\left(\mathbf{F}_{p}\right)}\left(x^{\beta}\right) \in$ $\operatorname{Tr}^{S L_{2}\left(\mathbf{F}_{p}\right)}\left(\mathbf{F}\left[m V_{2}\right]\right)$. Thus is is sufficient to compute $\operatorname{Tr}_{B}^{S L_{2}\left(\mathbf{F}_{p}\right)}\left(\mathrm{N}(y)^{\alpha}\right)$ with $|\alpha|$ a multiple of $p-1$.

For $\lambda \in \mathcal{D}_{m}$, define

$$
\mathrm{N}(y)^{\lambda / p}=\prod_{i=1}^{m} \mathrm{~N}\left(y_{i}\right)^{\lambda_{i} / p} .
$$

Lemma 8.3. $\nabla_{m}(D) \equiv_{\mathfrak{u}}\left(\mathrm{N}\left(y_{1}\right)+\cdots+\mathrm{N}\left(y_{m}\right)\right)^{p-1}+\left(x_{1}+\cdots+x_{m}\right)^{p(p-1)}$, giving $D_{\lambda} \equiv_{\mathfrak{u}}\binom{p-1}{\lambda / p}\left(\mathrm{~N}(y)^{\lambda / p}+x^{\lambda}\right)$ and $\mathrm{N}(y)^{\lambda / p} \equiv_{\mathfrak{a}}-x^{\lambda}$.

Proof. The proof is by induction on m. Note that $\nabla_{m}=\nabla^{m-1}$. Thus $\nabla_{1}(D)=\nabla^{0}(D)=D=\mathrm{N}(y)^{p-1}+x^{p(p-1)}$, as required. Recall that the action of ∇ on $\mathbf{F}\left[m V_{2}\right]$ is determined by $\nabla\left(x_{m}\right)=x_{m}+x_{m+1}, \nabla\left(y_{m}\right)=$ $y_{m}+y_{m+1}, \nabla\left(x_{i}\right)=x_{i}$, and $\nabla\left(y_{i}\right)=x_{i}$ for $i<m$. Thus $\nabla\left(u_{i j}\right)=u_{i j}$ if $i<j<m$ and $\nabla\left(u_{i m}\right)=y_{i}\left(x_{m}+x_{m+1}\right)-x_{i}\left(y_{m}+y_{m+1}\right)=u_{i m}+u_{i, m+1}$. Therefore ∇ induces an algebra morphism on $\mathbf{F}\left[m V_{2}\right]^{P} / \mathfrak{u}$. Furthermore $\nabla\left(\mathrm{N}\left(y_{i}\right)\right)=\mathrm{N}\left(y_{i}\right)$ if $i<j<m$ and $\nabla\left(\mathrm{N}\left(y_{m}\right)\right)=y_{m}^{p}+y_{m+1}^{p}-\left(x_{m}+\right.$ $\left.x_{m+1}\right)^{p-1}\left(y_{m}+y_{m+1}\right)=\mathrm{N}\left(y_{m}\right)+\mathrm{N}\left(y_{m+1}\right)-u_{m, m+1} \sum_{j=0}^{p-2}\left(-x_{m}\right)^{j} x_{m+1}^{p-2-j}$. By induction,

$$
\begin{aligned}
\nabla_{m+1}(D) & =\nabla\left(\nabla_{m}(D)\right) \in \nabla\left(\left(\mathrm{N}\left(y_{1}\right)+\cdots+\mathrm{N}\left(y_{m}\right)\right)^{p-1}\right. \\
& \left.+\left(x_{1}+\cdots+x_{m}\right)^{p(p-1)}+\mathfrak{u}\right) .
\end{aligned}
$$

Evaluating the algebra morphism ∇ gives

$$
\begin{aligned}
\nabla_{m+1}(D) \in & \left(\nabla\left(\mathrm{N}\left(y_{1}\right)\right)+\cdots+\nabla\left(\mathrm{N}\left(y_{m}\right)\right)\right)^{p-1}+\left(x_{1}+\cdots+x_{m+1}\right)^{p(p-1)} \\
& \quad+\nabla(\mathfrak{u}) \\
\in(& \left.\mathrm{N}\left(y_{1}\right)+\cdots+\mathrm{N}\left(y_{m+1}\right)\right)^{p-1}+\left(x_{1}+\cdots+x_{m+1}\right)^{p(p-1)}+\mathfrak{u}
\end{aligned}
$$

as required.
Using the lemma, if $p-1$ divides $|\alpha|$ then $\operatorname{Tr}_{B}^{S L_{2}\left(\mathbf{F}_{p}\right)}\left(\mathrm{N}(y)^{\alpha}\right)$ is decomposable modulo the image of the transfer, completing the proof of Theorem 8.1

To complete the calculation of a generating set for $\mathbf{F}\left[m V_{2}\right]^{S L_{2}\left(\mathbf{F}_{p}\right)}$ and compute an upper bound for the Noether number, we need only identify a set of A-module generators for $\mathbf{F}\left[m V_{2}\right]$. This can be done by applying the Buchberger algorithm to \mathcal{S}_{m}. For example, a Magma [2] calculation for $m=3$ and $p=3$, produces $522 A$-module generators giving rise to 74 non-zero elements in the image of the transfer. Subducting the transfers against \mathcal{S}_{m} gives 11 new generators and 29 in total. Magma's MinimalAlgebraGenerators command reduces the number of generators to 28 , occuring in degrees $2,4,6$ and 8 . The same calculation for $p=5$ and $m=3$ gives a Noether number of 24 . Thus for $p \in\{3,5\}$ and $m=3$, the Noether number is $(p+m-2)(p-1)=(p+1)(p-1)$.
Theorem 8.4. $\mathbf{F}\left[m V_{2}\right]^{S L_{2}\left(\mathbf{F}_{p}\right)}$ is generated as an A-module in degrees less than or equal to $(p+m-2)(p-1)$.
Proof. Define \mathfrak{a}^{\prime} to be the ideal in $\mathbf{F}\left[m V_{2}\right]$ generated by \mathcal{S}_{m}, i.e.,

$$
\mathfrak{a}^{\prime}=A^{+} \mathbf{F}\left[m V_{2}\right] .
$$

A basis for $\mathbf{F}\left[m V_{2}\right] / \mathfrak{a}^{\prime}$ lifts to a set of A-module generators for $\mathbf{F}\left[m V_{2}\right]$. We may choose the A-module generators to be monomials, $y^{\alpha} x^{\beta}$, which are minimal representatives of their mod- \mathfrak{a}^{\prime} congruence class. For convenience, denote $d=|\alpha|+|\beta|$. For $i<j$, using $u_{i j}=x_{i} y_{j}-x_{j} y_{i}$, if x_{i} divides $y^{\alpha} x^{\beta}$, then y_{j} does not. For $j \leq i$, using L_{i} and $L_{i j}$, if x_{i} divides $y^{\alpha} x^{\beta}$, then y_{j}^{p} does not. The remaining representatives fall into two classes: y^{α} and $y_{1}^{\alpha_{1}} \cdots y_{k}^{\alpha_{k}} x_{k}^{\beta_{k}} \cdots x_{m}^{\beta_{m}}$ with $\beta_{k} \neq 0$ and $\alpha_{i} \leq p-1$.

Case 1: y^{α}. Using D_{λ} with $\lambda \in \mathcal{D}_{m}$, we see that, for $|\gamma| \geq p-1,\left(y^{\gamma}\right)^{p}$ does not divide y^{α}. Write $\alpha_{i}=q_{i} p+r_{i}$ with $r_{i}<p$. Then $y^{\alpha}=\left(y^{q}\right)^{p} y^{r}$ with $|q| \leq p-2$. Thus $|\alpha|=p|q|+|r| \leq p(p-2)+m(p-1)=$ $(p+m-1)(p-1)-1$. However, $\operatorname{Tr}\left(y^{\alpha}\right)=0$ unless $p-1$ divides $|\alpha|$. Therefore, the A-module generators of the form $\operatorname{Tr}\left(y^{\alpha}\right)$ satisfy $d=|\alpha| \leq(p+m-2)(p-1)$.

Case 2: $y_{1}^{\alpha_{1}} \cdots y_{k}^{\alpha_{k}} x_{k}^{\beta_{k}} \cdots x_{m}^{\beta_{m}}$ with $\beta_{k} \neq 0$ and $\alpha_{i} \leq p-1$. For $i<j$, let x^{γ} be a monomial in x_{1}, \ldots, x_{j-1}. If $|\gamma|=p-1$, then
$x^{\gamma} L_{i j}=x^{\gamma}\left(x_{i} y_{j}^{p}-x_{j}^{p} y_{i}\right) \equiv_{\mathfrak{u}} y^{\gamma} y_{i} x_{j}^{p}-x^{\gamma} y_{i} x_{j}^{p}$. Therefore, if $\beta_{j} \geq p$ for any $j>k$, then $|\alpha|<p$. If $|\gamma| \leq p-1$ then $x^{\gamma} L_{j}=x^{\gamma}\left(x_{j} y_{j}^{p}-x_{j}^{p} y_{j}\right) \equiv_{u}$ $y^{\gamma} y_{j}^{p-|\gamma|} x_{j}^{|\gamma|+1}-x^{\gamma} y_{j} x_{j}^{p}$. Therefore, if $\beta_{k} \geq p$, we also have $|\alpha|<p$. If $\left|\beta_{j}\right|<p$ for all $j \geq k$, then $|\alpha|+|\beta| \leq(m-k+2)(p-1) \leq$ $(p+m-2)(p-1)$ if $k>1$. Hence it is sufficient to consider the case $|\alpha|<p$. However the transfer is zero unless $p-1$ divides $|\alpha|$ so we may assume $|\alpha|=p-1$. If $|\alpha|=p-1$, a straightforward calculation with binomial coefficients gives $\operatorname{Tr}^{P}\left(y^{\alpha} x^{\beta}\right)=-x^{\alpha+\beta}$. Furthermore, $\operatorname{Tr}_{P}^{B}\left(x^{\alpha+\beta}\right)=0$ unless $p-1$ divides $|\alpha|+|\beta|$. Write $\alpha_{i}+\beta_{i}=q_{i} p+r_{i}$ with $r_{i}<p$. Then $x^{\alpha+\beta}=\left(x^{q}\right)^{p} x^{r}$. If $|q| \geq p-1$ and $|r|>0$, we may choose i so that $r_{i}>0$, choose $\lambda \in \mathcal{D}_{m}$ so that x^{λ} divides $x^{p q}$ and choose j so that x_{j} divides x^{λ}. By Lemma 8.2, $x_{i} \mathrm{~N}\left(y_{j}\right) \in \mathfrak{a}^{\prime}$. Form the S -polynomial between D_{λ} and $x_{i} \mathrm{~N}\left(y_{j}\right)$. Using Lemma 8.3, this S-polynomial reduces to $x_{i} x^{\lambda}$. Thus either $|q|<p-1$ or $|q|=p-1$ and $|r|=0$. If $|r|=0$ and $|q|=p-1$, then $d=(p-1)(p-1) \leq(p+m-2)(p-1)$. Suppose $|q|<p-1$. Then $d \leq m(p-1)+p(p-2)=(p+m-1)(p-1)-1$. Since d must be a multiple of $p-1$, we have $d \leq(p+m-2)(p-1)$.

Corollary 8.5. For $m>2$, the Noether number for $\mathbf{F}\left[m V_{2}\right]^{S L_{2}\left(\mathbf{F}_{p}\right)}$ is less than or equal to $(p+m-2)(p-1)$. For $m=2$ and $p>2$, the Noether number is $p(p-1)$ and for $m=2, p=2$, the Noether number is $p+1=3$.

Proof. The elements of \mathcal{S}_{m} lie in degrees $2, p+1$ and $p(p-1)$. Clearly L_{1} and $D_{(p(p-1), 0, \ldots, 0)}$ are indecomposable.

For $p=2$ and $m \in\{3,4\}$, Magma calculations give the Noether number $(p+m-2)(p-1)=m$.

References

[1] D. J. Benson, Polynomial Invariants of Finite Groups, Lond. Math. Soc. Lecture Note Ser. 190 (1993), Cambridge Univ. Press.
[2] W. Bosma, J. J. Cannon and C. Playoust, The Magma algebra system I: the user language, J. Symbolic Comput. 24 (1997), 235-265.
[3] H. E. A. Campbell and I. P. Hughes, Vector invariants of $U_{2}\left(\mathbf{F}_{p}\right)$: A proof of a conjecture of Richman, Adv. in Math. 126 (1997), 1-20.
[4] H. E. A. Campbell and David L. Wehlau, Modular Invariant Theory, to appear.
[5] H. E. A. Campbell, I. P. Hughes, R. J. Shank and D. L. Wehlau, Bases for rings of coinvariants, Transformation Groups 1 (4) (1996), 307-336.
[6] C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778-782.
[7] D. Cox, J. Little, and D. O'Shea, Ideals, varieties, and algorithms, (1992) Springer-Verlag.
[8] H. S. M. Coxeter, The product of the generators of a finite group generated by reflections, Duke Math. J. 18 (1951), 765-782.
[9] H. Derksen and G. Kemper, Computational invariant theory, Invariant Theory and Algebraic Transformation Groups, I, 130 (2002), Encyclopaedia of Mathematical Sciences, Springer-Verlag.
[10] L. E. Dickson, A Fundamental System of Invariants of the General Modular Linear Group with a Solution of the Form Problem, Trans. Amer. Math. Soc. 12 (1911), 75-98.
[11] G. Ellingsrud and T. Skjelbred, Profondeur d'anneaux d'invariants en caractéristique p, Compositio Math. 41 No. 2 (1980), 233-244.
[12] J. Fogarty, On Noether's bound for polynomial invariants of a finite group, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 5-7.
[13] P. Fleischmann, The Noether bound in invariant theory of finite groups, Adv. in Math. 152 (2000) no. 1, 23-32.
[14] I. P. Hughes and G. Kemper, Symmetric powers of modular representations, Hilbert series and degree bounds, Comm. in Alg. 28 (2000), 2059-2088.
[15] D. Kapur and K. Madlener, A completion procedure for computing a canonical basis of a k-subalgebra, Proceedings of Computers and Mathematics 89 (1989), ed. E. Kaltofen and S. Watt, MIT, 1-11.
[16] A. Kempe, On regular difference terms, Proc. London Math. Soc. 25 (1894), 343-350.
[17] T. Koshy, Catalan Numbers with Application Oxford University Press, (November 2008).
[18] M. D. Neusel and L. Smith, Invariant theory of finite groups, American Mathematical Society, Providence, RI, 2002, Mathematical Surveys and Monographs, 94.
[19] E. Noether, Der Endlichkeitssatz der invarianten endlicher Gruppen, Math. Ann. 77, 1915, 89-92; reprinted in: Collected Papers, Springer-Verlag, Berlin, 1983, 181-184.
[20] L. Robbianno and M. Sweedler, Subalgebra bases, Lecture Notes in Math. 1430 Springer (1990), 61-87.
[21] D. R. Richman, On vector invariants over finite fields, Adv. in Math. 81 (1990) no.1, 30-65.
[22] J.-P. Serre, Groupes finis d'automorphismes d'anneaux locaux réguliers, Colloque d'Algèbre (Paris, 1967), Exp. 8, Secrétariat mathématique, Paris, 1968, p. 11.
[23] R. J. Shank, S.A.G.B.I. bases for rings of formal modular seminvariants, Comment. Math. Helv. 73 (1998) no. 4, 548-565.
[24] R. J. Shank and D. L. Wehlau, Computing modular invariants of p-groups, J. Symbolic Comput. 34 (2002) no. 5, 307-327.
[25] R. J. Shank and D. L. Wehlau, Noether numbers for subrepresentations of cyclic groups of prime order, Bull. London Math. Soc. 34 (2002) no. 4, 438-450.
[26] G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canadian J. Math. 6 (1954), 274-304.
[27] L. Smith, Polynomial invariants of finite groups, Research Notes in Mathematics, vol. 6, A K Peters Ltd., Wellesley, MA, 1995.
[28] H. Weyl, The classical groups, Princeton University Press, 1997.
[29] C. W. Wilkerson, A Primer on the Dickson Invariants, Amer. Math. Soc. Contemp. Math. Series 19 (1983), 421-434.

Mathematics \& Statistics Department,
Memorial University of Newfoundland, St John's NL A1A 5S7, Canada
E-mail address: eddy@mun.ca
School of Mathematics, Statistics \& Actuarial Science, University of Kent, Canterbury, CT2 7NF, UK
E-mail address: R.J.Shank@kent.ac.uk
Department of Mathematics and Computer Science,
Royal Military College, Kingston, Ontario, Canada, K7K 5L0
E-mail address: wehlau@rmc.ca

[^0]: Date: November 20, 2009.
 1991 Mathematics Subject Classification. 13A50.

