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Non-linear �nite element modelingLars Pilgaard MikkelsenMaterial Resear
h Department, Risø National LaboratoryTe
hni
al University of Denmark, 4000 Roskilde
1. INTRODUCTIONThe note is written for 
ourses in "Non-linear �nite element method". The note has beenused by the author at Civil Engineering at Aalborg University, Computational Me
hani
sat Aalborg University Esbjerg, Stru
tural Engineering at the University of the SouthernDenmark and in Medi
ine and Te
hnology at the Te
hni
al University of Denmark. Thenote fo
us on the appli
ability to a
tually 
ode routines with the purpose to analyze ageometri
ally or material non-linear problem. The note is tried to be kept on so briefa form as possible, with the main fo
us on the governing equations and methods ofimplementing. For a more 
omplete exposition please see the referen
es in the end of thenotes. Spe
ially, [1℄ and [2℄ is suited as 
omplementary textbooks.Though out the whole do
ument, a 
onventional tensor notation has been used whererepeated indi
es indi
ate summations and where Latin indi
es range from 1 to 3, whileGreek indi
es range from 1 to 2. The notation ( ),i indi
ate partial di�erentiation withrespe
t to the 
oordinate xi . The �nite element notation is highly inspired by [3, 4℄ butwith referen
e to a usual matrix notation a'la [5℄. Note, that "indi
es" in parenthesesshall not be treated as indi
es in a tensor notation sense but indi
ate a degree of freedom,element number et
.First is in
luded a brief repetition for a linear �nite element model. This is done inorder to refer ba
k to a 
ommon language in the subsequently derivations.Enjoy ... 2. LINEAR CONTINUUMEquilibrium for a linear elasti
 three-dimensional 
ontinuum where the assumption ofsmall strains, |εij| ≪ 1, and small displa
ements gradients, |ui,j| ≪ 1, is satis�ed, 
ane.g. be expressed by the prin
ipal of virtual work

∫

V

σijδεijdV =

∫

S

TiδuidS (2.1)In (2.1), the volume for
es is negle
ted while Ti denotes the surfa
e tra
tion. The tensor
omponents of the strain and stress tensor is given by
εij =

1

2
(ui,j + uj,i) (2.2)

σij = Lijklεkl (2.3)1



respe
tively, where Lijkl represents the elasti
 modulus. For a linear elasti
 materialfollowing the generalized Hooks low, the elasti
 modulus is given by
Lijkl =

E

1 + ν

{

1

2
(δikδjl + δilδjk) +

ν

1 − 2ν
δijδkl

} (2.4)with Young's modulus E and Poisson's ratio ν .Even in the linear 
ase, it is rare that an exa
t solution to (2.1-2.3) exists and ap-proximative methods is ne
essary. The "Finite Element Method" is su
h a method. Inthe �nite element method the volume V is divided into K sub-volumes (elements), su
hthat
V =

K
∑

k=1

V(k) , S =
K

∑

k=1

S(k) (2.5)If element no. k does not 
ontain part of the surfa
e S, we have S(k) = 0. Inside thevolume V(k) the displa
ements 
omponents ui are approximated by Fe shape fun
tions
U (n) su
h that the displa
ements in a given point inside the element is given by

ui =
Fe
∑

n=1

U
(n)
i D(n) (2.6)where Fe is the number of degrees of freedom for the element, U

(n)
i is the value of theshape fun
tion in a parti
ular point and D(n) is the 
orresponding node point displa
e-ments. The shape fun
tions is assumed to be spe
i�ed su
h that the displa
ements, uiare 
ontinues over the element boundaries when the 
ommon node points have the samedispla
ements values, D(n) . For a element with GNo nodes where the three displa
ement
omponents ui is approximated by the same shape fun
tion, φ(g), g = 1, . . . , G(No), insidean element and with only one degree of freedom per node per displa
ement 
omponent,

U
(n)
i 
an be written as

U
(1)
i = (φ(1), 0, 0)

U
(2)
i = (0, φ(1), 0)

U
(3)
i = (0, 0, φ(1))...

U
(Fe−2)
i = (φ(GNo), 0, 0)

U
(Fe−1)
i = (0, φ(GNo), 0)

U
(Fe)
i = (0, 0, φ(GNo)) (2.7)After substitution of (2.6) in (2.2) the following approximation of the strains

εij =

Fe
∑

n=1

E
(n)
ij D(n) (2.8)with

E
(n)
ij =

1

2

(

U
(n)
i,j + U

(n)
j,i

) (2.9)2



is obtained.If the internal virtual work is denoted δWint. and the external virtual work is denoted
δWext. the prin
iple of virtual work (2.1) 
an be written as

δWint. = δWext. (2.10)whi
h after substitution of (2.5) in (2.10) 
an be written as
K

∑

k=1

(δWint.)(k) =
K

∑

k=1

(δWext.)(k) (2.11)Approximating both the real and the virtual displa
ement by the �nite element approx-imation (2.6, 2.8) su
h that
ui =

∑Fe

n=1 U
(n)
i D(n) δui =

∑Fe

m=1 U
(m)
i δD(m)

εij =
∑Fe

n=1 E
(n)
ij D(n) δεij =

∑Fe

m=1 E
(m)
ij δD(m)

(2.12)the 
ontribution from element no. (k) to the internal and external virtual work 
an bewritten as
(δWint.)(k) =

Fe
∑

n=1

Fe
∑

m=1

S
(k)
(mn)D(n)δD(m) (2.13)

(δWext.)(k) =

Fe
∑

m=1

P
(k)
(m)δD(m) (2.14)where the element sti�ness matrix 
an be written as

S
(k)
(mn) =

∫

V(k)

LijklE
(n)
kl E

(m)
ij dV (2.15)while the element load ve
tor 
an be written as

P
(k)
(m) =

∫

S(k)

TiU
(m)
i dS (2.16)Often, the shape fun
tions (2.7) is given in lo
al element 
oordinates ξi running be-tween e.g. ξi ∈ [−1 : 1]. Therefore, during the di�erentiation (2.9) and the integration(2.15) and (2.16) a mapping between the lo
al and the lo
al 
oordinate system should beperformed, e.g. 
hapter 6 in [5℄. For Isoparametri
 elements where both the displa
ementof a point in the element and the global 
oordinates of a point in the element are inter-polated from the nodal values, respe
tively using the same shape fun
tions, the mappingbetween the two 
oordinate system is rather straightforward. The governing equation
an be found in e.g. 
hapter 6 in [5℄. The integration (2.15) and (2.16) is often based ona numeri
al integration using the Gaussian integration s
heme.The element sti�ness matrix S

(k)
(mn) and the element load ve
tors P

(k)
(m) for ea
h element(k = 1, . . . , K) 
an now be 
olle
ted into one 
ommon equations system in agreement3



with (2.11). This 
an be done when the 
orrelation between the lo
al degree of freedoms(m, n = 1, . . . , Fe) for ea
h element and the global degrees of freedoms (M, N =
1, . . . , F ) for the mesh is known. The total number of freedoms is denoted by F. Theresulting equations system

F
∑

M=1

F
∑

N=1

S(MN)D(N)δD(M) =
F

∑

M=1

P(M)δD(M) (2.17)
an now be written as F independent equations by approximating of the virtual displa
e-ment �eld by one nodal displa
ement δD(M) = 1 , with all other nodal displa
ements equalto zero. Doing this su

essive for the F degree of freedoms we get F linear independentequations
F

∑

N=1

S(MN)D(N) = P(M) , M = 1, 2, . . . , F (2.18)After in
luding the kinemati
 boundary 
ondition dire
tly into (2.18), the solution of(2.18) will give the nodal displa
ements D(N) 
orresponding to the load ve
tor P(M). Fromthe nodal displa
ement D(N) it is su

essively possible to 
al
ulate the displa
ements, thestrains and the stresses in the the stru
ture using (2.6), (2.8) and (2.3), respe
tively.2.1. Matrix notationThe above shown governing equations for the �nite element model is possible to in
or-porate dire
tly into a programming 
ode su
h as Fortran 77. Nevertheless, in higherlevel programming language su
h as Fortran 90, Matlab and C++, it 
an be advantageto formulate the �nite element equations in matrix notation. By arranging the shapefun
tions U
(n)
i and the thereof derived E

(n)
ij in the matrixes

N(3×Fe) =







U
(1)
1 · · · U

(Fe)
1

U
(1)
2 · · · U

(Fe)
2

U
(1)
3 · · · U

(Fe)
3






, B(6×Fe) =





















E
(1)
11 · · · E

(Fe)
11

E
(1)
22 · · · E

(Fe)
22

E
(1)
33 · · · E

(Fe)
33

2E
(1)
12 · · · 2E

(Fe)
12

2E
(1)
13 · · · 2E

(Fe)
13

2E
(1)
23 · · · 2E

(Fe)
23





















(2.19)
it follows that the displa
ements and strains ve
tors in a given point in element (k), see(2.6) and (2.8) 
an be written as

u = ND
(k) , ε = BD

(k) (2.20)where the following ve
tors are de�ned (σ will be used later)
u =





u1

u2

u3



 , D
(k) =











D1

D2...
DFe











, ε =

















ε11

ε22

ε33

2ε12

2ε13

2ε23

















, σ =

















σ11

σ22

σ33

σ12

σ13

σ23

















(2.21)
4



Using these matrixes, it is possible to write the element sti�ness matrix (2.15) and theelement load ve
tor (2.16) as
S

(k) =

∫

V(k)

B
T
LBdV , P

(k) =

∫

S(k)

N
T
TdS (2.22)with

L =











L1111 L1122 · · · L1113

L2211 L2222 · · · L2213... ... . . .
L1311 L1322 L1313











, T =





T1

T2

T3



 (2.23)In the matrix for L the symmetry of Lijkl = Ljikl and Lijkl = Lijlk is impli
it in
luded,while the symmetry Lijkl = Lklij will result in a symmetri
 L matrix. From the 
onsti-tutive matrix L, the stresses in a element 
an be found as
σ = Lε = LBD

(k) (2.24)Colle
ting the element sti�ness matrix and the element load ve
tor into the globalsti�ness matrix and load ve
tor the following equation system is obtained
SD = P (2.25)with

D = (D1, D2, · · · , DF )T (2.26)whi
h 
an be solved similar to (2.18).2.2. Numeri
al implementationA linear �nite element program 
an be 
onsidered as 
onsist of three parts, a pre-pro
essing part, an analyzing part and a post-pro
essing part. In the following, thevariable used is just examples whi
h meaning will not been explained here. An example,building up a linear �nite element model in Matlab/Calfem [6℄ 
an be found in [7℄. Thelist shown below is thought as a 
he
k-list when building up a �nite element program.
• Pre-pro
essing� De�nition of variable used in the model

∗ Geometri
al parameters: lgeo, hgeo, bgeo, ...
∗ Topology parameters: Ndof, Nel, Nnode
∗ Properties Emodul, SigmaY, Nexp, ...
∗ De�ning the 
ase: Udisp, ...� Topology of the model
∗ De�ne the node 
oordinates
∗ Correlate the global node numbers to lo
al node number in the element
∗ Correlate lo
al degree of freedom numbers with the global degree of free-dom numbers 5



∗ Identify nodes (and elements) along external boundaries
∗ Correlate material and element properties to element numbers� Plot the undeformed stru
ture

• Analyzing part� Initialize global sti�ness matrix and right hand side: S = 0, P = 0� For ea
h element:
∗ Build up the lo
al element sti�ness matrix: S

(k)

∗ Build up eventually the lo
al element load ve
tor (stati
 boundary 
ondi-tion): P
(k)

∗ Assemble the lo
al element matri
es S
(k), P(k) into the global matri
es S,

P� Kinemati
 boundary 
ondition� Solve the system: SD = P� Extra
t the displa
ement, strains, stresses, et
. from the solution in the inte-gration points for ea
h element: u = ND
(k), ε = BD

(k), σ = LBD
(k)

• Post-pro
essing part� Plot the deformed stru
ture� Plot 
ontours of strains, stresses, et
.
3. KINEMATIC NON-LINEAR PROBLEMEven inside the approximation of a linear elasti
 material behaviour, a number of prob-lems 
an not be solved satisfa
tory by a linear �nite element model. Examples is post-bu
kling analysis, �nite strain problems, spe
imen exposed for large rotations, et
.Here will, as an example on a kinemati
 (geometri
) nonlinear problem, be treated the
ase of a three dimensional 
ontinuum where the assumption for small strains, |εij| ≪ 1,holds while the displa
ement gradients, ui,j, no longer 
an be 
onsidered as small. Forthis 
ase, the governing equations 
an be written as

∫

V

σijδεijdV =

∫

S

TiδuidS (3.1)
εij =

1

2
(ui,j + uj,i + uk,iuk,j) (3.2)

σij = Lijklεkl (3.3)If we make a �nite element approa
h of the total displa
ements similar to the one donein 
hapter 2 with (2.6)
ui =

Fe
∑

n=1

U
(n)
i D(n) (3.4)6



we will no longer get a system of linear equations as (2.25), but a set of non-linearequations
G(D) = P (3.5)Another way to write the governing equations is in term of a small in
rement whi
hin the following will be denoted by a dot (˙) . In order to do this we will write thedispla
ements, the stresses and the pres
ribed surfa
e for
es after a small in
rement as

ūi = ui + u̇i (3.6)
σ̄ij = σij + σ̇ij (3.7)
T̄i = Ti + Ṫi (3.8)respe
tively. After substitute (3.6) in (3.2) the total strain 
omponents after a smallin
rement is found to

ε̄ij = εij + ε̇ij +
1

2
u̇k,iu̇k,j (3.9)with

ε̇ij =
1

2
(u̇i,j + u̇j,i + u̇k,iuk,j + uk,iu̇k,j) (3.10)The equilibrium after this small in
rement 
an similar to (3.1) with the new totalquantities be written as

∫

V

σ̄ijδε̄ijdV =

∫

S

T̄iδūidS (3.11)After substitution of (3.6-3.9) into (3.11) and rearrangement the terms we 
an write
∫

V

{σ̇ijδε̇ij + σij u̇k,jδu̇k,i} dV =

∫

S

Ṫiδu̇idS −

[
∫

V

σijδε̇ijdV −

∫

S

Tiδu̇idS

] (3.12)where it has been make use of that (˙)(˙) ≪ (˙) (small in
rement), and that δ(εij + ε̇ij) =
δε̇ij and 
orresponding δ(ui + u̇i) = δ(u̇i) whi
h 
omes from the fa
t that the displa
e-ment/strain state is known before the in
rement and the variation thereof therefore van-ishes. The bra
ket term vanishes if equilibrium is satis�ed before the in
rement, but willnormally be in
luded in a numeri
al pro
edure in order to avoid the numeri
al solutionto drift away from equilibrium. The virtual work on in
remental form will together within
rement of the strains (3.10) and the 
onstitutive relation (2.3) on in
remental form

σ̇ij = Lijklε̇ij (3.13)be the governing equations for the �nite element formulation.In the in
remental �nite element model, it is not the total displa
ements ui , but thein
rement thereof u̇i whi
h is approximated by the shape fun
tions U
(n)
i . Therefore, u̇iand ε̇ij 
an be written as (2.6)

u̇i =
Fe
∑

n=1

U
(n)
i Ḋ(n) (3.14)and

ε̇ij =

Fe
∑

n=1

E
(n)
ij Ḋ(n) (3.15)7



with
E

(n)
ij =

1

2

(

U
(n)
i,j + U

(n)
j,i + U

(n)
k,i uk,j + uk,iU

(n)
k,j

) (3.16)where E
(n)
i depends on the total deformation state, ui. Following the pro
edure fromse
tion 2, the element sti�ness matrix, the element load ve
tor and the element load
orre
tion ve
tor 
an be found as

S
(k)
(mn) =

∫

V(k)

{

LijklE
(n)
kl E

(m)
ij + σijU

(n)
k,j U

(m)
k,i

}

dV (3.17)
Ṗ

(k)
(m) =

∫

S(k)

ṪiU
(m)
i dS (3.18)

R
(k)
(m) =

∫

V(k)

σijE
(m)
ij dV −

∫

S(k)

TiU
(m)
i dS (3.19)respe
tively, whi
h 
omponents generally di�ering from in
rement to in
rement. After
olle
tion the element sti�ness matrix and the load ve
tors in the system sti�ness ma-trix and system load ve
tors, and approximating the virtual displa
ement �elds similarto what o

urs between (2.17) and (2.18), the following system of linear independentequations

F
∑

N=1

S(MN)Ḋ(N) = Ṗ(M) − RM , M = 1, 2, . . . , F (3.20)is obtained.The solution of (3.20) gives the in
rement of the node displa
ement, Ḋ(N). Havingthese, the strain in
rement, ε̇ij and therefrom the stress in
rements σ̇ij are 
al
ulated inthe integrations points, element by element, from equations (3.15) and (3.13), respe
-tively. The 
urrent values of the stresses after the in
rement are updated by 
al
ulating
σij + σ̇ij in ea
h integration point, and the 
urrent values of the nodal displa
ement areupdated by 
al
ulating D(N) + Ḋ(N) . Subsequently, a new in
rement 
an be 
al
ulatedrepeating the pro
edure shown above. The total displa
ement ui in the integration pointis 
al
ulated from (3.4), and if the total strains are wanted at some point in the loadinghistory, equation (3.2) 
an be used for this with

u̇i,j =

Fe
∑

n=1

U
(n)
i,j Ḋ(n) (3.21)3.1. Matrix notationIn the linear 
ase in se
tion 2, it was straight forward to rewrite the governing equationsinto matrix notation. For the non-linear 
ases 
ase, it 
an be more di�
ult but of
ourse possible. It is the se
ond term in (3.17) whi
h require some 
reative matrixmanipulations. In addition to de�ning the in
remental displa
ement 
omponents ve
torand node displa
ements ve
tor as

u̇ =





u̇1

u̇2

u̇3



 , Ḋ
(k) =











Ḋ1

Ḋ2...
ḊFe











(3.22)8



and the strain and stress ve
tor as
ε =

















ε11

ε22

ε33

2ε12

2ε13

2ε23

















, σ =

















σ11

σ22

σ33

σ12

σ13

σ23

















(3.23)it is ne
essary to de�ne an in
remental displa
ement gradient ve
tor with 9 elements
˙̂u =

(

u̇1,1 u̇1,2 u̇1,3 u̇2,1 u̇2,2 u̇2,3 u̇3,1 u̇3,2 u̇3,3

)T (3.24)Doing this, the in
rement of the displa
ement ve
tor, the in
rement of the strain ve
torand the in
rement of displa
ement gradient ve
tor 
an be written as
u̇ = NḊ

(k) , ε̇ = BḊ
(k) , ˙̂u = B̂Ḋ

(k) (3.25)where N and B is given like (2.19) but with E
(n)
ij from (2.9) repla
ed by the 
omponentsfrom (3.16) whereby N will depends on the total instantaneous displa
ements ui. Thematrix B̂ is given by

B̂(9×Fe) =





















U
(1)
1,1 · · · U

(Fe)
1,1

U
(1)
2,1 · · · U

(Fe)
2,1

U
(1)
3,1 · · · U

(Fe)
3,1

U
(1)
1,2 · · · U

(Fe)
1,2... ... ...

U
(1)
3,3 · · · U

(Fe)
3,3





















(3.26)
whi
h with φ(g) introdu
ed in (2.7) 
an be written as

B̂(9×Fe) =





φ(1),1I · · · φ(GNo),1I

φ(1),2I · · · φ(GNo),2I

φ(1),3I · · · φ(GNo),3I



 , I =





1 0 0
0 1 0
0 0 1



 (3.27)If we in a similar way de�ne a "expanded" stress matrix,
σ̂(9×9) =





σ11I σ12I σ13I

σ21I σ22I σ23I

σ31I σ32I σ33I



 (3.28)we 
an write the element sti�ness matrix (3.17), the element load ve
tor (3.18) and theelement load 
orre
tion ve
tor (3.19) as
S

(k) =

∫

V(k)

{

B
T
LB + B̂

T
σ̂B̂

)

dV (3.29)
Ṗ

(k) =

∫

S(k)

N
T
ṪdS (3.30)

R
(k) =

∫

V(k)

B
T
σdV −

∫

S(k)

N
T
TdS (3.31)9



In (3.29), both two terms depends on the point in the loading history, the �rst termthrough B dependen
y on the total displa
ement state ui and the se
ond term through
σ̂ . Colle
ted into the global sti�ness matrix and load ve
tors the linear equations system(3.20) 
an in matrix notation be written as

SḊ = Ṗ −R (3.32)3.2. Numeri
al implementationSimilar to the linear �nite element model, the numeri
al implementation of the in
re-mental �nite element model as des
ribed above 
an be 
onsidered as 
onsisting of threeparts; the pre-pro
essing, the analyzing and the post-pro
essing part. The in
remental�nite element solution 
an be stru
tured as:
• Pre-pro
essing� De�nition of variable used in the model

∗ Geometri
al parameters: lgeo, hgeo, bgeo, ...
∗ Topology parameters: Ndof, Nel, Nnode
∗ Properties Emodul, SigmaY, Nexp, ...
∗ De�ning the 
ase: dUdisp, Ustop, ...� Topology of the model
∗ De�ne the node 
oordinates
∗ Correlate the global node numbers to lo
al node number in the element
∗ Correlate lo
al degree of freedom numbers with the global degree of free-dom numbers
∗ Identify nodes (and elements) along external boundaries
∗ Correlate material and element properties to element numbers� Plot the undeformed stru
ture� Initialize the state variable in the integration points in the elements: D = 0,

σ = 0, ε = 0

• Analyzing part (repeat for ea
h new in
rement)� Initialize global sti�ness matrix and right hand side: S = 0, Ṗ = 0� For ea
h element:
∗ Build up the lo
al element sti�ness matrix: S

(k)

∗ Build up eventually the in
rement of the lo
al element load ve
tor (stati
boundary 
ondition): Ṗ
(k).

∗ Assemble the lo
al element matri
es S
(k), Ṗ(k) into the global matri
es S,

Ṗ� Kinemati
 boundary 
ondition 10



� Solve the system: SḊ = Ṗ� Extra
t the in
rement of the displa
ement, strains, stresses, et
. in the inte-gration points from the solution: u̇ = NḊ
(k), ε̇ = BḊ

(k), σ̇ = LBḊ
(k)� Update state variable in the integration points: D = D + Ḋ, σ = σ + σ̇,

ε = ε + ε̇� New in
rement?
• Post-pro
essing part� Plot the deformed stru
ture� Plot 
ontours of strains, stresses, et
.3.3. In
remental and iterative methodsThe in
rement model presented above, is a Euler integration method in
luding a equilib-rium 
orre
tion term. It is a quite straight forward analysis to performed, but will usuallyrequire a large number of in
rement in order to give an a

urate solution. A number ofmu
h more sophisti
ated methods has been developed. One of the more simple methodis a 
ombined Euler integration and a full or modi�ed Newton-Raphson iteration s
heme,see e.g. [1, 
hapter 1℄.Passing a maximum value of the pres
ribed parameter (load or displa
ement) in anumeri
al in
remental s
heme require some spe
i�
 
on
ern. A number of di�erent nu-meri
al treatment has been proposed. Two of the more su

essful method is a 
ombinedRayleigh-Ritz/Finite element method as des
ribed in [8℄, [9, page 132℄ or the very stableRiks/Ar
-length methods, see e.g. [1, 
hapter 9.3℄.Referen
es[1℄ M. A. Cris�eld. Non-linear Finite Element Analysis of Solids and Stru
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