View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Non-linear finite element modeling

Mikkelsen, Lars Pilgaard

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Mikkelsen, L. P. (2007). Non-linear finite element modeling. Roskilde: Risg National Laboratory. (Denmark.
Forskningscenter Risoe. Risoe-R; No. 1625(EN)).

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://core.ac.uk/display/13708953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/nonlinear-finite-element-modeling(156620e6-b52a-4a43-b33f-db8129438306).html

Non-linear finite element modeling

Lars Pilgaard Mikkelsen

Risg-R-1625(EN)

Risg National Laboratory
Technical University of Denmark
Roskilde, Denmark

November 2007

RISO

HE



Author: Lars Pilgaard Mikkelsen
Title: Non-linear finite element modeling
Department: Material Research Department

Abstract (max. 2000 char.):

The note is written for courses in "Non-linear finite element
method". The note has been used by the author teaching non-linear
finite element modeling at Civil Engineering at Aalborg University,
Computational Mechanics at Aalborg University Eshjerg, Structural
Engineering at the University of the Southern Denmark and in
Medicine and Technology at the Technical University of Denmark.
The note focus on the applicability to actually code routines with
the purpose to analyze a geometrically or material non-linear
problem. The note is tried to be kept on so brief a form as possible,
with the main focus on the governing equations and methods of
implementing.

Risg-R-1625(EN)
November 2007

ISSN 0106-2840
ISBN 978-87-550-3644-4

Contract no.:

Group's own reg. no.:
1615064-06

Sponsorship:

Cover :

Pages:
Tables:
References:

Information Service Department
Risg National Laboratory
Technical University of Denmark
P.0.Box 49

DK-4000 Roskilde

Denmark

Telephone +45 46774004
bibl@risoe.dk

Fax +45 46774013
www.risoe.dk



Non-linear finite element modeling

LARS PILGAARD MIKKELSEN

Material Research Department, Risg National Laboratory
Technical University of Denmark, 4000 Roskilde

1. INTRODUCTION

The note is written for courses in "Non-linear finite element method". The note has been
used by the author at Civil Engineering at Aalborg University, Computational Mechanics
at Aalborg University Esbjerg, Structural Engineering at the University of the Southern
Denmark and in Medicine and Technology at the Technical University of Denmark. The
note focus on the applicability to actually code routines with the purpose to analyze a
geometrically or material non-linear problem. The note is tried to be kept on so brief
a form as possible, with the main focus on the governing equations and methods of
implementing. For a more complete exposition please see the references in the end of the
notes. Specially, |1] and |2| is suited as complementary textbooks.

Though out the whole document, a conventional tensor notation has been used where
repeated indices indicate summations and where Latin indices range from 1 to 3, while
Greek indices range from 1 to 2. The notation ( ), indicate partial differentiation with
respect to the coordinate x; . The finite element notation is highly inspired by |3, 4| but
with reference to a usual matrix notation a’la [5|. Note, that "indices" in parentheses
shall not be treated as indices in a tensor notation sense but indicate a degree of freedom,
element number etc.

First is included a brief repetition for a linear finite element model. This is done in
order to refer back to a common language in the subsequently derivations.

Enjoy ...

2. LINEAR CONTINUUM

Equilibrium for a linear elastic three-dimensional continuum where the assumption of
small strains, |¢;;| < 1, and small displacements gradients, |u; ;| < 1, is satisfied, can
e.g. be expressed by the principal of virtual work

1% S

In (2.1), the volume forces is neglected while T; denotes the surface traction. The tensor
components of the strain and stress tensor is given by

(wij + wji) (2.2)
045 = Eijklgkl (2-3)

N =

gij =



respectively, where L;;;; represents the elastic modulus. For a linear elastic material
following the generalized Hooks low, the elastic modulus is given by

E 1 v
Lijr = T1o {5 (03051 + 0ibjk) + E@jfskl} (2.4)

with Young’s modulus E and Poisson’s ratio v .

Even in the linear case, it is rare that an exact solution to (2.1-2.3) exists and ap-
proximative methods is necessary. The "Finite Element Method" is such a method. In
the finite element method the volume V' is divided into K sub-volumes (elements), such

that
K K
V= Z Vi, S= Z Sty (2.5)
k=1 k=1

If element no. £ does not contain part of the surface S, we have Sy = 0. Inside the
volume V{; the displacements components u; are approximated by F, shape functions
U™ such that the displacements in a given point inside the element is given by

Fe

U; = Z Ui(n)D(n) (2.6)

n=1

where F; is the number of degrees of freedom for the element, Ui(n) is the value of the
shape function in a particular point and D, is the corresponding node point displace-
ments. The shape functions is assumed to be specified such that the displacements, u;
are continues over the element boundaries when the common node points have the same
displacements values, D,y . For a element with Gy, nodes where the three displacement
components u; is approximated by the same shape function, ¢, g =1, ..., G(no), inside
an element and with only one degree of freedom per node per displacement component,

Uz-(n) can be written as

U(l) = (¢(1)7 Oa O)

)

U® = (0,0a),0)

)

U® = (0,0, ¢0))

UL = (¢ays) 0,0)
U™ = (0, ¢y, 0)
U = (0,0, ¢cy,)) (2.7)

After substitution of (2.6) in (2.2) the following approximation of the strains

Fe
ey = B D, (2.8)
n=1
with .
B = (Ul +uf?) (2.9)



is obtained.
If the internal virtual work is denoted 6Wj,; and the external virtual work is denoted
O0Wz. the principle of virtual work (2.1) can be written as

5VVint. = 5Wext. (210)

which after substitution of (2.5) in (2.10) can be written as

Z (5Vth)(k) - Z (5We$t)(k) (211)

Approximating both the real and the virtual displacement by the finite element approx-
imation (2.6, 2.8) such that

= Yo UM Dy bu; = S, U™ 6D
(2.12)
Fe F.
cij = Yo BN Diy 9255 = Yoniy By 0Dy

the contribution from element no. (k) to the internal and external virtual work can be
written as

6 6 k
QUEED D DE BT (2.13)
n=1 m=1
Fe
k
(Weat) gy = D P 6Dy (2.14)
m=1

where the element stiffness matrix can be written as

Sy = LyunEy EMdv (2.15)
Vik)

while the element load vector can be written as

P = / T,U™ds (2.16)
S(k)

Often, the shape functions (2.7) is given in local element coordinates &; running be-
tween e.g. & € [—1 : 1]. Therefore, during the differentiation (2.9) and the integration
(2.15) and (2.16) a mapping between the local and the local coordinate system should be
performed, e.g. chapter 6 in [5]. For Isoparametric elements where both the displacement
of a point in the element and the global coordinates of a point in the element are inter-
polated from the nodal values, respectively using the same shape functions, the mapping
between the two coordinate system is rather straightforward. The governing equation
can be found in e.g. chapter 6 in [5]. The integration (2.15) and (2.16) is often based on
a numerical integration using the Gau551an integration scheme.

The element stiffness matrix S ) and the element load vectors P(( )) for each element
(k=1, ..., K) can now be collected into one common equations system in agreement
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with (2.11). This can be done when the correlation between the local degree of freedoms

(m,n = 1, ..., F.) for each element and the global degrees of freedoms (M, N =
1, ..., F) for the mesh is known. The total number of freedoms is denoted by F. The
resulting equations system
F F F
> D SemyDwdDan = Y PandDay (2.17)
M=1 N=1 M=1

can now be written as F' independent equations by approximating of the virtual displace-
ment field by one nodal displacement 0 D57y = 1, with all other nodal displacements equal
to zero. Doing this successive for the F' degree of freedoms we get F' linear independent
equations

F
Z SmumDwy = FPoary, M=1,2,..., F (2.18)
N=1

After including the kinematic boundary condition directly into (2.18), the solution of
(2.18) will give the nodal displacements Dy corresponding to the load vector P,. From
the nodal displacement Dy it is successively possible to calculate the displacements, the
strains and the stresses in the the structure using (2.6), (2.8) and (2.3), respectively.

2.1. MATRIX NOTATION

The above shown governing equations for the finite element model is possible to incor-
porate directly into a programming code such as Fortran 77. Nevertheless, in higher
level programming language such as Fortran 90, Matlab and C++, it can be advantage
to formulate the finite element equations in matrix notation. By arranging the shape
functions Ui(n) and the thereof derived EZ(Jn) in the matrixes

1 F.

oo

U(l) o U(Fe) E2% T Ez%e
1 1 E§3) . E§35)

N(3><Fe) = UZ(I) UQ(Fe) , B(6><Fe) =
Uél) U?EFE)

2.19
o6 ... 2pl) (2.19)

2l 2
2l) 2l

it follows that the displacements and strains vectors in a given point in element (k), see
(2.6) and (2.8) can be written as

u=ND®  ¢=BDW (2.20)

where the following vectors are defined (o will be used later)

€11 011
Dy €22 022

(VA1 D
2 €33 033

u=[u | , DO =| " , €= , O = (2.21)
u : ISP 012
3

Dpg, 2e13 013
2€93 023



Using these matrixes, it is possible to write the element stiffness matrix (2.15) and the
element load vector (2.16) as

Stk — / BTLBaV , P® = / NTTdS (2.22)
Vik S(k)
with
Li111 Li122 -+ Lins T
r_ 52.211 52‘222 L9913 CT— T; (2.23)
. : t. TS
Liz11 L322 Li313

In the matrix for £ the symmetry of L1 = L and L = L is implicit included,
while the symmetry £, = Ly;; will result in a symmetric £ matrix. From the consti-
tutive matrix £, the stresses in a element can be found as

o= Le = LBDW (2.24)

Collecting the element stiffness matrix and the element load vector into the global
stiffness matrix and load vector the following equation system is obtained

SD =P (2.25)

with
D= (Dla D27 >DF)T (226)

which can be solved similar to (2.18).

2.2. NUMERICAL IMPLEMENTATION

A linear finite element program can be considered as consist of three parts, a pre-
processing part, an analyzing part and a post-processing part. In the following, the
variable used is just examples which meaning will not been explained here. An example,
building up a linear finite element model in Matlab/Calfem |6] can be found in [7]. The
list shown below is thought as a check-list when building up a finite element program.

e Pre-processing

— Definition of variable used in the model

x (Geometrical parameters: lgeo, hgeo, bgeo, ...
x Topology parameters: Ndof, Nel, Nnode

x Properties Emodul, SigmaY, Nexp, ...

x Defining the case: Udisp, ...

— Topology of the model
% Define the node coordinates

x Correlate the global node numbers to local node number in the element

x Correlate local degree of freedom numbers with the global degree of free-
dom numbers



« Identify nodes (and elements) along external boundaries

x Correlate material and element properties to element numbers

— Plot the undeformed structure
e Analyzing part

— Initialize global stiffness matrix and right hand side: S=0,P =0
— For each element:

+ Build up the local element stiffness matrix: S®*)
« Build up eventually the local element load vector (static boundary condi-
tion): P®)
% Assemble the local element matrices S®), P®) into the global matrices S,
P
— Kinematic boundary condition
— Solve the system: SD =P

— Extract the displacement, strains, stresses, etc. from the solution in the inte-
gration points for each element: u = ND®), ¢ = BD® o = LBDW®

e Post-processing part

— Plot the deformed structure

— Plot contours of strains, stresses, etc.

3. KINEMATIC NON-LINEAR PROBLEM

Even inside the approximation of a linear elastic material behaviour, a number of prob-
lems can not be solved satisfactory by a linear finite element model. Examples is post-
buckling analysis, finite strain problems, specimen exposed for large rotations, etc.

Here will, as an example on a kinematic (geometric) nonlinear problem, be treated the
case of a three dimensional continuum where the assumption for small strains, |¢;;| < 1,
holds while the displacement gradients, u; ;, no longer can be considered as small. For
this case, the governing equations can be written as

\% S
€ij = 5 (Um’ +uj; + uk,iuk,j) (32)
Oij = Eijkﬁkl (3-3)

If we make a finite element approach of the total displacements similar to the one done
in chapter 2 with (2.6)

Fe
ui=> U™ Dy (3.4)
n=1
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we will no longer get a system of linear equations as (2.25), but a set of non-linear
equations

G[D)=P (3.5)

Another way to write the governing equations is in term of a small increment which
in the following will be denoted by a dot () . In order to do this we will write the
displacements, the stresses and the prescribed surface forces after a small increment as

5'2'3' = Uij + Uzg (37
T,=T,+T, (3.8)

respectively. After substitute (3.6) in (3.2) the total strain components after a small
increment is found to

_ ) 1. .
€ij = €ij + &€y + o Uitk (3.9)
with
) 1 . . . .
5ij = 5 (um- + Uy i + Uk, iUk, j + ukﬂ-uk,j) (310)

The equilibrium after this small increment can similar to (3.1) with the new total
quantities be written as

\4 S

After substitution of (3.6-3.9) into (3.11) and rearrangement the terms we can write

1% S \% S

where it has been make use of that (*)(") < (*) (small increment), and that §(e;; +¢;5) =
0¢;; and corresponding 0(u; + @;) = 0(;) which comes from the fact that the displace-
ment /strain state is known before the increment and the variation thereof therefore van-
ishes. The bracket term vanishes if equilibrium is satisfied before the increment, but will
normally be included in a numerical procedure in order to avoid the numerical solution
to drift away from equilibrium. The virtual work on incremental form will together with
increment of the strains (3.10) and the constitutive relation (2.3) on incremental form

dij = ["ijkléij (313)

be the governing equations for the finite element formulation.

In the incremental finite element model, it is not the total displacements u; , but the
increment thereof %; which is approximated by the shape functions Ui(n) . Therefore, 1;
and &;; can be written as (2.6)

F.
=Y U™ D, (3.14)
n=1
and
Fe )
e B Dy (3.15)
n=1
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with .
B = (U + U0 + U w5 + U (3.16)
where EZ-(n) depends on the total deformation state, u;. Following the procedure from

section 2, the element stiffness matrix, the element load vector and the element load
correction vector can be found as

sH = / {.cmklEWEgm +UijU,£Z)U,E?)}dV (3.17)
Vir)

P = / T,U™ds (3.18)
S(k)

R = / o BSVdV — / T,U™ds (3.19)
Viw) S(k)

respectively, which components generally differing from increment to increment. After
collection the element stiffness matrix and the load vectors in the system stiffness ma-
trix and system load vectors, and approximating the virtual displacement fields similar
to what occurs between (2.17) and (2.18), the following system of linear independent
equations

> SaumDwy =Porny— Ry, M=12.. . F (3.20)
N=1
is obtained.

The solution of (3.20) gives the increment of the node displacement, D(N). Having
these, the strain increment, €;; and therefrom the stress increments ¢;; are calculated in
the integrations points, element by element, from equations (3.15) and (3.13), respec-
tively. The current values of the stresses after the increment are updated by calculating
0i; + 0i; in each integration point, and the current values of the nodal displacement are
updated by calculating D) + D(N) . Subsequently, a new increment can be calculated
repeating the procedure shown above. The total displacement u; in the integration point
is calculated from (3.4), and if the total strains are wanted at some point in the loading
history, equation (3.2) can be used for this with

Fe

iy = U Dy (3.21)

n=1

3.1. MATRIX NOTATION

In the linear case in section 2, it was straight forward to rewrite the governing equations
into matrix notation. For the non-linear cases case, it can be more difficult but of
course possible. It is the second term in (3.17) which require some creative matrix
manipulations. In addition to defining the incremental displacement components vector
and node displacements vector as

D,
Uy . D
= ||, DOW=| " (3.22)
(] R
Dr.



and the strain and stress vector as

€11 o1
€922 0922
e= |8, o= (3.23)
2e12 012
2¢e13 013
2€93 023

it is necessary to define an incremental displacement gradient vector with 9 elements

T

u= (U1,1 Ur2 U3 U U2 U3 U1 U2 U33 ) (3.24)

Doing this, the increment of the displacement vector, the increment of the strain vector
and the increment of displacement gradient vector can be written as

u=ND®  ¢=BD®  4=BDW (3.25)

where N and B is given like (2.19) but with EZ(Jn) from (2.9) replaced by the components
from (3.16) whereby N will depends on the total instantaneous displacements u;. The
matrix B is given by

1 F.
Ulifi ’ Uli%;
RN oS
Buoery = | b . ol (3.26)
( X e) []1,2 R U172e
1 F.
Usg - Uss
which with ¢, introduced in (2.7) can be written as
R oyl - Dyl 100
Boxr) = | ¢me2l - oyl | , I=1010 (3.27)
b3l - PGy, sl 001

If we in a similar way define a "expanded" stress matrix,

ol ol o131
a'(gxg) = 0'21]: 0'22]: 0'23]: (328)
o311 0321 0331

we can write the element stiffness matrix (3.17), the element load vector (3.18) and the
element load correction vector (3.19) as

Stk — / {BTEB+BT&B> dv (3.29)
Vik)

Pk — NTTds (3.30)
S(k)

R® = / BladV — / N”TdS (3.31)
Vik) S(k)

9



In (3.29), both two terms depends on the point in the loading history, the first term
through B dependency on the total displacement state u; and the second term through
o .

Collected into the global stiffness matrix and load vectors the linear equations system
(3.20) can in matrix notation be written as

SD=P-R (3.32)

3.2. NUMERICAL IMPLEMENTATION

Similar to the linear finite element model, the numerical implementation of the incre-
mental finite element model as described above can be considered as consisting of three
parts; the pre-processing, the analyzing and the post-processing part. The incremental
finite element solution can be structured as:

e Pre-processing

— Definition of variable used in the model

x (Geometrical parameters: lgeo, hgeo, bgeo, ...
x Topology parameters: Ndof, Nel, Nnode

x Properties Emodul, SigmaY, Nexp, ...

* Defining the case: dUdisp, Ustop, ...

— Topology of the model

* Define the node coordinates
x Correlate the global node numbers to local node number in the element

x Correlate local degree of freedom numbers with the global degree of free-
dom numbers

* Identify nodes (and elements) along external boundaries

x Correlate material and element properties to element numbers
— Plot the undeformed structure
— Initialize the state variable in the integration points in the elements: D = 0,
c=0,e=0

e Analyzing part (repeat for each new increment)

— Initialize global stiffness matrix and right hand side: S =0, P =0
— For each element:

s Build up the local element stiffness matrix: S®*)

* Build up eventually the increment of the local element load vector (static
boundary condition): P®*),

+ Assemble the local element matrices S®), P® into the global matrices S,
P

— Kinematic boundary condition

10



— Solve the system: SD = P

— Extract the increment of the displacement, strains, stresses, etc. in the inte-
gration points from the solution: 1 = ND®) ¢ = BD® ¢ = LBD®

— Update state variable in the integration points: D = D + D, o = o+,
e=€e+¢€

— New increment?
e Post-processing part

— Plot the deformed structure

— Plot contours of strains, stresses, etc.

3.3. INCREMENTAL AND ITERATIVE METHODS

The increment model presented above, is a Euler integration method including a equilib-
rium correction term. It is a quite straight forward analysis to performed, but will usually
require a large number of increment in order to give an accurate solution. A number of
much more sophisticated methods has been developed. One of the more simple method
is a combined Euler integration and a full or modified Newton-Raphson iteration scheme,
see e.g. |1, chapter 1.

Passing a maximum value of the prescribed parameter (load or displacement) in a
numerical incremental scheme require some specific concern. A number of different nu-
merical treatment has been proposed. Two of the more successful method is a combined
Rayleigh-Ritz/Finite element method as described in [8], |9, page 132| or the very stable
Riks/Arc-length methods, see e.g. |1, chapter 9.3].
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