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Non-linear �nite element modelingLars Pilgaard MikkelsenMaterial Researh Department, Risø National LaboratoryTehnial University of Denmark, 4000 Roskilde
1. INTRODUCTIONThe note is written for ourses in "Non-linear �nite element method". The note has beenused by the author at Civil Engineering at Aalborg University, Computational Mehanisat Aalborg University Esbjerg, Strutural Engineering at the University of the SouthernDenmark and in Mediine and Tehnology at the Tehnial University of Denmark. Thenote fous on the appliability to atually ode routines with the purpose to analyze ageometrially or material non-linear problem. The note is tried to be kept on so briefa form as possible, with the main fous on the governing equations and methods ofimplementing. For a more omplete exposition please see the referenes in the end of thenotes. Speially, [1℄ and [2℄ is suited as omplementary textbooks.Though out the whole doument, a onventional tensor notation has been used whererepeated indies indiate summations and where Latin indies range from 1 to 3, whileGreek indies range from 1 to 2. The notation ( ),i indiate partial di�erentiation withrespet to the oordinate xi . The �nite element notation is highly inspired by [3, 4℄ butwith referene to a usual matrix notation a'la [5℄. Note, that "indies" in parenthesesshall not be treated as indies in a tensor notation sense but indiate a degree of freedom,element number et.First is inluded a brief repetition for a linear �nite element model. This is done inorder to refer bak to a ommon language in the subsequently derivations.Enjoy ... 2. LINEAR CONTINUUMEquilibrium for a linear elasti three-dimensional ontinuum where the assumption ofsmall strains, |εij| ≪ 1, and small displaements gradients, |ui,j| ≪ 1, is satis�ed, ane.g. be expressed by the prinipal of virtual work

∫

V

σijδεijdV =

∫

S

TiδuidS (2.1)In (2.1), the volume fores is negleted while Ti denotes the surfae tration. The tensoromponents of the strain and stress tensor is given by
εij =

1

2
(ui,j + uj,i) (2.2)

σij = Lijklεkl (2.3)1



respetively, where Lijkl represents the elasti modulus. For a linear elasti materialfollowing the generalized Hooks low, the elasti modulus is given by
Lijkl =

E

1 + ν

{

1

2
(δikδjl + δilδjk) +

ν

1 − 2ν
δijδkl

} (2.4)with Young's modulus E and Poisson's ratio ν .Even in the linear ase, it is rare that an exat solution to (2.1-2.3) exists and ap-proximative methods is neessary. The "Finite Element Method" is suh a method. Inthe �nite element method the volume V is divided into K sub-volumes (elements), suhthat
V =

K
∑

k=1

V(k) , S =
K

∑

k=1

S(k) (2.5)If element no. k does not ontain part of the surfae S, we have S(k) = 0. Inside thevolume V(k) the displaements omponents ui are approximated by Fe shape funtions
U (n) suh that the displaements in a given point inside the element is given by

ui =
Fe
∑

n=1

U
(n)
i D(n) (2.6)where Fe is the number of degrees of freedom for the element, U

(n)
i is the value of theshape funtion in a partiular point and D(n) is the orresponding node point displae-ments. The shape funtions is assumed to be spei�ed suh that the displaements, uiare ontinues over the element boundaries when the ommon node points have the samedisplaements values, D(n) . For a element with GNo nodes where the three displaementomponents ui is approximated by the same shape funtion, φ(g), g = 1, . . . , G(No), insidean element and with only one degree of freedom per node per displaement omponent,

U
(n)
i an be written as

U
(1)
i = (φ(1), 0, 0)

U
(2)
i = (0, φ(1), 0)

U
(3)
i = (0, 0, φ(1))...

U
(Fe−2)
i = (φ(GNo), 0, 0)

U
(Fe−1)
i = (0, φ(GNo), 0)

U
(Fe)
i = (0, 0, φ(GNo)) (2.7)After substitution of (2.6) in (2.2) the following approximation of the strains

εij =

Fe
∑

n=1

E
(n)
ij D(n) (2.8)with

E
(n)
ij =

1

2

(

U
(n)
i,j + U

(n)
j,i

) (2.9)2



is obtained.If the internal virtual work is denoted δWint. and the external virtual work is denoted
δWext. the priniple of virtual work (2.1) an be written as

δWint. = δWext. (2.10)whih after substitution of (2.5) in (2.10) an be written as
K

∑

k=1

(δWint.)(k) =
K

∑

k=1

(δWext.)(k) (2.11)Approximating both the real and the virtual displaement by the �nite element approx-imation (2.6, 2.8) suh that
ui =

∑Fe

n=1 U
(n)
i D(n) δui =

∑Fe

m=1 U
(m)
i δD(m)

εij =
∑Fe

n=1 E
(n)
ij D(n) δεij =

∑Fe

m=1 E
(m)
ij δD(m)

(2.12)the ontribution from element no. (k) to the internal and external virtual work an bewritten as
(δWint.)(k) =

Fe
∑

n=1

Fe
∑

m=1

S
(k)
(mn)D(n)δD(m) (2.13)

(δWext.)(k) =

Fe
∑

m=1

P
(k)
(m)δD(m) (2.14)where the element sti�ness matrix an be written as

S
(k)
(mn) =

∫

V(k)

LijklE
(n)
kl E

(m)
ij dV (2.15)while the element load vetor an be written as

P
(k)
(m) =

∫

S(k)

TiU
(m)
i dS (2.16)Often, the shape funtions (2.7) is given in loal element oordinates ξi running be-tween e.g. ξi ∈ [−1 : 1]. Therefore, during the di�erentiation (2.9) and the integration(2.15) and (2.16) a mapping between the loal and the loal oordinate system should beperformed, e.g. hapter 6 in [5℄. For Isoparametri elements where both the displaementof a point in the element and the global oordinates of a point in the element are inter-polated from the nodal values, respetively using the same shape funtions, the mappingbetween the two oordinate system is rather straightforward. The governing equationan be found in e.g. hapter 6 in [5℄. The integration (2.15) and (2.16) is often based ona numerial integration using the Gaussian integration sheme.The element sti�ness matrix S

(k)
(mn) and the element load vetors P

(k)
(m) for eah element(k = 1, . . . , K) an now be olleted into one ommon equations system in agreement3



with (2.11). This an be done when the orrelation between the loal degree of freedoms(m, n = 1, . . . , Fe) for eah element and the global degrees of freedoms (M, N =
1, . . . , F ) for the mesh is known. The total number of freedoms is denoted by F. Theresulting equations system

F
∑

M=1

F
∑

N=1

S(MN)D(N)δD(M) =
F

∑

M=1

P(M)δD(M) (2.17)an now be written as F independent equations by approximating of the virtual displae-ment �eld by one nodal displaement δD(M) = 1 , with all other nodal displaements equalto zero. Doing this suessive for the F degree of freedoms we get F linear independentequations
F

∑

N=1

S(MN)D(N) = P(M) , M = 1, 2, . . . , F (2.18)After inluding the kinemati boundary ondition diretly into (2.18), the solution of(2.18) will give the nodal displaements D(N) orresponding to the load vetor P(M). Fromthe nodal displaement D(N) it is suessively possible to alulate the displaements, thestrains and the stresses in the the struture using (2.6), (2.8) and (2.3), respetively.2.1. Matrix notationThe above shown governing equations for the �nite element model is possible to inor-porate diretly into a programming ode suh as Fortran 77. Nevertheless, in higherlevel programming language suh as Fortran 90, Matlab and C++, it an be advantageto formulate the �nite element equations in matrix notation. By arranging the shapefuntions U
(n)
i and the thereof derived E

(n)
ij in the matrixes

N(3×Fe) =







U
(1)
1 · · · U

(Fe)
1

U
(1)
2 · · · U

(Fe)
2

U
(1)
3 · · · U

(Fe)
3






, B(6×Fe) =





















E
(1)
11 · · · E

(Fe)
11

E
(1)
22 · · · E

(Fe)
22

E
(1)
33 · · · E

(Fe)
33

2E
(1)
12 · · · 2E

(Fe)
12

2E
(1)
13 · · · 2E

(Fe)
13

2E
(1)
23 · · · 2E

(Fe)
23





















(2.19)
it follows that the displaements and strains vetors in a given point in element (k), see(2.6) and (2.8) an be written as

u = ND
(k) , ε = BD

(k) (2.20)where the following vetors are de�ned (σ will be used later)
u =





u1

u2

u3



 , D
(k) =











D1

D2...
DFe











, ε =

















ε11

ε22

ε33

2ε12

2ε13

2ε23

















, σ =

















σ11

σ22

σ33

σ12

σ13

σ23

















(2.21)
4



Using these matrixes, it is possible to write the element sti�ness matrix (2.15) and theelement load vetor (2.16) as
S

(k) =

∫

V(k)

B
T
LBdV , P

(k) =

∫

S(k)

N
T
TdS (2.22)with

L =











L1111 L1122 · · · L1113

L2211 L2222 · · · L2213... ... . . .
L1311 L1322 L1313











, T =





T1

T2

T3



 (2.23)In the matrix for L the symmetry of Lijkl = Ljikl and Lijkl = Lijlk is impliit inluded,while the symmetry Lijkl = Lklij will result in a symmetri L matrix. From the onsti-tutive matrix L, the stresses in a element an be found as
σ = Lε = LBD

(k) (2.24)Colleting the element sti�ness matrix and the element load vetor into the globalsti�ness matrix and load vetor the following equation system is obtained
SD = P (2.25)with

D = (D1, D2, · · · , DF )T (2.26)whih an be solved similar to (2.18).2.2. Numerial implementationA linear �nite element program an be onsidered as onsist of three parts, a pre-proessing part, an analyzing part and a post-proessing part. In the following, thevariable used is just examples whih meaning will not been explained here. An example,building up a linear �nite element model in Matlab/Calfem [6℄ an be found in [7℄. Thelist shown below is thought as a hek-list when building up a �nite element program.
• Pre-proessing� De�nition of variable used in the model

∗ Geometrial parameters: lgeo, hgeo, bgeo, ...
∗ Topology parameters: Ndof, Nel, Nnode
∗ Properties Emodul, SigmaY, Nexp, ...
∗ De�ning the ase: Udisp, ...� Topology of the model
∗ De�ne the node oordinates
∗ Correlate the global node numbers to loal node number in the element
∗ Correlate loal degree of freedom numbers with the global degree of free-dom numbers 5



∗ Identify nodes (and elements) along external boundaries
∗ Correlate material and element properties to element numbers� Plot the undeformed struture

• Analyzing part� Initialize global sti�ness matrix and right hand side: S = 0, P = 0� For eah element:
∗ Build up the loal element sti�ness matrix: S

(k)

∗ Build up eventually the loal element load vetor (stati boundary ondi-tion): P
(k)

∗ Assemble the loal element matries S
(k), P(k) into the global matries S,

P� Kinemati boundary ondition� Solve the system: SD = P� Extrat the displaement, strains, stresses, et. from the solution in the inte-gration points for eah element: u = ND
(k), ε = BD

(k), σ = LBD
(k)

• Post-proessing part� Plot the deformed struture� Plot ontours of strains, stresses, et.
3. KINEMATIC NON-LINEAR PROBLEMEven inside the approximation of a linear elasti material behaviour, a number of prob-lems an not be solved satisfatory by a linear �nite element model. Examples is post-bukling analysis, �nite strain problems, speimen exposed for large rotations, et.Here will, as an example on a kinemati (geometri) nonlinear problem, be treated thease of a three dimensional ontinuum where the assumption for small strains, |εij| ≪ 1,holds while the displaement gradients, ui,j, no longer an be onsidered as small. Forthis ase, the governing equations an be written as

∫

V

σijδεijdV =

∫

S

TiδuidS (3.1)
εij =

1

2
(ui,j + uj,i + uk,iuk,j) (3.2)

σij = Lijklεkl (3.3)If we make a �nite element approah of the total displaements similar to the one donein hapter 2 with (2.6)
ui =

Fe
∑

n=1

U
(n)
i D(n) (3.4)6



we will no longer get a system of linear equations as (2.25), but a set of non-linearequations
G(D) = P (3.5)Another way to write the governing equations is in term of a small inrement whihin the following will be denoted by a dot (˙) . In order to do this we will write thedisplaements, the stresses and the presribed surfae fores after a small inrement as

ūi = ui + u̇i (3.6)
σ̄ij = σij + σ̇ij (3.7)
T̄i = Ti + Ṫi (3.8)respetively. After substitute (3.6) in (3.2) the total strain omponents after a smallinrement is found to

ε̄ij = εij + ε̇ij +
1

2
u̇k,iu̇k,j (3.9)with

ε̇ij =
1

2
(u̇i,j + u̇j,i + u̇k,iuk,j + uk,iu̇k,j) (3.10)The equilibrium after this small inrement an similar to (3.1) with the new totalquantities be written as

∫

V

σ̄ijδε̄ijdV =

∫

S

T̄iδūidS (3.11)After substitution of (3.6-3.9) into (3.11) and rearrangement the terms we an write
∫

V

{σ̇ijδε̇ij + σij u̇k,jδu̇k,i} dV =

∫

S

Ṫiδu̇idS −

[
∫

V

σijδε̇ijdV −

∫

S

Tiδu̇idS

] (3.12)where it has been make use of that (˙)(˙) ≪ (˙) (small inrement), and that δ(εij + ε̇ij) =
δε̇ij and orresponding δ(ui + u̇i) = δ(u̇i) whih omes from the fat that the displae-ment/strain state is known before the inrement and the variation thereof therefore van-ishes. The braket term vanishes if equilibrium is satis�ed before the inrement, but willnormally be inluded in a numerial proedure in order to avoid the numerial solutionto drift away from equilibrium. The virtual work on inremental form will together withinrement of the strains (3.10) and the onstitutive relation (2.3) on inremental form

σ̇ij = Lijklε̇ij (3.13)be the governing equations for the �nite element formulation.In the inremental �nite element model, it is not the total displaements ui , but theinrement thereof u̇i whih is approximated by the shape funtions U
(n)
i . Therefore, u̇iand ε̇ij an be written as (2.6)

u̇i =
Fe
∑

n=1

U
(n)
i Ḋ(n) (3.14)and

ε̇ij =

Fe
∑

n=1

E
(n)
ij Ḋ(n) (3.15)7



with
E

(n)
ij =

1

2

(

U
(n)
i,j + U

(n)
j,i + U

(n)
k,i uk,j + uk,iU

(n)
k,j

) (3.16)where E
(n)
i depends on the total deformation state, ui. Following the proedure fromsetion 2, the element sti�ness matrix, the element load vetor and the element loadorretion vetor an be found as

S
(k)
(mn) =

∫

V(k)

{

LijklE
(n)
kl E

(m)
ij + σijU

(n)
k,j U

(m)
k,i

}

dV (3.17)
Ṗ

(k)
(m) =

∫

S(k)

ṪiU
(m)
i dS (3.18)

R
(k)
(m) =

∫

V(k)

σijE
(m)
ij dV −

∫

S(k)

TiU
(m)
i dS (3.19)respetively, whih omponents generally di�ering from inrement to inrement. Afterolletion the element sti�ness matrix and the load vetors in the system sti�ness ma-trix and system load vetors, and approximating the virtual displaement �elds similarto what ours between (2.17) and (2.18), the following system of linear independentequations

F
∑

N=1

S(MN)Ḋ(N) = Ṗ(M) − RM , M = 1, 2, . . . , F (3.20)is obtained.The solution of (3.20) gives the inrement of the node displaement, Ḋ(N). Havingthese, the strain inrement, ε̇ij and therefrom the stress inrements σ̇ij are alulated inthe integrations points, element by element, from equations (3.15) and (3.13), respe-tively. The urrent values of the stresses after the inrement are updated by alulating
σij + σ̇ij in eah integration point, and the urrent values of the nodal displaement areupdated by alulating D(N) + Ḋ(N) . Subsequently, a new inrement an be alulatedrepeating the proedure shown above. The total displaement ui in the integration pointis alulated from (3.4), and if the total strains are wanted at some point in the loadinghistory, equation (3.2) an be used for this with

u̇i,j =

Fe
∑

n=1

U
(n)
i,j Ḋ(n) (3.21)3.1. Matrix notationIn the linear ase in setion 2, it was straight forward to rewrite the governing equationsinto matrix notation. For the non-linear ases ase, it an be more di�ult but ofourse possible. It is the seond term in (3.17) whih require some reative matrixmanipulations. In addition to de�ning the inremental displaement omponents vetorand node displaements vetor as

u̇ =





u̇1

u̇2

u̇3



 , Ḋ
(k) =











Ḋ1

Ḋ2...
ḊFe











(3.22)8



and the strain and stress vetor as
ε =

















ε11

ε22

ε33

2ε12

2ε13

2ε23

















, σ =

















σ11

σ22

σ33

σ12

σ13

σ23

















(3.23)it is neessary to de�ne an inremental displaement gradient vetor with 9 elements
˙̂u =

(

u̇1,1 u̇1,2 u̇1,3 u̇2,1 u̇2,2 u̇2,3 u̇3,1 u̇3,2 u̇3,3

)T (3.24)Doing this, the inrement of the displaement vetor, the inrement of the strain vetorand the inrement of displaement gradient vetor an be written as
u̇ = NḊ

(k) , ε̇ = BḊ
(k) , ˙̂u = B̂Ḋ

(k) (3.25)where N and B is given like (2.19) but with E
(n)
ij from (2.9) replaed by the omponentsfrom (3.16) whereby N will depends on the total instantaneous displaements ui. Thematrix B̂ is given by

B̂(9×Fe) =





















U
(1)
1,1 · · · U

(Fe)
1,1

U
(1)
2,1 · · · U

(Fe)
2,1

U
(1)
3,1 · · · U

(Fe)
3,1

U
(1)
1,2 · · · U

(Fe)
1,2... ... ...

U
(1)
3,3 · · · U

(Fe)
3,3





















(3.26)
whih with φ(g) introdued in (2.7) an be written as

B̂(9×Fe) =





φ(1),1I · · · φ(GNo),1I

φ(1),2I · · · φ(GNo),2I

φ(1),3I · · · φ(GNo),3I



 , I =





1 0 0
0 1 0
0 0 1



 (3.27)If we in a similar way de�ne a "expanded" stress matrix,
σ̂(9×9) =





σ11I σ12I σ13I

σ21I σ22I σ23I

σ31I σ32I σ33I



 (3.28)we an write the element sti�ness matrix (3.17), the element load vetor (3.18) and theelement load orretion vetor (3.19) as
S

(k) =

∫

V(k)

{

B
T
LB + B̂

T
σ̂B̂

)

dV (3.29)
Ṗ

(k) =

∫

S(k)

N
T
ṪdS (3.30)

R
(k) =

∫

V(k)

B
T
σdV −

∫

S(k)

N
T
TdS (3.31)9



In (3.29), both two terms depends on the point in the loading history, the �rst termthrough B dependeny on the total displaement state ui and the seond term through
σ̂ . Colleted into the global sti�ness matrix and load vetors the linear equations system(3.20) an in matrix notation be written as

SḊ = Ṗ −R (3.32)3.2. Numerial implementationSimilar to the linear �nite element model, the numerial implementation of the inre-mental �nite element model as desribed above an be onsidered as onsisting of threeparts; the pre-proessing, the analyzing and the post-proessing part. The inremental�nite element solution an be strutured as:
• Pre-proessing� De�nition of variable used in the model

∗ Geometrial parameters: lgeo, hgeo, bgeo, ...
∗ Topology parameters: Ndof, Nel, Nnode
∗ Properties Emodul, SigmaY, Nexp, ...
∗ De�ning the ase: dUdisp, Ustop, ...� Topology of the model
∗ De�ne the node oordinates
∗ Correlate the global node numbers to loal node number in the element
∗ Correlate loal degree of freedom numbers with the global degree of free-dom numbers
∗ Identify nodes (and elements) along external boundaries
∗ Correlate material and element properties to element numbers� Plot the undeformed struture� Initialize the state variable in the integration points in the elements: D = 0,

σ = 0, ε = 0

• Analyzing part (repeat for eah new inrement)� Initialize global sti�ness matrix and right hand side: S = 0, Ṗ = 0� For eah element:
∗ Build up the loal element sti�ness matrix: S

(k)

∗ Build up eventually the inrement of the loal element load vetor (statiboundary ondition): Ṗ
(k).

∗ Assemble the loal element matries S
(k), Ṗ(k) into the global matries S,

Ṗ� Kinemati boundary ondition 10



� Solve the system: SḊ = Ṗ� Extrat the inrement of the displaement, strains, stresses, et. in the inte-gration points from the solution: u̇ = NḊ
(k), ε̇ = BḊ

(k), σ̇ = LBḊ
(k)� Update state variable in the integration points: D = D + Ḋ, σ = σ + σ̇,

ε = ε + ε̇� New inrement?
• Post-proessing part� Plot the deformed struture� Plot ontours of strains, stresses, et.3.3. Inremental and iterative methodsThe inrement model presented above, is a Euler integration method inluding a equilib-rium orretion term. It is a quite straight forward analysis to performed, but will usuallyrequire a large number of inrement in order to give an aurate solution. A number ofmuh more sophistiated methods has been developed. One of the more simple methodis a ombined Euler integration and a full or modi�ed Newton-Raphson iteration sheme,see e.g. [1, hapter 1℄.Passing a maximum value of the presribed parameter (load or displaement) in anumerial inremental sheme require some spei� onern. A number of di�erent nu-merial treatment has been proposed. Two of the more suessful method is a ombinedRayleigh-Ritz/Finite element method as desribed in [8℄, [9, page 132℄ or the very stableRiks/Ar-length methods, see e.g. [1, hapter 9.3℄.Referenes[1℄ M. A. Cris�eld. Non-linear Finite Element Analysis of Solids and Strutures, vol-ume 1. John Wiley & Sons, 1991.[2℄ S. Krenk. Non-linear analysis with �nite elements. Aalborg University, Aalborg,Denmark, 1993.[3℄ V. Tvergaard. Plastiitet og Krybning i Konstruktionsmaterialer (in Danish). Dept.of Solid Mehanis, Tehnial University of Denmark, Lyngby, Denmark, 1993.[4℄ V. Tvergaard. Notes on �nite element formulations for �nite strain plastiity orvisoplastiity. Leture note from Dept. of Solid Mehanis, Tehnial University ofDenmark, Lyngby, Denmark, 1999.[5℄ R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Conepts and appliationsof �nite element analysis. John Wiley & Sons, 4rd edition, 2001.
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[6℄ P.-E. Austrell, H. Carlsson, O. Dahlblom, K.-G. Olsson, K. Persson, A. Peterson,H Petersson, M. Ristimaa, and G. Sandberg. CALFEM�A Finite Element Toolboxto MATLAB, Version 3.2. Division of Strutural Mehanis and Division of SolidMehanis, LTH, Lund Unversity, 1997.[7℄ E. Byskov. A short introdutory example of use of alfem. Tehnial report, Dept. ofBuild. Teh. and Strut. Engng., Aalborg University, 1999.[8℄ V. Tvergaard. E�et of thikness inhomogeneities in internally pressurized elasti-plasti spherial shells. J. Meh. Phys. Solids, 24:291�304, 1976.[9℄ A. Needleman and V. Tvergaard. Finite element analysis of loalization in plastiity.In J.T. Oden and G.F. Carey, editors, Finite Elements - Speial Problems in SolidMehanis, pages 94�157. Prentie-Hall, Englewood Cli�s, New Jersey, 1985.
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