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(CW)  bistatic sodar, initiated with the aim of investigating and 
improving the measuring accuracy of sodar remote sensing at 
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wind conditions in a neutrally stratified atmospheric conditions, 
characteristic for wind energy applications. Here we first describe 
the theoretical developments for sound wave scattering theory 
within a bistatic configuration. We calculate the Doppler shifts and 
returned power for the proposed new Heimdall bistatic 
configuration, implemented for measurements at 60 meters height 
above the ground. The bistatic “Heimdall” sodar was subsequently 
built and set in operation adjacent to the 123 meter tall met tower at 
Risø National Laboratory, which we had equipped with a sonic 
reference anemometer installed at the 60 meters height. “Heimdall” 
measured CW Doppler shifts, subsequently  processed into wind 
speed in real time, along with received power which have been 
compared with our predictions, and we found that: 1) Our suggested 
bi-static configuration enabled real-time tracing of the wind speeds 
with data rates of  ~1 Hz from fast processing of the measured 
spectral measurements of the Doppler shift with an adequate signal-
to-noise ratio, and 2) the amplitudes of the measured return powers 
compared to the predictions within about -10 dB. We conclude that 
the proposed bi-static configuration provides significantly improved 
signal-to-noise advantages over similar mono-static configurations, 
and thereby also better data availability rates for wind speed 
measurements during strong wind conditions. 
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1 Prologue

A prototype of a bistatic sodar (Sound Detection and Ranging), “Heimdall”†,
has been developed. Here we present the essential part of the theory for sodar
anemometry. This is followed by a technical presentation of the Heimdall sodar
and some preliminary experimental observations.

There is a vast amount of literature about sodars (Sound Detection and Ranging).
There are many types and they are used to measure turbulence characteristics and
wind velocities in the atmospheric surface layer. The most common sodar has a
monostatic configuration where the transmitter and receiver are the same (You
blow and listen). In the bistatic configuration the transmitter and receiver are
not the same (You blow and I listen); they are displaced horizontally. The two
measuring principles are illustrated in Fig. 1

Figure 1. Sketches of a monostatic configuration (left) and a bistatic configuration
(right). In the first configuration the sound pulse is Doppler shifted by temperature
fluctuations, characterized by the turbulence strength parameter CT and backscat-
tered 180◦, i.e. the transmitters are also receivers. By sending sound pulses in
three directions the mean-wind speed can be determined if horizontal homogeneity
is assumed. This is in contrast to the bistatic configuration sodar where the wind
speed component in the plane of the transmitting bean and the reflected is deter-
mined in the intersecting volumes of the two antenna directivities. In this case the
signal strength is enhanced because both temperature fluctuations and the velocity
fluctuations with the strength parameter CV are scattering agents. With two an-
tenna pairs pointing into the same volume it is possible to measure continuously
the mean horizontal wind velocity. We might in this case let these two pairs share
the same transmitter.

The switching between transmitting and receiving for the monostatic sodar means
that it is impossible to operate it in a continuous mode. For this instrument
one duty circle consists of the transmitting a short sound pulse, followed by the
receiving of the back-scattered returns. The distance to the traveling sound pulse
is monitored by so-called range gating. In other words, a monostatic sodar sound
pulse probes—within the maximum range—the atmosphere along the axis of the
transmitter/receiver antenna. This is not the case for a bistatic sodar. Here the
atmosphere is probed in the rather limited vicinity of the intersection between the
axes of the transmitter and the receiver. So far bistatic sodars have been operated

†Heimdall is a god in the Norse mythology. He has a lur (war horn). When listening, he can
hear the grass grow on the ground and the wool on the sheep.
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in the same way as monostatic sodars, but with a bistatic operation it is possible
to operate in a continuous mode.

The Doppler shift Δω can be determined geometrically with the aid of Fig. 2.
Consider a plane sound wave with the wave-number vector k◦ and the frequency
ω◦ being transmitted from the transmitter T. The scattering eddy is moving with
the wind velocity component u in the plane of the two antenna axes and will “feel”
that the wave has the frequency

ω = ω◦ − k◦ · u. (1)

We assume elastic scattering and the eddy will therefore re-emit a spherical sound
wave with the frequency ω. The wave direction towards the receiver R can be
characterizes by the wave number k, but since the emitter, the eddy, is moving
with the velocity u the receiver will “feel” that the frequency is

ωR = ω + k · u. (2)

Consequently, the total Doppler shift from transmitter T to receiver R is

Δω ≡ ωR − ω◦ = (k − k◦) · u. (3)

We see that for backscattering

Δω = −2 k◦ · u. (4)

φ′◦
φ◦

RT

γ
u

Δk = k − k◦

k

k◦

Figure 2. Bistatic configuration. The transmitter T transmits a plane sound wave
with the wave number k◦ with the inclination φ◦ and the frequency ω◦. The receiver
R has the axis inclination φ′◦. The plane triangle defined by T, R and the inter-
section of the two antenna axes is here assumed vertical. The velocity component
in this plane is u.

In the following section we discuss some of the theoretical background for the
operation of a bistatic sodar for remote anemometry.
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2 Theoretical Background

There are three major theoretical subjects of importance, namely sound scattering
in the atmosphere, the bistatic sodar equation, and the determination of Doppler
shift of the frequency due to the collective part of the motion of the scattering
eddies.

2.1 The Cross Section for Sound Scattering

The specific sound scattering cross section, i.e. the total cross section per unit
solid angle and volume was derived by Tatarskii (1967). In a notation consistent
with Lumley & Panofsky (1964) it can be written

η(γ) =
k2

8
cos2(γ)

sin2(γ/2)

{
ET (2k sin(γ/2))

4T 2
+
EU (2k sin(γ/2))

c2
cos2(γ/2)

}
. (5)

Here k = |k| is the-wave number of the sound, T and c the overall temperature and
velocity of sound, respectively, and γ the scattering angle. The functions ET (k)
and EU (k) are the energy spectra for temperature and for velocity; they are defined
so that when integrated over all wave numbers from zero to infinity the results
are the three-dimensional variances of temperature and velocity, respectively.

We want to evaluate (5) in the case of isotropic turbulence where there are simple
relations between the energy spectra ET (k) and EU (k) and the corresponding
one-dimensional spectra FT (k) and FU (k) in the direction of the flow [see e.g.,
(Lumley & Panofsky 1964)]:

ET (k) = −2k
dFT
dk

, (6)

EU (k) = k3 d
dk

(
1
k

dFU
dk

)
. (7)

Let us now consider the one-dimensional spectrum of χ(x), which could be the
streamwise component of the velocity or the temperature. We assume isotropy so
χ(x) is homogeneous with the constant mean value 〈χ〉, where angle brackets 〈·〉
means ensemble averaging. The structure function is defined as

D(r) =
〈
{χ(x+ r) − χ(x)}2

〉
. (8)

The autocovariance function which is more directly related to the spectrum is

R(r) = 〈{χ(x) − 〈χ〉} {χ(x+ r) − 〈χ〉}〉 (9)

and, obviously,

R(r) = R(0) −D(r)/2. (10)

This equation implies that limr→∞D(r) = 2R(0).

The spectrum of χ(x) is

Risø–R–1424(EN) 7



F (k) =
1
2π

∞∫
−∞

R(r) e−ikr dr =
1
π

∞∫
0

R(r) cos(kr) dr

=
1
π

∞∫
0

{
R(0) − D(r)

2

}
cos(kr) dr. (11)

By partial integration we get

F (k) =
1

2πk

∞∫
0

dD
dr

sin(kr) dr. (12)

Kaimal & Finnigan (1994) have a useful discussion of structure functions and from
this we conclude that for local isotropy where r is much smaller than the length
scales of the flow field we have

D(r) = C2 r2/3, (13)

where C is a constant with the dimension dim[χ] × length−1/3.

Inserting in (12), we get

F (k) =
C2

2πk
2
3

∞∫
0

sin(kr)
r1/3

dr =
C2k−5/3

3 Γ(1/3)
. (14)

It follows from (6) and (7) that

ET (k) =
10
3
FT (k) =

10
9 Γ(1/3)︸ ︷︷ ︸

�0.41

C2
T k

−5/3 (15)

and

EU (k) =
55
9
FU (k) =

55
27 Γ(1/3)︸ ︷︷ ︸

�0.76

C2
V k

−5/3 (16)

With these last two expressions the cross section (1) can be written

η(γ) =
5

9Γ(1/3)217/3︸ ︷︷ ︸
�4.08×10−3

k1/3 cos2(γ)
sin11/3(γ/2)

{
C2
T

T 2
+

22
3
C2
V

c2
cos2(γ/2)

}
. (17)

The two terms are shown in arbitrary units in Fig. 3. We note that the scatter-
ing cross section pertaining to velocity fluctuations is zero for γ = π = 180◦. In
other words, there is not backscattering from velocity fluctuations. This means
that monostatic sodars are useful only when there are temperature fluctuations.
In situations with neutral temperature stratification the signal quality in a mono-
static sodar is pure. The scattering from temperature fluctuations is zero only for
γ = π/2 = 90◦ for which the scattering from velocity fluctuations is also zero.
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60◦ 75◦ 90◦ 105◦ 120◦ 135◦ 150◦ 165◦ 180◦
γ

Figure 3. The scattering cross sections for velocity fluctuations (thick line) and
temperature fluctuations (thin line) in arbitrary units as functions of the scattering
angle γ.

It is useful to determine the relation between CV and CT on one side and more
traditional parameters describing turbulence.

According to Panofsky & Dutton (1984) we have in the case of local isotropy

ET (k) = bN ε−1/3 k−5/3 (18)

and

EU (k) = α ε2/3 k−5/3. (19)

Here N and ε are the rates of destruction of specific (i.e. per unit mass) variance
of temperature, ϑ, and velocity, u, in the flow direction:

N = 3
ν

Pr

〈(
∂ϑ

∂x

)2
〉
, (20)

ε = 15 ν

〈(
∂u

∂x

)2
〉
, (21)

where ν is the molecular diffusivity and Pr the Prandtl number. In fact, ν/Pr
is, by definition, the molecular diffusivity for temperature. For the atmosphere
ν � 1.5 × 10−5m2 s−1 and Pr � 0.72.

The constants b and α are dimensionless and about 1.3 (Kaimal & Finnigan 1994)
and 1.7 (Frenzen & Hart 1983, Kristensen et al. 1989), respectively.

Comparing (18) and (19) to (15) and (16), we find

C2
T =

9 Γ(1/3)
10

b︸ ︷︷ ︸
�3.13

N ε−1/3 (22)
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and

C2
V =

27 Γ(1/3)
55

α︸ ︷︷ ︸
�2.24

ε2/3. (23)

Surface-Layer Approximations

We can express ε and N in terms of measured, vertical fluxes of horizontal velocity
fluctuations u′ and potential temperature fluctuations ϑ′. Using standard notation
(Panofsky & Dutton 1984), we first define the friction velocity

u∗ = −〈w′u′〉 (24)

and the temperature scaling parameter

T∗ = −〈w′ϑ′〉
u∗

, (25)

where w′ is the fluctuation vertical velocity component. The Monin-Obukhov
length is then defined as

L =
u2∗T
κ g T∗

, (26)

where κ � 0.4 is the von Kármán constant, g the acceleration of gravity and T the
air temperature. The stratification of the atmosphere can then be characterized
by the height z and L in the form

z

L
= κz

g

T

T∗
u2∗
. (27)

For local, turbulent balance between production and destruction we have (Panofsky
& Dutton 1984)

ε =
u3
∗
κz

ϕm

( z
L

)
− g

T
u∗T∗ =

u3
∗
κz

{
ϕm

( z
L

)
− z

L

}
︸ ︷︷ ︸

ϕε( z
L )

(28)

and

N =
u∗T 2

∗
κz

ϕh

( z
L

)
, (29)

where ϕm, ϕε, and ϕh are the supposedly well-known, diabatic functions for the
atmospheric surface layer.

We now get

C2
V =

27 Γ(1/3)
55

α
u2
∗

(κz)2/3
ϕ2/3
ε

( z
L

)
(30)

and

C2
T

C2
V

=
11
6
b

α

N

ε
=

11
6
b

α

T 2
∗
u2∗

ϕh

( z
L

)
ϕε

( z
L

)
︸ ︷︷ ︸
ϕT/V

( z
L

)
. (31)
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Following Carl et al. (1973) and Panofsky & Dutton (1984), the basic standard
diabatic functions for an unstable surface layer are

ϕm(ζ) = (1 + 15|ζ|)−1/3 (32)

and

ϕh(ζ) = ϕ2
m(ζ). (33)

The two functions ϕε(z/L) and ϕT/V (z/L) are displayed in Fig. 4 for the unstable
surface layer.

0.01

0.1

1

10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5−z/L

ϕε

(
z
L

)

ϕT/V

(
z
L

)

Figure 4. The functions ϕε(z/L) and ϕT/V (z/L) for the unstable surface layer.

We see that C2
V and C2

T depend on z, u∗, and the sensible heat flux

H = ρ cp 〈w′ϑ′〉. (34)

Here ρ = 1.293 kg/m3 and cp = 1005.7 J/m3/K are the density and the specific
heat capacity for constant pressure of dry air. Figures 5 and 6 show C2

V and C2
T

as functions of u∗ and H at the altitude z = 60 m. With the surface modeling
outlined above, C2

T becomes infinity when the friction velocity u∗ vanishes and
therefore the lowest value here is u∗ = 0.01 m/s.

We rewrite (17) in terms of these new definitions

η(γ) = ηV (γ) + ηT (γ), (35)

where

ηV (γ) =
α

Γ(1/3) 214/3︸ ︷︷ ︸
�0.025

k1/3
( ϕε
κ z

)2/3 u2∗
c2

cos2(γ) cos2(γ/2)
sin11/3(γ/2)

(36)

and

ηT (γ) =
b

Γ(1/3) 214/3︸ ︷︷ ︸
�0.0048

k1/3
( ϕε
κ z

)2/3

ϕT/V

( z
L

) T 2
∗
T 2

cos2(γ)
sin11/3(γ/2)

. (37)
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C2
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Figure 5. C2
V at z = 60 m for 0.01 m/s ≤ u∗ ≤ 1 m/s and 0 W/m2 ≤ H ≤

500 W/m2.

0.2
0.4
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1
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0.4
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C2
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Figure 6. C2
T at z = 60 m for 0.01 m/s ≤ u∗ ≤ 1 m/s and 0 W/m2 ≤ H ≤

500 W/m2.

These last two equations, together with Fig. 3 illustrates the difference between
monostatic and bistatic sodar operation. In the first case γ = 180◦ which means
that ηV = 0, i.e. that the velocity eddies do not scatter sound in the direction
of the emitter. For a bistatic sodar with γ � 135◦ both temperature and velocity
fluctuations have about their maximum contribution to the total scattering cross
section. This will, all considered, give nearly the strongest possible return signal.
Figure 7 shows the cross-section ratio ηT /ηV for the scattering angle γ = 135◦ at
the height z = 60 m as a function of the friction velocity u∗ in the interval from
0.2 m/s to 1 m/s and the sensible heat flux H from 0 to 500 W m−2. We note
that only when the friction velocity is small and the heat flux large will ηT be
larger than ηV for this geometry. We see that there are two advantages in using a
bistatic sodar:

1. the instrument can operate with a strong return signal even when the atmo-
sphere is neutrally stratified (T∗ = 0 ⇒ ηT = 0), because in general ηV > 0
in this situation, and

2. it can be operated in a continuous mode, because the transmitter and the

12 Risø–R–1424(EN)



receiver are separated.

0.2
0.4

0.6
0.8
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0 100 200 300 400 500
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0.0

0.2

0.4

0.6

0.8

1.0

ηT
ηV

Figure 7. The cross-section ratio ηT /ηV for the scattering angle γ = 135◦ at the
height z = 60 m as a function of the friction velocity u∗ and the sensible heat flux
H.

2.2 The Bistatic Sodar Equation

Here we follow the approach by Kristensen et al. (1978), Kristensen (1978), and
Neff & Coulter (1986) to derive the sodar equation which tells how much acoustic
energy is received by a microphone at a certain distance from a loud speaker.

A bistatic sodar consists of a transmitter T, which is a powerful loudspeaker, and
a sound receiver R. They are located a certain distance 2d from one another. The
monochromatic sound from T has a wavelength of about 0.5 m or less and this
means that just a few meters from T or R we are in the far-field zone where the
sound pressure is inversely proportional to the square of the distance r from T or
R (if the last is used as a speaker). However, the transmission and reception are
not isotropic. Each are characterized by the an angle ψ from the axis of T or R.
If we let the emitted power be PT then the power flux, per unit solid angle, from
T at the distance r will be

FT(r, ψ) =
PT

r2
FT(ψ) e−βr, (38)

where FT(ψ) is the so-called directivity of the transmitter, defined so that the
integral over the whole hemisphere is one, i.e.

2π

π∫
0

FT(ψ) sinψ dψ = 1, (39)

and β ∼ 10−3 m−1 the attenuation coefficient. The directivity of the receiver
FR(ψ) is defined in the same way. Further, it is necessary to characterize R by an
receiving area A since the received power is proportional to this area.

The received power is a function of the total distance the sound has traveled
from T to R. Calling this distance 2a (for reasons which will be clear below), the
attenuation is exp(−2aβ).

Risø–R–1424(EN) 13



The transmitter and the receiver are installed in such a way that they intersect
in a vertical plane and their angles with the horizontal baseline between them are
denoted φ0 and φ′0, respectively.

Since we want to include the attenuation in the calculation of the power received
by R we look for the foci of points where the travel distance from T to R is the
same, namely 2a. These foci are an axisymmetric ellipsoid with the major half
axis a and the two half minor axes

√
a2 − d2. The geometry is shown in Fig. 8 in

a Cartesian coordinate system where also the symbols is explained.

Figure 8. Sodar Geometry. The transmitter T and the receiver R are located at the
points (−d/2, 0, 0) and (d/2, 0, 0) in an XY Z coordinate system. The axes of T

and R intersect in a vertical plane. The angles between T and R and the baseline
between them are φ0 and φ′0. The axisymmetric ellipsoid with half major axis a
and half minor axes

√
a2 − d2 is shown and the distances r and r′ from a point

(x, y, z) on the ellipsoid to T and R are indicated as well as the angle θ between
the vertical plane and the plane through this point and the X-axis. Also shown are
the angles φ and φ′ between the X-axis and the lines from T and R to the point
(x, y, z), together with the angles ψ and ψ′ from the axes of T and R. From Neff
& Coulter (1986).

In polar coordinates the ellipsoid can be described in polar coordinates with the
pole in T by the equation

r =
a2 − d2

a− d cosφ
. (40)

Inspecting Fig. 8, we see that the scattering angle γ entering (17) can be expressed
in terms of φ and φ′ by

γ = φ+ φ′. (41)

14 Risø–R–1424(EN)



Plane geometrical analysis of the triangle defined by the points (−d/2, 0, 0), (d/2, 0, 0),
and (x, y, z) yields the following relations between φ and φ′

cosφ′ =
2ad− (a2 + d2) cosφ

d2 sin2 φ+ (a− d cosφ)2
, (42)

which implies

sinφ′ =
(a2 − d2) sinφ

d2 sin2 φ+ (a− d cosφ)2
. (43)

We can consequently express the scattering angle γ in terms of φ by

cos γ = cosφ cosφ′ − sinφ sinφ′ =
d2 sin2 φ− (a− d cosφ)2

d2 sin2 φ+ (a− d cosφ)2
(44)

or by the useful alternatives

cos(γ/2) =
d sinφ√

d2 sin2 φ+ (a− d cosφ)2
(45)

and

sin(γ/2) =
a− d cosφ√

d2 sin2 φ+ (a− d cosφ)2
. (46)

According to the definition of the ellipsoid the sum of r and r′ is equal to 2a and
this means that r′ can also be expressed in terms of a and φ. We have

r′ = 2a− r =
d2 sin2 φ+ (a− d cosφ)2

a− d cosφ
. (47)

Applying the cosine relation for spherical triangles we get

cosψ = cosφ0 cosφ+ sinφ0 sinφ cos θ

= cos(φ − φ0) − sinφ0 sinφ (1 − cos θ) (48)

and

cosψ′ = cosφ′0 cosφ′ + sinφ′0 sinφ′ cos θ

= cos(φ′ − φ′0) − sinφ′0 sinφ′ (1 − cos θ). (49)

In small-angle approximation which is relevant here, we may reformulate (48) and
(49) in the following way:

ψ2 = (φ − φ0)2 + θ2 sin2 φ0 (50)

and

ψ′2 = (φ′ − φ′0)
2 + θ2 sin2 φ′0. (51)

Risø–R–1424(EN) 15



Since we want to determine the power received by R from each points, we need to
calculate the volume δV corresponding to increments (δx, δy, δz) around the point
(x, y, z). Translating to increments (δa, δφ, δθ) around the same point defined by
(a, φ, θ), we write

δV = δx δy δz =
∂(x, y, z)
∂(a, φ, θ)

δa δφ δθ, (52)

where

∂(x, y, z)
∂(a, φ, θ)

=

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∂x
∂a

∂y
∂a

∂z
∂a

∂x
∂φ

∂y
∂φ

∂z
∂φ

∂x
∂θ

∂y
∂θ

∂z
∂θ

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ , (53)

is the Jacobian, and where

⎧⎨⎩
x

y

z

⎫⎬⎭ =

⎧⎨⎩
r cosφ− d

r sinφ sin θ
r sinφ cos θ

⎫⎬⎭ (54)

with the constraint (40). The Jacobian becomes

∂(x, y, z)
∂(a, φ, θ)

= r2
∂r

∂a
sinφ =

(a2 − d2)2
{
d2 sin2 φ+ (a− d cosφ)2

}
(a− d cosφ)4

sinφ. (55)

The power flux at the point (x, y, z), given by (54), is FT(r, ψ) as stated in (38).
From a small volume δV around this point the power scattered per steradian in
the direction towards R is thus

δPs = FT(r, ψ) × δV × η(γ) = PT
FT(ψ)
r2

e−βr η(γ) δV. (56)

The power δPR received by R is proportional to the solid angle A/r′2 subtended
by R as seen from the point (x, y, z):

δPR = δPs × A

r′2
FR(ψ′) e−βr

′
, (57)

where the directivity of the receiver is also taken into account.

Finally we get

δPR

δa δφ δθ
= PT

AFT(ψ)FR(ψ′) η(γ)
d2 sin2 φ+ (a− d cosφ)2

sinφ e−2β a, (58)

which, in view of (42)–(46), (48), and (49), is a function of only a, φ, and θ.

In this form the sodar equation was used by Kristensen et al. (1978), Kristensen
(1978), and Neff & Coulter (1986) to determine the received power by R as a
function of time when a short pulse was emitted from T. This is obtained by
integrating over θ and φ and interpreting a as a measure of time, which is possible
because the time t elapsed after the time of emission of the sound pulse t0 is
t = 2a/c+ t0.
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Sound Attenuation

The atmospheric sound attenuation parameter β is a rather complicated func-
tion of frequency f (Hz), temperature T (C◦), relative humidity RH (%), and
atmospheric pressure p (hPa). This function is given by the International Stan-
dard ISO 9613-1:1993(E) according to Salomons (2001) who provides a practical,
engineering equation for β. Unless the atmospheric conditions are extreme, the
accuracy is ±10%.

A function which depends on four variables in a complicated manner is difficult to
illustrate graphically in a quantitative as well as qualitative manner. Fortunately,
the dependence on the atmospheric pressure is week, less than 0.1% in the range
950 < p < 1050hPa when T = 20◦, RH=50%, and f=1000Hz.

In Figs. 9, 10, and 11 the attenuation parameter is shown graphically as functions
of frequency, temperature and relative humidity with the other three parameters
kept fixed.

RH=50%

p = 1013.15hPa

T = 20◦ C

f (Hz)

β
(m

−1
)

500045004000350030002500200015001000500

0.010

0.008

0.006

0.004

0.002

0.000

Figure 9. Example of attenuation parameter as a function of frequency.

Obviously the attenuation parameter is very sensitive to frequency, varying a
factor of 10 when the frequency varies from 1000Hz to 5000Hz. However, the
dependencies on temperature and relative humidity are also very pronounced and
non-monotone.

In order to illustrate the variation of the attenuation as function of temperature
and humidity simultaneously Fig. 12 gives an impression of how complicated the
function β(f, T,RH, p) is. The two surfaces correspond to two different frequencies
at p = 1013.25hPa.
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RH=50%

p = 1013.15hPa
f = 1000 Hz

T (◦ C)

β
(m

−1
)

302520151050−5−10
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0.0020

0.0015
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Figure 10. Example of attenuation parameter as a function of temperature.

T = 20◦ C
p = 1013.15HPa
f = 1000Hz

RH %

β
(m

−1
)

100806040200

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

0.0000

Figure 11. Example of attenuation parameter as a function of relative humidity.

Antenna Directivity

The directivities FT(ψ) and FR(ψ′) must be experimentally determined, but we
assume here they both have the form

F (ψ) =
exp

(
− ψ2

2σ2

)
2πσ2 , (59)

which fulfill the normalization (39). The antenna area is related to the angular
width σ2. To see this, let us consider a circular transmitter with the area A =
π ×R2. Figure 13 illustrates the situation.
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Figure 12. The attenuation coefficient as function of temperature and relative hu-
midity for f = 4000Hz (top frame) and for f = 1000Hz (bottom frame).

rrr◦◦◦

rrr

α

ψ

2R

�

�

��

�

�

Figure 13. The circular antenna disk with radius R transmits sound with wave
number k with uniform density from the entire disk to a point at r. This vector
forms the angle ψ with the antenna axis. The contribution from a small antenna
area, characterized by the distance r◦ from the axis and the azimuth α, is indicated.
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The sound pressure arriving at r is proportional to

I(r, ψ) =

R∫
0

r◦ dr◦

2π∫
0

dα
eik|r−r◦|

|r − r◦| . (60)

In the far-field approximation, where r 
 R, we have

|r − r◦| =
√
r2 − 2rr◦ sinψ cosα+ r2◦ ≈ r − r◦ sinψ cosα, (61)

so that

I(r, ψ) =

R∫
0

r◦ dr◦

2π∫
0

dα
eikr−ikr◦ sinψ cosα

r

=
eikr

r

R∫
0

r◦ dr◦

2π∫
0

dα e−ikr◦ sinψ cosα

= 2π
eikr

r

R∫
0

J0(kr◦ sinψ) r◦ dr◦ = 2πR2 eikr

r

J1(kR sinψ)
kR sinψ

, (62)

where Jn(x) is the Bessel function of the first kind, of order n. The dimensionless
quantity Rk is usually much larger than one so that sinψ can be replaced by ψ.
The directivity is proportional to |I(r, ψ)|2. We demand that this directivity and
its derivative with respect to ψ has the same value as (59) for ψ = 0. This means
that (

2J1(kRψ)
kRψ

)2

� exp
(
− ψ2

2σ2

)
(63)

with

2 = σ2 k2R2. (64)

The implications is that

k2 ×A =
2π
σ2
. (65)

The difference between left-hand side and right-hand sidelobe of (63) is illustrated
by Fig. 14.

Continuous-Wave Operation

I this section we use the result (58) to evaluate the scattering strength, i.e. the
spatial distribution of scattered power flux, received by R when T is operated
continuously.

To obtain a spatial distribution of the scattering strength we first transform (58)
into Cartesian coordinates:
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−4 −2 0 2 4
ψ/σ

Figure 14. The antenna directivity F (ψ). Thick line: left-hand side of (63), thin
line: right-hand side of (63).

W (x, y, z) =
δPR

δx δy δz
=

δPR

δa δφ δθ

(
∂(x, y, z)
∂(a, φ, θ)

)−1

= PT AFT(ψ)FR(ψ′) η(γ)
(a− d cosφ)4e−2βa

(a2 − d2)2
{
d2 sin2 φ+ (a− d cosφ)2

}2 . (66)

For a given Cartesian set of coordinates (x, y, z) we obtain the corresponding polar
coordinates r, φ, and θ with origin at the transmitter by solving (54):

r =
{
(x + d)2 + y2 + z2

}1/2
, (67)

φ = arctan2
(
x+ d,

√
y2 + z2

)
, (68)

θ = arctan2(z, y), (69)

where

arctan2(x, y) =

⎧⎨⎩
π, y = 0 & x ≤ 0

2 arctan
(

y√
x2 + y2 + x

)
, elsewhere . (70)

Solving (40) for a, we get

a =
r

2
+
{( r

2
− d cosφ

)2

+ d2 sin2 φ

}
. (71)

The scattering angle γ is obtained from (45) and (46):

γ = 2 arctan2(d sinφ, a− d cosφ). (72)
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In order to calculate the directivities FT(ψ) and FR(ψ′) we must first determine
φ′ by the equation

φ′ = arctan2
(
2ad− (a2 + d2) cosφ, (a2 − d2) sinφ

)
, (73)

which is a consequence of (42) and (43).

Figure 15 illustrates the scattering-strength distribution around the point (x0, y0, z0)
where the transmitter and receiver axes intersect in the case φ0 = 90◦. Since we
specify the length 2d of the baseline and the inclinations φ0 and φ′0, this point
becomes⎧⎨⎩

x0

y0
z0

⎫⎬⎭ =
1

a0 − d cosφ0

⎧⎨⎩
a0(a0 cosφ0 − d)

0
(a2

0 − d2) sinφ0

⎫⎬⎭ , (74)

where

a0 = d
sinφ0 + sinφ′0
sin(φ0 + φ′0)

. (75)

In these considerations the dependence of the scattering cross section on the height
z has not been taken into consideration. However, inspecting (36) and (37) we
see that there is a dependence on height z. In principle this height dependence
can be taken correctly into account when we know the surface heat flux, i.e. the
temperature stratification. If we leave the general case and consider only neutral
stratification the situation is somewhat simpler. Applying (36) to (66), we get

W (x, y, z) d3

PT (A/d2) (u2∗/c2) (kd)1/3
=

ακ−2/3

214/3︸ ︷︷ ︸
�0.124

cos2(γ) cos2(γ/2)
sin11/3(γ/2)

FT(ψ)FR(ψ′) exp(−2βd (a/d))

×
{
(a/d)2 − cosφ

}4

(z/d)2/3 {(a/d)2 − 1}2 {
sin2 φ+ (a/d− cosφ)2

}2 . (76)

We may calculate the received power by integrating (58) over d ≤ a < ∞, 0 ≤
φ < π and π/2 ≤ θ < π/2. Introducing the dimensionless variable

ξ =
a

d
, (77)

we have

δPR

PTδξ δφ δθ
=
ακ−2/3

220/3 π︸ ︷︷ ︸
�0.01

u2
∗
c2

A

d2
(kd)1/3

×cos2(γ) cos2(γ/2)
sin11/3(γ/2)

e−2βdξ exp
(
− (φ− φ0)2

2σ2
T

− (φ′ − φ′0)2

2σ2
R

)

×
(
ξ − cosφ
ξ2 − 1

)2/3 sin1/3φ

sin2 φ+ (ξ − cosφ)2

× cos−2/3θ exp
(
−
{

sin2φ0

2σ2
T

+
sin2φ′0
2σ2

R

}
θ2
)
. (78)
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Figure 15. Line projections of the scattering-strength distribution through the inter-
section of the axes of T and R for βd = 0.5, φ0 = 90◦, φ′0 = 45◦, and σT = σR = 5◦.
Top frame: vertical axis. Middle frame: horizontal axis parallel with the baseline.
Bottom frame: horizontal axis perpendicular to the baseline. The scale is the same
in all the frames. The thick lines (the upper curves) correspond to scattering on
velocity fluctuations per unit C2

V /c
2 and the thin lines (the lower curves) to tem-

perature fluctuations per unit C2
T /T

2.
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For φ0 = 90◦, φ′0 = 45◦, σT = σR = 2.16◦, β = 0.004 m−1, and half the baseline
d = 30 m the result is

PR

PT
=
ακ−2/3

214/3︸ ︷︷ ︸
�0.124

u2
∗
c2

A

d2
(kd)1/3 × 0.141. (79)

These parameters are those used in the preliminary results described in the fol-
lowing section for the Heimdall configuration.

Considering (78) the spatial weighting function, we may determine its center of
mass (〈x〉, 〈y〉, 〈z〉) and rms widths (σx, σy, σz). We get

⎧⎨⎩
〈x〉
〈y〉
〈z〉

⎫⎬⎭ =

⎧⎨⎩
−29.9

0.0
59.5

⎫⎬⎭ m (80)

and ⎧⎨⎩
σx
σy
σz

⎫⎬⎭ =

⎧⎨⎩
2.2
1.8
5.0

⎫⎬⎭ m. (81)

This concludes the theoretical background for bistatic sodar operation.

3 Heimdall, Description
and Preliminary Results

The Heimdall bistatic sodar has been built from basic components, including hard-
ware and software. Without going into too many details, we wish to give an im-
pression of the function of different parts of the instrument. It has not been applied
to field experiments, but rather been tested against the theory described in the
preceding section.

3.1 Instrument Description

The basic design of the instrument is a sound transmitter and a sound receiver.
They both have an antenna disk with identical geometry to direct and receive the
sound from a rather confined spatial domain. The disks are designed to satellite
reception and are almost circular, with the largest diameter equal to 1.2 m and
the smallest a little less than 1 m. In the foci of these antenna disks there are a
speaker and a microphone, respectively. The transmitter is shown in Fig. 16.

The directivity of each antenna have a pronounced central main lobe and the
nearest sidelobe at about 10◦ from the axis is reduced by a factor 0.0025 (26 dB)
compared to the main lobe as shown in Fig. 17. We have not determined the
directivity for our antenna disks but relied on measurements carried out on a
similar disk by Handwerker (1999).

The speaker is a 30 W electric-power Paso TR30-TW horn. The total power of
sound is 1.58 W for 30 W electric-power input in the frequency range 1–2 kHz.
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Figure 16. The Heimdall sodar transmitter at Risø. The speaker is located in the
focus of the antenna disk.

Figure 17. Polar plot of the directivity of both antennae (Handwerker 1999).

This corresponds to about PT = 100 Wsr−1, i.e. the sound power per unit solid
angle, in the direction of the axis (±15◦). The horn is operated with a sine-signal
input in the range 2–4 kHz.

The geometry of the receiver antenna R is identical to the transmitter T except
that the horn is replaced by a condenser microphone, Brüel&Kjær type 41451,
including a 4669-c preamplifier with an adjustable gain at 9, 10, 20. . . 60 dB, and
a Brüel&Kjær type 5935-1 power supply.

We tested the system against the sodar equation (7) integrated over ξ, θ, and φ

in a configuration where φ◦ = π/2 and φ′◦ = π/4. The basic line between T and R

was 60 m. Instead of (30) and (31) for C2
V and C2

T , we used the investigation by
Wilson & Ostashev (1998) where a surface heat flux of 250 W m−1 is taken into
account in a slightly different way.

To obtain Doppler velocities the output signal is processed by a National Instru-
ments NI 4552 Dynamic Signal Analyzer. It can handle four analogue input signals
with a sample rate which can be varied in steps of 1.907× 10−4 S s−1 (samples per
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Figure 18. Polar plot of the directivity in dB radial units of the Paso TR30-TW
horn at the frequency 2 kHz(left) and the efficiency as a function of the frequency
with a 30 W electric input (right).

Table 1. Acoustic power flux, assuming the roughness length z◦ = 0.01 m, the
friction velocity u∗ = 0.2ms−1 and sensible heat flux equal to 250 Wm−2. The
baseline is 60 m, corresponding to the same nominal height for the beam intersec-
tion. The sound attenuation parameter β = 0.002 m−1. The electric power to the
horn is 30 W and the transmitter frequency 4 kHz.

Wm−2

Contribution from temperature fluctuations 5.34 × 10−10

Contribution from velocity fluctuations 2.64 × 10 −9

Measured 1.89 × 10−10

second) from 5.8 to 2.048× 105 S s−1. Subsequently, the digitized signal is trans-
formed into a Doppler spectrum with a 32-bit FFT (Fast Fourier Transform). To
suppress transients the analyzer makes it possible to subject the signal to various
forms of windowing e.g., hanning. The effect of hanning has been discussed, among
many others, by Kristensen et al. (1992) and Kristensen (1998).

3.2 Preliminary Results

The Heimdall sodar was tested at the Risø 123 m meteorological mast. The axis
of the transmitter T was vertical while that of the receiver R has an inclination of
π/4 in plane of the transmitter axis and the 60 m baseline between T and R. This
configuration allows the velocity component in this plane at the height 60 m. The
signal is sampled in consecutive periods of T = 1 s where each period was digitized
with the digitization period Δt = T/N = 2−14 � 6.1 × 10−5 s, corresponding to
the number N = 214 data points. Before the 32 bit FFT a hanning window was
applied. The highest frequency, the Nyquist frequency, is 213 � 8.2 × 103 Hz. Using
the smoothing option of the signal analyzer, the spectra, updated every second,
were weighed exponentially backwards in time with a 10 s time constant. Figure
19 shows an example of a Doppler spectrum, zoomed into the interesting range.
The transmitter frequency was in this case 3960 Hz which explains the pronounced
narrow maximum at this frequency. The Doppler spectrum shows a narrow peak
at the unavoidable transmitter frequency, which actually serves as the reference
frequency, and a broad maximum. Its width is partly due to the turbulence inside
the sampling volume at the intersection.

It is essential to separate the “real” Doppler spectrum due to the atmospheric
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Figure 19. Doppler spectrum. The abscissa is the frequency in Hz and the ordinate
the spectrum in dB units. The narrow peak at 3960 Hz is the directly transmit-
ted frequency while the broad maximum centered at about 3910 Hz represents the
velocity Doppler shift. Using (3) we find that this Doppler shift corresponds to
about 6 m s−1. The anemometer at the Risø mast at 60 m showed that the velocity
component T-R plane was about 5 m s−1.

scattering and the background. This background noise is large when the wind
speed is high. Figure 20 shows an example of a background spectrum with no
transmission from T. The wind speed is about 12–15 m−1.

Figure 20. Noise spectra at wind speeds in the range 12–15 m−1. The top frame
shows the recorded spectrum and the lower frame the same spectrum, zoomed in
at the important frequency range.

Another source of contamination of the Doppler spectrum are strong sidelobes
from the transmitter T. Occasionally they will create scattered sound in the re-
ceiver R from another domain in space. This is illustrated in Fig. 21 and explains
that there seems to be a pronounced Doppler maximum on the left side and a
smaller on the right side of the reference frequency. The last is interpreted as the
scattering of a transmitter sidelobe from another domain.

Figure 21 shows another example of a velocity Doppler spectrum.
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Figure 21. Scattering from the mainlobe (dashed lines) and from a sidelobe (dotted
lines). The sidelobe wave-number vectors are indicated by tildes (˜ ). In this case
the sketch shows that the two estimated velocities will have opposite sign.

Figure 22. Instantaneous, running-mean (exponential weighted) Doppler velocity
spectrum (upper frame) and corresponding noise spectrum (lower frame) at 60 m
height. The broad maximum corresponds to a wind speed of 13–14 m s−1. The sonic
anemometer at the same height gave a 10-min average of 12 m s−1, fluctuating
between 6 and 16 m s−1.

4 Epilogue

We have demonstrated that it is possible to obtain measurements plane projections
of velocity, continuous in time, by using a bistatic sodar. The plane is defined by
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the two axes of the transmitter T and the receiver R. We have tacitly assumed
that this plane is vertical. However, this need not be the case. The scattering
cross section (5) by Tatarskii (1967) shows that turbulent fluctuations in both
temperature and velocity contribute as scattering agents. The efficiency depends
on the scattering angle γ as Fig. 3 shows. Neither the velocity nor the temperature
fluctuations contribute for γ = 90◦ and at γ = 180◦ (backscattering) the velocity
fluctuations are inactive. Figure 3 indicates that we can make good use of both
types of turbulent fluctuations by using γ = 135◦. For a given scattering angle γ
the scattering cross section is proportional to the wave-number magnitude k of the
sound wave to the power 1/3 and to the structure function parameters C2

V and C2
T

for the velocity fluctuations and the temperature fluctuations, respectively. These
two parameters are functions of the friction velocity u∗ and the heat flux H as
illustrated by Figs. 5 and 6.

The Doppler velocity is obtained as a volume average, defined the the intersection
between the main lobes of the directivities of the transmitter T and the receiver
R. The sodar equation (58) gives the power of the received signal as a function
of the position of the scattering eddy in the elliptical coordinates a, φ, θ. We see
that the sound attenuation parameter β enters at this point. It has to be specified
as a function of the surface-layer parameters T and RH and of the frequency.
This is illustrated by Figs. 9–12. As we have seen, it is advantageous from a
signal-strength point of view to have γ = 135◦. We have determined the relative
three-dimensional weighting function when T is pointing vertically and the axis of
R has the inclination 45◦. The three projections of this weighting function W are
shown in Fig. 15.

The Heimdall sodar has not been tested thoroughly or used in operation. We
have used the sodar equation to estimate the received power as a function of
the transmitted power. Table 1 shows the result. The measured power is more
than on order of magnitude less that the estimated power so, even considering
the experimental uncertainties, this discrepancy seems unacceptable and requires
a more thorough investigation. The inaccuracy of the received power does not
in itself present a problem when determining Doppler shifts due to atmospheric
motion. However, it is useful to be able to predict a realistic signal-to-noise ratio
from the sodar equation. We have shown a few examples of measured Doppler
spectra and conclude that there are three major sources of noise:

1. The receiver gets a very strong signal at the transmitter signal frequency from
direct transmission. Since it is essentially monochromatic this noise can easily
be identified and, in fact, be used as a reference.

2. The receiver spectrum may contain a broad maximum due to scattering of
sidelobe sound. These are usually not as pronounced as the maximum due to
the main lobe.

3. Strong winds create noise which is almost white in the frequency domain of
interest. The noise increases with the wind speed.

The noise problems make it a challenge to construct a reliable automated system
for wind speed determination which could be based on a digital technique as used
here or an analogue technique like tracking of the spectral maximum by a phase-
locked-loop circuit analyzer.

It has been assumed that the axes of T and R are in a vertical plane. In principle
this is not necessary for bistatic sodars. The plane defined by T and R might be
tilted if we want to operate a tristatic sodar system with one transmitter and
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two receivers R1 and R2. When the planes T-R1 and T-R2 do not coincide it is
possible to obtain two independent projection of the the wind velocity. Of course, if
these planes are not vertical we must generalize the sodar equation accordingly. It
seems to be worthwhile to let further investigations be concentrated on a tristatic
system where the axis of T is pointing vertically and the planes T-R1 and T-R2

are perpendicular to each other.
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