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SUMMARY: 
The processes of mass transfer between air and building structure and in the material influence not only the 

conditions within the material but also inside the connected air spaces. The material which absorbs and desorbs 

water vapour can be used to moderate the amplitude of indoor relative humidity and therefore to participate in 

the improvement of the indoor air quality and energy saving. Many parameters influence water vapour exchange 

between indoor air and building material. The aim of this work is to present the change of mass transfer under 

different climatic and material conditions. The measurements were performed at the Technical University of 

Denmark (DTU), Department of Civil Engineering. Two climatic chambers were used for the tests, the first one 

for dynamic and the second for steady state conditions. Two commonly used building materials exposed to the 

indoor environment were chosen for the experiments: gypsum board and calcium silicate. The wallpaper and 

paint were used as finishing materials. Impact of the following parameters for changes of RH was studied: 

coating, temperature and air movement. 

The measurements showed that acryl paint (diffusion open) can significantly decrease mass uptake. It was shown 

also that higher air velocity speeds up the process of mass exchange between indoor air and materials but 

apparently decreases the total amount of exchanged water after a longer period. The experiment allows not only 

to check the influence of surface treatment on mass transfer, but can be used also as validation for simulation 

programs. At the end of the article, a mass uptake calculation using the HUMIMUR model is presented. 

1. Introduction 

The water vapour exchange between indoor air and materials influences many aspects of indoor climate. The 

relative humidity is one of the most important parameters influencing perceived indoor air quality and the human 

comfort. Moisture is also needed to initiate microbiological growth at the surface of building envelope. Most of 

the building materials have ability to absorb and desorb water vapour; therefore it is important to study mass 

transfer between them and the surrounding air. In reality in dwellings we will not find any pure building 

material. In most of the cases they are covered with some finishing materials. Also the indoor conditions are not 

always the same but change every day, hour and even minute. In order to study water vapour exchange between 

indoor air and building materials at minimum the following parameters should be taking into account: material, 



coating, temperature and air velocity, in addition to the hygric condition in the air and within the building 

material. 

A lot of measurements of mass exchange between air and materials have been presented in the literature. In some 

experiments a few parameters influencing water vapour transfer were examined. May and Woloszyn (2006) 

performed test of mass absorption for two building materials: gypsum board and red brick, in order to study the 

link between sorption mechanism and microstructure. The influence of temperature for gypsum board was also 

checked in this work. Osanyintola and Simonson (2006) investigated moisture buffering capacity of plywood. 

Their studies were done for two cases: the first without air movement in a sealed jar and the second with fully 

developed, forced convection air flow in a small wind tunnel. The moisture buffer value and the influence of two 

kinds of paint have been investigated by Peuhkuri and Rode (2005). 

In this paper the influence of the finishing material (diffusion open paint and wallpaper), temperature (20 and 24 

°C) and air movement (tests with and without fan working in the chamber) on mass uptake is presented. Also the 

water vapour transfer under dynamic changes of relative humidity is shown. Finally an example of mass uptake 

calculation using HUMIMUR model (Kwiatkowski et al. 2008) is presented. 

The experimental measurements were divided into two parts. In the first the part the change of mass transfer 

between indoor air and building material with step-change of the relative humidity has been examined. The 

second part of the measurements concerns water vapour uptake under dynamic changes of relative humidity. In 

the experiments two building materials exposed to the indoor environment were used. In the tests with step-

change of relative humidity level also the influence of paint and wallpaper has been investigated. 

2. Samples description 

For the measurements two different commonly used building materials in contact with indoor air were chosen: 

gypsum board and calcium silicate. Three variants of gypsum board were used: naked gypsum board, gypsum 

board with paint layer and gypsum board with wallpaper. For calcium silicate only naked samples and samples 

with a paint layer were used. The size of the samples was 200x200 ±1 [mm]. The thickness of the specimens was 

12.5 ±0.5 [mm] for gypsum and 10 ±0.5 [mm] for calcium silicate. Five sides of the samples were sealed with 

the aluminium tape and only one side was exposed to the outside conditions. As coating materials wallpaper and 

a diffusion open paint were chosen. Wallpaper paste was used to coat the samples with the wallpaper. The 

specimens with paint layer were primed and then painted with two layers of paint. The total permeability of the 

paint coating was equal to 1.6481*10
-11

 [kg/m.s.Pa]. Prepared specimens were used in tests few days after being 

coated in order to avoid influence of drying of the glue and paint on measurements. 

3. Tests with step-change of relative humidity 

In the experiment with step-change of the relative humidity it was sought to examine the influence on moisture 

exchange of each of the two finishing materials, of different temperatures and of air movement over the samples. 

The tests were carried in a climatic chamber with precise control of temperature and relative humidity. There 

was no possibility to cool the air in the chamber so the lower limit of temperature depended on the ambient 

temperature in the room. In order to get as high range of temperatures the room was cooled down to 18.5 ±0.5 

°C. The upper limit of temperature was 25-26 °C. The relative humidity could be varied between 4-5% and 96-

98%. A photo and schematic drawing of the climatic chamber is presented in FIG. 1. 
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FIG. 1: Photo and scheme of the climatic chamber used in the measurements. 

Relative humidity inside the chamber is controlled by a PID controller with humidity sensor (1) and regulated by 

mixing of dry and 100% saturated air in the chamber. The injection of dry air into chamber was by a small pipe 

(7). The saturated air was achieved by injection air by a pipe (8) into water tank (9). The temperature is also 

controlled by a PID controller but regulated by electric resistance heater (2) placed inside the chamber. A fan (3) 

is placed in the lower part of the chamber, to mix the air and thereby avoid temperature and humidity 

stratification inside the chamber. A wire (4) comes into the chamber through the upper part, connecting accurate 

balance (5) with the hook in the chamber. During weighing of the specimen (6), the air-conditioning system is 

stopped (in order to not to influence weighing) and the specimen is hung on the hook. The precision of the 

sensors is ±0.003 g for the balance, ±0.3 °C for the temperature sensor and ±1.0 % for relative humidity sensor. 

The measurements of mass uptake in the chamber were divided into four parts. For each part, the samples of 

material were preconditioned at constant temperature of 20 or 24 °C (depending on the test) and in constant 

relative humidity of 35% for two days. At the beginning of each test the relative humidity was set to 75% and 

then after 24h again to 35%. The parameters describing each test are presented in TABLE 1. 

TABLE 1. Parameters in the Tests 1-4. 

 Test 1 Test 2 Test 3 Test 4 

Temperature [°C] 20 20 24 24 

Fan On Off On Off 

In the Test 1 and 2 the temperature was fixed to 20 °C, and in Test 3 and 4 to 24 °C. In order to check the 

influence of air movement on mass uptake, the fan in the chamber has been switched off in the Test 2 and 4. 

Additional measurements have been made of the air velocity inside the chamber when fan was working. The 

velocity has been measured in six points between the hanging specimens (see FIG.2). 
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FIG. 2: Scheme of the velocity measurement points distribution in the climatic chamber, seen from above. 

The velocity under condition from Test 1 was measured using Brüel & Kjær Indoor Climate Analyzer Type 

1213 with the precision of 2 [cm/s] and the results of the measurements are presented in TABLE 2. For each 



point the mean, maximal and minimal velocity was measured over five minute periods. Also the standard 

deviation for each point was calculated. 

TABLE 2. Results of the velocity measurements inside the climatic chamber (Test 1). 

Velocity 

[cm/s] 

Position of the measuring point 

1 2 3 4 5 6 

Mean 1.5 1.0 2.0 3.0 5.0 4.0 

Max 3.0 2.0 5.0 7.0 8.0 6.0 

Min 0.0 0.0 0.0 1.0 3.0 1.0 

Std. dev. 2.0 1.0 2.0 4.0 4.0 4.0 

The measurements showed that even when the fan was working well, the velocities in the chamber were lower 

then 10 [cm/s]. It can be noticed that the velocity profile was not uniform, and the variation between the different 

measuring points was high. Also the temporal deviations for each point are high. 

The water vapour exchange between air and materials was measured by weighing the samples and calculating 

the difference in weight. From the beginning of each experiment (step-change of the relative humidity in the 

chamber) the measurements were done according to the following scheme: for the first 2 hour every 15 minutes, 

for the next 2 hours every 30 minutes and later every one hour. The last measuring point was taken after 24h 

from the change of the relative humidity. 

3.1 Influence of coatings on mass uptake 

The influence of different coatings for gypsum board and for calcium silicate is presented in FIG. 3. For the 

gypsum, diffusion paint and wallpaper have been used as finishing. For the calcium silicate only paint has been 

used as coating. 
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FIG. 3: The chart of the mass uptake for the all variation of samples for the TEST 1. 

As it can be noticed, the mass uptake for various materials and coatings differs a lot. The gypsum board and 

calcium silicate are rather diffusion open materials, and the speed of absorbing/desorbing of mass in the first 

stage of the process is almost the same for both of them. The difference can be seen in the amount of water 

vapour absorbed by materials. The calcium silicate has less hygroscopic structure than gypsum board and 

therefore the amount of absorbed water is smaller. 

It can be noticed that for both materials covered with paint the process of adsorption/desorption is slower. The 

dispersion in mass uptake between specimens without and with paint layer can be well seen on FIG. 3. Even 

after 24h the samples with paint layer could not get to equilibrium with the surrounding air. 

There is no difference in the initial rate of adsorption/desorption between the gypsum board without and with 

wallpaper. The difference occurs in the amount of exchanged water, what is a result of the hygric properties of 

wallpaper. Wallpaper is very hygroscopic material so it can absorb an additional amount of water. 



Between the seventh and eighth hour of test, there appears a peak in the mass uptake profile. This peak is the 

result of a short dysfunction of the air conditioning system in the climatic chamber. 

3.2 Influence of temperature on mass uptake 

In order to check the influence of temperatures on water vapour uptake similar tests but for different 

temperatures have been performed (see TABLE 1). The results of the measurements are presented in FIG. 4. 
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FIG. 4: Mass uptake comparison for TEST 2 (20 °C) and 4 (24°C). 

TEST 2 was performed at the temperature 20 °C and TEST 4 at 24 °C. The slight differences between results 

from both tests can be noticed for all variants of the materials. It can be seen that the initial rate of the 

absorption/desorption process in the first part of measurements is slightly higher in the temperature of 24 °C than 

in 20 °C. Eight hours after the step-change of relative humidity the relationship between rate of the process and 

the temperature is inversed. The mass uptake is growing faster at 20 °C than at 24 °C. The reason is that the 

samples got closer to equilibrium already within the first 8 hours when the temperature was higher. Therefore it 

is obvious they could not absorb so much more in the next 16 hours. Similar results were presented by May and 

Woloszyn (2006) for 20 and 30 °C. The only exception are the samples with paint layer, when the process of 

absorption/desorption is faster at 24 °C for whole duration of the experiment (24 hours). The reason is that the 

diffusion paint has high resistance on water vapour transfer and slows down the mass exchange process. 

3.3 Influence of air movement on mass uptake 

The influence of air movement on water vapour exchange has been checked by performing similar tests but with 

and without the fan in operation in the climatic chamber. The measured velocities in the chamber with the 

running fan were presented in the TABLE 2. When the fan was off the velocity measurements showed that there 

was no air motion in the chamber. The differences in mass uptake for both situations are presented in FIG. 5. 
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FIG. 5: Mass uptake comparison for TEST 1(fan on) and TEST 2 (fan off). 

TEST 1 represents the measurements with the fan on, and TEST 2 with the fan off. It can be noticed that for all 

materials and finishing, except the samples with paint layer, the difference in the rate of adsorption process is 



significant. The mass uptake during the first 7-8 hours is faster in the TEST 1 than in TEST 2. Then the situation 

is inversed: mass uptake rate is faster in the TEST 2 than in The TEST 1. In the desorption process this 

dependency is opposite, first the process of desorption is faster in the TEST 2 but after few hours it is slower 

than in the TEST1. The measurements show that the amount of absorbed water after 24 hours for the test with 

fan off is higher than for test with fan on. This behaviour can be connected with hygric properties of the 

materials, however some additional investigations are needed to explain the origin of this phenomena. The 

difference in the speed of the mass absorption/desorption for the samples with paint layer is not so significant, 

which is a result of paint high resistance on water vapour transfer. 

4. Tests with sinusoidal oscillation of relative humidity 

The climatic chamber called Mega-Cup (Padfield et al. 2002) was used for the experiment with sinusoidal 

changes of relative humidity. The climatic chamber is an open topped cylinder of stainless steel with a double-

wall. The top can be sealed with a metal plate so that the cylinder encloses the specimen under test in an airtight 

space. The climatic chamber is well insulated and the inside temperature and relative humidity can be controlled 

between 8 and 30 °C and from 30 to 95% of relative humidity. The temperature is controlled by air circulating in 

the annular space of the double-wall. The air in the chamber is cooled by water circulating in a ribbed copper 

coil and is heated by an electric resistive element. The relative humidity in the chamber is controlled by 

condensating water into, or evaporating water from a small water tank placed inside the chamber. The 

temperature of the water is controlled by a thermostatic device fixed beneath the tank. The water vapour flux to 

and from the tank is measured by checking the weight of the tank. 

The tests with dynamic, sinusoidal oscillations of relative humidity from 30 to 70% with a time cycle of 24h 

were performed for gypsum board without any coating. The measurements were done at two different 

temperatures: 20 and 24 °C. Before each test the specimens were preconditioned in the temperature of 20/24 °C 

and 50% relative humidity. The results of the experiment are presented in FIG. 6 and FIG. 7. 
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FIG.6: Mass uptake under dynamic changes of relative humidity for gypsum board in 20 °C. 

The measurements of mass transfer between air and gypsum board under dynamic changes of relative humidity 

were done for a period of some days. The test in the temperature of 20 °C was performed over ten days and the 

results are presented on the FIG. 6. It can be noticed that the amplitude of water vapour exchange is almost the 

same as in the test with the step change of relative humidity (TEST 1) after 12 hours. It can also be seen that the 

mass uptake profile is slightly changing with the time. This phenomenon is better seen for the longer 

experiments. Therefore the measurements in 24 °C were done for 25 days and the results are presented in FIG. 7. 
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FIG.7: Mass uptake under dynamic changes of relative humidity for gypsum board in 24 °C. 

As for the test at 20 °C also here the amplitude of mass uptake profile is approximately constant for the whole 

time of the experiment and equal to the mass uptake from measurements with the step-change of relative 

humidity (TEST 3) after 12 hours. It can be noticed that the change of the mass uptake profile is more significant 

here than for the test at 20 °C. It can also be seen that for the last few days of the experiment the mass uptake 

profile is not changing. This might indicate that the hygric condition in the material reached oscillatory 

equilibrium for this sorption/desorption process. The slight decline in mass might be due to too short 

preconditioning of the specimen. 

5. HUMIMUR simulations 

The experiments of water vapour exchange between air and building material can be used as validation for 

simulation programs. Some preliminary results of TEST 1 from HUMIMUR simulation are presented hereafter. 

The HUMIMUR program was elaborated in order to simulate isothermal water vapour transfer between air and 

material and the moisture flow inside the material (Kwiatkowski et al. 2008). The simulations are performed 

using Control Volume Method (CVM) with 1-D model and a first order explicit time scheme. For the calculation 

the measured water vapour permeability and the sorption curves of gypsum board were implemented into model. 

The results of calculation for TEST 1 are presented in the FIG. 8. 
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FIG.8: HUMIMUR calculation of the TEST 1. 

Although some differences can be noticed the HUMIMUR model gave results close to the measurements. The 

shape of the calculated mass uptake profile is similar to the experimental data. The difference between 



calculation and test can be due to experimental uncertainty on the material and climatic data implemented into 

model. The differences between simulation and measurements show how important precise material and climatic 

data are for mathematical models. 

6. Conclusions 

This paper presented the influence of different parameters on mass transfe. It was shown that even diffusion 

open paint significantly decreases the rate of the mass transfer. The wallpaper does not change the rate of the 

absorption/desorption but increases the amount of buffered water. It was pointed out that the change of the 

temperature from 20 to 24 °C is changing the rate of adsorption/desorption process for the specimens with 

wallpaper and without any coatings, making it faster in the first part and slower in the second part. For the 

specimens covered with paint, the change of the temperature causes a uniform change of water vapour transfer 

rate for the whole duration of the experiment. In the test with higher temperature (24 °C) the mass uptake rate is 

higher than in the test with lower temperature (20 °C). Also investigations of the mass transfer for different air 

movements have been presented. In the tests without any air movement, the rate of mass uptake for the first part 

of the absorption/desorption process was first lower, but after 7-8 hours from the step-change of the relative 

humidity, higher than in the test with air movement in the chamber. The measurements under dynamic changes 

of relative humidity showed that the oscillatory equilibrium for adsorption/desorption process are obtained after 

few days from the start of the experiment and might depend on initial condition in the material. 

Finally the preliminary results from HUMIMUR simulation were presented. Despite differences, the calculations 

gave similar results to experimental data. Some more simulations for other test with step-change of relative 

humidity and tests with sinusoidal oscillations of relative humidity will be done in the near future. 
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