
The p/q-ACTIVE Faility Loation Problem:Investigation of the solution spae and anLP-�tting heuristiAnders Dohn Søren Gram Christensen David Magid RousøeInformatis and Mathematial Modelling, Tehnial University of DenmarkKgs. Lyngby, Denmark7th July 2005AbstratThe p/q-ACTIVE Unapaitated Faility Loation Problem is the prob-lem of loating p out of n possible failities eah serving at least q out of mgiven lients at a minimum ost. The problem is an extension of the Un-apaitated Faility Loation Problem (UFL) also onsidering onstraintson the number of failities and their minimum ativity. An example ofthe use of this formulation ould be the opening of p new shools whereeah must have at least q pupils. p/q-ACTIVE is NP-hard like the UFL.In this paper we present a thorough investigation of the p/q-ACTIVEUFL and propose a heuristi solution method. Di�erent geometri andrandom ost problem instanes are onsidered. Experiments show that60% of the problems an be solved to optimality just by solving the or-responding LP-relaxation. Using a simple loal searh heuristi, the ge-ometri problems are solved with an average gap of 0.1% to the lowerbound of the LP-relaxation. An e�ort is put into isolating problem typesthat are hard to solve. Problems with low p, pq lose to m ombined withlustered lients or a low variation in the faility opening ost are mostlikely to give results worse than average. Gaps up to 8% are observed inthe worst ases.Keywords: (p/q-ACTIVE, Unapaitated Faility Loation, HeuristiSolution Methods, LP-relaxation, LP-�t, MIP-heuristis)1 IntrodutionThe p/q-ACTIVE Unapaitated Faility Loation Problem (p/q-ACTIVE) is theproblem of loating p out of n possible failities eah serving at least q out of
m given lients at the minimum total ost. The problem is a natural extensionto the UFL whih an be made p-ACTIVE by demanding that lients should beserved by exatly p failities. The open failities should serve at least one lient,making them ative. If the problem is to loate shools in a ity area it does notseem desirable to open a shool serving only one pupil. Therefore, it is requiredthat an ative faility serves at least q lients. The total ost of the solution isthe ost of opening the failities plus the ost of serving eah of the lients giventhe alloation of these. 1
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In �gure 1, an example is shown with 50 sites to hoose from and 250 lientsto serve. To the right the optimal solution to the problem is shown when
p = 5, q = 40, the ost of opening failities are randomly generated values andlient osts are proportional to the distane.

Figure 1: Example of a p/q-ACTIVE (left) and its optimal solution (right). Clients aremarked with dots and possible faility loations are marked with irles. The valuesof p and q (p = 5, q = 40) are visible on the right map. Exatly 5 failities have beenopened and eah of these serves at least 40 lients.The problem was formulated at a onferene by Krarup, Leopold-Wildburgerand Pisinger [3℄. M.S. J. B. Wansher is the only one who has published atualresearh on p/q-ACTIVE [1℄. He developed a branh and bound algorithm withbounds generated by a dual asent heuristi. The main fous of his work wasto produe good lower bounds.Our �rst goal was to �nd lose primal bounds to the problems reated byWansher, using a metaheuristi approah. We found that all problems on-sidered were easily solved to 0.5% from a lower bound obtained by an LP-relaxation. The problems were onstruted at random with the Eulidean dis-tane as the ost measure between failities and lients. Failities and lientswere uniformly distributed on a square map. Moreover, it was shown that theLP-relaxation of problems with up to 300 sites and 3000 lients often resultsin feasible solutions to the integer problem and that there is a strong onne-tion between the probability of �nding IP-feasible solutions and the fration pq

m
,denoted the overage.The main fous of this paper is to investigate many di�erent problem stru-tures and �nd their properties with respet to the LP-relaxation. An algorithmthat bene�ts from the good lower bounds obtained by the LP-relaxation is pro-posed.In the next setion we give the formulation of p/q-ACTIVE. A deompositionof the model, whih will be used in our algorithm, is also proposed. In thesubsequent setion initial tests are performed. The goal of the initial tests is toexamine the harateristis of problems with di�erent ost strutures, suh asuniform geometri distribution, geometri distanes with lustered distributionand even ompletely random osts. Finally, we desribe the algorithm andtest it on a wide range of problems, inluding random generated problems andproblems known from the OR-library [5℄ and the TSP-library [6℄.2



2 Mathematial Formulation2.1 p/q-ACTIVE Unapaitated Faility Loation Problem
p/q-ACTIVE an be desribed as UFL with additional onstraints.The followingis given: Let N = {1, . . . , n} be the set of potential failities (also referred to assites). Eah faility j has an opening ost fj . Furthermore let M = {1, . . . , m}denote the set of lients where cij ≥ 0 is the ost of serving lient i from faility
j. The two sets of binary variables yj and xij are de�ned as follows:

yj =

{

1 if faility j is open
0 otherwise

xij =

{

1 if lient i is served by faility j

0 otherwiseThe problem is to satisfy the demand of all lients at the least total ost giventhat p failities are opened and at least q ustomers are served from eah faility.The p/q-ACTIVE model an hene be written as:
min

∑

i∈M

∑

j∈N

cijxij +
∑

j∈N

fjyj (1)
s.t.

∑

j∈N

xij = 1 ∀i ∈ M (2)
xij ≤ yj ∀i ∈ M, ∀j ∈ N (3)
∑

j∈N

yj = p (4)
∑

i∈M

xij ≥ qyj ∀j ∈ N (5)
xij ∈ {0, 1} ∀i ∈ M, ∀j ∈ N (6)
yj ∈ {0, 1} ∀j ∈ N (7)Here, (4) and (5) are the additional onstraints, ompared to UFL, regardingthe number of open failities and the number of lients served from eah faility.We require that p ≥ 1 and q ≥ 1. Furthermore it is obvious that p ≤ n and

pq ≤ m must hold. The overage is de�ned as pq
m
.The UFL an be redued to n p/q-ACTIVEs in polynomial time. This is doneby setting q = 1 and p = 1, . . . , n. The UFL is an NP-hard problem [8℄ andonsequentially p/q-ACTIVE is NP-hard.2.2 DeompositionIf the loations of the failities are known the alloation of the ustomers an befound in polynomial time, thus we may split p/q-ACTIVE into two problems: Amaster problem taking are of the loation of the p failities giving the subset offailities P ⊆ N , and a subproblem alloating the lients to the open failitiesin the least expensive way. So as soon as we have deided whih sites are ative,3



we only need to solve one subproblem. Mathematially, the subproblem an beexpressed as:
min

∑

i∈M

∑

j∈P

cijxij (8)
s.t.

∑

j∈P

xij = 1 ∀i ∈ M (9)
∑

i∈M

xij ≥ q ∀j ∈ P (10)
xij ∈ {0, 1} ∀i ∈ M, ∀j ∈ P (11)This is a lassi transportation problem whih is easily solved as the onstraintmatrix is known to be totally unimodular. Thus, to this problem the LP-relaxation always yields integer solutions.2.3 A network formulationWhen solving the subproblem the LP-solver CPLEX 9.0 is used, and as shownin [2℄ it turns out, that there are omputational advantages of formulating thesubproblem as a network problem enabling CPLEX to use network simplex.

Figure 2: Network formulation of the subproblem.In Figure 2, the network is represented. Below the graph, the number ofnodes and ars are shown as well as the supply/demand in the nodes and theosts and apaities of the ars. The aim is to �nd the heapest way to �send�the lients from the node s via a faility and �home�. With the apaities anddemands shown, it is lear that this model is equivalent to the subproblem. Asshown on Figure 2 the total number of nodes in the network is p + m + 1 andthe total number of ars is p(m + 1). 4



3 The ost strutureIn the general formulation of the problem the struture of the alloation osts,
cij and the loation osts, fj are not spei�ed. These two measures de�ne theost struture of the problem. To make a thorough investigation of p/q-ACTIVE,we investigate di�erent ost struture senarios. For geometri problems theost cij of alloating a lient to a faility is measured as the distane betweenthese multiplied by a weight assigned to the lient. The average ost of openinga faility favg, is alulated as:

favg = Kcavg

m

pwhere cavg is the average alloation ost, m
p
is the average number of alloationsto an open faility and K is a ost ratio between lients and failities, whihan also be varied. The individual faility osts are now hosen randomly froma uniform distribution between 1

2
favg and 3

2
favg.By varying cij and K, the following di�erent problem instane types areobtained:STD Standard problem struture. Eulidian norm dis-tane, uniform distribution of lients and sites, K =

1 and unit weights on lients.CLU As STD but with the distribution of lients and siteslustered. 15 di�erent lustered distributions areonsidered, both varying size and density of lient-and site-lusters. See setion 6.1.1 for details.RATIO As STD but with the ost ratio between site ostand lient ost varying. K = 0.001, 0.01, 0.1, 10, 100NORM As STD but with the type of norm varying, using:
ℓ1, ℓ1.5 and ℓ∞. 1WEIGHT As STD but with weights on the lients varying uni-formly between 1 and 1000.RAND Problems with a totally random lient ost matrixand K = 1.A thorough omputational investigation is now performed to reveal the in-�uene of instane type on the di�ulty of p/q-ACTIVE.4 Initial tests with an LP-solverThe di�ulty of the problem instanes at hand is expeted to depend on the par-tiular ost struture of the instane and we aim at revealing suh dependeniesin the tests. The instane types that are harder to solve will be identi�ed.4.1 IP-feasible solutions to the LP-relaxationTo get a lower bound for the solution value of an instane the integer onstraintsare relaxed. If the solution of the LP-relaxation is feasible for the integer prob-lem (IP-feasible), it is also optimal. The value is always a lower bound on the5



integer problem. The LP-relaxation is solved using the dual simplex method inCPLEX, sine this method in average has shown to be the fastest for p/q-ACTIVE.A test is made to examine the quality of the results from the LP-relaxation.First of all, it is interesting to �nd the number of solutions whih are integerfeasible and onsequently optimal. In Table 1 it is shown that this is atually alarge fration of the solutions.STD CLU RATIO NORM WEIGHT RANDProblems 1440 1440 1440 1440 1440 1440IP-feasible 882 760 956 881 1.041 1.05261.3% 52.8% 66.4% 61.2% 72.3% 73.1%Table 1: Average IP-feasibility of p/q-ACTIVE.All the problems have a �xed number of sites equal to 100. As demonstratedlater the onlusions do not depend on this hoie. In the tests the number oflients, m, varies between 100 and 2500, p takes values in the interval between2 and 98 and q is hosen so the overage is in the interval between 5% and 95%.With a �xed number of sites a test is onduted on STD-Problems revealinga lear relation between the overage and the proentage of IP-feasible problems(Figure 3 - left). A relation between p and the number of problems with IP-feasible optimum of the LP-relaxation is also observed (Figure 3 - right). Forsmall values of p a larger perentage of the problems are IP-feasible. Datafor m = 100, 2500 show the same results. Taking the average of the data onthe right graph gives the relation shown on the left graph for m = 500. The
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only way to get low overages is to keep the value of p relatively small. In Figure6 (page 11) this e�et will also be present.More importantly the range on the axis indiates that the gaps are in generalvery small. The mean value for the STD-Problems observed on Figure 5 is0.05%. The same behaviour is also observed for the other geometri types.There are, however, in the di�erent instane types some outliers whih havegaps up to 2%. This will be further investigated in setion 6.1.The initial tests give a strong indiation that the solutions to the LP-relaxation of the problem give very tight lower bounds. Atually, more than60% of the LP-solutions were proven optimal. Advantage of this an be takenwhen onsidering the feasible solutions (upper bounds).5 A heuristi solution methodIn this setion a loal searh heuristi that fast and e�iently solves p/q-ACTIVE is developed. In setion 2.2 it was shown that the problem of alloatinglients an be solved in polynomial time when the faility loations are given.Therefore the heuristi will only deal with the loation of failities. Wheneverwe refer to a solution only by the faility loations the alloation of lients inthe solution is optimal with respet to the loations. This is ahieved by solvingthe subproblem whenever a solution to the master problem is onsidered.When an initial solution is known, the heuristi searhes part of the solutionspae, the neighborhood, and by some riteria a new solution is hosen until astopping riteria has been reahed. The �rst step is to de�ne the solution spae.5.1 Solution spaeThe solution spae S of the master problem an be desribed by the loationvariables, and it is de�ned as the solutions where exatly p failities have beenopened:
S = B

n with the number of 1's equal to pThe size of the solution spae is then:
(

n

p

)

=
n!

(n − p)!p!5.2 Initial solution: LP-relaxation with integer �tIn the preeeding setion it was demonstrated that the LP-relaxed problem oftenyields integer solutions and if not, gives a good lower bound.This gives rise to the idea of �tting the infeasible relaxed solution to thefeasible spae and thereby hopefully �nd a good initial solution to the problem.The most obvious way to �nd a feasible solution is to hoose the p sites that havethe largest values of yj . As the proess of hoosing sites to the initial solutionbased on the LP-solution is very fast, other seletion strategies are onsideredas well. Instead of just hoosing the p sites with largest yj values, a site willbe hosen if the yj value is greater than or equal to a threshold ŷ (0 < ŷ ≤ 1),that is: A faility is hosen if yj ≥ ŷ. The set of sites hosen by the seletionriteria above is alled PLP . If this riterion is used there is no guarantee that8



the orret number of failities will be opened. Therefore strategies for hoosingextra sites and eliminating sites are neessary.Three ases have to be onsidered:
• |PLP | = p. The right number of failities has been hosen and the sub-problem an be solved. This is the same as opening the p failities withlargest yj-values as desribed above.
• |PLP | > p. Too many sites are opened. Now the problem is to determinewhih of the sites in PLP to keep open. A greedy algorithm is used tohoose between the seleted sites. Like the method to �nd initial solutionsdisussed in [2℄, this greedy algorithm hooses the best of several solutionsbased on either loating heapest faility �rst, alloating the heapestostumers �rst or alloating expensive ostumers �rst.
• |PLP | < p. Too few sites have been seleted by the LP-�t and extra sitesshould be added. This is done by using the same greedy algorithm asabove, but seleting from the sites in N \ PLP . If the greedy algorithmis used without further hanges, the extra sites that in the heapest wayan servie all lients will be hosen. Beause the sites in PLP should alsoserve some lients (probably most lients), the extra sites hosen by thegreedy algorithm do not have to serve all the lients. It is investigatedif it is a better strategy to disregard some of the lients when using thegreedy algorithm. It is not known whih lients should be assigned to thefailities in PLP . Therefore it is tested to exlude di�erent frations of thelients. Disregarded lients are onsidered assigned to a faility in PLP .The following disregarding strategies, Btype, that determines the numberof lients, mnb, available to the failities in N \ PLP , are tested:

1. m 4. (p − |PLP |)q
2. m − |PLP |q 5. pq
3. (p − |PLP |)m/p 6. m/2To �nd out whih lients to blok they are sorted by their xij values, where

j ∈ PLP . Then the m−mnb lients with the highest values are onsideredas already alloated. This is done as they most likely will be assigned toone of the failities in PLP .Extensive tests are made both varying ŷ and Btype strategy. The best om-binations are hosen. The gap between the objetive value and the lower boundis used as a measure of the quality of the solution.In the test ŷ is varied between 0.05 − 1.00 with a step of 0.05 and for eahstep all Btype strategies are tested, to hoose the best ombinations of theseparameters. The test is made on 1187 problems. 64.8% of the problems arebest solved by simply hoosing the p sites that have the largest yj values. Theseare removed. This is done so that the methods will omplement eah other,i.e. di�erent methods �nd good solutions to di�erent types of problems. Of theremaining 418 problems, 256 are best solved by setting ŷ = 0.15. In this asetoo many sites are almost always seleted and the Btype has minor relevane.Of the 162 problems left, 55 are best solved by ŷ = 1 and Btype = 4. In this9



way the following 8 hoies of parameters are made:
1. ŷ = 0.15, Btype = 4 5. ŷ = 0.55, Btype = 5
2. ŷ = 0.35, Btype = 4 6. ŷ = 0.75, Btype = 3
3. ŷ = 0.50, Btype = 5 7. ŷ = 1.00, Btype = 2
4. ŷ = 0.55, Btype = 4 8. ŷ = 1.00, Btype = 4The Btype is only used when too few sites are seleted. In the other ase thebest of the seleted sites are hosen, as desribed earlier. Using these 8 methodsonly 37 of the 1187 problems an be solved better by applying a method notalready seleted and the improvement is minimal.5.3 NeighborhoodFor a feasible solution s, the neighborhood N(s) is de�ned as the solutions

s′ ∈ S, that an be onstruted by losing a faility in s and opening one not in
s:

N(s) = {s′ : s′ ∈ S ∧ DH(s, s′) = 2}where DH(s, s′) is the Hamming-distane between the two solutions. The sizeof the neighborhood is p(n − p) as there are p possibilities of hoosing an openfaility and n − p possibilities of hoosing a losed faility.5.4 First Better Admissible searhWith the initial solution and the neighborhood de�ned, a loal searh an beperformed. As shown in [2℄ the steepest deent approah produes good andoften optimal solutions but it is also very time onsuming due to the size of theneighborhood and the solution time of the subproblem. To redue the solutiontime, a First Better Admissible (FBA) searh is used. This strategy is a mod-i�ation of the steepest desent algorithm, where instead of searhing throughthe entire neighborhood to �nd the best solution, the �rst better solution foundin the neighborhood is hosen. This means that more neighborhoods will besearhed in the same amount of time, but of ourse eah neighborhood is notinvestigated ompletely. A loal minimum has been reahed when the wholeneighborhood has been searhed without improvements, just as for the steepestdesent.6 Test of the algorithmThe proposed algorithm is tested on a wide range of di�erent problem types,overing all of the spei�ed strutures (setion 3). In the following only problemsthat are not IP-feasible are used, bearing in mind that this is less than 40% ofall the problems generated. Also the gaps to the LP-relaxation and not to anexat solution are onsidered.In Table 2 the mean gaps for the problems listed in Table 1 (setion 4) areshown. Only the problems that were not IP-feasible are onsidered and gaps forboth the LP-�tter alone and with the FBA-searh are alulated. In this waythe alulated means are rather pessimisti measures as they do not take all theinstanes in the test into aount. 10



Type STD CLU RATIO NORM WEIGHT RANDProblems 1440 1440 1440 1440 1440 1440IP-feasible 882 760 956 886 1.041 1.05261.3% 52.8% 66.4% 61.5% 72.3% 73.1%Gap of FIT 0.083% 0.061% 0.413% 0.080% 0.045% 3.884%Gap of FBA 0.070% 0.055% 0.178% 0.068% 0.029% 3.705%Std deviation 0.120% 0.332% 0.240% 0.134% 0.058% 1.822%FBA-gapTable 2: The mean gap for the LP-�tter alone and with the FBA improvement.Standard deviation of FBA-gap.From Table 1 it is observed that the average gaps for all the geometriproblem types are around 0.1%. It is also lear that the FBA-searh improves the�tted solution. Thus, the �tter does not always give loally minimal solutions.The ompletely randomized problems yield higher gaps than the other problemtypes. We also observe that RATIO-Problems yields higher gaps than theSTD-Problem.
5 25 45 65 85

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

G
ap

 b
et

w
ee

n 
F

IT
 a

nd
 L

P

p
5 25 45 65 85

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

G
ap

 b
et

w
ee

n 
F

IT
 a

nd
 L

P

Coverage

5 25 45 65 85
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

G
ap

 b
et

w
ee

n 
F

B
A

 a
nd

 L
P

p
5 25 45 65 85

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

G
ap

 b
et

w
ee

n 
F

B
A

 a
nd

 L
P

CoverageFigure 6: 100x500 STD-Problems. The relation between p and the gaps (left). Therelation between the overage and the gaps (right).If we take a loser look at the STD-Problem, Figure 6 shows that there isa lear onnetion between the gaps and the value of p. The link between theoverage and the gaps is also evident. Large gaps are enountered when p is lowor the overage is lose to 100%. This is evident for all the 6 di�erent problemtypes. Remembering that the same onnetion was observed between the exatsolution and the lower bound obtained by the LP-relaxation (Figure 5 page 7),11



this may indiate that the deviation between the gaps solely originates from thelower bounds. When omparing to exat solutions this is seen not to be thease. A part of the gap of ourse is from the lower bound, but the gap from theprimal value to the exat solution does have the same dependeny as what anbeen interpreted from Figure 6.6.1 The hard problemsIn the following the di�erent problem instane types are onsidered one at atime in a searh for instanes that yield worse results than the average aseshown in Table 2.6.1.1 CLU - Clustered problemsRegarding lustered problems we introdue the settings used for the tests. Thelusters an be either small or large and the number of lients/failities in eahluster is varied so that they are either dense or sparse from the following de�-nition:
· Small: Having a width and a height in the interval [

1

16
; 1

8

] of the totalwidth and height.
© Large: Having a width and a height in the interval [

1

4
; 1

2

] of the totalwidth and height.
⊡ Sparse: Eah luster ontains a fration of the lients/failities hosenrandomly in the interval [

1

16
; 1

8

].
� Dense: Eah luster ontains a fration of the lients/failities hosenrandomly in the interval [

1

4
; 1

2

].The height and width of lusters are drawn at random from the same intervalgiving the lusters an almost quadrati shape. In Table 3 all the problem typesonstruted from the above de�nition are illustrated. The problems with largeand sparse lusters for both lients and failities are omitted beause this settingprodues problems muh like the STD-Problem.0 1 2 3 4 5 6 7 8 9 10 11 12 13 14Clients © © © · · · · © © © © · · · ·

� ⊡ � � ⊡ � ⊡ � ⊡ � ⊡ � ⊡ � ⊡Failities © © © © © © © · · · · · · · ·

� � ⊡ � � ⊡ ⊡ � � ⊡ ⊡ � � ⊡ ⊡Table 3: The de�ned luster types.Among the lustered problems reated, the problems di�ering the most fromthe STD-Problem are the ones with small and dense lusters.In Figure 7 the results from the test are illustrated. From the right graphit is seen that the luster types ausing larger gaps than the STD-Problemare types: 3, 4, 5 and 13. The ommon property for these problems is thatthey all have small lient lusters. In type 3, 5 and 13 where the results di�er12
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Figure 7: Quality of the heuristi solution for di�erent luster types. Connetionbetween luster types and IP-feasibility (left) / FBA-searh gaps (right).the most from the STD-Problem the lient lusters are small and dense. Thistest indiates that the most di�ult luster problems are the ones that havesmall and dense lusters of lients and a spread out distribution of failities.It is important to notie that these onlusions are based on the outliers inthe graph. When generating problems randomly, a large part of the problemswill not di�er from the STD-Problem and one have to look for the problemsstanding out. In partiular, the 500 lient problem giving the worst result wasaptured during the test. This problem was the seond worst problem plottedin Figure 7 (of luster type 5). In Figure 8 the problem is shown. As disussedin onnetion with Figure 6, the highest gaps are obtained when p is low andif the overage is high. This is also the ase in the problem shown on Figure 8,where p = 5 and the q = 95 resulting in a overage of 95%.

Figure 8: Randomly generated lustered 100x500 problems. Client lusters are smalland dense while the faility lusters are large and sparse. p = 5, q = 95, Gap = 6.28%.Figure 7 also demonstrates that it is not the same types that are performingpoorly onerning IP-feasibility as the ones giving the large gaps. Types 6 and14 are signi�antly less IP-feasible than the STD-Problem. An interesting pointabout the IP-feasibility is that the �ontrary� problem types to type 6 and 14are the types 7 and 0 respetively. These two types reveal some of the best13



results regarding IP-feasibility, indiating that problems with a large number ofsmall lusters are harder to solve by LP-relaxation.6.1.2 RATIO - Variation in the ost ratio between lients and fai-litiesAs it was observed in the beginning of this setion the problems where the ratio isvaried seems harder to solve than the STD-Problem. We now examine whethersome settings are worse than others. Figure 9 shows that the dependeny onthe fator K is very high. If K is large the hane of IP-feasibility inreases,and for the problems that are not IP-feasible the heuristi reveals small gaps.This means that if the failities are muh more expensive to plae than it is toassign the lients the problem is easy. It has the natural explanation that if itis really expensive to open failities, it is just a matter of opening the heaperones and then worry about the lients afterwards.
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Figure 9: Quality of the heuristi solution for di�erent ost ratios.6.1.3 NORM - Di�erent normsThe test of the various norms shows that there is no di�erene between thetested norms, neither on the LP-feasibility nor the gaps obtained from the FBA-solution. This is illustrated on Figure 10.
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6.1.4 WEIGHT - Weighted lientsTable 2 indiates, that this struture �helps� the solver and the results for theweighted problems are better. More problems are IP-feasible and those thatare not yield smaller gaps. This result is onneted to the �ndings from theRATIO-Problems, that learly indiate that if some failities are very expensivethe problem is easy. If the lients are weighted, the very heavy lients are theones to be assigned �rst; all others an be dealt with afterwards.6.1.5 RAND - Completely random ost matrixIt an be seen in Table 2 that the RAND-Problems are IP-feasible more oftenthan the STD-Problems. However the RAND-Problems that are not solvedto optimality by the LP-relaxation yield a muh higher gap than the STD-Problems. It is known from setion 4.1 that only problems with small p-valuesare interesting. If p is large it is almost ertain that the LP-solution will befeasible for the original problem.6.1.6 Test summaryThe overall result of the tests is that small gaps are found for almost all prob-lems. For speial strutures there may however be large gaps, partiularly if theproblem has a low p and a high overage ombined with lustered lients or alow faility opening ost. The onlusion of the test is that the problems are ingeneral easy to solve and yield small gaps, but there are nonetheless outliers.Preliminary tests have shown that if the settings yielding large gaps in eahof the instane types above are ombined, the gaps inrease dramatially.6.2 Other problem sizesTo inspet the e�et of the number of sites, n, a test is onduted with n = 200and m = 200, 1000. p and q are set to vary in the same way as in the previoustests. Table 4 shows the tendeny. Having a larger number of sites seems toa�et the results in a slightly negative diretion. The various dependenies ofproblem struture and parameters disovered earlier in this setion still holdfor these new problems, but it is worth noting that there are slightly fewer IP-feasible problems. The gaps have not hanged signi�antly, whih is also animportant result.Type STD CLU RATIO NORM WEIGHT RANDIP-feasible 51.9% 38.0% 58.7% 51.5% 67.3% 76.0%Gap of FIT 0.09% 0.13% 0.62% 0.11% 0.06% 4.27%Gap of FBA 0.06% 0.11% 0.17% 0.08% 0.04% 3.95%Table 4: Test of problems with 200 sites.6.3 Solution timeA very important aspet that we have negleted in the preeding setions is thesolution time. There is atually two parts of the solution time. First the time15



it takes to solve the LP-relaxation, whih in many ases is enough to solve theoriginal problem. If a non-feasible solution is found, the time it takes to performthe LP-�t with FBA-searh is also of interest.6.3.1 LP-solverIn our experiments a state-of-the-art LP-solver is used as desribed earlier, andthis limits the possibility of lowering the solution time. It is however interestingto examine how the problem types and the p/q settings a�et the solution timefor the LP-solver. We look initially at the STD-Problem. As shown in Figure11 there is a strong orrelation between p and the solution time. The onnetionto the overage is also evident. The ombination of a low p and a high overageleads to higher omputational times.
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been alulated. The di�erene between these two numbers is small for therandomized problems, showing that the problems in general use the averagetime. For all the geometri problems the average is muh higher than themedian, indiating some outliers with very high solution time.Type GEO CLU RATIO NORM WEIGHT RANDAverage [s℄ 13.4 5.0 15.7 10.8 9.9 130.5Median [s℄ 3.2 3.2 7.1 2.2 4.0 108.2Table 5: Average and median of the solution times for 100x500 problems.6.3.2 FBA-searhThe time used to make an FBA-searh depends on three things. The size ofthe neighborhood, the number of neighborhoods searhed in total and the so-lution time of the individual problems in the neighborhood. In Figure 13 thedependenies on p and the overage are shown (100x500 STD-Problem). Theleft graph has a urved shape with a maximum around p = 65. This is notsurprising as the neighborhood is largest for p = n
2

= 50. The FBA-searhhowever is slower for p-values slightly larger than the p = 50. This is due to thefat that the subproblem grows as p inreases and thus is more time onsumingto solve.There is a lear dependeny on the overage as well. The solution timeinreases with the overage. The explanation here should be found in Figure6 (page 11) where it is seen that a higher overage yields larger gaps for theLP-�t. The higher gaps potentially lead to a higher number of neighborhoodsto searh before reahing a loal minimum and the searh hene requires moretime.
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ases even the most time onsuming FBA-searh uses less time than the LP-solver. The test displayed on Figure 11 and 13 shows that the LP-solver usesmost time for small p but the FBA-searh uses most time when p is slightlymore than n
2
. Hene slow LP-relaxations will often be linked to fast FBA-searhes. Not muh time is used to LP-�t ompared to the other parts, butfurther optimization of the data strutures an redue the �t-time even more.
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7 Final testsAfter the exhaustive testing it is interesting to try the heuristi on a numberof problems desribed in the literature. Some of the data sets are derived fromreal life data. As mentioned earlier there has not been muh researh on p/q-ACTIVE, but the UFL problems in the OR-library [5℄ an be given values of pand q and solved as p/q-ACTIVE. Some TSP-problems from the TSP-library [6℄have also been tested. Besides the parameters p and q it is also neessary tosplit the nodes in two: one group representing lients and one representing sites.This is done for n = 100 and the nodes hosen as sites (at random) has beensaved for eah of the problems3. All these test problems have been solved bythe FBA-heuristi. For the OR-library problems, if the LP-relaxation is notIP-feasible, the optimal solution has been found by standard tools in CPLEX.7.1 OR-libraryThree problems have been tested (there are only three large UFL problems inthe OR-library). All three problems have n = 100, m = 1000. The test hasbeen arried out with p taking the values p = 2, 5, 8, 15, 25, 65 and q havingvalues giving a overage of 10%, 50%, 80%, 90%, 95%. Hene 6 ·5 = 30 problemsare tested for eah of the three problems in the OR-library. In Table 6 theresults from the tests of the OR-library problems are displayed. To save spaeall problems having IP-feasible solution to the LP-relaxation have been omitted.This leaves only 38 of the 90 problems. From the number of IP-feasible solutionsit is lear that the observation about the high quality of the LP-solution is stillsound.The table shows that all of the problems having p = 2 are IP-feasible. Onthe other hand having p = 5 gives the largest gaps for the LP-solver for bothproblem apa and ap. These �ndings orrespond well to what was onludedfrom the preliminary tests. For overage lose to 100% less IP-feasible LP-solutions are found, but the FBA-heuristi still �nds very good solutions eahtime. As seen in this test, even when optimality annot be guaranteed, it isoften the optimal solution that has been found. Only 11 of the 90 results of theFBA are not optimal and these have an average gap of 0.19% to the optimalsolution.

3For further work on these UFL problems the site numbers an be downloaded from thewebsite: http://www.student.dtu.dk/∼s011566/19



UFL GAP LP - GAP exat - Time [s℄Prob p q Cov. Fit FBA LP FBA LP Fit FBAapa 5 20 10.0% 0.32% 0.30% -0.30% 0 59.97 2.79 1.7apa 5 100 50.0% 0.32% 0.30% -0.30% 0 73.53 7.16 2.15apa 5 160 80.0% 0.31% 0.31% -0.30% 0.01% 358.39 10.92 2.47apa 5 180 90.0% 0.36% 0.36% -0.25% 0.11% 126.31 11 3.2apa 5 190 95.0% 0.80% 0.53% -0.19% 0.35% 197.23 11.98 4.41apa 8 100 80.0% 0.00% 0.00% 0.00% 0 258.64 5.06 3.94apa 8 112 89.6% 0.01% 0.01% -0.01% 0 451.19 4.09 4.95apa 8 118 94.4% 0.06% 0.06% -0.06% 0 514.52 5.96 5.56apa 15 60 90.0% 0.01% 0.01% -0.01% 0 43.14 0.6 19.73apa 15 63 94.5% 0.05% 0.05% -0.05% 0 61.42 5.05 21.4apa 25 36 90.0% 0.02% 0.02% -0.02% 0 17.49 4.11 51.27apa 25 38 95.0% 0.05% 0.05% -0.05% 0 16.37 8.17 97.08apa 65 14 91.0% 0.00% 0.00% 0.00% 0 4.4 17.57 155.71apb 8 100 80.0% 1.06% 0.41% -0.01% 0.40% 208.51 5.91 6.35apb 8 112 89.6% 1.57% 0.12% -0.12% 0 119.54 12.62 4.87apb 8 118 94.4% 1.17% 0.43% -0.29% 0.14% 691.37 12.92 5.59apb 15 53 79.5% 0.01% 0.01% -0.01% 0 36.18 2.12 15.12apb 15 60 90.0% 0.09% 0.09% -0.07% 0.02% 74.58 9.09 17.36apb 15 63 94.5% 0.12% 0.11% -0.11% 0 78.71 8.77 24.45apb 25 32 80.0% 0.02% 0.02% -0.02% 0 22.38 6.2 39.51apb 25 36 90.0% 0.03% 0.03% -0.03% 0 34.61 6.84 47.22apb 25 38 95.0% 0.06% 0.06% -0.06% 0 37.47 10.07 49.35apb 65 12 78.0% 0.00% 0.00% 0.00% 0 2.65 8.75 120.91apb 65 13 84.5% 0.00% 0.00% 0.00% 0 2.68 9.08 132.36apb 65 14 91.0% 0.00% 0.00% 0.00% 0 4.91 24.96 147.04ap 5 20 10.0% 0.36% 0.36% -0.10% 0.25% 142.94 1.97 1.06ap 5 100 50.0% 0.52% 0.36% -0.10% 0.25% 155.33 5.07 1.76ap 5 160 80.0% 0.35% 0.35% -0.10% 0.26% 122.16 7.33 2.63ap 5 180 90.0% 0.31% 0.31% -0.10% 0.20% 172.61 8.35 3.34ap 5 190 95.0% 0.45% 0.25% -0.18% 0.06% 259.04 8.81 5.3ap 8 100 80.0% 0.00% 0.00% 0.00% 0 97.67 0.39 4.13ap 8 112 89.6% 0.01% 0.01% -0.01% 0 430.67 0.97 4.97ap 8 118 94.4% 0.01% 0.01% -0.01% 0 91.32 0.9 5.81ap 15 60 90.0% 0.04% 0.04% -0.04% 0 51.74 1.92 19.21ap 15 63 94.5% 0.16% 0.16% -0.16% 0 64.2 3.8 20.61ap 25 32 80.0% 0.03% 0.03% -0.03% 0 17.58 6.02 39.97ap 25 36 90.0% 0.06% 0.06% -0.06% 0 24.95 10.64 45.53ap 25 38 95.0% 0.09% 0.07% -0.07% 0 28.15 12.76 97.69Table 6: Results for the OR-library tests. n = 100, m = 1000. All problems havingan IP-feasible solution have been omitted.
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7.2 TSP-libraryFinally, problems from the TSP-library are tested - this time with four di�erentombinations of p and q. Beause of the large size of some of the problems,no optimal values have been alulated. The results from the test are given inTable 7. These results are very interesting. The gaps found are signi�antlylarger than expeted. One gap is lose to 8%, whih is more than what wasobserved in any of the preliminary tests. This gap is found in the solution ofproblem �1577. The other setting of p for problem �1577 still having a overagelose to 100% also yields a rather large gap of approximately 4%. It is notablethat not only do the solutions to this problem get better with a low overage,they are atually both optimal. GAP LP - Time [s℄Prob m p q Cov. Fit FBA LP Fit FBAdsj1000 900 5 90 50.0% 0 0 77.3 - -dsj1000 900 5 171 95.0% 2.61% 1.66% 263.13 3.01 6.12dsj1000 900 25 18 50.0% 0 0 9.19 - -dsj1000 900 25 34 94.4% 2.19% 2.19% 41.25 4.36 46.76pb3038 2938 5 293 49.9% 0 0 1861.31 - -pb3038 2938 5 558 95.0% 0 0 3638.85 - -pb3038 2938 25 58 49.4% 1.67% 0.42% 427.91 27.44 550.57pb3038 2938 25 111 94.5% 0.44% 0.44% 3565.23 52.89 614.86gr431 331 5 33 49.8% 0.01% 0.01% 15.95 0.33 0.25gr431 331 5 62 93.7% 0.26% 0.26% 40.99 0.41 0.41gr431 331 25 6 45.3% 0.79% 0.65% 6.72 0.78 3.48gr431 331 25 12 90.6% 0.45% 0.17% 7.54 1.52 10.84�1400 1300 5 130 50.0% 0 0 68.84 - -�1400 1300 5 247 95.0% 0.64% 0.64% 436.08 1.76 4.58�1400 1300 25 26 50.0% 0 0 26.89 - -�1400 1300 25 49 94.2% 2.44% 1.88% 65.61 9.35 225.98�1577 1477 5 147 49.8% 0 0 168.11 - -�1577 1477 5 280 94.8% 3.57% 3.57% 1363.74 6.42 8.09�1577 1477 25 29 49.1% 0 0 52.44 - -�1577 1477 25 56 94.8% 10.69% 7.89% 141.26 12.98 308.63�3795 3695 5 369 49.9% 0 0 1551.16 - -�3795 3695 5 702 95.0% 0.15% 0.07% 22333.96 55.91 332.63�3795 3695 25 73 49.4% 0 0 577.39 - -�3795 3695 25 140 94.7% 3.11% 1.51% 1422.1 44 1531.55�417 317 5 31 48.9% 0 0 5.01 - -�417 317 5 60 94.6% 1.89% 1.67% 25.47 0.45 0.62�417 317 25 6 47.3% 1.66% 1.66% 2.69 0.76 1.95�417 317 25 12 94.6% 6.59% 4.02% 3.65 1.12 6.89fnl4461 4361 5 436 50.0% 0 0 2845.03 - -fnl4461 4361 5 828 94.9% 0 0 13680.38 22.86 68.48fnl4461 4361 25 87 49.9% 0.52% 0.12% 1541.88 57.07 721.97fnl4461 4361 25 165 94.6% 0.86% 0.45% 5927.34 100.86 1550.09Table 7: Results for the TSP-library tests. n = 100.Solving problem �417 in the test also seems to ause some problems. Toanalyze this further, visualizations of the two problems have been reated toinvestigate the problem struture. In Figure 15 the two problems mentioned arevisualized. It is seen that these problems have a struture whih is not found inany of our problem struture de�nitions desribed in setion 3. They do haveall lients and failities lustered, but these lusters are not like the ones de�nedearlier. The lusters are very dense and with a very �at retangular shape.The important onlusion to be drawn from this test is that even thoughnumerous problems with many di�erent settings and strutures have been testedin this work, it is still possible to reate spei� problems with large gaps.21



Figure 15: Problem �1577 (left) and problem �417 (right) from the TSP-library. Thepartition of failities and lients was not spei�ed in the TSP-library.
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8 Possible enhanementsDuring our work with p/q-ACTIVE we have foused on examining the solutionqualities when looking at di�erent problem strutures and harateristis. Fur-ther researh ould be foused on the following areas.
• The basis of our heuristi is the solution to the LP-relaxed problem. Thetests have shown that in a limited number of ases the LP-solver uses alot more time than in the average ase. This an lead to that no solutionis found in the time given. To make sure that a solution is always founda mehanism that stops the LP-solver after a ertain amount of time anbe implemented. When the LP-solver stops, the non-optimal LP-solutionan be �tted to an initial feasible solution. In our ase we an use thevalue found by the LP-solver at the time of the break as lower bound,as we are using the dual simplex algorithm. If using primal simplex thenon-optimal solution to the relaxed problem ould be �tted just as it isdone with the optimal solution.
• The neighborhood struture and the hosen deomposition lead to heavyalulations in eah neighborhood. Another neighborhood struture anease the omputations and be used as a basis for other heuristis. Anexample is a reversed neighborhood struture, de�ned by a �xed numberof lient-to-faility realloations. This de�nition leads to a larger neigh-borhood, but the alulations in eah neighborhood is faster.
• Due to the many alulations needed in the loal searh heuristi, it angain in speed if the less promising solutions in the solution spae (andthereby in the neighborhood) are exluded. An exlusion an be donewith respet to the LP-solutions. If a site is not used in the LP-solution(yj = 0) it is also left out in the primal solution spae. This leaves onlyfailities that in the LP-solution have a frational yj or yj = 1. Thesolution spae an be redued even further if the sites having yj = 1 are�xed as well.
• The idea of using the primal and dual solution in ombination an alsobe used as a guideline to the LP-solver whih then resolves the problema number of times. The ideas of Loal Branhing [11℄ and RelaxationIndued Neighborhood Searh (RINS) [12℄ an be applied as the LP-solverusually reveal near-optimal solutions even without any altering.
• When solving the problem, CPLEX has been used for solving the deom-posed transportation problem. To redue omputation time in this part adediated algorithm for the subproblem an be implemented.
• The algorithm used is designed to work well on p/q-ACTIVE in general. Ifthe fous is on a real life problem or problems with a spei� struture, aheuristi an be tailored taking advantage of problem dependent features.
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9 ConlusionMore than 60% of the problems tested an be solved to optimality just bysolving the orresponding LP-relaxation. This is the ase for all the geometriproblem types tested. The number of IP-feasible problems are very dependenton the overage. Almost all problems with a low overage are IP-feasible andthe number dereases to almost 0 as the overage inreases. The remainingproblems have LP-solution values that yield very tight bounds (around 0.05%to optimum).A heuristi is introdued and tested on a wide range of problems. In generalthe heuristi is very e�etive, yielding an average gap for the geometri problemsof less than 0.1%. The hardest problems to solve are found to be problems withone or more of the following harateristis: They either have a totally randomost matrix or they have a geometri struture with small and dense lustersof lients and the opening ost of failities have a relatively small variation. Inany ase the value of p is small and the overage is lose to 100%.Finally the heuristi is tested on a number of referene problems from theOR-library and the TSP-library. An important observation here is that it ispossible to �nd problems that are hard to solve, but they must have a uniquestruture and even in that ase most problems will be easy. We have enounteredgaps up to 8% in the worst ase.In general the results from the proposed heuristi are very good and theoptimal solutions are found in most ases. In more than 60% of the test problemsoptimality an even be proven. We onlude that the p/q-ACTIVE UnapaitatedFaility Loation Problem is easy. Only in rare ases solutions far from optimumare enountered.AknowledgmentsWe thank our fellow student Esben Kolind for his omments on this paperand for his work on a projet that led to this paper. Further we thank M.S.J. B. Wansher for his guidane during our work and for supplying test re-sults and soure ode. Last we thank our two advisors Professor Jens Clausenand Assoiate Professor Jesper Larsen for their onstrutive ritiism and helpthroughout the writing proess.
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