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RUNNING HEADLINE 

STOMACH FULLNESS AND FOOD INTAKE IN WHITING
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  The probability of a North Sea whiting Merlangius merlangus (L.) stomach 

containing fresh food was depressed when partially digested food was already present in 

the stomach. The lowered probability was detected even at levels where the fish was 

physiologically able to ingest an average meal. The feeding probability of c. 15% of the 

fish caught was predicted to be severely decreased at the level of partially digested food 

found in the stomachs. No effect of stomach fullness on meal size was found, indicating 

that the saturation is affecting search activity rather than prey or meal size selection. 

The diurnal pattern in food intake varied between the five sampling locations, 

presumably as a result of differences in prey availability.  

 

Key words: appetite, diurnal feeding pattern, meal probability, meal size, saturation. 
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INTRODUCTION 

 

The food intake of fishes is under the influence of a number of physiological and 

environmental factors. In the laboratory, appetite has been shown to vary with the 

feeding history of the fish (Talbot et al., 1984; Russel & Wooton, 1992; Whalen et al., 

1999) and to increase as stomach content decrease (Gwyther & Grove, 1981; Sims et 

al., 1996; Hossain et al., 1998). Thus, Gill & Hart (1998) found that three-spined 

sticklebacks Gasterosteus aculeatus (L.) will continue to eat as long as there is space 

left in the stomach, reducing meal size when approaching the stomach capacity. Similar 

results have been found in as diverse species as rainbow trout Oncorhynchus mykiss 

(Walbaum), African catfish Clarias gariepinus (Burchell), blennies Blennius pholis (L.) 

(a stomach less teleost) and lesser spotted dogfish Scyliorhinus canicula (L.) (an 

elasmobranch) (Grove et al., 1978; Grove & Crawford, 1980; Sims et al., 1996; Hossain 

et al., 1998). In contrast to maintaining a full stomach at all times, juvenile turbot 

Scophtalmus maximus (L.) tend to feed at frequencies that keep the stomach content at 

85 % of the maximum when fed ad libitum but only to 33 % when trained to use 

demand feeders (Grove et al., 1985).  Seyhan et al. (1998) reported that whiting 

Merlangius merlangus (L.) in aquaria will resume feeding when the stomach content 

falls below 40% of the maximum content, whereas dab Limanda limanda (L.) does not 

resume feeding until the stomach is empty (Gwyther & Grove, 1981). 

 

In addition to the change in food intake with stomach fullness, several species of 

fishes exhibit feeding periodicity. Probably the most common patterns are 20 to 30 h 
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feeding patterns (Gwyther & Grove, 1981; Patra, 1993; Seyhan et al., 1998), but 

biweekly feeding maxima have also been reported (Longval et al., 1982). Feeding 

rhythms appear to be internally regulated in some fishes as periodicity will appear even 

when food is available at all times (Patra, 1993; Seyhan et al., 1998) and constant light 

is supplied (Gwyther & Grove, 1981). The feeding patterns found in nature often differ 

between investigations and from values obtained in the laboratory (Hall et al., 1995; 

Mergardt & Temming, 1997; Seyhan et al., 1998), perhaps due to changes in prey 

composition and availability from one time and place to the next. If this location and 

time dependent diurnal variation in feeding motivation is not taken into account, 

estimates of the effect of saturation may be seriously biased. 

 

This study describes a statistical analysis of meal probability and meal size of 

whiting at five locations in the North Sea. The investigation was divided into an 

analysis of meal probability and an analysis of meal size as the decisions made by the 

predator on when to initiate feeding and when to cease feeding are inherently different 

(Magnusson & Aspelund, 1997; Beyer, 1998). The aim of the analyses was to 

investigate whether there was a depressing effect of the amount of food already in the 

stomach on meal size and meal probability. A diurnal intake pattern was also estimated 

at each of the five locations to avoid bias in the estimates. Further, the maximum 

stomach content was examined to determine if any depressing effect was caused by 

physical limitations imposed by stomach size. 
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METHODS 

 

DATA COLLECTION 
 

Stomachs were collected from whiting caught by bottom trawling at five locations 

in the North Sea in early September 1988 (locations 1 and 2) and 1989 (locations 3, 4 

and 5)(Fig. 1). An EXPO-trawl was used demersally and haul duration was 1 h at 3.5 

knots. Trawl tracks were laid out as parallel lines and trawling performed every 4 h in a 

total of between 48 and 72 h at each location. Bottom temperature and depth were 

recorded at all locations. The total length of the whiting caught in each haul were 

measured to the nearest semi-cm below and stomachs were collected from 50 whiting 

randomly selected from each semi-cm group > 20 cm. If the number caught was ≤  50, 

all stomachs were collected. In total, stomachs from 8323 whiting (20 to 36 cm) were 

examined. 

 

Stomachs were classified as regurgitated if they were flaccid or the fish had food in 

the mouth or pharynx and these were replaced at sea by intact stomachs. The non-

regurgitated stomachs were numbered for individual identification and deep frozen 

singularly as quickly as possible. In the laboratory, stomachs were thawed in 70% 

ethanol to stop digestion prior to processing. In addition, 70% ethanol was injected 

directly into large stomachs. Stomachs were analysed individually and the contents 

were weighed both individually and in total, and the objects found assigned to species 

(fishes) or major taxa (invertebrates) when possible. Prey were allocated to freshness 

categories: ingested in the trawl (very fresh prey), whole (without fin, skin and leg 
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(invertebrates) damage) and prey in more advanced stages of digestion. The small 

number of prey (10 in total) that had supposedly been eaten in the trawl were excluded 

from analyses. The mass of whole and more digested food in each stomach was 

calculated. The following analyses were divided into an analysis of the proportion of 

non-empty stomachs containing whole food (in any amount) and an analysis of the mass 

of whole prey present in the stomachs containing whole prey.  

 

DATA ANALYSES 
 

Proportion of empty stomachs 

 

The empty stomachs were not included in the analyses of meal probability although 

the proportion of empty stomachs at each location was calculated. As stomachs 

classified as regurgitated were presumed to contain food before they were hauled to the 

surface, the percentage of the stomachs containing food (pf) was calculated as pf = 

(nf+nr)(nf+nr+ne)-1 where nf is the number of stomachs containing food, nr is the 

number of regurgitated stomachs and ne is the number of empty stomachs. 

 

Meal analyses 

 

As the amount of food the stomach can contain in a field situation can vary with the 

past diet of the predator (Ruohonen et al., 1997), the relative fullness of the stomach 

cannot be calculated. Nevertheless, several authors have found that maximum stomach 

content (R) generally accepted to be indicative of stomach capacity, can be described by 
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a potency function of the mass of the fish (M) (Grove & Crawford, 1980; Tandler et al., 

1982; Russel et al., 1996): 

R= cMd = adcLbd      (1) 

as 

M= aLb 

where L is the total length of the fish and a, b, c and d are constants. In the following, 

the estimates 0.0107 g(cm-2.95) and 2.95 for a and b, respectively, given for intact 

whiting in September by Coull et al. (1989) were used. The relative fullness of the 

stomach can be calculated as Mf (R)-1 where Mf is the stomach content mass. 

 

A model of the relationship between meal size, Mm, and stomach content should be 

able to describe the three types of relationships reported in the literature: eat new meals 

of a size that matches the difference between the stomach content and the maximum 

ration (Sims et al., 1996; Gill & Hart, 1998; Hossain et al., 1998), resume feeding 

activity when the stomach content is completely evacuated (Gwyther & Grove, 1981) or 

resume feeding when a certain percentage of maximum stomach content is reached 

(Grove et al., 1985; Seyhan et al., 1998). One relationship that can approximate any of 

these three depending on the parameters chosen (and is defined for all Mm≥0) is 

[ ] [ ] 1
f

1
f
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where km is a parameter that determines how severe the inhibiting effect of the stomach 

fullness is and h and jm are parameters describing the relationship between meal size 

and the maximum stomach content. This formula allows the preferred meal size in per 

cent of the maximum to change with the size of the fish and is used in the following 

models of meal size. A similar expression was used to describe the effect of the relative 
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fullness on the proportion of stomachs which contain a new meal (Pm) divided by the 

proportion of stomachs which does not contain a new meal: 

( ) [ ] [ ] 1

f

1
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mm MLcfaMfRPP  (3) 

where f, kp and jp are constants describing how large the depressing effect of the relative 

fullness on the probability of ingesting a new meal is. 

 

Meal probability 

 

Stomachs containing whole food were recorded as containing a fresh meal and 

assigned the integer value 1. Stomachs containing only food in a more advanced 

digestive state were classified as not containing a fresh meal and assigned the integer 0. 

Each stomach can then be regarded as a binomial trial with the probability Pm of 

containing a fresh meal. This probability can be modelled by generalized linear models 

of binomial distributed variables (McCullaugh & Nelder, 1989), and the effect of both 

continuous and factor variables tested. Using the logit link function, equation (3) 

becomes 

( )( ) )1ln()ln(1ln flocp,tloc,p,tloc,
1 +−+=− − MkLoePP mm  

where e replaces ln(f adjcj) and op replaces bdjp, and the parameters c, f and jp and thus 

feeding motivation are allowed to vary with of time of day and between locations. The 

logit to the probability of ingesting a new meal is thus an increasing linear function of 

the log to the length and a decreasing linear function of the log to the stomach content 

already present plus one. The intercept of this model (e) is not statistically independent 

of o. This problem is considered to be of minor importance to the actual estimates, 

however, and will not be discussed further. eloc,t, op,loc,t and kp,loc  are parameters to be 
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estimated in the model and can be described as the logit to the saturation- and length 

independent feeding probability, the change in the logit with length of the fish and the 

change in the logit with stomach content, respectively. The subscript p is added to 

distinguish the parameters in this model from the parameters in the following models. 

The effect of time of day on op was tested only at times where more than five new meals 

occurred (all lengths together) as the test procedures for generalized linear models 

otherwise failed to provide reliable results (McCullaugh & Nelder, 1989). The effect of 

time on e was estimated using the entire dataset. If e and op at a given location did not 

differ significantly with time of day, one value of the parameter was estimated for all 

times. One model was fitted for each location separately, and the effect of location thus 

not tested. This assured independence of the parameter estimates at the five locations. 

 

Meal size 

 

Meal size was defined as the mass of food classified as whole. The distribution of 

this mass was highly skewed and assumed to follow a gamma distribution. A gamma 

distributed variable can be modelled by generalized linear models (McCullaugh & 

Nelder, 1989). Applying the log link function to equation (2), the model becomes 

( ) )1ln(ln)ln( flocm,tloc,m,tloc,m +−+= MkLogM  

where g replaces ln(hadjcj) and om replaces bdjm and a potential effect of location and 

time of day on the parameters c, h and jm is included. gloc,t, om,loc,t and km,loc are then 

parameters to be estimated in the model. The subscript m is added to distinguish the 

parameters from parameters in the above model of meal probability. As in the model of 

the probability of a stomach containing a new meal, the effect of time of day on om and 
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g was estimated. If g and om at a given location did not differ significantly with time of 

day, one common value was estimated. One generalized linear model was fitted for each 

location separately, and the effect of location thus not tested. 

 

Maximum observed stomach content 

 

To examine if any effect of the amount of other food on meal size and probability 

was likely to be due to the actual physical limitation of stomach size, the maximum 

stomach content at each location and L was recorded. The interval 20 to 33 cm L was 

used, as these lengths were represented at all locations. The log to the maximum 

observed stomach content, R, can be expressed as a function of length, L (equation (1)): 

)ln()ln( locR,loc LoqR +=  

where the parameter qloc replaces ln(adc) and oR,loc replaces bd and c and d are allowed 

to vary with location The maximum stomach content was assumed to be gamma 

distributed, and a generalized linear model allowing c and d to vary with location was 

estimated (McCullaugh & Nelder, 1989).  The model was weighted with the number of 

stomachs that contained food in each cm group.  

 

Reduced meal probability and relative fullness 

 

The limit at which feeding is suspended may be approximated by estimating the 

relative fullness at which the probability of ingesting a new meal was decreased by 50 

and 75% of the probability of a fish with an empty stomach. Further, the proportion of 

whiting caught which had a stomach content of partially digested food exceeding the 

point of 50 and 75% inhibition of feeding probability were determined.  
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Bias 

 

The definition of new food used here is a potential source of bias as it is difficult to 

make exact guidelines to determine the degree of a digestion of an animal (crustaceans 

in particular). A bias could result in a markedly different composition of new food and 

the total content of the stomachs. To investigate the extent of this problem, the prey 

composition (mass percentage) of new meals and the prey composition of partially 

digested food in the stomachs were compared. As some of the partially digested 

stomach content is noted as unidentifiable or identifiable only as ‘fishes’ or 

‘crustaceans’, and all prey in the new meals are identified, only the part of the stomach 

content in advanced digestion stages that could be identified to species (fish) or major 

taxa (invertebrates) was included. The two mass percentages should be proportional to 

each other, i.e. the intercept should equal zero and the slope one in a regression analysis. 

Only locations 1 and 3 were included in these analyses as the meal probability at these 

locations was >15% on average and the number of new meals was >200. This should 

limit inaccuracies due to small sample size. Further, the mass percentages of crustaceans 

were calculated at all locations and averaged over predator length groups. This mass 

percentage was compared to kp to investigate whether a large proportion of prey with a 

hard exoskeleton biased the estimates. 

 

STATISTICAL ANALYSES 
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All statistical analyses were performed using SAS version 8 for Windows. The 

scale parameters of the generalized linear models were estimated by the Pearson 

statistic. As this procedure invalidates tests of model fit, these were not performed 

(McCullaugh & Nelder, 1989). Factors not having a significant effect at the 5% level 

(F-statistic) were eliminated from the models.  

 

RESULTS 

 

Temperature varied with depth of the location (Table I). The percentage of 

stomachs sampled which contained food was 90, 81, 92, 78 and 66 at locations 1 to 5, 

respectively. 

 

MEAL PROBABILITY 
 

All locations but one showed a significant depressing effect of the amount of 

partially digested food already in the stomach (Table II and Fig. 2). Note that in models 

of binomial distributed variables, explanation of deviance is usually low, so this factor 

is not appropriate to assess model fit. A scale parameter close to one, however, indicates 

that the variation around the model can be attributed to random variation. At a stomach 

content ≥6 g (corresponding to 8.7-1.6 % bodymass of whiting 20-35 cm L), the 

probability of ingesting a new meal is reduced by 50 % at all locations where a 

significant effect of this parameter is found. The least depressing effect is found at 
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location 1 whereas the effect at locations 3 and 5 is more severe, reducing the 

probability by 50 % already at c. 3 g of stomach content. 

 

The probability of ingesting a new meal varied with time of day at all locations but 

location 5, indicating a change in feeding activity over the course of 24 h (Table II). 

There was no general diurnal feeding pattern except for a tendency for feeding 

probability to be higher at night and lower in the afternoon at locations 1 to 4 (Fig. 3). 

An effect of length of the predator was also found at these locations. When the 

parameter was significantly different from zero, it was estimated to be positive and 

somewhat larger than 2.95, though not significantly so (estimates range from 3.75-7.86 

with s. e. of 1.42 and 3.14, respectively). This indicates that the logit is proportional to 

mass of the fish or perhaps mass to some power between 1 and 2.7. The probability of a 

stomach containing a new meal was higher at locations 1, 3 and 5 than at locations 2 

and 4 (Fig. 3). 

 

MEAL SIZE 
 

The reduced models of meal size explained from 9 to 52 % of the total deviation in 

the data at a low number of estimated parameters (1 to 12) (Table III). No significant 

effect of the mass of old food in the stomach on meal size was found at any of the 

locations. A clear effect of fish length on meal size was found at four of the five 

locations (Fig. 4). At locations 1, 2 and 3, meal size increased both in absolute mass and 

in per cent bodymass as a function of L as the parameter om was significantly >2.95 

(range 5.68-6.98, s. e. 0.56 and 1.12, respectively). At location 4, no effect of body size 
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was found and the average meal size was below that of all other locations for most 

lengths (Fig. 5). At location 5, a significant negative effect of body size was found at 

0300 hours, primarily due to large meals taken by small fish. The meal size varied 

considerably over the course of 24 h at all locations but location 1 (Fig. 5).  

 

MAXIMUM OBSERVED STOMACH CONTENT 
 

The model of maximum stomach content explained 65% of the deviation in the 

observations (n= 70). The parameter oR did not differ between locations (P=0.22) but 

the parameter q did (P<0.0001). The maximum mass of stomach content was 

proportional to length3.9 (s.e. 0.4) at all locations and the parameter was highly 

significant (P<0.0001). As this parameter was significantly >2.95, either the increase in 

stomach capacity was not allometric, or small whiting never reached their maximum 

capacity at the food level available. Maximum stomach content as a per cent of body 

mass was thus also increasing as a function of size. q varied by a factor 2.4 from 

location 4, at which the lowest maximum stomach content was found, to location 3, at 

which maximum stomach content was highest (Fig. 6). Locations 1, 2 and 5 were 

intermediate and not significantly different from each other. Maximum stomach content 

ranged from 4 to 10 % of bodymass for the smallest fish and 7 to 17% of bodymass for 

the largest fish.  

 

REDUCED MEAL PROBABILITY AND RELATIVE FULLNESS 
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The relative fullness at which the probability of ingesting a new meal was decreased 

by 75% of the probability of a fish with an empty stomach decreased with fish size (Fig. 

7). As meal size increased with size, however, the fullness obtained by ingesting an 

average meal at the level of 75% depressed probability remained fairly constant at 20 to 

40% at locations 2 and 3. Though appetite was depressed at a very low stomach content 

at location 5, ingesting a meal at this stomach content led to an average fullness of 

almost 100% for small whiting. At location 1, the effect of the mass of old food was 

minor, but as meals were generally small, small fish would once again obtain a full 

stomach if feeding at the level of 75 % reduced meal probability. Larger fish will obtain 

c. 40% relative fullness if feeding at this level, which is comparable to the values found 

at location 2 and 3. 

 

From the level of partially digested food found in the stomachs examined, one 

fourth of the fish caught at locations 1 to 3 were predicted to exhibit a 50 % depression 

in the probability of ingesting a new meal (Fig. 8). Further, as much as half of the fish 

caught at location 5 were predicted to exhibit a 75% decrease in feeding probability 

whereas the proportion was c.15% for the medium sized fish caught at locations 1 to 3. 

A higher proportion of large than small fish were predicted to be inhibited by the mass 

of the partially digested food. The proportions for location 4 have been calculated by 

assuming an effect of the mass of other food similar to that of location 2 and 3. 

 

BIAS 
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The intercept of the regression of the mass percentage of each prey in the new 

meals as a function of the percentage in the more digested stomach content was not 

significantly >0 (intercept=0.45, P=0.66). The slope was slightly higher than 1, 

(slope=1.152), though not significantly so (P=0.109, n=28). The slope was highly 

significant (P<0.0001, r2=0.85), indicating a clear relationship between the composition 

of new meals and more digested stomach content. The slope and intercept for fishes 

were not significantly different from those of invertebrates (P<0.51 and P<0.77, for 

slope and intercept, respectively), and all prey types were therefore joined in the 

analyses. The mass percentages of crustacean prey were 14, 12, 10, 33 and 20 at 

locations 1 to 5, respectively. 

 

DISCUSSION 

 

The analyses showed a significant negative effect of the mass of food already 

present in the stomach on the food intake of whiting. Saturation seems to affect the 

eagerness of the predator to find and ingest new prey rather than meal size preference. 

Both meal probability and meal size varied greatly over the course of 24 hours, 

indicating the importance of including diurnal variation in the analyses. No common 

pattern was found at the five locations, and this confirms the results of previous 

investigations (Jones, 1954; Gordon, 1977; Hall et al., 1995; Mergardt & Temming, 

1997; Seyhan et al., 1998; Pedersen, 2000).  
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The depressing effect of the mass of food already in the stomach on the probability 

of ingesting a new meal was significant at all locations except location 4 where the 

stomach content was low at all times. As no effect on meal size was found at any of the 

locations, it appears that whiting in the wild intensify their search for food as the 

stomach content diminishes but do not continue searching until the stomach is 

completely filled. This is in contrast to the behaviour in aquaria of a large number of 

fish species which tend to continue feeding until the stomach is full, increasing meal 

size as the mass of the stomach content is diminished (Grove et al., 1978; Grove & 

Crawford, 1980; Sims et al., 1996; Gill & Hart, 1998; Hossain et al., 1998). It is, 

however, in accordance with laboratory result for whiting (Seyhan et al., 1998) and 

other species in which feeding activity is suspended until the stomach content is again 

below a certain limit (Gwyther & Grove, 1981; Longval et al., 1982; Grove et al., 

1985). Seyhan et al. (1998) reported that whiting (average L c. 31 cm) in the laboratory 

resumed feeding when the stomach content fell <1.6% bodymass. The temperature in 

the experiment was 14 o C, which was between the temperatures at location 1 and 2. At 

these locations, feeding probability was reduced to 75% at 1.8 and 0.7% bodymass (31 

cm whiting), respectively. Thus, the results in this study agree reasonably well with the 

laboratory findings of Seyhan et al. (1998). At location 4, the proportion of the fish 

caught predicted to be inhibited by 75% in their feeding probability is below 10% for all 

lengths except two. An effect on less than 10% of the fish is unlikely to be detectable as 

the proportion of new meals is already very low. It is thus not surprising that no effect 

of the mass of other food on meal probability was found at this location. In most cases, 

the level at which the probability of ingesting a new meal is decreased to 75% does not 

correspond to a level at which the fish is unable to ingest more food due to the 
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limitation imposed by stomach size (Fig. 8). Presumably, this is caused by the necessity 

of fish in the wild to weigh the time spent foraging in an unsafe environment against 

other needs such as evading predators (Mangel & Clark, 1986; Walters & Juanes, 

1993). Further, resuming foraging is unlikely to be followed immediately by ingestion, 

as prey must first be located and captured.  

 

Small fish ate smaller meals than large fish both in absolute values, relative to their 

bodymass and relative to the maximum stomach content. Only large fish (30 cm) at 

location 3 and small fish (20 cm) at location 5 were eating average meals approaching 

the maximum possible meal size. All other fish appeared to be eating smaller average 

meals and obtaining smaller total stomach content than the maximum observed. The 

meal sizes measured here were also affected by temperature dependent differences in 

digestion rate, so larger meals were likely to be recorded at colder locations. The 

differences in diurnal intake pattern between locations were probably linked to 

differences in prey composition and availability (unpublished data). 

 

As far as is known, no previous analyses have attempted to quantify the effect of 

saturation on feeding activity of gadoid fishes in the wild. As direct observations of the 

feeding activity of a large number of fish is difficult, this or related methods may be the 

only feasible way of obtaining saturation results which directly reflect the natural 

behaviour of the fish. The method may, however, be affected by a number of problems. 

Differences in digestion velocity between large and small meals may lead to 

overestimation of the proportion of large meals if food is packed into a bolus in which 

the prey remains relatively intact for a long time (Salvanes et al., 1995; Knutsen & 
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Salvanes, 1999). In this study the meals mostly consisted of only one or two prey items 

(62 and 99% of all meals at locations 3 and 5, respectively, where the largest meals 

were recorded) and the bias introduced by a delay in digestion velocity due to the 

formation of a food bolus is thus likely to be minor. Though differences in the time 

required for evacuation of large and small meals in general also exists, these are 

unlikely to affect the speed at which the prey pass from fresh to partly digested as this in 

essence is controlled by the surface digestion of the prey. The surface digestion velocity 

does not appear to depend on meal size (Salvanes et al., 1995).  

 

Prey types differ in the time taken to pass from fresh to the partially digested state 

(Singh-Renton & Bromley, 1996; Andersen, 1999). Though the regression analyses of 

mass percentages suggested that this problem was of minor importance, only a strong 

difference is likely to be detected by this method. At temperatures of c. 8 o C, the 

crustacean prey is likely to remain fresh for up to 7 h, whereas c. 3 h is required for fish 

prey to pass from fresh to partly digested at the higher temperature found at location 1 

(N. G. Andersen, pers. comm.). The longer digestion times for prey with hard 

exoskeleton will render the average amount of old food present together with fresh 

crustaceans smaller than the amount present together with fresh fishes (given that the 

amount of old food present at ingestion of the new meal is identical) as the older food is 

continually being evacuated. The effect of this should be a higher estimate of kp where a 

large proportion of the new meals consists of prey with a hard exoskeleton. Crustacean 

prey constituted almost the same mass percentage at locations 1 and 2. Nevertheless, the 

estimate of kp at location 2 is c. 1.5 times that of location 1. Further, the highest 

proportion of crustaceans was found at location 4, where kp was estimated not to be 



 20 

significantly different from zero. The differences in digestion rates between hard and 

soft prey does thus not appear to affect the estimate of kp seriously. Together with 

changes in digestion velocity with temperature and predator size, however, the 

differences in prey composition affects the time a prey spends in the stomach before it 

passes into the category of partly digested prey and makes the absolute meal sizes and 

probabilities incomparable between locations.  

 

Though a significant saturation effect may be detectable, this has little effect on 

population dynamics if the proportion of fish, which are supposedly inhibited in their 

feeding activity by the amount of other food in the stomach, is low. However, as 

demonstrated in Fig. 8, a significant proportion of the whiting are indeed predicted to be 

unwilling to feed. This apparent saturation of a large proportion of the predators at some 

locations has important implications for the response to changes in prey availability and 

hence the mortality imposed by the predator on the prey at different prey densities.  

 

I am deeply indebted to H. Gislason and P. Degnbol who collected the stomach data 

and placed them at my disposition and to A. D. Hansen who worked up the stomach 

contents so thoroughly. N. G. Andersen, J. Beyer and two anonymous referees provided 

valuable comments on an earlier draft. This study was partly funded by a grant from the 

Danish Ministry of Food, Agriculture and Fisheries to the project ‘Development of 
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TABLE I. Depth and temperature at the five locations 

 

Location 1 2 3 4 5
Bottom depth (m) 44 46 53 73 137
Bottom temperature (o C) 16.7 13.7 10.6 8.2 8.6  
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TABLE II. Model summary and parameter estimates from the model of the probability of 

a stomach containing a new meal. P>F denotes the probability of a factor being equal to 

zero (P<0.05 denotes significant effect). Residual deviance= (total deviance)-(deviance 

explained by reduced model). Values in parentheses denote S. E. of the estimates. 

Significant effects are in bold. 

 

Location 1 2 3 4 5

Model summary
Total deviance 1486 444 1079 400 891
Residual deviance 1343 409 966 364 846
Scale 0.974 0.968 1.003 1.092 1.0711
Number of stomachs 1589 1315 1010 1326 1111
Number of new meals 282 53 228 46 153

P >F P >F P >F P >F P >F
e loc,t <0.0001 0.0022 <0.0001 0.0042 0.3835
o p,loc 0.1776 0.1735 0.6503 0.0004 0.5104
o p,loc,t 0.0394 0.0384 0.0428 0.2163 0.9490
k p,loc 0.0075 0.0209 <0.0001 0.3130 <0.0001

Estimated k p,loc 0.39** (0.14) 0.57* (0.27) 0.58***(0.16) NS 1.07*** (0.20)
 

*P< 0.05; ** P<0.01; ***P<0.001-level; NS, not significantly different from zero.  
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TABLE III. Model summary and parameter estimates from reduced models of meal size. 

P>F denotes the probability of a factor being equal to zero (low values denotes 

significant effect). Residual deviance= (total deviance)-(deviance explained by reduced 

model). Significant effects are in bold. 

 

Location 1 2 3 4 5

Model summary
Total deviance 998 192 867 59 153
Residual deviance 674 93 605 34 139
Scale 0.288 0.557 0.248 1.023 1.796
Number of new meals 282 53 228 45 153

P >F
g loc,t 0.5462 <0.0001 0.0002 0.0011 0.0069
o m,loc <0.0001 <0.0001 <0.0001 0.2158 0.5288
o m,loc,t 0.5371 0.1974 0.2239 0.3594 0.0019
k m,loc 0.6038 0.3409 0.9469 0.1147 0.7643
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FIG. 1. Map of sampling locations. 

 

FIG. 2. Examples of the effect of the mass of food already present in the stomach on the 

probability of whiting having ingested a new meal. (a) Observed probability at location 

3 for whiting 20-25 cm () and 25-30 cm () (all times of day). Lines are least squares 

fits of the proposed model (— — — ; 20-25 cm, ‑ ‑ ‑ ; 25-30 cm). Only observed 

probabilities based on >10 stomachs included. (b) Estimated values at locations 1, 2, 3 

and 5. Values in (b) are standardized to 0.2 at zero mass of food already present in the 

stomach. Locations 1 (), 2 and 3 () and 5 (). No significant effect of the mass of 

old stomach content was found at location 4. 

 

FIG. 3. Estimated probability of whiting having ingested a meal during 24 h at the five 

locations at (a) 20, (b) 25 and (c) 35 cm. Locations 1 (), 2 (), 3 () and 4 (). The 

probability at location 5 is not plotted as this did not vary with time of day or fish size 

but was constant at Pm= 0.21. 

 

FIG. 4. Observed () and estimated (— — — ) meal size of whiting as a function of 

length at selected locations and times. (a) Location 1 at 1100 hours; (b) location 2 at 700 

hours; (c) location 3 at 1500 hours. Note that the y-axis is logarithmic. 

 

FIG. 5. Estimated meal size at the five locations during 24 h for whiting at (a) 20, (b) 25 

and (c) 35 cm. Locations 1 (), 2 (), 3 (), 4 () and 5 (). 
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FIG. 6. Maximum observed stomach content and the estimated maximum stomach 

content of whiting as a function of length. (a) Maximum observed at locations 1 (), 2 

() and 5 () and the estimated maximum (— — — ). b:  Maximum observed at 

location 3 () and 4 () and the estimated maximum at location 3 (— — — ) and 4 

(‑ ‑ ‑ ). (c) Estimated maximum as a per cent of bodymass. Locations 1, 2 and 5 (); 

location 3 () and location 4 (). 

 

FIG. 7. Average amount of partially digested food in the stomach as a per cent of 

maximum stomach content required to diminish the probability of a stomach containing 

a new meal by 75 % () at locations 1 (a), 2 (b), 3 (c) and 5 (d). Average of the values 

for different times of day (— — — ) and maximum and minimum values over the course 

of the day (‑ ‑ ‑ ). The probability did not vary significantly with time of day at 

location 5. () Average meal size plus the amount required to diminish feeding 

frequency by 75 % as a per cent of maximum stomach content, i.e. the average fullness 

obtained if the fish ingested and average meal at this mass of partially digested food. 

 

FIG. 8. Per cent of all fish with food in the stomach predicted to exhibit a 50% (a) and 

75% (b) reduction in the probability of ingesting a new meal due to the amount of 

partially digested food in the stomach. Locations 1 (), 2 (), 3 (), 4 () and 5 (). 
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Fig. 6 
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Fig. 8 
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