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Abstract 

 

Face recognition research using automatic or semi-automatic techniques has emerged over the last 

two decades. One reason for growing interest in this topic is the wide range of possible 

applications for face recognition systems. Another reason is the emergence of affordable 

hardware, supporting digital photography and video, which have made the acquisition of high-

quality and high resolution 2D images much more ubiquitous. However, 2D recognition systems 

are sensitive to subject pose and illumination variations and 3D face recognition which is not 

directly affected by such environmental changes, could be used alone, or in combination with 2D 

recognition.  

 

       Recently with the development of more affordable 3D acquisition systems and the availability 

of 3D face databases, 3D face recognition has been attracting interest to tackle the limitations in 

performance of most existing 2D systems. In this research, we introduce a robust automated 3D 

Face recognition system that implements 3D data of faces with different facial expressions, hair, 

shoulders, clothing, etc., extracts features for discrimination and uses machine learning techniques 

to make the final decision.  

 

      A novel system for automatic processing for 3D facial data has been implemented using multi 

stage architecture; in a pre-processing and registration stage the data was standardized, spikes 

were removed, holes were filled and the face area was extracted. Then the nose region, which is 
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relatively more rigid than other facial regions in an anatomical sense, was automatically located 

and analysed by computing the precise location of the symmetry plane. Then useful facial features 

and a set of effective 3D curves were extracted. Finally, the recognition and matching stage was 

implemented by using cascade correlation neural networks and support vector machine for 

classification, and the nearest neighbour algorithms for matching. 

 

       It is worth noting that the FRGC data set is the most challenging data set available supporting 

research on 3D face recognition and machine learning techniques are widely recognised as 

appropriate and efficient classification methods.  
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Chapter One 

1. Introduction 

1.1 General background  

 

Recent developments in computer technology and the call for better security applications 

have raised interest in biometrics. A biometric is a physical property; it cannot be forgotten 

or mislaid like a password, and it has the potential to identify a person in very different 

settings. Be it for purposes of security or for human–computer interaction, there are many 

applications for robust biometrics. Human recognition systems fall into two categories: 

verification and identification. In the former, the person claims to be someone, and this 

claim is verified if the biometric provided is sufficiently close to the data stored for that 

person. This is a one-to-one comparison against the template of the person whose identity is 

being claimed. In the identification problem, by contrast, a match is sought in a database 

which could be huge. In other words, it is a one-to-many comparison which compares a 

person against all the templates in a database to determine the identity of the query person.  

A human face is perhaps the most easily acquired biometric identifier. The less intrusive 

nature of the process of acquiring a face image is the primary reason why face recognition 

based systems are preferred over other biometric systems. Signatures, handwriting, face 

images and fingerprints are biometrics, of long standing, used in the verification or 

authentication of documents. More recently, voices, gaits, retinas and iris scans, handprints, 

and 3D face information have all been considered as biometric identifiers. Each of these 
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has different merits, and applicability [1]. Table 1-1 presents a summary of these biometrics 

and their relative strengths [1]. Although 2D and 3D face recognition are not as accurate as 

iris scans, their ease of use and lower cost makes them a preferable choice in some 

scenarios.  

  

 

 

Table 1-1 Biometrics and their relative strengths 
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Iris √  √    √ √ 
Retina √ 

 √ 
   √ √ 

Hand     √ √ √ √ 

Signature     √ √ 
  

Voice  √ 
 √ √ √ 

  

Gait   √ 
     

2D face  √ √ √ √ √   

3D face √ 
 √ √ √ √  √ 

 

1.2 2D and 3D Face Identification      

 

Automatic identification of human faces is a very challenging research topic, which has 

gained much attention in recent years. Until recently, most research in face recognition 

focused on 2D intensity or colour images of faces [2]. The primary reason for this bias 

towards 2D face recognition was because they are easy to acquire. Furthermore, quite 
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useable results have been achieved using 2D face images in constrained environments [2] 

where illumination is assumed to be constant. Numerous techniques have been proposed, 

including Eigenfaces [3], Fisherfaces [4], elastic bunch graph matching [5] and the Kernel 

method [6]. Great strides have been made in recent years, and the existing methods usually 

work very well under carefully-controlled conditions. However, a number of recent studies 

[7-9] have shown that the unconstrained recognition of faces from still images is a difficult 

problem, because illumination, pose and expression change between images of the same 

person create great statistical differences and the identity of the face itself becomes 

overshadowed by these factors. 3D face recognition is invariant to the environment changes 

(assuming 3D capture can handle the variance in environmental conditions) which means 

the face recognition in 3D is superior to 2D in that it has the potential to overcome feature 

localization, pose and illumination problems, and it can be used in conjunction with 2D 

systems. Recently with the development of relatively low cost 3D acquisition systems, 3D 

face recognition has attracted more and more interest for tackling the degradation in 

performance in most existing 2D systems caused by unconstrained capture. However, 

despite much effort, such as modelling illumination [10], using symmetric shape-from-

shading (SFS) based view synthesis [11] and employing 3D morphable models to correct 

the pose [12], robust face recognition is still an uphill task. Recent advances in 3D 

modelling and digitizing techniques have made the acquisition of 3D human face data more 

feasible [13, 14]. 

 

     The applications for facial recognition are varied and vast. For example, the face 

recognition technology could be used as a security measure at ATM‟s; instead of using a 
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bank card or personal identification number, the ATM would capture an image of a face, 

and compare it to the face photo in the bank database to confirm the users identity. In 

addition, it could be used for document control (e.g. digital chip in passports, driver‟s 

licenses). As well as it would be useful for computer security (user access verification), 

besides that it could be used to prevent voter fraud (election accuracy). Moreover, it can be 

used for time and attendance applications (entry and exit verification) and in computer 

games. 

 

      In both 2D and 3D face recognition systems, alignment (registration) of the query and 

the template is generally necessary [15]. Registration based on feature point 

correspondence is one of the most popular methods [16]. To make a face recognition 

system fully automatic, robust facial feature extraction is one of the crucial steps. Facial 

features can be of different types: region [17, 18], landmark [19, 20], and contour [21, 22]. 

Generally, landmarks provide more accurate and consistent representation for alignment 

purposes than region-based features and have a lower complexity and computational 

burden than contour feature extraction.  

     In order to assess how well proposed methods work when dealing with face recognition 

issues, many research groups generate multi-view face databases which provide as many 

variations as possible in their images. FERET[9], CMU-PIE [23], and AR Faces [24] 

database represent one of the most popular 2D face image database collections. Each 

database is designed to address specific challenges covering a wide range of scenarios. By 

contrast, there are very few 3D face model databases and most of these contain relatively 
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little data. The 3D_RMA (clouds of points)[25], University of York 3D Face Database 

(Range images)[26], and GavabDB (Tri-Mesh)[27] are examples of 3D face model 

databases. Where 3D_RMA database was based on structured-light, being constructed 

using a camera and a projector, and generating the 3D coordinates of the surface points 

with a high precision. Glasses and dark parts of faces could not be captured. It contains 120 

individuals captured in two different sessions, separated by 2 months. Digitisations 

consisted in three shots grabbing different and limited orientations of the heads. The whole 

individuals belonged to the same Caucasian race. While 3D face database of York 

University [15] contained a reduced set of face images per subject. This database has 

images corresponding to 97 individuals. It contains 10 captures per individual including 

different poses. However, only two of these views of each individual present light facial 

expressions (happiness and frown), and one presents face occlusion.  GavabDB contains 3D 

face images of 61 people including nine images for each person. The whole set of 

individuals are Caucasian and most of them are aged between 18 to 40 years. And there are 

systematic variations over the pose and facial expression of each person. As it can be 

observed, there are not many varied changes in the image modifications among the 

different images of each individual in the databases. Some of them offer variations related 

to some aspects but not to others. However, when some database has a certain richness of 

systematic changes, the range of variation is very limited and does not consider the gender, 

the ethnic, and pose or expression variation.  

The Face Recognition Grand Challenge (FRGC)[28], which includes a substantial amount 

of 3D face data with corresponding 2D texture images is an effort to promote and advance 
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face recognition designed to support existing face recognition systems. The FRGC consists 

of a set of progressively more difficult challenging problems. Each challenge problem 

consisted of a data set of facial images and a defined set of experiments. One of the striking 

characteristics of this database is the size of the FRGC in terms of data, with 50000 

recordings. Another aspect is the complexity of the FRGC in terms of three image modes: 

high resolution still images, 3D images (range images), and multiple images of a person. 

This initiative is likely to intensify research into 3D face recognition and greatly improve 

the ability to compare and contrast various 3D face recognition methods. 

      Range image based 3D face recognition has been demonstrated to be effective in 

enhancing face recognition accuracy [29]. Since each range image only provides face data 

from a single viewpoint, instead of the full 3D views illustrated in Figure 1.1, the main 

advantages of 3D range data are explicit representation of 3D shape and association of face 

shape with real size. However, using the whole facial data may not be feasible considering 

the large computation and hardware capacity needed [30]. Therefore, it is advisable to use 

3D features with fewer parameters, such as, distinctive landmarks and some effective 

profiles. 
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Figure 1-1 3D model and 2.5D scans (a) a 2.5D scan with large pose changes; notice the 

missing data due to pose change. (b) A 2.5D frontal scan.  (c) A 3D face model. Each pair 

is the same scan/model but displayed from different viewpoints according to [31]. 

 

        Face recognition algorithm performance is typically characterized by correct 

identification rate (the accuracy), True Positive Rate (TPR), False Acceptance Rate (FAR) 

and False Rejection Rate (FRR) under closed-world assumptions. However the Facial 

Evaluation Recognition Test (FERET) strategy [9] and the Facial Recognition Vendor Test 

(FRVT) [7] give useful suggestions for the standardization of the testing protocol to 

minimize the false alarm rate. However, the number of common benchmark databases used 

to test existing algorithms has risen in the last decade, and FERET is an example of this 

databases. In contrast, the main goal of the FRVT is the capability assessments of 

commercially available facial recognition systems with respect to changes in expression, 

illumination, pose and time delay.  
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1.3 Face Recognition challenges 

 

Although a great deal of research has been dedicated to 2D and 3D face recognition 

systems and major advances have been achieved with some applications reporting high 

recognitions rate in controlled environments, the problem of recognizing faces is still a 

challenging one due to: 

 Variant head poses. While this might be critical with 2D intensity images, it is less 

of a challenge for applications utilizing 3D facial data. 

 Illumination. This is a real challenge for 2D system [32] unlike 3D recognition 

systems where it is reported that this problem is overcome because of the utilization 

of 3D facial data[33] . 

 Facial expression variation. Although several approaches have been developed to 

address this problem such as model based face recognition techniques, and 

morphable 2D/3D models [34-37], this is still a challenging problem for both 2D 

and 3D image recognition systems. It has been estimated that the face could 

generate up to 55,000 different actions [38]. 

 Occlusion. Accessories (e.g. sun glasses) or other objects (beards) can obscure data. 

 Ageing. This is clearly one of the challenges in any face recognition system, as it 

causes significant alterations of facial appearance of individuals [39]. 
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1.4 Research Aims and Objectives 

In this research, the aim is to work towards a fully automatic 3D face recognition 

system using range data from the FRGC Ver.2.0 3D dataset []  and introduce features to 

make the recognition robust to facial expression and also efficient. Figure 1.2 shows a 

block diagram of the proposed face recognition system.  

 

 

Figure 1-2 Main block diagram of the face recognition system. 

 

More specifically, the objectives of this research outlined as follows: 

 Propose a fully automated 2.5D facial feature extraction and classification 

system based on some machine learning techniques, and investigate the 

impact of different registration techniques. 

 Implement a compact representation of facial data by reconstructing a 3D 

triangulated human face containing the coordinate and connectivity 

information to simplify the process of recognition, and then perform robust 

pre-processing techniques to tackle some of the 3D image problems and 
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reduce the size of input data in order to make recognition and classification of 

3D faces more reliable and effective.   

 Feature extraction is the most difficult problem in a face recognition system 

and can be considered as the heart of the system. In other words, if a system 

is successful in representing the face image with significant features, the 

whole recognition problem is likely to be largely solved and hence our third 

objective is to extract robust and distinguishable 3D face features by 

developing a novel method to automatically determine a symmetry profile for 

face data. This is undertaken by computing the intersection between the 

symmetry plane (found by an automatic search) and the facial mesh, resulting 

in a planar curve that accurately represents the symmetry profile. 

 Determine the most effective feature points along the symmetry profile (e.g. 

tip of nose, nose bridge and bottom of nose) in order to compute other facial 

features (e.g. inner eye corners), which can then be utilized to locate the 

central region of the face and extract a set of profiles from that region. These 

feature points and profiles can be used for recognition purposes.  

 Propose an efficient classification experiment by using machine learning 

techniques, which are widely recognised as appropriate and efficient 

validation methods, to validate our approach of using extracted features 

proposed in previous work (chapters 3 and 4).  
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1.5 Outline of the Thesis 

 

This thesis is organized as follows: 

 Chapter 2 provides an extended literature review for 2D and 3D face 

recognition techniques. In addition, the FRGC database is presented in detail 

with clear outline of the machine learning algorithms. 

 Chapter 3 presents the 2.5D face recognition system based on range data. The 

interpretation of 2.5D data and the extraction of the facial region as well as 

the pre-processing of the face data and the feature extraction are explained in 

this chapter.  

 Chapter 4 describes the pre processing and facial features extraction for a 3D 

facial mesh. Also, it gives a numerical representation for these features in 

order to use them for recognition and classification purpose.  These features 

include a set of profiles and distinguishable points extracted from the central 

region of the face. 

 Chapter 5 provides a practical implementation and an evaluation of the 

proposed 3D face recognition and classification systems using machine 

learning algorithms. It compares the performances of some learning 

algorithms: Cascade Correlation Neural Networks (CCNNs), Support Vector 

Machines (SVMs) and the K-Nearest Neighbours algorithm (KNN). 
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 Concluding remarks based on the proposed work and recommendations for 

future work are presented in Chapter 6.  

1.6 Publications and papers under review 

 

 Qatawnah S, Ipson S, Qahwaji R and Ugail H (2008): "3D Face Recognition Based 

on Machine Learning", Eighth IASTED International Conference on Visualization, 

Imaging and Image Processing (VIIP 2008), pp. 362-366, Palma de Mallorca, 

Spain. 

 Qatawnah S., Ipson S. and Qahwaji R. (2011): “3D Face Identification Based On 

The Symmetry Profile Analysis On Nose Region”, The Twelfth IASTED 

International Conference on Computer Graphics and Imaging (CGIM 2011), 

Innsbruck, Austria. (Under review) 

 Qatawnah S., Ipson S. and Qahwaji R. (2011): “3D facial features extraction under 

varying facial expression and classification using machine learning techniques” The 

Eighth IASTED International Conference on Signal Processing, Pattern 

Recognition, and Applications (SPPRA 2011), Innsbruck, Austria. (Under review) 

 

 

 

 

 

http://www.iasted.org/conferences/location-Innsbruck2011.html
http://www.iasted.org/conferences/location-Innsbruck2011.html
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Chapter two 

2. Literature Review 

 

Although major advances have been made over the last decade in the automatic face 

recognition field such as the development of graphics techniques for manipulating images 

of faces, and the increased number of  face recognition systems which has achieved a high 

recognition rates under controlled conditions, the problem is still considered hard to solve 

and continues to attract substantial research input from a number of different disciplines 

and areas including pattern recognition, machine learning and computer graphics. 

Evaluations such as the FRVT [32, 40] demonstrate that the current state of the art in face 

recognition is not yet sufficient for the more demanding applications. However, among 

many biometric techniques for human identification, face recognition is still considered of 

great importance due to its low requirements for setup and equipment, so there is 

significant potential demand for improved performance in face recognition.  

       In the following subsections, very common approaches and terminologies in the area of 

face recognition would be often mentioned. In Section 2.1, some of 2D image based face 

recognition methodologies are described and many of 3D face recognition approaches are 

given in Section 2.2.  An overview of the Face Recognition Grand Challenge (FRGC) 

database is presented in Section 2.3 and in section 2.4 some of machine learning techniques 

are discussed. 
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2.1 2D face recognition systems 

 

Research on face recognition (FR) based on 2D intensity images, has been conducted for 

more than three decades. As a result the current status of 2D FR is well established and 

advanced compared with the more recent 3D face recognition. A wide range of 2D 

recognition algorithms, commercial applications and image databases for testing and 

evaluation purposes are available. A comprehensive online source of information is 

available at the face recognition home page
1
. Many 2D image based face recognition 

methodologies are available in the literature, which can be broadly categorized as either 

appearance based or model based approaches.  

2.1.1  Appearance Based Approaches 

In this section we review methods of face recognition that use image subspace projection in 

order to compare face images by calculating image separation in a reduced dimensionality 

space.  The appearance based face recognition techniques depend solely on 2D intensity 

images without use of 3D models of the face. Thus, the face is actually represented in terms 

of a relatively small number of basis images such as Eigenfaces. Among many existing 

linear approaches, Principle Component Analysis (PCA)[41], Independent Component 

Analysis (ICA)[42, 43] and Linear Discriminant Analysis (LDA)[44], are considered 

powerful techniques in the field of face recognition. PCA has become a standard to which 

other systems are often compared, as well as often being used for preliminary dimensional 

reduction in other methods of face recognition. It finds a set of basis vectors that are 

                                                 
1
 http://www.face-rec.org 

http://www.face-rec.org/
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uncorrelated to best represent the sample images with a small number of vectors, and so the 

comparison  and recognition tasks are performed in a lower dimension space  called the 

feature or face space. In principle, statistical approaches generally do not extract local facial 

features but instead follow a global approach to represent faces according to their whole 

appearance. 

     Turk and Pentland [41] were the first to apply PCA to face recognition. PCA extracts 

statistically significant information defined as eigenvectors of the covariance matrix of the 

set of training images, which are then used to project test faces onto a lower dimension 

space (face space) for reconstruction and recognition purposes. To identify a test image, it 

is projected onto the face space to obtain the corresponding set of weights. By comparing 

the weights for the test image with the set of weights of the faces in the training set, the face 

in the test image can be identified. The transformation onto the face space is done based on 

the eigenvectors corresponding to the largest eigenvalues. On the other hand, eigenvectors 

corresponding to the smallest eigenvalues are usually discarded or considered as noise, and 

not taken into consideration during the identification process. PCA is considered the most 

descriptive representation in terms of least square reconstruction errors. In addition it is 

easy to implement, yet it is not the most discriminative for class separation. However, 

several extensions have been made to deal with pose changes[45] and probabilistic 

subspace[46].  

     While PCA utilizes first and second-order statistics, ICA [43] explores higher order 

statistics. ICA has been successfully implemented in the area of face recognition and face 

feature extraction. However one of its drawbacks is its iterative and time-consuming nature 
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compared to PCA. In addition, convergence is sometimes difficult to achieve. Bartlett et al. 

[47] extended the work of [48] by implementing a fast ICA algorithm to reduce 

computation time.  

         Unlike the unsupervised methods PCA and ICA that construct the face space without 

using the face class information, the supervised LDA has also been proposed for face 

recognition. In LDA the goal is to find an optimal way to represent the face vector space to 

maximize the discrimination between different face classes. This is achieved by defining 

classes with different statistics, and hence allocating different classes for images in the 

learning set. Exploiting class variation information tends to give better recognition rates as 

illustrated by Belhumeur et al [44]. 

     Various other linear subspace analysis techniques have been developed based on the 

above techniques and used in face recognition. Yang et al. [49] treated an image as a 2D 

matrix and developed a two dimensional PCA algorithm. LDA has been generalized into 

2D Fisher Discriminant Analysis and applied to face recognition by Kong et al [50]. While 

linear subspace analysis techniques are an approximation of the non-linear face recognition 

manifold, other direct non-linear schemes have been also used in the context of face 

recognition including Neural Networks (NN) and Kernel Principle Component Analysis 

(KPCA), which applies nonlinear mapping from the input space to the feature space by a 

suitably chosen kernel functions and corresponding parameters [6, 51]. Small 2D 

Appearance based image face recognition system are still encountering difficulties due to 

the complex facial variations resulting from the inherent problems of face recognition (e.g. 

lighting, facial poses and facial expression). One proposed solution to this limitation is 
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using new methodologies to synthesise other face images from existing training sampling 

which simulate various facial expression and conditions [52]. 

2.1.2   Model Based Approaches   

 

An alternative to global statistical approaches which represent faces according to their 

whole appearance, model based techniques tend to construct models of human faces that 

capture facial variations. A model construction of a face is carried out by localizing certain 

facial feature (eyes corners or centres, nose trails, noses tip, etc.) and deriving metric 

measurements (parameters) between these elements. For recognition purposes a set of 

derived parameters are matched against the parameters of a known faces „gallery‟. An early 

example of this approach was proposed by Kanade [53] where he utilized angles and 

distances between facial features such as eyes, nose and mouth to represent faces. Although 

some advances have been made in the automatic localization of facial points [54, 55], it is 

still a challenging problem in the area of 2D images based face recognition due to inherent 

problems(e.g. lightening, facial poses, and facial expression), especially in cluttered scenes 

and occluded images. 

      Coots et al.[21, 36] developed 2D morphable face models to address facial variations by 

analyzing statistical variations of shape and texture respectively and utilized these for face 

recognition purposes. Blanz and Vetter [56] proposed more advanced  model based face 

recognition techniques by using 3D morphable face models to capture the true 3D geometry 

of the facial surface and used it along with facial appearance information for carrying out 
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comparisons between faces which appears  to be a better representation of human faces, 

and give better identification rates than the 2D morphable face models. 

      In almost all model based schemes three main requirements need to be achieved, first of 

all the model construction, second fitting the model to give face image by fine-tuning  the 

model and work  out the parameters, and finally using these parameters to calculate the 

similarity between the query face and the faces in the gallery. In addressing these 

requirements various methodologies have been used. For example, faces have been 

represented as labelled graphs by Wiskott et al.[5], with graph nodes positioned at certain 

facial feature points, while recognition was carried out based on Gabor wavelet graph based 

similarity function. 

     Other approaches for constructing models have been used such as the Active 

Appearance Model (AAM)[21, 36, 57], where the model incorporates both shape variation 

and appearance variation to synthesize face images. In order to carry out comparisons a 

matching between a query image and the synthesized model is performed which results in a 

set of parameter values which best fit the image to the model.  

2.1.3 Advantages and disadvantages of 2D image based systems  

 

In addition to the above two main categories of 2D image based recognition techniques, 

various other approaches have been used to address the problem, including Local Feature 

Analysis[58], Component based schemes [59] and Statistical models based schemes such as 

Hidden Markov Models (HMM)[60] and Gaussian Mixture Models [61]. The availability 

of 2D image based algorithms; the relatively-low prices of equipments needed for setting 
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up such systems, and the major advances that have been achieved in this area, in addition to 

the legacy of 2D images database used at airports, by police, etc. have made 2D image 

based application widely available and popular at both academic and commercial levels 

with a number of popular commercial application such as Identix [62] and Cognitex [63]. 

 

      Despite the above advantages, pose variations, lighting conditions and facial expression 

variations are still considered major factors that degrade the performance of the current 2D 

face recognition systems[64, 65]. Not only this, but it has been demonstrated that the 

performance of some of the very popular commercial 2D image based applications is very 

much dependant on the size of the database, and the performance time is as important as 

accuracy for some face recognition applications [64].  

  

2.2 3D face recognition techniques 

 

Although rather limited in comparison with the wealth of research applied to 2D face 

recognition, there are a number of investigations that have demonstrated how geometric 

facial structure can be used to aid recognition. 3D face recognition has attracted more 

attention in recent years due to two major factors. Firstly, the inherent problems with 2D 

face recognition systems which appear to be very sensitive to facial pose variation, variant 

facial expressions, lighting and illumination. On the other hand, for example, Xu et al. [66] 

compared 2D intensity image against depth images and concluded that depth map give a 

more robust face representation, because intensity images are significantly affected by 
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changes in illumination. The second reason is the recent developments in 3D acquisition 

techniques, such as 3D scanners, use of infrared and other technologies which have made 

obtaining 3D data much easier than it was before. For 3D face recognition applications, two 

main requirements have to be met. The first requirement is to provide a powerful 

representation modelling technique for 3D facial image. The second is to provide a 

matching algorithm or criterion to recognize and distinguish between these models. While 

the second requirement has been subject to extensive investigation and research, the first 

requirement is still considered an open research area. A recent paper by Bowyer et al. 

[67]covered this topic in detail by presenting a comparative survey of 3D face recognition 

algorithms. They concluded that 3D face recognition has the potential to overcome 

limitations of its 2D counterpart. In particular, 3D shape data of a face could be used to 

correct the corresponding 2D facial image, taken with a non-standard pose, to a standard 

pose.  

 

      Compared with 2D face recognition, face recognition based on 3D information is 

relatively new in terms of literature, algorithms, commercial applications and datasets used 

for experimentation[68]. The number of people represented in datasets for 3D face 

recognition experiments didn‟t reach 100 until 2003[67], with little experimentation 

explicitly incorporating pose and expression variations.  For a small database consists 18 

different images of 5 people, Cartoux et al. [69] reported 100% recognition rate when 

segmenting a range image based on principle curvatures, and allocating the symmetry 

profile of the face, which was used for normalizing and matching faces against each other.  
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     Gordon [70] takes a feature based approach, based on both depth and curvature 

information and states that curvature data is easily derived from the range data, and has 

substantial advantages. It has the potential for high accuracy in describing surface based 

features and it is well suited to describing properties around facial regions such as the 

cheeks, forehead and chin. It is also viewpoint invariant. Gordon uses facial feature 

localisation and absolute measurements (millimetres rather than pixels) to calculate a set of 

feature descriptors from the 3D data. The usefulness of a feature for the purpose of 

classification is dependent on its ability to discriminate between people. To evaluate the set 

of features, a value is calculated for Fisher‟s linear discriminant (FLD) indicating the level 

of discrimination for each feature. Gordon proposed an approach with 12 features but the 

best score was achieved using the following six features: head width, nose height, nose 

depth, nose width, distance between the eyes and the maximum curvature of the nose ridge. 

Gordon created a face recognition system using a simple Euclidean distance measure in 

feature space. Several combinations of features were tested using a database of 24 facial 

surfaces (8 different people), defining recognition to be correct when the subject was 

selected as the top match from the database (lowest distance measure). Results ranged from 

70.8% to 100% correct recognition (accuracy). 

       

      Zhang et al. [71] reported a profile based matching system. Their approach starts by 

first identifying the symmetry plane (assuming that the facial data is symmetric), then 

computing the symmetry profile. Based on the mean curvature plot of the facial surface and 

the symmetry profile, they recovered 3 feature points on the nose area to define what they 

called the facial intrinsic system (nose tip, nose bridge and point at the lower nose edge) 
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which were used to standardize the faces for comparison purposes. For individuals with a 

normal expression, the Equal Error Rate (EER) and the recognition rate reported are 0.8% 

and 96.9% respectively, but this was only tested on 32 individuals. The equal error rate 

value indicates that the proportion of false acceptances is equal to the proportion of false 

rejections. The lower the equal error rate value, the higher the accuracy of the biometric 

system. 

 

      Lee and Milios [72] segmented the range image into convex regions based on the sign 

of the mean and Gaussian curvature and created an Extended Gaussian Image (EGI). The 

matching is done by correlating the EGIs of the probe image and images in the gallery. EGI 

[73] describes the shape of an object by distribution of surface normal over the object 

structure. Tanaka et al. [74] also presented a correlation based face recognition approach 

based on the analysis of principal curvatures and their directions. They calculate the 

maximum and minimum principal curvatures on a face, and extract valley and ridge lines 

from the curvatures. Then, EGI of ridge and valley lines are constructed by mapping each 

of principal direction vectors onto two unit spheres for ridge and valley lines. A spherical 

correlation coefficient [75] was used to estimate similarity between EGI‟s of two faces. The 

algorithm was tested with 37 face range images and 100% correct recognition (accuracy) 

was reported. 

 

       Pan et al. [76] uses a similar approach to [77] to detect the symmetry plane of a facial 

data, where it is assumed that the symmetry plane of an object essentially passes through 

the centre of mass of the object. Planer curves resulting from the intersection between the 
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allocated symmetry plane and the facial surface are used for matching between faces. In 

order to speed up the computation they had to simplify the face images to 2000 vertices. 

 

      Pose correction using Romdhani et al. 3D morphable face model technique [78] 

decreases the error rates when applied to the FERET database [9]. Blanz et al [79], used a 

3D morphable face model for identification of 2D face images. First they estimated the 

lighting direction and face shape. To minimising differences to two dimensional images 

they iteratively changed shape and texture parameters of the morphable face models. Then 

these parameters were taken as features for recognition, resulting in an 82.6% correct 

recognition on a test set of 68 people. The same technique has been utilised in the Huang et 

al. [80] component based face recognition approach using 3D morphable models from 2D 

images to get better recognition accuracy when pose and illumination are unknown. The 

face images are decomposed into smaller components connected by a flexible geometric 

model, to use them in an SVM approach. Huang et al. deal with the problem of obtaining a 

large dataset for training, which essential, by synthesising many 2D training images from 

3D face models under different pose and lighting conditions. Initially, the 3D morphable 

model is generated from three 2D images before many face images are synthesised. Then 

the images are split into components and used to train a second-degree polynomial SVM 

classifier. A recognition accuracy of 90% was reported. 

 

        Zhao and Chellappa [81] used a generic 3D face model which is scaled and aligned to 

match a 2D target image. If the head is not orientated appropriately (frontal-parallel view) 

they used the generic 3D face model with light source direction and pose estimations, to 
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compensate by producing a prototype image of the corresponding frontal pose. Face 

recognition is then performed on this prototype image. Zhao and Chellappa performed their 

experiments on the Weizmann database [82] and increased the accuracy from 

approximately 81% (correct match within rank of 25) to 100%. 

 

      Beumier and Acheroy [83] make use of 3D surface information, by performing face 

recognition using a surface matching approach on the 3D facial structure. These 3D facial 

surfaces are obtained from a single image taken of a person‟s face illuminated by structured 

light (projected light stripes). The 3D structure of the face is computed by measuring the 

deformation of the stripes across the face. Some orientation normalisation is then required 

to ensure a consistent front-parallel view. This normalisation is performed by generating 

some initial parameters for the three angles of rotation and three directions of translation 

(based on nose detection, forehead and cheek angle), before refining the search until the 

minimum distance is found between the two facial surfaces being compared. They used 

various methods of matching the 3D facial surfaces including, extracting 15 profiles, by 

taking the intersection of the facial surface with evenly spaced vertical planes. These profile 

curves are compared by dividing the area between the curves by the arc length, giving a 

distance measure. Beumier and Acheroy carried out verification tests on a database of 120 

3D images for 30 people, giving an EER of between 9% and 13% when using automatic 

alignment, but dropping to between 3.25% and 6% when manual alignment is used. 

Another method they used was to take one central profile and two lateral profiles. These 

were converted into one-dimensional vectors of local curvature values. The left and right 

lateral profiles were averaged to give a mean lateral profile. Facial surfaces were then 
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compared by calculating the differences between the curvature values of the central and 

mean lateral profiles. This method gave improved EERs of between 7.25% and 9% on the 

automatically aligned surfaces and between 6.25% and 9.5% on the manually aligned 

surfaces.  

     Similarly, Nagamine et al. [30] tackled face recognition by exploring facial profiles. 

They used horizontal section (extracted as an intersection of a face surface with a plane 

parallel to X-Z plane), vertical section (extracted as an intersection of a face surface with a 

plane parallel to Y-Z plane) and circular cross section (extracted as an intersection of a face 

surface with a cylinder (axis on Y-Z plane and parallel to Z-axis)). They extracted five 

feature points, and used them to standardize the face pose. For comparison between faces, 

Euclidean distance matching between feature vectors of different faces was used. It was 

concluded that vertical profiles that pass through the central region of the face give better 

recognition rates, circular sections which cross near the eyes and part of the nose also show 

some distinctiveness, while the distinctiveness of the horizontal profiles are not remarkable 

in themselves. 

 

      Pan and Wa [84] also explored facial profiles and surfaces from range images, and used 

them for recognizing faces. First, they extracted the symmetry plane of the face based on 

reflective symmetry hypothesis. Similar to [71], they then used two horizontal profiles that 

pass through the nose region, and forehead since they are sensitive to variations of facial 

expression. For pose standardization and alignment they used the ICP algorithms[85]. Then 

a statistical model was built to represent different regions on the facial surface and 

incorporated into a weighted distance function to measure the similarity of surfaces.  



 

36 

 

 

     Wang et al.  [84] tackled face recognition by utilizing both 3D images and 2D images. 

Using both types of images they extracted four 3D feature points and ten 2D feature points 

by means of point signatures[86], and stacked Gabor filter responses [5] respectively. Each 

feature point extracted was associated with a feature vector containing values of 3D and 2D 

features. In order to identify feature points in test images, PCA was applied using a training 

set with feature points manually labelled to construct the feature space. For the purpose of 

matching between faces, they applied two classifiers, one based on a similarity function and 

the other based on a support vector machine[87].  

 

     Chang et al. [88] examined the benefits of using 3D and 2D+3D approaches over 2D 

using PCA on both 2D intensity images and 3D depth images, and fused 2D and 3D results 

to obtain the final performance. They had previously made use of this multi-modal data 

showing how both 2D and 3D data can be utilised to greater effect than using either set of 

data separately. Results were presented using a database of 275 subjects in an 

approximately frontal pose for a single probe database; they achieved recognition rates of 

89%, 94.5%, and 98.5% for 2D, 3D, and 2D+3D respectively. This clearly indicates an 

increase in performance can be achieved by using 3D data. Their results show that 

appearance based methods such as PCA can give good performance for 3D face 

recognition. However, they selected landmark points manually (the eye centres in 2D, and 

two eye tips and centre of lower chin in 3D) for facial pose normalization. In addition, their 

approach requires good facial alignment before matching and requires interpolation or 
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filtering prior to PCA encoding to handle missing data due to self-occlusion or sensor drop-

outs.  

 

      Hasher et al.[89, 90] used PCA and Independent Component Analysis (ICA) to analyze 

range images in a similar way to 2D intensity images and estimated probability models for 

the coefficients. For registration, and pose standardization they used the nose tip and the 

nose bridge. They used a database of 37 individuals with images of 6 different facial 

expressions for each [89].  

 

      Bronstein et al. [91] used a photometric stereo technique to estimate facial surface 

shape from several 2D images, acquired under varying lighting conditions. The surface 

gradient is used by a Fast Matching on Triangulated Domains (FMTD) algorithm to 

produce a map of geodesic distances across the facial surface without the need to 

reconstruct an actual 3D face model. Moments of a canonical form of this geodesic map are 

extracted as a face signature and compared using the Euclidean distance metric. Taking 

images of seven subjects from the Yale face database [92], Bronstein et al. were able to 

show that within-class and between-class standard deviations were improved by an order of 

magnitude, compared with the direct comparison of facial surface gradients.  

 

      Another approach was taken by Chua et al.[93], who treated the face recognition 

problem as a 3D recognition problem for non-rigid surfaces. The characteristic they use to 

identify the rigid areas of faces and ultimately to distinguish between faces is the point 

signature, which describes the depth values surrounding the local region of a specific point 
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on the facial surface. By observing range data for various facial expressions, they noted that 

certain areas of the face remain rigid while other areas can deform significantly. An attempt 

was made to extract these rigid areas of the face for recognition, thus creating a system that 

is invariant to facial expression. The first stage of point signature based recognition is the 

registration of 3D faces, performed by finding 3 points on each of two facial surfaces for 

which signatures of corresponding points match. The distances between the 3 points on one 

face and the 3 points on the other face must be within an error tolerance. Once the three 

corresponding points on each face have been found the two facial surfaces can be aligned. 

Distances between the two facial surfaces are then measured according to a Gaussian 

distribution model and areas with a low distance measure are extracted as rigid areas. Two 

facial surfaces are compared by extracting the rigid areas of the face then generating point 

signatures for all points on the remaining facial surface. This set is reduced to a set of 

unique point signatures, which are then compared to the corresponding point signatures on 

the other facial surface. Chua et al. gathered results from 30 range images taken from 6 

different people (four different expressions for each person, plus one used as a query). The 

correct scores ranged from 78.85% to 93.75%, the highest incorrect score being 76.92%.  

 

      Coombes et al. [94] presented a method of mathematically describing a facial surface 

shape, based on differential geometry. Curvature analysis is performed on a depth map of 

the facial surface, to produce segmentation into one of eight fundamental surface types. In 

their work the depth map of a facial surface is created from a specific viewpoint, therefore a 

prerequisite is some 3D facial alignment. They also describe several methods of computing 

the curvature of the facial surface and indicate the advantages of their proposed method, 
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which takes into account the possible error due to lack of detail when surfaces make a large 

angle to the viewpoint. Coombes et al. suggest that two faces may be distinguished by 

comparing which regions of the two faces are classified as the various surface types. Prior 

to two facial surfaces being compared, they must be registered. This is done by manually 

selecting several corresponding feature locations on each face, which are then used to scale, 

translate and rotate, so that the facial surfaces are aligned. Using this method, 3D facial 

surfaces have been produced for average female and average male faces, showing distinct 

differences in chin structure, nose shape, forehead shape and cheek bone position. A 

quantitative analysis of the average male and average female facial surfaces shows that the 

main differences are of significance in specific areas of the face.  

 

        Bronstein et al. [95] have investigated the use of texture mapped 3D face models 

focusing on expression invariant face recognition using geometric invariants of the face 

extracted from 3D face data for non-rigid surface comparisons. By using isometric surface 

signatures known as bending-invariant canonical forms, generated by dimensionality 

reduction through multidimensional scaling, they compare signatures by a weighted 

Euclidean distance metric. Testing the method on a database of 147 subjects, the method 

was shown to outperform the standard eigen-decomposition method for 10 identification 

operations. 

      The generalized Hausdorff distance, defined in Huttenlocher et al. [96] for partial 

matching, was employed by Achermann and Bunke [97-99]  to investigate face recognition 

performances using both 3D point and voxel array representations. This enabled the 

examination of trade-offs between performance and computation time. Their best 
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probability of recognition on a database of 24 subjects with 10 different facial angles was 

obtained using a Hausdorff fraction of 0.9. This resulted in a recognition rate of 99.2% for 

the point representation and 100% with a 2.5% reject rate for the voxel representation. The 

reject rate represents cases in which ties occurred in the experiment due to data quantization 

caused by using the voxel array.  

 

       Moreno et al. [100] extract 86 feature vectors from segmentation of the face using 

Gaussian and mean curvatures. Each feature is given with a weight determined using Fisher 

coefficients [101]. 420 3D images of 60 individuals were tested, and the first 35 ranked 

features were selected to represent faces. They reported a 78% correct recognition rate 

when the best match was selected and a 92% recognition success rate when the five best 

matches were selected.  

 

         The Razdan et al. [102, 103] approach is a combination of feature points, profile 

curve, and partial face surface matching. Their proposed technique divided into three parts: 

data acquisition, feature extraction, and face recognition. The 3D dataset for this project 

was acquired using a combination of commercial scanning technologies and research 

software applications developed at Partnership for Research in Spatial Modelling (PRISM) 

laboratory. They represent 3D data by a triangle mesh. The feature extraction phase of face 

classification uses curvatures, registration of faces, finds symmetry planes, critical points, 

and profile curves, nose and biometrically relevant sub-face areas. For the recognition 

phase, they make comparison between two faces using all the facial features indicated 

earlier. The test set for authentication included 117 different people with 421 scans 
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including different facial expressions. They achieved EERs of 0.065% for normal faces and 

1.13% for faces with expressions. Verification rates of 100% in normal faces and 93.12% 

in faces with expressions at 0.1% FAR were reported. For identification, the experiments 

achieved a 100% rate in normal faces and 95.6% in faces with expressions [103].  

 

          Elyan and Ugail  [104] presented a method to determine the symmetry profile of the 

face. They computed the intersection between the symmetry plane and the facial mesh and 

then computed a few feature points along the symmetry profile in order to allocate the 

central region of the face and extract a set of profiles from that region. In this approach, 

they assume that the symmetry profile passes through the tip of the nose. To locate the tip 

of the nose they fit a bilinear blended Coon‟s surface patch. Coon‟s patch is simply a 

parametric surface defined by four given boundary curves[104]. These four boundaries of 

the Coon‟s patch are determined based on a boundary curve that encloses an approximated 

central region of interest, which is simply the region of the face that contains or is likely to 

contain the nose area. This region is approximated based on the centre of the mass that 

represents the 3D facial image. In total 365 images were used for testing and were correctly 

identified which corresponds to an accuracy recognition rate equal to 86.90%. 

 

     Despite all this prior work, there are still a number of areas that 3D face recognition 

research needs to address. For registration, automatic landmark localization, artefact 

removal, scaling, and elimination of errors due to occlusions, glasses, beard, etc. need to be 

worked out. Ways of deforming the face without losing discriminative information might 

also be beneficial. It is likely that information fusion is the future of 3D face recognition. 
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There are many ways of representing and combining texture and shape information. 

Publicly available 3D datasets are necessary to encourage further research on these topics. 

 

      Table 2-1 gives a comparison of selected elements of algorithms reported in this 

literature that use 3D facial data to recognize faces. Most papers report performance as the 

recognition rate, although some report the equal error rate or verification rate at a specified 

false acceptance rate. Previously the experimental component of work in this area was 

rather modest and the number of persons represented in experimental data sets did not reach 

100 until 2003 [67]. Also only a few works have dealt with data sets that explicitly 

incorporate pose and/or expression variation [100, 105-107]. However, just comparing 

different 3D face recognition techniques is very challenging for a number of reasons. 

Firstly, there are very few standardized 3D face databases which are used for benchmarking 

purposes. Thus, the size and type of 3D face datasets vary across different publications. 

Secondly, there are differences in the experimental setups and in the metrics which are used 

to evaluate the performances of face recognition techniques (see Table 2-1 for details).   
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Table 2-1 Summary of recognition algorithms using 3D facial data 
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Cartoux et al. 
[108], 1989 

18 N/A Profiles, surface 
Curvature based 

Nearest Neighbor 
100% Yes No 3D 

Lee et al. [72],  

1990 
6 256 × 150 EGI Correlation N/A No Some 3D 

Gordon, 

[70],1992 
26 N/A curvatures 

Euclidean 

nearest neighbor 
100% Yes No 3D 

Nagamine et 

al. [30],1992 
160 256× 240 Multiple profiles 

Euclidean nearest 

neighbor 
100% Yes No 3D 

Tanaka et 

al.[74],1998 
37 256 × 256 

curvatures based 

EGI 

Fisher‟s spherical 

Correlation 
100% No No 3D 

Zhao and 

Chellappa 

[11],2000 

N/A N/A 
3D model + 

Texture 

Produce a 

prototype images 
81% N/A N/A 3D 

Achermann et. 

al.[97], 2000 
240 75 × 150 Point set Hausdorff distance 100% Yes No 3D 

Beumier et 

al.[109], 2001 
120 N/A 

2D and 3D 

vertical profiles 

Minimum distance, 

fusion 

1.4% EER 

 
Yes No 3D +2D 

Wang et al. 
[84], 2002 

300 128 ×512 

Feature vector 

point signature 
Gabor features 

PCA+SVM >90% No Yes 3D +2D 

Bronstein et al. 

[110], 2003 
147 

2250 

points 

Texture+ Range 

images 

PCA , nearest 

neighbor 
Not reported Yes Yes 3D +2D 

Chang et al. 

[111],2003 
278 480×640 

Texture+ Range 

image 
PCA 

99% 3D + 2D,  

93% 3D only 
Yes No 3D +2D 

Hesher et al. 

[89],2003 
222 242 × 347 Range image 

ICA or PCA, 

nearest neighbor 
97% Yes No 3D 

Moreno et al. 

[100], 2003 
420 

2.2K 

points 

Curvature, line,  

region features 

Euclidean nearest 

neighbor 
78% Yes Some 3D 

Pan et al [99], 

2003 
360 3K points 

Point set, range 

image 
Hausdorff and PCA 3–5% EER N/A N/A 3D 

Chang et al. 

[111], 2003 
278 480×640 

Texture+ Range 

image 
PCA 

99% 3D + 2D,  

93% 3D only 
Yes No 3D +2D 

Tsalakanidou, 

[112] 2003 
80 100×80 Range image PCA 99% N/A N/A 3D +2D 

Xu et al. [113], 

2004 
120 and 30 N/A 

Point set + 

feature vector 
Minimum distance 

96% on 30, 

72% on 120 

 

N/A N/A 3D 

Lee et al.[114], 
2004 

84 240 × 320 Range, curvature 
Weighted 
Hausdorff 

98% Yes No 3D 

Lu et al. 

[115],2005 
196 240 × 320 Surface mesh ICP, TPS 89% N/A N/A 3D 

Lee et al.[116], 

2005 
70 320×320 depth map 

Feature extraction, 

nearest neighbor 
94% Yes No 3D 

Bronstein et 

al.[106], 2005 
220 N/A Point set Canonical forms 100% N/A N/A 3D 

Lee et al. 

[116], 2005 
200 Various Feature vector SVM 96% Yes No 3D 

Pan et al. 

[117],2005 
720 480 × 640 Range image PCA 95% N/A N/A 3D 

Zhang et al. 

[71],2006 
32 

Not 

available 
Range images mean curvature 96.9% No No 3D 

Razdan et 

al.[103], 2007 
421 N/A triangle mesh Spin Image >93.12% N/A Yes 3D 

Qatawnah et 

al.[118],2008 
56 480 × 640 Range images 

Feature extraction, 

CCNN, SVM and 

KNN 

100% Yes Yes 3D 

Elyan and 
Ugail  

[104],2009 

144 N/A triangle mesh 
Coon‟s surface 

patch 
86.9% No Yes 3D 
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        In this literature, we view our contribution as proposing a brief assessment for existing 

3D facial recognition techniques. The recognition rates reported by the various works listed 

in Table 2-1 showed that a number of factors are combined to make direct comparisons 

problematic in most cases. Among these factors are different sizes of data set, different 

inherent levels of difficulty of the dataset, and different methods of experimental design. 

The results reported by Xu et al.[113]  give an example of how dramatically the size of a 

dataset can affect reported performance. They found 96% recognition rate using a 30 

person dataset, but this fell to 72% when using a 120 person dataset. Moreover, the reported 

performance is also greatly dependent on the inherent difficulty of the data. The presences 

of expression variation is one element of increased difficulty, but pose variation, time lapse 

between gallery and probe, presence of eyeglasses, and other factors are also important. 

The design of the experiment also influences the reported performance.  

 

2.2.1 3D Face Recognition Techniques 

 

Since the end of the last decade interest in 3D face recognition revived increased rapidly. In 

the following sections we have divided 3D face recognition techniques broadly into three 

categories: surface based, statistical based, and model based approaches.  

2.2.1.1 Surface based approaches 

Surface-based approaches use directly the surface geometry that describes the face. These 

approaches can be classified into those that extract either local or global features of the 
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surface (e.g. curvature), those which are based on profile lines and those which use distance 

based metrics between surfaces for 3D face recognition. In the following, some of local 

method approaches are given in Section 2.2.1.1.1 while global methods are described in 

Section 2.2.1.1.2. 

2.2.1.1.1 Local methods 

One approach for 3D face recognition uses a description of local facial characteristics based 

on Extended Gaussian Images (EGI) [119]. Alternatively the surface curvature can be used 

to segment the facial surfaces into features that can be used for matching [70]. Another 

approach is based on 3D descriptors of the facial surface in terms of their mean and 

Gaussian curvatures [100] or in terms of distances and the ratios between feature points and 

the angles between feature points [116]. Another locally-oriented technique is based on 

using point signatures, an attempt to describe complex free-form surfaces, such as faces 

[120]. The idea is to form a representation of the neighbourhood of a surface point. These 

point signatures can be used for surface comparisons by matching the signatures of data 

points of a “sensed” surface with the signatures of data points representing the model‟s 

surface [93]. To improve robustness towards varying facial expressions, those parts of the 

face that deform most non rigidly (mouth and chin) are discarded so only more rigid 

regions (e.g. forehead, eyes, nose) are used for face recognition.  

2.2.1.1.2 Global methods 

 

Global surface-based methods are methods that use the whole face as the input to a 

recognition system. One of the earliest systems is based on first locating the face‟s plane of 
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bilateral symmetry and to use this for aligning faces [69]. The facial profiles in this plane 

are then extracted and compared. Faces can also be represented based on the analysis of 

maximum and minimum principal curvatures and their directions[74]. In these approaches 

the entire face is represented as an EGI. Another approach uses EGIs to summarize the 

surface normal orientation statistics across the facial surface [121]. A different type of 

approach is based on distance-based techniques for face matching. For example, the 

Hausdorff distance has been used extensively for measuring the similarity between 3D 

faces [98, 99]. Other approaches propose preliminary face alignment using rigid 

registration algorithms such as ICP [85]. After registration the residual distances between 

faces are measured and used to define a similarity metric [122]. In addition, surface 

geometry and texture can be used jointly for registration and similarity measurement in the 

registration process, and measures not only distances between surfaces but also between 

texture [123]. Another common approach is based on the registration and analysis of 3D 

profiles and contours extracted from the face [83, 124, 125]. This technique can also be 

used in combination with texture information [109]. 

        Finally, hybrid techniques that use both local and global geometric surface information 

can be employed. In one such approach, local shape information in the form of Gauss-

Hermite moments is used to describe an individual face along with a 3D mesh representing 

the whole facial surface. Both global and local shape information are encoded as a 

combined vector in a low-dimensional PCA space, and matching is based on minimum 

distance in that space [113].  
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2.2.1.2 Statistical approaches 

 

Statistical techniques such as PCA are widely used for 2D facial images. More recently, 

PCA-based techniques have also been applied to 3D face data [89, 126-128]. This idea can 

be extended to include multiple features into PCA such as colour, depth or a combination of 

colour and depth [112]. These PCA-based techniques can also be used in conjunction with 

other classification techniques such as embedded hidden Markov models (EHMM) [129]. 

Other approaches are based on the use of Linear Discriminant Analysis (LDA) [130] or 

Independent Component Analysis (ICA) [131] for analyses of 3D face data. 

        

      All of the statistical approaches discussed so far do not deal with the effects of 

variations in facial expressions. In order to minimize these effects, several face 

representations have been developed which are invariant to isometric deformations [95] 

such as those resulting from different expressions and postures of face. The obtained 

geometric invariants allow mapping 2D facial texture images into special images that 

incorporate the 3D geometry of the face. These signature images then decomposed into 

their principle components [95]. One such approach is based on flattening the face onto a 

plane to form a canonical image which can be used for face recognition [95, 106]. These 

techniques rely on multi-dimensional scaling (MDS) to flatten complex surfaces onto a 

plane [132]. Such an approach can be combined with techniques such as PCA for face 

recognition [117]. 
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2.2.1.3  Model based approaches 

The key idea of model based techniques for 3D face recognition is the so-called 3D 

morphable model. In these approaches, the appearance of the model is controlled by the 

model coefficients. These coefficients describe the 3D shape and surface colours (texture), 

based on the statistics observed in a training dataset. Since 3D shape and surface texture are 

independent of the viewing angle, the representation depends little on the specific imaging 

conditions [79]. Such a model can then be fitted to 2D images and the model coefficients 

can be used to determine the identity of the person [12]. While this approach is fairly 

insensitive to the viewpoint, it relies on the correct matching of the 3D morphable model to 

a 2D image that is computationally expensive and sensitive to initialization. To tackle these 

difficulties, component-based morphable models have been proposed [80, 133]. Instead of 

using statistical 3D face models it is also possible to use generic 3D face models. These 

generic 3D face models can then be made subject-specific by deforming the generic face 

model using feature points extracted from frontal or profile face images [134, 135]. The 

resulting subject-specific 3D face model is then used for comparison with other 3D face 

models. A related approach is based on the use of an Annotated Face Model (AFM) [107]. 

This model is based on an average 3D face mesh that is annotated using anatomical 

landmarks. This model is deformed none rigidly to a new face, and the required 

deformation parameters are used as features for face recognition.  A similar model has been 

used in combination with other physiological measurements such as visible spectrum and 

thermal infrared sensors [136].  
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         A common problem of 3D face models is caused by the fact that 3D capture systems 

can only capture parts of the facial surface. This can be addressed by integrating multiple 

3D surfaces or depth maps from different viewpoints into a more complete 3D face model 

which is less sensitive to changes in the viewpoint [115]. Instead of using 3D capture 

systems for the acquisition of 3D face data, it is also possible to construct 3D models from 

multiple frontal and profile views [137]. 

          In summary, just comparing different 3D face recognition techniques is very 

challenging for a number of reasons. Firstly, there are very few standardized 3D face 

databases which are used for benchmarking purposes. Thus, the size and type of 3D face 

datasets varies across different publications. Secondly, there are differences in the 

experimental setups and in the metrics which are used to evaluate the performances of face 

recognition techniques.   

 

2.2.2 Comparison between 2D and 3D face recognition systems 

 

As previously discussed, face recognition using 2D images is sensitive to illumination 

changes. The light collected from a face is a function of the geometry of the face, the 

albedo of the face, the properties of the light source and the properties of the camera. Given 

this complexity, it is difficult to develop models that take all these factors into account. 

Training of recognition systems using different illumination scenarios as well as 

illumination normalization of 2D images has been used, but with limited success. In 3D 
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images, variations in illumination only affect the texture of the face, but the captured facial 

shape remains intact [1].  

      Another differentiating factor between 2D and 3D face recognition is the effect of pose 

variations. In working with 2D images, effort has been put into transforming an image into 

a canonical position [138]. However, this relies on accurate landmark placement and does 

not tackle the issue of occlusion. Moreover, in 2D this task is nearly impossible due to the 

projective nature of 2D images. To circumvent this problem it is possible to store different 

views of the face [139]. However, this requires a large number of 2D images from many 

different views to be collected for each face. Alternative approaches to address the pose 

variation problem in 2D images are either based on statistical models for view interpolation  

or on the use of generative models [140]. Other strategies include sampling the plenoptic 

function of a face using light field techniques[141]. The plenoptic function is the 5-

dimensional function representing the intensity or chromacity of the light observed from 

every position and direction in 3-dimensional space[142]. Using 3D images, this view 

interpolation can be solved by re-rendering the 3D face data with a new pose. This allows a 

3D morphable model to be used to estimate the 3D shape of unseen faces from non-frontal 

2D input images and to generate 2D frontal views of the reconstructed faces by re-

rendering [12].  

      Another pose-related problem is that the physical dimensions of the face recorded in 2D 

images are often unknown. The size of a face in a 2D image is essentially a function of the 

distance of the subject from the sensor. However, in 3D images the physical dimensions of 

the face are inherently encoded in the data. In contrast to 2D images, 3D images are better 

at capturing the surface geometry of the face. Traditional 2D image-based face recognition 
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focus on areas of the face such as eyes, mouth, nose and face boundary which have high-

contrast while areas such as the jaw boundary and cheeks are difficult to describe from 

intensity images because of low contrast [70]. 3D images, on the other hand, make no 

distinction between high- and low-contrast areas.  

       3D face recognition, however, is not without its problems. Illumination, for example, 

may not be an issue during the processing of 3D data, but it is still a problem during 

capture. Depending on the sensor technology used, oily parts of the face with high 

reflectance may introduce artefacts under certain lighting of the surface. The overall quality 

of 3D image data collected using a range camera is perhaps not as reliable as 2D image 

data, because 3D sensor technology is currently not as mature as 2D sensors. Another 

disadvantage of 3D face recognition techniques is the cost of the hardware. 3D capturing 

equipment is getting cheaper and more widely available but its price is still significantly 

higher compared to a high resolution digital camera. Moreover, the size of 3D face image is 

much larger than the corresponding 2D image and the current computational cost of 

processing 3D data is higher than for 2D data. 

         Finally, one of the most important disadvantages of 3D face recognition is the fact 

that 3D capturing technology requires the co-operation of the subject. As mentioned above, 

lens or laser based scanners require the subject to be at a certain distance from the sensor. 

Furthermore, a laser scanner requires a few seconds of complete immobility, whereas a 

traditional camera can capture images from far away with no cooperation from the subjects. 

In addition, there are currently very few high-quality 3D face databases available for testing 

and evaluation purposes. Those databases that are available are generally very small in size 

compared to the 2D face databases used for benchmarking. 
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2.3 Face Recognition Grand Challenge Data Base 

 

The Face Recognition Grand Challenge (FRGC) was designed to promote the development 

of 2D and/or 3D algorithms and to improve error performance over FRVT 2002[64]. 

Determining the performances of these techniques raises three issues: (i) having sufficient 

data for statistical significance; (ii) challenge problems require an order of magnitude 

improvement; (iii) infrastructure allowing objective comparison of the contending methods. 

The FRGC addresses all three issues[143]. The FRGC data set consists of 50,000 images 

divided into training and validation partitions. The data set contains high resolution still 

images taken with a 4 mega pixel Canon PowerShot G2 camera under controlled lighting 

conditions producing unstructured illumination and with, on average, between 260 and 144 

pixels respectively between the eye centres[144]. 3D images are acquired using a Minolta 

Vivid 900/910 series structured lighting sensor which outputs 640 by 480 range samples 

and a registered colour image with about 160 pixels between the eyes. Although 

recognizing faces from the 3D shape of a person‟s face has the potential to improve 

performance because the shape of faces is not affected by changes in lighting or pose [64], 

it has not yet been demonstrated that this potential can be achieved in practice. 

      There are three aspects of the FRGC that are new to the face recognition community. 

The first aspect is the size of the FRGC data which contains 50,000 recordings. The second 

aspect is the complexity of the FRGC. Previous face recognition data sets have been 

restricted to still images. The FRGC consists of three modes: high resolution still images, 

3D images, and multiple-images of a person. The third new aspect is the infrastructure. The 

infrastructure for FRGC is provided by the Biometric Experimentation Environment (BEE), 
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an XML based framework for describing and documenting computational experiments 

[28]. 

      The FRGC challenge problem consists of six experiments designed to promote the 

advancement of face recognition in general, with the emphasis on 3D and high-resolution 

still imagery. The experiments measure recognition performance on: 1) single front-view 

still images taken with controlled lighting and background; 2) four views of still images 

under controlled conditions like 1; 3) 3D query image with 3-D target image; 4) 

uncontrolled single still images; 5) single controlled 2D query image with 3D target image; 

6) single uncontrolled 2D query image with 3D target images. The infrastructure ensures 

that results from different algorithms are computed on the same data sets and that 

performance scores are generated by the same procedure [28, 145].  

2.3.1 Design of data set and challenge problem 

 

The creation of the FRGC followed FRVT 2002[144], by establishing a performance goal 

that was an order of magnitude greater than before, and then designed a data set and a 

number of challenge problems that contribute to meeting the FRGC goals. The starting 

point for measuring the increase in performance is the High Computational Intensity test 

(HCInt) of the FRVT 2002 [101]. The images in the HCInt set were taken indoors under 

controlled lighting. The performance point selected as the reference is a verification rate of 

80% (error rate of 20%) at a false acceptance rate (FAR) of 0.1%. This was the 

performance level of the top three FRVT 2002 participants[144]. An order of magnitude 
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increase in performance corresponds to a verification rate of 98% (2% error rate) at the 

same fixed FAR of 0.1% [143]. 

        A challenge in creating the FRGC was collecting sufficient data to allow an error rate 

of 2% to be measured [146]. Verification performance is characterized by two statistics: 

verification and false acceptance rates[146]. The false acceptance rate is computed from 

comparisons between faces of different people. These comparisons are called non-matches. 

In most experiments, there are sufficient non-match scores because the number of non-

match scores is usually quadratic in the size of the data set. The verification rate is 

computed from comparisons between two facial images of the same person. These 

comparisons are called match scores. Because the number of match scores is dependent in 

the data set size, generating a sufficient number of matches can be difficult[147]. The 

challenge is to design a data collection system that yields 50,000 match scores. This was 

accomplished by collecting images for a medium number of people with a medium number 

of replicates at a rate of about 200 images per week for a year. 

 

         The design, development, tuning and evaluation of face recognition algorithms 

require three data partitions: training, validation, and testing [28, 143, 146, 147]. The 

FRGC challenge problem provides training and validation partitions. A separate testing 

partition is collected and sequestered for an independent evaluation. The representation, 

feature selection, and classifier training is conducted on the training partition. For example, 

in PCA-based and LDA-based face recognition, the subspace representation is learned from 

the training set [147]. Challenge problem experiments are constructed from data in the 

validation partition. During algorithm development, repeated runs are made on the 
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challenge problems. This allows researchers to assess the best approaches and tune their 

algorithms [146, 147]. Repeated runs produce algorithms that are tuned to the validation 

partition. An algorithm that is not designed properly will not generalize to another data set 

[144]. 

 

      The FRGC experimental system is based on the FERET and FRVT 2002 testing 

systems [144, 146, 147]. For an experiment, the input to an algorithm is two sets of images: 

target and query sets. Images in the target set represent facial images known to the system. 

Images in the query set represent unknown images presented to the system for recognition. 

The output from an algorithm is a similarity matrix, in which each element is a similarity 

score that measures the degree of similarity between two facial images.  

2.4 Machine Learning Techniques  

 

Automatic Face Recognition can be seen as a pattern recognition problem, which is very 

hard to solve due to its non-linearity. Particularly, it is cast as a template matching problem, 

where recognition has to be performed in a high-dimensional space. Since the higher the 

dimensionality of the space, the more the computation is needed to find a match, a 

dimensional reduction technique is used to project the problem into a lower dimensionality 

space. Indeed, the neural network can be considered as a good solution to the face 

recognition problem, commonly used in many other pattern recognition problems, and 

readapted to cope with the people authentication task. One of neural classifiers advantage is 

that they can reduce misclassifications among the neighbourhood classes. 
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2.4.1 Cascade Correlation Neural Network 

 

The training of back-propagation neural networks is considered to be a slow process 

because of the step-size and moving target problems [148]. To overcome these problems 

cascade neural networks were developed. These are “self organizing” networks [148] with 

topologies which are not fixed. The supervised training begins with a minimal network 

topology and new hidden nodes are incrementally added to create a multi-layer 

construction. The new hidden nodes are added to make the most of the correlation between 

the new node‟s output and the remaining error signal that the system is being adjusted to 

eliminate. The weights of a new hidden node is fixed and not changed later, hence making 

it a permanent feature detector in the network. This feature detector can then be used to 

generate outputs or to create other more complex feature detectors [148].  

 

      In a CCNN, the number of input nodes is determined by the input features, while the 

number of output nodes is determined by the number of different output classes. The 

training of a CCNN starts with no hidden nodes. The direct input-output connections are 

trained using the entire training set with the aid of the back propagation learning algorithm. 

Hidden nodes are then added gradually and every new node is connected to every input 

node and to every pre-existing hidden node. The goal of this adjustment is to maximize S, 

the sum overall output units o of the magnitude of the correlation1 between V, the candidate 

unit‟s value, and    , the residual output error observed at unit o. S can be defined as: 

                                                        (2.1) 
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where o is the network output at which the error is measured and p is the training pattern. 

The quantities    and        are the values of V and    averaged over all patterns. 

 

     Training is carried out using the training vector and the weights of the new hidden nodes 

are adjusted after each pass [148].  Cascade correlation networks have a number of 

attractive features including a very fast training time, often a hundred times faster than a 

perceptron network [148]. This makes cascade correlation networks suitable for use with 

large training sets. 

 

       Depending  on the application and number of input nodes, cascade correlation 

networks are fairly small, often having fewer than a dozen neurons in the hidden layer [149, 

150]. This can be contrasted with probabilistic neural networks which require a hidden-

layer neuron for each training case. Also, the training of CCNNs is quite robust, and good 

results can usually be obtained with little or no adjustment of parameters [148].  

2.4.2 Support Vector Machine    

 

Support Vector Machines are becoming popular tools for solving a variety of learning and 

function estimation problems. In contrast to neural networks, SVMs have a firm statistical 

foundation and are guaranteed to coverage to the global minimum during training [157]. 

They are also considered to have better generalization capabilities than neural networks and 

have managed to outperform neural networks in a number of applications[151-156]. SVMs 

employ a statistical learning theory based algorithm, introduced by V.Vapink [157], which 

uses the structural risk minimization principle. SVMs use non-linear-transformation kernel 
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functions to map the input data to a high dimensional feature space, where data can become 

linearly separable[157].  

 

           In the work described here, the LIBSVM tools developed by Chih-Chung Chang and 

Chih-Jen Lin [156,157] were used to build the classifier. A classification task usually 

involves training and testing data which consist of some data instances. Each instance in the 

training set contains one target value (class label) and several attributes (features). The goal 

of SVM is to produce a model which predicts target values of data instances in the testing 

set when provided only with the attributes. Given a training set of instance-label pairs 

                            where        and             , the support vector machines 

(SVM) [158]require the solution of the following optimization problem: 

          
 

 
        

 
 
                       

              
 
  
 
              (2.2)    

 

       Here training vectors    are mapped into a higher (maybe infinite) dimensional space 

by the function    . Then SVM finds a linear separating hyperplane with the maximal 

margin in this higher dimensional space.   > 0 is the penalty parameter of the error term. 

Furthermore,                 
       is called the kernel function. 

 

         In order to use the LIBSVM it was necessary to transform data to the format of the 

SVM package and then conduct simple scaling on the data afterwards. For this work the 

Polynomial, Radial Basis Function (RBF) and Sigmoid kernels were used. This procedure 

is discussed in detail in the Chapter 5. 



 

59 

 

2.4.3 Nearest Neighbours method 

 

The K-Nearest Neighbour method (KNN) is part of a supervised learning algorithm where 

the result of a new instance query is classified based on the majority of K-nearest neighbour 

categories [159]. It has been used in many applications in the fields of data mining, 

statistical pattern recognition, image processing and many others. The KNN method 

initially introduced by J. G. Skellam, where the ratio of expected and observed mean value 

of the nearest neighbour distances, is used to determine if a data set is clustered [160]. 

Further work was done by P. J. Clark and F. C. Evans to introduce a statistical test of 

significance for the nearest neighbour statistic in order to quantify the departure of the 

pattern from random [161]. This test is of great importance because even randomly 

generated data can be labelled as clustered, but the significance test will indicate if the 

evidence for this classification is lacking. 

 

       The KNN algorithm works based on minimum distance from the query instance to the 

training samples to determine the K-nearest neighbours. After gathering the K nearest 

neighbours, a simple majority of these K-nearest neighbours are taking to be the prediction 

of the query instance. The data input to a KNN algorithm consist of several multivariate 

attributes     that will be used to classify   . The KNN input data can be any measurement 

scale from ordinal, nominal, to quantitative. The KNN algorithm has two main advantages. 

Firstly, it is robust to noisy training data (especially if one uses Inverse Square of weighted 

distance as the “distance”). Also, it‟s effective if the training data is large. 
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       In order to apply the KNN algorithm it is necessary to determine the parameter K 

which represents the number of nearest neighbours and calculate the distance between the 

query instance and all the training samples. Then the distances are sorted to determine the 

K
th

 nearest neighbours. The     categories of the nearest neighbours are gathered in order to 

use the majority of the categories as the prediction value for the query instance. More 

details are included in Chapter 5. 

2.4.4 Verification and Validation Techniques 

  

The Jack-knife technique [162] is usually implemented to provide a correct statistical 

evaluation of the performance of a classifier when applied to a limited number of samples 

divided into two sets: a training set and testing set. This technique was employed to 

evaluate the performances of the learning system used in this work because it has proved to 

be more appropriate and efficient when applied to different pattern recognition applications.  

In addition, the use of jack-knife learning algorithms  with 80%  of the data for training and 

20%  for testing lead to a reasonably reliable results when it is applied to evaluate a similar 

classification problem [163]. 

       In practice, a random number generator is used to select the samples used for training 

and the samples kept for testing. The classification error varies with the training and testing 

sample sets and, for a finite number of samples, an error-counting procedure is used to 

estimate the performance of the classifier [162]. In this work, 80% of the available samples 

were randomly selected and used for training while the remaining 20% were used for 

testing. The results were then analyzed to assess the performance.  
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     The values for negative and positive results in an experiment are likely to be the most 

useful practically. The performance criteria used in this work are accuracy (the fraction of 

all correct predictions), sensitivity (the fraction of positive cases correctly classified) and 

specificity (the fraction of negative cases correctly classified) [164]. These performance 

criteria are the most common criteria to evaluate any face recognition system, and they are 

defined as follows:   

FNFPTNTP

TNTP
Accuracy




                                                       (2.3)              

FPTN

TN
ySpecificit


                                                                 (2.4) 

FNTP

TP
ySensitivit


                                                                     (2.5) 

 

The numbers of true positive, true negative, false positive and false negative results are 

indicated by TP, TN, FP and FN respectively, which are defined as follows:  

      
positivesTotal

spredictionpositiveCorrect
TP                       (2.6) 

     
negativesTotal

spredictionnegativeIncorrect
FP            (2.7) 

     
negativesTotal

spredictionnegativeCorrect
TN                                           (2.8)         
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positivesTotal

spredictionpositiveIncorrect
FN                                          (2.9) 

In these equations the numerators and denominator terms are defined as follows: “Correct 

positive predictions” is the total number of cases for which the system makes correct 

predictions; “Incorrect positive predictions” is the total number of cases for which the 

system makes an incorrect predicted; “Correct negative predictions” is the total number of 

cases for which the system correctly predicts a non match; “Incorrect negative predictions” 

is the total number of cases for which the system incorrectly predicts a non-match; “Total 

positives” is the sum of correct  matching cases (Number of associated cases used in 

testing); “Total negatives” is the sum of correct non-matching cases (Number of un-

associated cases used in testing) [164, 165]. 

 

2.5 Summary  

 

2D face recognition systems are widely used at the commercial and academic level. Low 

price equipments are needed to set up such a system. In addition, it can achieve acceptable 

recognition rates when images are taken within controlled environment that is similar to the 

training set of images and when the facial data transform into feature space, then statistical 

classification algorithms such as NNs, SVMs and KNNs can be applied. However, these 

approaches suffered from various limitations, such as pose variation, illumination and facial 

expression which critically decline its performance. 
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        3D face recognition approaches are relatively new trend that tends to utilize the 3D 

information of the human face. 3D face recognition has the potential to achieve better 

accuracy than its 2D counterpart by measuring the geometry of rigid features on the face. 

This avoids such pitfalls of 2D face recognition algorithms as change in lighting, different 

facial expressions, make-up and head orientation. Although, the utilization of 3D facial data 

has been shown to be more robust with respect to handling poses and lighting variations, 

3D face recognition is still facing several challenges such as the localisation of certain face 

facial features points without making a prior assumption about the face pose and 

orientation. 

 

       As explained before, one of the more challenging problems in this work is how to 

compare between different 3D face recognition techniques. Hence, there are few 

standardized 3D face databases which are used for benchmarking purposes. Thus, the size 

and type of 3D face datasets varies significantly across different publications. In addition, 

there are many differences in the pre-processing methods and the experimental setups as 

well as in the metrics which are used to evaluate the performances of face recognition 

techniques. 

      In this literature, we have presented a general view about Face Recognition Grand 

Challenge database. FRGC was designed to promote the development of 2D and/or 3D 

algorithms and to improve error performance over FRVT 2002 database. The FRGC 

addresses the performances issues i.e. having sufficient data for statistical significance 

challenge problems require an order of magnitude improvement and  infrastructure 

allowing objective comparison of the contending methods[147]. Furthermore, some of 
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machine learning techniques such as CCNN, SVM and KNN have provided in order to use 

them in this work. 

 

       In this research, we view our contribution as proposing a fully automatic, accurate and 

robust recognition method for frontal 3D face data, and verifying the nose region as a more 

promising candidate for features extraction when the expression is uncontrolled. The 

recognition rates reported by the various works listed in Table 2-1 showed that a number of 

factors are combined to make direct comparisons problematic in most cases. Among these 

factors are different sizes of data set, different inherent levels of difficulty of the dataset, 

and different methods of experimental design. The results reported by Xu et al.[113]  give 

an example of how dramatically the size of a dataset can affect reported performance. They 

found 96% rank-one recognition using a 30 person dataset, but this fell to 72% when using 

a 120-person dataset. Moreover, the reported performance is also greatly dependent on the 

inherent difficulty of the data. The presences of expression variation is one element of 

increased difficulty, but pose variation, time lapse between gallery and probe, presence of 

eyeglasses, and other factors are also important. The design of the experiment also 

influences the reported performance.  

 

       In order to tackle the limitations explained above we have used the FRGC database 

which is considered as the most challenging data set available supporting research on 3D 

face recognition in regard to the dataset size, the expression variations, and the presence of 

extraneous features. Furthermore, a reliable system for automatic processing of 3D facial 

data has been implemented using a multi stage system taking in account several 
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representations of 3D data and then a set of effective facial features has been extracted. 

Following this, machine learning techniques are applied for the classification stage.  The 

system performance is reported in terms of accuracy, sensitivity and specificity. 

 

       In the next chapter, the 2.5D face recognition system based on range data will be 

presented. The interpretation of 2.5D data and the extraction of the facial region will be 

discussed. Moreover, the pre-processing of the face data and the feature extraction will be 

explained. 
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Chapter three 

3. 2.5D range images Features 

extraction and Recognition 

3.1 Introduction 

 

The two main representations that are commonly used to model faces in 3D face 

recognition applications are 2.5D and 3D representations, as illustrated in Figure 3.1 The 

term 2.5D image, also known as range image or pseudo-3D image, is an informal term used 

to describe the representation of a three dimensional environment from 2D retinal 

projections [166], where each pixel in the XY plane has an added “depth” channel (z 

coordinate) which may act like a height map [105]. The term is also used to describe 3D 

scenes built completely or partially from a composite of flat 2D images. In order to build a 

complete 3D head model, several scans have to be made from different viewpoints. Unlike 

range images, 3D images represent 3D face images by polygonal meshes [167], which 

contain a set of 3D coordinates with adjacency information. In this chapter, the focus of the 

discussion will be about range images. In order to investigate the impact of different 

registration techniques for correspondence estimation on the quality of the 2.5D model for 

face recognition, we have constructed a 2.5D statistical face model using 56 datasets 

(FRGC Ver.2.0 Database). A typical face image consists of about 20,000 points.  
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Figure 3-1 Examples of 3D facial representations (a) 2.5D range or depth image (b) point 

cloud model of 3D data 

 

 

        This chapter is organized as follows. The interpretation of 2.5D data and the extraction 

of facial region are described in Section 3.2. Nose identification and prior knowledge from 

anatomy are presented in Section 3.3. Standardization of the face area, the removal of 

spikes and the filling of holes in the data are all discussed in Section 3.4. Section 3.5 

describes the feature extraction phase. The performance achieved is provided in Section 

3.6. Finally, Section 3.7 draws some conclusions from the work presented in this chapter.  

Figure 3.2 shows a block diagram of the proposed face recognition system. 
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Face  Recognition Using CCNN, SVM and 
KNN Techniques 

Feature Extraction 

Fill in Holes

Remove Data Spikes

Crop the Facial Region 

Tip of Nose Detection

FRGC Dataset(.ABS files)

480640 image size 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Interpretation of 2.5D Data and Extraction of Facial region 

 

 

The FRGC database range files have the extension ABS and use the ASCII representation. 

The ABS file starts with a header that indicates the numbers of rows (480) and columns 

(640) of the range image in the first two lines. The third line shows the order in which the 

data is stored in the file (flag, X, Y, Z). The rest of the file is made up of four blocks of 

space separated data in raster order, each of size rows  columns; the first block is a flag 

image (face mask), where valid pixels have value 1 and invalid pixels have value 0. The 

second block includes the X coordinate of each pixel, the third block includes all the Y 

values and the fourth block includes all the Z values. The flag, X, Y and Z data have been 

Figure 3-2 Main block diagram of the face recognition system. 
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extracted from the ABS files and displayed in order using the Z data as intensity in order to 

provide a view of the face-shape. Invalid X, Y, Z values are indicated by the ASCII code -

999999.0. It was observed that invalid X or Y values sometimes occur within the face 

region indicated by the valid flag data and there are also occasional valid data with 

erroneous values. Figure 3.3 illustrates the content of an ABS file. 

 

 

 
 

 

 

 

 

 

 

        The FRGC database also provides texture files accompanying the 3D data. The texture 

can be mapped from the PPM file, corresponding to an ABS file. The texture can be used 

by mapping each pixel from the 2D image with each pixel from the range image. For 

Figure 3-3 The component parts of an ABS file. 
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instance, the pixel (200, 200) from the texture file may be applied to the X, Y and Z data 

that are stored at position (200,200) in each block of the ABS file. For the most part we can 

simply discard the (X, Y) data as it falls fairly close to the image plane, which just gives a 

2.5D range image of the subject remaining in the Z-data. At this stage of the experiments 

the ABS images were used without their texture. A sample of 56 3D near frontal images of 

faces for 7 people with 8 images to each was taken. To extract the facial area from the 

background given a facial scan, the invalid Z points were filtered out using the mask.  

3.3  Nose Area Identification  

 

The nose tip is a distinctive point of the human face, especially in the range image. 

Compared to the whole face region, intuitively the nose region has several advantages. 

Firstly, human nose, which consists mostly of cartilage, is more rigid than mouth, eyes and 

cheeks, all of which consist mainly of softer tissues. Secondly, the human nose does not 

change significantly under most facial expressions. Thirdly, the data in the nose region is 

usually complete and is seldom occluded by hair or beard [38] .  

3.3.1 Evidence from Anatomy 

 

The anatomy of muscles can serve as a direct tool for analyzing facial expressions. Figure 

3.4 depicts the muscles of the face. From this figure, it can clearly be seen that, compared 

to other parts of the human face, the amount of muscle located on the nose region is least. 

In anatomy, the Facial Action Coding System (FACS)[168] is a de-facto standard for 

„coding‟ every conceivable human facial expressions. The basic measurement units defined 
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in FACS are Action units (AUs). A single Au may consist of more than one muscle. Nearly 

all anatomically possible facial expressions can be decomposed into specific AUs that 

produce the expressions [168]. There are a total of 32 Aus defined in FACS. Table 3-1 

according to [168] present a summary of the numbers of Aus residing on major parts of the 

human face. There is only one AU related to the nose region, and the associated movement 

defined in FACS is called the nose wrinkle [168]. By contrast, the muscles associated with 

other facial regions all contribute to more than one AU. As such, the nose region can be 

viewed as a more rigid object than any other parts of the face and is almost invariant under 

many facial expressions. The good face recognition performance achieved by Chang et al. 

[169] using multiple nose regions under varying facial expression also supports the 

assertion that the nose region is relatively more rigid than other parts of  the human face.  

 

 

 
 

 

Figure 3-4 Facial muscles: a) muscles of the upper face, b) muscles of the lower face. 
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Table 3-1 The number of AUs located with major parts of the human face as according to 

[168] 

 

 

 

 

3.4 Standardisation of the Face Area and Holes filling 

 

In the work presented in this chapter, the nose tip was manually detected as the first step in 

order to crop out the required facial area from the 2.5D face for further processing. This 

process is needed to ensure we are dealing with the correct region of face. For a frontal 

facial scan, the nose tip usually has the largest Z value. Then a face region is cropped from 

the raw 2.5D data to construct a 2.5D face image which is centred on the nose section. The 

size of each image is 480640. Once the face has been cropped, the outlier values (Z 

values) causing spikes in the 2.5D face are removed as follows. The first removing spikes 

approach involves calculating the distances around each pixel     , the distances are 

arranged in order of magnitude to determine The variance in the distances around each 

pixel      is computed to determine the distances between the points, if the three distances 

are much greater than the remaining three( by certain value such as  20  pixels) then the 

current pixels are considered to be part of a spike which is eliminated by identifying and 

correcting the outlying point. More details are described in Chapter 4 section 4.3.1. 

 

 Forehead Eyebrow Eyes Nose Checks Mouth Lips Chin 

Aus >2 >5 >5 1 >5 >5 >10 >5 
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          After removing data spikes, holes which may be found in the 2.5D face data are filled 

using cubic interpolation. It is commonly used in image processing as a useful method that 

offers true continuity between the pixels [170]. With this method, the value f(x, y) of a 

function f at a point (x, y) is computed as a weighted average of the nearest sixteen pixels in 

a rectangular grid (a 4x4 array). Suppose the function values   and the derivatives       

and       are known at the four corners (0,0), (1,0), (0,1), and (1,1) of the unit square The 

equations for the cubic interpolated surface is: 

 

              
  

   
 
                                   (3.1) 

 

         

      Instead of the two points used in linear interpolation, cubic interpolation uses four 

points. In general, it is agreed that the cubic interpolation yields superior results to the 

linear interpolation [170]. Figure 3.5 shows an example of a face which has been subjected 

to the spike removal and hole filling processes. 
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Figure 3-5 (a) The facial area indicated by the flag data (b) The same face with Z value 

displayed as intensity after spike removal (c) The face after hole filling. 

 

  

3.5 Feature Extraction 

 

One way of locating corresponding points on different faces is by using landmarks that are 

manually placed on the 3D features of the face. The landmarks should be placed on 

anatomically distinct points of the face in order to ensure proper correspondence. However, 

parts of the face such as the cheeks are difficult to landmark because there are no uniquely 

distinguishable anatomical points across all faces. It is important to choose landmarks that 

contain both local feature information (e.g. the size of the mouth and nose) as well as the 
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overall size of the face (e.g. the location of the eyebrows). Previous work on 3D face 

modelling for classification has shown that there is not much difference in performance 

between the use of 11 and 59 landmarks [171]. In the current experiments, 10 landmarks 

were chosen to capture the shape and size variations of the face appropriately.  

Table 3-2 shows the features that are used, and Figure 3.6 shows an example of a face that 

was manually landmarked [172]. 

 

Table 3-2 The 10 manually selected landmarks chosen because of their anatomical 

distinctiveness. 

 
Anatomical points landmarked 

Points Landmark Description 

Eyes Both the inner and outer corners of the eyelids (4 landmarks). 

Nasion 

 

The intersection of the frontal and two nasal bones of the human skull where there is a clearly 

depressed area directly between the eyes above the bridge of the nose (1 landmark). 

Nose tip The most protruding part of the nose (1 landmark). 

Subnasal The middle point at the base of the nose (1 landmark). 

Nose extremes  The outer corners of nose (2 landmarks). 

Gnathion The lowest and most protruding point on the chin (1 landmark). 

 

 

       Two types of features were extracted from faces and compared in order to determine 

which of the two approaches is more suitable for best recognition; the first uses the 

distances between the chosen landmarks and the second uses ratios of distances.  

 

       The first approach [118] has started with the four features shown in Figure 3.6. These 

features are the distance between the outer corners of the eyes (AB), the distance between 

the inner corners of the eyes (CD), the distance between nose tip and an align point 



 

76 

 

between the eyes (FE), and the distance between nose extremes (GH), respectively. After 

carrying out extensive experiments, as it will be explained in Section 3.6, it was decided to 

increase the number of features to five, by adding the distance between the lowest point in 

the chin and the middle point at the base of the nose (IJ).  

 

       The second approach [118] used the data extracted from the same dataset but the 

features chosen are the ratios between the symmetry line of face (FE) with the outer 

corners of eyes (AB), the ratios between symmetry line of face (FE) with inner corners of 

eyes (CD), and the ratios between symmetry line of face (FE) with the nose extremes 

(GH), respectively. Also, a new feature corresponding to the ratio between symmetry line 

and the line connects between the lowest point in the chin and the middle point at the base 

of the nose (I J) was added.  

 

Figure 3-6  The10 manually selected features chosen because of their anatomical 

distinctiveness 
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3.6 Experimental Results 

 

In the work presented in this chapter, Cascade Correlation Neural Network (CCNN), 

Support Vector Machine (SVM), and K-Nearest Neighbour (KNN) were chosen for use in 

experiments which were carried out to make the final decision for the recognition and 

classification phases; the classification problem uses a binary output for classifiers in our 

experiments. The Jack-knife technique was employed to evaluate the performances of the 

learning system, where 80% of randomly selected samples were used for training and the 

remaining 20% for testing. The performance criteria used in the work were accuracy, 

sensitivity, and specificity which are measured using the common biometric measures, 

namely the true positive ratio (TPR) and the false positive ratio (FPR). 

     

        In this work, experiments were conducted on different numbers of people, starting 

with 56 images representing 7 people, and each individual represented by 10 images that 

cover a range of poses and expression in which there are variations of unwanted features 

including hair, neck, shoulders and clothes.   Numerical representations of features are used 

to construct the input variables for the training and testing stages of the machine learning 

system. The face features were calculated and normalised to be in the range between 0.1 

and 0.9 for recognition using CCNN in order to find which of the features are the most 

significant. The output node has a numerical value of 0.9 if it is the correct class and 0.1 if 

it is not correct. The data was prepared in another specified format and normalised between 

-1 and 1 for recognition using SVM. Figure 3.8 shows an example of CCNN input file 

contains56 images representing 7 individuals and each individual has 8 images 
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Figure 3-7 Sample for a CCNN input file that contains 56 images representing 7 individuals. 

Class 5 Input features 
7 Output Classes 

 
P

er
so

n
 1

 
Image 1 252 100 42.432 87.001 9.6886 0.9 0.1 0.1 0.1 0.1 0.1 0.1 

Image 2 254 102 42.636 87.001 8.4064 0.9 0.1 0.1 0.1 0.1 0.1 0.1 

Image 3 256 101 42.204 84.001 9.8622 0.9 0.1 0.1 0.1 0.1 0.1 0.1 

Image 4 261 104 43.519 87.001 8.7652 0.9 0.1 0.1 0.1 0.1 0.1 0.1 

Image 5 259 104 44.134 86.001 9.7613 0.9 0.1 0.1 0.1 0.1 0.1 0.1 

Image 6 253 100 43.17 87 10.347 0.9 0.1 0.1 0.1 0.1 0.1 0.1 

Image 7 254 104 43.534 87.001 10.85 0.9 0.1 0.1 0.1 0.1 0.1 0.1 

Image 8 258 103 44.388 85 9.2981 0.9 0.1 0.1 0.1 0.1 0.1 0.1 

P
er

so
n
 2

 

Image 1 127 41 13.463 90 1.5415 0.1 0.9 0.1 0.1 0.1 0.1 0.1 

Image 2 130 41 15.555 88.001 1.614 0.1 0.9 0.1 0.1 0.1 0.1 0.1 

Image 3 126 42 14.528 88 2.6058 0.1 0.9 0.1 0.1 0.1 0.1 0.1 

Image 4 129 41 14.869 88.001 1.8274 0.1 0.9 0.1 0.1 0.1 0.1 0.1 

Image 5 132 41 15.243 90 2.8083 0.1 0.9 0.1 0.1 0.1 0.1 0.1 

Image 6 129 42 13.591 89 2.6058 0.1 0.9 0.1 0.1 0.1 0.1 0.1 

Image 7 128 42 13.339 89 2.9267 0.1 0.9 0.1 0.1 0.1 0.1 0.1 

Image 8 126 42 15.241 89 2.4971 0.1 0.9 0.1 0.1 0.1 0.1 0.1 

P
er

so
n
  

3
 

Image 1 195 51 17.142 94 1.3127 0.1 0.1 0.9 0.1 0.1 0.1 0.1 

Image 2 199 53 17.658 93 1.3608 0.1 0.1 0.9 0.1 0.1 0.1 0.1 

Image 3 194 54 18.683 94.006 1.4608 0.1 0.1 0.9 0.1 0.1 0.1 0.1 

Image 4 196 51 16.114 95.627 1.3608 0.1 0.1 0.9 0.1 0.1 0.1 0.1 

Image 5 198 51 18.243 92 1.7376 0.1 0.1 0.9 0.1 0.1 0.1 0.1 

Image 6 199 52 17.221 93.001 1.3333 0.1 0.1 0.9 0.1 0.1 0.1 0.1 

Image 7 195 51 18.928 96 1.8176 0.1 0.1 0.9 0.1 0.1 0.1 0.1 

Image 8 199 52 16.409 93 1.9251 0.1 0.1 0.9 0.1 0.1 0.1 0.1 

P
er

so
n
 4

 

Image 1 173 48 30.535 112 18.853 0.1 0.1 0.1 0.9 0.1 0.1 0.1 

Image 2 176 51 26.33 110 19.561 0.1 0.1 0.1 0.9 0.1 0.1 0.1 

Image 3 174 46 29.223 111 18.49 0.1 0.1 0.1 0.9 0.1 0.1 0.1 

Image 4 177 46 25.122 113 18.811 0.1 0.1 0.1 0.9 0.1 0.1 0.1 

Image 5 173 50 26.167 110 19.636 0.1 0.1 0.1 0.9 0.1 0.1 0.1 

Image 6 179 49 31.511 110 18.097 0.1 0.1 0.1 0.9 0.1 0.1 0.1 

Image 7 170 49 31.608 110 17.612 0.1 0.1 0.1 0.9 0.1 0.1 0.1 

Image 8 176 45 26.122 109 18.097 0.1 0.1 0.1 0.9 0.1 0.1 0.1 

P
er

so
n
 5

 

Image 1 214 78 23.461 133 8.2716 0.1 0.1 0.1 0.1 0.9 0.1 0.1 

Image 2 219 77 19.402 129 7.4773 0.1 0.1 0.1 0.1 0.9 0.1 0.1 

Image 3 216 78 19.543 129 7.1087 0.1 0.1 0.1 0.1 0.9 0.1 0.1 

Image 4 214 79 19.981 131 8.2303 0.1 0.1 0.1 0.1 0.9 0.1 0.1 

Image 5 214 78 23.271 135 7.9692 0.1 0.1 0.1 0.1 0.9 0.1 0.1 

Image 6 220 77 21.586 135 8.6757 0.1 0.1 0.1 0.1 0.9 0.1 0.1 

Image 7 213 75 23.06 130 8.6427 0.1 0.1 0.1 0.1 0.9 0.1 0.1 

Image 8 219 76 19.992 130 9.4908 0.1 0.1 0.1 0.1 0.9 0.1 0.1 

P
er

so
n
 6

 

Image 1 192 61 33.738 172 11.519 0.1 0.1 0.1 0.1 0.1 0.9 0.1 

Image 2 191 62 32.187 174 13.225 0.1 0.1 0.1 0.1 0.1 0.9 0.1 

Image 3 190 58 31.584 169 11.519 0.1 0.1 0.1 0.1 0.1 0.9 0.1 

Image 4 192 60 34.63 174 12.176 0.1 0.1 0.1 0.1 0.1 0.9 0.1 

Image 5 186 61 36.369 169 12.318 0.1 0.1 0.1 0.1 0.1 0.9 0.1 

Image 6 185 61 34.099 169 11.706 0.1 0.1 0.1 0.1 0.1 0.9 0.1 

Image 7 189 61 35.176 171 12.981 0.1 0.1 0.1 0.1 0.1 0.9 0.1 

Image 8 191 58 32.437 169 13.385 0.1 0.1 0.1 0.1 0.1 0.9 0.1 

P
er

so
n
 7

 

Image 1 232 73 29.02 136 16.638 0.1 0.1 0.1 0.1 0.1 0.1 0.9 

Image 2 238 74 27.027 137 16.283 0.1 0.1 0.1 0.1 0.1 0.1 0.9 

Image 3 237 75 26.288 138 19.006 0.1 0.1 0.1 0.1 0.1 0.1 0.9 

Image 4 239 74 29.338 137 16.31 0.1 0.1 0.1 0.1 0.1 0.1 0.9 

Image 5 230 73 28.162 139 17.603 0.1 0.1 0.1 0.1 0.1 0.1 0.9 

Image 6 231 75 28.563 137 16.742 0.1 0.1 0.1 0.1 0.1 0.1 0.9 

Image 7 237 73 26.161 136 16.62 0.1 0.1 0.1 0.1 0.1 0.1 0.9 

Image 8 231 74 29.949 137 15.384 0.1 0.1 0.1 0.1 0.1 0.1 0.9 
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        The NN has been used because it has proven to be a very useful tool for solving many 

real-life problems such as pattern recognition problems, and readapted to cope with the 

people authentication task. In addition, NN can reduce misclassifications among the 

neighbourhood classes. However, CCNN has a number of attractive features including a 

very fast training time, often a hundred times faster than a perceptron network [148].  

Besides, it was found that the CCNN topology provides good performance in terms of 

convergence time and optimum topology [148]. 

  

          On the other hand, the SVMs which were used for this work have a firm statistical 

foundation and are guaranteed to converge to a global minimum during training [157]. 

They are also considered to have better generalisation capabilities than neural networks. In 

addition, SVMs are known to be an excellent tool for binary classification problems, which 

were used for this work by decomposing the M-class problem into a series of two-class 

problems (one- against- all, see the seven output columns in table) by searching for the 

optimal separating hyper plane that provides efficient separation for the data and maximises 

the margin. In other words, SVM takes the closest vectors from both classes, assuming they 

are linearly separable, and maximises the distance between them in a hyper plane. 

 

          The KNN is a fast supervised machine learning algorithm which was used to classify 

the unlabeled testing set with a labelled training set. It has been used in many applications 

in the fields of data mining, statistical pattern recognition, image processing and many 

others [167].  Also, it has verified a good classification rate [168].  It was decided to 
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conduct further experiments to improve the recognition performance as well as to ensure of 

the effectiveness of the extracted features. 

 

         Intensive experiments were ran on 56 images to determine which of the machine 

learning algorithms is more suitable for the face recognition stage, the CCNN, SVM and 

KNN systems were optimised to find the best parameters and topology before making the 

comparisons. 

3.6.1 Experimental work using CCNN  

 

The number of input nodes in a CCNN is determined by the number of input features, 

extracted from the 2.5D face data, while the number of output nodes is determined by the 

number of different output classes. The direct input-output connections are trained using 

the entire training set with the aid of the back propagation learning algorithm. Hidden 

nodes are then added gradually and every new node is connected to every input node and to 

every pre-existing hidden node. Training is carried out using the training vectors and after 

each pass the weights of the new hidden nodes are adjusted [148]. Using a Neural Network 

with one hidden layer and with numbers of hidden nodes ranging from 1 to 10. For each 

number of hidden nodes, 8 results were generated, which were averages over 10 iterations 

carried out using the Jack-knife technique (80% randomly used for training and rest for 

testing). Consequently, a total of 45 images were used for training and 11 images were used 

for testing. The results generated were the number of hidden nodes, TP, FP, FN, TN, 
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Accuracy, Specificity and Sensitivity. Hence 100 learning and testing experiments were 

carried out for each case.  

        Four different experiments using 4 input features were carried out based on the Jack-

knife technique for each CCNN configuration and the average TPR and FPR were 

recorded. After these experiments, the performance indicators were evaluated for every 

experiment, these indicators are TPR, FPR, FNR, TNR, accuracy, specificity and 

sensitivity. The averages of these indicators were found for each input features and are 

shown in Table 3-3. 

Table 3-3 Average performance indicators using five input features. 

 

 

Hidden 

Node 
TPR FPR TNR FNR Accuracy Specificity Sensitivity 

1 0.6 0.067 0.4 0.933 0.886 0.933 0.6 

2 0.8 0.033 0.2 0.967 0.943 0.967 0.8 

3 0.7 0.05 0.3 0.95 0.914 0.95 0.7 

4 0.9 0.017 0.1 0.983 0.971 0.983 0.9 

5 0.8 0.033 0.2 0.967 0.943 0.967 0.8 

6 0.6 0.067 0.4 0.933 0.886 0.933 0.6 

7 0.7 0.05 0.3 0.95 0.914 0.95 0.7 

8 0.4 0.1 0.6 0.9 0.829 0.9 0.4 

9 0.7 0.05 0.3 0.95 0.914 0.95 0.7 

10 0.5 0.083 0.5 0.917 0.857 0.917 0.5 
 

 

 

 At the end of these experiments the best results were obtained for the following topologies:  
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- 5 input nodes (distance features) and 4 hidden nodes gave the best results for face 

recognition, where a value of 0.971, 0.983, and 0.9 was reached for accuracy, 

sensitivity and specificity respectively.  

- 4 input nodes (distance features) with 2 and 7 hidden nodes, which gave 0.886, 0.933 

and 0.6 for accuracy, specificity and sensitivity, respectively.  

- 4 input nodes (ratio features) and 4 hidden nodes gave 0.914, 0.95 and 0.7 for accuracy, 

sensitivity and specificity respectively.  

- 3 input nodes (ratio features) with 3 and 6 hidden nodes gave 0.857, 0.917 and 0.5 for 

accuracy, sensitivity and specificity, respectively. 

 

3.6.2 Experimental work using SVM 

The SVM experiments were carried out using the LIBSVM program to optimise the 

performance of both the kernel and its parameters, which were determined empirically 

because there are no known guidelines to help choose them[173]. For the work reported 

here, the Radial Basis Function (RBF) kernel was used. Hence, the shape of the RBF kernel 

is controlled by the parameter γ (Gamma).  

 

     To complete the SVM optimisation it was necessary to determine the value of γ. This 

was done by training and testing the SVM over 100 iterations. During each iteration, γ was 

incremented from 0.1 to 2.5 in steps of 0.2 and   was incremented from 1 to 20 in steps of 

1.  Hence, 240 experiments were conducted to test these values. The numbers of input 

features were 5 input features for 56 images. For each of those configurations twenty 
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experiments were carried out in order to find the best number of features and best 

parameters values.  

 

          The experiments using 56 images and 5 input features showed the best results were 

obtained when the γ value equals 0.5. Eight experiments for each individuals using 5 input 

features were carried out using the Jack-knife technique and the averages of performance 

indicators were found for every experiment and are shown in table 3-4, these indicators are 

TPR, FPR, FNR, TNR, accuracy, specificity and sensitivity.  

 

                 Table 3-4 Average performance indicators for different input features. 

Person 

Number 
TPR FPR TNR FNR Accuracy Specificity Sensitivity 

1 0.783333 0.114693 0.885307 0.216667 0.934320083 0.885306833 0.783333333 

2 0.75 0.117763 0.882237 0.25 0.916118708 0.882237417 0.75 

3 0.750002 0.20899 0.79101 0.249998 0.870505875 0.791010083 0.750001667 

4 0.847223 0.178822 0.821178 0.152777 0.934200875 0.821178417 0.847223333 

5 0.812275 0.196253 0.803747 0.187725 0.88010833 0.803746667 0.812275 

6 0.965 0.200758 0.799242 0.035 0.882121 0.799241833 0.965 

7 0.708333 0.413637 0.586363 0.291667 0.947348 0.586363333 0.708333333 
 

3.6.3 Experimental work using KNN  

        In order to apply the KNN algorithm it was necessary to determine the parameter K 

which represents the number of nearest neighbours and calculate the Euclidean distances 

between the query instance and the training samples in order to predict the testing data 

classes. Then the distances are sorted based on the minimum difference to determine the K
th

 

nearest neighbours. 
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       The experiment was carried out on 56 images representing 7 individuals. Each 

individual has 8 images and using Jack-knife technique 45 vectors and 11 vectors were 

randomly selected for training and testing sets, respectively. The Euclidian distances 

between each vector of testing and each vector of training matrices were calculated. The 

experimental work showed that the best results were obtained when the K value equals 3 

while the accuracy rate obtained were 0.96 for 56 images. 

  

3.7 Conclusion  

 

 Because of the successes of machine learning appearance-based approaches to 2D face 

recognition, these methods were adapted for application to 3D face data. This required pre-

processing work to prepare the data before applying the machine recognition phase.  In 

general, it‟s not easy to compare or reproduce results of other research as many results are 

not reported using the same data. If there is a common database, such as the Face 

Recognition Grand Challenge (FRGC) database, different pre-processing operations may 

still be used for different methods, which make direct comparisons of the methods difficult.  

          

       Several recognition approaches are commonly applied in 3D face recognition 

investigations, for example, correlation, closest vector, PCA, SVM, EHMM and ICP 

approaches. In this work 3D face recognition with range data from FRGC Ver.2.0 data set 

was carried out using the machine learning techniques (CCNNs, SVMs and KNN), which 

had not been done before. In the machine learning stage, the training is carried out using the 
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training vector and the weights of the new hidden nodes are adjusted after each pass. 

Cascade correlation networks have a number of attractive features including a very fast 

training time, often a hundred times faster than a perceptron network. 

  

      Pre-processing operations are needed in order to localize the nose in the 3D face model 

to detect the face area then complete the pre-processing (i.e. cropping, hole filling, spikes 

removing). Pose correction may be needed to bring the face to the correct frontal 

orientation. Moreover, using ratios and distances feature didn‟t show a big difference in the 

results however, extracting distinctive features and combining various kinds of them could 

give better recognition rate than any single matching methods. 

 

        In the next chapter, an automated system to process the 3D facial data is developed. 

This system determines the symmetry profile for the face with few feature points along it, 

and extracts a set of effective profiles from the central region of the face. These feature 

points and profiles will be used for recognition and classification purposes. 
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Chapter four  

4. 3D Facial Feature Extraction 

 

Facial features in 2D or 3D images are usually classified as low level, high level, and 

semantic level features. Low level features are basic representations derived from images at 

any point in the image, such as the curvature, shape index, etc. High level features on the 

other hand are those related to human perception of faces, such as the tip of nose, eye 

corners, mouth corners, etc. By contrast, semantic level features at a more abstract level, 

such as gender, ethnicity, are often used to improve recognition rates and speed up the 

process of retrieving information from databases. Facial feature at the different levels 

provide different classes of information to analyze and recognize facial scans. 

        In this chapter, a novel method for the automatic processing of 3D facial data, which is 

obtained using 3D scanning devices, is presented. Here the input data can be in the form 

either of a 3D triangular facial mesh (containing the coordinate and connectivity 

information), or of a data point cloud. In the new approach, the first goal is to automatically 

determine a symmetry profile for the face. This is undertaken by computing the intersection 

between the symmetry plane (found by an automatic search) and the facial mesh, resulting 

in a planer curve that accurately represents the symmetry profile. Once the symmetry 

profile is successfully determined, a few feature points along the symmetry profile are 

computed. These features points are essential to the computation of other facial features, 

which can then be utilized to allocate the central region of the face and extract a set of 
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profiles from that region. These profiles can be used for recognition purposes as explained 

in the following chapter. 

4.1  Revision of Feature Extraction  

In face recognition applications based on either 2D or 3D images, alignment between the 

query and template is necessary in order to conduct matching between faces. In general, 

feature extraction based on landmarks provides an accurate and consistent representation 

for alignment and recognition purposes than other facial features. Such landmarks include 

the tip of the nose, eye corners, etc, as shown in Figure 4.1. However, these landmark 

points are not easy to recover automatically and incur different levels of complexity (e.g. 

the nose tip is usually the easiest to recover, while eye corners, for example, tend to be 

more difficult to acquire). 

 
 

Figure 4-1 A subset of landmarks on a frontal view of a face. 
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      For face recognition applications, 3D images captured using 3D scanning devices 

usually require some form of pre processing before they can be exploited for purposes such 

as the accurate and efficient extraction of certain facial feature. For example, given 3D 

facial geometric data, it is usually necessary to identify from the data the central region of 

the face known as the facial mask. The facial mask of a 3D face is the region of interest for 

various applications such as 3D face recognition and authentication. 

 

      A common method for determining the facial mask from raw 3D facial data and extract 

certain facial features is based on measuring the surface curvature [174], such as Gaussian 

curvature. However, such techniques are often prone to errors since the computation of 

accurate Gaussian curvatures requires sufficiently accurate data which provides relatively 

smooth surfaces and such data cannot be  always be made available by the available 

scanning devices.  

 

      3D data may have a coordinate value missing in some rows and columns (visible as 

vertical or horizontal stripes in the face examples in Figure 4.2); these need to be 

automatically identified and replaced by interpolation at the pre-processing stage. Another 

of the challenges in processing and allocating certain facial features for given raw 3D facial 

data, as illustrated in Figure 4.2, is due to the scanned image containing unwanted geometry 

(such as neck, shoulders and hair). This need to be identified and discarded at the pre-

processing stage.  Thus, in some applications, semi-automatic approaches have been 

utilized to overcome this challenge [30, 71, 175, 176]. For example in [176] seven 
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landmark points have been manually selected. Similarly in [30] nose tip and eyes corners 

were manually identified to register faces. 

      Another challenging issue in processing and characterizing 3D raw facial images is that 

a captured face could have any one of a range of orientations or poses, and hence it 

becomes crucial to determine or standardise the facial pose, to simplify the allocation of 

characteristic facial features. Various techniques are used to recover or estimate the facial 

pose. For instant, Principal Component Analysis (PCA) was used in [71] to estimate the 

pose.  

 

 

Figure 4-2 Example for 4 different scanned images of human faces, with different poses. 
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       Other approaches are based on some reasonable assumptions that are made about pose 

variations. For example, in [177] it is assumed that the input data contain a frontal view of 

the face with pose variation limited      along the x, y and z axes. Additionally, scanned 

images usually are very dense datasets and therefore simplification algorithms need to be 

deployed in order to reduce the size of the captured data to a computationally feasible 

status.  

 

      Many real world objects have symmetry characteristics, where the symmetry could be 

rotational, reflective or translational. A key component of a face is its symmetry 

characteristics associated with a plane which divides the face into two halves related by a 

reflective transformation. Faces rarely if ever possess exact reflection symmetry but it is a 

useful approximation to assume. The reflection symmetry of facial data can be destroyed by 

non-uniform data boundaries or by facial features (e.g., hair) so it is not a trivial matter to 

estimate the plane of symmetry. Various techniques have been used to identify the 

symmetry plane of 3D scanned images[71, 76, 77, 178, 179]. For instance, Sun et.al.[77], 

assumes that the symmetry plane passes through the centre of mass of a given object and 

uses an Extended Gaussian Image (EGI) based technique to detect reflection and rotational 

symmetry of objects. Similarly Pan et al.[76] used an EGI technique similar to [77, 125] to 

detect the symmetry plane of the face. However, for facial data such assumptions might not 

hold, especially since 3D facial data acquired by 3D laser scanners might be highly 

asymmetric since it could contain noise, and undesired geometry such as neck and shoulder 

(see Figure 4.2). Wu et.al. [125] used a profile matching approach for face authentication 
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and for their symmetry analysis an initial position of the symmetry plane has to be 

interactively identified. Colbry and Stockman [179] identified the symmetry plane of a 

facial scan by matching that scan with a mirror image of itself using face surface alignment 

algorithm assuming that pose variation ranges from 10 to 30 degrees in the coordinate 

system. 

        Several other analysis techniques can be found in the literature which address the 

detection of the symmetry of a human face and other feature extraction, such as the use of 

principle axes of inertia of the object [180],the extended Gaussian image of the object 

[77],and the „mirror‟ plane method [181]. Another more general approach to determine the 

symmetry plane of 3D object is by minimising the symmetry value over all possible 

planes[182].A reflective symmetry descriptor[183], and point signature techniques have 

also been used to allocate facial features for face recognition purposes and 3D shape 

registration [93]. 

 

       To summarize, the automatic processing and characterization of 3D scanned images is 

still considered a challenging problem with a relatively few papers in the public domain 

addressing it. Semi automatic approaches, where user intervention is assumed, or initial 

assumptions are made about the pose of the face are often encountered to simplify the 

problem. 
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4.2 Point Cloud data and Object and VRML files 

 

Viewable 3D image files of facial geometry are produced either as a point clouds or as 

polygonal meshes.  A point cloud is simply a set of n vertices               
        

  .  On the other hand a polygonal geometry uses points and faces to define objects. A 

triangular mesh     includes the set of vertices with its x y z coordinates, which defines the 

position of the vertices in three dimensions. In addition, it includes information about the 

set of facets of these vertices, and is defined as                               .  

       A normalized and registered raw mesh means that all values of the vertices are scaled 

to be in the range between 0.0 and 1.0. In addition, the facial data is aligned with the 

Cartesian coordinate, such that the nose tip is located at the origin and the face is looking 

towards the positive z-axis as shown in Figure 4.3.  

 

Figure 4-3  Normalized and registered facial scanned image. 
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        Object files (OBJ) and the Virtual Reality Modelling Language files (VRML) are 

formats for storing a description of the surface of a 3D object, composed of triangles or 

higher degree polygons. 

         Object files define the geometry and other properties of objects for Wave Front‟s 

advanced visualizer. Object files can also be used to transfer geometric data back and forth 

between the advanced visualizer and other applications. Object files can be in ASCII 

format, when they have the extension OBJ, or in binary format, when they have the .mod 

extension. The OBJ file format supports both polygonal objects and free-form objects. 

Polygonal geometry uses an element such as points, lines, and faces to define objects while 

free-form geometry uses curves and surfaces [184]. 

     On other hand, VRML files are designed particularly for use with the World Wide Web 

[185]. URLs can be associated with graphical components so that a web browser might 

fetch a web page or a new VRML file from the Internet when the user clicks on the specific 

graphical component. VRML files are commonly called “worlds” and have the WRL 

extension. Although VRML worlds use a text format, they may often be compressed using 

gzip so that they can be transferred over the internet more quickly[185]. 

        In order to have a clear face representation, the cloud points must be joined together to 

form the mesh, thus, a better face observation is obtained. 3D face data in the FRGC dataset 

are provided in ABS (ASCII raster) format and in the current work OBJ and VRML files 

have been generated from FRGC database in order to use them in further work. And to 

make it available for other researcher to use 

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/Uniform_Resource_Locator
http://en.wikipedia.org/wiki/Graphic
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/User_%28computing%29
http://en.wikipedia.org/wiki/Filename_extension
http://en.wikipedia.org/wiki/Gzip
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     Vertex data provides coordinates for geometric vertices, and the right-hand coordinate 

system is used to specify the coordinate locations. The statement syntax for the geometric 

vertex is          .  Where     and   are coordinate values. These are floating point 

numbers that define the position of the vertex in three dimensions. When vertices are 

loaded into the visualization system, they are sequentially numbered, starting with 1. These 

reference numbers are used to identify geometric vertices and to create faces using the 

statement syntax               where    ,   and    represent the reference numbers for 

vertices. Notice that every three vertices generate a triangle; providing that they are not on a 

straight line. This method of creating faces is called triangulation. 

 

       The triangulation approach used is incremental, i.e. it looks for the nearest three points 

and joins them together to form a triangle then it moves to the next set and so on until a 

complete mesh that covers the face is formed. Figure 4.4 shows portions of an OBJ file and 

a VRML file that contain vertices and facets information. Figure 4.5 shows an example of 

an OBJ files before and after applying the triangulation method, which also presents a 

comparison between the point clouds face and our simplified model.  
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Figure 4-4 Samples for a portion of an OBJ file (a) and a VRML file (b) that contain 

vertices and facets information. 

          
 

Figure 4-5 Face comparisons between: a) the face point clouds, and b) after applying the 

triangulation method. 
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        Moreover, triangulation can be applied to any simple polygons with a number of 

vertices   [186]. The possibility of applying triangulation can be justified by the fact that 

every polygon has a diagonal if the polygon contains at least one vertex [186]. Knowing 

that every polygon has at least one vertex [186] and has at least one diagonal, a polygon 

with        can be divided into triangles by placing those diagonals [186](See Appendix 

B for more details). 

 

       There are many ways for triangulating a polygon but all of them share the fact that the 

number of the generated diagonals        –   , and the number of resultant triangles 

      –    [186].  

 

4.3 Pre-processing and Registration Phases  

As indicated earlier in this chapter, the human face is a very interesting but complex pattern 

with characteristics, which include the following: 

 The face object is a natural pattern unlike a simple artificial pattern such as a cube 

or pyramid. 

 Although the face pattern has a small number of elements, the structures of elements 

like the eyes, nose, mouth, chin ... etc. are complex. 

 The exact positions of these components with respect to each other are given by 

geometrical relationships and their arrangement within the face is constant. 



 

97 

 

 The extraction of face features like lines, curves and corner points are not trivial 

operations. 

 The artificial additions like spectacles, earrings and make-up as well as natural 

additions like hairstyles, moustaches and beards increase the complexity of the face 

pattern.  

        The 3D faces provided by the FRGC version 2.0 dataset are noisy and contain spikes. 

Therefore, the pre-processing step is an important one for face recognition because it 

determines the regions of useful data and removes noise and background regions. This 

step aims at reducing the amount of data to be processed, to remove noise spikes, to fill 

holes and to produce useful structural information about object boundaries.  

       The raw face data are assumed to be stored with known adjacency relations among the 

3D points and the faces are captured roughly in the normal top-down posture (the front 

direction of the face can be somewhat arbitrary), in the FRGC v2 and 3D-BUFE databases. 

Many commercial 3D scanners can generate such data [67]. The following subsections 

discuss the pre-processing steps including removal of sharp spikes, filling of holes, 

smoothing of mesh surface and facial region extraction. 

4.3.1 Removal of sharp spikes 

 

A noise spike is defined as a random variation in values that may corrupt the data content, 

and usually occurs during data capture, transmission or processing [33, 85]. Figure 4.6 

shows examples of faces with sharp spikes. 
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      Once the OBJ and VRML files have been created, outlier points causing spikes are 

removed from these files using two approaches. Figure 4.7 illustrates the relation between 

pixel     and its neighbours                                           which 

our removing spikes techniques are based on. 

     The first removing spikes approach involves calculating the distances around each 

pixel     , the distances are arranged in order of magnitude to determine if the three 

distances are much greater than the remaining three( by certain value such as  20  pixels). If 

so, then the current pixels are considered to be part of a spike which is eliminated by 

identifying and correcting the outlying point. The pseudo-code for this procedure is given 

in Figure 4.8. 
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Figure 4-6 Four different 3D faces with sharp spikes. 

Figure 4-7 The relation between pixel     and its neighbours (a) correcting the distances between 

points approach.  (b) correcting the angles between points approach. 
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Algorithm 1: Remove spikes by correcting the distances between points. 

 

 

Step 1: Calculate the variance distances around each pixel (i,j).  

Step 2: Compute the six distances between four points:                                   

Step 3: Order the distances  

Step 4: Determine which of the three cases applies 

 (i) All distances are similar 

(ii) Four distances much greater than the other two  

(iii) Three distances much greater than the other three  

 

Step 5: If case (iii) applies // the current pixels are considered to be part of a spike  

 5.1 Initialise order of distances,  

5.2 Reorder them in ascending order and keep an index of their original positions. 

5.3 Delete the face either because at least two points coincide or because one of the 

distances is too large.  

 

Step 6: Check which point is not present in the three lines with smallest distance, 

 6.1 Initialise counter for the points  

6.2 Use the point opposite to the one to be corrected as a reference.  

6.3 The order of points is: point opposite one to correct, two on both side and the 

point to correct.  

6.4 Initialised the array and overwrite the interior points to smooth,  

6.5 Move origin to point           

6.6 Move origin back to original position.  

 

Step 7: Return the sum of the sides of the triangle defined by the three points in 3D space. 

 

 

Figure 4-8 The pseudo-code for remove spikes by correcting the distances between points 

algorithm.(see case a in figure 4.7) 
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      However, in some cases calculate the distances around each pixel fail to determine the 

spike pixel, especially if this pixel close to the face mesh and the distances between the 

points are almost equal. To tackle this problem we have added a new technique to remove 

the sharp spikes by correcting the angle between points.  In this method, we considered 

each of the lines joining point       to its four neighbours then determined the average angle 

between the valid lines, if the angle is less than a certain value such as 15 or 30 degrees we 

replaced the point under investigation by the average of the valid neighbours. Figure 4.9 

shows the pseudo-code for this algorithm. 

 

 

 

Algorithm 2: Remove spikes by correcting the angles between points. 

 

 

Step1: Consider each of the lines joining point (i, j) to its four neighbours  (i, j+1), (i+1, j), (i, j-1), 

(i-1, j) 

 1.1 Calculate the angle between the two lines which are connected between the 

two vertices   (i+1, j) and (i, j+1) to the point (i, j). 

1.2 Calculate the angle between the two lines which are connected between the 

two vertices (i, j+1) and (i-1, j) to the point (i, j). 

1.3 Calculate the angle between the two lines which are connected between the 

two vertices (i, j-1) and (i-1, j) to the point (i, j). 

1.4 Calculate the angle between the two lines which are connected between the 

two vertices (i+1, j) and (i, j-1) to the point (i, j). 

 

Step 2:If any angle is less than 15 degree 

 

 

2.1 Replace point by average of the valid neighbours 

 

Figure 4-9 The pseudo-code for remove spikes by correcting the angles between points 

algorithm (see case b in Figure 4.7). 
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4.3.2 Filling in missing data 

 

 Data are inevitably missing due to the complexity of the scanned region or to an imperfect 

scanning process. As mentioned in the previous subsection, holes and missing points in the 

data can also occur during the removal of sharp spikes. Missing scanned data cause holes in 

the triangular mesh created, but a hole-free mesh model is a prerequisite for the feature 

extraction process.  

 

         Although a number of hole filling algorithms have been investigated such as using 

curvature information[187], they enable the filling of holes only in the smooth regions of a 

model. They are not always robust in  case of complex holes.. In this work and in order to 

fill in these holes, two methods were used. The first method is linear interpolation which 

was used to fill in gaps in X or Y data in cases where the Z value exists. The second 

method was a cubic interpolation which was used to fill the gaps in Z data as explained 

early in Chapter 3 section 3.4. 

 

       Linear interpolation is a method of curve fitting using linear polynomials. It has 

numerous applications including computer graphics [188]. Figure 4.10 illustrates the linear 

interpolation between two known points (x0,y0) and (x1,y1). 
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Figure 4-10 Linear interpolation between two known points 

 

       If the two known points are given by the coordinates         and       , the linear 

interpolant is the straight line between these points and the value y at x is found on this line. 

For a value x in the interval         , the value y along the straight line is given from the 

equation 4.1. 

 

     

     
  

      

      
                                                (4.1) 

 

which follows from the geometry of  Figure 4.10. Solving this equation for y, which is the 

unknown value at x, gives 

 

             
      

      
                       (4.2) 

Which is the formula for linear interpolation in the interval        . Outside this interval, 

the formula is identical to linear extrapolation. On the other hand, the linear interpolation 

on a set of data points                           is defined as the concatenation of linear 

interpolants between each pair of data points. Figure 4.11 shows filtered X , Y and Z data 

http://en.wikipedia.org/wiki/Linear_extrapolation
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using linear interpolation to fill in missing X and Y data (high-lighted by red and cyan 

colours) and cubic interpolation to fill in missing Z data (for example near the eyes).  

 

 

Figure 4-11 Filtered X and Y and Z data using linear interpolation and cubic interpolation, 

respectively, where a) shows X, Y and Z holes, b) shows X and Y holes filled (in red and 

cyan)  c) filing  the z holes. 

 

 

4.3.3 Smoothing 3D data surfaces 

Finally smoothing techniques are applied to enhance the hole triangles. The newly created 

vertices and triangles are added to their respective lists and the topology information is 

updated. A Gaussian filter is used for smoothing the Z data with a variance of ¾, so that the 

original value and the closest neighbours in the block have most influence on the filtered 

value. 
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      The 3D smoothing function was used in these experiments. This function smoothes the 

input using a convolution kernel which is a „Gaussian filter‟. The size of the convolution 

kernel is specified as [3 3 3] and the convolution kernel standard deviation (SD) has a 

default value of 0.65. Figure 4.12 shows the data before and after applying the smooth 

function. 

 

Figure 4-12 The data before (a ) and after (b) applying the smooth function. 
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4.3.4 Extraction of facial regions 

 

Previously, an effective method of facial region extraction, based on a symmetry plane 

analysis of the whole 3D face data has been proposed by Pan et al.[189]. This algorithm 

and its variants have been adopted by many other researchers in their face registration work 

[71, 117, 179]. This class of methods makes the assumption that the human face is 

bilaterally symmetric. Nevertheless, small pose variations, different hairstyles and facial 

expressions can all lead to violations of this assumption. This means that the symmetry 

plane results for multiple facial scans from the same person are not always stable. As 

explained in Chapter 2, we are inspired to find a more rigid part on the human face for the 

symmetry plane analysis. Compared to the whole face region, intuitively the nose region 

has several advantages. For instance, the human nose does not change significantly under 

most facial expressions.  

    

         In the automatic 3D face features extraction method proposed here, the first stage is to 

extract a facial region from a set of raw 3D face data and removing all unwanted data (e.g. 

shoulders, neck, hair, hat, etc) by locating the four boundaries of the face region coarsely 

and then crop an initial face region. The second stage is to compute an estimate of the 

symmetry plane of the extracted 3D face region and find the nose region in order to extract 

the tip of the nose, the nose bridge and the bottom of nose. The third stage is to locate the 

eye plane in order to find the inner eye corners. The fourth stage is to locate effective 

curves around the nose area in order to increase the number of extracted features.  
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        In this section, we outline the method for estimating the symmetry plane for the face 

data. The approach adopted to solve this problem is as follows; define a numerical measure 

for the degree of reflection symmetry for face data about a given plane, specified in terms 

of a small number of parameters and search for the parameter values which minimises the 

measure. A reflection measure could be defined by computing the perpendicular distances 

of the data points on either side of the chosen test plane, summing the distances on either 

side of the plane and taking the difference between the two sums. This will be zero for a 

reflection plane but can also be zero in other circumstance (such as the case of the diagonal 

of a rectangle in 2D). Figure 4.13 shows examples for such problem. To avoid this case, the 

reflection measure adopted here is the sum of the individual differences between two 

distances on either side of the test plane, on the same perpendicular line. This measure will 

be zero for the true reflection plane and generally larger in other cases. It is true that for a 

complicated surface, such as a face, another non-reflection plane can give a minimum (see 

Figure 4.13 for two examples). The result of the search can be checked (manually, or 

automatically by analysing the frontal line profile) and, if necessary, the search repeated 

from a new starting position. In practice this process has been found to give reliable results.   
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Figure 4-13 A false reflection measure results after summing the perpendicular distances of 

the data points on either side of the chosen test plane, and taking the difference between the 

two sums. 

 

 

        To implement this approach it is necessary to take account of the possibilities that the 

face data will have different densities of points in different regions. For example, there 

could be holes in the data on one side but not the other and the boundary to the captured 

data could not be reflection symmetric. The presence of data noise will also cause the 

symmetry measure to be greater than zero but a minimum at the plane of reflection. 

 

     To handle the first two problems in implementing a reflection measure, instead of taking 

all data points into account a set of lines parallel to the normal of the test plane, and spaced 

equally apart in the orthogonal directions are defined. Each of these lines intersects the face 
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data on either side of the test plane and two average distances of these intersections are 

computed. If only one can be computed (because of missing data for example) then the 

contribution of that line to the summed difference distances is ignored in the measure. The 

third problem is tackled by applying the symmetry measure only to the part of the face in 

front of a plane through the data centroid orthogonal to the test plane. This removes the 

irregular data boundary towards the back of the head. 

 

      The approach then is to define an initial test plane approximating the true reflection 

plane and the perpendicular data bounding plane and to compute the symmetry measure. 

An automatic search is then conducted (using the simplex minimisation algorithm), 

adjusting up to three parameters defining the location and orientation of the test plane to 

find the minimum condition.  

 

       Since the head pose for 3D face data used in this work are all near frontal (the angle for 

pose is within     , of straight forward) Principle Component analysis (PCA) has been 

applied to define the starting symmetry and data bounding planes.   

 

        For example for a given three dimensional data set    of   points               , to 

apply PCA the first step is  to subtract the mean values              across each dimension 

x, y and z respectively. The next step is to construct the covariance matrix, which in this 

case would be       matrix, defined as follows: 
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                                    (4.3) 

where the matrix element is defined as:  

                               
                

 

 
                                           (4.4) 

 

        The next step is to compute the eigenvalues and eigenvectors of the covariance matrix. 

This can be accomplished by solving for the roots of the characteristic polynomial equation 

resulting from the covariance matrix [190] and then substituting these back into the 

eigenvalues equation and solving for the corresponding eigenvectors. Alternatively, a 

standard algorithm, such as the Jacobi algorithm, can be used to give the eigenvalues and 

eigenvectors directly. 

 

       The principal directions PX, PY, PZ resulting from the face data are similar to the X, Y, 

Z axes respectively, to which the original data are referenced. The data used to define the 

reflection measure are bounded by the PZ = 0 plane (data in front of the face centroid) and 

the starting reflection plane is the PX = 0 plane. Figure 4.14 shows an example to which 

PCA has been applied. The intersections of the three principal planes with the data are 

curves. The curve closest to the vertical is the symmetry profile corresponding to the 

starting estimate of the reflection curve. The closed curve shows the position of the initial 

data bounding plane. It is close to the reflection symmetric when the estimated reflection 

plane is correct and can be used to check this. The third line shows the intersection of the 

data and the principal plane closest to the horizontal  which is of less interest at this point.   
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4.4 Symmetry plane identification 

 

To create the algorithms used to calculate the intersection between a plane and a face 

surface data set and the reflection measure for a given set of data points and a plane, the 

geometrical relations described in below are used. Figure 4.15 shows a point P (X, Y, Z) 

and a plane through the origin defined by its normal vector    (A, B, C). The vector      

from the plane to P, perpendicular to the plane is also shown, where , the signed 

perpendicular distance from point to plane is given by  

                                                                      (4.5) 

 

 

Figure 4-14 The face data and intersection with all three principle planes; hence the initial 

symmetry plane divides the face asymmetrically. 
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The condition that a point P is within a distance d of the plane is  

                                                                                     (4.6) 

and if the plane is not through the origin but is displaced a distance D from the origin in the 

direction  ,  this condition becomes   

 

                                                                            (4.7) 

 

The vector r in the plane to the foot of the perpendicular from the point P to the plane is 

given by: 

                                                                     (4.8) 

 

     Equation (4.7) is used to find the points in the face data within a specified distance 

(about 1 mm) of a particular plane (since few if any data points will be exactly in any given 

plane) and when used with two perpendicular planes finds the points within a square tube 

about the line of intersection of the planes. Similarly, equation (4.8) is used to project the 

points close to a particular plane into the plane, when finding the intersection of face data 

with a particular plane. The resulting points are then guaranteed to be on a plane curve. 
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       Figure 4.16 shows an example of face data with Z values relative to the data centroid 

displayed in grey. The intersections of the face data with the principal planes are the three 

white curves in Figure 4.16 and the points used to calculate the symmetry measure are 

shown in darker grey than the neighbouring face data. These are the intersections of the 

face data with a regularly spaced set of tubes with axes in the PY directions. 

 

 

 

 

Figure 4-15 The normal vector a (unit vector   ) to a plane through the origin is shown together 

with an arbitrary point in space P. The vector r is the foot of the perpendicular    from the point 

P to the plane. 
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Figure 4-16  a) Face data with Z values displayed in grey and intersections of the principal 

planes with the data shown in white. B) The patches of darker grey on the upper half of the 

face show points within a square tube included in calculating the reflection measure. 

 

            The reflection measure for given face data and test plane can be regarded as a 

function of the parameters which specify the position and orientation of the test plane. 

These are translations in the PX direction, and rotations about the PY and PZ axes. The 

downhill simplex method [191] is employed to find the parameter values which minimise 

the reflection measure. This method was chosen because it is a multi-dimensional function 

minimisation routine which requires only function evaluations and not derivatives. It is not 

the fastest method available but it can be extremely robust [191]. The downhill simplex 
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method must be started not just with a single point, but also with N + 1 vertices, defining an 

initial simplex. Taking one of these vertices    as our initial starting point  , then we take 

the other N points to be 

                                                                                            (4.9) 

 

where the     are N unit vectors, and where   λ are constants, which are the problem‟s 

characteristic length scales.  

 

       The Simplex algorithm consists of four movements of an original simplex: Reflection, 

Reflection and expansion, Contraction and Multiple contraction. Suppose we have a 

simplex (a)(b)(c). The basic steps in the simplex method are shown in Figure 4.17, 

assuming that (a) is the highest and (c) is the lowest. 

Figure 4-17 The simplex method movements 
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     This summarizes all the moves we need for finding the lowest point with a given 

starting simplex. Once we find the lowest point with a given starting simplex, we should 

move to another set of starting simplex and start the entire process again. An example 

shown in Figure 4.18.  Hence, the output profiles will be stored as an OBJ and VRML files 

in order to use it to extract further features.  

 

 

 

. 

 

 

 

Figure 4-18 Final result for the symmetry plane identification. 
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4.5 Tip of Nose, Bottom of Nose and Nose Bridge Identifications 

 

 Once the symmetry plane has been extracted and saved as an OBJ and VRML files, the 

profile is analyzed to identify a local extreme point that corresponds to the tip of nose, the 

nose bridge and the bottom of nose. The nose bridge is also used to extract the eye profile 

and the inner eyes corner points. In order to avoid false alarms, before starting the analysis 

process the curve is filtered to get a smooth symmetry plane passing through the discrete 

data. 

       Figure 4.19 shows a symmetry profile with the tip of nose, nose bridge and the bottom 

of nose points These are identified by computing their distances relative to the line joining 

the symmetry curve extremes as described below. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-19  Feature points on the symmetry profile, the tip of nose, nose bridge and the 

bottom of nose. 
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     The 3D location of the nose tip is a crucial step in the recognition of 3D face data. In 

order to find the tip of the nose, the two ends of the line profile have been joined by a line. 

To simplify the calculations of the accurate distances between the symmetry curve and the 

line (which connected between the two ends) we have rotated the line about one end point 

through an angle which brings the other end point to the same y value as first end point, as 

shown in Figure 4.20. 

 

 

Figure 4-20  The symmetry profile connected with a line, which then moved to be 

perpendicular to the Y axis. 

 

 

       The distances between the line and the symmetry curve are then calculated. The 

perpendicular distance between any point i in the face curve and the point p in the line that 

connects the two ends is:  



 

119 

 

        –          –                                     (4.10) 

 

where 

   
     –            

 

 
         

             
 

 
 

  ,                    

and 

                ,              
    –    

    –    
     

 

         The nose tip is determined as the point on the facial profile with maximum 

perpendicular distance from a certain line (the horizontal line connected between the two 

extremes). So the point in the face curve with maximum distance is found. From the tip of 

nose, the nose bridge and the bottom of nose points on the symmetry profile are determined 

by searching all the points around the tip of nose in both directions to find the lowest point 

(decreasing) before the curve starts to increase again. In order to extract these features the 

face curve has been divided into three parts. The first and third parts are discarded because 

we know that the tip of nose is in the middle part. However, in order to ensure that the 

above algorithm produces correct results, the point positions (i.e. nose tip, nose bridge and 

bottom of nose points) on the symmetry curve have to be identified correctly. Thus, in case 

the data is not smooth enough another condition is included before selecting the point 

which represents the change in the curve behaviour (from decreasing to increasing).  The 

number of points in the direction of increasing in the distance values should be large, and 
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this number varies depending on the symmetry curve length. Figure 4.21 shows the 

symmetry curve features allocation method, which was used to allocate the set of 

distinguishable points, including the tip of nose, nose bridge and the bottom of nose. 

 

  

 

 

 

4.6 Eye profile and inner eye corners identification 

 

As mentioned before, the symmetry plane plays the major role in the feature extraction 

process. After extracting the nose bridge point on the symmetry profile, the eye profile 

intersecting the nose bridge point is found. The origin of the PY principal axis is shifted to 

the nose bridge point and the new associated plane of intersection with the face data gives a 

new curve that represent the eyes profile. This contains new distinguishable features 

including the inner corner of the left eye and the inner corner of the right eye as shown in 

Figure 4-21 Symmetry curve features allocation method. 
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Figure 4.22. The techniques used to identify symmetry plane features were used again. 

Firstly, points on the curve passing through the nose bridge point were identified and the 

eye curve was smoothed in order to avoid any false detection. Then the two ends are joined 

by a straight line. Using equation 4.10, the distances between the line and the eyes curve 

are calculated in order to extract further features. The face curve has been divided into three 

parts, with the focus on the second part containing the nose bridge point. From the nose 

bridge the two inner eyes corners are determined by searching all the points around the 

nose bridge in the both directions to find the lowest point (decreasing) before the curve 

behaviour changes, as shown in Figure 4.23. Moreover, the extracted eye profile was saved 

as an OBJ and VRML files in order to identify the inner eyes corners. 

 

 
 

Figure 4-22 a) The intersection point between the symmetry profile and the eyes profile 

through the nose bridge point. b) the extracted eyes curve which contains the nose  bridge, 

the inner corner of the left eye and the inner corner of the right eye. 
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4.7 Facial feature numerical representation 

 

After the main feature points, (nose tip, bottom of nose, nose-bridge and two inner eye 

corners) have been extracted, it is necessary to find a numerical representation in order to 

use these features effectively with machine learning algorithms for classification purpose.  

4.7.1 Geodesic distances 

Firstly, the geodesic distance between the tip of nose and the nose bridge points, and the 

geodesic distance between the bottom of nose and the tip of nose points were calculated 

using the symmetry profile. Using the eyes curve, the geodesic distance between the right 

inner eye corner and the left eye corner was calculated.  

 

Figure 4-23 Eyes curve features allocation method. 
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        The geodesic distance (GD) is the shortest distance between any two points on a 

surface measured along a path on the surface [192, 193]. For example, between any two 

points on a sphere, there is a unique great circle, and the two points separate the great circle 

into two arcs. The length of the shorter arc is the great circle distance between the points 

i.e. the shortest path from   to   suppose                 is a path between points    

and    , where      and      are connected neighbours for                 and 

   belong to the domain for all  .  The geodesic distance is defined as: 

 

                  
    

                             (4.11) 

 

Where                   represent the values for each pair of connected neighbours.  

4.7.2 Surface Areas 

 

In an attempt to find more features which can be accurately defined, the nose area has been 

calculated using the composite Simpson‟s rule. The interval [a,b] has been broken into a 

number of smaller subintervals, Simpson‟s rule is applied to each subinterval and the 

results are summed to produce an approximation for the integral over the entire interval. 

Suppose that the interval [a,b] is split up in n subintervals, with n an even number. Then, 

the composite Simpson‟s rule is given by: 

 

          
 

 
                             

   
         

     
    

 

 
             (4.12) 
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       Figure 4.24 illustrates the method used to calculate the nose area. As shown in diagram 

(a) the whole area under the curve between the nose bridge and the bottom of the nose was 

calculated, then the trapezium area between the nose bridge and the bottom of nose shown 

blue in diagram (b) was calculated. Afterwards, the trapezium area between nose bridge 

and the bottom of nose was subtracted from the whole area under the curve between the 

nose bridge and the bottom of nose as shown in diagram (c). We have calculated the area 

between the two inner eye corners using the same method. 
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Figure 4-24 The nose area calculation process. 
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4.7.3 Discrete cosine transform (DCT) for six effective curves 

 

In this section, the focus is on the use of the plane curves extracted from the 3D geometry 

of the face. Several facial curve based methods have been proposed in the past whose 

common goal is to extract set of curves that can be effectively used for 3D face recognition.  

 

       In the work of Li et al. [194], the authors extract the central profile curve and a depth 

contour curve from 2D depth images. Gökberk et al.[195] published recognition results 

based on sets of seven vertical profile curves. Instead of geodesic contour curves, Berretti et 

al.[196] use geodesic stripes and their spatial relationship to identify faces. All of the 

above-mentioned curve based methods require one or more reference points, such as the tip 

of nose, to start the extraction of facial curves from the 3D data.  

           

         In the current work and in order to obtain corresponding samples, a set of six profiles 

have been extracted. A profile is defined as a plane curve that passes through one or more 

of the points that were extracted previously, either vertically or horizontally and follows a 

path over the surface mesh.  

         

         Figure 4.25 indicates the positions of the curves that were extracted; a horizontal 

curve through the tip of nose, a horizontal curve through the bottom of nose point and a 

third horizontal curve through the eyes inner corner points and the nose bridge point, which 

is the eye profile. Vertical curves extracted include curves through the left and right eye 
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inner corners and a third curve through the nose bridge point, the tip of nose point and the 

bottom of nose, which is the symmetry curve. 

 

        The Discrete Cosine Transform (DCT) has been widely used in image data 

compression (jpeg) because it is highly effective at de-correlating the image data and 

packing the information into the smallest possible number of transform coefficients. The 

DCT closely approximates the information packing properties of the Karhunen-Loeve 

Transform (KLT), which is the optimum transform in a mean-square sense but much harder 

to calculate. The DCT is similar to the discrete Fourier transform; it transforms a signal or 

image from the spatial domain to the frequency domain. 

 

        The most common DCT definition of a 1-D sequence of length N is defined by the 

following equation and the one used is:  

                   
        

  
    

                                 (4.13) 

For                 , and the corresponding inverse transformation is defined as 

                   
        

  
    

                                 (4.14) 

 

For                   , in both equations      is defined as 
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Figure 4-25 The extracted horizontal and vertical curves. 
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4.8 Summary 

In this chapter, we have provided an automatic registration technique to process raw 

scanned 3D face data. Different from previous works using the whole face region for 

locating the symmetry plane of a face, we use the nose region to conduct our work because 

the nose region is relatively more rigid than other parts of a face and is almost expression 

invariant in anatomy sense. In this work we have produced the input data in the form of a 

3D triangular facial mesh, the OBJ and VRML files have been generated from FRGC 

database in order to use them in further work and to make it available for other researcher 

to use. Robust pre-processing methods were used to reduce the amount of data to be 

processed, to remove noise spikes, to fill holes and to extract a facial region for feature 

extraction stage. In the new approach, the symmetry profile for the face was successfully 

determined automatically. This was undertaken by computing the intersection between the 

symmetry plane (found by an automatic search) and the facial mesh, resulting in a planer 

curve that accurately represents the symmetry profile. 

 

       Once the symmetry profile is successfully determined, a few feature points along the 

symmetry profile are computed. These features points are essential to the computation of 

other facial features, which can then be utilized to allocate the central region of the face and 

extract a set of effective profiles from that region.  After the main feature points and curves 

around the nose area have been extracted, the output profiles saved as an OBJ and VRML 

files in order to use them for further work. 
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      A numerical representation was calculated in order to use these features effectively with 

machine learning algorithms for recognition and classification purpose as explained in the 

following chapter (See Appendix C for an example). 
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Chapter five 

5. Face Recognition Using Machine 

Learning Techniques  

 

 

 

A wide range of algorithms has been proposed for face recognition applications that 

utilize 2D or 3D facial information. Standard approaches that deal with the face as rigid 

object, such as the eigenfaces or standard ICP approached appeared to be ineffective in 

the presences of lighting, pose or facial expression variations.  

 

         In this chapter, face recognition is performed by selecting rigid regions that are 

less sensitive to variation of facial expression. In particular, we consider the part of the 

symmetry profile which goes through the nose region, and the part of the eyes profile as 

discussed in Chapter 4.  

 

       Three different machine-learning techniques: Cascade Correlation Neural Networks 

(CCNNs), Support Vector Machines (SVMs), and K-Nearest Neighbour (KNN) were 

used to make the final decision for the recognition and classification phases. The Jack-

knife technique was employed to evaluate the performances of the learning system, 

where 80% of randomly selected samples were used for training and the remaining 20% 

for testing. The performance criteria used in the work were accuracy, sensitivity, and 
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specificity which are measured using the common biometric measures, namely the true 

positive ratio (TPR) and the false positive ratio (FPR) as explained in Section 2.4.  

 

5.1  Experimental Dataset 

 

As discussed in Chapter 3, a set of 3D images have been taken from the Face 

Recognition Grand Challenge Database (FRGC). For verification and recognition 

purposes 240 different sets of facial data with various densities have been processed 

and tested. The density of facial models varies from faces with 60,000 vertices up to 

76,000 vertices. 

          The chosen 240 images contain several challenging problems. Most of these 

challenging issues of the entire database are represented well in the subset we used for 

research, which supports our decision to validate firstly our contributions on a smaller 

range. Moreover, running further experiments using more dataset items needs more 

processing and evaluation time due to the complexity for each case without addressing 

other challenges; as we started our experiments with 56 images, then by using the 

experience gained we increased the number of images to 120 from which the results 

motivated us to increase the amount to 240 images. The resulting system shows that we are 

in the right direction to construct a robust platform for a 3D facial recognition system 

capable to take the whole data set. 
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         In this work, experiments were conducted on different numbers of people, starting 

with 120 images representing 12 people, including 10 images for each. Then the 

number was doubled to 240 images representing 24 different individuals, each 

individual represented by 10 images that cover a range of poses and expression in 

which there are variations of unwanted geometry including hair, neck, shoulders and 

clothes. As an example, a typical set of individual images is given in Figure 5.1. 

 



 

134 

 

` 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              

 

Figure 5-1 A set of 3D facial images for one individual that includes different poses and 

expressions. 
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Numerical representations of features are used to construct the input parameters for the 

training and testing stages of the machine learning system. As the classification 

problem uses a multi classes input feature and a binary output for classifiers.   The face 

features shown in Table 5-1 were calculated and normalised to be in the range between 

0.1 and 0.9 for recognition using CCNN in order to find which of the features are the 

most significant. The output node has a numerical value of 0.9 if it is the correct class 

and 0.1 if it is not correct. The data was prepared in another specified format and scaled 

between -1 and 1 for recognition using SVM. 

 

Table 5-1 The features extracted for 3D facial images. 

 

Machine 

learning 

techniques 

Features used  for recognition 

CCNN, SVM, 

and KNN 

1
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The Geodesic distance between Tip of nose and Nose 

Bridge. 

The Geodesic distance between Tip of nose and 

Bottom of Nose. 

The Area between Bottom of nose and Nose bridge. 

The Geodesic distance between Left inner eye corner and 

Right inner eye corner via Nose bridge. 

The Area between the left and the right  inner eyes corners 

  DCT for six horizontal and vertical curves. 

 

To determine which of the machine learning algorithms is more suitable for the face 

recognition stage, the CCNN, SVM and KNN systems were optimised to find the best 
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parameters and topology, as described in the next subsections, before making the 

comparisons. 

5.2 Experimental work using CCNN  

 

The NN has proven to be a very useful tool for solving many real-life problems. However, 

efficient implementation of the NN usually requires long training sessions [148] which 

depend on the training vector and on the topology of the NN [148]. However, it was found 

that the CCNN topology provides good performance in terms of convergence time and 

optimum topology. In this network, the first layer has connecting weights to the input layer 

and each subsequent layer has weights connecting it to all previous layers including the 

input layer. As explained earlier, experiments were conducted with 120 images 

representing 12 people and then 240 images representing 24 different individuals, including 

10 images for each individual. 

 

         In the CCNN experiments, the number of input nodes and the number of hidden 

nodes in each experiment were changed to find the best inputs and their related topologies. 

The numbers of input features used for 120 images were 3 and 5 while 3, 5 and 125 input 

features were used for 240 images. In addition, 30 CCNN configurations were created for 

each input feature by changing the number of hidden nodes from 1 to 10. Three 

experiments were carried out using the Jack-knife technique for each CCNN configuration 

and the average TPR and FPR were recorded.  
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The initial experiment was carried using 120 images with 2 input features (3 input features 

and 5 input features). It was found that a CCNN with 5 input nodes and 9 hidden nodes 

gave the best results for face prediction as it provided an accuracy of 0.975, a specificity of 

0.987 and a sensitivity of 0.7 as shown in Table 5-2. 

Table 5-2 Average performance indicators using five input features. 

 

 

Hidden 

Node 
TPR FPR TNR FNR Accuracy Specificity Sensitivity 

1 0.1 0.039 0.9 0.961 0.925 0.961 0.1 

2 0.5 0.022 0.5 0.978 0.958 0.978 0.5 

3 0.5 0.022 0.5 0.978 0.958 0.978 0.5 

4 0.4 0.026 0.6 0.974 0.95 0.974 0.4 

5 0.2 0.035 0.8 0.965 0.933 0.965 0.2 

6 0.6 0.017 0.4 0.983 0.967 0.983 0.6 

7 0.5 0.022 0.5 0.978 0.958 0.978 0.5 

8 0.6 0.017 0.4 0.983 0.967 0.983 0.6 

9 0.7 0.013 0.3 0.987 0.975 0.987 0.7 

10 0.8 0.009 0.2 0.991 0.983 0.991 0.8 
 

 

        These results motivated increasing the number of data samples and the number of 

features by conducting further learning experiments with the classifiers to ascertain the 

effectiveness for the extracted features. The new experiments were applied using 240 

images and extra input features (125 features). As shown in Table 5-3, the CCNN with 4 

input nodes gave the best results for face prediction and it provided an accuracy of 0.983, a 

sensitivity of 0.9 and a specificity of 0.983. 
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Table 5-3 Average performance indicators using five input features. 

 

 

Hidden 

Node 
TPR FPR TNR FNR Accuracy Specificity Sensitivity 

1 0.9 0.1 0.1 0.9 0.9 0.9 0.9 

2 0.8 0.2 0.2 0.8 0.8 0.8 0.8 

3 0.7 0.05 0.3 0.95 0.914 0.95 0.7 

4 0.9 0.017 0.1 0.983 0.971 0.983 0.9 

5 0.8 0.033 0.2 0.967 0.943 0.967 0.8 

6 0.6 0.067 0.4 0.933 0.886 0.933 0.6 

7 0.7 0.05 0.3 0.95 0.914 0.95 0.7 

8 0.4 0.1 0.6 0.9 0.829 0.9 0.4 

9 0.7 0.05 0.3 0.95 0.914 0.95 0.7 

10 0.5 0.083 0.5 0.917 0.857 0.917 0.5 
 

             However, it was concluded that using more input features such as 120 DCT 

coefficient combined with 5 input features did not improve the classification rate for CCNN 

over the use of 3 input features or 5 input features alone.  

5.3  Experimental work using SVM 

 

The SVM experiments were carried out using the LIBSVM program to optimise the 

performance of both the kernel and its parameters, which were determined empirically 

because there are no known guidelines to help choose them [173]. For the work reported 

here, the kernel types tested included Polynomial, Radial Basis Function (RBF) and 

Sigmoid and 5 input features were used. The results obtained are illustrated in Figure 5.2, 

which shows that the RBF kernel gave the best results. As explained in Section 2.4.2, the 

shape of the RBF kernel is controlled by the parameter γ (Gamma).  
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Figure 5-2 Comparisons of SVMs with different kernel types to recognize faces. 

 

         To complete the SVM optimisation it was necessary to determine the values of these 

parameters. This was done by training and testing the SVM over 100 iterations. During 

each iteration, γ was incremented from 0.1 to 2.5 in steps of 0.1 and   was incremented 

from 1 to 20 in steps of 1.  Hence, 500 experiments were conducted to test these values. 

The numbers of input features were 3 and 5 for 120 images while 3, 5 and 125 input 

features were used for 240 images. For each of those configurations twenty experiments 

were carried out in order to find the best number of features and best parameters values.  

 

         The initial experiments using 120 images and 3 and 5 input features showed the best 

results were obtained when the γ value equals 0.2 for both of 3 features and 5 features. 

Figure 5.3 compares the accuracies of correct face predictions using 120 images for SVM 
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configurations for 3 and 5 input feature when the value of γ is fixed at 0.2 and the value of 

  is varied between 1 and 20. As shown in this figure, optimum performance is obtained 

when 3 input features were used with γ equal to 0.2 and   varied between 7 to12. 

Furthermore, twelve experiments for each individuals using 3 input features were carried 

out using the Jack-knife technique and the average TPR and FPR values were recorded. 

After these experiments, the performance indicators were found for every experiment, these 

indicators are TPR, FPR, FNR, TNR, accuracy, specificity and sensitivity.  

 

         The averages of these indicators were found for each input features and are shown in 

Table 5-4 after applying a “one against the rest” technique by decomposing a multiclass 

problem into a series of two-class problems. 144 experiments were carried out with 144 

SVM configurations, resulting in 12 averages TPR and FPR values being produced. Using 

the RBF kernel with optimum   and γ values and optimum inputs configuration shows that 

the best values obtained were 0.900, 1 and 0.799 for accuracy, sensitivity and specificity, 

respectively.  
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       Figure 5-3 Percentage of correct face prediction by SVM, for 3 and 5 input features 

when   varied between 1 and 20 and γ set to 0.2. 

 

Table 5-4 Average performance indicators for different input features. 

 

 

Person 

Number 
TPR FPR TNR FNR Accuracy Specificity Sensitivity 

1 1 0.200758 0.799242 0 0.899620917 0.799241833 1 

2 0.801074 0.405303 0.594697 0.198926 0.697885417 0.594696667 0.801074167 

3 0.965 0.200758 0.799242 0.035 0.882120917 0.799241833 0.965 

4 0.708333 0.413637 0.586363 0.291667 0.647348333 0.586363333 0.708333333 

5 0.833333 0.398107 0.601893 0.166667 0.717613333 0.601893333 0.833333333 

6 0.75 0.291667 0.708333 0.25 0.729166667 0.708333333 0.75 

7 0.8 0.209471 0.790529 0.2 0.795264708 0.790529417 0.8 

8 0.783333 0.114693 0.885307 0.216667 0.834320083 0.885306833 0.783333333 

9 0.75 0.117763 0.882237 0.25 0.816118708 0.882237417 0.75 

10 0.750002 0.20899 0.79101 0.249998 0.770505875 0.791010083 0.750001667 

11 0.847223 0.178822 0.821178 0.152777 0.834200875 0.821178417 0.847223333 

12 0.812275 0.196253 0.803747 0.187725 0.808010833 0.803746667 0.812275 
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       Further experiments were conducted after doubling the number of images to 240 and 

increasing the number of input features to three. The accuracy of correct face prediction 

was calculated when the value of γ was fixed at 0.2, 0.5 and 0.008 for 3 features, 5 features 

and 125 features respectively and the value of   was varied between 1 and 20.  

 

       As shown in Figure 5.4 which compares the accuracies for the three kinds of input 

features, the optimum performance was obtained when 5 input features were used with γ 

equal to 0.5 and   varied between 1 and 3. Moreover, using the RBF kernel with these 

optimised parameters, twelve experiments for each individual using 5 input features were 

carried out and the average TPR and FPR values were calculated. Later on the average TPR 

and FPR values obtained for 288 SVM configurations were produced for each individual 

after applying a “one against the rest” technique, where the best values obtained were 0.882 

for accuracy and 0.965, for sensitivity and 0.799 for specificity. The averages of indicators 

for each input features are also shown in Table 5-5. 
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 Figure 5.4  Percentage of correct face prediction by SVM, for 3 sets of input features 

when   varied between 1 and 20 and γ set to 0.2, 0.5 and 0.008 for 3 features, 5 features 

and 125 features respectively. 
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Table 5-5 Average ROC performance indicators for different input features. 

 

 

 

 

 

 

Person 

Number 
TPR FPR TNR FNR Accuracy Specificity Sensitivity 

1 0.75 0.291667 0.708333 0.25 0.729167 0.708333333 0.75 

2 0.801074 0.405303 0.594697 0.198926 0.697885417 0.594696667 0.801074167 

3 0.965 0.200758 0.799242 0.035 0.882120917 0.799241833 0.965 

4 0.708333 0.413637 0.586363 0.291667 0.647348333 0.586363333 0.708333333 

5 0.833333 0.398107 0.601893 0.166667 0.717613333 0.601893333 0.833333333 

6 0.75 0.291667 0.708333 0.25 0.729166667 0.708333333 0.75 

7 0.8 0.209471 0.790529 0.2 0.795264708 0.790529417 0.8 

8 0.783333 0.114693 0.885307 0.216667 0.834320083 0.885306833 0.783333333 

9 0.75 0.117763 0.882237 0.25 0.816118708 0.882237417 0.75 

10 0.750002 0.20899 0.79101 0.249998 0.770505875 0.791010083 0.750001667 

11 0.847223 0.178822 0.821178 0.152777 0.834200875 0.821178417 0.847223333 

12 0.812275 0.196253 0.803747 0.187725 0.808010833 0.803746667 0.812275 

13 0.965 0.200758 0.799242 0.035 0.882121 0.799241833 0.965 

14 0.708333 0.413637 0.586363 0.291667 0.647348 0.586363333 0.708333333 

15 0.833333 0.398107 0.601893 0.166667 0.717613 0.601893333 0.833333333 

16 0.75 0.291667 0.708333 0.25 0.729167 0.708333333 0.75 

17 0.8 0.209471 0.790529 0.2 0.795265 0.790529417 0.8 

18 0.783333 0.114693 0.885307 0.216667 0.83432 0.885306833 0.783333333 

19 0.75 0.117763 0.882237 0.25 0.816119 0.882237417 0.75 

20 0.595437 0.481852 0.518148 0.404563 0.556793 0.518148306 0.595437463 

21 0.653519 0.383825 0.616175 0.346481 0.634847 0.616174685 0.653518574 

22 0.709577 0.326253 0.673747 0.290423 0.691662 0.673746719 0.709577292 

23 0.703971 0.33201 0.66799 0.296029 0.68598 0.667989516 0.70397142 

24 0.754853 0.293802 0.706198 0.245147 0.730525 0.706197521 0.754853333 
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5.4   Experimental work using K-Nearest Neighbours 

 

The KNN is a fast supervised machine learning algorithm which was used to classify the 

unlabeled testing set with a labeled training set.  It was decided to conduct further 

experiments to improve the recognition performance as well as to ensure of the 

effectiveness of the extracted curves, since it was observed that their use with CCNN and 

SVM reduced the performance rates. As explained in Chapter 4 section 4.5.3, the DCT can 

be used to pack curve information into a much smaller number of transform coefficients. 

Once a set of six profiles have been identified, the DCT coefficients were calculated for 

each curve and the first 20 coefficients were used to make the matching. Checks were made 

to ensure that the 20 coefficients represent the original curve by using the inverse DCT 

function to restore the original curve. 

 

        In order to apply the KNN algorithm it is necessary to find the parameter K which 

represents the number of nearest neighbours and calculate the Euclidean distances between 

the query instance and the training samples in order to predict the testing data classes. Then 

the distances are sorted based on the minimum difference to determine the K
th

 nearest 

neighbours. 

 

       The first experiment was carried out on 120 images representing 12 individuals. Each 

individual has 10 images and each image has 6 curves, while 20 coefficients from each 

curve were used. A total of 120 coefficients were extracted to represent each vector beside 

5 extracted landmark features were used.  Using jack-knife technique 96 vectors and 24 
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vectors were randomly selected for training and testing sets, respectively. For the second 

experiment, 192 vectors and 48 vectors were randomly chosen for training and testing sets, 

correspondingly. The Euclidian distances between each vector of testing and each vector of 

training matrices were calculated. The experimental work showed that the best results were 

obtained when the K value equals 5 for 120 images and 3 for 240 images while the 

accuracy rate obtained were  0.79 for 120 images and  0.69  240 images respectively. 

Figure 5.5 illustrate the KNN results. 

 

 

 

Figure 5.5 Percentage of correct face recognition by KNN, for 125 input features when   

varied between 1 and 10. 
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5.5 Discussions and conclusions  

 

The optimisation and learning experiments using CCNNs and SVMs were carried out as 

explained in the previous two subsections. For all the training and testing experiments, the 

jack-knife technique was applied to obtain the training and testing sets. At the end of these 

experiments the optimum configuration obtained for an SVM for 120 images with 3 input 

features was 0.2 and between 7 and 12 for γ and    , respectively. This configuration 

provided TPR and FPR rates of 1 and 0.2, respectively. On the other hand, the optimum 

topology for a CCNN using 120 images is 5 input nodes with 3 and 4 hidden nodes. This 

topology generated TPR and FPR values of 0.9822 and 0.0 respectively. 

           

        As indicated before for 240 images experiments, the best results were obtained using 

5 input feature nodes, where the SVM uses the RBF kernel with γ and C parameters set to 

0.5 and 3 respectively and the CCNN with 1 hidden layer and 5 hidden nodes. This 

configuration provides TPR and FPR rates of 0.965 and 0.2, respectively for SVM and 

generates TPR and FPR values of 0.9 and 0.004, respectively for CCNN. 

 

        It is clear from these results that the prediction performances for both CCNNs and 

SVMs have been improved and the FPR has been reduced. The best performance 

achieved using 5 input features were 0.89 for SVM and 0.981 for CCNN using 120 

images. Moreover, values of 0.882 and 0.92 for successful prediction of faces for SVM 

and CCNN respectively were obtained using 240 images. 
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          The use of 120 DCT coefficient combined with 5 input features didn‟t produce any 

improvement in the prediction performance for CCNN and SVM compared with the use 

of 3 input features or 5 input features alone. It was difficult for the SVM and CCNN 

classifiers to distinguish between different curves for different individuals because they 

are represented by values that are not separated enough for successful learning and output 

class separation. 

 

       It is shown by the validation experiments that the use of KNN technique to evaluate 

the extracted DCT coefficients gave better results than training them using SVM and 

CCNN techniques.  The best results were obtained using jack-knife technique with K 

value equal to 5 for 120 images and  3 for 240 images while the accuracy rates obtained 

were  0.79 and 0.69  for 120 images and 240 images respectively. 

 

     The SVM is a binary classifier. The conventional way to extend it to a multiclass 

scenario is to decompose an M-class problem into a series of two-class problems, for which 

one-against-all is one of the most widely used implementations. The experiments showed 

that using the SVM was very fast compared to the CCNN which required longer training 

times.  

       As explained before, one of the more challenging problems in this work is how to 

compare different 3D face recognition techniques; there are few standardized 3D face 

databases which are used for benchmarking purposes. Thus, the size and type of 3D face 

datasets varies significantly across different publications. In addition, there are many 
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differences in the pre-processing methods and the experimental setups as well as in the 

metrics which are used to evaluate the performances of the face recognition techniques.  

         However, the algorithms developed in this work significantly outperforms some of 

the existing algorithms  and have tackled many of crucial problems in this field such as  the 

dataset size, the expressions variations, the presence of extraneous features, and the 3D face 

representations.  We have conducted experiments using data from the FRGC database, the 

largest and most established data corpus for face recognition. Our results indicate that our 

algorithm exhibits high levels of accuracy and robustness and these remarks are justified by 

the contents of Table 5-4 which presents the characteristics and performance of the 

proposed system with respect to other existing systems. 

        In order to tackle the limitations explained in the literature we have used a subset of 

240 images taken from the FRGC database which is considered as the most challenging 

dataset available for supporting research on 3D face recognition in regard to the expression 

and pose variations, and the presence of extraneous features [28]. The chosen 240 images 

contain several challenging problems. Most of these challenging issues of the entire 

database are represented well in the subset we used for research, which supports our 

decision to validate firstly our contributions on a smaller range. Moreover, running further 

experiments using more dataset items needs more processing and evaluation time due to the 

complexity for each case without addressing other challenges; as we started our 

experiments with 56 images, then by using the experience gained we increased the number 

of images to 120 from which the results motivated us to increase the amount to 240 images. 

The resulting system shows that we are in the right direction to construct a robust platform 

for a 3D facial recognition system capable to take the whole data set. 
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Table 5-6 Comparison between our proposed system and some of current recognition 

algorithms 
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 Chapter six  

6. Final Conclusions and Future 

Work 

 

6.1 Overview 

 

The most commonly used approach in face recognition applications is based on 2D 

intensity images. These applications are widely used in commercial and academic work. 

The relatively low price to set up such a system, and the availability of a wide range of 

algorithms (Chapter 2 section 2.2) made it very popular. These systems achieved acceptable 

recognition rates in the absence of facial pose variations, expression variations and within 

controlled environments. 

 

       3D facial models have been used extensively in the past two decades for face 

recognition purposes. The use of those models in biometric applications is due to the 

inherent problems of the classical 2D image based face recognition systems, which mainly 

result from pose, light, and facial expression variations. Because of these limitations, the 

trend has shifted toward utilizing 3D images for face recognition applications which gave 

better recognition rates than the 2D images approach, especially in the presence of facial 

pose and expression variations, as discussed in the literature review.   
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        In spite of the improvements in terms of recognition rates and accuracy, 3D image 

based face recognition are still faced with several challenges, such as the localisation of 

facial feature points, the quality of the 3D images, and the availability of public benchmark 

3D face databases. In addition, it is not easy to compare or reproduce results of other 

research as many results are not reported using the same data. However, when there is a 

common database, different pre-processing operations may still be used for different 

methods, which makes direct comparisons of the methods difficult.   

 

      In this research study, the focus is on the use of 3D FRGC database in a recognition 

system using the machine learning techniques (CCNN, SVM, and KNN) and the major 

components of the research discussed in this thesis are outlined as follows: 

 

 Chapter 2 provides a detailed literature review for 2D and 3D face 

recognition techniques. In addition, the FRGC database is also presented in 

detail with clear outline of the machine learning algorithms. 

 Chapter 3 presents the 2.5D face recognition system based on range data. The 

interpretation of 2.5D data and the extraction of the facial region are 

described in this chapter. Furthermore, the pre-processing of the face data and 

the feature extraction are explained.  

 Chapter 4 describes the pre processing and facial features extraction for a 3D 

facial mesh. It also gives a numerical representation for these features in 

order to use them for recognition purpose. These features include a set of 
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profiles and distinguishable points extracted from the central region of the 

face. 

 Chapter 5 provides a practical implementation and an evaluation of the 

proposed 3D face recognition and classification systems using machine 

learning algorithms. It compares the performances of some learning 

algorithms: Cascade-Correlation Neural Networks (CCNNs), Support Vector 

Machines (SVMs) and the K-Nearest Neighbours algorithm (KNN). 

6.2 Detailed Conclusions 

 

 In Chapter 2 the current literature regarding 2D and 3d face recognition technology 

is reviewed and a number of methods worthy of further investigation identified. 

Also, a general view about Face Recognition Grand Challenge database which was 

used in this research is presented. Furthermore, some machine learning techniques 

such as CCNN, SVM and KNN were used for classification purposes. 

 

 In the work discussed in Chapter 3, 3D face recognition with range data from FRGC 

Ver.2.0 data set was carried out using the CCNN, SVM and KNN machine learning 

techniques, which had not been done before. Pre-processing operations were needed 

in order to extract effective features. At this stage the 2.5D data was interpreted 

from ABS files then the facial region was extracted. Standardization of the face 

area, the removal of spikes and the filling of holes in the data were essential steps in 

order to extract the features. Moreover, it was important to choose anatomical 
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distinctive landmark features that contain both local feature information and the 

overall size of the face. Applying the machine recognition algorithm was the last 

stage to evaluate the extracted features.  Cascade correlation networks were used to 

make the final decision; it has a number of attractive characteristics including a very 

fast training time.  Using this approach has been found appropriate yielding 

promising results for 2.5D face recognition which has encouraged expanding the 

work to include more dataset and extract new features along with using further 

machine learning techniques.  

 Improve the effectiveness of 2.5 face recognition algorithm, by presenting a novel 

method for automatic processing and developing feature extraction for 3D facial 

data. This research direction has continued using the experience gained in 2.5D face 

recognition investigations to provide an automatic facial feature extraction 

technique as discussed in Chapter 4. Various pre-processing methods were applied 

to produce numerous 3D mesh representations from ABS raw data, namely object 

files, VRML files and point clouds representation. These files have been generated 

from FRGC Ver.2.0 database in order to use them in further work and to make it 

available for other researcher to use. Hence the database is available only in .ABS 

format.  The resulting system was able to accomplish the first goal to automatically 

determine a symmetry profile for the face. This was undertaken by computing the 

intersection between the symmetry plane (found by an automatic search) and the 

facial mesh, resulting in a planar curve that accurately represents the symmetry 

profile. 
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 In order to address all the problems in implementing a reflection measure, an 

effective reflection measure process has been adopted, which has proved to give 

reliable results. The sum of the individual absolute differences between two 

distances on either side of the test plane, for face points on the same perpendicular 

line were used to calculate the reflection measure. To handle the possibilities of 

having a different densities of points  and holes in different regions of face data, a 

set of lines perpendicular to the test plane, and spaced equally apart in the test plane 

are defined. For these lines which intersect the face data on both sides of the test 

plane a contribution to the reflection measures are computed. The problem of the 

irregular boundary of the face data is tackled by applying the symmetry measure 

only to the part of the face in front of a plane through the data centroid orthogonal 

to the test plane. This removes the irregular data boundary towards the back of the 

head.  

 

 Facial feature extraction to a high level of accuracy, with much improved 

robustness to symmetry profile identification presented in chapter 4, was achieved 

based on using the nose region to extract a set of effective facial features from what 

is a relatively more rigid part of the human face than the symmetry plane analysis of 

the whole face region. Once the symmetry profile is successfully determined, a few 

feature points along the symmetry profile are computed automatically. These 

features points are the tip of nose, the nose bridge, the bottom of nose, and the two 

inner eyes corners. Extracting these features is essential to the computation of other 
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facial features, which are utilized to allocate the central region of the face and 

extract a set of distinctive profiles from that region. 

 

  Finally, in an attempt to utilize the extracted features effectively with machine 

learning algorithms for recognition purpose, a numerical representation for them 

was computed. The geodesic distance between the tip of nose and the nose bridge 

points, as well as the geodesic distance between the bottom of nose and the tip of 

nose points were calculated using the symmetry profile. Along with using the eyes 

curve, the geodesic distance between the right inner eye corner and the left eye 

corner was determined. Moreover, the nose area and the area between the two inner 

eye corners have been calculated using the composite Simpson‟s rule and the DCT 

for six facial profiles have been computed. 

 Evaluate the extracted facial features using several machine-learning techniques in 

order to produce a fully 3D face recognition system. In Chapter 5, three different 

machine learning algorithms (CCNN, LIBSVM and KNN) and several sets of input 

features (3 features, 5 features and 125 features) were tested and compared for faces 

prediction. The extracted features were arranged in appropriate numerical formats 

so that they could be processed by machine learning algorithms. It was concluded 

that using five input features for recognition purposes were the most effective 

means of recognizing faces. 
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 For the first time, CCNNs and SVMs were used to recognize and classify a 3D 

dataset taking from FRGC Ver.2.0 database. In order to evaluate the performances 

of the learning system, the Jack-knife technique was employed with the use of 80% 

randomly selected samples for training and the remaining 20% for testing. 

 

 After conducting extensive experiments using different number of images, it was 

found that CCNNs provided more accurate results for face recognition than using 

the SVM, where the optimum configuration obtained for CCNN using 5 input 

features achieved 0.981, 0.9822 and 0.01 for accuracy, TPR and FPR respectively. 

In comparison, the optimum topology for SVM generated values of 0.89, 1 and 0.2 

for accuracy, TPR and FPR respectively. For 240 image experiments, the best 

results obtained using 5 input feature nodes using the SVM were 0.882, 0.965 and 

0.2 for accuracy, TPR and FPR rates respectively and values of 0.92, 0.9 and 0.004 

for accuracy, TPR and FPR respectively for CCNN. 

 

  It was decided to conduct further experiments using the KNN algorithm to try to 

improve the recognition performance. As well as to ensure of the efficiency of the 

extracted curves, especially that used them within CCNN and SVM has reduced the 

accuracy.  However, the use of KNN technique to evaluate the extracted DCT 

coefficients gave better results than trained them using SVM and CCNN techniques.  

The best results obtained using the jack-knife technique with K value equal to 5 for 

120 images and  3 for 240 images achieved accuracy rates of  0.79 and 0.69  for 120 

images and  240 images,  respectively. 



 

158 

 

6.3 Original Contributions 

 

The main original contributions presented in this thesis can be summarised as follows: 

 A fully automatic recognition method with high accuracy and robustness to 

facial expressions for nearly frontal views using 3D face data is presented. 

Unlike previous work using the whole face region for feature extractions, we 

use the nose region, which is automatically located and analyzed to conduct 

our work because the nose region is relatively less affected by facial 

expression compare to other facial regions in the anatomical sense. 

 

 A new method of determining the symmetry plane of 3D face data has been 

developed by defining a numerical measure for the degree of reflection 

symmetry for face data around a given plane. The reflection measure adopted 

is the sum of the individual differences between two distances on either side 

of the test plane, on the same perpendicular line. This technique has proved to 

give reliable and accurate results. 

 

 New feature extraction algorithms extract discriminative feature points and a 

set of effective profile curves over the nose region with numerical 

representations in order to use these features effectively with machine 

learning algorithms. This method overcomes the limitations described in the 

literature, and can accept data in several 3D formats (depth image, point 

cloud, object files, and VRML files). 
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 Machine learning algorithms are used for the first time with FRGC dataset. 

The system design implements different machine learning algorithms, which 

have been optimised to determine which of the machine learning algorithms 

is more suitable for face recognition. The results are presented in the form of 

ROC curves which are used to analyze more than two classes of prediction 

problems.  

 To verify our claims, the FRGC v2.0 benchmark 3D face dataset was utilized 

for evaluating the performance of our method in registering 3D facial 

datasets. Results achieved using our automatic recognition method are 

promising and demonstrate that our system is not only effective but also 

efficient. 

6.4 Future Work 

 

Future work to improve the outcome of the current work should include more accurate and 

efficient techniques for improving the facial extraction and the recognition techniques in 

the areas indicated in the following suggestions.  

       

      In general, comparing different 3D face recognition techniques or reproduce results is 

very challenging for a number of reasons. Firstly, there are very few standardized 3D face 

databases which are used for benchmarking purposes. Thus, the size and type of 3D face 

datasets varies significantly across different publications. Secondly, there are differences in 
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the experimental setups and in the pre-processing operations, as well as differences in the 

metrics which are used to evaluate the performances of face recognition techniques. 

Therefore, in order to make comparisons between our proposed system and those of other 

researchers who used 3D FRGC Ver.2.0 database the current work needs to increase the 

number of faces used to the whole 3D FRGC Ver.2.0 dataset.  

 

        The proposed facial feature extraction is designed to identify certain facial features by 

identifying the symmetry profile to begin with then determine the some points along it, 

namely the tip of nose, the nose bridge, and the bottom of nose. However, this algorithm is 

designed to work in frontal facial scans. More work in this area needs to be done to 

improve the algorithm to work in frontal left and frontal right facial images. 

 

         The downhill simplex search method which is used to determine the facial symmetry 

plane   is efficient and easy to use, as well as being very generally applicable. However, this 

technique is slower than other less general methods, and is not very efficient in terms of the 

number of function evaluations that it requires. Faster alternatives could be investigated. 

 

       The algorithm for extracting facial features from scanned images assumes that the nose 

tip lies on the symmetry profile. In extreme cases where such assumption might not hold, 

the results may not be valid. Hence, further investigation is needed to address such cases. 

 

       The automatic feature extraction approach proposed in this study depends on the 

proper identification of the symmetry plane. Incorrect identification of the symmetry plane 
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would essentially lead to incorrect identification of the other facial features. This is 

considered as a drawback that could be overcome by investigating the possibility of 

identifying other facial feature points rather than just relying on the symmetry profile as an 

initial step to recover other important features such as the tip of nose. In addition an 

automatic (rather than a manual) verification that the search has yielded a symmetry plane 

could be achieved by checking that the plane closed curve associated with the intersection 

of the new Z principal plane with the face data is in fact symmetric about the reflection 

plane.  

 

      Another possible improvement to this algorithm is to consider cases where pose angles 

are more than ± 15º, the pose correction may be needed to bring the face to the correct 

frontal orientation. Moreover, extracting distinctive features and combining various kinds 

of them  should be useful and could give better recognition rate than any single matching 

methods. 

 

     Although using a machine learning techniques with Jack-knife (20, 80) shows a good 

recognition rate, there is still a great deal of development that may be done in this area. One 

brief experiment has already demonstrated that using 40% of data for testing and 60% for 

training can produce  good TP, FP ratios and lower error rates than using (20, 80) for SVM 

using 10 images for 24 people. This suggests that altering the testing and training ratios 

may make the system flexible and more effective.   
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       Future work considering various semantic factors, namely, age, gender and ethnicity, 

needs to be investigated. This might include considering other facial metric features to be 

integrated in the comparisons algorithm to improve the recognition rate. These 

improvements are mainly dependent on the improvement of the automatic facial feature 

extraction, where more feature points might be automatically identified, which would result 

in deriving more facial metric measurements. 

 

         Another possible improvement is to consider the utilization of the texture data 

associated with the 3D images. In other words combining both 3D and 2D facial data, 

which will allow the system to make use of the wide range of 2D image based algorithm 

along with 3D algorithm to improve the recognition rate.  
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Appendices 

 

Appendix A: Construction of 3D 

statistical approach  

 

The application of statistical models of 3D faces have shown promising results in face 

recognition [89, 126-128] and also outside face recognition [79]. The basic premise of 

statistical face models is that given the structural regularity of the faces, one can exploit the 

redundancy in order to describe a face with fewer parameters. To exploit this redundancy, 

dimensionality reduction techniques such as PCA can be used.  A fundamental problem 

when building statistical models is the fact that they require the determination of point 

correspondences between the different shapes. The manual identification of such 

correspondences is a tedious and time consuming task. This is particularly true in 3D where 

the number of landmarks required to describe the shape accurately increases dramatically 

compared to 2D applications. 

The correspondence problem 

The key challenge of the correspondence problem in the context of face recognition is to 

find points on the facial surface that correspond, anatomically speaking, to the same surface 

points on other faces [138]. It is worth noting that early statistical approaches for describing 

faces did not address the correspondence problem explicitly [3, 139]. 
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       The gold standard to establish correspondence is by using manually placed landmarks 

to mark anatomically distinct points on a surface. As this can be a painstaking and error-

prone process, several authors have proposed to automate this by using a template with 

annotated landmarks. This template can be then registered to other shapes and the 

landmarks can be propagated to these other shapes [140, 141]. Similarly, techniques such as 

optical flow algorithm that computes correspondence between two faces without the need 

of a morphable model can be used for registration [142]. Also, correspondences between 

3D facial surfaces can be estimated by using optical flow on 2D textures to match 

anatomical features to each other [79]. Some work has been done on combining registration 

techniques with a semi-automatic statistical technique, such as active shape models, in 

order to take advantage of the strengths of each [143]. Yet another approach defines an 

objective function based on minimum description length (MDL) and thus treats the 

problem of correspondence estimation as an optimization problem [144]. Another way of 

establishing correspondence between points on two surfaces is by analyzing their shape. 

For example, curvature information can be used to find similar areas on a surface in order 

to construct 3D shape models [145]. Alternatively, the surfaces can be decimated in a way 

that eliminates points from areas of low curvature. High curvatures areas can then assumed 

to correspond to each other and are thus aligned [146, 147]. 
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Appendix B: FRGC Data Set 

 

Data for the FRGC was collected at the University of Notre Dame. The FRGC data set is 

part of an ongoing multi-modal biometric data collection. A subject session is the set of all 

images of a person taken each time a person‟s biometric data is collected. It consists of 

(four controlled still images, two uncontrolled still images and one 3D image) [148]. The 

controlled images were taken in a studio setting, are full-frontal facial images taken under 

two lighting conditions (two or three studio lights) and with two facial expressions (smiling 

and neutral). The uncontrolled images were taken in varying illumination conditions; e.g., 

hallways, atria, or outdoors [147]. Each set of uncontrolled images contains two 

expressions, smiling and neutral. The 3D images were taken under controlled illumination 

conditions appropriate for the Vivid 900/910 sensor, which are not the same as the 

conditions for the controlled still images. In the FRGC, a 3D image set includes both range 

and texture channels [144].  

 

       Table 1 includes a summary of the sizes of the faces for the uncontrolled, controlled, 

and 3D image categories. For comparison, the average distance between the centres of the 

eyes in the FERET database is 68 pixels with a standard deviation of 8.7 pixels [147]. Size 

is measured in pixels between the centres of the eyes. Reported are mean, median, and 

standard deviation. And Figure 1 shows details of the data used in the FRGC experiments. 
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Table 1 Size of faces in the validation set imagery according to category. 

 

 Mean Median Std. Dev. 

Controlled 261 260 19 

Uncontrolled 144 143 14 

3D 160 162 15 

 

 

 

 

 
 

 

Figure 1 The FRGC dataset. 

 

And some of FRGC installation difficulties are mentioned in Section 3.7. 
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Appendix C: Triangulation Algorithm 

In order to have a clear face representation, the cloud points must be joined together to 

form the mesh, thus, a better face observation is obtained. This can be done using the 

triangulation algorithm.  

 

The triangulation was devised by Boris Delaunay in 1934 [35]; every three points generate 

a triangle (providing that they are not on a straight line). The circumcircle (the circle that 

contains all the vertices of the triangle) must not contain any other vertex; otherwise the 

Delaunay triangulation condition will not be met. Figure 1 [35], shows a Delaunay 

triangulation in a space with the circumcircles.  

 

 
Figure 1 – Delaunay triangulation with circumcircles 

 

Moreover, triangulation can be applied on every simple polygon with a number of vertices 

n [36]. The possibility of applying triangulation can be justified by the fact that every 
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polygon has a diagonal if the polygon contains at least one convex vertex [36]. A vertex is 

called a convex, if the internal angle of the same vertex v
o
 ≤ [37]. There are three facts 

about polygons: 

 

 Every polygon has to have at least one strictly convex vertex [36] [37]. 

 Every polygon has diagonal, if n ≥ 4 [36]. 

 Every polygon (that can have at least one diagonal) can be divided into triangles by 

placing those diagonals [36]. 

There are many ways for triangulating a polygon but all of them share the fact that the 

number of the generated diagonals ND = n – 3, and the number of the resultant triangles 

NT = n – 2 [36]. Figure 2 proves this theory: 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n = 3; ND = 3 – 3 = 0, NT = 3 – 2 = 1 

n = 4; ND = 4 – 3 = 1, NT = 4 – 2 = 2 

n = 8; ND = 8 – 3 = 5, NT = 8 – 2 = 6 



 

181 

 

Figure 2 – Polygons with their diagonals 

 

 

Appendix D: 3D Facial Feature 

Extraction Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interpretation of range data, 

extraction of facial region and 

removing the spikes. 

 

The FRGC range files have the extension 

.ABS and use the ASCII representation  
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Cropping the Z data, filling the holes and feature extraction 

 

The 10 manually selected features chosen because of their anatomical distinctiveness 
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Create the OBJ and VRML files 
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 Removing the sharp spikes, fill the gaps, smooth the surface 

and extract a facial region 
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Compute the symmetry plane for the purpose of finding the tip of nose, nose-

bridge and the bottom of nose after that extracting the eye profile and the inner 

eyes corner 
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Symmetry plane and Eye profile identifications for 3D Facial Feature Extraction 

 

Frontal Profile 
Symmetry points within a square tube 

included in calculating the reflection 

measure 
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