
Non-Interference and Erasure Policies

for Java Card Bytecode

René Rydhof Hansen and Christian W. Probst

Informatics and Mathematical Modelling
Technical University of Denmark

E-mail: {rrh,probst}@imm.dtu.dk

Abstract. Non-interference is the property of a program not to leak any
secret information. In this paper we propose a notion of non-interference

for an abstract version of the Java Card bytecode language. Furthermore
an information-flow analysis for verifying non-interference is developed
and proved sound and correct with respect to the formal semantics of
the language. The information-flow analysis can automatically verify the
absence of leaks in a program, thus proving non-interference.
Based on the definition of non-interference we propose a notion of simple

erasure policies. These allow to statically check that confidential infor-
mation is unavailable after a certain point—and that this unavailability
is enforced by te system. This is a crucial requirements for systems like
e-commerce or e-voting.

1 Introduction

Smart cards have found widespread use in applications with stringent require-
ments on handling secret or private information in a safe and secure manner,
e.g., electronic purses and GSM cards for mobile phones. To secure the secret
and private information, it is important to ensure that programs intended to run
on a smart card do not leak sensitive information, whether through accident or
on purpose. Consequently, software handling confidential information on smart
cards often is required to be formally certified in accordance with rigorous secu-
rity standards, e.g., the Common Criteria [4], which mandate the use of formal
methods and techniques (for assurance level EAL5 and up) to guarantee that
the program under scrutiny does not have any leaks. However, verifying that
a program does not have any leaks is hard, and doing it manually for even a
modestly sized application is infeasible. In this paper we propose a fully auto-
mated solution to the problem, by developing an information flow analysis that
can statically, i.e., at compile-time, verify that a program does not leak any se-
cret information. This is formalised and formally proved by establishing that the
analysis is correct with respect to the formal semantics of the language and that
it guarantees a notion of non-interference.

Furthermore, we propose a notion of simple erasure policies based on [3].
In the context of smart cards erasure policies allow for example to formalise
the security policy that confidential data must only be stored on the smart

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/13707786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 René Rydhof Hansen and Christian W. Probst

Instr ::= push c | pop n | numop op | load x | store x | new σ

| getfield f | putfield f | if cmpOp goto pc0

| invokevirtual m | return t

Fig. 1. Carmel Core instruction set

card in encrypted form, except temporarily for communication or computation
purposes, when the unencrypted form is needed. Such properties are hard to
capture using traditional information-flow policies. By using erasure policies they
can not only be expressed, but one can also analyse whether the system under
scrutiny enforces these properties or not.

2 The Carmel Core Language

In order to simplify formal developments and presentation we use the Carmel
Core language [11, 7]. The Carmel Core language is an abstraction of the Java
Card bytecode language that facilitates the use of formal methods by abstract-
ing away some of the implementation details, e.g., the constant pool, and by
removing language constructs and features that are not essential for the purpose
at hand, e.g., static fields and static methods. This results in a language that
is powerful enough to incorporate key features of Java Card bytcode, such as
classes and dynamic heap allocation. At the same time it is well-suited for formal
methods and proofs. Carmel Core is a subset of the Carmel language, a ratio-
nal reconstruction of Java Card bytecode with the full feature set of Java Card
bytecode and the Java Card Run-time Environment. Mapping a Java Card byte-
code program to an equivalent Carmel program is a matter of applying a trivial
syntactic transformation, e.g., to translate the redundant push instructions in
Java Card bytecode to the generic push instruction of Carmel. In this paper we
concentrate on the Carmel Core subset of Carmel and leave for future work the
extension to the full Carmel language. This section gives a brief introduction to
the formal semantics of Carmel Core.

The instruction set for Carmel Core, shown in Figure 1, includes instructions
for stack manipulation, local variables, object generation, field access, a simple
conditional, and method invocation and return. A program P ∈ Program is
defined to be the set of classes P.classes it defines. Each class σ ∈ Class contains
a set of methods σ.methods ⊆ Method, and a number of instance fields σ.fields ⊆
Field. Each method comprises an instruction for each program counter pc ∈ PC

in the method m.instructionAt(pc) ∈ Instr.
The semantics for Carmel Core is defined as a straightforward small-step

semantics. The semantic domains are shown in Figure 2 and in Figure 3 an
excerpt of the small step semantics is shown. The reduction relation of the se-
mantics is defined over Conf, the domain of semantic configurations. A configu-
ration is either a final configuration, containing only a final heap and a return

Non-Interference and Erasure Policies for Java Card Bytecode 3

Val = Num + Ref Num = Z

PC = N0 Addr = Method × PC

Ref = Location ∪ {null} Heap = Ref → Object

Object = Field → Val LocHeap = N0 → Val

Stack = Val∗ Frame = Method × PC × LocHeap × Stack

Conf = (Heap × Frame∗) + Val⊥

Fig. 2. Semantic domains

value (〈H, 〈Ret v〉〉) or it is a running configuration that contains a heap and a
call stack (a stack of frames). A frame consists of the current method, current
program counter, local heap, and operand stack. The remaining domains are
straightforward and we shall not go into further details here.

In order to complete our discussion of the semantics, we need to define the ini-
tial configurations for a given program. In Java Card bytecode, applet execution
is initiated by the run-time environment when the host sends the appropriate
commands for installing and selecting an applet. The run-time environment then
sets up an initial configuration with the appropriate method, applet instance,
and parameters. We simplify this model by assuming that for a given program
P ∈ Program there exists an instance for each of the classes in the program
σ ∈ P.classes with a corresponding object reference locσ pointing to that in-
stance, and a single entry point mσ. This is formalised in

Definition 1 (Initial Configurations). If P ∈ Program then C is an initial
configuration if and only if σ ∈ P.classes and C = 〈H, 〈mσ, 0, [0 7→ locσ], ε〉 :: ε〉

In Figure 4 an excerpt of an example program is shown. The program is discussed
in more detail in the following section.

3 Non-Interference for Carmel

The notion of secure information flow defined in this paper is based on the obser-
vation that the information that must be protected on a smart card, e.g., a PIN
code, typically resides in particular instance fields of objects in memory. Thus
our notion of security should be flexible enough to allow applets to manipulate
and temporarily store sensitive information, e.g. on the operand stack, yet strict
enough that it catches and rejects any applet that tries to store high security
information in a low security field. This is loosely inspired by the approach taken
in [6, 10].

The example program shown in Figure 4 illustrates some of the security is-
sues in Java Card bytecode. The example is an excerpt of an applet that models
a situation where a customer (modelled by a Customer class) wishes to purchase
something from a merchant (modelled by the Merchant class). Before allow-
ing the customer to purchase anything, the merchant validates, using the bank
(modelled by the Bank class), that the customer has enough money in his/her

4 René Rydhof Hansen and Christian W. Probst

m.instructionAt(pc) = push n

P ` 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H, 〈m, pc + 1, L, c :: S〉 :: SF 〉

m.instructionAt(pc) = load x

P ` 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H, 〈m, pc + 1, L, L(x) :: S〉 :: SF 〉

m.instructionAt(pc) = if cmp goto pc0

pc1 =

pc0 if cmp(v1, v2) = true

pc + 1 otherwise

P ` 〈H, 〈m, pc, L, v1 :: v2 :: S〉 :: SF 〉 =⇒ 〈H, 〈m, pc1, L, S〉 :: SF 〉

m.instructionAt(pc) = getfield f

loc 6= null o = H(loc) v = o.fieldValue(f)

P ` 〈H, 〈m, pc, L, loc :: S〉 :: SF 〉 =⇒ 〈H, 〈m, pc + 1, L, v :: S〉 :: SF 〉

m.instructionAt(pc) = new σ σ ∈ Class (loc, H ′) = newObject(σ, H)

P ` 〈H, 〈m, pc, L, S〉 :: SF 〉 =⇒ 〈H ′, 〈m, pc + 1, L, loc :: S〉 :: SF 〉

m.instructionAt(pc) = invokevirtual m0

loc 6= null o = H(loc)
Lv = loc :: v1 · · · :: v|m0| mv = methodLookup(m0, o.class)

P ` 〈H, 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉 =⇒
〈H, 〈mv, 0, Lv, ε〉 :: 〈m, pc, L, v1 :: · · · :: v|m0| :: loc :: S〉 :: SF 〉

m.instructionAt(pc) = return t

S′ = v′
1 :: · · · :: v′

|m| :: loc :: S′′

P ` 〈H, 〈m, pc, L, v :: S〉 :: 〈m′, pc′, L′, S′〉 :: SF 〉 =⇒
〈H, 〈m′, pc′ + 1, L′, v :: S′′〉 :: SF 〉

m.instructionAt(pc) = return t

P ` 〈H, 〈m, pc, L, v :: S〉 :: ε〉 =⇒ 〈H, 〈Ret v〉〉

Fig. 3. Small step semantics for Carmel Core (excerpt)

Non-Interference and Erasure Policies for Java Card Bytecode 5

public class Customer

{

int account_no;

Merchant merchant;

/* ... */

public void buysomething(void)

{

0: load 0

1: getfield merchant

2: load 0

3: getfield account_no

4: push 42

5: invokevirtual Merchant.purchase(int,int)

6: return

}

}

public class Bank

{

/* ... */

public short validate(int,int)

{

/* ... */

}

}

public class Merchant

{

Bank bank;

int stolen_acct;

/* ... */

public void purchase(int,int)

{

0: load 0

1: getfield bank

2: load 2

3: load 1

4: invokevirtual Bank.validate(int,int)

5: if eq 0 goto 9

6: load 0

7: getfield bank

8: invokevirtual Bank.execute(void)

9: load 0

10: load 2

11: putfield stolen_acct

12: return

}

}

Fig. 4. Example program

account to purchase the item in question. This requires the customer to send
his account number to the merchant who then forwards it to the bank. Obvi-
ously the customer does not want the merchant to keep the account number
longer than strictly necessary, i.e., the merchant should “forget” the account
number once the purchase has been validated and executed. However, in the
example program the merchant actually steals the account number (lines 9–11
in the purchase method of class Merchant), presumably in order to (ab-)use
it later for nefarious activities. While rather unsubtle, it does demonstrate the
need for a flexible notion of secure information flow that can handle a situation
as the one described above where secret information (the account number) ac-
tually is allowed to flow to a potentially malicious entity (the merchant). The
key observation here of course is that the merchant is not allowed to store the
confidential information or any information derived from the confidential data,
i.e., the merchant should be absolutely oblivious to the actual account number
since all checking/processing of the account number is done by the bank. The
remainder of this section is devoted to describing a notion of non-interference

suitable for such applications.

6 René Rydhof Hansen and Christian W. Probst

In order to formalise the above intuitions we define a security policy to be a
map that assigns a security level to every instance field. We assume that the set
of security levels forms a lattice, denoted (Level,v):

Definition 2 (Security policy). A security policy is a total function, level :
Field → Level, that assigns a security level to instance fields.

To simplify presentation, we consider a simple security lattice with only two
levels: low (L) and high (H) with the obvious ordering: L v H; however, the
developments in this paper are easily generalised to consider a lattice of many
different security levels. For the example program in Figure 4 we require that
Customer.account no.level = H and ∀f ∈ Merchant.fields : f.level = L to
indicate that no information regarding the customers account number must be
leaked to the merchant.

The ability to dynamically allocate objects on the heap and the subsequent
handling of object references in an applet poses a particular challenge when
defining non-interference for Carmel Core and languages with similar features.
We overcome this by defining non-interference “up to” isomorphism on memory
locations in the heap that contain objects with at least one field classified as low -
security. In preparation of this we first introduce the following relation, called
π-equivalence, for comparing values in a program up to the given π-mapping.
The map is required to be bijective (on the subset of Loc on which it is defined);
in the definition of heap equivalence (Definition 4) the map must be an isomor-
phism on the locations that point to objects containing fields with a low-security
classification:

Definition 3 (π-equivalence). Let v1, v2 ∈ Val and π : Loc → Loc be a bijec-

tive partial map and define

v1 ≡π v2 iff

v1 = v2 if v1, v2 /∈ Loc

v2 = π(v1) if v1 ∈ dom(π)
v1 = π−1(v2) if v2 ∈ codom(π)
true if v1 ∈ Loc \ dom(π), v2 ∈ Loc \ codom(π)

As already mentioned, the kind of non-interference of interest here must be able
to prevent leaks from high-security instance fields to low-security instance fields.
Local variables and stack contents are of no concern here since they are only used
temporarily for storing secret information. Thus security, as defined here, is only
concerned with the contents of the heap. The following definition formalises that
two heaps are considered to be equivalent, as seen from a security perspective,
when all fields that have a low security classification are equivalent (modulo the
isomorphism on low heap locations):

Definition 4 (Heap-equivalence). Let H1, H2 ∈ Heap, then H1 ≈L H2 if and

only if there exists a bijective partial map, π : Loc → Loc, such that

∀loc1 ∈ dom(H1) : ∀f ∈ H1(loc1).fields : f.level v L ⇒
H1(loc1).class = H2(π(loc1)).class ∧ H1(loc1).f ≡π H2(π(loc1)).f

Non-Interference and Erasure Policies for Java Card Bytecode 7

and

∀loc2 ∈ dom(H2) : ∀f ∈ H2(loc2).fields : f.level v L ⇒
H1(π

−1(loc2)).class = H2(loc2).class ∧ H1(π
−1(loc2)).f ≡π H2(loc2).f

A mapping π that fulfils the above requirements is called a low-isomorphism on
locations. Note that π is not defined for all locations, only those that point to
objects that contain at least one field of a low security classification. Thus any
object that is composed entirely of high-security fields is “invisible” to a low
security observer. We can now define non-interference for Carmel:

Definition 5 (Non-Interference). Let P ∈ Program, H1, H2 ∈ Heap and let

〈Hi, 〈mi, 0, Li, ε〉〉 for i = 1, 2 be initial configurations for P such that P `
〈Hi, 〈mi, 0, Li, ε〉〉 =⇒∗ 〈H ′

i
, 〈Ret vi〉〉 then P is said to be non-interfering if and

only if H1 ≈L H2 ⇒ H ′
1
≈L H ′

2

Intuitively this interpretation of non-interference states that if a given program
is started in two different initial configurations with equivalent heaps, then the
program is non-interfering if both executions terminate and the heaps in the
final configurations are equivalent. This guarantees that no information in a
high-security field could, in any way, have been leaked to any low-security field.

The definition of non-interference has a number of noteworthy implications.
First, it only applies to terminating programs and thus cannot prevent informa-
tion leaks through termination or timing behaviour. However, since Java Card
programs running on a smart card are expected to always terminate, timing
attacks pose only a minor security risk. In [1] a program transformation that
can eliminate such timing leaks is discussed. The second thing to note is that
the definition of non-interference could trivially be extended to also cover return
values and thus implement an aspect of input/output non-interference as well
as heap-equivalence, however, the execution model of Java Card bytecode, and
thus Carmel, makes this less interesting.

4 Control and Information Flow Analysis

In this section we develop an information flow analysis which can be used to
statically determine if a program has the non-interference property of Defini-
tion 5 with respect to a given security policy. The analysis is developed as an
extension of a previously specified control flow analysis; we shall not go into the
control flow aspects of the analysis here, merely refer to [7] for the details.

One of the main problems to overcome for an information flow analysis of a
low-level bytecode language is to take implicit flows into account and to ensure
that they are handled correctly. The information flow analysis described in the
following incorporates a special component specifically to track the implicit flow
of a program. However, there is another problem related to the implicit flows:
conditionals in Carmel, and other low level languages, are essentially conditional
jumps and, in contrast to higher level languages, there is no program structure
to indicate or even suggest the scope of a conditional statement. In order to

8 René Rydhof Hansen and Christian W. Probst

ŜtackIFA = Addr → ((cVal × Security)∗)> ̂LocHeap
IFA

= Addr → N0 → (cVal × Security)

Ôbject
IFA

= Field → (cVal × Security) Ĥeap
IFA

= ObjRef → Ôbject
IFA

̂Implicit = Addr → P(Security × Addr) Dominators = Addr → P(PC)

Fig. 5. Abstract Domains for the Information Flow Analysis

recover (some of) that structure, the analysis computes the post-dominators

or forward dominators for all program points; such post-dominators represent
program points where every terminating execution from the corresponding con-
ditional must pass through regardless of the branch taken. This is similar to
the approach taken in [8, 2]. For a configuration C = 〈H, 〈m, pc, L, S〉 :: SF 〉 let
C.address = (m, pc). The post-dominator can then be formally defined in the
current setting as follows:

Definition 6 (Post-dominator). For P ∈ Program the program counter pc
is a post-dominator for (m1, pc1), written (m1, pc1) y pc′

1
, if for all reduction

sequences with C1.address = (m1, pc1) and of the form: P ` C0 =⇒∗ C1 =⇒
· · · =⇒ Cn =⇒ 〈H, 〈Ret v〉〉 there exists an i ∈ {2, . . . , n} such that Ci.address =
(m1, pc′

1
).

Later we show how this definition is instantiated for Carmel Core.

4.1 Abstract Domains

The abstract domains for the information flow analysis are mainly extensions
of the abstract domains for the control flow analysis with security information.
In addition abstract domains are needed to compute the post-dominators (the
Dominators domain), as discussed above, and to track the implicit flow (the
̂Implicit domain). The abstract domains are shown in Figure 5.

We can now show how to compute post-dominators for Carmel Core:

Definition 7. Let P ∈ Program and DOM ∈ Dominators, then DOM is the set

of post-dominators for P , written DOM (P), if and only if

∀m ∈ P.methods : DOM (m, pc) =

{pc} ∪ (DOM (m, pc + 1) ∩ DOM (m, pc0))
if m.instructionAt(pc) = if t cmp goto pc0

{ENDm} if m.instructionAt(pc) = return

{pc} ∪ DOM (m, pc + 1) otherwise

That this definition indeed captures the notion of post-dominator is established
by the following:

Lemma 1. Let P ∈ Program such that DOM (P) and such that

P ` C1 =⇒ C2 =⇒ · · · =⇒ Cn =⇒ 〈H, 〈Ret v〉〉

Non-Interference and Erasure Policies for Java Card Bytecode 9

where C1 = 〈H1, 〈m1, pc1, L1, S1〉 :: SF1〉 then

∀pc′
1
∈ DOM (m1, pc1): ∃i ∈ {1, . . . , n} : Ci = 〈Hi, 〈mi, pc′

1
, Li, Si〉 :: SFi〉

Proof. By induction in n, the length of the instruction sequence, and case anal-
ysis.

For a detailed proof see [7].

The least upper bound of the security levels of the possible implicit flows at
an address, i.e., t{`′| (`′, (m′, pc′)) ∈ Ĉ(m, pc)}, is called the security context of
that address and is written t Ĉ(m, pc). Tracking implicit flow requires keeping
track of the security label of the implicit flow and also the origin of the implicit
flow, i.e., the program point of the conditional or method invocation that gave
rise to the implicit flow. Implicit flows originating at program point pc must be
propagated throughout the program until a post-dominator for pc is encountered.

This is formalised as follows for Ĉ1, Ĉ2 ∈ ̂Implicit and DOM ∈ Dominators:

Ĉ1(m1, pc1) vDOM Ĉ2(m2, pc2) iff

{(`, (m, pc)) ∈ Ĉ1(m1, pc1)|m2 6= m ∨ pc2 /∈ DOM (m, pc)} ⊆ Ĉ2(m2, pc2)

Putting all of the above together results in the following abstract domain for the
information flow analysis:

ÂnalysisIFA = ĤeapIFA × ̂LocHeapIFA × ŜtackIFA × ̂Implicit × Dominators

Elements of the analysis domain are written (Ĥ, L̂, Ŝ, Ĉ;DOM) where the semi-
colon serves as a reminder that the dominator component, DOM , is a parameter
to the Flow Logic specification and is not, as such, part of the analysis.

4.2 Flow Logic Specification

The information flow analysis is specified using the Flow Logic framework, cf. [9],
and is composed of three mostly independent components: a control flow anal-
ysis, tracking of implicit flows, and calculation of dominators. This gives Flow
Logic judgements of the form: (Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : instr with the
intended meaning that (Ĥ, L̂, Ŝ, Ĉ;DOM) is a correct analysis of the instruction
instr at program counter pc in method m, Figure 6 show an excerpt of the spec-
ification for the information flow analysis. Below the judgements for conditionals
and method invocations are discussed in more detail. For a detailed discussion
see [7].

In the analysis specification we use the notation A1 :: · · · :: An :: X /Ŝ(m, pc)
to mean that the abstract stack at instruction (m, pc) has at least n elements
bound to the variables A1 through An for later reference. The X /Y is generally
also used to introduce X as a shorthand for Y in the analysis specification.

10 René Rydhof Hansen and Christian W. Probst

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : load x

iff ` / t Ĉ(m, pc)t L̂↓2(m, pc)(x) :

L̂↓1(m, pc)(x)` :: Ŝ(m, pc) v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : if cmp goto pc0

iff A1
`1 :: A2

`2 :: X / Ŝ(m, pc) :

` / t Ĉ(m, pc)t `1 t `2 :

X v Ŝ(m, pc + 1)

X v Ŝ(m, pc0)

L̂(m, pc) v L̂(m, pc + 1)

L̂(m, pc) v L̂(m, pc0)

{(`, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

{(`, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(m, pc0)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : new σ

iff ` / t Ĉ(m, pc) :

{(Ref σ)}` :: Ŝ(m, pc) v Ŝ(m, pc + 1)

default`(σ) v Ĥ(Ref σ)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : getfield f

iff B`1 :: X / Ŝ(m, pc) :
∀(Ref σ) ∈ B :

` / t Ĉ(m, pc)t `1 t Ĥ↓2(Ref σ)(f) :

Ĥ↓1(Ref σ)(f)` :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

(Ĥ, L̂, Ŝ, Ĉ;DOM) |=IFA (m, pc) : invokevirtual m0

iff A1
`1 :: · · · :: A|m0|

`|m0| :: B`0 :: X / Ŝ(m, pc) :

` / t Ĉ(m, pc) :
∀(Ref σ) ∈ B: mv / methodLookup(m0, σ) :

{(Ref σ)}`0 t ` :: A1
`1 t ` :: · · · :: A|m0|

`|m0| t ` v L̂(mv, 0)[0..|m0|]

{(`0, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(mv, 0)

m0.returnType = void ⇒ X v Ŝ(m, pc + 1)
m0.returnType 6= void ⇒

A`A :: Y / Ŝ(mv, END) :

A`A t ` :: X v Ŝ(m, pc + 1)

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

Fig. 6. Information Flow Analysis

Non-Interference and Erasure Policies for Java Card Bytecode 11

Conditionals The security context for the current instruction is determined by
the (security label of) the op two values on the operand stack and the implicit
flows that may have reached the instruction. First we find the security labels
of the top two stack values: A1

`1 :: A2
`2 :: X / Ŝ(m, pc). Based on the security

levels of the stack values and the implicit flows the security level for the current
instruction is calculated: ` / t Ĉ(m, pc)t `1 t `2. Next the rest of the stack is
pushed forward to the two possible jump destinations: X v Ŝ(m, pc+1) and X v
Ŝ(m, pc0). Similarly for the local heap: L̂(m, pc) v L̂(m, pc + 1) and L̂(m, pc) v
L̂(m, pc0). Since conditionals give rise to new implicit flows that must be tracked,
the current conditional is added to the set of tracked conditionals (and method
invocations), all of which must also be copied forward: {(`, pc)}∪Ĉ(m, pc) vDOM

Ĉ(m, pc + 1) and {(`, pc)} ∪ Ĉ(m, pc) vDOM Ĉ(m, pc0).

Method Invocation The information flow analysis for method invocation pro-
ceeds like the semantics fetching parameters from the stack along with a reference
to the target object: A1

`1 :: · · · :: A|m0|
`|m0| :: B`0 :: X / Ŝ(m, pc) :. The security

levels are then used to calculate the current security context: ` / t Ĉ(m, pc) :.
Now all object references found on the stack are used for method lookup:

∀(Ref σ) ∈ B : mv = methodLookup(m0, σ) . . .

Next the parameters are transferred annotated with the updated security con-
text:

{(Ref σ)}`0 t ` :: A1
`1 t ` :: · · · :: A|m0|

`|m0| t ` v L̂(mv, 0)[0..|m0|]

and the implicit flows are also copied to the invoked method:

{(`0, (m, pc))} ∪ Ĉ(m, pc) vDOM Ĉ(mv, 0)

Any return values from the method invocation are handled as in the control flow
analysis updated with the security level of the current context:

A`A :: Y / Ŝ(mv,END) : A`A t ` :: X v Ŝ(m, pc + 1)

Then the local heaps and (local) implicit flows are copied forward:

L̂(m, pc) v L̂(m, pc + 1)

Ĉ(m, pc) vDOM Ĉ(m, pc + 1)

4.3 Soundness and Non-Interference

Proving that the information flow analysis is semantically sound amounts to
proving that it can be used to show that a program is non-interfering in the
sense of Definition 5. We prove this by establishing that the anlaysis statically
guarantees that a so-called A-equivalence, parameterised on the analysis A, holds
between semantic configurations of the analysed program; this A-equivalence is

12 René Rydhof Hansen and Christian W. Probst

then shown to be sufficient to establish non-interference for the analysed pro-
gram. Only the most important definitions and lemmas are stated here; see [7]
for further details.

First we define an equivalence on individual stack frames. Taking the dynamic
memory allocation into account the equivalence is defined only up to a given low-
ismorphism:

Definition 8. Let Fi = 〈mi, pc0, Li, Si〉 for i = 1, 2 be stack frames and let

A = (Ĥ, L̂, Ŝ, Ĉ;DOM) ∈ ÂnalysisIFA then F1 and F2 are A-equivalent, written

F1 ≈π

A F2, if and only if π : Loc → Loc is a bijective partial map and the

following conditions hold:

1. m1 = m2

2. pc1 = pc2

3. ∀x : L̂↓2(m1, pc1)(x) v L ⇒ L1(x) ≡π L2(x)

4. ∀i : Ŝ↓2(m1, pc1)|i v L ⇒ S1|i ≡π S2|i

This is trivially extended to call stacks: SF1 ≈π

A SF2 if and only if ∀i : SF1|i ≈
π

A

SF2|i. Note that this requires the two call stacks to be of equal length. Now

the equivalence of two semantic configurations, modulo A ∈ ÂnalysisIFA, can be
defined:

Definition 9 (A-equivalence). Let Ci = 〈Hi, SFi〉 for i = 1, 2 be semantic

configurations and let A = (Ĥ, L̂, Ŝ, Ĉ;DOM) ∈ ÂnalysisIFA then C1 and C2 are

A-equivalent, written C1 ≈A C2, if and only if there exists an bijective partial

map, π : Loc → Loc, such that SF1 ≈π

A SF2 and for all (Ref σ) ∈ dom(Ĥ) and

f ∈ σ.fields the following holds:

Ĥ↓2(Ref σ)(f) v L ⇒
∀loc1: H1(loc1).class = H2(π(loc1)).class

H1(loc1).f ≡π H2(π(loc1)).f
∀loc2: H2(loc2).class = H1(π

−1(loc2)).class
H2(loc2).f ≡π H1(π

−1(loc1)).f

Note that this definition is very similar to that for heap equivalence, cf. Defini-
tion 4, with added requirements on the local heap and the operand stack.

We now state the main technical lemma needed to prove the main theorem.
The lemma (called a “hexagon lemma” in [5]) shows that A-equivalence on
configurations is preserved by reduction or, more precisely, that A-equivalence
is preserved by sufficiently long reduction sequences. Figure 7 summarises the
lemma and illustrates the source of its name. Note that this proof works on the
assumption that the stack height is fixed for each instruction which is one of the
properties guaranteed by the bytecode verifier.

Lemma 2 (Diamond property). Let P ∈ Program, A ∈ ÂnalysisIFA, C1, C2 ∈
Conf such that A |=IFA P and P ` C1 =⇒ C ′′

1
=⇒∗ 〈H ′′′

1
, 〈Ret v′′′

1
〉〉, P ` C2 =⇒

C ′′
2

=⇒∗ 〈H ′′′
2

, 〈Ret v′′′
2
〉〉 with C1 ≈A C2 then ∃C ′

1
, C ′

2
such that P ` C ′′

1
=⇒∗ C ′

1
,

P ` C ′′
2

=⇒∗ C ′
2
, and C ′

1
≈A C ′

2
.

Non-Interference and Erasure Policies for Java Card Bytecode 13

P ` C1 ≈A P ` C2

C′′
1

∗

C′′
2

∗C′
1

≈A C′
2

Fig. 7. Diamond property

Proof. By case analysis.

Having established the diamond property for A-equivalence all that remains is
to relate the security policy for a program to the security levels found by the
information flow analysis:

Definition 10 (Security compatible). For a program, P ∈ Program, such

that (K̂, Ĥ, L̂, Ŝ) |=CFA P the analysis, (Ĥ, L̂, Ŝ, Ĉ;DOM), is said to be se-
curity compatible with P if ∀σ ∈ P.classes: ∀f ∈ σ.fields: f.level = L ⇒
Ĥ↓2(Ref σ)(f) = L

Finally, the main non-interference result can be stated and proved:

Theorem 1 (Non-Interference). Let P ∈ Program and A ∈ ÂnalysisIFA such

that A |=CFA P and A is security compatible with P . If C0 and C ′
0

are initial

configurations for P such that C0 ≈A C ′
0

and P ` C0 =⇒∗ 〈H, 〈Ret v〉〉 and

P ` C ′
0

=⇒∗ 〈H ′, 〈Ret v′〉〉 then P is non-interfering, i.e., H ≈L H ′.

Proof. Follows directly by application of Lemma 2 and Definition 9.

The theorem shows that if the security level found by the information flow
analysis agrees with those of the given security policy for a given program, then
the program is non-interfering and thus no secret information can be leaked.

Returning to the example program of Figure 4, the information flow analysis
shows that information from the Customer.account no field may be leaked to
the Merchant.stolen acct and thus that the program may be insecure.

5 Simple Erasure Policies

While the notion of non-interference defined in the preceding sections is quite
flexible and well-suited to the Carmel execution model, it is sometimes necessary
to allow specific confidential information to be made temporarily available to un-
trusted entities for specific purposes. Examples of this include: account numbers
in e-commerce, votes in e-voting systems. In such applications non-interference
is too strict. Recent work, cf. [3], suggests erasure policies as a possible solution.

14 René Rydhof Hansen and Christian W. Probst

Briefly, the idea underlying erasure policies, as defined in [3], is that information
that has been labelled with an erasure policy, e.g., L c↗H, is available at level L

until the condition c holds, after which the information should only be available
at level H. This kind of policy is useful for applications where sensitive informa-
tion is needed only temporarily, e.g., for voting or e-commerce. In the remainder
of this section we describe a simplified notion of erasure policy in the context of
Carmel programs. This is work in progress and we therefore do not present any
formal proofs.

For Carmel programs such erasure policies can be interpreted as follows: once
a program run has ended in a terminal configuration, e.g., 〈H ′

1
, 〈Ret v1〉〉, any

further program runs using H ′
1

as the initial heap should not be able to extract
any information from H ′

1
about any field that contained information that was

to be erased. This kind of policy can be seen as a Chong/Myers erasure policy
of the form L c↗H where c is then fixed to mean “when the current program run
ends”. We shall call such policies “simple erasure policies”, written L end↗H, and
formally define them as follows: First extend the Level security lattice with an
additional element, L↗H, such that the three elements of the lattice are ordered
in the following way: L v L↗H v H. The element L↗H is then assigned to fields
that contain data that should be erased. Given that domain we can now define
simple erasure policies formally:

Definition 11 (Simple Erasure). Let P ∈ Program, H1, H2 ∈ Heap and let

〈Hi, 〈mi, 0, Li, ε〉〉 for i = 1, 2 be initial configurations for P such that P `
〈Hi, 〈mi, 0, Li, ε〉〉 =⇒∗ 〈H ′

i
, 〈Ret vi〉〉 then P is said to comply with the erasure

policy L ↗ H if and only if P is non-interfering and H1 ≈L H2 ⇒ H ′
1
≈L↗H

H ′
2

Intuitively the above definition states that no matter what information is initially
stored in a field with the label L↗H such information is erased when the program
ends, since the requirement H ′

1
≈L↗H

H ′
2

implies that such a field must have the

same final value for every program run. This ensures that the next program run,
starting from H ′

1
(or H ′

2
or any other final heap), will not be able to extract

any information about the previous values of such fields. In order for a program
to fulfil such a simplified erasure policy it must ensure that all fields classified
as L↗H must be explicitly erased or overwritten before program termination.
We conjecture that it is relatively straightforward to augment the information
flow analysis to also statically verify simple erasure policies by requiring that
every field of level L↗H is explicitly erased before the end of a program or before
a method returns (possibly by using the already computed post-dominators).
This extension of the analysis is left for future work.

We conclude this section with an example illustrating some of the issues
discussed above. The example, shown in Figure 8, is a modified version of the
program shown in Figure 4. In the modified example a customer first has to
create a new “shopping basket” in order to buy goods from the merchant. This
procedure requires the customer to send an account number to the merchant.
Next the customer adds the items of interest to the basket; the purchase is
finalised by cehcking out the items in the basket. This is also where the merchant
uses the account number to verify that the customer has sufficient funds to pay

Non-Interference and Erasure Policies for Java Card Bytecode 15

public class Customer

{

int account_no;

Merchant merchant;

/* ... */

public void buysomething(void)

{

0: load 0

1: getfield merchant

2: load 0

3: getfield account_no

4: invokevirtual Merchant.new_basket(int)

5: load 0

6: getfield merchant

7: push 42

8: invokevirtual Merchant.add_item(int)

9: load 0

10: getfield merchant

11: invokevirtual Merchant.checkout()

12: return

}

}

public class Merchant

{

Bank bank;

int acct_cache;

int amount;

/* ... */

public void new_basket(int)

{

0: load 0

1: load 2

2: putfield acct_cache

/* ... */

}

public void add_item(int)

{

/* ... */

}

public void checkout(void)

{

/* validate the purchase */

0: load 0

1: getfield bank

2: load 0

3: getfield acct_cache

4: load 0

5: gefield amount

6: invokevirtual Bank.validate(int,int)

7: if eq 0 goto 11

8: load 0

9: getfield bank

10: invokevirtual Bank.execute(void)

11: return

}

}

Fig. 8. Modified example program

for the items in the basket. Since the merchant retains the account number in
an instance field until the purchase is completed the example program cannot
be validated as secure using non-interference alone since the account number
is indeed “leaked”. This is exactly the kind of problem erasure policies were
developed to solve: we wich to specify a policy that allows the customer’s account
number to be stored temporarily by the merchant but only in the merchant’s
account cache (from where it can only be sent to the bank for validation). Such a
policy can easily be achieved by classifying the account number as high (H) and
the account cache as “low until end of purchase” (L↗H) and finally all other fields
of the merchant should be classified as low (L). Using the definition of simple
erasure policies on the example program in Figure 8 it can be established that
the account number may actually be leaked because the merchant does not take
any steps to wipe the account cache once the purchase is completed.

16 René Rydhof Hansen and Christian W. Probst

6 Conclusion

We have presented a flexible and strong notion of non-interference for a low-
level bytecode language with dynamic memory allocation and argued that is
fits the Java Card bytecode execution. Based on this non-interference we have
furthermore defined a simplified notion of erasure policy useful for programs
where sensitive information must be made temporarily available to untrusted
parties. To the best of our knowledge this is the first application of erasure
policies for a concrete language. A more thorough investigation of suggested
simple erasure policies is left as future work.

References

1. Johan Agat. Transforming out Timing Leaks. In Conference Record of the Annual

ACM Symposium on Principles of Programming Languages, POPL’00, pages 40–
53, Boston, Massachusetts, January 2000. ACM Press.

2. Marco Avvenuti, Cinzia Bernardeschi, and Nicoletta De Francesco. Java bytecode
verification for secure information flow. SIGPLAN Notices, 38(12):20–27, Decem-
ber 2003.

3. Stephen Chong and Andrew C. Myers. Language-Based Information Erasure.
In Proc. of the 18th IEEE Computer Security Foundations Workshop, Aix-en-
Provence, France, June 2005. IEEE Computer Society.

4. Common Criteria Project Sponsoring Organisations. Common Criteria for Infor-

mation Technology Security Evaluation, August 1999. Version 2.1. Also appears as
International Standard ISO/IEC 15408:1999.

5. Karl Crary, Aleksey Kliger, and Frank Pfenning. A Monadic Analysis of Informa-
tion Flow Security with Mutable State. Technical Report CMU-CS-03-164, School
of Computer Science, Carnegie Mellon University, July 2003.

6. Elena Ferrari, Pierangela Samarati, Elisa Bertino, and Sushil Jajodia. Providing
Flexibility in Information Flow Control for Object-Oriented Systems. In Proc. of

the IEEE Symposium on Security and Privacy1997, pages 130–140, Oakland, CA,
USA, May 1997. IEEE Computer Society.

7. René Rydhof Hansen. Flow Logic for Language-Based Safety and Security. PhD
thesis, Technical University of Denmark, 2005.

8. Naoki Kobayashi and Keita Shirane. Type-Based Information Analysis for Low-
Level Languages. In Proc. of Asian Symposium on Programming Languages and

Systems, APLAS’02, pages 302–316, Shanghai, China, November/December 2002.
9. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program

Analysis. Springer Verlag, 1999.
10. Pierangela Samarati, Elisa Bertino, Alessandro Ciampichetti, and Sushil Jajodia.

Information Flow Control in Object-Oriented Systems. IEEE Transactions on

Knowledge and Data Engineering, 9(4):524–538, July/August 1997.
11. Igor Siveroni. Operational Semantics of the Java Card Virtual Machine. Journal

of Logic and Algebraic Programming, 58(1–2):3–25, January–March 2004. Special
issue on Formal Methods for Smart Cards.

