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Abstract

Analytical modelling and characterization of Weighted Fair Queueing (WFQ) have re-
cently received considerable attention by several researches since WFQ offers the min-
imum delay and optimal fairness guarantee. However, all previous work on WFQ has
focused on developing approximations of the scheduler with an infinite buffer because of
supposed scalability problems in the WFQ computation.

The main aims of this thesis are to study WFQ system, by providing an analytical WFQ
model which is a theoretical construct based on a form of processor sharing for finite
capacity. Furthermore, the solutions for classes with Poisson arrivals and exponential
service are derived and verified against global balance solution.

This thesis shows that the analytical models proposed can give very good results un-
der particular conditions which are very close to WFQ algorithms, where accuracy of
the models is verified by simulations of WFQ model. Simulations were performed with
QNAP-2 simulator. In addition, the thesis presents several performance studies signify-
ing the power of the proposed analytical model in providing an accurate delay bounds to
a large number of classes.

These results are not able to cover all unsolved issues in the WFQ system. They represent
a starting point for the research activities that the Author will conduct in the future. The
author believes that the most promising research activities exist in the scheduler method
to provide statistical guarantees to multi-class services. The author is convinced that
alternative software, for example, on the three class model buffer case, is able to satisfy
the large number of buffer because of the software limitation in this thesis. While they can
be a good topic for long-term research, the short-medium term will show an increasing
interest in the modification of the WFQ models to provide differentiated services.
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Chapter 1
Introduction

1.1 Introduction

A Weighted Fair Queueing (WFQ) service discipline is used frequently within the Internet

and seems well suited for use within different services [1] [2]. The main reason for its

importance comes from the fact that it overcomes some of the limitations of the First In

First Out (FIFO) and priority service disciplines by providing service in a fair manner for

packets of different classes.

To the best of our knowledge the constraints of the weighted fair queueing (WFQ) algo-

rithms make it difficult to provide exact analytical models for WFQ systems [3]. There-

fore, the contribution of this thesis is to provide an analytical WFQ model which is a

theoretical construct based on a form of processor sharing. In this work, the analytical

models proposed give good results which are very close to measured results from WFQ

systems [4] [5] [6].
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1.2 Motivation

In a modern computer and telecommunication system jobs can be grouped into classes ac-

cording to Quality-of-Service (QoS) requirements. Jobs belonging to different classes are

expected to be served with different Quality of Service requirements. Packet scheduling

discipline is a tool that can be used to achieve service differentiation in order to provide

Quality of Service (QoS) to streams in a network. Such a discipline can be implemented

in the switches or routers of a network in order to accommodate the various bandwidth

requirements of incoming flows that share the same departing link.

CBWFQ is an important discipline in packet-switched networks where multiple traffic

types, such as voice, video, and data, compete for the same network resources. Each of

these traffic types has its own quality-of-service (QoS) measures that must be met. CB-

WFQ provides, in some sense, a compromise that attempts to meet such requirements.

On the one hand, it avoids the extreme of isolating each traffic class on its own network

(which is better for meeting QoS requirements, but wastes unused network resources) and

avoids the other extreme of letting all classes compete in a first-come-first-served manner

for the same resources (in which case, high demand from one class can degrade perfor-

mance for the other classes). CBWFQ is currently implemented in combination with

priority queueing as part of the low latency queueing discipline in some Cisco routers [7].

In most servers a First In First Out (FIFO) discipline is used (Keshav [8]). This strategy

is fair in the sense that it serves the jobs in the sequence of their arrival times and is

starvation free. A great improvement to response time can be achieved by using a Priority

Queueing (PQ) strategy (Keshav [8]) which improves the mean response time. However,

PQ can lead to starvation. Sometimes this makes the request for large jobs wait a very

long time before being served. Hence, my main aim is to find a scheduling strategy that

reduces the mean response time, without losing the property of fairness. To the best of our

3
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knowledge the weighted fair queueing (WFQ) system combines the advantages of both

FIFO and PQ for mean response, mean queue length and throughput.

It is important to investigate the impact of the weighted fair queueing (WFQ) scheduling

approach on queueing network models; this will require considerable attention. A persis-

tent problem in queueing systems is how to choose the most appropriate model to support

a WFQ scheduling strategy, especially under optimal conditions. This thesis ultimately

aims to identify a tractable analytical model of a queue under WFQ.

1.3 Aims and Objectives

This thesis aims to:

• Develop an analytical queueing model finite buffer with multiple classes which

approximates to WFQ based on a form of processor sharing (PS).

• Provide a general solution for a PS approximation to the WFQ model with a multi-

class finite buffer.

• Analyse the PS approximation to the WFQ model by using several traffic load and

weights.

• Prove that the proposed analytical model can be a good approximation to queue

under WFQ.

These aims are achieved by developing an analytical model and validating it through a

simulation model.

4



CHAPTER 1. INTRODUCTION

1.4 Research Methodology

Given the objective of the research which is to model a system for WFQ scheduling, the

approach initially was to review what is known in the area of

• scheduling discipline.

• simulation model in queueing system.

• analytical model in queueing system.

• Matrix analytic methods.

That review presented in Chapter 2 exposes two important main points. Firstly, it presents

a survey of the most common scheduling techniques, in particular the Weighted Fair

Queueing (WFQ). Secondly, a brief description of previously related works which prove

that the constraints of weighted fair queueing (WFQ) algorithms make it difficult to pro-

vide exact analytical models for WFQ systems. Consequently, the next step was to pro-

pose an analytical model, which approximates to WFQ system. A new Theorem was

presented, proved and evaluated as shown in Chapter 3. As a result, it is used to calculate

the steady state of probability for any buffer and class. Experimental results based on the

implementation of the proposed analytical model are presented where simulation results

are used to validate the proposed mathematical model and to prove that the behaviour of

the system is similar to that in the simulation model (see Chapter 4). Finally, the WFQ

simulation model that had been proposed and the simulation results in [9] proves that the

analytical model in this thesis is a good approximation to WFQ model.

5
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1.5 Thesis Organization

• Chapter 1 provides a context for the research area; it provides a brief introduction

and outline of the problem domain. The structure of the thesis is also presented.

• Chapter 2 presents the procedure, benefits, and limitations of a different number

of common queue scheduling disciplines together with the literature review.

• Chapter 3 introduces a proposed analytical model of WFQ system that could gen-

erally be applied to support any number of classes.

• Chapter 4 presents the experimental results based on the implementation of the

proposed analytical model.

• Chapter 5 concludes the thesis with a summary of the contributions and possible

future directions for the work.

6



Chapter 2
Literature Review

2.1 Introduction

In a modern computer and telecommunication system, customers can be grouped into

classes according to Quality-of-Service (QoS). The customers belonging to different classes

are expected to be served with different service. To provide the Quality of Service to

streams in a network, a tool called the packet scheduling discipline is used to achieve

service differentiation. The main aim of these scheduling disciplines is to share the band-

width between the all classes. This chapter has two parts: a review of scheduling disci-

plines for fair queueing and related research work.

To meet the needs aforementioned, our attention is turned to service discipline which

provides a different service for individual classes. A non-preemptive scheduling (also

referred to as head of line priority scheduling, HOL-PS) occurs as follows: a high priority

customer can move ahead of all the low priority customers waiting in the queue, but low

priority customers in service are not interrupted by high priority customers. Among the

simplest time-priority scheduling schemes, the non-preemptive HOL priority scheduling
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discipline has been proposed to provide differentiated services Miller [10]. However, PQ

can lead to starvation. Sometimes this makes the request for large jobs wait a very long

time before being served. Hence, the main aim in this work is to find a scheduling strategy

that reduces the mean response time, without losing the property of fairness. To the best

of our knowledge weighted fair queueing (WFQ) system combines the advantages of both

FIFO and PQ. A detailed study of the weighted fair queueing algorithms is described in

Section 2.2, with a particular focus on the procedure, benefits, and limitations of fair

queueing.

There are different types of Quasi Birth Death (QBD) solution methods available. How-

ever, next chapter refers to the most known solution method, the matrix-geometric solu-

tion proposed by Neuts in [11] and [12]. It is difficult to choose the best solution method,

since each method has its advantages and disadvantages. A good comparison discussion

has been seen in Tran [13] and [14]. The previous WFQ system solutions, and the solu-

tions limitations are discussed in Section 2.3.

2.2 Review of Scheduling Disciplines for Fair Queueing

Fair scheduling disciplines are so-called because they are designed to share the bandwidth

between all the classes. The idea of FQ was proposed by Nagel [15]. This section has

three parts: Processor-Sharing (PS), Generalized Processor Sharing (GPS) and Approxi-

mating GPS.

2.2.1 Processor-Sharing (PS)

The processor-sharing (PS) queueing system, has a considerable value and is used widely

to study computer and communication [16]. In PS, each customer receives an equal share

8
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of the processor; if there are n customers at some time, then each customer is serviced at

1
n

times the speed of the processor Kleinrock [17].

In spite of its simple description, PS is difficult to analyse compared to other queueing

systems, regarding to analyse PS in Kleinrock [16], Yashkov [18], Ott [19] and Schass-

berger [20].

Therefore, a theoretical construct of the approximation model in this thesis based on the

idea of processor sharing, which is serviced all classes at the same times.

Hence, we turn our attention to a scheduling strategy that provides differentiated services

for each class, without losing the property of PS.

2.2.2 Generalized Processor Sharing (GPS)

The Generalized Processor Sharing (GPS) [21] is an ideal scheduler that distributes the

bandwidth of a shared link fairly among packet flows in proportion to their reserved bit-

rates. GPS attains its bandwidth guarantees by serving an infinitesimal amount from each

backlogged class in proportion to each class’s reservation. However, GPS is unrealizable

in practice because it services a small part of each packet at a time.

The GPS works by assigning a separate queue to each flow (or class); then services an in-

finitesimal amount from each flow according to a weighted cyclic schedule. In GPS [22],

it is assumed that traffic satisfies the fluid model and that every packet is infinitely divis-

ible. Assume that there are N classes sharing an outgoing link of capacity C. The share

of bandwidth reserved by class j is represented by a real number wi . The ws are selected

such that the fraction,

wj∑N
i=1wi

(2.1)
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corresponds to the required bandwidth reservation of the class. If αi is the required band-

width reservation of class j, then

wj∑N
i=1wi

C ≥ αi. (2.2)

The amount

ri =
wj∑N
i=1wi

C (2.3)

is called the guaranteed rate for class j and is the minimum available bandwidth to class

j at any known instance of time.

Let B(τ, t) be the group of classes that are backlogged in the interval (τ, t). Under

GPS, the service Sj(τ, t) offered to class j that belongs to B(τ, t) is proportional to wi

according to

Sj(τ, t) =
wjC∑

i∈B(τ, t)wi
(t− τ). (2.4)

2.2.3 Application of GPS in a Packet System

A real scheduler must complete the service of a whole packet from a class before it moves

to the next class. It has been observed that the GPS scheduler is inapplicable because no

packet can be partitioned into infinitesimal amounts. As a result, the suggested researches

take the idea of the service order of packets in GPS to schedule packets in a packet system.

This leads to two packet selection policies, the Smallest Finish-time First(SFF) [23] and

the Smallest Start-time First (SSF) [24]. The SFF technique services the packet accord-

ing to the finishing order under GPS. On the other hand, in the SSF techniques, packets

are serviced in the starting order under GPS. Start-time Fair Queueing (SFQ) is an ex-

10
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ample of a SSF scheduler while Weighted Fair Queueing (WFQ) is an example of a SFF

scheduler [25].

There is more than one packet to finish at the same time even if they arrive at different

times in GPS [26]. As a result, in [27] it is assumed that a GPS system is inapplicable

since it demands knowledge of most of the N events at a certain moment of time. As

a result, it was stated that the application complexity of any GPS emulation is O(N).

However, Tayyar proved in [26] that this is not correct since the system can be reduced to

O(1), even when as many as N events are happening simultaneously. This is reached by

creating a priority queue data structure that tracks the finish order of packets in the system

.

2.2.4 Approximating GPS

There are different ways of approximating GPS service; the most popular GPS approxi-

mation methods are presented in the following subsections.

2.2.4.1 Weighted Round-Robin (WRR)

Packet round robin is the foundation for the Weighted Round Robin (WRR) [28]. We

take into consideration the Round-Robin (RR) [8], which is one of the GPS emulations

that serves a packet from each nonempty queues, instead of infinitesimal amount. The

RR is considered a good approximation of GPS when all queues have equal weight and

all packets have equal size. However, if queues have different weights, then RR is-called

the WRR queueing discipline [8].

We can see from Figure 2.2 the basic behaviour of WRR. The packets in the WRR are

classified into different service classes and then the scheduler accesses each queue in a

11
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Figure 2.1: Round Robin (Fair Queueing)

round-robin approach. Each queue has a weight that allows it to service a certain number

of packets before giving service to the next queue. The weight is typically predetermined

as a percentage of the whole bandwidth.

The quality of the Weighted Round Robin is its ability to manage packets instead of bytes.

Customized class is calculated taking into consideration the weight assigned to each class,

so that it can send an exact number of bytes each round. This means that when a packet is

sent then class allocation is decreased by an amount equal to the packet length. In the case

when packets from different queues have different sizes, a WRR scheduler divides each

queue’s weight by its mean packet size to get a normalized group of weights. However,

if a source cannot predict its mean packet size, a weighted round robin server will not be

able to allocate bandwidth fairly. In addition, the weighted round robin is fair only over

time scales longer than a round time because, at the shorter time scale some classes may

receive more service than others [8]. Furthermore, WRR has the benefit of providing only

O(1) processing complexity per packet, but its delay becomes a problem as the number

of classes sharing the link increases [29].

12
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Figure 2.2: Weighted Round Robin (WRR)

2.2.4.2 Weighted Fair Queueing (WFQ)

Packet-by-packet GPS or WFQ as it is known, is an approximation of GPS scheduling

that transmits packets according to their finishing order under GPS [27]. In WFQ a GPS

fluid-model system is simulated in parallel with the actual packet-based system in order to

classify the group of classes that are backlogged at each instant of time and their service

rates. On the basis of this information, a timestamp is calculated for each arriving packet,

and the incoming packets are inserted into a priority queue based on their timestamp

values in order of increasing timestamp. The timestamp determines the finishing number

of the packet. To determine the finishing number, WFQ keeps track of a virtual time

function V (t) which is a piecewise linear function of real time t , and its slope changes

depending on the number of busy classes in GPS and their service rates. More specifically,

if B(t) represents the set of backlogged classes in the GPS Scheduler at a time t is given

by

∑N
i=1 γi∑

j∈B(t) γj
(2.5)

where N is the number of active classes. At the arrival of a new packet, the virtual time
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must first be calculated. Then, the timestamp TSki connected with the k th packet of class

j which arrives at time, t is calculated as

TSkj = max(TSk−1j , V (t)) +
Lkj
rj
, (2.6)

where Lkj is the length of the arrived packet and rj is the guaranteed link share of class j.

The basic behavior of WFQ is shown in Figure 2.3.

Figure 2.3: Weighted Fair Queueing (WFQ)

The benefit of using WFQ queueing is that it gives the same latency bound as the GPS,

with a maximum difference equal to the transmission time of one maximum length packet.

It has been suggested, that the WFQ is complex and the computational complexity is in-

creasing from the solution method to the GPS scheduler [27]. Another source of complic-

ity belongs to the queue management operations. In [30] it is proved that this operation is

accomplished with O(log(N)) complexity. Although the guaranteed delay bounds sup-

ported by a weighted fair queue are commonly better than for other fair queue scheduling

disciplines, the bounds will still be quite large [2].
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2.2.4.3 Enhancements to WFQ

Different enhancements have been proposed to the basic WFQ to solve the problem of

computational complexity. These will be discussed. Among the popular WFQ variants

are these:

1. A Self-Clocking Fair Queueing (SCFQ) is an enhancement to WFQ that reduces the

complexity of calculating the virtual time corresponding GPS system and the virtual

time function is computed using timestamp of the packet at present in service [23].

So, the virtual time is defined as the timestamp of the packet as currently in service

TScur. A SCFQ computes the timestamp of an arriving packet as

TSkj = max(TSk−1j , TScur) +
Lkj
rj
, (2.7)

This approach decreases the complexity of the algorithm in a larger worst-case

delay which increases with the number of service classes [2].

2. Virtual Clock (VC) scheduling presents the same end-to-end delay bound as WFQ

with a simple timestamp computation algorithm. A VC computes the timestamp of

an arriving packet as :

TSkj = max(TSk−1j , t) +
Lkj
rj
, (2.8)

where t is real time.

The disadvantage of this scheduling is that a backlogged class can be starved for an

arbitrary period of time as a result of more bandwidth it obtained from the server

15



CHAPTER 2. LITERATURE REVIEW

when other classes were idle [31].

3. Start-time Fair Queueing (SFQ) is another enhancement of WFQ. This scheduling

uses to schedule packets according to start time in GPS. The virtual time is ap-

proximated by the virtual start-time of the packet presently in service. They can

calculate the virtual finish time of packet as the sum of the virtual start time plus

the ratio of length to class share. The virtual start time of packet when it arrives in

class equals to the virtual finish time of the previous packet of that class. A SFQ is

easy to implement, but it has a delay bound well above that of WFQ [24].

4. Worst-case Fair Queueing (WF2Q) was proposed in [22] to overcome the problem

of the departure process resulting from packet in WFQ server which could be bursty.

The idea of WF2Q like WFQ using the virtual time concept and the virtual finish

time is defined as the time packet amount if it is sent under the GPS discipline. A

WF2Q focus for the packet has the smallest virtual finishing time between packets

waiting in the system that have started service under GPS instead of looks for the

smallest virtual finish time for all the packets waiting in the system. The service

offered by WF2Q is similar to that of GPS in spite of the difference by not more than

one maximum size packet. A Worst-case Fair Queueing +(WF2Q+) is the simpler

implementation of WF2Q with a relatively low complexity of O(log(N)) [32].

5. Class-based WFQ (CBWFQ) extends the regular WFQ functionally to give support

for user -defined traffic classes. In the CBWFQ mechanism, the bandwidth is shared

in traffic classes according to the weights assigned to the CBWFQ traffic classes.

These weights are considered to guarantee the traffic class which gets a certain

amount of the available bandwidth. CBWFQ extends the weighted fair queueing

(WFQ) by assigning weights to classes of traffic rather than individual flow of traffic

known by origination/destination pairs. The CBWFQ discipline is being used often

within the Internet with these possible Quality of Service (QoS) problems for the
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multiple traffic classes. For example, the base CBWFQ system has two classes

of packets. There is no service interruption of packet by another. Upon service

completion of a packet, the next packet be served is randomly chosen based on the

class weights [2].

2.3 Related Research Work

To the best of our knowledge the constraints of weighted fair queueing (WFQ) algorithms

make it difficult to provide exact analytical models for WFQ systems [3]. The assump-

tion of Poisson packet arrivals and exponential service times is used in this thesis, which

are the most lenient assumptions one could make and get analytical results. If the cus-

tomer arrivals are according to Poisson processes, and service times are exponentially

distributed, the system can be modelled by a multi-dimensional Markov chain [9].

There is a large body of research on Weighted Fair Queueing (WFQ) in general. However,

most of the literature deals with simulation solutions for example [33] [34], [35] and [34].

All papers that deal with cyclic polling models in which the server visits each queue in

ordered rotation, rather than in a random fashion Takagi [36].

A related concept of an analytical model in this thesis is processor sharing in which jobs

from different queues are served simultaneously and the server services classes in a ran-

dom fashion. There were many works proposed to analyse the WFQ.

Most authors that deal with approximation models to WFQ model with infinite buffer. The

work in [37] studies the fluid weighted fair queueing which does not account for the dis-

crete nature of packets, which assigns to each flow a weight, w say. Therefore a minimum

bandwidth equal to wt is to be guaranteed to the flow, where t is the transmission capacity

of the link. In the WFQ model in this work, customers of class i ∈ {0, 1}, arrive accord-
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ing to a Poisson process with λi and require service times with arbitrary distribution Li

and with mean service times 1
µi

. It has assumed that the fluid WFQ system is stable, since

the WFQ discipline is work conserving under this condition (ρ0 +ρ1) < 1, where ρi = λi
µi

is the load offered by customers of class i. The weight of class i is wi and, assumes that

w0 + w1 = 1. It has supposed that Zi
t denotes the workload in queue i and π(z0, z1)

and denotes the joint probability density function of (Z0
t , Z

1
t ) in the stationary system,

which exists under the stable condition. In this work the authors provide an analytical

solution for fluid WFQ system with two classes of customers by using Laplace transform.

The Laplace transform π∗(s0, s1) of the density distribution function π(x0, x1) can be

expressed by means of some unknown Laplace transforms and the proof is presented.

Therefore, the result is a two variable complex function, making this approach difficult.

Guillemin and Pinchon [38] consider a weighted fair queueing system with two classes

of customers with an infinite buffer. The customers of class i, i = 0, 1 arriving according

to Poisson processes with rate λi require exponential service times with mean 1
µi

. The

load of queue i is ρi = λi
µi

. In this work, assume each class is assigned a virtual queue

and incoming customers enter the virtual queue related to their class and served in FIFO

order. The queue i is served at a rate wi for some wi > 0 when the queue 1 − i is not

empty and at rate unity when queue is empty. It supposes that the system is stable, which

amounts to assuming that the load ρ is ρ = ρ0 + ρ1 = λ0
µ0

+ λ1
µ1
< 1. It assumed Ni(t) is

the number of customers in queue i, i = 0, 1 at time t. The infinitesimal generator matrix

of this work is given by:

Q =



B0 A1

C0 B1 A2

C1 B2 A3

. . . . . . . . .
. . . . . . . . .


.
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The function t→ p(t) is the solution to the backward Chapman-Kolmogorov equation:

∂P
∂t

(i, j; t) = QP. (2.9)

The authors provide an analytical solution for this system by using Laplace transform in

the generating function of two dimensional Markov chain. The asymptotic behaviour of

the approximation model only presents a logarithmic limit and the approximation model

is applicable to two classes and, thus it is impossible to apply if there are more than

two queues. Because, they obtained a two-variable complex function, and making this

approach difficult.

Horváth and Telek presented another solution method, called Matrix-Geometric solution,

which is detailed in Section 3.5. In this work [9], they consider a two class system and, the

inter arrival times are given in two moments. They provide an approximation for the first

and second moments of the waiting time. The main concept in this work is to approximate

the two queue systems as the queues were separated and a service process for each that

approximately follows the behaviour of the original server. The arrival process assumes a

Phase-type process and requires Phase-type (PH) distributed service times with an infinite

buffer. Horv´ath and Telek use the PH representation to use the matrix geometric methods

as in Latouche and Ramaswami [39]. The steady state probabilities of block tri-diagonal

structured Markov chains are obtained from the well known formula ~π Q = 0, where ~π

consists of vectors ~rn : ~π = [~r0, ~r1, . . .] and the block tri-diagonal generator matrix as:

Q =



B0 A0

C1 B A

C B A

C B A

. . . . . . . . .


.
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The authors use the matrix-geometric solution method to get the performance measures

of the QBDs. Therefore, it evaluate two numerical examples to show the algorithm. It

provide a simple formula to calculate the mean waiting time and the mean queue length

of PH/PH/1 type for two classes. But this formula has limits and usability and when the

system overloaded, it gets higher errors.

Many methods were investigated to give a solution to the CBWFQ Markov chain with

infinite buffer. First we mention the analytical solutions. In trying to solve the problem

analytically, Gross and Harris [40], faced extreme difficulty. So, they began with the sim-

plest assumption with an infinite buffer, two service classes, exponential service times,

and Poisson arrivals. The investigated method has been successfully applied to analyti-

cally solve similar queues, such as the priority queue. The two-class priority queue is a

special case of the two-class CBWFQ when the weights of one class or the other is zero

Fischer, Masi and Shortle [41].

The generating function approach has been applied in the two-class priority queue as

two-dimensional generating function H(z1, z2). We can see in Gross and Harris [40], a

suitable summation of state equations, H(z1, z2) as a function of known variables and

an unknown one-dimensional generating function P02(z2) . Gross and Harris [40] drew

attention to the equal service rates and the fact that the whole form for P02(z2) is not

required to calculate the partial derivative of H(z1, z2) with respect to z1, where only the

value of P02(1) is needed and this value can be easily obtained. Thus, it get all standard

performance measures for the priority queue without calculating the exact functional form

for H(z1, z2).

On the other hand, we can not apply the generating function approach for the CBWFQ

form H(z1, z2) which contains two unknown generating functions, P02(z2) and Q01(z1).

It means that taking the partial derivative of H(z1, z2) with respect to either z1 or z2

needs knowing the complete form of at least one of these two functions [40]. Therefore,
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the standard performance measures cannot be calculated without knowing the whole form

of these two functions.

The step was to solve the equations numerically. The author in Blance [42] consider the

same problem. However, they call this type of system Coupled Processor Model. They

describe the steady state probabilities of the two dimensional Markov chain as a power

series of the load, and by using a recursive way they can calculate the coefficients of

the powers. This approach can be applied on two number of classes, and as the load

approaches to 1 a large number of coefficients have to be computed to achieve a given ac-

curacy. According to [43], Servi uses another approach to approximate the infinite model,

and apply a type of Gaussian elimination to solve the infinite Markov chain. Throughout

the Gaussian elimination the structure of the system is exploited to get reasonable results.

However, it doesn’t give good results when the load is high.

Shortle and Fischer [41] present and provide the critical role of simulation which has given

great development performance analysis tools for the CBWFQ discipline. In Shortle and

Fischer an extensive literature review is given for the CBWFQ system where it relates to

two-class M/M/1 systems. In that paper they develop an approximation for the expected

delay in the buffer when the load is less than one. This approximation may be classified as

a system level approximation in that it is related to a Non Preemption Priority Queueing

system.

2.4 Summary

This chapter gives a detailed study of the weighted fair queueing algorithms, with a par-

ticular focus on the procedure, benefits, and limitations of the fair queueing. In addition,

the previous WFQ system solutions and their limitations have been studied.
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Chapter 3
Mathematical Model

3.1 Introduction

The modelling of multi class systems is more challenging than the modelling of single

class systems. Even when we consider the simplest case of exponentially distributed

interarrival times and service times the resultant model is a multi-dimensional Markov

chain, which usually does not have a closed form steady state solution.

In this chapter we introduce the mathematical models which approximate the behaviour of

a multi-class systems with a WFQ service discipline, and present a derivation of the most

important performance measures such as the mean queue length distribution, throughput

and mean response time. In our approximate model the arrival process is assumed to be

a Poisson process, and service times are assumed to be exponentially distributed. We

use the Matrix-Geometric solution technique to obtain the performance measures of the

Quasi Birth Death (QBDs). Section 3.5 summarizes the matrix geometric solution for

computing the steady state probabilities of QBDs processes. Finally we give a summary

in Section 3.8.
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3.2 Simulation Model

The class based WFQ system hasK classes of packets. We assume that the arrival process

for each class is an independent Poisson process with rate λi and that the service times

are exponentially distributed with mean 1
µi

. In addition, the buffer N is shared between

K classes.

In the WFQ system, there is no service interruption of packets by another. Upon service

completion of a packet, the next packet to be served is randomly chosen based on the class

weights. Specifically, in two-class systems when both classes are present, a class-1 packet

is chosen with probability w1 and a class-2 packet is chosen with probability (1 − w1).

Packets of the same class are served in First-In-First-Out (FIFO) order.

For Markov process to model the system state must incorporate not only the number

of packets of each class but also the class of the packet in service. Thus, for a 2-class

system the state is s = 0, 1, 2 where s is a variable denoting the class of packet in service:

(s = 1, 2) or (s = 0) when the system is empty.

Whereas in the approximation model is processor sharing in which customers from dif-

ferent classes are served simultaneously.

3.3 K-Class Queueing Mathematical Model

The Processor Sharing approximation to the WFQ model proposed in this work operates

as follows: Consider a single-server system. Let K > 1 classes of jobs arrive to the

multiple queueing system as K independent Poisson processes as shown in Figure 3.1.

Jobs arrive according to a Poisson process at a rate λi and have exponential service rates

with mean 1
µi

for class-i, i = 1, 2, . . . , K. Jobs of the same class are served in First-In-
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First-Out (FIFO) order.

Each class-i, is assigned a weight 0 ≤ wi ≤ 1 for i = 1, 2, . . . , K. The PS approximation

of WFQ model consists of a single server distributing service between K classes in pro-

portion to their assigned weights. If all classes are nonempty, the job at head of class-i

will be served with wi. However, if some classes are empty, the head job of class-i will

be served with ŵi :

ŵi =
wi∑

j I{nj 6=0}wj
(3.1)

The buffer N is shared between K classes, hence, the maximum number of jobs in the

system at any time will not exceedN and any additional arriving customers will be refused

entry to the system and will depart immediately without service. Only when all the K

classes are empty can the server be in idle state. In the system described in Figure 3.1, the

PS approximation to WFQ is applied in the following manner and the analytical models

proposed give good results which are very close to WFQ algorithms [4] [5] [6], as shown

in Chapter 4.

3.4 Analysis

The state of the system is given by (n1, n2, . . . , nK) when there are ni jobs of class-i,

i = 1, 2, . . . , K.

The state space can be partitioned on the total number n = n1 + n2 + . . . + nK where

n = 0, 1, . . . , N of jobs in the system. Within each partition the states can be partitioned

further to the number of jobs of classes 1 to K − 1 and, within that, according to the
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Figure 3.1: An K-class PS approximation to WFQ model

number of classes 1 to K− 2, and so on. This ordering of the states leads to the transition

rate matrix of block tri-diagonal form:

Q =



B0 A1

C0 B1 A2

C1 B2 A3

. . . . . . . . .

CN−2 BN−1 AN

CN−1 BN


.

The Q is the infinitesimal generator matrix of the process. The Q is a square matrix

of dimension (K+N)!
N ! K!

and has the general structure which is quite large even for a small

buffer. An has the rates of transitions from states with n − 1 jobs in total to those with
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n jobs. Cn has the rates of transitions from states with n + 1 jobs in the total to those

with n, and Bn is diagonal with each entry being the negative of sum of the rates in the

corresponding rows of Cn−1 and An+1.

In the K class system Cn is (Wk n)−1Ck, n, where,

Ck, n =



wkµk

Ck−1,1 wkµkI

Ck−1,2 wkµkI

Ck−1,3
. . .
. . . wkµkI

Ck−1,n


,

and C1,n = (w1µ1)

Wk, n = diag(wk, (wkI +Wk−1,1), . . . , (wkI +Wk−1,n−1),Wk−1,n) and W1,n = w1.

An = Ak,n where

Ak,n =



λk Ak−1,1

λkI Ak−1,2

λkI Ak−1,3

. . . . . .

λkI Ak−1,n


,

and A1,n = (λ1)

3.4.1 State Equilibrium Equations

The steady state probability vector ~π forQ is generally partitioned as ~π = [~π0, ~π1, . . . , ~πN ],

where row vectors ~π0, ~πn, 1 ≤ n < N .
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The equation ~π Q = 0 satisfied by the invariant vector ~π can be rewritten in the form:

~π0B0 + ~π1C0 = 0 (3.2)

~π0A1 + ~π1B1 + ~π2C1 = 0 (3.3)

~πn−1An + ~πkBn + ~πn+1Cn = 0, 1 < n < N − 1 (3.4)

~πN−2AN−1 + ~πN−1BN−1 + ~πNCN−1 = 0 (3.5)

~πN−1AN + ~πNBN = 0 (3.6)

and ~π e = 1 is the normalizing equation.

3.5 The Analytical Solution

The Matrix geometric technique is a method to solve stationary state probability for vector

state Morkov processes. The theory of the matrix geometric solution was developed by

Neuts [11], [12], [44] and [45]. It is applied in two parts, boundary set and repetitive
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set. The repetition of state transitions to M/M/1 queue considered in [46] implied a

geometric solution; the repetition of the state transitions for vector processes implies a

geometric form where scalars are replaced by matrices. Such Markov processes are called

matrix geometric processes. Furthermore, Matrix geometric methods are applicable to

both continuous and discrete time Markov processes. In our model, if we get a matrix R

such that

~Pn = ~Pn−1R ∀n ≥ 1 (3.7)

By successive substitutions into the state equilibrium equations, we obtain that

~Pn = ~P0R
n ∀n ≥ 0 (3.8)

where

~Pn is the vector state of the Markov process.

Then the solution of the form (3.8) is called the matrix geometric solution [47]. The

explanation for solving a matrix geometric system is to state the matrix R, which is called

the rate matrix and which we will discuss below.

3.5.1 Computation of the Rate Matrices

By simple algebraic manipulation of the state equilibrium equations we describe the cal-

culation of Rn, 1 ≤ n ≤ N as follows:

From Equation (3.2) taking into account that B0 is non-singular, we obtain ~π0B0 =

−~π1C0 Multiply both sides by B−10 results in

~π0 = −~π1C0B
−1
0
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Let R0 = −C0B
−1
0 this gives

~π0 = ~π1R0 (3.9)

Multiplying both sides of Equation (3.6) by B−1N (BN is non-singular) and reorganizing

the result gives:

~πN = −~πN−1ANB−1N

Letting RN = −ANB−1N gives the following equation (3.10):

~πN = ~πN−1RN (3.10)

Substituting Equation (3.10) in Equation (3.5) and reorganizing, we get:

~πN−1BN−1 + ~πN−1RNCN−1 = −~πN−2AN−1

By taking out the common factor in the left-hand side, we get:

~πN−1(BN−1 +RNCN−1) = −~πN−2AN−1

Multiply both sides by (BN−1 +RNCN−1)
−1 gives as:

~πN−1 = −~πN−2AN−1(BN−1 +RNCN−1)
−1

Let RN−1 = −AN−1(BN−1 +RNCN−1)
−1, then

~πN−1 = ~πN−2RN−1 (3.11)

Finally from Equation (3.4) and using Equation (3.11), we get a general relation between

~πn−1, ~πn and Rn,

~πnBn + ~πnRn+1Cn = −~πn−1An
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By taking out the common factor in the left-hand side, we obtain:

~πn(Bn +Rn+1Cn) = −~πn−1An

Multiply both sides by (Bn +Rn+1Cn)−1:

~πn = −~πn−1An(Bn +Rn+1Cn)−1

Simplify by letting Rn = −An(Bn +Rn+1Cn)−1, we get

~πn = ~πn−1Rn (3.12)

Rn can be calculated from Algorithm 1.

Algorithm 1 Calculation of Rn

1 : RN ← −ANB−1N
2 : if N ≥ 1 then
3 : for j = N − 1→ 1 do
4 : Rj ← −Aj (Bj + Rj+1Cj)

−1

5 : end for
6 : return Rn ← −An (Bn + Rn+1Cn)−1

7 : end if
8 : if n = 0 then
9 : return R0 ← −C0B

−1
0

10 : end if

3.5.2 Stationary Probabilities

Theorem 3.1 For Processor-Sharing approximation of Weighted Fair Queueing analyti-

cal model process with finite state space, having an infinitesimal generator matrix Q, the
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stationary probabilities are given in matrix-geometric form by

~πn = ~π1R
∗
n (3.13)

where R∗n =
∏N

j=2Rj and Rj is computed using Algorithm 2 and ~πn is steady state prob-

ability at state n.

Proof. We solve the system of the linear equations for ~π1, and from Equation (3.10), we

obtain ~πn as,

~πn = ~πn−1Rn

= ~πn−2Rn−1Rn

...

= ~π1R2 . . . Rn−2Rn−1Rn

= ~π1

n∏
j=2

Rj = ~π1R
∗
n

Solving Equations (3.2) and (3.3) for ~π1 and using ~π2 = ~π1R2 we get,

~π1(R0A1 +B1 +R2C1) = 0 (3.14)

We use the solution (3.13) with the normalizing condition
∑N

n=0 ~πne = 1 and Equation

(3.9) to obtain:

(~π1R0e+ ~π1
∑N

n=1R
∗
ne) = 1
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By taking out the common factor in the left-hand side, we get,

~π1(R0e+
N∑
n=1

R∗ne) = 1 (3.15)

It is worth noting that Theorem 3.1 only gives the structure of the vector ~πn and that the

vector ~π still needs to be determined. Substituting solution (3.13) into Equations((3.3)-

(3.5)), hence the vector ~π1 could be computed from either one of the equations

~π1(R0A1 +B1 +R2C1) = 0, (3.16)

~π1(R
∗
n−1An +R∗nBn +R∗n+1Cn) = 0, 1 < n < N − 1, (3.17)

~π1(R
∗
N−1AN +R∗NBN) = 0. (3.18)

and

~π1(R0e+
∑N

n=1R
∗
ne) = 1

Consider the linear system of one of the equations ((3.16), (3.17) and (3.18)) with (3.15),

this can be written as

A ~π1 = ~b (3.19)

whereA is the number of classes-by-number of classes matrix, ~π1 and~b denote the number

of classes-by-one vectors. The inverse of A exists because the determinant of the matrix
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A does not equal zero and A is a square matrix, thus the solution of this equation is then

~π1 = A−1 ~b (3.20)

Algorithm 2 is used to compute the stationary probabilities ~πk.

Algorithm 2 Calculation of ~π

1 : j = 2→ n do
2 : ~πj ← ~π1

∏n
j=2Rj

3 : end for

3.6 Application of the Solution Method to Queues with

More Complex Arrival and Service Process

The method in this work can be extended to cope with bursty arrivals Markov-Modulated

Poisson Process (MMPP), Neuts Process and Hyper-exponential arrival and service dis-

tributions.

Everything can be represented as M/M/1/N queues in a randomly changing environ-

ment. For example, we consider a single server queueing system as shown in Figure

( 3.1) when two classes of traffic wait for service. Assume that inter-arrival times for

each class is phase renewal process. When the continuous time Markov chain (CTMC)

is phase s, (s = 1, 2), arrivals occur according to a Poisson process of rate λsi for class-i

and the intensity of transition from phase 1 to phase 2 is φ12 and phase 2 to phase 1 is φ21.

The service time of class-i, (i = 1, 2) traffic is exponentially distributed with mean 1
µsi

.
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Randomly changing environment infinitesimal generator matrix is given by:

Φ =

−φ12 φ12

φ21 −φ21


Consider the Markov chain that corresponds to the queueing process. This chain has states

(n1, n2, s). The n1 signifies the number of the class-1, the n2 signifies the number of the

class-2 and s is the phase of the service process.

Let ~π be the steady state probability vector of this Markov chain:

~π = (~π0,1, ~π1,1, . . . , ~πN,1, ~π0,2, ~π1,2, . . . , ~πN,2)

The infinitesimal generator matrix of this Markov chain is Q and the steady-state proba-

bility vector ~π satisfies the following equations

~π1Q1 − φ12~π1 + φ21~π2 = 0 (3.21)

~π2Q2 − φ21~π2 + φ12~π1 = 0 (3.22)

From equations (3.21) and (3.22), the ~πsQs for s = 1, 2 is the same of the case of expo-

nentially distributed interarrival times and service times.

3.7 Derivations of Performance Metrics

In this section we derive the analytical expressions of the performance metrics for the

multi-class jobs, under PS approximate to WFQ system, specifically the mean queue

length, mean response time and throughput. The derivation of these performance metrics
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is adapted from the derivations of performance metrics of the non-preemptiveM/M/1/N

system with FIFO scheduling found in [48]. It is possible to use the same derivations be-

cause the effect of the weights in the PS approximate to WFQ scheduling is explicit in the

stationary probabilities.

3.7.1 Mean Queue Length

The value for L, the expected number of jobs in the PS approximate to WFQ system,

is done by summing the weighted probabilities having n jobs in the system. The mean

queue length L is calculated from the M/M/1/N model as follows:

L =
N∑
i=0

n πn (3.23)

Where πn is the steady state probabilities of n jobs in the system, n = 0, 1, . . . , N .

The following equations are derived from Equation (3.23) to find L1, L2, . . . , LK the

expected number of jobs in class-1, class-2, . . . , class-K, respectively:

L1 =
N∑

n1=0

N−n1∑
n2=0

N−n1−n2∑
n3=0

. . .

N−n1−n2−n3−...−(nN−1)∑
nN=0

n1 π(n1, n2, . . . , nK) (3.24)

L2 =
N∑

n1=0

N−n1∑
n2=0

N−n1−n2∑
n3=0

. . .

N−n1−n2−n3−...−(nN−1)∑
nN=0

n2 π(n1, n2, . . . , nK) (3.25)

...

...

LK =
N∑

n1=0

N−n1∑
n2=0

N−n1−n2∑
n3=0

. . .

N−n1−n2−n3−...−(nN−1)∑
nN=0

nK π(n1, n2, . . . , nK) (3.26)
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Where π(n1, n2, ..., nK) is the steady state probability at state (n1, n2, . . . , nK).

3.7.2 Mean Response Time

Using Little’s law, the mean response time S1, S2, . . . , SK for class-1, class-2, class-K

is obtained as:

S1 =
L1

λeffective1
+

1

µ1

(3.27)

S2 =
L2

λeffective2
+

1

µ2

(3.28)

...

...

SK =
LK

λeffectiveK
+

1

µK
(3.29)

where λeffective is the net arrival rate, i.e. the rate of jobs not dropped, and is given by

λeffective1 = λ1(1− πN) (3.30)

λeffective2 = λ2(1− πN) (3.31)

...

...

λeffectiveK = λN(1− πN) (3.32)

36



CHAPTER 3. MATHEMATICAL MODEL

where πN is the probability that an arriving job finds the queue full (at state N ).

3.7.3 Throughput

An expected number of jobs being served (throughput T ) for the M/M/1/N queue from

the analytical model [17] is

T = λeffective (3.33)

Equation (3.33) is used to obtain the throughput T1, T2, . . . , TK for class-1, class-2, class-

K, respectively:

T1 = λeffective1 (3.34)

T2 = λeffective2 (3.35)

...

...

TK = λeffectiveK (3.36)
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3.7.4 Job Loss

Under steady-state assumptions the functional form of Job loss Loosi, i = 1, 2 for class-1

and class-2, respectively, gives as

Loosi =
λ1

λ1 + λ2
πN . (3.37)

where πN is the probability that an arriving job finds the queue full (at state N ).

3.7.5 Jitter

Packets from the source will reach the destination with different delays. A packet’s delay

varies with its position in the queues of the routers along the path between source and

destination and this position can vary unpredictably. This variation in delay is known as

jitter and can seriously affect the quality of streaming audio and video [49].

Jitter, a measure of variance in delay, is becoming important in data networks. Low Jitter

can be achieved with isochronous network or with a protocol that handles the transmis-

sion of real-time audio and video; the Internet uses the protocol approach. Also, Jitter

(variance of delay) is an important measure of performance, especially the variation in

transmission delays of delay-sensitive telecommunications traffic, such as voice and real-

time video). By controlling or managing queue length and hence delay also expect to

manage jitter [50].

Effectively jitter is an important issue and is an area for further work that is a realtively

straightforward extension of the analytical model but is not considered in this work.
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3.8 Summary

In this chapter the mathematical model has been presented. We found that the steady state

holds for any number of classes and any number of buffers as shown in equations (3.13),

thus instead of having to solve a huge number of equations to calculate the steady state

probabilities, we can use the steady state equation. That is the steady state holds where

we have Poisson input arrivals and exponential service time distribution. This result will

be used in the mathematical models in numerical results Chapter ( 4).
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Chapter 4
Numerical Results

4.1 Introduction

The approximation models verification has a special importance. The influence of all

the parameters on the accuracy of the results has been checked by comparing them to

simulation results for the WFQ the model.

The mathematical models presented in Chapter 3 have been validated by comparing the

results obtained from the mathematical models and the results obtained from simulation

(simulation results) using the QNAP-2 simulator and in comparison with the results by [9].

The simulation is run until a steady state is reached.

A number of cases have been studied using the analytical model (described in Chapter 3)

and give results which are very close to those from simulation at 95% confidence inter-

val [4] [5] [6].

The models presented in Chapter 3 are based on Poisson arrivals and exponential service

time. In this Chapter, the numerical results of the performance metrics for the two and
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three class jobs have been calculated, specifically the mean queue length, mean response

time and throughput. The proposed approach has been illustrated through examples; and

investigated the effect of the weight on the performance of the system. Representative

cases are presented in as follows:

• Section 4.2 presents the results for the M1+M2/M/1/N class. The capacity of

the system is set to be N1+N2 = 50; hence this model has 1326 states. Five

representative cases are presented in this Section.

• Section 4.3 presents the results for the M1+M2+M3/M/1/N class. The capacity

of the system is set to be N1+N2+N3 = 28; hence this model has 4495 states.

Three representative cases are presented in this Section.

4.2 Two-class Model

The table gives the parameters for the five cases that are presented in this section 4.2.

Table 4.1: The parameters used in the Two-class Model
Case λ1 µ1 w1 λ2 µ2 w2

1 [0.1, 1] 1 0.4 [0.1, 1] 1 0.6
2 0.2 1 0.4 [0.1, 1] 1 0.6
3a 0.2 1 [0, 1] 0.3 1 [1, 0]
3b 0.6 1 [0, 1] 0.7 1 [1, 0]
4 0.1 2 0.9 [0.1, 1] 2 0.1
5a 0.7 1 0.9 [0.1, 1] 10 0.1
5b 0.7 1 0.9 [1, 10] 10 0.1
5c 0.7 1 0.9 0.1 [1, 10] 0.1

Case 1 is to examine the effect of the weight on the system, when the service demand

for both classes are equal, i.e. µ1 = µ2 = 1, and λ1 = λ2. The effects of changing the
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assigned parameters on the mean queue length, mean response time and throughput have

been tested.

Case 2 is to study the effect of changing system load on the mean queue length, mean

response time and throughput. The results in case 1 and case 2 are illustrated in the

Figures ( 4.1)–( 4.10). The relative error is 1% at most. The parameters are the same as

in Horváth and Telek [9]. The results of the mathematical model match the simulation

results better than that of [9].

The third case shows the effect of changing the assigned weight on the mean queue length,

the mean response time and throughput. The third case is studied under both low load (in

case 3a) and high load (in case 3b). The impact of the weight of class-1 and the weight of

class-2 on its own performance metrics has been analysed.

a) The mean queue length, the mean response time and throughput values using the fixed

arrival rate for class-1 and class-2 as recommended in [9] when traffic is light (ρ < 0.5).

Numerical results as well as simulation results are shown in Figures ( 4.15– 4.17). b)

The effect when traffic is heavy (ρ > 1) has been examined. The results in Figures

( 4.18– 4.20) have been proved that the comparisons between the analytical results and

the simulation results are good even with high load.

Case 4 presents the effect of changing class-2 load with low weight and fixed arrival rate

for class-1 with high weight. Graphs of the mean response time of the analytical and

simulation models for a range of buffer sizes N = 50 and N = 5 are shown in Figures

( 4.21) and ( 4.22), respectively.

Figures ( 4.27– 4.26) show the mean queue length and the mean response time, for the

case 5 in Table 4.1, respectively, when the service times are unequal. The comparisons

with simulation results are good when µi = 2, i = 1, 2 in case 4. For the case 5 when

µ1 = 1, µ2 = 10 they are not good. In addition, to explain the behaviour of the WFQ and
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PS models are very similar when the service rates are very similar and poorer when they

are different.

In all five cases, there is a slight difference between analytical and simulation results in

both class-1 and class-2. It is mostly visible for value ρ ≈ 1, when the entire buffer

becomes a shared region both streams, and become homogeneous. Because the mathe-

matical model depends on serving two classes at the same time with probability w1 for

class-1 and w2 for class-2 [4], the steady state birth and death equations are presented in

Appendix A. However, the simulation model serves one class in different time as shown

in Algorithm 3.

To show the difference in the steady state equations between two models consider the case

in which n1, n2 > 0 and n1 + n2 < N in the two-class model.

In WFQ simulation model:

(λ1+λ2+µ1)πn1,n2,1 = λ1πn1−1,n2,1+λ2πn1,n2−1,1+w1µ1πn1+1, n2,1+w1µ2πn1,n2+1,2 (4.1)

and

(λ1+λ2+µ2)πn1,n2,2 = λ1πn1−1,n2,2+λ2πn1,n2−1,2+w2µ1πn1+1, n2,1+w2µ2πn1,n2+1,2 (4.2)

and, in mathematical approximation to WFQ model:

(λ1+λ2+w1µ1+w2µ2)πn1,n2 = λ1πn1−1,n2+λ2πn1,n2−1+w1µ1πn1+1, n2+w2µ2πn1,n2+1

(4.3)
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Multiply Equation ( 4.1) by w1 in and Equation ( 4.2) by w2, and add.

(λ1+λ2+w1µ1+w2µ2)πn1,n2 = λ1πn1−1,n2+λ2πn1,n2−1

+ (w2
1+w

2
2)µ1πn1+1, n2+(w2

1+w
2
2)µ2πn1,n2+1 (4.4)

Algorithm 4 Two Class Model (class-i, class-j)

1: wi = weight of class-i

2: wj = weight of class-j

3: ni = number of jobs in class-i

4: nj = number of jobs in class-j

5: if wrani,j ≤ wi then

6: if ni > 0 then

7: serve class-i

8: else serve class-j

9: end if

10: else if nj > 0 then

11: serve class-j

12: else serve class-i

13: end if
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4.2.1 Case 1

In Figure ( 4.1), the overall mean response time of class-1 and class-2 increases with the

increase of the arrival rate. Because of the consequent increase in the mean queue length

given that the queue capacity is finite, with low load for ρ ≤ 0.4 the mean response time

is similar but when (λ1 + λ2) ≈ µ. The increase in the overall mean response time is

significantly higher in the class-1. Because, the class-1 has additional delay of low weight

waiting for high weight of class-2 to be served and the drop in class-2 happened later than

class-1 at λ2 = 0.5. The mean queue length confirms this in Figure ( 4.2).

Figures ( 4.1) and ( 4.2) show that by increasing the arrival rate value, the mean queue

length and the mean response time for both the analytical results and the simulation results

increases with almost the same percentage. However, there is a slight difference between

analytical and simulation results in both class-1 and class-2. It is visible for value ρ ≥ 1,

when the entire job becomes a shared region both streams, being homogeneous. Because

the mathematical model depends on serves two classes at the same time with probability

w1 for class-1 and w2 for class-2, but in the simulation model serve one class in a different

time.

Figure ( 4.3) shows the throughput. The system throughput increases with the increase of

arriving traffic until the total arrival rate exceeds service rate; that is when λ1+λ2 = µ1 =

µ2. From that point after dropping, the system throughput will not exceed the service rate

(in this example: µ1 = µ2 = 1).
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Figure 4.1: Case 1, Mean response time.
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Figure 4.2: Case 1, Mean queue length.
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Figure 4.3: Case 1, Throughput.

Figures ( 4.4) to ( 4.7) illustrate the comparison of the analytical and the simulation re-

sults with exponentially distributed inter-arrival times and service times, and simulation

results with generalized exponential (GE) inter-arrival times and exponentially distributed

service times.

In the case of GE distribution of inter-arrival times for class-1 and class-2, since λ1 = λ2

and the squared coefficient of variance inter-arrival time for class-1 and class-2, respec-

tively, C2
a1

= C2
a2

= 5. Since the mean arrival rates for both classes are equal, as well as

the higher burstiress of the arrival jobs of both classes, both classes are built up the job

loss will be almost the same for low load. However, for high load the job loss for class-1

is greater than the job loss for class-2. Regarding the mean response time, since class-2

will be served with w2 = 0.6, its mean response time will be lower than that of class-1.

Figures ( 4.4) to ( 4.7) show the effect of inter-arrival and service times that are more

variable than exponential. Figures ( 4.4) to ( 4.6) are the same as Figures ( 4.1) to ( 4.4)
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but with the addition of results from simulation where the inter-arrival times and service

times have generalized exponential (GE) distributions withe same same mean rates as

previously but squared coefficients of variance equal to five. Figure ( 4.7) shows the loss

rates.

The results show quite clearly the earlier onset of congestion in the region below satura-

tion (at arrival rates of 0.5). Near saturation and when the system is overloaded the effect

of the finite buffer dominations behaviour: the so-called “heavy traffic conditions”.

In this experiment class-2 customers were given a favourable service weight, 50% greater

than class-1, but both have the same arrival rates. Under heavy load, when the buffer

is almost always full, almost all the customers queueing will be of class-1. In the case

of exponential inter-arrival and service times, the ratio of the two classes stabilized at

about 40% overload (both classes arrival rate of 0.7) whereas for the most variable GE

inter-arrival and service times the ratio of class-1 to class two continued to increase with

degree of overload.
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Figure 4.4: Case 1, Comparison of the mean response time with the different arrival
distribution
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Figure 4.5: Case 1, Comparison of the mean queue length time with the different arrival
distribution

49



CHAPTER 4. NUMERICAL RESULTS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Th
ro

ug
hp

ut
 

Arrival rate

Analytical model  class-1
Analytical model  class-2
Simulation model  class-1
Simulation model  class-2
Simulation model  class-1(GE)
Simulation model class-2(GE)

Figure 4.6: Case 1, Comparison of the throughput with the different arrival distribution
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Figure 4.7: Case 1, Comparison of the loss with the different arrival distribution.
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4.2.2 Case 2

From Figures ( 4.8) and ( 4.9), when traffic is light, (ρ1+ρ2 < 1) has been observed

that, the response time of class-1 was higher than the response time of class-2 because

w1µ1 < w2µ2. The higher arrival lead to longer queue length for class-1. When traffic is

heavy, (ρ1+ρ2 > 1) the arrival of class-2 was greater than class-1, hence the queue length

was longer for class-2. However, when λ2 = 0.8 the buffer was full, with more jobs from

class-2 than class-1 because of the higher arrival of class-2.

For class-2, even though the probability of being served was higher than for class-1, the

long queue leads to longer waiting times. However, for class-1, the full buffer is filled

with more jobs from class-2 and whenever a job was served the probability of new a job

being from class-1 was higher than from class-2 due to class-2 higher arrival. This lead to

an ever decreasing proportion of class-1 jobs in the buffer, the saturation lead to shorter

response times for the class-1 jobs.

As a result, we note that from Figure ( 4.10) was that as λ2 increased, and then T1 and T2

increase until the system reaches a saturation point at λ2 = 0.8. However, the throughput

of class-1 increases until λ2 = 0.6 and then slightly decreases.

An interesting observation from Figure ( 4.10) is that the class-2 with higher weight had

a higher throughput, which means a weight can significantly the throughput under good

condition such as arrival rate and service rate. For the analytical model and simulation

model results, the comparisons were quite good with finite buffer for both classes.

Comparing the analysis and simulation results, the accuracy of the approximation was

good, except on the mean response time of class-2 around λ2 = 0.6 in first case. This is

the point from where queue size of class-2 is overloaded. The results of the six plots are

reasonably accurate with error ≤ 1% in second case at all points.
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Figure 4.8: Case 2, Mean response time.
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Figure 4.9: Case 2, Mean queue length.
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Figure 4.10: Case 2, Throughput.

Figures ( 4.11) to ( 4.14) illustrate the comparison of the analytical and the simulation

results with exponentially distributed inter-arrival times and service times, and simula-

tion results with exponentially distributed inter-arrival times and 2 phase balanced hyper-

exponential distributed service times. In the case of balance hyper-exponential distribu-

tion for service times for class-1 and class-2, the squared coefficient of variance service

time for class-1 and class-2, respectively, C2
s1

= C2
s2

= 5.

The job loss of hyper-exponential distribution for service was higher than exponential

distribution for service. As a result, compared with exponential service times, the mean

response time for class-1 in the case of balance hyper-exponential distribution for service

times was higher because the mean queue length was higher. However, for class-2 the

mean response time and mean queue length for balance hyper-exponential distribution

for service was higher than that of exponential under low load because of low job loss.

On the contrary, the class-2 mean queue length was lower than that for exponential as
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there was high job loss under high load.
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Figure 4.11: Case 2, Comparison of the mean response time with the different service
distribution.
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Figure 4.12: Case 2, Comparison of the mean queue length with the different service
distribution.
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Figure 4.13: Case 2, Comparison of the job loss with the different service distribution
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Figure 4.14: Case 2, Comparison of the throughput with the different service distribution.

4.2.3 Case 3

Figure ( 4.15) shows that as the weight increased the mean response time of class-1 jobs

tended to decrease, whilst that of class-2 jobs increased. This is because the mean service

rate of class-1 traffic increased. On the other hand, the mean service rate of class-2 traffic

reduced. The remarkable increase in the queueing delay of class-2 traffic is clearly shown

in Figure ( 4.15).

In Figure ( 4.16), the mean queue length is depicted as a function of weight. Class-1

having weight 0 means that class-2 has priority. The results reflect this behavior.

Figure ( 4.17) reveals that the effects of traffic input on the throughput for both classes are

not significant. This is because the PS approximate to WFQ scheduling scheme provides

a guaranteed service of the class-1 and class-2 and, hence the throughput of two classes

equals with the increase in the weight of class-1 and the throughput of class-1 = 0.2 = λ1
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Figure 4.15: Case 3a, Mean response time.
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Figure 4.16: Case 3a, Mean queue length.
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and class-2 = 0.3 = λ2. There are not many jobs in the classes. For all considered the

throughput of class-1 and class-2, obtained the calculated analytical model results show

an exact match with simulation results with finite case.
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Figure 4.17: Case 3a, Throughput.

The results are depicted on ( 4.15– 4.17). Investigating the accuracy of the approximation,

in this case we can draw the same conclusion as in case 3b.
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Figure 4.18: Case 3b, Mean queue length.
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Figure 4.19: Case 3b, Mean response time.
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Figure 4.20: Case 3b, Throughput.

4.2.4 Case 4

In Figures ( 4.21) and ( 4.22), significant detrimental impact of increasing the arrival

rate of class-2 on the mean response time was detected. In addition, the characteristic

of the analytical model as the load increases, the significant increase in the delay for the

low weight class was shown. The slight difference between the analytical and simulation

results is likely due to all classes sharing processes at the same time in the analytical

model (see Section 4.2 introduction).

Nevertheless, these graphs show excellent agreement between the analytical model and

the simulation, the error being less than 2% at all points even at λ2 = 0.9. Figures ( 4.21)

and ( 4.22) illustrate offered throughput to the buffer, where dark curves represents the

analytical results and the dotted lines show simulation results.

The job loss was calculated using different values of arrival rate for class-2. Figure ( 4.25)
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Figure 4.21: Case 4, Mean response time, N = 50.
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Figure 4.22: Case 4, Mean response time, N = 5.
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Figure 4.23: Case 4, Throughput, N = 50.
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Figure 4.24: Case 4, Throughput, N = 5.
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plots the resulting curves. The job loss of the class-1 less than job loss of the class-2

because the drop of class-1 happened later than class-2. The job loss of the class-1 and

the class-2 gave very very small values < 0.01 of job loss for all class-2 arrival rates. So,

the difference of the traffic loss between the case with N = 50 when no drop and the case

N = 5, not big. This explains the difference between the mean response times of case

N = 5 and the mean response times of case N = 50 were very small.
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Figure 4.25: Case 4, Job Loss, N = 5.
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4.2.5 Case 5

Case 5 shows the effect of the weights when service demands for each class are consid-

erably different. From Figure ( 4.26) when arrival rates are such that the buffer is nearly

empty and there are no lost customers, class-1, µ1 = 1, the simulation and analytical

model gave similar behaviour.

For class-2, µ2 = 10 the analytical model and the simulation model show contradictory

results. However, when the arrival rate of class-2 is increased such that the buffer occu-

pancy customer drop rate is similar to case 4, the results of the simulation and analytical

models are similar ( 4.27). Hence, when the system is empty the Processor Sharing ap-

proximation to the WFQ model proposed in this thesis does not correctly approximate the

WFQ system. The aim of the model is Quality of Service (QoS) which is not a factor in

empty systems.
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Figure 4.26: Case 5a, Mean response time, N = 50.
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Figure 4.27: Case 5b, Mean response time, N = 50.
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Figure 4.28: Case 5c, Mean response time, N = 50.

4.3 Three-class Model

The system was studied when the service demand for both classes are equal, i.e. µ1 =

µ2 = µ3, in order to examine the effect of the weight on the system. The effects of

changing the assigned parameters on the mean queue length, mean response time and

throughput were tested. The three traffic classes were used, which will be referred to as

class-1, class-2, and class-3. The simulation model for three class as shown in Algorithm

4. Table 4.2 summarises the input parameters for cases.

Table 4.2: The parameters used in Three-class Model
Case λ1 µ1 w1 λ2 µ2 w2 λ3 µ3 w3

1 [0.01, 0.1] 0.2 0.4 [0.01, 0.1] 0.2 0.45 [0.01, 0.1] 0.2 0.15
2 0.01 0.1 0.7 0.01 0.1 0.2 [0.1, 1] 0.1 0.1
3 0.08 0.2 [0, 1] 0.01 0.2 1−w1

2
0.04 0.2 1−w1

2
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To study the effect of changing system load on the mean queue length, mean response

time and throughput, the system examined when λ1 = λ2 = λ3 in case 1. The same

parameters were used in [34] in case 1. Therefore, the results of the mathematical models

match the simulation results in [34], the relative error went up to 2% with low load points.

The results are illustrated in Figures ( 4.29) and ( 4.30).

Case 2 presents the effect of changing class-3 load with low weight and fixed arrival rate

for class-1 and class-2. Class-1’s allocation of the weight is much more than other classes.

Graphs of the mean response time of the analytical and simulation models for a range of

buffer sizes N = 28 are shown in Figures ( 4.32) and ( 4.33), respectively.
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Algorithm 5 Three Class Model

1: w1 = weight of class-1

2: w2 = weight of class-2

3: w3 = weight of class-3

4: n1 = number of jobs in class-1

5: n2 = number of jobs in class-2

6: n3 = number of jobs in class-3

7: wran = random integer between [1, 100]

8: wran i,j = random integer between [1, (wi + wj)]

9: if wran ≤ w1 then

10: if n1 > 0 then

11: serve class-1

12: else

13: Two Class Model (class-2, class-3)

14: else if wran ≤ w1 + w2 then

15: if n2 > 0 then

16: serve class-2

17: else

18: Two Class Model (class-3, class-1)

19: else if n3 > 0 then

20: serve class-3

21: else

22: Two Class Model (class-1, class-3)

The third case shows the effect of changing the assigned weight on the mean queue length,

the mean response time and throughput. Numerical results as well as simulation results

are shown in Figure ( 4.35). The impact of the weight of class-1, class-2 and class-3 on
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its own performance metrics has been analysed.

4.3.1 Case 1

In Figure ( 4.29), the overall mean response time of class-1, class-2 and class-3 increased

with the increase of the arrival rate. Because of the consequent increase in the mean

queue length given that the queue capacity is finite, with low load for ρ ≤ 0.03 the mean

response time was similar but when (λ1+λ2 + λ3) ≈ µ. The increase in the overall mean

response time was significantly higher in the class-3. Because, the class-3 has additional

delay of low weight waiting for high weight of class-1 and class-2 to be served. The mean

queue length confirms this in Figure ( 4.30).

Figures ( 4.29) and ( 4.30), show that by increasing the arrival rate value, the mean queue

length and the mean response time for both the analytical results and the simulation re-

sults increases with almost the same percentage. However, there is a slight difference

between the analytical and the simulation results in class-1, class-2 and class-3. It is most

visible for value ρ ≥ 1, when the entire job becomes a shared region both streams, be-

ing homogeneous, because the mathematical model depends on serve three classes at the

same time with probability w1 for class-1, w2 for class-2 and w3 for class-3, but in the

simulation model serve one class at one time.

Figure ( 4.31) shows the throughput. The throughput system increases with the increase of

arriving traffic until the total arrival rate exceeds service rate; that is when λ1+λ2+λ3 =

µ1 = µ2 = µ3. From that point after dropping, the system throughput will not exceed the

service rate (in this example: µ1 = µ2 = µ3 = 0.2).
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Figure 4.29: Case 1, Mean response time.
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Figure 4.30: Case 1, Mean queue length.
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Figure 4.31: Case 1, Throughput.

4.3.2 Case 2

In the Figures ( 4.32) and ( 4.33), the significant detrimental impact of increasing the

arrival rate of class-3 on the mean response time detected. In addition, the characteris-

tic of analytical model as the load increases, the significant increase in the delay for the

low weight class has been shown. The slight difference between the analytical and the

simulation results is likely due to all classes sharing processes at the same time in analyt-

ical model. Nevertheless, these graphs show excellent agreement between the analytical

model and the simulation, the error being less than 5% at all points even at λ2 = 0.9.

Figure ( 4.34) illustrates offered throughput to the buffer, where dark curves represent the

analytical results and the dotted lines show simulation results.
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Figure 4.32: Case 2, Mean response time.
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Figure 4.33: Case 2, Mean queue length.
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Figure 4.34: Case 2, Throughput.

4.3.3 Case 3

Figure ( 4.35) shows that as the weight increases the mean response time of class-1 jobs

tended to decreased, whilst that of class-2 and class-3 jobs increase. This is because the

mean service rate of class-1 traffic increase. On the other hand, the mean service rate

of class-2 and class-3 traffic reduced. The remarkable increase in the queueing delay of

class-2 and class-3 traffic is clearly shown in Figure ( 4.35). In Figure ( 4.35), the mean

queue length is depicted as a function of weight. Class-1 having Weight 0 means that

class-2 and class-3 have priority. The results reflect this behavior.
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Figure 4.35: Case 3, Mean response time.

4.4 Summary

Experimental results based on the implementation of the proposed analytical model are

presented and the simulation results are used to validate the proposed mathematical model.

It was proved that the behaviour of the system is similar to that in the simulation model.

In this case, the analytical models proposed give good results which were very close to

WFQ algorithms. From the two-class model, we found that the closed form (3.13) holds

which use Poisson input arrivals and exponential service time distribution.

74



Chapter 5
Conclusions and Future Work

5.1 Summary

The importance of a WFQ scheduler lies in the fact that it provides minimum delay and

guaranteed fairness. However, the constraints of weighted fair queueing (WFQ) algo-

rithms make it difficult to provide exact analytical models for WFQ systems. This the-

sis shows that analytical models of the approximation to weighted fair queueing (WFQ)

based on a form of processor sharing, are a good approximation to WFQ systems. The

achievements and contributions of the thesis can be summarised as follows:

• In chapter (1), an introduction to Weighted Fair Queueing Algorithms in queueing

system was given. First a brief introduction in chapter (1), was presented section

(1.1), gives the Background and Motivation of the research. In section (1.3) the

Research Aims and Objectives were discussed.

• In chapter (2), a brief introduction to the weighted fair queueing algorithms, with

a particular focus on the procedure, benefits, and limitations of the fair queueing

was given. In addition, the previous WFQ system solutions were studied, and its
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limitations.

• In chapter (3) the analytical models of Processor Sharing approximation to the

WFQ model with multi-class with shared finite buffer was introduced. The Matrix-

Geometric method was used to obtain the steady state probabilities for any number

of classes and any number of buffers as shown in equation (3.13), thus instead of

having to solve a huge number of equations to calculate the steady state proba-

bilities. That is the steady state holds where we have Poisson input arrivals and

exponential service time distribution. For example, it can simply be extended to

cope with phase type arrival and service distribution for tow-class model.

• In chapter (4) the experimental results based on the implementation of the proposed

analytical model were presented. The simulation results were used to validate the

proposed mathematical model and proved that the behaviour of the system is similar

to that in the simulation model.

• The main goal of the thesis was to develop models of Processor Sharing approxima-

tion to the WFQ single-serverK-class with finite capacity based on theM/M/1/N

system. We have obtained a general solution, that calculates the steady state proba-

bility any number of classes with any buffer size. The advantage of these solutions

is that it can be applied for any number of classes with any buffer size, theoretically

without any limit.

• Two models were proposed. The first model was on theM1+M2/M/1/N queueing

system while the second was on M1+M2+M3/M/1/N . Solutions for the model

based on the M1+M2/M/1/50 and M1+M2+M3/M/1/28 queueing system can

by found by solving a set of equations describing the state probabilities. A method

to find those solutions was presented step by step. The accuracy of both models

was validated experimentally, compared and discussed as follows:
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1. In Two-class model, the analytical model proposed gave good results which

were very close to WFQ systems. The relative error was ≤ 1% in all cases

except in extreme cases goes up to 2%.

2. A novel idea of developing the analytical results of more than a two-class

model was proposed and realized. The relative error went up to 5% in some

cases. However, a consequence of the Java implementation for the three-class

model was a limitation to small buffer sizes.

3. The aim of the model is Quality of Service (QoS) which is not a factor with

low load systems. Hence, in the case of low load system, the weight has no

effect on the QoS of the higher weight class, when service for the lower weight

class is considerably faster as shown in case 5.

5.2 Future Work

The work presented in this thesis is an investigation into the utility of the class-based

processor sharing (PS) approximation to Weighted Fair Queueing (WFQ) under the sim-

plifying assumption of Poisson arrivals processes and exponential service times. That

assumption is not realistic; network traffic is not Poisson, indeed some is long-range de-

pendent (LRD), and the distribution of packet sizes is not exponential.

The model should be extended to accommodate more general arrival and service pro-

cesses. One line of development arises from the observation that queues with arrival and

service processes of any the MAP or Neut’s type processes is equivalent to a M/M/1/N

queue in a randomly changing environment. It might be possible to solve the PS approx-

imation model in a randomly changing environment without substancially increasing the

memory requirements of the solver. This is because, in the interesting cases (e.g. high

traffic burstiness), the sojourn in each phase of the environment is long relative to interar-
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rival and service times, i.e. the rates of environmental phase change are small. So it could

be practical to solve the PS approximation model for each phase separately and then apply

an iterative method to take account of phase transitions.

To address LRD traffic it might be possible to develop a PS approximation model with

batch renewal arrival processes. The current model could not be adapted readily because it

depends upon rate matices (infinitessimal generators) whereas the batch renewal process

is determined by two probabilty distributions.

A major limitation of the current solver is the restriction on the buffer sizes (50 for 2-class

models and 28 for 3-class models). The current solver is a straight-forward implementa-

tion for the stationary vector of the block tri-diagonal matrix (seeQ in section 3.4). It does

not exploit the replication in and recursive structure of the component matrices (see Ck,n

and Ak,n in section 3.4). It is anticipated that the solver’s memory requirement might be

reduced by 50% by exploiting that structure and, so, enabling it to handle larger problems.
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Appendix A
Two Class Model

A.1 Analytical Model Description

The PS approximation to WFQ system is a single finite capacity FIFO queue with a non-

preemptive service center, hence, the maximum number of jobs in the system at any time

will not exceed K and any additional arriving customers will be refused entry to the

system and will depart immediately without service.

For our PS approximation to WFQ model, we assume two classes of jobs; jobs of class-

1 and of class-2. Jobs arrive according to a Poisson process with rate λi, i = 1, 2 and

have exponential service rates with mean 1
µi
, i = 1, 2. The buffer K is shared finite

buffer divided into two classes. Each class is served in FIFO order. The server is work

conserving, i.e., it serves jobs if at least one class is not empty. Figure A.1 depicts the PS

approximation to WFQ system with two classes.

Let wi > 0, i = 1, 2, be the weight assigned to class-i and w1 + w2 = 1. From the

Equation 3.1, we have that class-i will be served at rate ŵi = wi, when other class is not

empty and at rate unity when other class is empty. When both classes are present, class-1
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jobs are selected to be serviced with probability w1 and class-2 jobs are serviced with

probability w2. At boundaries, when w1 = 0 or w1 = 1, the PS approximation to WFQ

system is reduced to the M/M/1/K non-preemptive system, which has been extensively

studied in the past [51].

Figure A.1: The PS approximation to WFQ model

Figure A.2, illustrates the state-transition-rate diagram of the PS approximation to WFQ

system where each state denotes the number of jobs in the system. A generalized Markov

model can described by a two dimensional Markov chain with state (n1, n2), where n1

and n2 are the number of jobs in class-1 and class-2 at each state, respectively.

For the case at the boundary states the transitions do not depend on weight. When the

process is in state(n1, n2), it can transfer to one of the states (n1 + 1, n2), (n1, n2 +

1), (n1 − 1, n2) and (n1, n2 − 1).
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The transition rate from state (n1, n2) to (n1 + 1, n2) where (0 ≤ n1 ≤ K − 1) is the

arrival rate of class-1, i.e. λ1 of the Poisson process. A transition out of state (n1, n2) to

(n1, n2 + 1) where (0 ≤ n2 ≤ K − 1) is the arrival rate of class-2, i.e.λ2, of the Poisson

process. When no customers of class-1 are in the system, the transition rate from (0, n2)

to (0, n2 − 1) is the service rates of class-2, i.e.µ2. The change from state (n1, 0) to

(n1 − 1, 0) is the service rate of class-1, i.e.µ1.

However, the transition rate from state (n1, n2) to (n1−1, n2) is the service rate of class-1

multiplied by the weight of class-1, because class-1 jobs are selected to be serviced with

probability w1, i.e.w1µ1 . A transition rate from (n1, n2) to (n1, n2 − 1) is the service

rate of class-2 multiplied by the the weight of class-2, for the reason that class-2 jobs are

serviced with probability w2, i.e.w2µ2.

Figure A.2: The State Transition Diagram at State (n1, n2).
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The infinitesimal generator of this process is given by:

Q(n1, 0),(n1−1, 0) = µ1, n1 ≥ 1

Q(0, n2),(0, n2−1) = µ2, n2 ≥ 1

Q(n1, n2),(n1−1, n2) = w1µ1

Q(n1, n2),(n1, n2−1) = w2µ2, n1 ≥ 1, n2 ≥ 1

Q(n1, n2),(n1+1, n2) = λ1, n1 ≥ 0, n2 ≥ 0

and

Q(n1, n2),(n1, n2+1) = λ2, n1 ≥ 0, n2 ≥ 0.

A.2 Steady State Probability Calculation of Two-Class

Model

The steady state birth and death equations of this system for the shared finite buffer

(K1 +K2 ≤ K) case are :

(λ1 + λ2)π0,0 = µ1π1, 0 + µ2π0,1 (A.1)

(λ1 + λ2 + µ2)π0,1 = µ2π0, 2 + w1µ1π1,1 + λ2π0,0 (A.2)

(λ1 + λ2 + µ1)π1,0 = µ1π2, 0 + w2µ2π1,1 + λ1π0,0 (A.3)

and for n1 = 1, 2, . . . , K and n2 = 1, 2, . . . , K,

(λ1+λ2+w1µ1+w2µ2)πn1,n2 = λ1πn1−1,n2 +λ2πn1,n2−1+w1µ1πn1+1, n2 +w2µ2πn1,n2+1

89



APPENDIX A. TWO CLASS MODEL

(A.4)

When n1 = 1 and n2 ≥ 1 (the first expression in the right hand side of equation (A.4)),

we have π0,n2 = 0, and, similarly in equation (A.4), if n2 = 1 and n1 ≥ 1 (the second

expression on the right hand side of equation (A.4)), we have πn1, 0 = 0.

For class-2,

(λ1 + λ2 + µ2)π0,n2 = µ2π0, n2+1 + w1µ1π1,n2 + λ2π0,n2−1 (A.5)

and

π0, n2 = 0.

For class-1,

(λ1 + λ2 + µ1)πn1,0 = µ1πn1+1, 0 + w2µ2πn1,1 + λ1πn1−1,0 (A.6)

and

πn1, 0 = 0.
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B.1 Analytical Model Description

We consider the same model in Section 3.3; however instead of three classes, where an

analytical solution is provided by using Matrix-Geometric method; where use a finite

buffer is shared with size K1 + K2 + K3 = K. The maximum buffer is number of jobs

which can be in the system at any time is K and any additional without service. We drive

a general single-server systemM1+M2+M3/M/1/K with the following characteristics:

• The service discipline is PS approximation to WFQ, where a weight is assigned to

each class. The ratio of server capacity available for a class is given by the ratio of

the weights of the classes that are active. An absolute service rate can be simply

achieved by assigning a fixed weight. So the importance of the jobs is regulated by

the weight assigned to their class.

• The capacityK > 0 of the PS approximation to WFQ system is finite and comprises

one server while K − 1 > 0 is waiting places.
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• The work of the server is conserving, i.e., it serves jobs only if at least one class is

not empty.

• The class-i is served at rate wi for some wi > 0 when other two classes are not

empty and at rate unity when that classes are empty. The coefficients wi are such

that: w1 + w2 + w3 = 1.

• If one of three classes is empty when class-i is served, the head job of class-i will

be served with probability ŵi is determined from Equation B.1as:

ŵi∈BC =
wi∑

j∈BC wj
(B.1)

The coefficients wi are such that: ŵ1 + ŵ2 + ŵ3 = 1.

• The arrival streams of the jobs of each class-i, i = 1, 2, 3 are assumed to be inde-

pendent Poisson process with rates λi > 0, i = 1, 2, 3.

• The service times of jobs are independent exponentially distributed with mean ser-

vice time 1
µi
> 0, i = 1, 2, 3.

Figure B.1 depicts the PS approximation to WFQ queueing system with three classes

and Figure B.2, illustrates state transition diagram of the PS approximation to WFQ sys-

tem where each state denotes the number of jobs in the system. A generalized Markov

model can be described by three dimensional Markov chain with state (n1, n2, n3), where

n1, n2 and n3 are the number of jobs in class-1, class-2 and class-3 at each state, respec-

tively. When the process is in state (n1, n2, n3), it can be transferred to one the states

(n1, n2, n3 + 1), (n1, n2 + 1, n3), (n1 + 1, n2, n3), (n1 − 1, n2, n3), (n1, n2 − 1, n3)

and (n1, n2, n3− 1) as in Figure B.2. The total number of each state does not exceed the

buffer K i.e. (n1 + n2 + n3) ≤ K.
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Figure B.1: The PS approximate to WFQ model with Three Classes of Traffic.

Figure B.2: The State Transition Diagram at State (n1, n2, n3).
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B.2 Steady State Probability Calculation for Three-Class

Model

To calculate π(n1, n2, n3) the probability at state (n1, n2, n3), we need to solve the three

dimensional Markov chain shown in Figure B.3.

Figure B.3: A three-dimensional Markov chain Shaped by states n1, n2 and n3.

We can do that by setting up a set of global balance equations by equating the rates

of flow out of and into each state Figure B.2 and solve these balance equations by the

Matrix-Geometric method. The steady states of birth and death equations of this system

for shared finite buffer (K1 +K2 +K3 = K) case are:

(λ1 + λ2 + λ3)π(0, 0, 0) = µ3π(0, 0, 1) + µ2π(0, 1, 0) + µ1π(1, 0, 0) (B.2)
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(λ1+λ2+λ3+µ3)π(0, 0, 1) = ŵ2µ2π(0, 1, 1)+µ3π(0, 0, 2)+λ3π(0, 0, 0)+ŵ1µ1π(1, 0, 1) (B.3)

(λ1+λ2+λ3+µ2)π(0, 1, 0) = ŵ3µ3π(0, 1, 1)+µ2π(0, 2, 0)+λ2π(0, 0, 0)+ŵ1µ1π(1, 1, 0) (B.4)

(λ1+λ2+λ3+µ1)π(1, 0, 0) = ŵ2µ2π(1, 1, 0)+µ1π(2, 0, 0)+λ1π(0, 0, 0)+ŵ3µ3π(1, 0, 1) (B.5)

and for n1 = 1, 2, . . . , K,n2 = 1, 2, . . . , K and n3 = 0

(λ1 + λ2 + λ3 + ŵ1µ1 + ŵ2µ2)π(n1, n2, 0) = λ1π(0, n2, 0) + ŵ2µ2π(n1, n2+1, 0)

+ŵ3µ3π(n1, n2, 1) + ŵ1µ1π(n1+1, n2, 0)

+λ2π(n1, 0, 0) (B.6)

for n1 = 1, 2, . . . , K,n2 = 0 and n3 = 1, 2, . . . , K

(λ1 + λ2 + λ3 + ŵ1µ1 + ŵ3µ3)π(n1, 0, n3) = λ1π(n1−1, 0, n3) + ŵ3µ3π(n1, 0, n3+1)

+ŵ2µ2π(n1, 1, n3) + ŵ1µ1π(n1+1, 0, n3)

+λ3π(n1, 0, 0) (B.7)
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and for n1 = 0,n2 = 1, 2, . . . , K and n3 = 1, 2, . . . , K

(λ1 + λ2 + λ3 + ŵ2µ2 + ŵ3µ3)π(0, n2, n3) = λ2π(0, n2−1, n3) + ŵ3µ3π(0, n2, n3+1)

+ŵ1µ1π(0, n2+1, n3) + ŵ1µ1π(1, 0, n3)

+λ3π(0, n2, n3−1) (B.8)

From Figure B.2, when n1 = 1, 2, . . . , K, n2 = 1, 2, . . . , K and n3 = 1, 2, . . . , K, we

have π(n1,n2,n3) as

(λ1 + λ2 + λ3 + w1µ1 + w2µ2 + w3µ3)π(n1, n2, n3) = λ1π(n1−1, n2, n3) + w3µ3π(n1, n2, n3+1)

+w2µ2π(n1, n2+1, n3) + w1µ1π(n1+1, n2, n3)

+λ3π(n1, n2, n3−1)

+λ2π(n1, n2−1, n3) (B.9)
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