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Summary 

This thesis describes an analysis of food intake, functional response and 

prey selection of whiting feeding on clupeids and small gadoids in the North 

Sea. Prey fish density was estimated from the average trawl catch of each 

species, and a new method was proposed to analyse length distributions. Food 

intake was examined by several different methods. Diel feeding patterns were 

investigated by analysing changes both in the occurrence of prey in the 

stomachs and the proportion of prey which was recently ingested. Pronounced 

diel feeding patterns were found as whiting were feeding on benthic prey at 

night and on clupeids and gadoids around dawn and dusk. This pattern was 

consistent at all locations and was most likely linked to diel changes in prey 

availability. Temporal segregation of different prey types is inconsistent with 

the assumptions of most food selection models, in which the time used to 

pursue and ingest one prey is assumed to limit the time available to pursue 

other prey. Given the observed diel feeding pattern, a negative effect of the 

amount of night time prey on the amount of daytime prey ingested can only be 

mediated through satiation of the predator. The effect of satiation on feeding 

probability and meal size of whiting was studied by comparing the amount of 

fresh food in the stomachs with the amount of prey in a more advanced stage of 

digestion. A significant proportion of the whiting were found to be partly or 

fully satiated, and hence neither complete independence nor complete 

exclusiveness of the intake of fish prey and other prey existed. 

Food intake was estimated by combining knowledge of stomach content 

with stomach evacuation rates using a new method which takes the difference 

in evacuation rate of different prey types into account. Evacuation rates of prey 

were derived both from the literature and directly from field data. The predator 

was found to prefer herring prey over sprat at most locations. However, the 
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preference for herring decreased as the relative abundance of herring increased. 

This phenomenon is called negative switching and is strongly destabilising in a 

homogenously mixed system. Further, the intake of fish reached a saturation 

level well below the digestive capacity of the predator. Negative switching and 

lack of satiation at high prey densities can be caused by either the inability of 

some predators to locate prey or by individual differences in preferences. 

Although it has a highly destabilising effect on prey population dynamics at the 

local scale, negative switching may still induce large scale stability in a 

heterogeneous system when combined with the observed lack of aggregative 

response of the predator to high prey densities. 
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Dansk sammenfatning (Summary in Danish) 

Denne afhandling omhandler en analyse af hvillings fødeoptag og 

selektion mellem forskellige byttetyper ved forskellige bytte tætheder. Byttet 

var sild, brisling og små torskefisk, og såvel bytte som rovfisk blev indsamlet 

ved trawling i Nordsøen. Bytte tætheden blev beregnet ud fra fangstrater af 

bytte fisk, og en ny metode til at analysere længdefordelinger blev foreslået. 

Fødeoptaget blev undersøgt på flere måder. Døgn variation i fødeoptaget blev 

undersøgt ved at notere den andel af maverne, der indeholdt hver bytte type og 

ved at se på den andel af fisk i maverne, der var spist for nyligt. Det viste sig at 

hvilling på alle fem lokaliteter spiste bunddyr i løbet af natten mens silde- og 

torske-fisk næsten udelukkende blev spist omkring solopgang og solnedgang. 

Hvilling havde altså ikke mulighed for på et givet tidspunkt at vælge mellem 

f.eks. bunddyr og sild, men derimod mulighed for at vælge mellem bunddyr 

eller ingenting om natten og fisk eller ingenting ved solopgang. De fleste 

modeller for selektion mellem to fødetyper kræver at der skal være tale om et 

valg: Idet fisken vælger at spise et bytte skal den afskære sig fra at fange det 

andet bytte. Men denne situation vil kun opstå for hvilling hvis den er så mæt 

efter at have spist bunddyr, at den ved solopgang ikke er i stand til at spise fisk. 

Effekten af mæthed på fødeoptaget blev derfor undersøgt ved at sammenligne 

mængden af frisk føde med mængden af mere fordøjet føde i hver enkelt mave. 

Det viste sig at en betydelig del af hvillingerne var uvillige til at spise noget, så 

der kan altså være en hæmmende effekt af at have spist bunddyr på 

tilbøjeligheden til at spise fisk. Der var således hverken fuldstændig 

uafhængighed eller et fuldstændigt valg mellem bunddyr og fisk. 

Føde indtag blev beregnet med en ny metode, der kombinerer viden om 

indholdet af fiskemaver og mavetømningsrater og samtidig tager højde for 

forskelle i tømningsrater mellem bytte typer. Estimerede tømningsrater kom 
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både fra litteraturen og fra direkte observationer af døgnvariation i indholdet i 

hvillingemaver. Hvillingerne foretrak sild frem for brisling på de fleste 

lokaliteter, men præferencen var mindre når der var mange sild. Dette kaldes 

negativ switching og har en stærk destabiliserende effekt på byttepopulationen 

hvis denne er jævnt fordelt. Desuden nåede optaget af fiskebytte et 

mætningspunkt langt under det niveau hvor hvillingen ville være begrænset af 

sin fordøjelsesrate. Negativ switching og det lave mætningsniveau kan enten 

være et resultat af, at ikke alle hvillinger befandt sig i et område hvor der var 

meget bytte eller af individuelle forskelle mellem hvillingerne, således at nogle 

foretrak et bytte mens andre foretrak et andet. Selvom negativ switching i sig 

selv er destabiliserende for bytte bestanden, kan hvillingens fiskeoptag 

alligevel lede til stabilitet hvis det kombineres med en manglende tilbøjelighed 

hos hvillingerne til at opsøge områder med høj byttetæthed, og dette kan være 

en af årsagerne til bestandene i Nordsøens stabilitet. 
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Introduction 

The study of the relationship between consumption by predators and 

density of their prey is a classical discipline in ecology (Errington 1934, 

Burnett 1954, Holling 1959b). Far from simply consuming every prey they 

encounter, most predators eventually reach a point where addition of more prey 

to the system will not increase the amount of prey consumed (Holling 1965, 

Colton 1987, Buckel and Stoner 2000). Further, few predators select their prey 

at random from their surroundings. The majority exhibit a preference for some 

prey types while other prey are largely ignored (Holling 1959b, Manly et al. 

1972, Werner and Hall 1974). The study of both saturation effects and prey 

preferences of aquatic predators have resulted in an abundant literature, mostly 

documented by results from laboratory studies under which the predator is 

presented with one or more prey types under controlled conditions (e.g. Werner 

and Hall 1974, Colton 1987, Hart and Gill 1993). Few studies have examined 

food intake and selection in detail in natural marine environments (but see 

Hahm and Langton 1984, Bannon and Ringler 1986, Prejs et al. 1990, 

Arhhenius and Hansson 1994). A likely reason for this is the difficulty in 

estimating both predator consumption and prey density in the wild. Food intake 

and prey density may further only be correlated at a narrowly defined spatial 

scale (Rose and Leggett 1990, Horne and Schneider 1994) and several factors 

such as environmental conditions and mortality risk may affect the response 

(Werner et al. 1983, Gotceitas 1990, Koski and Johnson 2002, Wennhage 

2002). Furthermore, the relationship between prey abundance and food intake 

is rarely linear and this renders it unlikely that the response of the entire 

predator population is identical to that of the individual predators (Chesson 

1978, Chesson 1984, Abrams and Matsuda 1993). Hence the study of food 
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intake in relation to prey density has two conceptually different levels: the 

individual level, which can provide knowledge of the processes involved in 

food selection, and the population level, which provides little knowledge of 

processes but gives a direct estimate of population interactions. 

Population interactions in aquatic environments have been the focus of a 

vast number of modelling studies (see, e.g., Bax 1998). Generally, these studies 

adopt one of a number of commonly used feeding models and the ability of this 

submodel to describe food intake is rarely tested (Gislason and Helgason 1985, 

Christensen et al. 2000, Shin and Cury 2001). Some authors have attempted to 

validate a food intake model within a population model (Rice et al. 1991, 

Larsen and Gislason 1992), but this is often difficult and the results are not 

easily interpreted as discrepancies may be caused by inadequate formulations 

at any level within the model. Other studies have examined food selection 

models directly (Colton 1987, Chesson 1989). The results suggest that existing 

models such as the commonly applied multispecies version of Hollings ‘disc’ 

equation (Murdoch 1973) often does not describe food intake accurately. 

Generally, although this model predicts that the predator should exhibit a 

constant preference for one prey over another, the experiments show a change 

in preference with prey density (Colton 1987, Chesson 1989, Rindorf et al. 

1998). The link between food intake and prey density is of crucial importance 

to the stability of interacting predator-prey populations (Murdoch 1994, 

Pelletier 2000), and predictions of population models based on unvalidated 

feeding models are at best poorly founded and may at worst be unrealistic. In a 

time where there is an increasing focus on the effects of human activities on the 

stability and diversity of marine ecosystems (Gislason et al. 2000), there is a 

need for creating a more solid foundation for predictions of the effect of 
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changes in predator and prey populations on the dynamics of marine 

ecosystems. 

The objective of this Ph.D. study was to examine the ability of a number 

of food intake and food selection models to describe the feeding of whiting 

(Merlangius merlangus) on herring (Clupea harengus), sprat (Sprattus 

sprattus) and juvenile gadoids (Gadidae) in the North Sea, and if necessary to 

suggest alternative food selection models. Food intake and selection was 

investigated by comparing prey density inferred from trawl catches with food 

consumption by whiting estimated from stomach contents analysis. The study 

included an examination of the variability of trawl catches and a detailed 

investigation of the factors which affect either food intake or the estimation of 

food intake from stomach contents.  

 

Ecology of whiting in the North Sea 

Whiting is distributed throughout the North Sea in areas shallower than 

200 m (Fig. 1, Daan et al. 1990, Bergstad 1991, Wieland et al. 1998). Juvenile 

whiting are more coastal in their 

distribution than their older conspecifics 

and the preferred depth increases with age 

(Daan et al. 1990, Wieland et al. 1998). 

The change in depth distribution coincides 

with a shift from invertebrate prey 

(particularly copepods, mysids and krill) 

towards a diet consisting mostly of fish 

and larger crustaceans (Gordon 1977, 

Patterson 1985, Hislop et al. 1991). 

Fig. 1. Distribution of whiting 
(Merlangius merlangus). From Muus 
and Dahlstrøm (1989). 
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Herring, sprat, sandeel (Ammodytidae) and small gadoids are the most 

important fish species in the diet, together constituting more than 90% of the 

fish prey (Patterson 1985, Hislop et al. 1991). Whiting are highly cannibalistic 

and it is estimated that in one year, whiting consumed as much as 36 500 t of 

their younger conspecifics in the North Sea, corresponding to about 5% of their 

intake of fish prey (Hislop et al. 1991). 

Whiting mature around the age of 2 and have a prolonged spawning 

season extending from January to October, though the majority of the eggs are 

released from February to May (Daan et al. 1990, ICES 2001). The juveniles 

are initially pelagic and migrate vertically, moving towards the surface at day 

and to deeper waters during the night (Bromley and Kell 1995). Around the 

beginning of August, the vertical migration pattern dissolves and the juveniles 

are distributed throughout most of the water column during the entire diel 

circle (Bailey 1975, Robb 1981, Bromley and Kell 1995). During autumn, they 

become progressively more demersal and by January, most of the population is 

found near the bottom (Gordon 1977). Whiting is commonly referred to as 

being more loosely attached to the bottom than cod (Gadus morhua), and are 

frequently found both in the pelagic and close to the bottom (Whitehead et al 

1984, Pedersen 1999). However, there is no inherent preference for pelagic 

feeding over demersal feeding in this species (Gjøsæter 1990). Stomach 

analyses indicate a substantial overlap between the diets of whiting caught in 

the pelagic and demersal layer and benthic prey is frequently encountered in 

the stomachs of pelagically caught whiting (Pedersen 1999). Thus, although 

whiting may be less closely associated with the bottom than many other 

piscivorous gadoids, there is no evidence to suggest that pelagic and demersal 

whiting should constitute two separate subpopulations (Paper III, Paper VI). 
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Estimation of prey density 

To link food intake to prey density, it is first of all necessary to obtain an 

unbiased estimate of prey density at a spatial scale relevant to the predator 

(Rose and Leggett 1990, Horne and Schneider 1994) as a high density of prey 

will not affect the predator and vice versa if the two are not spatially co-

occurring. The appropriate scale is likely to be somewhere between the 

perceptive distance of the predator and distance the predator can swim within a 

reasonable time span. Juvenile whiting have been reported to swim at a speed 

of 2.5 body lengths per second for hours (Hammer 1994) and would be able to 

travel a distance of 1 and 1.7 nautical miles hourly at a body length of 20 and 

35 cm length, respectively. Assuming that the maximum scale of interest to the 

predator is one that can be searched within a matter of hours (Horne and 

Schneider 1994), the need to be able to sample prey densities at a 

corresponding spatial scale with a high precision arises. In the marine 

environment, the local density of sessile species and species with a restricted 

home range can be estimated from samples taken by divers (Hall et al. 1990, 

Stewart and Jones 2001, Wellenreuther and Connel 2002), whereas active prey 

can be sampled by traps or stationary nets (Paukert and Fisher 1999, Nielsen et 

al. 2001, Vining et al. 2001). However, neither of these methods are well suited 

for estimating the density of highly mobile schooling prey. Such species are 

often sampled acoustically (Rose and Leggett 1990, Misund 1997, Axelsen et 

al. 2000). Unfortunately, it is at present impossible to distinguish between 

species of similar size and behaviour directly from their acoustic reflections 

(Misund 1997, Horne 2000) and neither is it possible to achieve reliable 

acoustic estimates of prey abundance near the bottom (Ona and Mitson 1996). 

Due to these difficulties, trawling remains the most applied method to estimate 

the abundance and size distribution of demersal fish. It provides indices of 
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demersal fish density that, if not direct measures of large scale density, at least 

are reproducible by other ships trawling in the same area (Hjellvik et al. 

2002b). Trawling does, however, sample a rather large area as trawl hauls 

frequently cover a distance of 1.5 to 3.5 nautical miles, corresponding to about 

1.5 to 3.5 hours of directional swimming by a 20 cm whiting (Engås and Godø 

1989b, Michalsen et al. 1996, Hammer 1994).  

 

Inferring prey density from trawl catches 

The trawl catch of fish, T, is a function of four factors: the density of fish 

in the area, N, the volume trawled, V, the proportion of the fish in the water 

column which occur in the trawled volume, v, and the proportion of fish in the 

trawled volume which are actually retained by the trawl, g (Parrish 1963, Fig. 

2): 

VvgNT   

The product Vvg, e.g. the proportion of fish in the area which are retained by 

the trawl, is often termed the catchability, q (e.g. Michalsen et al. 1996, Casey 

Fig. 2. Factors affecting trawl catchability. Fish distributed above the headline of the trawl 
(1) are not caught whereas fish distributed in the trawled volume (2) may be caught by the 
trawl or may escape by passing over, under or around the trawl (3) or through the meshes 
of the net (4). 

1 

4 2

3 

3 
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and Myers 1998). Though catchability varies with fish species and size (Walsh 

1991, Engås and Godø 1989b), it is often assumed to be unaffected by other 

factors (Quinn and Deriso 1999). This constancy within species size groups has 

been termed ‘the survey condition’ and is a prerequisite for the use of trawl 

surveys to estimate relative density (Godø and Wespestad 1993). A constant 

catchability makes the trawl catch directly proportional to density and hence a 

direct index of density. Unfortunately, a number of factors other than fish 

species and size affect catchability. Catch rates may differ between vessels as a 

result of differences between vessels or in the rigging of the trawl (Engås and 

Godø 1989a, Hjellvik et al. 2002b), and even if the same gear and vessel is 

used, diel vertical migration patterns, light intensity and fish density may affect 

the catch rate (Michalsen et al. 1996, Casey and Myers 1998, Hjellvik et al. 

2002a). A further complication when estimating fish density from survey 

catches is the uneven distribution of fish over larger areas. Fish tend to be 

gathered in larger patches with a variable number of individuals in each patch 

(Rose and Leggett 1990). This structure causes the variability between trawl 

hauls to increase with density in the area and a significant proportion of the 

hauls may not contain the particular species at all (Pennington 1983, 

Stefánsson 1996). This renders the simple average trawl catch a poor estimate 

of density (Pennington 1983, Smith 1988). Using a particular vessel and gear 

and trawling the same volume with every haul, the major problems connected 

to estimating prey density from trawl catches can thus be divided into three: 

Spatial variation in prey density, diel changes in catchability and the effect of 

fish density on catchability. 
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Spatial variability in density 

The variability between trawl catches is generally well described by a so 

called delta distribution (Pennington 1986, Smith 1988, Stefánsson 1996). This 

distribution combines the probability that a given haul catches any fish at all 

with a distribution (generally the log-normal- or gamma-distribution) of the 

catch in weight or numbers in the trawl hauls where fish were caught. The 

distribution provides minimum variance estimates of catches (Pennington 

1986, Smith 1988) and it also allows testing of the significance of e.g. diel 

differences in catch rates (Stefánsson 1996). If no significant diel difference 

exists between the catches, the precision of the estimated average trawl catch 

can be improved by joining all samples, regardless of the time of day at which 

they were obtained. If, on the other hand, the difference is significant, the 

unbiased estimates are obtained by treating the samples separately. The need to 

test for significant differences has led to the development of methods for 

statistical comparison of length and age distributions (Kimura 1977, 

Zwanenburg and Smith 1983, Kvist et al. 2001, Paper I). Using such methods, 

a minimum variance estimate of catch of each species and length group can be 

obtained.  

 

Diel changes in catchability 

Selecting a relevant estimate of density when the trawl catch varies with 

time of day requires some consideration. First of all, a number of fish species 

migrate vertically in response to light, current, prey availability or mortality 

risk (Beamish 1966, Michalsen et al. 1996, Tarling et al. 2000). Secondly, fish 

are generally more successful at avoiding the trawl during daylight than during 

darkness (Parrish et al. 1964, Walsh 1991), though the trawl doors, wires, 
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ground gear and the cloud of suspended sediment raised by these have a visual 

(daytime) herding effect on some fish species (Main and Sangster 1981, Engås 

and Godø 1989a). These effects are quite different in their relevance to the 

predators as the herding and avoidance of trawl gear affects only the trawl 

catch rate whereas diel vertical migrations may render prey available or 

unavailable to a predator with a limited vertical range (Harden-Jones and 

Scholes 1985). Unfortunately it is not possible to separate and quantify the 

contribution of each effect without additional knowledge of either of the 

factors. Day and night catches of juvenile whiting (<20 cm) show little 

difference in the late summer and autumn (Parrish et al. 1964, Bailey 1975, 

Robb 1981, Ehrich and Gröger 1989, Paper III) which may indicate that diel 

changes in catchability of this species are minor in this season and hence also 

the extent of vertical migration and visual avoidance or herding. In this case, 

the daily average catch provides the minimum variance index of the density 

near the bottom. In the case of prey species which perform pronounced diel 

vertical migrations (e.g. clupeids (Blaxter and Parrish 1965)), the density 

should preferably be estimated at the time of day where the predator feeds on 

this prey. Dawn and dusk periods are likely to be important feeding periods 

(Blaxter and Parrish 1965, Hobson 1986, Major 1977) but they are also the 

times of day where the greatest changes in density in the bottom channel takes 

place (Blaxter and Parrish 1965, Hjellvik et al. 2002a). Hence the estimate will 

depend heavily on whether catches were taken before or after sunset, even in 

the case where only an hour or less passed between the trawl hauls. Density at 

dawn and dusk is likely to be intermediate between day and night densities, and 

daily average trawl catch rates seems preferable as an estimate of these 

intermediate densities. Hence the daily average catch was considered the best 

achievable estimate of average density of all fish prey in the demersal layer in 
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this study. As all hauls were standardised with respect to distance (V was 

constant), the absolute catch rather than catch rate was used.  

 

Density dependent catchability changes 

A startled fish will behave differently depending on whether it is alone or in the 

vicinity of conspecifics (Morgan 1988, Domenici and Batty 1997). Similar 

differences in behaviour have been seen within the mouth of a trawl, where 

single gadoids seemed to be more agitated and had a higher probability of 

escaping the trawl than fish who encountered other gadoids of a similar size 

(Godø et al. 1999). When other gadoids were present, they would swim 

together in a school and show limited escape reactions (Fig. 3). Eventually, 

they would fall back in the trawl and be caught. The probability of catching 

individual fish in the trawled volume thus increased with the density of fish. 

This effect depends on the ability of the fish to keep pace with the trawl for 

some time and hence would not be expected to be present in small fish (Main 

Fig. 3.  The behaviour of haddock and cod in the mouth of the trawl. When several similar 
sized fish are swimming just ahead of the trawl, fish encountering the trawl will join the 
shoal and eventually fall back into the trawl and be caught (A), whereas a fish encountering 
few or no other fish in the mouth of the trawl will attempt to escape through the meshes or 
below or above the trawl (B). Redrawn from Godø et al. (1999). 

 

A B 
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and Sangster 1981, Hammer 1994). Small gadoids instead press to the bottom 

when encountering a trawl (Engås and Godø 1989b, Walsh 1991) and 

catchability of these individuals is unlikely to be affected by shoaling in the 

mouth of the trawl (Main and Sangster 1981). The catchability of species that 

are obligate schoolers like clupeids should likewise be independent of density 

as these rarely occur without conspecifics. In contrast to the positive effect of 

density of larger gadoids on catchability, juvenile cod have been shown to have 

a greater vertical distribution and hence lower catchability when density is high 

(Godø and Wespestad 1993). However, this will affect both trawl catch rates 

and the density of prey experienced by the predator equally (given that vertical 

migration by the predator is limited), and hence the trawl should provide an 

unbiased estimate of both clupeids and juvenile gadoid density in the demersal 

layer. 

 

Estimation of food intake of fish 

Estimates of food intake of fish predators in their natural environment can 

be obtained either from bioenergetic modelling (Horton 1961, Malyshev 1980, 

Majkowski and Waiwood 1981, Hansson et al. 1996) or by combining 

knowledge of stomach contents with estimates of the evacuation rate of these 

contents (Bajkov 1935, Daan 1973, Jones 1974, Elliot and Persson 1978, 

Pennington 1985). The former method combines knowledge of growth rates, 

metabolism and activity and provides an estimate of the amount of energy 

required to cover these needs. This renders the method well suited for the 

estimation of consumption over a longer period such as a number of months. 

However, the food intake over such long time spans provides no knowledge of 

prey composition and short term food intake. This type of information can, 
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however, readily be obtained by the combination of average stomach content in 

the field and evacuation rates for different prey types. 

 

Estimating food intake from stomach contents 

Estimating food intake from stomach contents was proposed as early as 

1935 by Bajkov (1935) who suggested that the number of prey found in the 

stomachs should be directly proportional to the number of prey eaten daily, the 

proportionality factor being equal to the number of days after ingestion a prey 

could be recognised in the stomach contents. Later experiments have shown 

that the time taken to evacuate the individual prey items can not generally be 

assumed to be independent of the number of prey present in the stomach (Elliot 

and Persson 1978, DosSantos and Jobling 1992, Temming and Andersen 

1994)), and so the direct proportionality does not hold. The lack of 

proportionality has led to the proposition of a large number of alternative 

methods to estimate food intake from stomach content data (e.g. Elliot and 

Persson 1978, Pennington 1985, Dos Santos and Jobling 1995, Temming and 

Mergardt 2002). Unfortunately, the implementation of the majority of these 

methods has been based on erroneous assumptions on either the statistical 

distribution of the total stomach contents, the occurrence of individual prey 

types in the stomach or the evacuation rates of individual prey types (Paper V). 

These unwarranted assumptions have resulted in substantially biased estimates 

of food intake, and to avoid this, a new estimate of the intake of individual prey 

types was suggested (Paper V). The new estimate calculates the average hourly 

intake of prey species i in wet weight, Ci, from stomach samples taken over a H 

hour period as (Paper V): 
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where


jiS , and


jiS ,  are the average content of i in the stomachs in sample j in 

gram and the average square root of the contents, respectively, no is the 

number of samples taken and i
’ is the prey species specific evacuation rate 

corrected for the effect of other food in the stomach. i
’ is estimated from the 

amount of other food occurring together with prey i in the stomachs and the 

specific evacuation rates of both prey i and other food (Paper V). The estimated 

food intake in wet weight is readily transformed into the number of prey eaten 

by dividing Ci with the wet weight of the individual prey (Paper VI). 

A crucial factor when using this or related methods is accurate knowledge 

of evacuation rates of the specific prey types. These have been estimated in 

laboratory experiments for a number of prey species (Dos Santos and Jobling 

1992, Temming and Andersen 1994, Andersen 1999, 2001). Alternatively, they 

can be estimated from field data, and indeed this may be the only way to 

estimate evacuation rates of prey which can not readily be obtained for use in 

laboratory experiments (Paper IV).  

 

Comparing food intake at differing temperatures 

The capacity of the digestive system of fish is generally determined by 

the evacuation of food from the stomach as is evident from the link between 

stomach fullness and appetite which is seen in a number of species (Grove et 

al. 1978, Gill and Hart 1998, Seyhan et al. 1998, Paper II). Evacuation of food 

and hence maximum food intake of the predator is strongly dependent on 

temperature, predator size and prey type (Dos Santos and Jobling 1992, 
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Temming and Andersen 1994, 

Andersen 1999, 2001)(Fig. 4). A food 

intake of 6 g/day by a 30 cm fish may 

thus correspond to full satiation of the 

digestive system in cold waters but 

only a fraction of the capacity in 

warmer waters (Fig. 4). Food intake 

measures should therefore be corrected 

for temperature before it is attempted to 

determine if the predator is 

physiologically satiated (Arrhenius and 

Hansson 1994, Essington et al. 2000, 

Paper VI). This can be done by 

dividing the amount eaten by the maximum digestive capacity at the given 

temperature, Cmax: 

maxC

C
P i

i   

(Paper VI). Pi then provides an estimate of relative satiation which is 

unaffected by temperature. The procedure obviously requires a measure of the 

maximum sustainable ingestion rate of the predator. Gadoid stomachs may 

contain as much as 17% to 19% of the weight of the unfed predator (Temming 

and Mergardt 2002, Paper II), but the fish are unlikely to be capable of 

maintaining such high stomach contents over longer time periods and the 

maximum sustained content is likely to be around 3% bodyweight (Paper VI). 

To maintain this bodyweight, the predator would have to have an hourly 

consumption equal to 

BWC 03.0max    

Fig. 4. Maximum daily food intake of 
whiting of length 20 cm (———), 25 cm 
(‑‑‑) and 30 cm (….) as a function of 
temperature. Estimates are calculated by 
assuming that the maximum sustainable 
stomach content is 3% of the bodyweight 
(Calculated as described in Paper VI). 
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where  is the evacuation rate of the total stomach content at the ambient 

temperature and BW denotes bodyweight of the predator (Pennington 1985, 

Paper VI). This is an approximation and the estimate could most likely be 

improved by laboratory experiments. Having estimated the maximum 

sustainable daily food intake at a given temperature, satiation level can be 

compared even in the case where the samples were collected at different 

temperatures.  

 

Food intake and selection 

The study of food intake and food selection has evolved from the 

descriptive studies of Holling (1959b) to complicated deductive models that 

allow the predator to regulate feeding in response to prey densities, survival 

probability and physiological state (Mangel and Clark 1986). Generally, the 

models can be divided into two groups; descriptive models which divide the 

relationships between food intake and prey density into a number of frequently 

occurring patterns and deductive models which seek to explain food intake and 

selection from inherent properties of the prey and predator. In spite of the 

apparent difference between these groups, several of the models are based on 

the same fundamental model, the multispecies generalisation of Hollings ‘disc’ 

model (Holling 1959a) suggested by Murdoch (1973) and hence the difference 

often lies in the interpretation of the parameters rather than in the formulation 

of the model (Murdoch 1973, Stephens and Krebs 1986).  
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Descriptive models 

In 1959, Holling suggested that the response of predators to changes in 

the density of their food could be divided into three general types of functional 

responses (Fig. 5, Holling 1959b). Predators that show no change in encounter 

rate and capture efficiency with prey density exhibit a linear increase in 

consumption with density of their prey, a type I response (Fig. 5A). The 

increase in consumption will continue until a saturation level is reached after 

which a further increase in prey density has no effect. This response has been 

found in smaller marine organisms such as Artemia and Daphnia (Holling 

1965). However, most predators will either decrease their search rate or 

increase the time used to handle prey as food intake increases (Holling 1965, 

Lipcius and Hines 1986, Mattila and Bonsdorff 1998, Buckel and Stoner 2000, 

Koski and Johnson 2002). This leads to a decelerating curve that 

asymptotically approaches a saturation level as prey density is increased (Fig. 

5B), a type II response. Such a response may also be found in cases where an 

increase in prey density decreases the vulnerability of the individual prey, e.g. 

by schooling, herding or common defence mechanisms. A type II response has 

been found in numerous studies of aquatic predators (e.g. Lipcius and Hines 
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Fig. 5. Functional response types suggested by Holling (1959a). A: Type I, B: Type II and 
C: Type III. Redrawn from Holling (1959a). 
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1986, Colton 1987, Buckel and Stoner 2000, Koski and Johnson 2002). It has 

been deduced theoretically in the form named the ‘disc’ equation (Holling 

1959a): 

atN

aN
n




1
 

where n is the number of prey eaten per time unit, N is prey density (prey per 

area), a is instantaneous rate of prey discovery (area searched per time unit) 

and t is the time taken to ‘handle’ prey (time units per prey). ‘Handling’ may 

refer to either the time to capture prey (time limited predator) or the time taken 

to evacuate the prey (digestive capacity limited predator)(Jeschke et al. 2002). 

The third functional response, the type III response (Fig. 5C), relates to 

predators whose ability to capture prey increases with increasing density, either 

due to learning or due to the presence of a limited number of appropriate 

shelters which render the prey more susceptible to predation as density is 

increased (Murdoch 1973, Walters and Juanes 1993, Gotceitas and Brown 

1993a). Real (1979) proposed a general model to describe type II and III 

responses: 





 N

KN
n


  

where K is the saturation level of the predator,  is the half saturation constant 

and  is a constant which determines the type of the relationship. =1 results in 

a type II relationship whereas >1 results in a type III response. Increasing  

results in increased maximum acceleration of the curve (more pronounced 

sigmoid shape). Note that it can be rearranged to Hollings ‘disc’ equation by 

substituting =1, a=K/ and t=1/K. 

Murdoch (1973) noted that the type II response appeared to be the most 

common, and suggested a multispecies extension of this response. The model, 
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here denoted the multispecies functional  response, is based on the assumption 

that a predator limited by the time available to capture and process prey will 

decrease the time available to feed on one prey as an increasing number of 

alternative prey is consumed (Fig. 6A). The model describes the number of 

prey i eaten per time unit, ni, as 

j

J

j
jj

ii
i

Nta

Na
n







1

1
   

where subscript i and j denotes prey type and J is the number of prey types 

included in the diet. This model is also referred to as the multispecies version 

of Hollings disc equation (Chesson 1989, Christensen et al. 2000). It has a 

number of inherent properties. First of all, the response of a predator to a given 

combination of prey densities is given directly by the single prey response of 

the predator to the individual prey (Colton 1987). Secondly, the ratio between 

the number of prey i eaten and the number of prey j eaten is directly 

proportional to their relative densities as  
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Fig. 6. Number of prey eaten as a function of density of prey 1. Number of prey 1 eaten (A), 
total number of prey eaten (B) and the ratio between the number of prey 1 and 2 eaten as a 
function of the ratio between the density of prey 1 and 2 (C). Density of prey 2 1% (———) 
10% (‑‑‑ and △) and 20% (…. and □) of maximum prey 1 density.  
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(Fig. 6C). This is in contrast with another food selection model suggested by 

Murdoch (1969), the switching model, in which the relationship is accelerating 

rather than proportional (i.e. ai/aj is an increasing function of Ni/Nj). This 

model has been used to describe predators which develop a search image of the 

most abundant prey (Elton and Greenwood 1970), decrease handling time for 

the most familiar prey (Murdoch 1969) or forage on two spatially separate prey 

types (Murdoch et al. 1975). However, a number of investigations have found a 

decelerating rather than accelerating relationship between ni/nj and Ni/Nj. This 

has been denoted anti switching (Chesson 1978), counter switching (Visser 

1981) or negative switching (Chesson 1984) and shall henceforth be named by 

the latter of these names. Several biological explanations for this phenomenon 

have been suggested (Visser 1981, Kean-Howie et al. 1988, Chesson 1984). 

Kean-Howie et al. (1988) observed sticklebacks feeding on fish larvae and 

small zooplankton and suggested that negative switching could arise when a 

large number of the most abundant prey confused the search image of the 

predator and caused the fish to eat less of the more abundant species. A similar 

mechanism was suggested by Visser (1981) who suggested that the least 

abundant prey became the most conspicuous as it occurred on a background of 

numerous other prey of a different type, which would lead a predator feeding 

according to optimal foraging theory (see the section on deductive food 

selection models) to exhibit negative switching. Visser (1982) also suggested 

that the phenomenon could occur if the predator attempted to maintain a diet 

with a balanced composition of micronutrients. Abrams and Matsuda (1993) 

suggested that negative switching could be generated if a prey attempted to 

avoid the predator more actively when the rate of predation was high and 
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lastly, Chesson (1984) found that negative 

switching could occur when the mean 

preference was estimated as an average of 

several individuals with different preferences.  

Both switching and negative switching 

can be described by the general switching 

model (Elton and Greenwood 1970, Visser 

1981, Kean-Howie et al 1988, Paper VII): 

b

j

i
ij

j

i

N

N

n

n










   Ligning 1 

where ij is the preference for prey i relative 

to prey j when Ni=Nj and b is a constant. If 

b>1, relative preference for a prey increases 

with density (switching or positive 

switching), b<1 describes the case where 

relative preference decreases with density 

(negative switching) and at b=1, no 

switching takes place (Fig. 7). 

The presence or absence of switching 

or negative switching has profound effects 

on the ability of the predator to stabilize 

prey populations as is readily apparent by 

assuming that the predator eats a fixed 

amount, n, of prey daily and experiences a varying density of prey i while that 

of j is kept constant. In this case the general switching model can be rearranged 

to 
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Fig. 8. The effect of switching on 
the relationship between the 
mortality and density of prey i 
given that the density of prey j and 
total intake is kept constant. b=0.3: 
negative switching, b=1 no 
switching and b=3: positive 
switching. 
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Fig. 7. The number of prey i eaten 
relative to that of prey j as a 
function of the relative density of 
prey i to j. Negative switching 
(b=0.3), no switching (b=1) and 
switching (b=3). 
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and hence the mortality rate of prey i is solely a function of the density of i 

when n, ij, b and Nj are kept constant. To stabilize a prey population, the 

predator must impose an increasing mortality as density is increased (Murdoch 

1994, Pelletier 2000) and in a homogenously mixed population, this occurs 

only when the predator exhibits positive switching and even then it is limited to 

prey densities below a certain level (Fig. 8) (Murdoch and Oaten 1975). 

 

Deductive models 
The idea of discovering the inherent mechanism by which the predator 

chooses its prey has intrigued ecologists for decades. Among the historically 

most important theories in the aquatic context are the theory of fitness 

optimization and the theory of the apparent size of prey. The latter theory 

describes size selection as the result of the limited ability of fish to determine 

the size of their prey (O’Brien et al. 1976, Eggers 1977, Butler and Bence 

1984, Li et al. 1985). Planktivorous fish generally have a poor ability to 

determine absolute size and may rely on the angle the prey occupies in the 

visual field and large prey will hence be attacked from a larger distance than 

small (O’Brien et al. 1976). This model was developed to describe food 

selection by fish feeding on zooplankton and is unlikely to apply to piscivores, 

which are not limited by visual acuity (Breck 1993). In contrast, the theory of 

fitness optimization, should theoretically describe food selection by fish and 

has been studied in numerous experiments (e.g. Werner and Hall 1974, 

Mittelbach 1983, Bannon and Ringler 1986, Hart and Gill 1993). When the 

theory was introduced, most authors equated optimization of fitness to 
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ingesting the greatest possible amount of energy in the least possible time 

(Emlen 1966, MacArthur and Pianka 1966). A forager should rank prey 

according to the amount of energy they contain divided by the time required to 

capture and handle them (Emlen 1966, MacArthur and Pianka 1966, Stephens 

and Krebs 1986). Only the highest ranked prey should be included in the diet 

when this prey was abundant whereas lower ranked prey would be ingested 

when higher ranked prey were scarce. This version of fitness optimization, 

optimal foraging theory (Stephens and Krebs 1986), can be described by the 

general switching model (Page 31) if the predator is forced by low prey density 

to feed on several prey types and encounter rate is proportional to or a power 

function of density (Paper VII). If encounter rate is proportional to density, the 

intake of the most preferred prey type should furthermore be well described by 

a single species type II functional response, whereas that of less preferred prey 

should follow a type II response only in the absence of saturation with the more 

preferred prey. Hence optimal foraging should result in tight single species 

functional responses to one or more prey, but a poor single species functional 

response to all but one prey in the cases where the predator is able to achieve 

saturation by feeding on the preferred prey type only. If the density of the 

preferred prey is high enough to saturate the predator, all other prey should be 

ignored. 

An alternative version of the fitness optimization theory is the unifying 

foraging theory (UFT) proposed by Mangel and Clark (1986). They assume 

that the predator will choose the strategy that maximizes its long term fitness 

measured as e.g. reproductive output. The chosen strategy depends on both 

profitability of the prey, the current nutritional state of the predator and the 

mortality risk taken by the predator when feeding (Mangel and Clark 1986, 

Hart and Gill 1993, Alonzo and Mangel 2001). The flexibility of UFT makes it 
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appropriate for a wide range of predators (Mangel and Clark 1986). However, 

to test the model in detail would require substantial knowledge of mortality 

rates, predator bioenergetics and numerous other factors. Such knowledge is 

difficult if not impossible to obtain in a field investigation. Nevertheless, one of 

the predictions of the model can be tested as UFT is the only theory which 

predicts that predator diet can be affected by the nutritional state of the 

predator at any level other than through digestive satiation. Hence a correlation 

between the nutritional state of the predator and food selection may indicate 

that prey selection is state dependent and hence a more complicated process 

than assumed in other models.  

 

Selection between temporally segregated prey  
Inherent in any food selection model is the theory of exclusiveness of 

choices: the predator cannot reach its saturation level of two prey at the same 

time as feeding on one prey invariably decreases the time available to capture 

and digest other prey. However, this constraint does not necessarily describe 

the feeding situation of a piscivore with a broad diet. The diverse prey types 

fed on by e.g. gadoids (Jones 1954, Adlerstein and Welleman 2000) are not 

equally available at all times of day (Blaxter and Parrish 1965, Hobson 1986, 

Pitcher and Turner 1986) and as a result of this some prey types are eaten only 

during very limited periods of the diel cycle (Paper III, Paper VI, Fig. 9). 

Whiting in particular appear to feed on benthic prey during the night whereas 

free swimming prey such as fish and krill are eaten during the day (Paper III, 

Paper VI). Feeding on fish prey appear to be most intense around dawn and 

dusk, perhaps due to the increased visibility or the decreased vigilance of prey 

to predators at low light levels (Blaxter and Parrish 1965, Hobson 1986, Pitcher 

and Turner 1986, Paper VI). As both clupeids and gadoids are eaten during this 
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period, chasing one prey must limit the time available to chase other prey and 

the choice between fish prey would appear to be exclusive. In contrast to this, 

the intake of benthic prey may be independent of that of fish prey if the benthic 

prey eaten during the night is digested to a state where it does not inhibit 

feeding on fish prey at dawn. A significant proportion of the whiting caught 

indeed appeared to be reluctant to feed and their intake of fish may have been 

inhibited by digestive processing rate (Paper II). However, though prey eaten 

in the last part of the night may inhibit feeding activity at dawn, this is not 

necessarily the case for prey eaten just after dusk, and hence neither complete 

exclusiveness nor complete independence of choices exists. Describing food 

selection in this environment is likely to be complicated, in particular if the 

predator alters its preferences when the stomach contains food. A number of 

fish species reduce meal size when the stomach is partially filled and hence in a 

natural environment would most likely prefer smaller prey (Grove et al. 1978, 

Hart and Gill 1993, Sims et al. 1996). This may shift the preference of the 
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predator from larger to smaller prey items and thus severely complicate the 

estimation of preferences. Though such effects occur in some species, whiting 

in the wild do not appear to decrease meal size as stomach content is increased 

(Paper II) and hence no inherent effect of stomach fullness on prey preferences 

of this predator exists. The preference for a particular daytime prey relative to 

another daytime prey should therefore be unaffected by night time feeding and 

relative preferences between daytime prey can be estimated without 

complications. The estimation of a multispecies functional response is, 

however, complicated by temporal segregation. The saturation level of daytime 

prey could theoretically be reduced by ingestion of other prey during the night. 

If this is the case, the sum of fish intake and the intake of other food should 

equal the maximum food intake rate. Otherwise, the multispecies functional 

response should provide a description of the ingestion of fish prey by whiting, 

and in particular, the prediction of constant preference for one prey relative to 

another should still apply. 

 

Estimation of food selection in a marine environment 

Estimation of parameters in any food selection model requires 

contemporary knowledge of food intake and prey density. This presents a 

problem as the absolute density of prey is rarely known in a marine 

environment. However, a number of parameters in the food selection models 

can be estimated even in the absence of absolute density estimates if an index 

of prey density is available. Trawl catch can be considered such an index if 

catchability can be assumed constant for each prey type as then T = qN. 

Inserting N = q-1T and P = C/Cmax = n/nmax in the general functional response 
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suggested by Real (1979), the relationship between relative satiation, P, and 

trawl catch, T, becomes 
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where K´= K/nmax and nmax is the maximum number of prey that can be eaten 

(Paper VI). Hence the saturation level of the relative satiation, K´, can be 

estimated directly by comparing P and T whereas  can only be estimated as 

the trawl catch corresponding to half saturation, q. Inserting the same 

relationship between density and trawl catch in the multispecies functional 

response, the model becomes 
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where a´i = aiqi
-1nmax

-1and t´i = tinmax. The saturation level of the individual prey 

(ti
-1) is again determined directly whereas ai (and hence prey preference) can 

only be estimated as the product aiqi
-1. Similarly, inserting Ni = qi

-1Ti in the 

general switching model, the relationship becomes 
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The general switching model thus requires the relationship between the relative 

amount of prey i in the diet and the relative amount in the trawl of prey i to be 

a straight line with slope equal to b when observations are plotted on a log-log 

scale. As the number of prey i ingested is always examined relative to prey j, 
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an increase of the total amount that can be eaten by e.g. 50% will affect both 

and cancels out of the equation. Whereas b can be estimated directly, the 

relative preference for a prey can only be estimated as the combined effect of 

preference and relative catchability. Note that when food intake is estimated 

from stomach content, it is a historical estimate based on food eaten as early as 

several days prior to the stomach sampling (Paper II, Paper VI). If the 

predators migrate, they may have encountered prey densities quite different 

from the current situation. This will add to the variation around the relationship 

between local prey density and food intake. 

 

Food selection by North Sea whiting  

The data used in this study originated from intensive sampling of whiting 

at five locations in the North Sea and is described in detail in Papers II to VII. 

Briefly, stomachs were sampled from whiting caught by trawling every four 

hours for 2 or 3 consecutive days. The 

locations sampled differed in depth, 

temperature and prey density (Paper VI).  

There did not appear to be mutual 

exclusiveness of fish and other prey in the 

diet of the whiting analysed (Fig. 10). This 

may have been caused by the general lack of 

digestive satiation (Paper VI, Fig. 10). 

Nevertheless, intake of both other food and 

fish prey seemed to reach an asymptote at 

around 25 % of maximum intake (Paper VI). 

The saturation of fish intake occurred at high 
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fish prey densities whereas that of other food occurred at temperatures above 

10 oC. The exact reason for the saturation of the intake of other food could not 

be determined but it may have been caused by either changes in search rates, 

increased densities or a combination of the two. Whatever the reason, the 

intake of other food appeared to be considerable. This was not the case, 

however, if sampling was restricted to daylight as the estimation of the intake 

of e.g. crabs decreased by 30 to 50% if night time samples were excluded 

(Paper V). This may be part of the reason for the general conception of whiting 

as a major piscivore, as most previous investigations of food composition have 

been based on stomachs collected mainly during daylight (Jones 1954, Gordon 

1977, Patterson 1985, ICES 1991, ICES 1996). However, there are seasonal 

changes in the diet of whiting (Jones 1954, Patterson 1985, Hislop et al. 1991), 

and the result here may only imply that whiting feed on non fish food to a large 

extent in the early autumn.  

The single species functional response to herring was well described by a 

slightly sigmoid curve (Paper VI, Fig. 11A). The fit of the response to sprat 

was somewhat poorer (Fig. 11B) but as the data point lying below the curve at 
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the second highest sprat density corresponded to the location with the highest 

herring density, the low intake of sprat at this location did not decrease total 

clupeid intake (Fig. 11C). This may indicate that sprat is a less profitable prey 

than herring and that the predator was foraging according to optimal foraging 

theory. However, contrary to this theory, sprat was actually the preferred prey 

at one location (Paper VII). The response to juvenile gadoids was less tight 

than the response to clupeids (not all confidence limits include the fitted line in 

Fig. 12B) and the deviations from a smooth curve could not be linked to low 

availability of herring or clupeids in total, as the second highest intake of 

gadoids was found at the highest density of herring (Fig. 12). Hence, there 

appeared to be some support for optimality in the foraging behaviour in the 

close fit of a single species functional response to the intake of herring. 

However, the predator fed on other fish prey as well as herring even at high 

herring densities, and this is in direct opposition to optimal foraging theory. 

The intake of all fish prey saturated at a level well below digestive 

capacity (Paper VI, Fig. 11, Fig. 12). This could theoretically have been caused 
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by a handling time saturation being reached before a digestive satiation 

(Jeschke et al. 2002). However, in the present study, the implied time to 

capture and handle prey would be in excess of 10 days (Paper VI), and as other 

piscivorous fish are able to capture and ingest prey within a matter of minutes 

(Major 1978, Gotceitas and Brown 1993), it seems unlikely that handling time 

limitation was the reason for the low saturation level. Lack of digestive 

saturation at high prey densities has also been found in a study of largemouth 

bass (Micropterus salmoides), which consumed only 50% of maximum daily 

ration in their natural environment though prey density was very high 

(Essington et al. 2000), and the phenomenon could be general in piscivorous 

fish. 

The multispecies functional response provided a poor fit to the observed 

food intake (Paper VI). The problem was evident when the amount ingested of 

one prey relative to that of another was plotted (Paper VII, Fig. 13). The 
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multispecies functional response requires this relationship to be proportional 

and hence linear with a slope of one in a log-log plot (the solid line in Fig. 13). 

This model clearly provides a poor description of the observations. Attempting 

to describe the observed selection by the general switching model, it was clear 

that the predators exhibited an extreme case of negative switching as b must be 

around 0.2 to describe the preference for sprat relative to herring (Paper VII, 

the hatched line in Fig. 13). A similarly low value of b is required to describe 

the selection between herring and whiting, though this relationship is rather 

poorly described by the general switching model. The substantial degree of 

negative switching supports the findings of a preliminary study of food 

selection of cod and whiting (Rindorf et al. 1998). The authors detected 

negative switching in both cod and whiting using the general switching model, 

and the estimates of b ranged from 0.14 to 0.34. However, the general 

switching model did not provide a better fit to data than the simple single 

species functional responses in this study.  

Looking more closely at the single species functional responses, the 

residual error appeared to be correlated to predator density, as sprat was eaten 

to a greater extent at high predator densities where less juvenile whiting were 

consumed (Fig. 15). This correlation could suggest that predators in groups 

were more efficient at catching schooling prey as has been shown to be the 

case for jacks (Caranx ignobilis)(Major 1978). Juvenile gadoid prey may seek 

refuge from predation to a greater extent at high predator densities (Walters 

and Juanes 1993, Gotceitas and Brown 1993a, Gotceitas et al. 1995) and 

therefore become less available at high predator densities. Alternatively, 

individual predators may interfere when pursuing gadoids and hence decrease 

the per capita intake as predator density is increased (Beddington 1975, Arditi 

and Akçakaya 1990). Both effects should lead to an apparent increase in 
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preference for sprat compared to whiting 

as predator density increased. However, 

no such pattern could be detected (Fig. 

14), and hence the correlation between 

single species functional response 

residuals and predator density may be the 

result of random effects in a small data 

set.  

There was some indication that 

predator condition could influence 

preference (Paper VII, Fig. 16). It seemed 

that whiting preferred herring more 

strongly relative to both sprat and 

juvenile whiting when well fed. In 

contrast to this, no trend in the preference for sprat relative to whiting as a 

function of condition could be detected (Rindorf, unpublished results). A 

correlation between condition and total food intake has previously been 
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demonstrated in Arctic charr (Salvelinus alpinus) and Atlantic salmon (Salmo 

salar), where food intake decreased as condition increased (Jobling and 

Miglavs 1993, Simpson et al. 1996). Cod grow optimally on a diet consisting 

almost solely of herring (Jobling et al. 1991), and this prey may be equally 

profitable for whiting. If this is the case, whiting may prefer herring to achieve 

optimal growth when condition is high but prefer sprat when it is necessary to 

regain condition after having lost weight. Sprat is a lipid rich fish with a much 

higher energy content than herring (herring<14 cm, Pedersen and Hislop 2001) 

and a diet rich in fat may optimise the rebuilding of depleted reserves though it 

does not optimise somatic growth (Lie et al. 1988, Jobling et al. 1991). 

Alternatively, the correlation between condition and preference may be a mere 

chance result as the number of points in Fig. 16 is obviously low. If this is the 

case, the general switching model is the only model examined here which can 

explain the lack of constant preference which would be expected from an 
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optimally foraging (energy maximising) predator or a predator foraging 

according to the multispecies functional response. 

Negative switching is not unknown in the literature, though the authors 

often do not recognise the response and simply note that no (positive) 

switching occurred. Three spined sticklebacks (Gasterosteus aculeatus) 

exhibited negative switching between several prey types, and the estimate of b 

was 0.66 in the study where this figure was calculated (Visser 1982, Kean-

Howie et al. 1988). Similar results were found in a preliminary study of 

switching in cod and whiting in the North Sea (Rindorf et al. 1998). Buckel and 

Stoner (2000) looked for positive switching in bluefish, Pomatomus saltatrix, 

and concluded that no switching could be detected. However, it is evident from 

their Fig. 3 that the fish in fact exhibited negative switching, and reading 

values from this figure points to a value of b around 0.6. Similarly, Gotceitas 

and Brown (1993b) examined the protective effect of Calanus on cod larvae 

exposed to predation from three spined sticklebacks. Though they did not 

emphasise results on prey selection, reading values from their Fig. 4 results in 

an estimate of b around 0.4. Thus, though the number of investigations which 

examine negative switching directly is low, it may occur more generally than 

this number would suggest.  

 

Biological explanations for negative switching and lack of digestive 

satiation 

The observed negative switching and lack of satiation may be caused by a 

number of factors. First of all, the predators may attempt to maintain a 

balanced diet with respect to micronutrients as suggested by Visser (1982). 

However, gadoids in captivity grow at high rates when given diets consisting 
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of an even higher percentage fish than the 63% which was the maximum 

proportion of fish in the diet found in this study (Jobling et al. 1991, Fig. 3 in 

Paper VI). Further, it is unlikely that a predator in a poor condition would be 

growing at a high rate, and to this predator the highest priority is likely to be 

ingesting whatever food it may achieve at a limited cost. This theory therefore 

provides no explanation for the apparent preference for sprat relative to herring 

when condition is low. It seems unlikely that the predator became confused by 

the most abundant prey and hence exhibited negative switching by forming a 

search image corresponding to the least abundant prey (Visser 1981, Kean-

Howie et al. 1988) as herring and sprat are quite similar in appearance. It also 

seems unlikely that negative switching was caused by changes in prey 

behaviour in response to increased predation mortality as suggested by Abrams 

and Matsuda (1993), as the distance to the non-switching line was greatest at 

the location with the lowest predator density (Paper VII). 

A potential source of error in the analyses is the ability of the trawl to 

provide an unbiased index of the amount of prey available to the predators. A 

severe increase in catchability of prey fish as their density was increased may 

result in negative switching. However, the increase would have to be large 

enough to result in an increase in herring catches by more than 9000 fish (more 

than 400 times) at a very slight increase in density as herring intake levelled of 

at a trawl catch of around 20 herring in the present study (Fig. 11). Such an 

increase can hardly be explained by the mechanisms reported to lead to density 

dependent changes in catchability in other species (Godø and Wespestad 1993, 

Godø et al. 1999). The degree of negative switching is furthermore too large to 

be explained by the aggregation of prey into large groups and the resulting 

decrease in the visibility of the individual (Paper VII). 
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The trawl hauls taken in the present study covered a distance of 3.5 

nautical miles (Paper II). This corresponds to a travelling time of 3.5 and 2 

hours of a predator of length 20 to 35 cm, respectively, swimming at 2.5 body 

lengths per second caught in one end of the trawl track to reach prey caught in 

the other end of the trawl track (Hammer 1994). This travelling time 

corresponds to directional swimming, e.g. the predator must know where to 

locate the prey. If the behaviour of the prey was unpredictable, the predator 

would have to search in all directions and travelling time would increase. Thus, 

if the predator was unable to predict the distribution of prey through e.g. past 

experience or other clues, it is unlikely that all prey was available to all 

predators within a reasonable amount of time. This may explain why full 

satiation was not reached even at very high prey densities as some predators 

may have been unable to locate the areas of high prey density. The underlying 

assumption of this is that predators do not aggregate over larger areas in 

response to prey density and this is in accordance with the lack of aggregative 

response described in Paper VI and with results for cod preying on capelin 

(Mallotus villosus) and bluefish feeding on anchovies and sandeel (Safina and 

Burger 1989, Rose and Leggett 1990, Horne and Schneider 1994). As the 

intake of sprat is decreased at high herring densities, sprat and herring would 

have to be located in approximately the same area if the result was caused by 

lack of overlap between predators and prey. In contrast, juvenile gadoids must 

have been located in adjacent areas as the intake of gadoids should otherwise 

have decreased at high clupeid densities. Trawl catches of all species were 

highly consistent within a given time of day and location (Rindorf, unpublished 

results) and similar consistency has been found in other experiments (Hjellvik 

et al. 2002b). However, even though the trawl most likely provides a consistent 

index of the prey abundance, the prey may have been patchily distributed 
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within the trawl track and this may be the explanation for the lack of digestive 

satiation of the predators.  

Chesson (1984) found that negative switching would be the most likely 

population result if the preferences differed between individual fish. Such 

individual preferences have been observed in Atlantic cod, where some 

individuals readily fed on live fish whereas others did not (Gotceitas et al. 

1995). This effect would lead to a saturation level below the physiological 

maximum as was observed here. Although the analyses performed in this study 

were unable to detect a tendency for predators to specialise on either fish or 

invertebrates, the data material did not allow an investigation of whether 

individual predators specialised on different species of fish. If this was the 

case, it would lead to lack of exclusiveness of prey choice as herring specialists 

would continue to feed on herring regardless of whether whiting specialists 

were saturated or not. Hence negative switching and lack of satiation may be 

the result of individual differences in preferences, the limited ability of the 

predator to locate prey at a distance or any combination of the two. Which of 

these is the dominant mechanism on the local scale does not, however, alter the 

implications of negative switching for whiting and its prey.  

 

Food selection and ecosystem stability 

Several authors have suggested either the type III functional response or 

positive switching to be a prerequisite of predation induced stability in the 

absence of an aggregative response (Holling 1959b, Murdoch and Oaten 1975). 

However, this is true only in a homogenously mixed population, and spatial 

heterogeneity may induce stability even in models which are unstable in a 

homogeneous environment (DeAngelis and Waterhouse 1987, McCauley et al. 
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1996, van Baalen and Sabelis 1999). Thus even though both negative switching 

and the lack of an aggregative response of the predators will decrease prey 

mortality rate as local density is increased (Paper VI), this will not necessarily 

lead to instability if the system is heterogeneous. If a decrease in total density 

of a prey population leads to decreased density throughout the area, the effect 

of negative switching will indeed be destabilising. However, clupeids are 

obligate schoolers and may maintain a lower school size below which schools 

will join on encounter (Pitcher et al. 1996). This effect would lead to a decrease 

in the number of schools when density is low (Petitgas and Levenez 1996, 

Bonabeau et al. 1999). Though individual schools also tend to get smaller at 

low densities (Petitgas and Levenez 1996), the decrease in the number of 

schools decreases the exposure to predators which do not show an aggregative 

response (Paper VI). Further, the proportion of the prey which are gathered in 

large schools seems to increase slightly as density is decreased (Petitgas and 

Levenez 1996). Hence a large population with numerous schools may suffer a 

higher mortality from whiting predation than a small population comprised of a 

few schools as few schools will both encounter fewer predators and have larger 

average size. This may save prey populations from complete extinction and add 

to the stability of the ecosystem. Furthermore, in combination with the 

apparent lack of physiological satiation, it disrupts the simple relationship 

between prey density and predator growth and reproduction expected in a 

homogeneously mixed population (e.g. DeAngelis and Waterhouse 1987, 

McCauley et al. 1996). Increasing the herring population to a high level at all 

locations does not necessarily lead to optimal growth as the predators appear to 

be saturated at a level well below the food intake required to maximise growth 

of gadoids in captivity (3-4% body weight per day for cod at a temperature of 

11 to 14 oC, Jones and Hislop 1978). Hence ‘bottom up effects’ (Worm and 
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Myers 2003) are likely to be difficult to detect in such a system, though they 

have been demonstrated in cod specialising on capelin (Yaragina and Marshall 

2001) and at lower trophic levels (Aebischer et al. 1990). 

 

Conclusions 

This study has shown that it is indeed possible to estimate the functional 

response of fish predators to fish prey in their natural environment by 

combining trawl estimates of density with consumption estimates based on 

stomach contents. The lack of temporal overlap between prey types invalidated 

the use of a number of food selection models as the assumptions of the models 

were not met, e.g. ingestion of different prey types were not mutually exclusive 

in the traditional sense. The prediction of total consumption of whiting at a 

range of differing prey densities would require a new model to be developed 

which can deal with temporally segregated prey and satiation effects. 

The single species functional response provided a good description of the 

intake of herring and the total intake of clupeids. However, the relative 

contribution of sprat and herring to the diet was not proportional to their 

relative density in the surroundings as sprat was only ingested in small 

numbers unless there was a lack of satiation with herring. Intake of sprat may 

be enhanced at high predator densities, perhaps due to the increased ability of 

shoaling predators to locate and capture schooling prey (Major 1978, Pitcher et 

al. 1982). In contrast to this, the intake of whiting appeared to decrease with 

predator abundance when clupeid prey was abundant but was otherwise 

unaffected by clupeid intake.  

The model used in most descriptions of predator-prey interactions, the 

multispecies functional response, provided a poor description of food intake of 
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whiting and should be used with caution. In contrast, the selection between 

herring and sprat could be described by the negative switching model. The 

causes of this phenomenon were most likely either the patchiness of prey or the 

difference between the preferences of individual predators. However, both 

predator condition and predator local abundance may have an effect on food 

selection. Schooling prey and prey which tend to aggregate in fewer patches as 

their density decreases, may suffer higher mortality at high density if lower 

density operates through first eliminating low density patches and then 

eliminating rather than diminishing larger patches. Hence the effect of prey 

density on the patchiness of prey as well as the aggregative response of the 

predators are of crucial importance when population effects of negative 

switching are examined and both factors should be examined further in the 

future. 
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Paper I 

Analyses of length and age distributions using 

continuation-ratio logits 

 

A. Rindorf and P. Lewy 

 

Canadian Journal of Fisheries and Aquatic Science, 2001, 58, 1141-1152. 

Abstract 

Sampling of length and age distributions of catches is important for the 

assessment of commercially fished stocks. This paper presents a new method 

for statistical analyses and comparisons of length and age distributions based 

on generalised linear models of continuation-ratio logits. The method allows 

statistical testing of the effects of both continuous and discrete variables. 

Further, by utilising the smoothness of length and age distributions as a 

function of length, the method provides more accurate estimates of these 

distributions than traditional methods. The observations are assumed to be 

multinomially distributed, but cases in which the variance exceeds that of this 

distribution may also be analysed. The implementation of the method in 

existing statistical analysis software is straightforward and is demonstrated 

using length and age distributions of the lesser sandeel, Ammodytes marinus. 
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Paper II 

The effect of stomach fullness on food intake of whiting in 

the North Sea 

 

A. Rindorf  

Journal of Fish Biology 2002, 61, 579-593 

Abstract 

The probability of a North Sea whiting Merlangius merlangus stomach 

containing fresh food was depressed when partially digested food was already 

present in the stomach. The lowered probability was detected even at levels 

where the fish was physiologically able to ingest an average meal. The feeding 

probability of c. 15% of the fish caught was predicted to be severely decreased 

at the level of partially digested food found in the stomachs. No effect of 

stomach fullness on meal size was found, indicating that the saturation is 

affecting search activity rather than prey or meal size selection. The diurnal 

pattern in food intake varied between the five sampling locations, presumably 

as a result of differences in prey availability. 
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Paper III 

Diel feeding pattern of whiting in the North Sea 

 

A. Rindorf  

Marine Ecology Progress Series, 2003, 249, 265-276 

Abstract 

Though numerous studies have analysed the feeding periodicity of North Sea 

gadoids, no general diel pattern has been found. The lack of agreement 

between studies may be related to differences in prey composition and 

behaviour, but it has not been attempted to link the diel intake pattern directly 

to intake of individual prey. This study presents an analysis of the round the 

clock occurrence of several prey types in the stomachs of whiting Merlangius 

merlangus, a major predator on fish and crustaceans in the North Sea. 

Generalised linear models were used to determine if the occurrence of different 

prey varied significantly with time of day and whether this diel pattern differed 

between locations and predator size groups. The results show that the 

occurrence of bottom dwelling prey increased significantly during the night at 

4 of 5 locations. In contrast, free swimming prey and prey migrating towards 

the demersal layer during the day were eaten mainly in the daylight hours. No 

diel pattern in the presence of larger fish prey could be found, presumably due 

to their longer digestion time. A general diel pattern in catch rates of the 

predator could not be detected and the analyses did not appear to be biased by 

vertical migration of the predator. The results have important implications for 
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the understanding of prey selection by wild predators, as this is, in effect, a 

choice between temporally co-occurring prey. 
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Paper IV 

Estimation of evacuation rates in the field 

 

A. Rindorf  

Journal of Fish Biology, 2004, 65, 262-281 

Abstract 

Two methods are presented to calculate evacuation rates based on observed 

diel changes in occurrence and mean mass of prey in predator stomachs. The 

methods do not require predators to exhibit prolonged non-feeding periods, but 

the ingestion of each particular prey type must be restricted to certain diel 

periods. Data from >7500 whiting Merlangius merlangus collected at five 

locations in the North Sea were used to demonstrate the methods. The 

evacuation rates estimated from field data were similar to laboratory results, 

though a tendency for estimates to exceed literature values slightly was noted. 

Bias was introduced if a large proportion of the prey was evacuated completely 

in the interval between subsequent samples and if significant amounts of other 

food were present in the stomach together with the prey in question. The 

methods can be used to supplement laboratory estimates of evacuation rates or 

provide first estimates for species that are not easily maintained in the 

laboratory. 
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Paper V 

Bias in estimating food consumption of fish by stomach-

content analysis 

 

A. Rindorf and P. Lewy 

Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61, 2487-2498 

Abstract 

This study presents an analysis of the bias introduced by using simplified 

methods to calculate food intake of fish from stomach contents. Three sources 

of bias were considered: (1) the effect of estimating consumption based on a 

limited number of stomach samples, (2) the effect of using average contents 

derived from pooled stomach samples rather than individual stomachs, and (3) 

the effect of ignoring biological factors that affect the evacuation of prey. 

Estimating consumption from only two stomach samples yielded results close 

to the actual intake rate in a simulation study. In contrast to this, a serious 

positive bias was introduced by estimating food intake from the contents of 

pooled stomach samples. An expression is given that can be used to correct 

analytically for this bias. A new method, which takes into account the 

distribution and evacuation of individual prey types as well as the effect of 

other food in the stomach on evacuation, is suggested for estimating the intake 

of separate prey types. Simplifying the estimation by ignoring these factors 

biased estimates of consumption of individual prey types by up to 150% in a 

data example. 
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Paper VI 

Functional and aggregative response of North Sea whiting 

 

A. Rindorf and H. Gislason 

Journal of Experimental Marine Biology and Ecology, 2005, 324, 1-19 

Abstract 

The functional response of whiting (Merlangius merlangus L.) to clupeid and 

gadoid prey was determined from estimates of food intake and prey density at 

five locations in the North Sea. The intake of most prey types was well 

described by a type II (decelerating) response, although in some cases a type III 

(sigmoid) response provided a slightly better fit. Though a saturation level was 

reached for all types of fish prey, none of the levels corresponded to the 

maximum digestive capacity of the predator. This was not caused by ingestion 

of other prey as the amount of other food and fish prey ingested were not 

negatively correlated. An investigation of the occurrence of fresh fish in the 

stomachs revealed that fish was ingested almost exclusively during dawn and 

dusk and the lack of negative correlation between the intake of fish and other 

prey may thus be a result of the limited time in which fish prey was vulnerable 

to predation. No aggregative response of the predators was detected towards 

any of the prey and catches of prey and predators were slightly negatively 

correlated. There was evidence of an increase in mortality with density at low 

clupeid densities, but mortality decreased to virtually zero at high densities. 

Whiting seem therefore unlikely to impose a regulatory effect on their fish prey 

outside a narrow range of prey densities.  
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Paper VII 

Testing prey selection models in a natural environment: 

prey selection by whiting 
 

A. Rindorf 

University of Copenhagen, c/o Danish Institute for Fisheries Research, 

Charlottenlund Castle, DK2920 Charlottenlund, Denmark. 

 

Abstract 

This study presents an investigation of the ability of three different prey 

selection models to describe the diet composition of large whiting (Merlangius 

merlangus) preying on herring (Clupea harengus), sprat (Sprattus sprattus) and 

juvenile whiting. The data consisted of estimates of prey density and predator 

consumption obtained from trawl catches and predator stomach contents at five 

locations in the North Sea. The models examined include the two prey 

selection models on which most population models are based: the multispecies 

functional response and the switching model. Neither of these models 

described the data well, as the predator preferred the least abundant prey in 

most cases. This selection pattern leads to increased mortality on a prey as the 

density of this prey is decreased. It renders the predator unable to control prey 

density and enhances natural fluctuations in prey density. The last model 

examined was a model in which the preference was allowed to change with the 

condition of the predator. This model provided a remarkable fit to the 

preference for sprat relative to herring as preference for herring increased with 
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increasing condition. A similar though less clear result was found when the 

preference for herring relative to whiting was examined: preference for herring 

increased with predator condition. According to both optimal foraging theory, 

the multispecies functional response and the switching model, this relative 

preference should be unrelated to predator condition. 

 

 


