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Abstract: 

Implementation  of  the  soil  washing  technology  for  the  treatment  of  heavy  metal 

contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy 

metal contaminated sludge. In this work, we investigated the feasibility of combining 

electrodialytic  remediation  with  heterotrophic  leaching  for  decontamination  of  the 

sludge.  The  ability  of  11  organic  acids  to  extract  Pb  from  the  fine  fraction  of 

contaminated soil (grains < 63μm) was investigated, and application of the acids as 

enhancing reagents during electrodialytic remediation (EDR) of Pb-contaminated soil 

fines in suspension was tested.  Five of the acids showed ability to extract Pb from the 
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soil fines in excess of the effect caused solely by pH-changes. Addition of the acids, 

however,  severely  impeded EDR,  hence  promotion  of  EDR by combination  with 

heterotrophic leaching was rejected. In contrast, enhancement of EDR with nitric acid 

gave promising results.

 Keywords: electrodialysis;  electrokinetic;  heterotrophic  leaching;  organic  acid; 

remediation; soil washing.

 

INTRODUCTION

Electrodialytic  soil  remediation  (EDR)  is  an  electrokinetic  remediation  (EKR) 

method, in which ion-exchange membranes are applied as barriers between soil and 

electrolytes. In order to solve an essential waste-problem of the remaining sludge after 

soil-washing,  EDR  of  soil  fines  in  suspension  has  been  suggested  as  a  potential 

treatment  method.1 Prior  to  treatment,  the  sludge  contains  the  bulk  of  the 

contaminants washed out of the coarser fractions. In addition, the sludge has a high 

water-content (commonly up to 95%), and due to its surface properties, it is not easily 

dewatered.  Thus  soil  washing,  although successfully  and  efficiently  implemented, 

produces not only a considerable fraction of cleaned materials, but also a significant 

volume of relatively more toxic material which is difficult to handle and not easily 

disposed of. The aim of the present work was to investigate the enhancement of the 

EDR process, already documented,1 for the improved treatment of Pb-contaminated 

sludge by addition of a suiting enhancing reagent.
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Enhancing reagents

The efficiency of various reagents for extraction of Pb and other heavy metals from 

soil during soil wash has been extensively investigated. The strong chelating agent 

ethylenediaminetetraacetic acid (EDTA) has been repeatedly and successfully tested.2-

4 Its suitability has, however, been questioned because of its low biodegradability and 

potential hazard to the environment.5,6 Similarly, enhancement of EKR with EDTA is 

well documented,7-9 with the important note that although the extraction of Pb from 

soil by EDTA was shown to be pH-independent,10 enhancement of EKR was obtained 

only at pH values above 5.9 Chelating agents more susceptible to biodegradation such 

as  [s,s]-ethylenediaminedisuccinic  acid  (EDDS)  and  nitrilotriacetic  acid  (NTA) 

extracted Pb less efficiently than EDTA due to a much stronger complexation of Pb 

by EDTA.11 

Besides chelating agents, organic acids possess potential to extract heavy-metals due 

to their complexing behaviour. In contrast to EDTA, extraction of Pb from soil by 

organic acids and their ammonium-salts was shown to be highly pH-dependent,10 but 

in the pH range 2-7 citrate (0.2M) and tartarate (0.5M) extracted Pb as efficiently as 

EDTA. In addition, the organic acids were shown to act more gentle towards the soil 

by  removing  80%  less  macronutrients  (Ca,  Mg,  Fe)  compared  to  EDTA.10 In 

accordance, a substantial improvement of EKR of Pb from a spiked silt loam was 

demonstrated after citric acid addition at pH values between 3.3 and 5.4,12 while EDR 

of  Pb  from municipal  solid  waste  incineration  (MSWI)  fly  ash  was  enhanced  by 

addition of sodium citrate13 and ammonium citrate14 at alkaline pH values. Although 
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acetate  was  shown to be  a  moderate  extractant  of  Pb from soil,10 several  authors 

reported  on  the  successful  enhancement  of  EKR by acetic  acid  at  low pH,7,12,15,16 

however, less efficiently than by citric acid.12

Altogether current knowledge supports the feasibility of enhancing EKR/EDR of soil 

by addition of either chelating agents or organic acids. The fact that biodegradable 

organic  acids  were  shown  to  extract  Pb  as  efficiently  as  the  persistent  EDTA, 

encourages the use of organic acids, such as citric acid and tartaric acid.

   Heterotrophic leaching  

Several  authors  suggested  leaching  by  heterotrophic  bacteria  or  fungi  as  an 

economical alternative method of extraction of valuable metals from non-sulfide, low-

grade  ores  in  the  mining  industry.17-19 The technique  is  based upon the  ability  of 

selected microorganisms to produce organic acids during growth, and their potential 

growth on cheap organic waste-products. Heterotrophic leaching was later suggested 

for  treatment  of  industrial  wastes,  sewage  sludge  and  heavy  metal  contaminated 

soil.20-22 Most research within the heterotrophic leaching of contaminated materials 

was conducted with fly ash. It was shown that  Aspergillus niger grew and produced 

gluconate in the presence of 10% (w/v) fly ash,  while citrate was produced in its 

absence. Chemical leaching with commercial citric acid was only slightly higher than 

microbiological leaching.23 In another study Penicillium simplicissimum was shown to 

produce  citric  acid  in  the  presence  of  Zn-contaminated  filter  dust  while  no  acid 

production was seen in its absence,24 and it was shown how extraction of Pb from 
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filter  dust  by yeasts  isolated from seeping water,  waste compost,  and sewage was 

possible.25 These studies  suggest  that  growth and acid production would also take 

place in the presence of heavy-metal contaminated soil fines. The idea that microbial 

extraction of even very stabile Pb-compounds is possible, was suggested by Sayer et  

al., who observed growth of A. niger with pyromorphite as sole phosphate source.26 In 

addition, it was shown that application of direct current increased the metabolism of 

bacteria in soil slurries,27 which supports the feasibility of heterotrophic leaching in 

combination with EDR/EKR.

In  the  present  work,  the  feasibility  of  a  new approach,  in  which  combination  of 

heterotrophic  leaching  and  EDR  of  Pb  contaminated  soil  fines  in  suspension,  is 

studied.  The  aim of  this  technique  is  to  induce  production  of  organic  ligands  by 

heterotrophic  organisms  for  complexation  and  mobilization  of  Pb  prior  to  or 

simultaneously with removal of charged ligand-Pb complexes by EDR. Positive side 

effects such as mobilization of nutrients for increased heterotrophic leaching could be 

expected. The potential of the technology depends on the ability of organic acids to 

enhance  EDR  of  Pb  from  soil  fines.  Our  research  comprises  batch  extraction 

experiments  with  11  organic  acids  at  neutral  to  slightly  acidic  pH,  where  acid 

producing fungi grow, and an experimental  evaluation of the effect of addition of 

selected  organic  acids  on  EDR.  The  acids  were  all  chose  as  naturally  produced 

products of heterotrophic microorganisms.21 
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MATERIALS AND METHODS 

Soil: An industrially contaminated Danish soil was used for the experiments. The soil 

fines were obtained by wet-sieving of the original soil with distilled water through a 

0.063 mm sieve. Concentrated slurry of fines was obtained by centrifugation at 3000 

rpm for 10 min and decantation of the supernatant. The soil fines were kept as a slurry 

and stored  at  5ºC  in  access  of  oxygen.  The  metal content (Fe,  Mn,  Al,  Pb)  was 

determined by atomic absorption spectrophotometry (AAS). Prior to analysis of soil 

samples, 1.00 g soil fines were digested in an autoclave with 20.00 ml 1:1 HNO3 for 

30 min at 120ºC and 200 kPa according to the Danish standard method DS259,28 and 

filtered  through  a  0.45  µm filter  by  vacuum.  Liquid  samples  with  pH >  4  were 

preserved by digestion with concentrated HNO3 (1:4). Validation of AAS results for 

all  metals  was  obtained  by  measurement  against  liquid  reference  samples.  The 

carbonate  content was  determined  volumetrically  by  the  Scheibler-method  after 

reacting 3 g of soil with 20 ml of 10% HCl. For calculations it was assumed that all 

carbonate was present as calcium-carbonate.  Organic matter was determined by loss 

of ignition at 550ºC for one hour. The Cation Exchange Capacity (CEC) was analyzed 

by a method comparable to the acid-NaCl method described in EPA Standard Method 

9080 including ion exchange of 10 g dry soil with NH4
+, followed by exchange of 

NH4
+ for  Na+.  The ammonium concentration of the centrifugate  was measured via 

flow-injection spectrophotometry. For  pH-measurements 5.0 g dry soil was shaken 

with 12.5 ml 1 M KCl for one hour followed by settling for 10 min and measurement 

by  a  Radiometer  Analytical  ion  selective  electrode.  Sequential  extraction was 
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performed according to the method from the Standards, Measurements and Testing 

Program of the European Union:29 0.5 g of dry, crushed soil was treated in four steps 

as follows: 

1) Extraction with 20.0 ml 0.11 M acetic acid pH 3 for 16 hours; 

2) Extraction with 20.0 ml 0.1M NH2OH∙HCl pH2 for 16 hours; 

3) Extraction with 5.0 ml 8.8M H2O2 for one hour and heating to 85ºC for one hour 

with lid followed by evaporation of the liquid phase at 85ºC until it had reduced to < 

1ml by removal of the lid. The addition of 5.0 ml 8.8M H2O2 was repeated followed 

by heating to 85ºC for one hour and removal of the lid for evaporation until almost 

dry. After cooling, 25.0 ml 1M NH4OOCCH3 pH 2 was added, and extraction took 

place for 16 hours. 

4) Finally digestion according to DS 259 was made for identification of the residual 

fraction. Between each step the sample was centrifuged at 3000 rpm for 15 min, and 

the supernatant was decanted and stored for AAS. 

Before addition of the new reagent,  the sample was washed with 10.0ml distilled 

water for 15 min, centrifuged at 3000 rpm for 15 min and the supernatant decanted. 

All extractions were performed at room temperature under shaking at 100rpm unless 

otherwise mentioned. 

All  analyses  were made in triplicate  except  CEC and sequential  extraction,  which 

were duplicated. 
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Extraction experiments: Soil fines (5.00 g) were allowed to equilibrate with 25 ml 

reagent at room temperature for 7 days while shaken at 180 rpm. Metal content and 

pH were measured on the liquid phase. HNO3 extractions were made at concentrations 

between 0.01 and 2 M. Organic acids (acetic acid, citric acid, DL-malic acid, formic 

acid, fumaric acid, gluconic acid, lactic acid, L-glutamic acid, oxalic acid, pyruvic 

acid, tartaric acid) were all used at 0.2 M concentration and adjusted to pH values of 

2, 3, 4 and 5 with HNO3/NaOH. Citric and DL-malic acids were chosen for further 

study, and prepared in concentrations between 0.2 M and 1 M at pH values of 5 and 6 

prior to extraction in accordance with the described procedure. All extractions were 

made in duplicate.  

Remediation  experiments: Electrodialysis  experiments  were  made  in  cylindrical 

Plexiglas-cells with three compartments (Figure 1). Compartment II, which contained 

the soil-slurry was 10 cm long and 8 cm inner  diameter.  The slurry was  kept  in 

suspension  by  constant  stirring  with  plastic-flaps  attached  to  a  glass-stick  and 

connected to an overhead stirrer (RW11 basic from IKA). The anolyte was separated 

from  the  soil  specimen  by  an  anion-exchange  membrane,  and  the  catholyte  was 

separated from the soil specimen by a cation-exchange membrane. Both membranes 

were  obtained  from  Ionics®  (types  AR204SZRA  and  CR67  HVY  HMR427). 

Electrolytes were circulated by mechanical pumps (Totton Pumps Class E BS5000 Pt 

11)  between  electrolyte  compartments  and  glass  bottles.  Platinum  coated  rod 

electrodes  (surface  area  approximately  3  cm3)  from  Permascand®  were  used  as 

working electrodes,  and the power supply was a  Hewlett  Packard® E3612A. The 
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inter-electrode  gap  was  14  cm.  The  electrolytes  (compartment  I  and  III)  initially 

consisted of each 500 ml 0.01 M NaNO3 adjusted to pH 2 with HNO3. Conductivity in 

compartment II, pH in all compartments, and voltage between the working electrodes 

were observed approximately once every 24 hours. The electrolyte pH was adjusted 

and maintained between 1 and 2 by manual addition of HNO3/NaOH. Experiments 

were made according to the experimental plan (Table 1). All experiments lasted 240 

hours and were designed with a liquid-to-solid-ratio (L/S) of 10.5 (37g soil, 390 ml 

liquid). The pH of malic and citric acid solutions was adjusted with NaOH. In the last 

three experiments (MA40N, CA40N and KC40) the reagent was allowed to react with 

the  soil  fines  for  24  hours  prior  to  application  of  the  current.  In  four  of  the 

experiments (MA20N, CA20N, MA40N, CA40N) compartment II was kept at pH 6 

by manual addition of NaOH.

After  each  experiment,  membranes  were  cleaned  overnight  in  1M  HNO3,  and 

electrodes were cleaned overnight in 5M HNO3.  Volumes of the cleaning acids, the 

electrolytes, and the solution in the middle compartment were measured followed by 

analysis  of  the  cation-concentrations  by  AAS.  The  remaining  soil  mass  was 

determined and the Pb concentration in the soil  measured by AAS after  digestion 

according to DS259 as described above. The mass balance for Pb was calculated as 

the mass of Pb found in the whole system after remediation (in soil, soil solution, 

electrolytes, membranes, and at electrodes) as a percentage of the total amount found 

in the soil prior to remediation. The current efficiency is defined, and was calculated 

as the fraction of the current passing through an electrolytic cell that accomplishes a 
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specific  chemical  reaction (in this case transfer  of Pb from the soil  fines into the 

electrolyte). The current efficiency of the Pb removal was calculated as follows:

( )
( )

Pb Pb Pb Pb
Pb

tot

Q M z MW
Q I t F

ε ⋅= =
⋅

where PbQ is the amount of current (moles) transferred by Pb2+, and  totQ  is the total 

amount of current passed through the cell during remediation. PbM  is the mass of Pb 

transferred from the soil fines, Pbz  is the valence of the species Pb (i.e. 2+), PbMW is 

the  molar  weight  of  Pb.  I is  the  current  (in  A)  passed  through  the  cell,  t  is  the 

experimental time (in seconds), and F is the Faraday constant.

 

RESULTS

Soil characteristics: The characteristics of the soil fines are listed in Table 2. Pb was 

analyzed in triplicate for each batch of soil-fines. The soil is carbonaceous and has a 

significant content of organic matter. Three different batches were used in the present 

work containing between 670 and 1170 mg/kg Pb. Sequential extraction (Figure 2) 

shows how Fe and Al are more strongly bound in the soil than Pb and in particular 

Mn. 

 Extraction  experiments: The  ability  of  10  of  the  organic  acids  to  extract  Pb  is 

illustrated in Figure 3. Extraction results with oxalic acid are not shown because the 

final pH of the slurry was above 7. The maximum extraction of Pb with oxalic acid 
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was 1% obtained at pH 9-10. Six of the acids showed similar or worse extraction 

results than HNO3 in this slightly acidic to neutral pH interval (pH 3-7), while five of 

the acids (citric acid, DL-malic acid, gluconic acid, tartaric acid and fumaric acid) 

showed pronounced improvement at near neutral pH probably due to complexation 

between Pb and the organic ligands of the acids. The best extraction was obtained 

with citric and malic acids. Citric acid extracted 22% of the Pb at pH 7.2, while DL-

malic acid extracted 11% of the Pb at pH 6.8-7.1 (initial pH of extractants 5.0). 

Based  on  these  results,  the  effect  of  increased  extractant  concentrations  on  the 

extractability of Pb, Fe, Mn and Al by citric and DL-malic acids was investigated 

(Figure 4). Increased extraction of Pb and the natural soil cations Fe, Mn and Al was 

obtained  by  increasing  the  concentration  of  both  citric  acid  and  DL-malic  acid. 

However, at the highest concentration of citrate acid (1M) a significantly decrease in 

extraction  of  all  investigated  elements  was  observed.  This  could  be  due  to 

precipitation of the complexes formed. The best extraction of Pb was obtained with 

0.4 and 0.6M citrate  and 1.0M malate,  which extracted  equivalent  amounts  of  all 

metals including 35% of the Pb.

   Remediation experiments:   Based on the results of the extraction experiments, it was 

decided  to  perform  EDR  experiments  with  citric  and  malic  acids  as  reagents. 

Reference  experiments  were  made  with  distilled  water  and  nitric  acid.  The  main 

results of the 10 EDR experiments are summarized in Table 3. Mass balances for Pb 

between 61 and 115% were obtained. Although the low mass balances in some of the 

experiments mean that interpretation of the data should be made with caution, the 
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results  of  the  experiments  were  significant  enough to  draw conclusions.  The  Pb-

concentrations in  the soil-fines  post  treatment  obtained were between 40 and 980 

mg/kg. In some of the experiments a considerable amount of the released Pb remained 

in the solution in compartment  II (up to 55%), while in other experiments  all  the 

released Pb was transported into the electrolytes.  Between 0.05 and 2.31‰ of the 

current transferred Pb-ions out of compartment II (calculated as the ‰ of the total 

transferred charges carried by Pb2+ into the electrolytes). 

The first four experiments (DW20, MA20, CA20, NA20) were run under identical 

conditions except for the reagent in which the soil fines were suspended. From Table 

3 it can be seen that the lowest final Pb-concentration in the soil fines was obtained in 

the experiment  with nitric acid (NA20),  followed by the experiment  with distilled 

water (DW20),  while  less successful  remediation was obtained in the experiments 

with  malic  acid  (MA20)  and  citric  acid  (CA20).  The  distribution  of  Pb  in  the 

remediation cell after experimental remediation is given for all experiments in Figure 

5.  Here  it  can  be  seen  that  the  removed  Pb  was  successfully  transferred  out  of 

compartment II and into compartment III in the experiment with distilled water, while 

a  large  fraction  of  the  Pb  remained  in  the  solution  in  compartment  II  in  the 

experiments with nitric acid and malic acid. Almost all the Pb remained bound to the 

soil  particles  in  the  experiment  with  citric  acid.  The  higher  Pb-transport  out  of 

compartment II in the experiment with distilled water is reflected by a higher current 

efficiency (Table 3) in this experiment. The overall result of these four experiments is 

that distilled water is superior for EDR of Pb-contaminated soil-fines in suspension. 
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The  pH-development  in  the  middle  compartment  (II)  during  the  first  four 

electrodialytic remediation experiments (DW20, MA20, CA20, NA20) is illustrated in 

Figure 6. This figure shows how the pH decreased in the experiment with distilled 

water as expected.1 The pH in the experiment with nitric acid was initially slightly 

lower than in the experiment with distilled water; however, it increased during the 

first 80 hours to reach values similar to the distilled-water experiment. The pH in the 

organic  acid  experiments  decreased  slowly  throughout  the  experimental  period  to 

reach a final pH of approximately 4.5.  

Because the extraction experiments showed that Pb was more efficiently extracted at 

near neutral pH with the organic acids, experiments were made to show if the pH-drop 

in experiments MA20 and CA20 was responsible for the reduced remediation when 

adding these acids. In the following two experiments (MA20N and CA20N) the pH 

was kept between 6 and 7 in compartment II throughout the experiment . The results 

in Table 4 show that keeping the pH neutral worsened the result of remediation with 

malic acid slightly, while citric acid was more efficient, although still less efficient 

than either distilled water or nitric acid. Hence the pH-drop was not solely responsible 

for the reduced remediation.

The conductivity  of  the  soil  solution in the  first  four  experiments  (Figure  7)  was 

directly related to the concentration of added acid. The highest conductivity was seen 

in MA20, in which 1M malic acid was added. Compared to this, the conductivity was 

about half in CA20, in which 0.5M citric acid was added. The initial conductivity was 

only slightly elevated in NA20 with nitric acid (pH 1.4) compared to DW20, and by 

the end of the experiments, the conductivity had increased in DW20 beyond that of 
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NA20.  The  conductivity  decreased  constantly  in  the  organic  acid  experiments, 

because organic ligands were transferred out of the soil solution. This transport was 

confirmed by visible inspection of CA20, in which the anolyte turned yellow after 

only  24  hours  with  a  clear  intensification  of  the  colour  during  the  experimental 

period. 

The fact that the conductivity was substantially higher in MA20 and CA20 compared 

to DW20, suggested that the current density in these experiments could be increased 

beyond what is ideal for remediation with distilled water. It was shown in a previous 

study that 20mA is the optimal current density for EDR of soil fines in suspension at 

L/S 10.5 with distilled water as reagent.1

This hypothesis was tested by increasing current to 40mA in experiments with malic 

acid and citric acid (MA40N and CA40N). In addition, additional experiments with 

nitric acid (NA40), and potassium citrate (KC40) at increased current densities were 

made. Potassium citrate was chosen because it required a large amount of NaOH to 

adjust the organic acids to near neutral values, and addition of the salts of the acids 

seemed  more  practical.  In  NA40  the  concentration  of  nitric  acid  was  increased 

compared to the concentration in NA20 to exceed the buffer capacity of the soil and 

increase  the  conductivity  sufficiently  to  enable  application  of  the  higher  current 

without induction of water splitting at the cation-exchange membrane.1 In addition, 

the reagents were allowed to react with the soil fines for 24 hours prior to application 

of the current to make sure that the lack of remediation success with the organic acids 

was  not  due to  insufficient  reaction  time to  form complexes  between Pb and the 

organic ligands. 
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From the results in Table 3 it is seen that the increased current seems to have no or 

even adverse effects on the remediation with malic acid. In the experiment with citric 

acid, increased current density seemed to have a positive influence on extraction and 

transfer of Pb into the anolyte, however, by no means reaching the efficiency of EDR 

with  distilled  water.  Addition  of  potassium  citrate  strongly  impeded  remediation 

compared to all  other experiments even the ones with citric acid.  Thus too low a 

current density or too little time to react could also not explain the low remediation 

with malic and citric acids as reagents. The best results were obtained with increased 

current (0.8mA/cm2) and addition of 0.5M nitric acid (NA40). Here 90% of the Pb 

was  removed  from  the  soil,  81%  of  the  Pb  had  been  transferred  to  the 

cathode/catholyte, and the final Pb concentration was 40 mg/kg, which is exactly the 

limiting value set by the Danish authorities for clean soil. 

 DISCUSSION

Extraction experiments: The promising Pb-extracting properties of citrate,  tartarate 

and malic acid are consistent with previous findings,10,30 although the previous works 

reported substantially higher extraction than what was found in the present work. The 

discrepancy may be due to the 5 times higher liquid-to-solid ratio and the more coarse 

grained material  used  in the  previous studies.10 It  may also be  linked to the  high 

carbonate content  of the present soil,  or  possibly the presence of less soluble Pb-

compounds. The fact that the pH of the soil increased after addition of oxalic acid at 

pH values 2-5, well below the initial soil pH, indicates a complex interaction between 

soil  constituents  and  oxalate,  which  may  include  dissolution  of  iron  oxides  and 
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hydroxides  resulting  in  the  observed  increase  in  pH.  Concerning  the  mineral 

dissolution occurring during Pb-extraction, it was obvious that no extraction of Pb 

could be obtained with these acids without a significant simultaneous extraction of 

Mn. Fe and Al were dissolved to a smaller extent than Pb. The extraction of Mn, Fe 

and Al were all above that obtained during steps I-III of sequential extraction, while 

Pb was less affected by the organic acids than by the first three steps of sequential 

extraction. 

   Remediation  experiments:    It  is  well  established  that  the  pH  decrease  occurring 

during EDR of fine grained materials suspended in distilled water is a result of water 

splitting at the surface of the anion-exchange membrane.1,31,32 Thus the pH decrease 

observed in DW20 (Figure 6) is consistent with previous findings. The phenomenon 

of water splitting appears because the soil-suspension contains an insufficient amount 

of  mobile  anions  available  for  migration  across  the  anion-exchange  membrane  to 

compensate for the more abundant mobile cations, which are transferred across the 

cation-exchange  membrane.  The  slower  pH-decrease  seen  in  MA20 and  CA20 is 

likely to result from reduced water-splitting because of the higher concentration of 

mobile anions (the organic ligands of the acids) in the suspension and the buffer effect 

of  the  organic  acid  itself.  The slightly  slower  pH-decrease  in  NA20 compared to 

DW20 could likewise be a result of the nitrate added with the acids.

The less successful remediation obtained in the experiments with malic acid and citric 

acid could be explained by the observed pH decrease, which may result in changes in 

the speciation of Pb towards less mobile species. Such changes were confirmed by the 
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results of the extraction experiments, which showed less mobility at lower pH when 

adding organic acids. We modeled the speciation of Pb in the presence of malate and 

citrate  by  use  of  the  programs  HYDRA/MEDUSA  (Puigdomenech  I 

(http://www.kemi.kth.se/inorg/medusa)) using equilibrium constants for malate from 

Smith and Martell.33 The results are shown in Figures 8 and 9.  

The impeded transport of Pb into electrolytes after addition of the organic acids in 

MA20 and CA20 could well be explained by the prevalence of uncharged complexes 

at pH values below 5. In particular neutral complexes dominate between malate and 

Pb, which may explain the observed extraction without subsequent transfer of Pb in 

MA20. The fact that remediation was not enhanced in MA20N, however, suggests 

that  other  mechanisms  are  dominating,  or  else  the  Pb-malate  system may  not  be 

sufficiently well described. The Pb citrate system is indeed more detailed (Figure 9), 

and the results of CA20N show increased mobilization and transfer of Pb consistence 

with  the  model  and the  results  of  the  extraction  experiments.  Still,  however,  the 

remediation was seriously impeded compared to the results  obtained with distilled 

water and nitric acid, and the amount of Pb found in solution in the middle chamber, 

which may reflect the amount bound to the organic ligands in uncharged complexes, 

does not account for the difference. Thus the prevalence of neutral complexes cannot 

alone explain our results. 

It was previously observed that EDR of sediments may be less efficient when acids 

are used as suspending fluid as compared to distilled water. This effect was suggested 

to arise from the competitive transfer of the ions from the acids in the current field.34 

An effect, which may also explain the results of the experiments with nitric acid (NA 
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20 and NA40) of this work, in which substantially better remediation was obtained at 

the  elevated  current  density,  and  supported  by  the  fact  that  the  conductivity  was 

higher when acid was added (Figure 7). When the organic acids were used, the same 

effect was, however, not observed; hence competitive transfer of the ions from the 

acids  can  also  not  explain  the  impeded  remediation  when these  acids  were  used. 

Overall,  the  results  may  be  due  to  a  combined  effect  of  size-exclusion,  reduced 

transfer over the ion-exchange membranes of the large organic complexes, prevalence 

of uncharged complexes and competitive transfer of the ions of the acid; however 

none of these mechanisms explain the low desorption of Pb from the soil fines in the 

experiments with organic acids (Figure 5), and in particular in the experiments with 

citric acid and potassium citrate. The results of the extraction experiments with citrate 

(Figure  4a)  suggested  that  adverse  effects  of  the  acid  addition  occur  at  a  citrate 

concentration above 0.6 M. We suggest that precipitation of complexes between Pb 

(Fe, Al and Mn) and citrate could be the reason for this. It may be that the application 

of the direct current stimulates the formation of precipitates, which would explain our 

results. 

The overall result of our work is to reject the feasibility of using organic acids as 

enhancing  reagents  during  EDR  in  suspension.  Thus  combination  of  EDR  and 

heterotrophic leaching does not  seem to be a  potential  method of  remediation for 

contaminated sludge from soil washing. Addition of nitric acid in combination with 

an increased current density is, in contrast, a qualified suggestion for promotion of 

EDR of Pb contaminated soil fines in cases where the removal rate is considered to be 

more important than the energy expenditure and the acid consumption. 
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CONCLUSIONS

Citric acid, DL-malic acid, gluconic acid, tartaric acid and fumaric acid (0.2M) are 

able to extract Pb from contaminated soil fines in excess of the extraction obtained 

solely  by  pH-changes  at  neutral  to  slightly  acidic  conditions.  The  most  efficient 

extraction was obtained with citric and malic acids, with which extraction results were 

improved when increasing concentrations to 0.5 and 1.0M respectively. A maximum 

of 35% Pb was extracted from the present soil. Mn was completely extracted by the 

organic  acids  while  Fe  and  Al  were  extracted  to  a  smaller  extent  than  Pb. 

Electrodialytic remediation of soil-fines in suspension was strongly impeded by the 

addition of citric acid and malic acid (0.5M and 1.0M respectively) independently of 

pH control of the suspension in regions where the Pb-complexes of these acids ought 

to be charged. No improvement was obtained when the contact time between reagent 

and soil prior to application of current was increased or at increased current densities 

with  the  organic  acids  as  reagents.  The  feasibility  of  combining  EDR  and 

heterotrophic leaching of soil fines in suspension is therefore rejected.  In contrast, 

enhancement of EDR with nitric acid showed promising results at current densities 

increased beyond what is feasible with addition of only distilled water. Thus nitric 

acid addition is recommended as enhancing reagent in situations, for which a high 

removal  rate  is  considered  more  important  than energy expenditure  and chemical 

consumption. 
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Table 1. Experimental plan. The soil-fines were suspended in the reagent during 

remediation. 

Expt. Reagent (pH of reagent) J**

[mA]

Adjustment  of  pH 
in II with NaOH

DW20 Distilled Water (pH 6.5) 20 -
MA20 1 M Malic acid (pH 5) 20 -
CA20 0.5M Citric acid (pH 5) 20 -
NA20 HNO3 (pH 1.4) 20 -
MA20N* 1 M Malic acid (pH 7) 20 Kept at  6.0 (±1.0)
CA20N* 0.5M Citric acid (pH 7) 20 Kept at 6.0 (±1.0)
NA40 0.5 M HNO3 (pH 0.0) 40 -
MA40N* 1 M Malic acid (pH 5) 40 Kept at 6.0 (±1.0)
CA40N* 0.5M Citric acid (pH 5) 40 Kept at 6.0 (±1.0)
KC40 0.5M  Potassium citrate (pH 8.5) 40 -

*N  =  neutral  conditions  in  compartment  II.  The  pH-adjustment  in  II  was  maintained 

throughout the experiment .

**20mA is equivalent to 0.4mA/cm2; 40mA is equivalent to 0.8mA/cm2.
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Table 2. Characteristics of the soil fines.

Pb [mg/kg] 670-1170
pH 7.8 +/- 0.2
CaCO3 [%] 17.3 +/- 0.1
Organic matter [%] 7.8 +/- 0.1
CEC [meq/100g] 14.1 +/- 0.3
Fe [g/kg] 27.3 +/- 0.3
Mn [mg/kg] 587 +/- 26
Al [g/kg] 9.9 +/- 0.2
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Table 3. Experimental performance.

Exp.

Name

Pb Mass 

balance [%]

Start Pb

[mg/kg]

Final Pb

[mg/kg]

Current 

efficiency [‰]
DW20 115 1170 220 2.31
MA20 86 1040 400 0.20
CA20 84 1040 980 0.11
NA20 84 670 48 0.34
MA20N 94 1040 540 0.11
CA20N 61 1040 560 0.16

96 670 40 0.93
MA40N 89 670 355 0.09
CA40N 69 670 315 0.17
KC40 70 670 519 0.05
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Figure 1. Schematic view of a cell used for experimental EDR of soil fines in 

suspension. AN = anion-exchange membrane, CAT = cation-exchange membrane.
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Figure 2. Sequential extraction of Pb, Fe, Al and Mn from the soil fines.
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Figure 3. Extraction of Pb from soil fines with HNO3 and organic acids (0.2M).
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Figure 4. Extraction of Pb, Fe, Mn and Al from soil fines with a) citric acid (final pH 

between 7.1 and 7.7) and b) DL-malic acid (final pH between 6.8 and 7.2). Results of 

both duplicate experiments plotted.
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Figure 6.  pH in the soil solution during experimental remediation with distilled water 

(DW), malic acid (MA), citric acid (CA) and nitric acid (NA) as reagents at 20mA 

(0.4mA/cm2).
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Figure 7. Conductivity in the soil solution during experimental remediation with 

distilled water (DW), malic acid (MA), citric acid (CA) and nitric acid (NA) as 

reagents at 20mA (0.4mA/cm2).
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Figure 8. Speciation of Pb in the presence of excess malate, and carbonate in 

equilibrium with the atmosphere, as a function of pH. Equilibrium constants for 

malate form.33
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Figure 9. Speciation of Pb in solution in the presence of excess citrate.
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