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The paper describes a systematic method for the tailoring of dispersion properties of slab-based

photonic crystal waveguides. The method is based on the topology optimization method which

consists in repeated finite element frequency domain analyses, analytical sensitivity analyses and

gradient based design updates. The goal of the optimization process is to come up with slow light,

zero group velocity dispersion photonic waveguides or photonic waveguides with tailored dispersion

properties for dispersion compensation purposes. Two examples concerning reproduction of a

specific dispersion curve and design of a wide bandwidth, constant low group velocity waveguide

demonstrate the efficiency of the method.
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1 Introduction

Recently there has been a lot of focus on the ability to slow down light for use

in optical delay lines, all-optical storage devices, optical buffers, and to increase

light-matter interaction for sensing purposes and optical modulation. One way

of achieving slow light for these purposes is by use of specifically tailored Pho-

tonic Crystal Wave guides (PhCWs) [1–6]. PhCWs are typically made as two-

dimensional photonic crystal slab structures with line-defect based waveguides.

In-plane the light is confined by band gap effects (slow light regime) and index

guiding (normal light regime) [6]. The out-of-plane confinement is due to index

guiding (dielectric slab surrounded by air). The art of designing PhCWs with

specified frequency to wavelength dependency is called dispersion engineering.

For slow light applications the design goals of dispersion engineering are

three-fold. The group velocity should be as low as possible, the bandwidth

should be maximized [7] and at the same time losses should be minimized

which, amongst others, requires that the guided modes should be placed be-

low the light line to ensure confinement in the out-of-plane direction. The goals

are conflicting. Extremely low group velocities have been reported [8] but on

the cost of extremely small bandwidth. Oppositely, it is no problem to obtain

large bandwidth for higher group velocities. A goal closely related to tailor-

ing of the group velocity is to obtain zero Group Velocity Dispersion (GVD).

Zero GVD ensures low pulse broadening for transmitted signals. PhCW struc-
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tures for low group velocity and small GVD as well as fairly large bandwidths

have been theoretically and experimentally demonstrated [4, 6, 9]. A different

goal of dispersion engineering is to design waveguides with specific dispersion

properties for dispersion compensation purposes.

Previously suggested dispersion tailored structures have all been designed

based on physical arguments and/or trial and error approaches. For example,

it has been suggested to narrow down the defect region resulting in so-called

W07 PhWGs [1,4], it has been suggested to use a double defect region result-

ing in W2 PhWGs [9] and it has been suggested to change hole diameters in

the two rows of holes closest to the defect in order to control the slow light

modes that tend to be less confined in the defect region [6]. As seen, the intu-

itive approaches have in many cases resulted in very good PhCWs, however,

a method that can provide the optimal design for any specified dispersion

relation is highly desired. Here, we propose to adapt the topology optimiza-

tion method for the systematic synthesis of PhCWs with specified dispersion

properties. The topology optimization method was originally developed for

mechanical design problems [10, 11] but has recently been extended to prob-

lems in phononics [12] and PhCWs [13–16]. In our previous works on topology

optimization of photonic crystal structures, the main goal was to maximize

transmission for waveguide bends, splitters, multiplexors and other basic pho-

tonic building blocks. In the present work we reformulate the optimization
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problem in order to minimize the error in obtaining a specified dispersion curve

for the guided mode, and at the same time maximizing the mode confinement

and avoiding odd and multiple modes in the core region. The topology opti-

mization method is based on a deterministic optimization approach consisting

of repeated finite element calculations and design updates using analytically

obtained sensitivities and mathematical programming techniques.

The paper is organized as follows. In section 2 we present the 2D model

for a slab-based PhCW and the associated finite element frequency domain

(FEFD) formulation. In section 3 we suggest an optimization strategy. In sec-

tion 4 we present the analytical sensitivity analysis and discuss the practical

implementation of the optimization scheme. In section 5 we present two ex-

amples: reproduction of a standard PhCW; and the design of a PhCW with

constant group velocity (and thereby vanishing GVD) and a large bandwidth.

Finally, we conclude and discuss possibilities for further work in section 6.

2 Modeling

The governing equation for TE-polarized wave propagation in a two-

dimensional dielectric domain Ω is the Helmholtz equation

∇ ·
(

1
εr(x)

∇H

)
+

ω2

c2
H = 0, for x ∈ Ω, (1)
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where c is the speed of light in air and εr(x) is the space-dependent x1-periodic

dielectric permittivity. The modeling domain Ω is a super-cell of dimensions

n
√

3
2 a×a, where a is the pitch and n is the number of unit cells perpendicular

to the propagation direction (see Figure 1). With wave propagation in the

vertical direction (zero horizontal wavevector component), the Floquet-Bloch

wave boundary conditions can be written as

H(x1, a) = eikaH(x1, 0), for x1 ∈ [−n

√
3

4
a, n

√
3

4
a], (2)

H(−n

√
3

4
a, x2) = H(n

√
3

4
a, x2), for x2 ∈ [−a

2
,
a

2
], (3)

where k is the wavenumber. In finite element notation, the Helmholtz equation

(1) together with the boundary conditions (2) and (3) lead to the Hermitian

eigenvalue problem

(Kk − ω2M)U = 0, (4)

where the boundary conditions are imposed by a penalty approach, K is

the global finite element matrix originating from the divergence term of the

Helmholtz equation (1), M is the global finite element matrix originating from

the second term of the Helmholtz equation (1) and subscript k means depen-

dence of the wavenumber k. To cover all wavelengths, the eigenvalue problem

must be solved for wavenumbers in the interval k ∈ [0, 0.5].

The result of the finite element eigenvalue analysis for a typical PhCW
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structure (Figure 1) consisting of n = 12 unit cells including a central defect,

a so-called W1 waveguide, is shown in Figure 2a. In the computations we

used εr = 12.08 (nSi ≈ 3.5) and hole diameter d = 0.6a. The structure is

discretized using 4080 quadrilateral 4-node elements (20 by 17 elements per

unit cell). Although this discretization is rather coarse from a convergence

point of view, it provides fairly accurate results and of primary concern -

quicker computational time for the optimization process. It is our experience

that finer discretizations do not result in significantly different topological

designs (see section 4 for further discussions on this topic). In Figure 2a) the

slab mode regions are indicated with grey and the even and odd guided modes

are indicated with solid and dashed lines, respectively. The dash-dotted line

indicates the light line over which light will not be confined in the slab for the

out-of-plane direction.

The group velocity vg of a guided mode is defined as

vg =
∂ω

∂k
=

c

ng
, (5)

i.e., the slope of the dispersion curve. Here ng is the group index. Likewise,

the Group Velocity Dispersion (GVD) coefficient β2 is defined as

β2 =
∂2k

∂ω2
=

∂ng

∂ω

1
c
. (6)

Studying the band diagram in Figure 2a) and the group velocity and group
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Figure 1. Supercell composed of n = 12 unit cells including the central defect region Ω0. Dotted

vertical lines indicate the line excitations.

index plots for the even guided mode in Figure 2b) and c), we note that the

group velocity is large and close to the group velocity in pure dielectric (vg =

1/nSi = 1/3.5 ≈ 0.29, nSi = 3.5) for above the light line (for k < 0.3). This

indicates that the guided mode is index guided in this wavenumber interval.

Oppositely, the dispersion curve flattens out, i.e. the group velocity is small

and the group index high below the light line. This indicates that the guided

mode is band gap guided since the wave must be interacting with the holes

surrounding the defect [6].

Although the band diagram and the associated group velocity and index

plots in Figure 2 offer much insight into the properties of a PhCW, the next

section will show that the underlying eigenfrequency problem (4) is not well

suited for the optimization problem formulation. Instead we propose to model

the waveguide by harmonically varying even and odd excitations and to eval-

uate the dispersion behavior by confinement measures. Based on this idea, the

new finite element problems to be solved are

(Kk + iωC− ω2M)U = Sk,ωU = Feven, (7)
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Figure 2. a) Band diagram for the supercell in Figure 1. The bold solid line indicates the even

guided mode, the bold dashed lines indicate odd guided modes and the dash-dotted line is the light

line. b) Group velocity of the even guided mode. c) Group index of the even guided mode.

and

(Kk + iωC− ω2M)V = Sk,ωV = Fodd, (8)

where C is a damping matrix (introduced for stabilization of the optimiza-

tion scheme), Sk,ω is the frequency and wavenumber dependent finite element

system matrix and Feven and Fodd are even and odd loading vectors. The
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boundary conditions are the same as before (given by (2) and (3)). For the

even excitation case, the load Feven consists of two symmetrically placed ver-

tical line sources at the outer parts of the supercell (see Figure 1) which excite

even modes. In the odd excitation case Fodd the line sources are out of phase

with each other in order to excite odd modes. To measure the confinement of

the excited waves to the center region Ω0 we define an even mode confinement

measure

Ieven(Heven
k,ω ) =

∫
Ω0
|Heven

k,ω |2 dΩ∫
Ω |Heven

k,ω |2 dΩ
. (9)

Likewise, the confinement measure for odd modes is defined as

Iodd(Hodd
k,ω ) =

∫
Ω0
|sign(x1)Hodd

k,ω |2 dΩ∫
Ω |Hodd

k,ω |2 dΩ
, (10)

In discrete form these measures can be written as

Ieven(U) =
UTLU

UTU
(11)

and

Iodd(V) =
VTAV

VTV
, (12)

where overbar means complex conjugate, L is a diagonal matrix with ones in

the degrees of freedom corresponding to nodal points lying within the core

region Ω0, A is a diagonal matrix with ones in the degrees of freedom corre-
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Figure 3. Confinement plots for even (top) and odd excitation (bottom) for the supercell in Figure

1.

sponding to nodal points lying within the left half of the core region Ω0 and

minus ones in the right half and U and V are the solution vectors to the even

and odd excitation problems defined by equations (7) and (8).

Mappings for the even and odd confinement measures for the frequency

wavenumber region ω ∈ [0.19, 0.29], k ∈ [0, 0.5] are shown in Figure 3. It is

clearly seen how the confinements are high in (k, ω) points corresponding to

the even and odd guided modes from Figure 2a), but also non-guided modes

give rise to non-zero intensities in the slab-guided regions.

3 Optimization problem

The goal of the optimization is to make the guided mode follow a specified

dispersion curve defined by ω∗(k∗) for wavevectors in the interval k∗ ∈ [k, k].

Since we in practice only evaluate ω∗ for discrete wavenumbers k∗i a practical
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goal of the optimization would be to minimize the errors between the actual

and the specified dispersion curves for m discrete wavenumber-frequency pairs

(k∗i , ω
∗
i ), i.e.

min : Φ =
m∑

i=1

(ω(k∗i )− ω∗i )
2, (13)

where k∗i are m evenly distributed wavenumbers in the interval [k, k] and ω∗i are

the corresponding prescribed eigenvalues. In practice, one can use a starting

guess with a guided mode whose dispersion curve is close to the prescribed

curve and then look for the design that minimizes Φ. In the best case, the

mode is still a guided mode after the optimization and if Φ is minimized to

0 it has the specified dispersion. However, in the worst case (which is more

likely) the dispersion curve is equal to the decided (i.e. Φ ≈ 0) but the mode is

no longer guided, or in other words, it is no longer confined to the center region

Ω0 of the super cell. Therefore, we need to define an optimization goal which

not only results in the wanted dispersion curve but also ensures confinement

to the center region Ω0. A new objective function fulfilling these criteria is

max : Ψ =
1
m

m∑

i=1

Ieven
i , (14)

where Ieven
i corresponds to the confinement measure (defined in (9) and (11))

evaluated for the m prescribed wavenumber-frequency pairs (k∗i , ω
∗
i ). In the

ideal situation where Ψ = 1 after optimization, we have that all the energy in
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the guided mode is confined to the center region Ω0 and that we have obtained

the wanted dispersion curve. If Ψ < 1 it means that some of the mode is not

fully confined to the center region (which is usually the case for slow light)

or that some of the energy is taken up by other (higher order) guided modes.

However, higher order even modes are not favored by the objective function

Ψ since their energy is not confined to the center region only and therefore

we do not expect these to create problems. For the odd modes, we introduce

extra constraints to force them away from the center region. The odd mode

constraints are defined as

gi = Iodd
i ≤ δ, i = 1, . . . , m, (15)

where δ is a small number and the odd confinement measure is defined by

(10) and (12). A small value of g ensures that no odd modes can be near the

prescribed even modes.

Now we have defined the goals of the optimization problem and what is

missing is to define the design parametrization, i.e. the design variables of the

optimization problem. The basic idea of the topology optimization method is

to allow the relative material density ρe ∈ [0, 1] in each element to be a design

variable. The discrete values ρe = 0 and ρe = 1 correspond to elements with

pure air or pure dielectric, respectively. Intermediate values are allowed during

the design process in order to be able to use gradient based optimization tools.
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Despite of the continuous design variables, however, it is our experience that

optimized designs always are close to being discrete. The reason being that

wave guiding intrinsically requires maximum contrast. The inverse dielectric

constant in each element depends on the element relative density in a simple

linear fashion

1
εr(ρe)

= 1 + ρe

(
1

εrd
− 1

)
, (16)

where εrd is the permittivity of the dielectric (i.e. εrd = εSi).

With these definitions, the final optimization problem can be defined as

max
ρ

: Ψ(ρ) =
1
m

m∑

i=1

Ieven
i (U i(ρ))

s.t. : gi(ρ) = Iodd
i (Vi(ρ)) ≤ δ, i = 1, . . . , m,

: 0 ≤ ρ ≤ 1,





(17)

where ρ is an N -vector containing the N design variables (relative element

densities). In order to get better resolution for small confinement values, we

actually maximize log(Ieven
i ) instead of maximizing Ieven

i and likewise the

constraints are rewritten as log(Iodd
i ) ≤ log(δ) instead of Iodd

i ≤ δ. In (17)

U i(ρ) and V i(ρ) are the solutions to the finite element problems

Ski,ωi
(ρ)U i = F even, i = 1, . . . , m,

Ski,ωi
(ρ)V i = F odd, i = 1, . . . , m.

(18)
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4 Sensitivity analysis and implementation

The optimization problem defined in the previous section is solved using a

mathematical programming tool, the Method of Moving Asymptotes (MMA)

[17]. It is a deterministic gradient based method that improves on a given

initial design distribution following an iterative procedure. For each iteration

the objective function and the constraints as well as sensitivities with respect

to the design variables ρ must be evaluated. Based on this information the

MMA yields an improved design and the process continues. The iterations

are stopped when the changes in design variables become insignificant. More

details about this standard approach to topology optimization are found in

[11].

Efficient sensitivity computations are essential for the success of a gradient

based optimization scheme. For the kind of problem considered, the sensitivity

analyses can be performed analytically with insignificant computational costs.

Based on the adjoint method for sensitivity analysis and using that the load

vector is independent on design, the sensitivity of the objective function Ψ

(14) with respect to a change in design variable ρe can be found as

∂Ψ
∂ρe

=
m∑

i=1

Re
(

λT
i

∂Ski,ωi
(ρ)

∂ρe
U i

)
, (19)
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where λi are the solutions to the m adjoint problems

ST
ki,ωi

λi =
2

U
T
i U iIeven

i

(L− Ieven
i · I) U i. (20)

Here I stands for the identity matrix. The design dependency of the finite ele-

ment matrix Ski,ωi
comes from the design-weighted assembled stiffness matrix

K =
N∑

e=1

1
εr(ρe)

Ke, (21)

hence

∂Ski,ωi
(ρ)

∂ρe
=

1
εrd

Ke, (22)

where Ke is the element matrix for an air-filled element (εr = 1). The sensi-

tivities of the constraints gi can similarly be computed as

∂gi

∂ρe
= Re

(
µT

i

∂Ski,ωi
(ρ)

∂ρe
V i

)
, (23)

where µi are the solutions to the adjoint problems from (20) with Ui substi-

tuted by Vi and λi substituted by µi . The adjoint problems in (20) are very

cheap to solve since the factorizations of the system matrices Ski,ωi
already

are available from the direct analyses (18). Therefore the sensitivity analysis

can be performed at virtually no added cost compared to the solution of the

original finite element problem.

Solving the undamped harmonic problems (18) creates solutions with very
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sharp resonance peaks as seen in Figure 3. This means that small design

changes may cause big shifts in response and thereby creating trouble for

the optimization algorithm. In order to relieve this problem we use a contin-

uation approach (previously suggested in [15]) based on an artificial damping

term as given by the damping matrix C in (7) and (8). In the beginning of

the optimization a fairly high artificial damping of C = 0.05M provides for

smoother and broader peaks. Later, as the design has been allowed to con-

verge, the damping is gradually diminished in order to model and optimize

the real undamped response.

As mentioned earlier, it is our experience that the design problem converges

to almost discrete solutions, i.e. almost all optimized design variables take the

discrete values 0 or 1, even though the problem is described with continuous

variables. A problem, however, is that optimized design may exhibit very fine

details, i.e. material variations on the element scale. These details are not

desired, neither from a modeling point of view, nor from the manufacturing

point of view. Different regularization techniques were reviewed in [18] but

here we make use of a discrete feature size control scheme suggested in [19].

The regularizing filter technique is based on the morphological image operator

close and does not allow holes below a certain radius rmin to appear in the

optimized topologies.
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5 Examples

We have used the suggested algorithm to design two waveguides with pre-

scribed dispersion properties. For both examples we discretized the supercell

consisting of n = 12 unit cell with 4080 quadrilateral 4-node finite elements.

Experiments with a coarser discretizations yielded similar results, but with

coarser boundaries due to the pixel-like discretization. From this study and

previous experience, we conclude that a finer discretization will not change the

results significantly and only increase computational costs. We used a design

domain consisting of the inner 7 unit cells for both examples, since the outer

rows of holes hardly show any interaction with the confined light in the waveg-

uide core region Ω0. The optimization procedure as well as the associated finite

element solver is implemented in Matlab. Since this high-level programming

language is not well suited for finite element analysis, computational times are

rather slow. Typically we use 1000-1500 iterations for convergence, each taking

20s, i.e. a full optimization process may take up to 8 hours on a standard PC.

In the future we plan to code the scheme in a lower level, but speedier, pro-

gramming language and expect significant time savings. For the optimization

problem (17), the bound for the odd confinements are set to δ = 0.05, but it

should be mentioned, that these constraints never are active for the optimized

designs.
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5.1 Reconstruction of the original guided mode

As the first example we want to prove that the optimization scheme can re-

produce the dispersion behavior of the perfect periodic crystal with a central

defect from Figure 1, without initial assumption of periodicity. Therefore we

choose five (ω∗i , k
∗
i )-points from the dispersion curve of the even guided mode

in Figure 2a) as the goal of the optimization problem. For this first example

we do not make use of the regularization technique discussed in section 4,

hence details on the element-size level are allowed in the optimized structure.

Figure 4a) shows the initial design of the supercell, i.e. apart from the five

outermost cells, the initial design consists of pure dielectric. Figure 4b) shows

the band diagram of the initial design as well as the five prescribed points

indicated by crosses. It is seen that the prescribed points all are placed in a

non-guiding, non band gap slab-region. The optimized design for the PhCW

and the associated dispersion diagram is seen in Figure 5a) and b), respec-

tively. Visually, the dispersion curve is seen to pass almost perfectly through

the prescribed points. It is also interesting to see how a band gap region has

been formed although no such was present for the initial design in Figure 4. For

the reconstructed waveguide we get the following confinement values at the

target points: Ieven
i = (0.85, 0.72, 0.59, 0.55, 0.54), (Φ = 0.65) in comparison to

Ieven
i = (0.89, 0.77, 0.54, 0.47, 0.45), (Φ = 0.624) for the perfectly periodic de-

sign from Figure 1. The numbers indicate that the overall confinement to the
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Figure 4. a) Initial design for the reconstruction example. b) Dispersion diagram for the initial

design with indicated target points.
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Figure 5. a) Optimized design for the reconstruction example. b) Dispersion diagram for the

optimized design.
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central region is better for the optimized design and that this is especially the

case for the slow light region (i = 3, 4, 5). It is also noted that there are many

small and non-manufacturable details in the optimized topology since the reg-

ularization technique was not used. In the next example the regularization

filter is employed which makes the resulting topology manufacturable.

5.2 Design of a PhCW with constant group velocity

In this example we try to design a PhCW with constant group velocity

vg = c/20 in the wave number interval k∗ ∈ [0.375, 0.475] (under the light

line). To obtain this we choose our target points to lie on a straight line given

by {(k∗i , ω∗i )} = {(0.375, 0.2393), (0.4, 0.2383), (0.425, 0.2373), (0.45, 0.2363),

(0.475, 0.2353)}. As a starting guess we use the perfect periodic waveguide

from Figure 1. Moreover, we use a filter method with rmin = a/8 (cf. sec-

tion 4) to avoid small details in the optimized topology. The optimized

PhCW and the corresponding dispersion diagram are shown in Figure 6a)

and b), respectively. The achieved confinement values at the target points are:

Ieven
i = (0.67, 0.57, 0.54, 0.57, 0.63), (Φ = 0.596). From the band diagram it

seems that the goal of the optimization has been met to perfection. However,

studying the group velocity plot in Figure 6c) it is seen that we do obtain an

interval with almost constant group velocity (vg ≈ c/20 for k ∈ [0.39, 0.43]),

however, this interval is small compared to the target interval. The group in-



Tailoring dispersion properties 21

a)

b)
0 0.1 0.2 0.3 0.4 0.5

0

0.1

0.2

0.3

Wavenumber k (a/2π)

N
or

m
al

iz
ed

 fr
eq

ue
nc

y 
 ω

 (
a/

λ)

c)
0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

Wavenumber k (a/2π)

G
ro

up
 v

el
oc

ity
 V

g (
c)

d)
0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

Wavenumber k (a/2π)

G
ro

up
 in

de
x 

n g (
c)

Figure 6. a) Optimized design for constant group velocity example. b) Corresponding band

diagram with indication of target points. c) Group velocity. d) Group index.

dex plot in Figure 6d) gives a possible explanation. It is seen that the group

index rapidly goes to infinity for k approaching 0.5. Therefore it is proba-

bly impossible to ask for a constant finite group index too close to k = 0.5.

The optimization algorithm finds the best compromise and can therefore not

obtain perfect match for the chosen wavenumber interval. TO THE REVIEW-
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ERS: DUE TO THE DEADLINE FOR SUBMISSION TO THIS SPECIAL

ISSUE, WE CAN AT PRESENT NOT DEMONSTRATE A BETTER EX-

AMPLE. HOWEVER, WE HOPE TO IMPROVE THE RESULT FOR THE

FINAL VERSION OF THE PAPER WHEN WE HAVE EXPLORED THE

SOLUTION SPACE IN MORE DETAIL.

6 Conclusions

In this paper we have proposed a systematic tool for dispersion engineering

of photonic crystal waveguides. The abilities of the method have been demon-

strated on two simple examples. In future work we plan to explore the limits

of dispersion engineering in more detail by design for slower light, wider band-

widths, bi-linear dispersion curves and compact dispersion compensating de-

vices. Also we plan to extend the modeling to the full 3D Maxwell equations in

order to capture problems with polarization coupling and out-of-plane losses.
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