

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bradford Scholars

https://core.ac.uk/display/137071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

Performance Modelling of Database Designs using a

Queueing Networks Approach

Rasha Izzeldin Mohammed Osman

PhD

2010

Performance Modelling of Database Designs using a

Queueing Networks Approach

An investigation in the performance modelling and evaluation of detailed database

designs using queueing network models

Rasha Izzeldin Mohammed Osman

A thesis submitted for the degree of

Doctor of Philosophy

Department of Computing

School of Computing, Informatics and Media

University of Bradford

2010

© Rasha Izzeldin Mohammed Osman 2010

i

Abstract

Databases form the common component of many software systems, including mission

critical transaction processing systems and multi-tier Internet applications. There is a

large body of research in the performance of database management system components,

while studies of overall database system performance have been limited. Moreover,

performance models specifically targeted at the database design have not been

extensively studied.

This thesis attempts to address this concern by proposing a performance evaluation

method for database designs based on queueing network models. The method is targeted

at designs of large databases in which I/O is the dominant cost factor. The database

design queueing network performance model is suitable in providing what if

comparisons of database designs before database system implementation.

A formal specification that captures the essential database design features while keeping

the performance model sufficiently simple is presented. Furthermore, the simplicity of

the modelling algorithms permits the direct mapping between database design entities

and queueing network models. This affords for a more applicable performance model

that provides relevant feedback to database designers and can be straightforwardly

integrated into early database design development phases. The accuracy of the

modelling technique is validated by modelling an open source implementation of the

TPC-C benchmark.

ii

The contribution of this thesis is considered to be significant in that the majority of

performance evaluation models for database systems target capacity planning or overall

system properties, with limited work in detailed database transaction processing and

behaviour. In addition, this work is deemed to be an improvement over previous

methodologies in that the transaction is modelled at a finer granularity, and that the

database design queueing network model provides for the explicit representation of

active database rules and referential integrity constraints.

iii

Acknowledgements

Alhumdilil Allah min gablu wa min ba’ad

I would like to express my deepest thanks and gratitude to Prof. Irfan Awan, my

supervisor for his support and encouragement and Prof. Michael Woodward, my co-

supervisor, for his generous professional guidance, attention and support. Without their

help, I would not have been able to complete this project.

I am very grateful to the Iqra Foundation, especially Mr Mohammed Al-Ikhadir, for an

initial grant; and the Overseas Research Students Awards Scheme for partial funding of

my research. In addition, I would like to extend my deep gratitude to my Uncle, Dr

Elamin, for his generosity and hospitality.

Many thanks go to Catherine Gregory from Career Services and to Rona Wilson, Bev

Yates and Mark Tympalski from the Department of Computing. Thanks to all the

research students I have met through these years: for ideas and inspiration; with special

thanks to Monis Akhlaq and Faiz Elsirhani of the Networks and Security Group. A

special thanks to my dear friends Ameena Al-Sawaai, Ibitisam Izzeldin, Manal

Abdulazzez and Salma M Osman; you have contributed in your own special way.

Finally, I wish to extend my heartfelt appreciation to my parents and sisters for their

unconditional love, support and sacrifice which has enabled me to pursue my dreams,

whatever and wherever they may be.

iv

Publications

• R. Osman, I. Awan, and M. E. Woodward, “QuePED: Revisiting Queueing

Networks for the Performance Evaluation of Database Designs”, Simulation

Modelling Practice and Theory (accepted for publication).

• R. Osman, I. Awan, and M. E. Woodward, “Performance Evaluation of Database

Designs”, in Proceedings of the 24th IEEE International Conference on

Advanced Information Networking and Applications (AINA-2010). Perth,

Australia, 2010, pp. 42-49.

• R. Osman, I. Awan, and M. E. Woodward, “Towards a Performance Evaluation

Model for Database Designs”, in Proceedings of the 2nd International

Conference on Computer Science and its Applications (CSA 2009). Jeju Island,

South Korea, 2009, pp. 165-170.

• R. Osman, I. Awan, and M. E. Woodward, “Application of queueing network

models in the performance evaluation of database designs”, in Proceedings of the

Third International Workshop on the Practical Applications of Stochastic

Modelling (PASM 2008). Electronic Notes in Theoretical Computer Science,

2009, vol. 232, pp. 101-124.

• R. Osman, I. Awan, and M. E. Woodward, “Queuing networks for the

performance evaluation of database designs”, 24th Annual UK Performance

v

Engineering Workshop (UKPEW 2008). July 03 -04, 2008, Dept of Computing,

Imperial College London, 2008, pp.172-183.

• R. Osman, I. Awan, and M. E. Woodward, “The case for the performance

evaluation of database designs”, 9th Informatics Workshop for Research

Students, June 13, 2008, School of Informatics, University of Bradford, Bradford,

2008, pp. 193 -195.

• R. Osman, I. Awan, and M. E. Woodward, “A framework for the performance

evaluation of database designs”, 23rd Annual UK Performance Engineering

Workshop (UKPEW 2007). July 09 - 10, 2007, Edge Hill University, 2007, pp.

78-85.

• R. Osman, I. Awan, and M. E. Woodward, “Software performance engineering

of database designs”, 8th Annual PostGraduate Symposium on the Convergence

of Telecommunications, Networking and Broadcasting (PG NET 2007). June 28 -

29, 2007, School of Computing and Mathematical Sciences, John Moores

University, Liverpool, 2007, pp. 281-284.

• R. Osman, I. Awan, and M. E. Woodward, “Characterization of software

performance engineering methodologies”, 8th Informatics Workshop for

Research Students, June 28, 2007, School of Informatics, University of Bradford,

Bradford, 2007, pp. 175-177.

vi

Table of Contents

ABSTRACT...I

ACKNOWLEDGEMENTS...III

PUBLICATIONS ...IV

TABLE OF CONTENTS...VI

LIST OF FIGURES ...XI

LIST OF TABLES ... XV

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION ... 2

1.2 OBJECTIVES ... 5

1.3 CONTRIBUTIONS .. 5

1.4 THESIS OUTLINE .. 6

CHAPTER 2 BACKGROUND AND RELATED WORK ... 9

2.1 INTRODUCTION .. 9

2.2 AN OVERVIEW OF DATABASE DESIGN CONCEPTS ... 9

2.3 DATABASE SYSTEM PERFORMANCE TUNING ... 16

2.4 QUEUEING NETWORKS .. 18

2.4.1 Queueing Networks for Software Performance Evaluation ... 21

2.5 PERFORMANCE EVALUATION OF DBMS COMPONENTS ... 22

2.6 A CATEGORIZATION OF TRANSACTIONS IN DATABASE PERFORMANCE MODELS 23

2.6.1 The Black Box Model ... 24

2.6.2 The Transaction Processing Model.. 25

2.6.3 The Transaction Size Model ... 27

2.6.4 The Transaction Phase Model.. 28

vii

2.6.5 Discussion .. 30

2.7 THE EXPONENTIAL SERVICE TIME ASSUMPTION ... 31

2.8 DATABASE SYSTEM PERFORMANCE EVALUATION METHODOLOGIES 33

2.8.1 A General Framework for Database System Performance Prediction............................... 33

2.8.2 Methodologies Based on Sevcik’s Layered Approach.. 36

2.8.2.1 The Hierarchical DBMS Evaluation Model...36

2.8.2.2 The Prophet Model ..37

2.8.2.3 The MOSES Model and JOSHUA Prototype ..37

2.8.2.4 A Relational Database Performance Analysis Tool ...38

2.8.2.5 CLISSPE: CLIent/Server Software Performance Evaluation Tool ..39

2.8.2.6 Discussion..41

2.8.3 An Approach for Parallel Relational Database System Performance Evaluation 44

2.8.3.1 Discussion..47

2.9 SUMMARY AND CONTRIBUTION... 48

CHAPTER 3 A QUEUEING NETWORKS APPROACH FOR THE PERFORMANCE

MODELLING OF DATABASE DESIGNS... 50

3.1 INTRODUCTION .. 50

3.2 THE DATABASE DESIGN QUEUEING NETWORK MODEL... 52

3.2.1 Specifying Service Demands... 54

3.2.1.1 The Service Demand Cost Model ..55

3.2.2 Building the Queueing Network Model .. 59

3.2.3 An Example .. 61

3.3 THE FORMAL SPECIFICATION... 63

3.3.1 Database Design Formal Specification.. 64

3.3.2 Queueing Network Model Formal Specification .. 68

3.3.3 Building the Queueing Network Model from the Database Design 69

3.4 SUMMARY.. 72

CHAPTER 4 MODELLING THE TPC-C BENCHMARK.. 73

viii

4.1 INTRODUCTION .. 73

4.2 THE TPC-C BENCHMARK .. 73

4.3 THE TPCC-UVA IMPLEMENTATION.. 77

4.4 BUILDING THE PERFORMANCE EVALUATION MODEL .. 80

4.4.1 Measuring DB Page Access Time .. 81

4.4.2 Calculating Transaction Service Demands .. 81

4.4.3 Building the Queueing Network Model .. 83

4.5 EXPERIMENTAL RESULTS... 84

4.5.1 Transaction Mean Response Time and Mean Throughput ... 85

4.5.2 Scalability... 87

4.6 A PERFORMANCE COMPARISON OF DIFFERENT DATABASE DESIGNS 92

4.6.1 The Database Design Descriptions .. 92

4.6.2 Experimental Results.. 94

4.6.3 Analysis .. 98

4.7 SUMMARY.. 103

CHAPTER 5 MODELLING ACTIVE DATABASE RULES... 105

5.1 INTRODUCTION .. 105

5.2 MODELLING ACTIVE DATABASE RULES .. 106

5.3 EXTENSION OF THE FORMAL SPECIFICATION FOR TRIGGERS ... 108

5.3.1 Trigger Formal Specification ... 109

5.3.2 Calculating Service Demands for Transactions that Invoke Triggers.............................. 110

5.3.3 Calculating the Routing Path ... 114

5.4 TPCC-UVA TRIGGER PERFORMANCE MODELLING... 118

5.4.1 Experimental Results.. 121

5.5 SUMMARY.. 127

CHAPTER 6 MODELLING REFERENTIAL INTEGRITY... 128

6.1 INTRODUCTION .. 128

6.2 MODELLING REFERENTIAL INTEGRITY CHECKING... 129

ix

6.3 EXTENSION OF THE FORMAL SPECIFICATION FOR FOREIGN KEYS.. 132

6.3.1 Referential Integrity Formal Specification... 132

6.3.2 Calculating Service Demands for Transactions that Invoke Referential Integrity Checks

 135

6.3.3 Calculating the Routing Path ... 138

6.4 TPCC-UVA FOREIGN KEY PERFORMANCE MODELLING... 142

6.4.1 Experimental Results.. 144

6.5 SUMMARY.. 148

CHAPTER 7 CONCLUSIONS AND FUTURE WORK .. 150

7.1 MAIN CONTRIBUTIONS .. 150

7.2 FUTURE WORK .. 152

APPENDIX A: THE TPC-C TRANSACTION SPECIFICATION... 154

A.1 THE NEW-ORDER TRANSACTION ... 154

A.2 THE PAYMENT TRANSACTION.. 155

A.3 THE ORDER-STATUS TRANSACTION .. 157

A.4 THE DELIVERY TRANSACTION ... 158

A.5 THE STOCK-LEVEL TRANSACTION... 158

APPENDIX B: THE TPCC-UVA TABLE SPECIFICATIONS.. 159

APPENDIX C: THE TPCC-UVA TRANSACTION SQL SOURCE CODE AND SERVICE

DEMAND CALCULATION... 167

C.1 CALCULATION OF TPCC-UVA INDEX I/O COST ... 167

C.2 THE NEW-ORDER TRANSACTION ... 171

C.3 THE PAYMENT TRANSACTION.. 173

C.4 THE ORDER-STATUS TRANSACTION .. 176

C.5 THE DELIVERY TRANSACTION ... 177

C.6 THE STOCK-LEVEL TRANSACTION... 178

x

APPENDIX D: QNAP2 MODEL.. 179

D.1 QUEUEING NETWORK MODEL DESCRIPTION ... 179

REFERENCES... 183

xi

List of Figures

Figure 2.1 An entity-relationship model... 11

Figure 2.2 A relational logical database design. .. 12

Figure 2.3 A physical database design.. 13

Figure 2.4 A (a) relational algebra expresion and (b) equivalent query tree. 15

Figure 2.5 An example of a queueing network. ... 19

Figure 2.6 A representation of (a) the black box model and (b) the transaction processing model. . 25

Figure 2.7 A representation of the transaction phase model, where pi is the probability of a

transaction moving from phase i to phase i+1. ... 28

Figure 2.8 Sevcik’s database system performance evaluation framework.. 35

Figure 2.9 CLISSPE specification of a simple client/server application. .. 40

Figure 2.10 A queueing network model for a database system using the methodologies in the

literature. ... 43

Figure 2.11 An example of (a) a resource usage profile and (b) the corresponsing queueing network

for two transaction classes. .. 45

Figure 3.1 Details of New_Emp and List_Emp transactions. ... 62

Figure 3.2 A queueing network model for the database design example. ... 62

Figure 4.1 The TPCC-UVA architecture. ... 78

Figure 4.2 TPCC-UVA queueing network model.. 84

Figure 4.3 Comparison of the New-Order transaction mean response time per minute for a

measurement interval of (a) 2 hours (b) 4 hours and mean throughput per minute for a

measurement interval of (c) 2 hours (d) 4 hours for 100x2 clients. .. 86

Figure 4.4 Comparison of the New-Order transaction mean response time per minute for different

number of clients. ... 89

Figure 4.5 Comparison of the Payment transaction mean response time per minute for different

number of clients. ... 89

xii

Figure 4.6 Comparison of the Order-Status transaction mean response time per minute for

different number of clients... 90

Figure 4.7 Comparison of the Delivery transaction mean response time per minute for different

number of clients. ... 90

Figure 4.8 Comparison of the Stock-Level transaction mean response time per minute for different

number of clients. ... 91

Figure 4.9 New-Order transaction mean response time per minute for a ramp-up period of 20

minutes and measurement interval of 4 hours for 100x2 clients for the I1 database design. The

TPCC-UVA system starts to stabilize 80 minutes into the measurement interval, i.e. 100

minutes from the beginning of the system run. .. 95

Figure 4.10 New-Order transaction mean response time per minute for a ramp-up period of 30

minutes and measurement interval of 7 hours for 100x2 clients for the I3 database design. The

TPCC-UVA system starts to stabilize 140 minutes into the measurement interval, i.e. 170

minutes from the beginning of the system run. .. 95

Figure 4.11 Comparison of the New-Order transaction mean response time per minute for 100x2

clients for the design (a) I1 (b) I2 (c) I3... 96

Figure 4.12 Comparison of the Payment transaction mean response time per minute for 100x2

clients for the design (a) I1 (b) I2 (c) I3... 97

Figure 4.13 Comparison of the Order-Status transaction mean response time per minute for 100x2

clients for the design (a) I1 (b) I2 (c) I3... 97

Figure 4.14 Comparison of the Delivery transaction mean response time per minute for 100x2

clients for the design (a) I1 (b) I2 (c) I3... 97

Figure 4.15 Comparison of the Stock-Level transaction mean response time per minute for 100x2

clients for the design (a) I1 (b) I2 (c) I3... 97

Figure 4.16 DB page access trace for 100x2 clients for the design (a) I1 (b) I2 (c) I3........................... 99

Figure 4.17 CUSTOMER table DB page access trace for 100x2 clients for the design (a) I1 (b) I2 (c)

I3. .. 100

Figure 4.18 The effect of large values on the mean of a population... 102

Figure 5.1 A queueing network model with trigger invocations. ... 108

xiii

Figure 5.2 A BEFORE trigger invocation. ... 111

Figure 5.3 New-Order transaction mean response time per minute for a ramp-up period of 20

minutes and measurement interval of 480 minutes for 100x1 clients....................................... 118

Figure 5.4 Details of trigger1: AFTER UPDATE trigger on HISTORY. ... 119

Figure 5.5 Details of trigger2: AFTER INSERT trigger on HISTORY... 120

Figure 5.6 TPCC-UVA queueing network model with ORDERCopy table. 121

Figure 5.7 New-Order transaction mean response time per minute for a ramp-up period of 20

minutes and measurement interval of 480 minutes for 100x2 clients. The TPCC-UVA system

with trigger1 starts to stabilize 140 minutes into the measurement interval, i.e. 160 minutes

from the beginning of the system run. .. 123

Figure 5.8 New-Order transaction mean response time per minute for a ramp-up period of 20

minutes and measurement interval of 300 minutes for 100x2 clients. The TPCC-UVA system

with trigger2 starts to stabilize 130 minutes into the measurement interval, i.e. 150 minutes

from the beginning of the system run. .. 123

Figure 5.9 Comparison of the New-Order transaction mean response time per minute for the

TPCC-UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement

interval of 120 minutes. .. 125

Figure 5.10 Comparison of the Payment transaction mean response time per minute for the TPCC-

UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of

120 minutes.. 125

Figure 5.11 Comparison of the Order-Status transaction mean response time per minute for the

TPCC-UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement

interval of 120 minutes. .. 125

Figure 5.12 Comparison of the Delivery transaction mean response time per minute for the TPCC-

UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of

120 minutes.. 126

Figure 5.13 Comparison of the Stock transaction mean response time per minute for the TPCC-

UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of

120 minutes.. 126

xiv

Figure 6.1 A queueing network model with IMMEDIATE referiential integrity checking. 131

Figure 6.2 A queueing network model with DEFERRED referiential integrity checking............... 132

Figure 6.3 Details of the foreign key constraint on the ORDER-LINE table.................................... 142

Figure 6.4 TPCC-UVA queueing network model with ITEMCopy table. .. 144

Figure 6.5 New-Order transaction mean response time per minute for a ramp-up period of 20

minutes and measurement interval of 480 minutes for 100x2 clients. The TPCC-UVA system

starts to stabilize 120 minutes into the measurement interval, i.e. 140 minutes from the

beginning of the system run. .. 145

Figure 6.6 Comparison of the (a) New-Order (b) Payement (c) Order-Status (d) Delivery (e) Stock-

Level transactions mean response time per minute for a measurement interval of 120 minutes

for 100x2 clients. ... 147

Figure D.1 QNAP2 description of the TPCC-UVA clients. .. 180

Figure D.2 QNAP2 description of the TPCC-UVA queueing network servers. 182

xv

List of Tables

Table 3.1 I/O DB page cost model for SQL operations. .. 57

Table 3.2 Mapping between database designs and queueing network models. 61

Table 3.3 Service demands for the New_Emp and List_Emp transactions. 63

Table 3.4 Formal specification notation. .. 64

Table 4.1 Summary of the TPC-C benchmark transactions. ... 75

Table 4.2 Scaling requirements for the TPC-C database. .. 76

Table 4.3 Initial loading size for the TPCC-UVA queueing network model. 82

Table 4.4 Number of I/O DB pages for the TPCC-UVA transactions. .. 82

Table 4.5 Comparison of transaction mean response times for different number of clients. 91

Table 4.6 Number of I/O DB pages for the TPCC-UVA transactions. .. 94

Table 4.7 Comparison of transaction mean response times for different designs. 98

Table 5.1 Number of I/O DB pages for the TPCC-UVA transactions. .. 121

Table 5.2 Comparison of transaction mean response times for TPCC-UVA with trigger1 and

trigger2 designs.. 126

Table 6.1 Number of I/O DB pages for the TPCC-UVA transactions. .. 143

Table 6.2 Comparison of transaction mean response times for the TPCC-UVA design with foreign

key referencing.. 148

Table 6.3 Transaction mean response times for the TPCC-UVA design with foreign key referencing

the ITEM table and TPCC-UVA original design... 148

Table C.1 Calculation of the TPCC-UVA index fan-out... 169

Table C.2 Partial calculation of the TPCC-UVA index I/O cost. ... 170

1

Chapter 1 Introduction

The recognition of the need for detailed software design representation and performance

evaluation has been the catalyst for the development of various software performance

engineering methodologies [9, 64, 97, 98]. Furthermore, it has been established that for

software system performance modelling to give accurate predictions, more

comprehensive performance models need to be developed that provide for detailed

software design modelling and evaluation [91, 97, 98]. The importance of performance

evaluation of software systems at early design phases was initially proposed by

Lazowska et al. [55] using software level queueing network performance models.

Lazowska’s ideas were further developed by Smith [97] into the software performance

engineering methodology.

Since Smith introduced the software performance engineering methodology the

evaluation of software performance during the software lifecycle has not been

uniformly adopted by the software engineering community [64], mainly due to the

academic nature of performance models which do not appeal to software engineers in

industry [81]. Hence, for a performance model to be usable, it must be able to reflect the

application domain in such a way that it can be seamlessly integrated into the software

development lifecycle.

This thesis provides a performance evaluation methodology for database designs that is

more closely aligned with the database design domain. This is to provide for a more

applicable performance model that provides more relevant feedback to database

2

designers and can be straightforwardly integrated into the database development

lifecycle.

1.1 Motivation

A necessary part of any computer, communication network or system is information

storage and retrieval. Jagadish et al. [48] have recognized that even though the majority

of the available data resides in unstructured and semi-structured formats outside of

traditional databases, databases are still the superior technology for data and information

storage and retrieval [48]. Databases form the backend of online transaction processing

systems, service-oriented architectures and multi-tier applications [11], all with critical

performance requirements.

In more recent trends in database systems, the Internet has allowed for the outsourcing

of database applications as a service and for multi-tenant architectures in which multiple

businesses are consolidated onto the same physical database [6]. These new

architectures lend to more complex database schemas and designs, and thus more

complex performance problems. Therefore, databases that perform efficiently and

which are matched to the user demands are crucial to the performance of these systems

as a whole. It is apparent that the design of efficient databases, optimised to meet the

projected traffic demands becomes a crucial part within the overall design process of

any computer system.

Jagadish et al. [48] have considered the recent decline in the utilization of database

technology, in comparison to the success of search engines, a symptom of database

3

usability and not database obsoleteness. Given that the performance of the database

affects the performance of the applications that depend on it [104], the performance of

the database system accordingly affects its usability. Thus, a method in aiding in the

design of more responsive databases is needed.

Moreover, the performance tuning of database systems in industry is a practical and

complex problem, involving the combined knowledge of the database system design

and operation, the underlying database management system (DBMS) and its

functionality, the operating system, and the underlying hardware platform [28, 95].

Performance tuning is a major contributor to the total cost of ownership of database

systems [48, 118]. The complexity and significance of database system performance

tuning has led commercial database vendors to develop a number of database system

performance tuning prototypes for the major DBMS [2, 15, 28, 123]. Hence, the

problem is a current and significant one.

The software performance evaluation literature has expanded greatly in the last decade,

with the majority of the software performance models targeted at the software

architecture level of systems [9]. However, work in performance evaluation of database

systems has been limited [104]. In most analytical models for database systems, it is

assumed that the number of times a transaction visits the system resources and the

distribution of service times at each station can be measured directly. Unfortunately, this

is easier said than done, leading to complications in implementing the performance

models in early system design phases. Moreover, the main emphasis of these models is

capacity planning [1, 20, 43, 67, 89, 92], and in so, the feedback is not relevant to the

4

database designer.

In this thesis, we suggest that the more natural the specification of the service demands

and their ability to map to the original design, the easier it is to specify these

measurements. Additionally, this thesis has recognized the need for a special-purpose

performance evaluation method for database designs. The method should take into

account the changing state of the database system, the relationships between the

different structures of the database design, and the granularity of the expected feedback.

These performance models can be used by the database designer for evaluating different

design options before system implementation, in determining the configuration of the

system to meet user needs after deployment, and for post-deployment performance

tuning.

Furthermore, we note that the performance evaluation of many software and hardware

architectures is based on the use of queueing network models [9] and this suggests that

the database design performance evaluation method should also be similarly based. This

will allow, in the future, for the two performance models to be integrated into a single

queueing network model which combines both the hardware architecture and its

associated database systems.

This thesis contributes a database design performance evaluation model within a

queueing network environment; however, at a finer granularity which allows the

database design constructs to be modelled and evaluated. This is a radical departure

from previous database design performance methods, which consider the database

design only in terms of processing demands on the hardware architecture [1, 20, 43, 67,

5

89, 92]. By using queueing networks to model the dynamic behaviour of the database

design, the database designer can evaluate the expected performance of the design,

before the physical deployment of the database system.

1.2 Objectives

The objective of the research presented in this thesis is to develop a novel performance

evaluation methodology for database system designs based on queueing networks. This

methodology should encompass the following aspects:

• provide performance feedback at a granularity that is relevant to database

designers;

• be applicable to the performance evaluation of database designs at design time;

• provide a simple formulation to map database system design specifications to

queueing network models;

• have the ability to model modern DBMS functionality, i.e. active database rules

and referential integrity.

1.3 Contributions

The contributions of this thesis are:

• A novel modelling methodology for database designs using queueing networks.

6

The methodology allows for the modelling of detailed database designs

improving over previous methods in the literature through: (1) the modelling of

the transaction processing on database tables, (2) the incorporation of active

database rules and referential integrity, and (3) the fact that detailed knowledge

and performance modelling of the hardware architecture is not required. This

makes the methodology more applicable for use by database designers in

comparison to previous approaches.

• A formal specification of the methodology providing: (1) a description of

database designs and transactions, (2) an algorithm to map database designs to

queueing network models, and (3) an algorithm to extract transaction routing

probabilities for the queueing network model.

• A categorization of transaction modelling in queueing network performance

models for database systems and DBMS components. This categorization

classifies the models in the literature based on the level of detail of the

representation of the internal details of the database transaction.

• A justification for the exponential service time assumption for transactions in

queueing network models in which transaction details are represented.

1.4 Thesis Outline

The rest of the thesis is structured as follows:

7

Chapter 2 presents background material in database design terminology and in

queueing networks. A categorization of transaction modelling in database system

queueing network models is presented with examples from the literature. In addition,

previous methodologies of database system performance models and their shortcomings

are discussed.

Chapter 3 introduces our approach for the modelling of database designs using

queueing networks. The details regarding the steps to apply the method are given along

with a formal specification of the transformation of database designs to queueing

networks.

Chapter 4 details the modelling of the TPC-C benchmark using our modelling

technique. Results are presented for the comparison of the model with the TPCC-UVA

open source implementation of the TPC-C benchmark. In addition, a comparison is

conducted between different database designs.

Chapter 5 presents the modelling of active database rules. The formal specification of

Chapter 4 is extended to include active database rules. The extended model is validated

by comparing its results with a modified version of the TPCC-UVA implementation

that incorporates active database rules.

Chapter 6 details the modelling of referential integrity constraints using queueing

networks. The formal specification of Chapter 4 is extended to incorporate database

tables with referential integrity constraints. A comparison is conducted with a modified

version of the TPCC-UVA implementation with referential integrity constraints.

8

Chapter 7 concludes the thesis by summarizing and discussing the contributions, with a

discussion of future work.

Appendices A, B and C provide details of the TPC-C benchmark and the TPCC-UVA

implementation.

Appendix D gives examples of the QNAP2 simulation model descriptions.

9

Chapter 2 Background and Related

Work

2.1 Introduction

In this Chapter, the context for the thesis is set by reviewing the database and DBMS

queueing network performance evaluation models in the literature. The Chapter begins

with an overview of database design terminology and a brief discussion on database

system performance tuning. Then, queueing networks and their applicability to software

system performance evaluation are discussed. A categorization of database transaction

modelling representations in the literature is presented, followed by a justification of the

exponential service time assumption for transactions in database and DBMS queueing

network models. The performance evaluation methodologies targeted at database

system performance evaluation are detailed and their shortcomings are discussed.

Finally, the Chapter concludes with the justification of our modelling approach for

database designs and database systems and our contributions.

2.2 An Overview of Database Design Concepts

Databases (DB) are used to store collections of related data. Database management

systems (DBMS) are the underlying runtime environment for a database. A DBMS

provides a high-level language to define the structure of the data; known as the data

10

definition language (DDL). In addition, DBMS have high-level languages to access and

modify data in the database; this is the data manipulation language (DML). The

standard DML is the Structured Query Language (SQL) [47], which is based on

relational calculus [32]. Database access entails either: a request for data, i.e. a SQL

SELECT statement or a modification of the data, i.e. SQL INSERT, UPDATE or

DELETE statements. Programs that access the database are called transactions and are

written in a data manipulation language such as SQL or in a procedural language with

SQL extensions. Transactions are executed by the DBMS as one atomic unit.

Database designers are assigned the task of transforming an enterprise’s data from its

external representation in the real world to a representation that can be stored in the

database. The first step in this transformation is the conceptual data model of the

database. The conceptual data model represents real-world data using the entity-

relationship (E-R) model or UML class diagrams [51, 69, 84]. At this stage, the data is

represented as entities with attributes. In addition, relations between the different

entities are represented. For example, if the entities are employees and departments,

then the attributes of an employee would include his/her name and employee number. A

relationship would be Works-In, which is an employee working in a certain department.

This is illustrated in Figure 2.1. Details of entity-relationship diagrams and their

constraints are in [51, 69, 84].

11

Figure 2.1 An entity-relationship model.

The next step is the logical database design, which describes the logical schema of the

database. The logical schema is the transformation of the conceptual data model to a

logical data model, which constitutes the data model of the database. In this work we

refer only to the relational data model and relational databases. A relational database

consists of relations or tables, which are constructed from records/rows and

fields/columns: these terms will be used interchangeably. Each column has a specific

domain which specifies the data type that can be stored in the column. Columns can

have constraints, e.g. a column that uniquely defines a row is a primary key, and a

column that has values related to a primary key of another table is a foreign key. A

foreign key is known as a referential integrity constraint. Figure 2.2 gives an example

of a relational model for the employee and department data. Properties of keys under the

relational model are rigorously defined in [29].

Employees

emp no

emp name

Departments

dept name

dept no

Works_In

12

Figure 2.2 A relational logical database design.

The next stage is the physical database design, where the logical database model is

extended to describe the physical storage of the database [51, 84]. The physical database

design includes modelling the following [51, 69, 84]:

• the data table’s indexes, which are auxiliary data structures that support rapid

access to the rows of a table;

• database and data table partitions; i.e. dividing a table or database into multiple

physical data files or locations;

• DBMS schemas, tablespaces, which are the logical grouping of database tables;

• data files, which are the physical storage files of the database schemas and

tablespaces;

13

• any additional properties of the DBMS chosen for deployment, i.e. views and

triggers. Views are stored SQL SELECT statements that are automatically

computed when a view is referenced. Triggers are event-condition-action rules

that monitor the occurrence of a database event, e.g. an update of a certain

column, and execute the given action if their condition evaluates to true.

Triggers are also known as active database rules.

Figure 2.2 illustrates an index and a trigger on the Employee table, and a view on the

Employee and Department tables. Figure 2.3 shows a physical design of a database with

a single schema, and two tablespaces, where each tablespace is stored on one or two

physical data files. The database is partitioned over two physical disks.

Figure 2.3 A physical database design.

When an SQL query is submitted to the DBMS, it is executed in the following steps

[32]:

14

Translating SQL queries into relational algebra expressions: The SQL query is

parsed and then validated against the definition of the database schema by checking that

all relation and attribute names are correct and semantically meaningful. The SQL query

is then translated into its equivalent relational algebra expression. This is further

transformed into a query tree data structure. A query tree represents the input relations

of the SQL query as leaf nodes and the relational algebra operations as internal nodes.

An execution of the query tree consists of executing an internal node when its operands

are available and then replacing the internal node with the result relation. The query tree

execution terminates when the root node is executed and produces the result of the

query. Figure 2.4 details a relational algebra expression and query tree for the following

SQL query based on the database design of Figure 2.2:

SELECT emp_no,emp_name FROM EMPLOYEE, DEPARTMENT

WHERE dept_name = ‘HR’ and

 DEPARTMENT.dept_no=EMPLOYEE.dept_no

From Figure 2.4, the π symbol represents the relational algebra project operation,

which picks out a subset of columns from the table. The σ symbol represents the select

operation, which selects a subset of the rows of a table based on a certain condition. The

JOIN operation concatenates rows of two or more tables usually based on equal values

in the JOINed columns. The result of a relational algebra operation is the result relation

or table. The query tree represents an initial representation of the relational algebra

expression.

Query optimization: Next, the DBMS query optimizer transforms the initial query tree

to an equivalent more efficient query tree, known as the optimized query tree. Heuristic

15

optimization rules are applied in this transformation. Examples of optimization rules

include: perform a select before a JOIN or use indexes before table scans. The rules take

into account the expected relational algebra operation result size and aim to produce the

smallest result set possible for each relational algebra operation. Figure 2.4(b) is the

optimized query tree for the previous SQL query.

Figure 2.4 A (a) relational algebra expresion and (b) equivalent query tree.

Access plan: The optimized query tree is used to prepare an execution or access plan.

The access plan for a relational algebra expression is the optimized query tree with

information about the access methods (e.g. indexes) available for each relation and the

algorithms used to compute the relational operators. For the query tree in Figure 2.4,

each relational algebra operation is annotated with the access methods for each relation,

e.g. a table scan for the DEPARTMENT table since there is no index to access the

dept_name field.

16

Execution: The access plan is converted to executable code and run against the

database to produce the results of the SQL query.

More details on database design and DBMS functionality can be found in [51, 84].

Details of relational algebra, query trees and optimizing heuristics are in [32].

2.3 Database System Performance Tuning

Database system performance tuning is a post deployment activity performed by the

database administrator (DBA). Performance problems of database systems manifest

themselves in query and transaction response time. Hence, the performance tuning

effort is concentrated on the database and the transactions accessing the database.

Database performance tuning is a difficult task in that the DBA must be familiar with

the database system design and operation, the underlying DBMS and its functionality,

the operating system, and the hardware platform that runs the database system [28, 94].

It is the major contributor to the total cost of ownership of database systems [48, 118].

Performance tuning of database systems involves one or all of the following activities

[51, 84, 94]:

• restructuring of high-use SQL statements and transactions: avoiding costly

access plans due to faulty statement structures;

• index tuning: adding or removing indexes, changing index types or redesigning

17

existing indexes;

• table redesign: decomposing a table into smaller tables (normalization) or

collecting small tables into one large table (de-normalization);

• tuning concurrent access: reducing table and row lock contention and

eliminating hot spots;

• physical placement of data on disks: e.g. distributing heavily used objects on

different disks or nodes;

• optimizing DBMS data blocks, query optimization and buffer management

techniques, and utilizing DBMS specific extensions and features [16];

• evaluating the amount of physical resources available to the database system,

e.g. CPUs, disks, main memory, etc.

It is important to note that database performance tuning must go hand in hand with the

specification of the application that uses the database; the application may uphold

certain constraints depending on the results given by a certain SQL statement or may

depend on certain table structures. Any changes to the SQL statements or table

structures that are not reflected in the application may produce unexpected results.

The complexity and significance of database system performance tuning has led

commercial database vendors to develop a number of database system performance

tuning prototypes for the major DBMS [2, 15, 28, 123]. These tools rely on query

18

optimizers and statistics from production databases to give recommendations for

performance improvements, e.g. SQL statement restructuring, index and view

recommendations, and table partitioning [2, 15, 28, 123].

As indicated above, optimal performance improvement of the database is achieved

through redesigning artefacts of the logical and physical database designs, through

either manual procedures or automated tools. Furthermore, the coupling between the

application program and the database inevitably means an understanding of the

application design is needed for effective database tuning.

This being stated, the logical and physical database design structures are the main

contributors to DB system performance problems. Therefore, an early evaluation of

their performance at DB system design time, coupled with the knowledge of the

application design, would be an effective factor in the reduction of post deployment

database tuning.

2.4 Queueing Networks

Queueing networks were initially used in operational research to predict the

performance of customer-facing systems. They have been successfully applied for the

performance evaluation of computer and telecommunication systems [52-55, 116], and

software system designs [9, 65, 97].

Queueing networks are a collection of individual queues or queueing stations; they are

based on the concept of modelling contention in resource sharing systems. In a queue,

19

the shared resource is represented as a server that provides services to waiting

customers or jobs. Customers requesting service wait for the server to be free by

queueing at the server. Depending on the queueing (scheduling) discipline, a customer

enters for service after the server completes its last job. After completing service,

according to the routing probabilities, this customer then leaves the server to queue for

another server, re-enters the same server again for more service, or leaves the network

completely (Figure 2.5).

Figure 2.5 An example of a queueing network.

Some common queueing disciplines are [52]: first-come-first-served (FCFS), which

serves customers based on the order of arrival; last-come-first-served (LCFS), in which

the last arriving customer is served first; priority queueing, in which the customer with

the highest priority is served first; processor sharing (PS), which shares the server

capacity with all the waiting customers in parallel and random service, in which

customers are chosen for service at random.

The types of queueing networks are: open queueing networks, which are characterized

re-entry to
same server

customer
arrivals

customer
departures

queueing network

queue

server 1

queue

server 2

progress to
another server

queueing
station

20

by customers arriving from outside the queueing network and after receiving service

depart from the network. In closed queueing networks, customers are resident in the

network; the number of customers in the network is always constant. Mixed queueing

networks have customers of both types.

The behaviour of the queueing network and the behaviour of customers receiving or

waiting to receive service in the queueing network are characterized by: (1) the arrival

rate of customers to the queueing network (open queueing network); (2) the client think

time – the time it takes a client to send a request to the queueing network (closed

queueing network); (3) the statistical distribution of service times for each customer; if

this distribution varies between different groups of customers then the customers are

grouped into customer classes and service distributions are specified by class; (4) the

maximum queue or buffer size, which is the maximum number of customers allowed to

wait to be serviced. Kendall’s notation [50] is usually used to specify these

characteristics and when using this a queue is represented as A/S/c/m/N, where:

• A is the customer inter-arrival time distribution, e.g. M for

memoryless/exponential, G for general, and D for deterministic interarrival

distributions.

• S is the service time distribution, which can also be M, G, or D distributions.

• c is the number of servers providing service for the customers in the queue.

• m is the queue or buffer size, which is the maximum number of customers

21

allowed to wait for service. It can also represent the maximum number of

customers allowed in the queue plus the customer in service. The default buffer

size is an infinite buffer.

• N is the maximum number of customers in the system; the default is an infinite

number of customers.

Solving a queueing network model analytically or by simulation gives feedback on

system performance, e.g. customer response time, throughput and waiting time. These

performance measures are calculated on the assumption that the queueing network is in

equilibrium (a steady state), i.e. the rate of arrivals to the queueing network is equal to

the rate of departures from the network. A large class of queueing networks, known as

product form queueing networks [8], have direct analytical solutions based on the

parameters of the queueing network.

Extended Queueing Network (EQN) models [12] have been introduced to incorporate

features of actual computer systems in classical queueing network models, e.g.,

synchronization, concurrency and simultaneous resource possession. Another extension

to classical queueing networks are Layered Queueing Network (LQN) models [87],

which allow for the modelling of software and hardware contention in distributed and

multiprocessor systems.

2.4.1 Queueing Networks for Software Performance Evaluation

The use of queueing networks and EQNs has been prevalent in software performance

evaluation methodologies [4, 5, 9, 25, 27, 79, 80, 97, 98]. This is essentially due to

22

their widespread use in computer system modelling and to their natural mapping onto

software system design phase artefacts, especially software architecture components [4,

5, 9, 26, 79, 119]. However, it has been noted that queueing networks are not powerful

enough to model late software lifecycle details [26], e.g. component processing details.

2.5 Performance Evaluation of DBMS Components

Performance evaluation studies of databases concentrate on the fundamental

components of the DBMS [104], e.g. the evaluation of storage and buffer management

techniques [61, 121], query processing [46] and optimization [22, 93], transaction

locking [37] and recovery algorithms [36], and index structures and their utilization [40,

45, 101]. There have also been studies of the performance analysis of unique

characteristics of different database models, e.g. object-oriented [14, 100], distributed

[70] and active [18] databases, and the assessment of commercial [3] and open source

[60] DBMS. Recently, studies have been conducted on the performance evaluation of

database system application architectures, i.e. multi-tiered Internet applications with

back-end databases [86, 117]. Analytical modelling, simulation or empirical

experiments are the main methodologies used for performance evaluation. Thomasian

has documented performance evaluation models of database system components [104]

and concurrency control mechanisms in database systems [103], while Nicola and Jarke

[70] have surveyed performance models of distributed and replicated databases.

Even though the performance of the database system and DBMS components have been

extensively studied, studies of overall database system performance are very limited

23

[104], consisting mostly of the performance models to be described in Section 2.8.

2.6 A Categorization of Transactions in Database

Performance Models

Analytical models of database systems or DBMS components, as is the convention for

all analytical models, are basically identified by the phenomena they study, e.g.

concurrency control, or the solution method used, e.g. hierarchical or recursive. In an

overview of the literature of performance modelling of databases and DBMS

components, we have identified a set of techniques in representing databases and

database transactions in analytical queueing models.

We have restricted our overview of the literature to performance evaluation studies that

model some form of interaction between transactions and a database. Models in which a

specific aspect of databases or DBMS, e.g. buffering algorithms, is studied in isolation

are outside the scope of this categorization as they do not constitute complete

interactions with a database. The objective of this categorization is to define the trends

in modelling and defining transactions in queueing models for database and DBMS

component performance evaluations. To the best of our knowledge, no such

classification currently exists in the literature.

The queueing network performance evaluation studies in the literature have been

classified based on the level of detail in which the database transaction’s internal design

is represented in the models. We have identified four distinct categories of transaction

representation which will be referred to as follows: the black box model, the

24

transaction processing model, the transaction size model and the transaction phase

model. A description of each category follows with the relevant studies from the

literature.

The following convention is used when describing the studies: we assume a database D

with d database objects and is accessed by T = {T1, T2, …, Tn} transaction classes.

2.6.1 The Black Box Model

In the black box model, when the database D is a centralized database it is represented

as a single queueing node. In the case of a distributed database, it is represented as

multiple queueing nodes, where each node represents a distributed database site. The

internal design of the transaction is not represented in the queueing model, as the goal of

the performance evaluation is to represent the workload of the transactions at the system

level. Each transaction class Ti accessing D has an arrival rate iλ and a service demand

iµ on the queueing node D (Figure 2.6 (a)).

It is common in analytical models for replicated and distributed databases to model the

database site as a single queueing service center and the transaction as a workload class

in the system [70], e.g. Baccelli and Coffman [7] use an M/M/m/FCFS queue to model

m local sites. Ciciani et al. [23, 24] study the effect of distributed concurrency control

protocols on replicated distributed databases by modelling each local database site as an

M/M/1 queue. For multi-tiered Internet applications with backend databases, Urgaonkar

et al. [117] describe a queueing network model in which each tier, including the

25

database tier, is represented as a processor sharing queue.

Figure 2.6 A representation of (a) the black box model and (b) the transaction processing model.

2.6.2 The Transaction Processing Model

For the transaction processing model, the database D is represented by the underlying

hardware architecture using the central server model [17] or its variations. Each

transaction class Ti accessing D is defined by its service demand on the hardware

architecture and flows through the system probabilistically (Figure 2.6 (b)). For closed

queueing networks, the number of transaction classes in the system is restricted by the

maximum multiprogramming level. This model is used to represent a centralized

database or a site in a distributed database.

We have found the transaction processing model to be the prevalent category used to

represent centralized databases or the database tier in multi-tiered applications as

detailed below. Menascé et al. [65] provide many examples of modelling centralized

database servers using this model in which transaction classes are represented by their

λ

Database

µ

(a) (b)

Disk

CPU

λ
µ1

µ2

Database

p

1- p

26

service demands on the hardware resources.

Sheth et al. [96] evaluate the effect of networks delays on concurrency control protocols

of distributed database systems by modelling each distributed site as a central server

model with M/M/1/FCFS queues for the CPU, disk and network connections. A

replicated database instance is represented as a central server model in [33], with

additional delay centers to represent the distributed system functionality.

Menascé et al. [62, 66] represent an n-tier multithreaded server system modelled as a

software contention model and a hardware contention model. The software contention

model is modelled as a Markov chain representing the arrival and completion of jobs.

The rate at which the jobs are completed is determined by the solution to the hardware

contention model, which is a closed queueing network of a CPU and disk with k jobs in

the system. Gijsen et al. [35] model a multi-tiered application as an open queueing

network with Poisson arrivals. The front-end application server is assumed to be the

CPU and is modelled as a processor-sharing queue, while parallel access to the backend

database is modelled as a multi-server FCFS queue with exponential service times.

Ceri et al. [21] study the performance of detached triggers in active databases. The

scheduling and execution of jobs and detached triggers is modelled as a queueing

network with one CPU and a set of homogeneous disks, where each disk represents a

subset of the database. A dispatcher queue represents the scheduling of detached

triggers. Triggers are activated probabilistically for each transaction in the system and

arrive at the dispatcher when their corresponding transaction completes. The model

27

assumes Poisson arrivals for transactions and a constant arrival rate for batched jobs.

Moreover, the database system performance models discussed in Section 2.8 [1, 20, 43,

67, 89, 92, 112] all follow the transaction processing model.

2.6.3 The Transaction Size Model

The transaction size model describes each transaction class Ti accessing D based on the

number of data objects ni it accesses from the d database objects. The performance

evaluation studies in this category are limited to concurrency control methods.

In [68, 83, 107], modelling of static exclusive locks in centralized databases is

considered. A transaction class accesses a constant set N of data items randomly chosen

from the total number of data elements in the database. This set N, is used to calculate

the locking conflict probabilities for transactions entering the system. For the hardware

architecture, the CPU is represented with a processing sharing queue, exponential FCFS

disk service rates and a maximum multiprogramming level. Thomasian and Ryu [108]

extend the model in [107] to represent shared locks in addition to exclusive locks, with a

variable number of locks per transaction class. Furthermore, Thomasian and Ryu [109]

model two-phase dynamic locking using the same basic modelling assumptions for

transaction classes and lock acquisition as in [108].

The static lock acquisition model in [68, 83, 107, 108] is probabilistic, i.e. the locks

assigned to a transaction class are determined by a certain probability. However,

Thomasian [105] proposes a deterministic lock acquisition model, in which the number

of locks acquired by a transaction class are predetermined per class. This is closer to

28

actual transaction lock requests. Therefore, only compatible transaction classes

accessing disjoint data objects can be processed concurrently. The queueing model used

by Thomasian [105] is similar to [68, 83, 107, 108], with a fixed number of transaction

classes that arrive with random frequencies.

Harder and Harrison [39] present an analytical model that combines traditional locks

with Oracle Parallel Server locks. However, the transaction size is based on the number

of locks acquired by the transaction class per database tablespace. Parameterization of

the model is assumed to be from measurements of a real system.

2.6.4 The Transaction Phase Model

For the transaction phase model, each transaction class Ti accessing D is classified

based on the number of phases it contains. Movement through the phases is

probabilistic. Figure 2.7 illustrates the division of a transaction into n phases.

Figure 2.7 A representation of the transaction phase model, where pi is the probability of a transaction

moving from phase i to phase i+1.

Jenq et al. [49] present an analytical model of a distributed database testbed system in

which transactions are divided into phases corresponding to the steps a distributed

transaction needs to complete execution. A transaction moves from one phase to the

next based on a phase transition probability. Transactions access database records

pn p1

1-p1

pi 1

1

0 1 i

1-pi

… pi-1 … n +1

29

randomly and uniformly. Each transaction issues a fixed number of requests and each

request accesses a fixed number of DB records. Lock requests are uniformly distributed

over the lifetime of the transaction. Each distributed site is modelled as an extended

central server model with delay centres representing synchronization delays.

Yu et al. [122] analyze routing in locally distributed databases. Transactions are divided

into two phases: application processing, representing the front-end system and database

request processing representing the mean distributed processing of the transaction

database requests. The transactions are divided into classes based on their processing

times in each phase. Each transaction class Ci has a Poisson arrival rate iλ and an

exponential I/O disk access service demand iµ , for each database request at a site. The

transaction class starts in the application phase, then moves to the database request

phase with a probability pk for each distributed site Dk or leaves the network with

probability 1- ∑ kp . Each distributed node is represented by a single server processor-

sharing queue for the CPU, and the I/O system is represented by an infinite FCFS

queue.

Thomasian [106] studies the effect of checkpointing on transaction performance.

Transactions are assumed to access n data objects in n+1 steps; each step is preceded by

an access to a data object. A transaction moves from one step to the next with a

probability pi, i.e. the probability of no data conflict or restart. The conflict probability

is proportional to the number of objects the transaction has currently accessed. Access

to data objects is uniform and the time to access a data object is assumed to be

exponential. An analysis to determine the optimal number of checkpoints and their

30

position in transaction execution is given.

Sanzo et al. describe a performance analysis of locked-based concurrency control in

[90]. The transaction data manipulations are modelled as a sequence of m execution

phases, starting with a begin phase, then m-2 write or read operations on the data items,

and finally, a commit phase. Each phase is assumed to use an exponentially distributed

number of CPU instructions. This is to cater to the underlying M/M/k model for the

CPU, where k is the number of CPU cores. The disk is assumed to have a fixed I/O

delay. Transactions arrive according to a Poisson process. Lock holding time for each

data item accessed by a transaction depends on the access order of that item, i.e. items

accessed first will have a longer lock holding time than objects accessed last; lock

holding time is also exponentially distributed. Movement between phases depends on

the lock conflict probability of that phase, which is calculated based on the transaction

access pattern. The transaction access pattern specifies the probability that the k
th

operation accesses the i
th

 data item and that the probability of the operation is a write.

2.6.5 Discussion

The previous classification mirrors the fact that the goal of the performance analysis

dictates the detail at which the transaction is represented in the queueing network

model. When the concern is to evaluate performance at the system level, in which

transaction internal details are irrelevant or negligible in their effect on performance, the

transaction is represented as a workload on the system. This is the main characterization

for the black box model studies. Capacity planning performance studies represent the

details of the hardware architecture being evaluated; hence the transaction is modelled

31

as its processing demands on the hardware architecture.

For the transaction size and phase categories, we notice the predominance of models

that evaluate and study concurrency control in centralized or distributed databases.

Here, the internal structure of the transaction affects the performance of the studied

system; hence it must be taken into consideration in the queueing model.

In general, for a queueing model to be a realistic representation of a database system it

is imperative that the model represents the details of the transactions that affect the

performance.

2.7 The Exponential Service Time Assumption

The majority of distributed database queueing network models assume transaction

service time is exponentially distributed at the distributed database site [70]. For models

of centralized databases, we have found the majority assume transaction disk service

time is exponential [33, 35, 62, 65, 66, 68, 83, 105, 107-109]. Transaction time to

access a data object is assumed exponentially distributed in [106]. While [90] assumes

that the number of CPU instructions per transaction phase and lock holding time are

exponentially distributed. However, these models do not provide justification for this

assumption in the context of database systems and transactions. In this section, we

provide justifications for the exponential service time assumption in the context of

database systems.

When transaction internal details and processing are not modelled in the queueing

32

network model, i.e. the black box category, the justification for the distribution of

service times should be directed towards the overall expectation of the transaction

workload. Nicola and Jarke [70] provide a justification for the exponential service time

assumption for transactions when the database is represented as a single queueing node.

They build on the expectation that transactions that access a small or moderate number

of data objects occur more frequently than transactions referencing a large number of

data objects. For this to hold, the number of data objects accessed by a transaction must

follow a geometric distribution. Given that transaction service time is directly related to

the number of data objects referenced, then transaction service time can be assumed to

be exponentially distributed, which is the continuous equivalent of the geometric

distribution.

However, when transaction internal details and processing are modelled, i.e. the

transaction processing, size and phase categories, then justification of the exponential

service times needs to be directed to disk or data object access time. This, for both

cases, is the DB I/O page access time. Below we provide a justification for the

exponential service time for transactions when the queueing network model represents

the details of transaction processing.

The number of I/O DB pages to access a data object will depend on the type of the data

object accessed and its access method. For example, if the data object accessed is a

table, e.g. a full table scan, then the number of I/O DB pages can range from one page

for a small table to a very large number of pages for a large table. Similarly, if the data

object accessed is a row in a table, the number of I/O DB pages will depend on the

index used and the type of query. This number can again range from one for a

33

random record with a precise index; to a small number for an inefficient index or a

range search; to a large number when no index exists that satisfies the query. Clearly, a

small number of DB pages are more common than a large number DB pages. Thus, the

expected number of I/O DB pages will follow a geometric distribution. Hence, disk and

data object access service times for a transaction can be approximated by the

exponential distribution.

2.8 Database System Performance Evaluation Methodologies

Contrary to the vast amount of performance evaluation studies of individual DBMS

components and constructs, there is a lack of research into the overall performance

evaluation of database systems [104]. In this Section, we present database system

performance evaluation methodologies found in the literature. The majority of these

methodologies are based, intentionally or not, on Sevcik’s layered performance

evaluation methodology [92], described in the following Section.

2.8.1 A General Framework for Database System Performance

Prediction

To the best of our knowledge, the first approach which presented a performance

evaluation methodology for database systems using queueing networks was introduced

by Kenneth Sevcik [92]. Sevcik describes a framework for estimating workload

characteristics of a database system as input parameters to a queueing network model.

The framework was not directly related to a certain database model, but catered for the

data models at that time – mainly hierarchical and relational data models [92]. The

34

framework proposed the use of information from the logical and physical designs of the

database system, together with the characteristics of the DBMS to map the workload of

a database system onto a queueing network model.

Sevcik divides his framework into layers that map directly onto the steps in designing

and implementing a database system. The transformation from one layer to the next is

based on a database design decision. The framework consists of the following six layers

[92]: abstract world, logical database, physical database, data unit access, physical I/O

access and device loading layers (Figure 2.8).

In the abstract world layer, the data entities are specified with attribute range,

distribution and correlation. The transactions are denoted with frequency of occurrence

and relationships to entities. In the logical database layer, the output of the previous

phase is transformed to a representation depending on the choice of the logical data

model and data manipulation language. In the context of the relational model, this

would represent the data entities as relations with attributes and number of rows. For the

transactions, the structure and data manipulation language constructs are specified, in

addition to rates of occurrence and percentage of database entities used.

35

Figure 2.8 Sevcik’s database system performance evaluation framework.

Next, in the physical database layer, indexes are specified and a linkage is established

between relations and the physical files that hold the relations. Transactions are

specified procedurally, and each transaction type is characterized by its pattern of access

to the physical files.

In the data unit access layer, the physical database characteristics are transformed to be

more similar to the characteristics of the input parameters of queueing network models.

Relations and indexes allocated to the same physical data file are considered to be data

abstract world

logical database

physical database

data unit access

physical I/O access

device loading

- entities: attributes & count

- domains & distribution of attribute values

- activity templates & rates

- physical database structure

- record counts for data blocks

- transaction classes: operational sequences

- transaction classes: rates

- transaction classes: selectivity

- task classes: service demands

- task classes: arrival rates

- data units: sizes, record counts

- task classes: arrival rates

- task classes: access to data units

- logical database structure

- counts of record types

- transaction templates

- transaction classes: rates

- transaction classes: selectivity

- task classes: service times

- task classes: arrival rates

- task classes: throughput

- task classes: mean response time

- task classes: utilization by device

- task classes: mean queue length by device

performance evaluation

36

units and their storage size is determined. Transactions are specified as task classes,

characterized by arrival rates, average number of CPU instructions and average number

of accesses to each data unit. In addition, other concurrent workloads on the hardware

are classified as task classes. For all task classes, the degree of randomness of access to

the data units is specified on a scale of zero to one.

Then, in the physical I/O access layer, data units are distributed over the physical

devices and the service demands and arrival rates for each task class per physical device

is determined. Next, in the device loading layer, the service times for each task class per

physical device are calculated. Finally, the appropriate queueing network model is

solved by using the final outputs of the previous layers. Calculations of service demands

and service times depend on the environment of the database system, i.e. the hardware

and software configurations and the DBMS query optimizer and buffer management

strategies. The queueing network service demand distributions depend on the model

used to represent the hardware architecture.

2.8.2 Methodologies Based on Sevcik’s Layered Approach

The application of Sevcik’s general framework was extended to other performance

evaluation models based on his layering approach. These models are discussed next.

2.8.2.1 The Hierarchical DBMS Evaluation Model

The hierarchical DBMS evaluation model presented by Adams [1], is a five-layer

hierarchy that describes workload acquisition and characterization for relational

database systems. The five layers are: the enterprise, logical database design, logical

37

data organization, physical storage organization and underlying machine levels. With

transformations similar to those in [92], the layered model presents the steps to

gradually transform a database system description into input parameters for a queueing

network model. The database system workload characteristics are mapped onto a

queueing network model of the underlying hardware devices that the database system

will run on.

2.8.2.2 The Prophet Model

Casas and Sevcik [20] describe the Prophet model, which is an extension of [92], as a

layered database performance evaluation model proposed for general database data

models. The model consists of four levels: semantic representation, schema database,

internal database and system hardware. Workload characteristics for the database

system are transformed from level to level to provide performance measures to evaluate

design decisions. For the internal database layer a buffer management sub-model is used

to determine buffer hit rates. It is assumed that database block references are Bradford-

Zipf distributed [19] over the database blocks. The final stage is the performance

evaluation of the input parameters for a queueing network model of the system

hardware devices.

2.8.2.3 The MOSES Model and JOSHUA Prototype

Hyslop and Sevcik [43] propose an extension to [20], which is a layered model for the

relational data model, with a tool supporting a relational query optimizer. The model,

denoted as MOSES (Model of Sql-Equivalent Systems), was implemented using a

prototype tool: JOSHUA. The MOSES model consists of seven layers based on the

38

layers in [92] and an extension of [20], but tailored to the relational data model. The

seven layers are: the semantic model, schema database, query optimizer, internal

database, physical I/O, resource allocation and concurrent processes. The tool supports a

relational optimizer that transforms the relational algebra representation of the

transactions into an optimized access path. The database system is transformed layer by

layer to be mapped onto a queueing network model representing the device layout and

communication channels. Parameters defining the buffer hit rate, the device speed and

network latency are defined or calculated by the model. An analytical model is used to

estimate lock conflicts and concurrency.

2.8.2.4 A Relational Database Performance Analysis Tool

Salza and Tomasso [89] present a methodology and tool for the cost and performance

analysis of relational database applications. The methodology is based on specifying a

static workload and a dynamic workload for a queueing network model of the hardware

devices of a database computer system. The static workload consists of the database

structure: the tables, their cardinality and attributes. The dynamic workload comprises

the set of transaction types, their relative arrival rates, SQL definition, the selectivity of

the SQL predicates and the transaction CPU and I/O overhead. The tool has a query

optimizer simulator to calculate expected transaction demands and a buffering algorithm

to compute transaction buffer hit rates. The resource demands of the transactions in

terms of CPU and I/O demands are calculated and used as input to a queueing network

model of the computer system. The queueing network model is a multi-class product-

form open queueing network, with a customer class for each transaction type and

service centers for the CPU and disks. Salza and Renzitti [88] conducted similar work

39

for parallel database systems.

2.8.2.5 CLISSPE: CLIent/Server Software Performance Evaluation Tool

A more recent attempt to evaluate database system performance at a more detailed level

is a method for performance evaluation of client/server architectures using queueing

networks proposed by Menascé and Gomaa [67]. Client/server system performance is

calculated by estimating transaction service demands on the database through

calculating the amount of I/O perceived depending on the access path of the DBMS

[67].

The workload characterization and service demands for a queueing network model are

calculated by modelling the client/server system using the CLISSPE (CLIent/Server

Software Performance Evaluation) language [63]. The CLISSPE language provides the

developer with the ability to specify hardware and software configurations and

performance characteristics for clients, servers, networks, commercial DBMSs,

relational database tables and transactions in the client/server system, which is

systematically translated into service demands on the hardware resources [67]. Figure

2.9 gives an example of a CLISSPE specification for an Ethernet LAN with 100 clients,

one server and the EMP table residing on an Oracle DBMS on the server.

40

Figure 2.9 CLISSPE specification of a simple client/server application.

Database tables are specified in the CLISSPE language, by declaring their structure, and

their attribute range, selectivity, and cardinality, as well as the type of index on the

table. Transactions are specified by describing their functionality, with specific

commands for accessing and modifying database tables. The service demand for a

transaction is the sum of the service demands of all the database commands it contains,

Model Example

declaration ! declaring the hardware, software and database tables

client HR type= PCWinXP number= 100;

…..
server DeptServer type= UnixServer dbms= oracle DB_Buffsize= 100 num_CPUs = 2

 disk dsk001 seek= 0.02 latency= 0.0083 xfer_rate= 20

 disk dsk002 seek= 0.02 latency= 0.0083 xfer_rate= 10;

…
table emp num_rows= 200 row_size= 512 dbms= oracle

columns= (emp_no, emp_name, dept_name)

index= (key= (emp_no) key_size= 16 btree) ;

network DeptLAN type= Ethernet;

transaction assign rate= 100;

end_declaration;

mapping ! mapping the software onto the hardware

server DeptServer is_in network DeptLAN;

…
table emp in server DeptServe (dsk001 : 0.4, dsk002 : 0.6) ;

….
transaction List submitted_by client HR ;

end_mapping;

transaction List running_on server DeptServer ;

 if 0.3 then ! probability of execution

 select from emp where dept_name (5) ! five distinct dept names in emp table

 if 0.8 then

 loop 5

 select from emp where emp_name (200) ;

 end_loop;

 end_if;

 end_if;

end_transaction;

end_model;

41

in addition to the service demands of the procedural commands. A built-in model of a

DBMS query optimizer allows the CLISSPE compiler to estimate the service demands

for database transactions [67].

In this method, the performance characteristics of the database are taken from the

logical and physical designs. The CLISSPE language is able to model a simple database

system: tables without hierarchical relationships and SELECT and simple UPDATE

statements with indexes and access path calculations. Lock contention, active database

rules and referential integrity constraints are not covered in the specification of the

language.

2.8.2.6 Discussion

The previous performance evaluation methodologies are based on the same

methodology for estimating workload characteristics from a database system for use as

input parameters to a queueing network model, which represents the physical hardware

configuration of the final system. These methodologies provide for simple database

designs, mainly due to historical reasons [1, 20, 43, 92] (the methodologies were

proposed before the maturity of the relational model), or due to lack of representation of

modern DBMS functionality [67, 89], e.g. referential integrity and active database rules.

The main objective that defines the aforementioned performance evaluation tools and

methodologies is the definition of a technique to extract performance parameters for

queueing network models from the characteristics of database transactions and tables.

The concern is in providing these parameters for a queueing network model that

represents the hardware architecture of the evaluated system. The consequence is that

42

performance problems are identified on hardware devices, thereby giving a general

indication to the database designer of where the problem is: e.g. the bottleneck is on

Disk2, therefore review all transactions that access Disk2. This information, however, is

not beneficial to the database designer during the actual design process.

Furthermore, to explain these concepts, assume we have a database system composed of

two classes of transactions: t1 and t2. Transaction class t1 SELECTs from table r1 and

INSERTs into table r2. Transaction class t2 SELECTs from table r2 only. The

transactions arrive for execution at the database server with rate λ1 for t1 and λ2 for t2.

The database server is composed of a single CPU and two identical disks. The previous

methodologies apply a systematic transformation of the database system design, i.e. the

transaction and table specifications, to map the transaction class service demands on the

CPU and disks. The service demands are calculated depending on the amount of CPU

processing needed by each transaction to execute its SQL statements, and depending on

which disk the physical files for tables r1 and r2 reside. These transformations will result

in the queueing network model of Figure 2.10. For this queueing model, each

transaction class will have a specified service demand on the CPU and disks, in addition

to probabilities for visiting the CPU and disks.

43

Figure 2.10 A queueing network model for a database system using the methodologies in the

literature.

As can be seen from Figure 2.10, the transaction is the smallest evaluated granularity

which is represented as a customer class in a multi-class queueing network. The service

demands of the transaction are divided between the disks and the CPUs in the hardware

architecture. Response times will be evaluated at the level of the transaction; hence, the

models are incapable of evaluating at a smaller granularity, e.g. which SQL statement

caused the overall delay of the transaction. Moreover, the abstraction of the details of a

transaction as service demands on the hardware devices does not lend to the

straightforward representation and assessment of modern DBMS functionality, e.g.

referential integrity and active database rules. In particular, that these functionalities

affect the performance of other transactions in the database system.

In addition, performance evaluation is conducted at the final stage of the overall system

design process, after all design decisions have been bound at the upper layers of the

Database Server

CPU

Disk 1

Disk 2

arriving
transactions

44

database design process, even though enough information is available in the early

design stages to permit performance assessment. Hence, bottlenecks that are identified

on hardware devices are resolved through a reverse process, by backtracking to the early

software and database design artifacts to identify the cause of the performance problem,

and then redesigning and re-evaluating the performance model once more. This leads to

delays in feedback, complicates the performance evaluation methods and affects their

accurate application. Moreover, it questions the applicability of these methods in an

industrial setting.

2.8.3 An Approach for Parallel Relational Database System

Performance Evaluation

Tomov et al. [112] describe an analytical performance evaluation model for relational

parallel databases, targeted at DB administrators and not DB developers. In this method,

the authors categorize transactions based on their pattern of resource consumption on

the hardware architecture in a typical parallel DBMS. The methodology assumes the

availability of a partial query execution plan for each transaction accessing the DBMS.

This execution plan can be obtained from a DBMS query optimizer, and in that case, the

methodology takes advantage of the optimization strategy of the DBMS.

The method consists of three stages. The first stage is the preparation stage, in which

query execution plans are transformed into a set of low-level resource consumption

specifications that represent the execution of the query on the hardware architecture.

The output of this stage is a query resource usage profile for every node in the query

execution plan of a transaction, with regard to all hardware resources of the system, e.g.

45

number of visits, usage per visit and specification of parallel execution points. The

resource usage profile contains control structures and lower-level operations that

describe the sequential and parallel usage of hardware resources for each node in the

query execution plan. Figure 2.11(a) shows an example of a simple resource usage

profile for two transaction classes. The keyword loop represents the repeated sequential

usage of the set of resources, i.e. the expected number of visits.

T1

arrival rate = λ1

loop 5
resCPU 0.32 sec

resDisk1 0.6 sec

resDisk2 1.46 sec

T2

arrival rate = λ2

loop 10
resCPU 0.5 sec

resDisk1 1.0 sec

(a)

Figure 2.11 An example of (a) a resource usage profile and (b) the corresponsing queueing network

for two transaction classes.

The second stage is the estimation of the mean resource response time. In this stage the

prediction of the response time for the hardware resources of the system, e.g. CPUs and

disks, is based on all the query resource usage profiles identified in the previous step.

This is conducted through the evaluation of an open, multi-class queueing network in

T1 = 0.32

T2 = 0.5

T1 = 0.6

T2 = 1.0

T1 = 1.46

Disk2 CPU

Disk1

0.2

0.8

0.1

0.9

1

1 1

λ 1

λ 2

(b)

46

which the hardware resources represent FCFS servers. Each query resource usage

profile represents a customer class in the network, with the service demands and

transitions among the servers determined from the resource usage profile. From Figure

2.11(a), the transition probabilities for the customer classes are calculated from the

structure of the resource usage profiles for each transaction class, resulting in the

queueing network model of Figure 2.11(b).

The servers in the multi-class queueing network are considered a mixture of M/M/1 and

M/G/1 queues. A heuristic rule was formulated in [110] in which the dominant resource

in terms of utilization and relative visit ratio is designated as an M/G/1 queue. This

combination of M/M/1 and M/G/1 queues with the application of the heuristic rule was

shown to give similar results to that of more complicated approximation techniques for

non-product form queueing networks [110, 111]. Solving the queueing network gives

the waiting time for each hardware resource.

The final stage is the estimation of the mean query response time using the query

resource usage profile and the estimated response times of individual hardware

resources from the previous stage. This is accomplished by accumulating usage time as

the query resource usage profile is traversed, while taking into account intra-operator

parallelism.

A tool was developed to implement this methodology: STEADY (System Throughput

Estimator for Advanced Database sYstems) [120]. The method was validated against

measurements from actual DBMS systems running on parallel machines using simple

47

queries [30, 112].

2.8.3.1 Discussion

The authors explicitly stated that the approach is not intended for database developers,

but for database administrators. This is evident in that the modelling of the transactions

start with the execution plan for the queries that make up the transaction. This, in regard

to pre-implementation performance evaluation, implies at best a database system design

at its final stages or at worst a completed system. Nonetheless, we shall discuss this

approach based on its suitability for design time performance evaluation.

Unlike the previous methodologies, it allows for detailed representation of transaction

processing, thus allowing the determination of SQL statements that cause bottlenecks or

have unrealistic response times. Moreover, the transaction response times are calculated

in steps, separating the underlying hardware architecture response time from the

calculation of transaction response time. This allows for the evaluation of parallel

transaction execution without complicating the underlying queueing network model of

the hardware architecture.

However, the methodology suffers from the same drawbacks as the methodologies in

the previous section. Mainly, performance evaluation is conducted very late in the

development cycle and the methodology has been shown to apply to simple queries, as

query execution plans do not depict active database rules or referential integrity checks

[56, 73, 102].

48

2.9 Summary and Contribution

In this Chapter, we have contributed a categorization of the modelling of transactions in

database and DBMS queueing network models. We have shown that the majority of

queueing network models for databases and DBMS components fall into the transaction

processing category, which implies the ability of the performance analyst to be able to

determine the service demand of a transaction on the CPU and disk. This is not

straightforward, nor is it easily measureable, while at the same time constituting a

different domain for database designers. This reiterates the fact that the majority of

models target capacity planning or overall system properties in generic systems. Work

in detailed database transaction processing and behaviour is rarely studied.

In addition, we have contributed a justification for the exponential service time

assumption for transactions in queueing network models, when transaction details are

modelled.

With regard to the overview of the analytical performance evaluation methodologies

developed for database system performance evaluation, we have identified the main

shortcomings of these performance methodologies: the evaluation of overall database

system performance is modelled by mapping the database system workload onto the

hardware architecture of the system. Given that database systems are a major category

of software systems, more detailed performance evaluation models are needed to

correspond to the performance models available for different hardware architectures and

software components.

49

The contribution of this work, in contrast to [1, 20, 43, 67, 89, 92, 112], is in (1) the

representation of the transaction in the queueing model, and (2) the level at which the

performance evaluation is conducted. In our method, we model the transactions as a set

of phases – each phase corresponds to an access to a table as the transaction interacts

with the database. The probability of accessing a table depends on the procedural

structure of the transaction. Each table is modelled as a server in the queueing network.

Transaction service times are assumed to be exponentially distributed, with a mean

corresponding to the average number of I/O DB pages needed by the transaction on the

table. Other properties of the queueing network model depend on the modelled database

system characteristics. This work is similar to Tomov et al. [112], in that the sequential

procedural structure of the transaction is used to decide the routing of the transaction in

the queueing network. However, Tomov et al. assume service demands are on the

hardware devices, while we assume service demands are on the tables.

The work in this thesis is an improvement over [1, 20, 43, 67, 89, 92] in that the

transaction is modelled at a finer granularity, thus providing for feedback that is more

relevant and useful to the database designer. Moreover, unlike [1, 20, 43, 67, 89, 92,

112], detailed knowledge and modelling of the hardware architecture is not required.

Hence, database designs can easily be mapped onto the queueing network model. This

simplifies the approach for database designers and allows the application of the method

in early DB system design phases. Furthermore, this method provides for the explicit

representation of active database rules and referential integrity in the queueing network

models.

 50

Chapter 3

A Queueing Networks Approach for

the Performance Modelling of

Database Designs

3.1 Introduction

Database system performance is measured in terms of query and transaction response

time – the major indicator of a system capacity problem. After a database system has

exhibited a performance problem, the main effort of post-deployment performance

tuning is concentrated on the revision of the design of the database and the transactions

running against the database [51, 84, 95, 123]. Hence, if the flaws of the database design

had been discovered before system implementation and deployment, some of the post-

deployment performance problems would have been avoided.

In addition to the general acceptance of the high impact of the performance evaluation

of software systems in early development lifecycle phases, a performance evaluation

method for database designs has the following benefits:

 51

• prevents the propagation of design problems to the detailed design and

implementation stages of a database system;

• simplifies work for database designers as well as application developers;

performance evaluation feedback is relevant to the current state of the

development process, thereby preventing costly backtracking to change

requirements or application design;

• integrates performance evaluation in the database design process as well as the

software development process;

• contributes in minimizing post-deployment database system performance tuning.

Performance modelling of database designs is possible because transaction execution

costs can be estimated from the procedural structure of the transaction design, i.e. from

the SQL statements, the procedural statements and the structure and relationships

between tables, by using database query optimization and costing techniques [32, 51,

84].

At the design stage of database development, query optimization techniques are used as

guidelines in designing efficient queries and transactions. These techniques can be

adapted by a database designer to optimize a given SQL statement, at design time, in

isolation, but are very cumbersome to use when considering the effect of a query on the

performance of other transactions, or the effect of concurrent access to the database of

different transactions or different invocations of the same transaction. Being so, the

trend is to wait until database system deployment, when the effect of concurrency and

 52

the interaction of different transactions will be clearer, to optimize the performance of

problematic queries and updates [32, 84].

By using a performance model to evaluate the dynamic behaviour of the database

design, the database designer can assess the expected performance of the design, before

the physical deployment of the database system.

This Chapter describes the database design queueing network performance evaluation

model. The steps in building the model are introduced and the transaction service

demand calculation method is detailed. In addition, a formal specification of a database

design, a queueing network and the transformation mechanism from a database design

to the corresponding queueing network model is presented. The material in this Chapter

has been outlined in [77].

3.2 The Database Design Queueing Network Model

Consider a database design composed of a set of tables and the transactions that access

these tables. For each table the following is defined:

• the attribute data types and selectivity,

• the expected number of rows and row length,

• the index types and structure.

For each transaction the following is known:

 53

• the rate of occurrence or its percentage of the total transactions,

• the SQL statements that make up the transaction, i.e. the tables that are accessed,

the joined/retained attributes and their sequence and selectivity,

• the transaction structure, i.e. the procedural statements which enclose the SQL

statements.

In our database design performance model, we represent the interaction between tables

and transactions as a queueing system. In the queueing system, the tables will represent

the shared resources, i.e. the servers, and the transactions that use these resources are the

customers. The total time for a client to process procedural statements can be

aggregated for each transaction as the client think time. Network latency can be

represented as a delay resource in the queueing network.

Disk I/O cost is the dominant factor in query execution costs [42, 84], especially for

large databases [38]; this is the cost criteria used to calculate the service demands for

transactions for our queueing network models. We currently ignore SQL processing

times, SQL aggregate function processing times and temporary table in-memory

operations. Referential integrity processing and active database rule invocations are

covered in Chapters 5 and 6, respectively. Other performance evaluation inputs, e.g. the

number of transaction invocations and user population are available, or can be

calculated from the database system design [98].

To model relational algebra JOIN operations between tables, we represent transaction

access to these tables as sequential access, based on the order of access defined on the

 54

optimized query tree for the JOIN statement. Assuming DBMS query optimizers use

left-deep query trees [84] to decide on an execution plan for a transaction, the order of

table accesses for the JOIN operation will be the left-deep traversal of the JOIN

operation’s optimized query tree.

In the following sections, the process of modelling a database design using queueing

networks will be described.

3.2.1 Specifying Service Demands

The table and transaction specifications are used to calculate the number of DB I/O

pages accessed by the transaction, by applying query optimization and costing

techniques [32, 84]. A DBMS query cost optimizer builds a query tree to represent the

SQL query based on the most efficient method to evaluate the query and, in turn,

implement the relational operators. Efficiency is measured in DB I/O pages [32, 84].

Therefore, the optimized query tree provides the optimal access plan for the SQL query,

in terms of the most efficient order to access the tables, as well as the number of I/O DB

pages needed to retrieve the data.

A transaction may access more than one table or the same table more than once. Since

DB I/O pages are the cost factor of the transactions, in our model we use the worst case

scenario: all data pages are flushed from memory after a transaction completes its

operations on the data; i.e. buffering is on a transaction-by-transaction basis only and

skewed access to the data or large buffers are not accounted for. The consequence is that

the service demand calculated for a transaction will use the number of unique DB pages

accessed by the transaction.

 55

To complete the calculation of the service demands on the tables, table physical

structure (e.g. clustering and partitioning) and index types are used to calculate the final

service demands, i.e. the total time to access the calculated number of I/O DB pages,

using the formulae of the cost model described in [84] which is detailed in the next

Section.

3.2.1.1 The Service Demand Cost Model

The cost model we use to estimate the expected execution time of DB I/O for a SQL

statement is the cost model specified in [84]. The cost model is based on the underlying

file organization of the DB table: heap file with no index, sorted file, clustered B+ tree

file, clustered hash index file, heap file with an unclustered B+ index and heap file with

an unclustered hash index.

The operations that can be executed by a SQL statement on a table are:

• Sequential scans: fetch all rows of a table, i.e. fetch all the DB pages for a table

into the DB buffer.

• Search with equality selection: fetch all rows that satisfy an equality condition

on an index key field. This encompasses fetching the DB pages of a table that

contain the qualifying rows. However, we ignore the processing time to locate

the correct row within the fetched page.

• Search with range selection: fetch all rows satisfying a range condition on the

index key fields, once more ignoring processing times to locate the rows within

fetched pages.

 56

• Insert a new row: locate the DB page in which the row will be inserted, fetch

the DB page from disk, modify it to include the new row, then write it back to

disk.

• Update/delete an existing row: identify the DB page that contains the specific

row, fetch it from disk, delete/update the row, then write the DB page back to

disk.

For the cost model we use the following notations:

• B : denotes the total number of DB pages in a table, neglecting all header

information, i.e. DB pages are assumed to be fully loaded with no space

considerations for page or row headers.

• D : the average time to read or write a DB page to/from disk, i.e. average DB

page I/O time;

• F : the tree index fan-out, i.e. the average number of children for a non-leaf

node;

• R : ratio of the index entry size to the table row size.

The cost model is summarized in Table 3.1. In the next Section, the formulae are

derived for a heap file with an unclustered B+ tree index, which is the file organization

used in the experiments in the following Chapters. Details for the other file

organizations can be found in [84].

 57

Table 3.1 I/O DB page cost model for SQL operations.

Table Type Scan
Equality

Search
Range Search Insert

Update/

Delete

Heap BD 0.5BD BD 2D Search + D

Sorted BD Dlog2B D(log2B + # of matching pages) Search + BD Search + BD

Clustered tree index BD DlogFB D(logFB + # of matching pages) Search + D Search + D

Clustered hash index BD 1.2D 1.2D(# of hash keys in range) Search + D Search + D

Unclustered tree index BD(# of records per page + R) D(1+ logFRB) D(logFRB + # of matching records) D(3 + logFRB) Search + 2D

Unclustered hash index BD(# of records per page + R) 2D BD 4D Search + 2D

B: denotes the number of DB pages in a table neglecting header information, i.e. pages are fully loaded, D: the average time to read or write a DB page, F: the tree

index fan-out, R: ratio of the index entry size to the table row size

 58

Calculating I/O Cost for a Heap File with an Unclustered Tree Index [84]

Scan: To perform a full table scan, scan the leaf level of the index and fetch the

corresponding row for each index entry. The cost of reading all index entries is RBD.

Then we have to fetch all the corresponding rows. Given that this is an unclustered tree

index, each leaf entry can point to a different DB page. Therefore, the cost of fetching

all the rows is one I/O disk access per row, i.e. the number of rows per page × BD.

Thus, the total cost of a full table scan is BD(the number of records per page + R).

Search with equality on the index key: Locate the first page containing the desired

index entries by fetching all index pages from the root to the appropriate leaf; this takes

logFRB steps. Each step costs a disk I/O, thus the cost is: DlogFRB. The qualifying data

row will cost an additional disk I/O. Hence the total cost is: D(1+ logFRB).

Search with range selection: The first qualifying row in the range costs the same as a

search for a row with equality on the index key: D(1+ logFRB). Then index data entries

are retrieved sequentially until an entry that does not satisfy the range selection is found.

Each retrieved index entry incurs one I/O to fetch the corresponding row. This will cost:

(the total number of matching records – 1). Therefore, the total cost is: D(logFRB +

number of matching records).

Insert: When inserting a row, it is first inserted into the heap file at a cost of one disk

access to read the DB page and another to write the modified page to disk, i.e. 2D. In

addition, the corresponding data entry must be inserted into the index. The cost of

finding the correct leaf page is DlogFRB and writing the modified index page to disk

costs another I/O disk access. Hence, the total cost is: D(3 + logFRB).

 59

Update/Delete: The cost of locating the row in the table and locating the index entry is:

DlogFRB + D. To write the modified table and index pages to disk costs: 2D. Therefore

the total cost is: D(3 + logFRB): which is the cost of the equality search plus 2D.

3.2.2 Building the Queueing Network Model

The steps to build the queueing network model are:

Step 1: Specify queueing network model structure:

(a) Servers: each table in the database design is a server in the queueing network;

partitioned or replicated tables are represented as separate servers.

(b) Customer classes: each transaction type is considered as a different customer

class: transaction types that access identical tables with equal service demands

may be considered as one class.

(c) Scheduling discipline is FCFS: DBMS use queues to control access to data

objects; a new transaction is given access to a data object depending on the state

of the current transactions waiting to access or currently accessing the data

object. Depending on the concurrency control mechanism implemented by the

DBMS, access is either granted immediately to the new transaction, or it is

forced to wait behind the current transactions [84]. The effect of FCFS is in

forcing all transactions to wait.

Given that the queueing network model represents the whole database, a

transaction still inside the queueing network is analogous to a transaction still

 60

accessing the database, i.e. has not committed or aborted. In this scenario, when

transaction A finishes service at table X and enters table Y, any transaction

entering table X, is in fact accessing table X in parallel with transaction A.

Therefore, FCFS gives serial access at the transaction statement level (i.e. at the

lowest granularity of access: the row level in this case), but the model gives

parallel access at the transaction level.

(d) Queue length is infinite: this is based on the assumption that aborts due to

deadlocks are rare in DBMS [84] and system overload causes long response

times instead of transaction aborts.

Step 2: Specify performance characteristics for the customer classes:

(a) Transaction service demands on each server: the total cost of executing the

SQL statements in terms of I/O DB pages. Service times are assumed to be

exponentially distributed, with the mean being the service demands calculated

in the previous section. A justification for exponential service times was

provided in Chapter 2.

(b) Transaction rate: for open queueing networks: arrival rates, and for closed

queueing networks: transaction think times and number in system.

Step 3: Specify the routing table for the customer classes: i.e. the order in which the

transactions access their tables. This is derived from the procedural structure of the

transaction. In addition, for tables in JOIN statements the order of the left-deep traversal

of the optimized query tree is used.

 61

Step 4: Solve the queueing network model: depending on the complexity of the

queueing network model and the solution method used, the queueing network model

can specify the bottleneck tables, total access compared to other tables, and transaction

response times and response time distributions [74-76].

Table 3.2 summarizes the mapping between database design entities and queueing

network models.

Table 3.2 Mapping between database designs and queueing network models.

Database Design Queueing Network Model

table server

transaction type customer class

transaction rate of occurrence or percentage of total

transactions

arrival rate or number in system

cost of I/O DB pages needed to execute the SQL

statements of the transaction on a table

customer class service demand on a server

order of SQL statements in the transaction traversal path of the customer class

3.2.3 An Example

Consider a simple database design that consists of two heap organized tables:

EMP(emp_no, emp_name, dept_no) and DEPT (dept_no, dept_name) and two

transactions, New_Emp and List_Emp (Figure 3.1). Each transaction is composed of a

number of SQL statements and procedural statements. A queueing network model of

this database system design can be built, using the steps detailed in the previous section

and the cost model of Table 3.1.

 62

Transaction New_Emp

Input Parameters:

 (:emp_no_var, :emp_name_var, :dept_name_var)

Body

SELECT dept_no INTO :dept_no_var

FROM DEPT

WHERE dept_name=:dept_name_var;

INSERT INTO EMP

VALUES

 (:emp_no_var, :emp_name_var,:dept_no_var);

show_message(‘Operation Successful’);

End Transaction;

Transaction List_Emp

Input Parameters:

 (:dept_no_var)

Body

SELECT emp_no,emp_name

FROM EMP

WHERE dept_no=:dept_no_var;

Print_List_Procedure;

End Transaction;

Figure 3.1 Details of New_Emp and List_Emp transactions.

Each table in the database design is a server in the queueing network – from the

example, EMP and DEPT are the servers in the queueing network model. Each

transaction represents a customer class in the queueing network. The order in which the

tables are accessed by each transaction is: for the New_Emp transaction, DEPT then

EMP. The List_Emp accesses the EMP table only. This gives the queueing network

model of Figure 3.2.

Figure 3.2 A queueing network model for the database design example.

The service demand on each server (table) is equal to the total time to access the data,

which is the cost of the DB pages needed to be retrieved from disk. Neither table has an

index; therefore, we will use the heap table cost model. Assume the size of the EMP and

 63

DEPT tables in DB pages are twelve and two pages, respectively, and that the duration

of one disk access is arbitrarily chosen as one second. Table 3.3 shows the service

demands for each transaction on each table. Arrival rates (open network) or number in

system (closed network) can be derived from the database system design specifications

and the model can be solved.

Using the information from the results of the performance evaluation, the database

designer can decide whether the expected response time of the transactions is suitable. If

not, the other results, like the residence time, can be traced back to specific transactions

or tables. Changing the design properties will change the number of DB I/O pages

accessed by each transaction, thereby changing the result of the model: hence, it is

possible to experiment with different indexes, table sizes, table structures, etc.

Table 3.3 Service demands for the New_Emp and List_Emp transactions.

Service Demand (in seconds)
Transaction

EMP DEPT

New_Emp 12D=12 0.5BD=1

List_Emp 0.5BD=6 0

3.3 The Formal Specification

In this section, we present a formal specification of the process of modelling a database

design using queueing networks. To formally describe the queueing network database

design performance evaluation technique we will use the notation described in Table

3.4.

 64

Table 3.4 Formal specification notation.

Notation Usage

| x | cardinality

| choice

C class type

ci class instance

. class member access

<…> comments

(...) grouping

A[i] vector

A[i,j] matrix

[...]* repetition: 0 or more

[...]
+
 repetition: 1 or more

[...]
n
 repetition: n times

3.3.1 Database Design Formal Specification

A database design can be formally described as DBDesign = (R , T), where R is the set

of relations or tables and T is the set of transactions that access these tables. Define each

table ri in R as:

ri = (<ordered set of> A, I , [uniqueness constraint]
*
, expected number of rows,

average row length)

where

• A is the set of attributes of ri. For each attribute aj in A, the data type, range

and selectivity or probability distribution is defined.

 65

• I is the set of indexes of ri. For each index in in I, its type and structure is

defined.

If a table is denormalized into n partitions, it is represented as n different tables. If n

tables are clustered, they are represented as one table.

Define each transaction tj in T as:

tj = (<ordered set of> S
, Rate, tranDBpages[ri ∈R]

)

where S is the ordered set of statements of the transaction, and sk in S is defined as:

sk = (q | loop | branch, statDBpages[ri ∈R])

such that:

• q is a SQL statement and can be described as:

q = (type, <ordered set of> Access, DBpages[ri ∈R]),

and

o type is either a SELECT, UPDATE, INSERT or DELETE SQL

statement including the conditional clause parameters;

 66

o Access is the ordered set of tables (ri ∈R) that are accessed by q,

including the joined/retained attributes (aj ∈A.ri) and their sequence

and selectivity;

o DBpages[ir ∈R] can be described as: Let Bi be the number of DB I/O

pages calculated for the given SQL statement q on each table ri it

accesses; then the cost of accessing these DB pages is:

DBpages[ri ∈R] = Bi ×D,

where D is the mean time to read or write a DB page. The value Bi×D is

also known as the service demand. Details of the calculation method for

Bi×D were stated in Section 3.2.1.

• loop is a loop statement and is described as:

loop = (<ordered sequence of> q
+
, total-iterations).

• branch is a conditional branch statement, which is described as:

branch = [(<ordered sequence of> q
+
 , pi)]

total number of branches
,

where pi = probability of accessing branchi, ∑
=

|.|

1

branch

i

ip = 1.

The service demand or total cost of accessing the DB I/O pages calculated for the

statement sk, for all accessed tables, is statDBpages[ri ∈R]. This calculation depends

on the type of sk.

 67

• If sk = q, then statDBpages[ri∈R] can be described as: ∀ ri∈R,

statDBpages[ri ∈R] = q.DBpages[ri].

• If sk = loop, then statDBpages[ri ∈R] is:

∀ ri ∈R , statDBpages[ri∈R] = ∑
=

|.|

1

qloop

m

mqn .DBpages[ri],

where n is the number of loop iterations and qm is the m
th

 SQL statement in the

loop.

• If sk = branch, then statDBpages[ri∈R] can be described as:

∀ ri∈R, statDBpages[ri∈R] = ∑∑
==

|]._[|

11

qjbranch

m

m

n

j

q .DBpages[ri],

where n is the total number of branches and qm is the m
th

 SQL statement in the

branch. For simplicity, we assume that each SQL statement in a branch accesses

a different table.

For the transaction tj, Rate can be defined as:

Rate = arrival rate | (think time, [% of total transactions | average number in system]),

and tranDBpages[ri ∈R], which is the service demand of tj on each ri ∈R, can be

defined as:

 68

∀ ri∈R , tranDBpages[ri ∈R] =

 ∑ =

||

1

S

k ks .statDBpages[ri],

where sk is the k
th

 statement in the transaction.

For simplicity, in this specification, we are assuming that if a transaction accesses a

table in multiple SQL statements, these statements are in sequence. This is to

accommodate for a simple routing path algorithm (see Section 3.3.3) in which a

transaction class visits a server (table) only once. A general routing algorithm, in which

multiple visits to the same table are allowed can be specified by changing the customer

type for each distinct visit to a table, as it would be expected that the service demand,

i.e. the number of DB pages, would be different for each visit.

3.3.2 Queueing Network Model Formal Specification

The queueing network model can be formally described as:

QN = (Server
, C

, λ[C] , D [Server, C], P [C, Server, Server])

where:

• Server is the set of resources of the queueing network. Each serveri

∈Server is a FCFS service center with exponential service time and infinite

queue capacity.

• C is the set of customer classes seeking service in the queueing network.

 69

• λ [C] is a defined as: ∀ ci ∈C :

λ [i] = (<open queueing network> arrival rate | <closed queueing network> (think

time, [% of total transactions | average number in system])

• D [Server, C] is a |Server | × |C | matrix of the mean service demands of the

customers on the queueing network. D [Server, C] is defined as ∀ serveri

∈Server, ∀ cj ∈C , D [i, j] = the service demand of cj on serveri.

• P [C, Server, Server] is a |C | × |Server | × |Server | matrix of the path a

customer class traverses through the queueing network. P [C, Server, Server]

is defined as: ∀ ci∈C, ∀ serverj ∈Server, ∀ serverk ∈Server, P[i, j, k] is

the probability of ci moving to serverk when leaving serverj. In addition,

∀ ci∈C, for each serverj∈Server, [] 1,,
||

,1

=∑
≠=

Server

kjk

i kjcP .

3.3.3 Building the Queueing Network Model from the Database

Design

To transform the database design DBDesign = (R , T) into the queueing network QN =

(Server, C, λ[C] , D [Server, C], P [C, Server, Server]) apply the following:

• serveri = ri , ∀ serveri ∈Server, ∀ ri ∈R, where |Server| = |R|,

partitioned or replicated tables are represented as separate servers.

 70

• ci = ti , ∀ ci ∈C, ∀ ti ∈T, where |C | = |T |, transaction types that access

identical tables with equal service demands may be considered as one class.

• λ [i] = ti.Rate, ∀ λ[i] ∈ λ[C] , ∀ ti ∈T.

• D [i, j] = tj.tranDBpages[ri].

• P [i, j, k] is calculated using Algorithm 3.1. The algorithm takes as input the

formal description of each transaction tj in T and outputs the routing

probabilities for the corresponding customer class ci.

Algorithm 3.1: Calculating Customer Class Path

1: ∀ ti ∈T

2: Let current_table be the current table in the path of ti

3: current_table ← 0

4: Let branch[n] be a vector of rk ∈R , that holds the last table accessed by a

branch[i] of a branch statement, where n is the number of branches

5: branch[] ← nil (element by element assignment)

6: Let bran_table be the current table of a branch statement

7: bran_table ← 0

8: Let prev_branch[] be a vector that holds the initial value of branch[]

9: prev_branch ← nil

10: ∀ sj ∈ ti .S

11: case sj = q

12: ∀ rk ∈q.Access
13: if (rk is first table accessed by q) and branch[] ≠ nil then

 (connect the last tables accessed by the previous branch statement

 to the first table of this SQL statement)

14: for branch[1] to | branch[]| do

15: P[ci, branch[], rk] ← 1

16: end for
17: branch[] ← nil

18: current_table ← rk

 71

19: else

20: P[ci, current_table, rk]
 1 ← 1

21: current_table ← rk

22: end if

23: case sj = loop

24: ∀qm ∈loop

25: ∀ rk ∈ qm.Access
26: if (qm is first SQL statement) and (rk is first table accessed by qm)
 and branch[] ≠ nil then

 (connect the last tables accessed by the previous branch statement to

the first table of this SQL statement)

27: for branch[1] to | branch[]| do

28: P[ci, branch[], rk] ← 1

29: end for
30: branch[] ← nil

31: current_table ← rk

32: else

33: P[ci, current_table, rk]

← 1

34: current_table ← rk

35: end if

36: case sj = branch

37: prev_branch[] ← branch[]

38: for i in n do (total number of branches)

39: bran_table ← current_table

40: ∀qm ∈branchi

41: ∀ rk ∈ qm.Access
42: if (qm is first SQL statement) and
 (rk is first table accessed by qm) then

43: Let pi be the probability of accessing branchi

44: if prev_branch[] ≠ nil then

(connect the last tables accessed by the previous branch statement to

the first table of this branch’s SQL statement)

45: for prev_branch[1] to | prev_branch[]| do

46: P[ci, prev_branch[], rk] ← pi

47: end for

48: bran_table ← rk

49: else

50: P[ci, bran_table, rk] ← pi

51: bran_table ← rk

52: end if

53: else

54: P[ci, bran_table, rk] ← 1

55: bran_table ← rk

56: end if

57: branch[i] ← rk

58: end for
59: prev_branch ← nil

60: end case

1 P[ci, 0, rk] gives the entry server for ti. Unassigned values take the value zero.

 72

61: if sj is the last statement in ti then

62: if branch[] ≠ nil then

63: for branch[1] to | branch[]| do

64: P[ci, branch[], 0] ← 1

65: end for

66: else

67: P[ci, current_table, 0] ← 1

68: end if
69: end if (the transaction leaves the network after leaving the last table accessed

by the last SQL statement of the final statement)

3.4 Summary

In this Chapter, the database design queueing network performance evaluation model

was introduced. The cost model for calculating service demands for the transactions was

presented. A formal specification of the model and the transformation between database

designs and corresponding queueing network models was described. The formal

specification and its related algorithms can form the basis upon which to develop a tool

for implementing this performance evaluation technique.

 73

Chapter 4

Modelling the TPC-C Benchmark

4.1 Introduction

In order to validate and evaluate our database performance evaluation technique, we

compare the results of a queueing network model to the performance of an actual

database system. We have chosen the Transaction Processing Performance Council

(TPC) benchmark [113] as the database design specification. In this Chapter, we model

the TPC-C benchmark and compare the results of the queueing network database

performance model with the TPCC-UVA open source implementation of the TPC-C

benchmark developed at the University of Valladolid, Spain [59]. The purpose of the

database performance evaluation model is to provide the database designer with the

ability to compare between different database designs at database system design time. In

Section 4.6, we conduct a comparison between three different designs for the TPCC-

UVA system using the queueing network performance evaluation model. The results in

this Chapter have been published in [76, 77].

4.2 The TPC-C Benchmark

The Transaction Processing Performance Council (TPC) [114] TPC-C benchmark [113]

is an on-line transaction processing (OLTP) benchmark. It is written to be as

representative as possible to actual production applications and environments. However,

 74

the TPC-C benchmark has some shortcomings in its ability to represent actual OLTP

database applications and workloads: the benchmark’s accommodation of known

optimal memory buffering techniques cannot be replicated on real workloads [57], its

workload is considerably different from actual production workloads [41] and its I/O

reference behaviour does not replicate that of actual production systems [13, 42].

In spite of the aforementioned shortcomings, the TPC-C benchmark is still the de facto

standard benchmark for OLTP systems in industry, as well as being the only database

system benchmark with published results for different software and hardware

configurations. Moreover, the purpose of this work is to establish the ability to model

database designs using queueing networks; thereby, for our purposes, and in this

context, we believe that the TPC-C benchmark fulfils our needs and its shortcomings

can be viewed as particular properties or specifications of the database system under

evaluation.

The TPC-C benchmark revision 5.8.0 [113, 115] is used as an example of a database

system design. The TPC-C benchmark is a design specification of an order-entry

system. The benchmark portrays a wholesale supply company with a set of sales

districts and associated warehouses. Each warehouse covers 10 districts, each district

serves 3,000 customers. Warehouses hold stock of 100,000 items. Customers can place

new orders or enquire about the status of existing orders. Orders have an average of 10

items (order lines). For all order lines 1% are from items not in stock at the district’s

warehouse and must be supplied by another warehouse. The order-entry system

provides for the entering of customer payments, the processing of orders for delivery

and the identification of shortages in stock levels.

 75

The TPC-C specification is composed of [113]:

• 9 tables (WAREHOUSE, DISTRICT, CUSTOMER, HISTORY, ORDER,

NEW-ORDER, ORDER-LINE, STOCK, ITEM) and

• 5 transactions (New-Order, Payment, Order-Status, Delivery, Stock-Level).

A brief description of the transactions is in Table 4.1. The details of the design of the

tables, the relationships between them, the restrictions on the random data generation

for populating the database and the details of transaction functionality can be found in

[113]. Appendix A summarizes the transaction descriptions and Appendix B shows

table structure and data population specifications.

Table 4.1 Summary of the TPC-C benchmark transactions.

Transaction Description

Min. % of the

total number

of

transactions

Min Mean of

Think Time

Distribution

(seconds)

Min

Keying

Time

 (seconds)

New-Order Initiates a new order No minimum 12 18

Payment

Updates the customer’s balance

and reflects the payment on the

district and warehouse sales

statistics

43 12 3

Order-Status
Queries the status of a

customer’s last order
4 10 2

Delivery

Processes a batch of 10 new

orders, one for each district for a

given warehouse

4 5 2

Stock-Level

Counts the number of items in

the last 20 orders in a district

that fall below the stock

threshold

4 5 2

The mean keying and think times for the different transactions are specified in Table

4.1. In view of the fact that the TPC-C benchmark is emulating a real user environment,

it states that after transaction i finishes executing and returns the result to the user, the

 76

user processes that data (think time of transaction i) before choosing a new transaction

and keying in its parameters (keying time for transaction i+1).

The TPC-C benchmark also includes performance specifications related to the

implementation of the database system, such as [113]:

• regulation of the transaction mix during the measurement period (Table 4.1);

• database population and scaling requirements: Table 4.2 shows the scaling

requirements based on the number of warehouses in the database;

• randomness and probabilities of values for the initial database loading;

• the probability of operations on the database and the probability of choosing the

values of the parameters for the transactions;

• the required performance results.

Table 4.2 Scaling requirements for the TPC-C database.

Table Name
Cardinality

(in rows)

WAREHOUSE 1

DISTRICT 10

CUSTOMER 30,000

HISTORY 30,000

ORDER 30,000

NEW-ORDER 9,000

ORDER-LINE 300,000

STOCK 100,000

ITEM 100,000

 77

However, we incorporated the following assumptions to the TPC-C benchmark

specifications when modelling our queueing network performance models:

• The TPC-C benchmark specification states that:

o 1% of all New-Order transactions rollback, we assume that no

transaction rolls back;

o the Payment and Order-Status transactions are invoked 60% of the time

using the customer’s last name and 40% of the time using customer_id.

We calculated the I/O costs based on the average number of pages

needed for access by customer last name and customer_id.

• We use the average value for all parameters, e.g. the number of items in an order

is randomly selected between 5 and 15, we assume 10 items to an order.

4.3 The TPCC-UVA Implementation

The TPCC-UVA [59] is an open source implementation of the TPC-C benchmark for

the PostgreSQL database. TPCC-UVA is written in C language for Linux systems. It is

composed of a set of remote terminal emulators that simulate the behaviour of users

based on the TPC-C benchmark specifications. Figure 4.1 details the TPCC-UVA

architecture.

 78

Figure 4.1 The TPCC-UVA architecture.

The TPCC-UVA implementation is composed of modules that implement the TPC-C

benchmark system. They provide for all of the processing needed to measure the

performance of the system. These modules are [59]:

• The benchmark controller: this is the user interface of the TPCC-UVA system,

it allows for (1) the initial population of the database based on the selected

number of warehouses, (2) the launch of different experiments on the populated

database for different combinations of warehouses and districts by specifying the

ramp-up and measurement intervals and (3) provides the results summary in

report and graphical formats.

• The remote terminal emulator: each district specified in an experiment

represents a remote system terminal according to the TPC-C specifications.

There is one remote terminal emulator process per active terminal in the

benchmark execution. The remote terminal emulator simulates the activity of a

remote terminal (transaction generation, waiting times, keying times, etc) as

 79

specified in the TPC-C benchmark. In addition, each remote terminal emulator

logs the response times for all transactions executed by the terminal.

• The transaction monitor: all database requests from the remote terminal

emulators are sent to the transaction monitor, which in turn executes the queries

on the underlying database system.

The communication between the transaction monitor and the remote terminal emulators

is by a shared memory queue of pending transaction requests. The execution order of

transaction requests is FCFS. Semaphores are used to synchronize the read and writes of

the remote terminal emulator and transaction monitor to the queue. When a transaction

completes execution on the database the results are transmitted from the transaction

monitor to the issuing remote terminal emulator through a semaphore synchronized

shared-memory data structure.

Appendix B details the TPCC-UVA database table structures with the TPC-C data

population specifications. Appendix C illustrates the TPCC-UVA transactions’ SQL

source code.

For our performance evaluation experiments we have used the TPCC-UVA system as

provided. However, we incorporated the following modifications to the TPCC-UVA

implementation:

• we modified the implementation of the nonuniform random function used for

data generation [113] in the TPCC-UVA to use the parameter value C=1, to

simplify transaction service demand calculations (see Appendix B);

 80

• foreign key references in all tables were removed; this prevents the processing

overhead of foreign keys which is currently not represented in the model;

• the initial database check which read the whole database into the database buffer

was removed. This allowed the actual transactions to fill the buffer as needed,

hence the simulated model and the implementation begin from the same initial

state: an empty buffer;

• the implementation of the New-Order transaction was edited to place SQL

statements accessing the same table in sequence (this affected only one SQL

query accessing one table); this did not change the functionality of the

transaction, but simplified the design of the queueing network model.

The TPCC-UVA experimental platform was a Pentium 4 Dual Core Processor at 2.4

GHz with 2GB RAM and 150 GB HD running Linux. All software has the default

configuration and the TPCC-UVA and PostgreSQL database version 8.3.3 [102] were

installed as stated in [58], with the modifications stated above.

4.4 Building the Performance Evaluation Model

To build the queueing network model for the TPCC-UVA database design, the design

specification of the TPC-C benchmark was used to specify the probability of operations

on the database and the distribution of the parameter values for the transactions.

 81

4.4.1 Measuring DB Page Access Time

In order to collect information on the time it takes the kernel to fulfil a DB page request

we employ the Linux strace utility to trace read and write system calls to database

files between the PostgreSQL database engine and the Linux kernel. The strace utility

provides the time duration to fulfil these system calls. The arithmetic mean is taken of

the times to fulfil all the read and write system calls to database files during the

experiment measurement interval. This gives the mean DB page access time, which

accounts for actual DB page requests; any pages already in the DB buffer before the

beginning of the measurement interval will not be accounted for.

Given that the mean DB page access time is calculated during the measurement interval

only, it will give the mean kernel response time when the TPCC-UVA system is in the

steady state.

4.4.2 Calculating Transaction Service Demands

The database initial loading size is based on the database population specification of the

TPC-C benchmark [113]. We have used data for 100 warehouses, each with 10 districts,

i.e. 100x10 clients (Table 4.3). This is the initial configuration for all our experiments

irrespective of the actual number of clients used in an experiment and is used to

calculate service demands for the transactions for the queueing network model. TPCC-

UVA actual data will vary slightly due to random generation.

 82

Table 4.3 Initial loading size for the TPCC-UVA queueing network model.

Table Name
Cardinality

(in rows)

Rows Per
Pagea

(in rows)

WAREHOUSE 100 93

DISTRICT 1,000 87

CUSTOMER 3,000,000 13

HISTORY 3,000,000 179

ORDER 3,000,000 342

NEW-ORDER 900,000 1,024

ORDER-LINE 30,000,000 152

STOCK 10,000,000 27

ITEM 100,000 100
aPostgreSQL DB page size is 8 Kbytes. DB pages are fully loaded.

Using query optimization techniques and the cost model in Table 3.1, the number of DB

pages needed by each TPCC-UVA transaction is calculated from the tables, index

structures and SQL statements described in the source code. In addition, from the

TPCC-UVA implementation, the process in which the data was initially generated and

loaded into the database was taken into account, e.g. some tables were loaded in key

sort order. This gives the values in Table 4.4. Appendix C details the transaction SQL

statements and the corresponding formulas used to derive the values in Table 4.4.

The values in Table 4.4 will be used for all our experiments regardless of the number of

clients or the length of the execution run. This is due to the fact that the TPCC-UVA

transaction access to data does not depend on the table size.

Table 4.4 Number of I/O DB pages for the TPCC-UVA transactions.

number of I/O DB pages
Transaction

I II III IV V VI VII VIII IX

New-Order 0.75 3.04 2.33 - 4.34 3.98 47.6 44.7 17.1

Payment 2.75 3.04 152.93 2 - - - - -

Order-Status - - 151.73 - 10.34 - 2.76 - -

Delivery - - 43.3 - 43.4 39.8 47.6 - -

Stock-Level - 1.04 - - - - 21.76 201.47 -

I = WAREHOUSE, II= DISTRICT, III= CUSTOMER, IV= HISTORY, V= ORDER, VI= NEW-ORDER, VII=

ORDER-LINE, VIII= STOCK, IX= ITEM

 83

One exception is the Order-Status transaction, in which the number of DB pages

accessed on the ORDER table depends on the number of New-Order transactions

executed; we have incorporated this in the queueing network model simulation (details

in Appendix D). The value shown in Table 4.4 for the Order-Status transaction on the

ORDER table is the initial value.

The service demand of a transaction on the relevant table is the calculated number of

I/O DB pages needed by the transaction on that table × the mean time to access a DB

page. Therefore, for the TPCC-UVA transactions, their service demands will be the

values in Table 4.4 multiplied by the mean DB page access time calculated in the

previous Section.

4.4.3 Building the Queueing Network Model

Applying the steps described in Section 3.2, the queueing network model for the TPCC-

UVA database system has 9 servers (tables) and 5 customer classes (transactions) with

service demands on each server, as calculated in the previous Sections.

From the TPCC-UVA transaction structure, the order in which each transaction accesses

its tables is used to define how it will traverse the queueing network. In addition, the

TPCC-UVA architecture has one transaction monitor that receives all requests from the

remote terminal emulators, which are queued for service by order of arrival [59]. As a

consequence, there is only one transaction being processed in the DB at a time. The

transaction monitor is represented as a queue without a service center in the queueing

network model. A customer leaves the transaction monitor queue and begins service in

the database only after the last customer finishes service. Hence the database acts as the

 84

service center for the transaction monitor queue. This gives us the multi-class queueing

network of Figure 4.2.

For all our experiments, the queueing network model was solved using simulation using

QNAP2, a discrete-event simulator for queueing networks [82]. The details of the

QNAP2 model descriptions are in Appendix D.

Figure 4.2 TPCC-UVA queueing network model.

4.5 Experimental Results

The TPCC-UVA system was configured to run with 100 warehouses, each with 2

districts, i.e. 100x2 clients. The ramp-up period was 20 minutes and the measurement

interval 2 hours, as specified by the TPC-C benchmark [113]. The database was

initialized with data for 100x10 clients, as stated in Section 4.4.2. To measure the mean

 85

DB page access time, the TPCC-UVA was run 5 different times (using the strace utility

as stated in Section 4.4.1). The mean DB page access time of all 5 runs was used to

parameterize the queueing network model.

To measure the TPCC-UVA transaction performance metrics the system was run

another 5 times to collect response times for the transactions; these were averaged and

compared to the simulation results. The 95% confidence intervals were obtained for the

system and simulation results, but these were too tight to show on the graphs.

4.5.1 Transaction Mean Response Time and Mean Throughput

For the overall mean transaction response time the model underestimated the mean

transaction response times by an average of 18.4% and hence, overestimated the

performance. However, for mean response times per minute the model gave a better

approximation. Figure 4.3(a) details the measured and modelled mean response times

per minute during the measurement interval for the New-Order transaction. It can be

seen from Figure 4.3(a) that the model underestimates the mean response time for the

New-Order transaction; however, towards the end of the measurement interval, the

measured response time slowly approached the modelled response time. This is

apparent in Figure 4.3(b), in which the measurement interval was extended to 4 hours

for one test run. In Figure 4.3(b) the measured system has become stable demonstrating

good agreement between measured and modelled response times per minute.

 86

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

(a)

M
e
a
n
 R

e
sp

o
n
se

 T
im

e
 (

se
c
)

Measurement Model

0

10

20

30

40

50

60

120 140 160 180 200 220 240

Measurement Interval (min)

(b)

M
e
a
n
 R

e
sp

o
n
se

 T
im

e
 (

se
c
)

Measurement Model

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100 120

Measurement Interval (min)

(c)

N
u

m
b
e
r

o
f

T
ra

n
sa

c
ti

o
n
s

Measurement Model

0

20

40

60

80

100

120

140

160

180

120 140 160 180 200 220 240

Measurement Interval (min)

(d)

N
u
m

b
e
r

o
f

T
ra

n
sa

c
ti

o
n

s

Measurement Model

Figure 4.3 Comparison of the New-Order transaction mean response time per minute for a

measurement interval of (a) 2 hours (b) 4 hours and mean throughput per minute for a measurement

interval of (c) 2 hours (d) 4 hours for 100x2 clients.

The convergence of the measured system to the model is due to the fact that initially the

system buffer is empty and as time passes it is populated by the transactions. Therefore,

after a certain time, frequently accessed pages are resident in the buffer for all

transactions, e.g. the WAREHOUSE and DISTRICT tables, which is when the system

starts to stabilize and converge to the model.

Figure 4.3(c) compares the mean throughput per minute for the New-Order transaction

during the 2 hour measurement interval. Since the model expressed shorter response

times, it shows higher throughput than the measured throughput, giving an

overestimation for the measured throughput. In Figure 4.3(d), in which the measurement

interval was extended to 4 hours for one test run, the modelled throughput per minute

 87

gives a better approximation of the measured throughput per minute. Results for the

other transactions are similar.

4.5.2 Scalability

We have shown that the model is able to capture the steady-state performance of the

TPCC-UVA system, giving a lower bound on the mean response time per minute of the

transactions. From the results of the previous section, the TPCC-UVA system begins to

stabilize about 120 minutes into the measurement interval. Therefore, for the following

experiments, the ramp-up period was increased from 20 to 140 minutes and the

measurement interval was one hour.

To establish the scalability of the model for different workloads the TPCC-UVA system

was run 3 times to measure the mean DB page access time, and then it was run an

additional 3 times to collect response times for the transactions. The experiment was

conducted for 100 (100x1), 200 (100x2) and 300 (100x3) clients.

Figures 4.4 to 4.8 show the mean response time per minute for the one-hour

measurement interval for all the transactions for these different workloads. It can be

seen as the workload increases the system takes longer to stabilize. This is due to the

increase in I/O activity of the TPCC-UVA database with the increase in the workload.

The TPCC-UVA database index design forces a transaction to read large amounts of

data into the buffer. This data is inadequate for other transactions due to the data

distribution, e.g. customer data is unique for each district in each warehouse. Therefore,

as the number of clients increases the amount of distinct data for each transaction

increases, thereby decreasing the buffer hit rate per transaction.

 88

Prior to system stability, the modelled mean response time per minute gives the lower

bound on transaction response time per minute, irrespective of the workload. However,

as the system shows signs of stability, the measured mean response time per minute

approaches the modelled mean response time per minute. Therefore, the model scales to

capture the steady state performance of the TPCC-UVA transactions.

Table 4.5 shows the measured and modelled mean response time per transaction for the

different workloads calculated during the measurement interval. From Table 4.5 the

model underestimates the mean response time for small workloads; this is due to the

fact that processing time is the principal cost factor for transaction response time for

small workloads. However, as the workload increases, and consequently the DB size

increases, disk I/O time becomes the dominant cost factor, hence the model gives more

accurate approximations. This is evident for the Stock-Level transaction. The Stock-

Level transaction performs an SQL JOIN that is processed by the database using

temporary tables [84], this is not considered in the cost metric for the model when

calculating transaction service demands. Therefore, when processing time was

prevalent, the model gave a high error rate for the Stock-Level transaction, relative to

other transactions, however when disk I/O became prevalent the model accuracy rate

increased for the Stock-Level transaction.

 89

0

1

2

3

4

5

0 10 20 30 40 50 60

Measurement Interval (min)

100x1

M
e
an

 R
e
sp

o
n

se
 T

im
e
 (

se
c)

Measurement Model

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x2

M
e
a
n
 R

e
sp

o
n

se
 T

im
e
 (

se
c
)

Measurement Model

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x3

M
e
an

 R
e
sp

o
n

se
 T

im
e
 (

se
c)

Measurement Model

Figure 4.4 Comparison of the New-Order transaction mean response time per minute for different

number of clients.

0

1

2

3

4

5

0 10 20 30 40 50 60

Measurement Interval (min)

100x1

M
e
an

 R
e
sp

o
n
se

 T
im

e
 (

se
c)

Measurement Model

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x2

M
e
an

 R
e
sp

o
n

se
 T

im
e

(s
ec

)

Measurement Model

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x3

M
e
an

 R
e
sp

o
n

se
 T

im
e

(s
ec

)

Measurement Model

Figure 4.5 Comparison of the Payment transaction mean response time per minute for different

number of clients.

 90

0

1

2

3

4

5

0 10 20 30 40 50 60

Measurement Interval (min)

100x1

M
e
an

 R
e
sp

o
n

se
 T

im
e

(s
ec

)

Measurement Model

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x2

M
e
an

 R
e
sp

o
n

se
 T

im
e

(s
ec

)

Measurement Model

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x3

M
e
an

 R
e
sp

o
n

se
 T

im
e

(s
ec

)

Measurement Model

Figure 4.6 Comparison of the Order-Status transaction mean response time per minute for different

number of clients.

0

1

2

3

4

5

0 10 20 30 40 50 60

Measurement Interval (min)

100x1

M
e
an

 R
e
sp

o
n
se

 T
im

e
 (

se
c)

Measurement Model

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x2

M
e
an

 R
e
sp

o
n
se

 T
im

e
 (

se
c)

Measurement Model

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x3

M
e
an

 R
es

p
o

n
se

 T
im

e
(s

ec
)

Measurement Model

Figure 4.7 Comparison of the Delivery transaction mean response time per minute for different

number of clients.

 91

0

1

2

3

4

5

0 10 20 30 40 50 60

Measurement Interval (min)

100x1

M
e
an

 R
e
sp

o
n

se
 T

im
e

(s
ec

)

Measurement Model

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x2

M
e
an

 R
e
sp

o
n

se
 T

im
e

(s
ec

)

Measurement Model

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x3

M
e
an

 R
e
sp

o
n

se
 T

im
e
 (

se
c)

Measurement Model

Figure 4.8 Comparison of the Stock-Level transaction mean response time per minute for different

number of clients.

Table 4.5 Comparison of transaction mean response times for different number of clients.

Response

Time (sec)

Response Time

(sec)
of

Clients
Trans

Measured Modelled

% Error

per trans

% Overall

Error

New-Order 0.57 0.37 33.93

Payment 0.47 0.41 12.01

Order-Status 0.58 0.46 20.42

Delivery 0.73 0.43 40.63

100x1

Stock-Level 0.86 0.46 46.68

30.74

New-Order 18.28 16.25 11.08

Payment 18.20 16.29 10.50

Order-Status 18.31 16.27 11.13

Delivery 18.36 16.11 12.26

100x2

Stock-Level 18.79 16.24 13.59

11.71

New-Order 41.56 38.26 7.95

Payment 41.49 38.29 7.72

Order-Status 41.56 37.91 8.8

Delivery 41.62 38.01 8.69

100x3

Stock-Level 42.05 38.34 8.82

8.39

 92

4.6 A Performance Comparison of Different Database

Designs

The purpose of the database performance evaluation model is to provide the database

designer with the ability to compare different database designs at database system

design time. In this Section, we compare three different designs for the TPCC-UVA

system.

4.6.1 The Database Design Descriptions

Using the database design of the TPCC-UVA application, we configured three different

database designs to achieve different DB I/O page activity. This was conducted by

changing the indexes on the CUSTOMER table given that it is the most accessed table.

The three designs are:

• I1: primary B-tree index on (warehouse_id, district_id, customer_id), and

secondary b-tree index on (warehouse_id, district_id, customer_lastname);

• I2: B-tree index on (warehouse_id, district_id, customer_id), this is the original

design of the TPCC-UVA;

• I3: B-tree index on (warehouse_id, district_id).

The indexes were chosen with regard to the way the transactions accessed the

CUSTOMER table; the Payment and Order-Status transactions are invoked 60% of the

time using the customer’s last name and 40% of the time using customer_id, the rest of

 93

the transactions access the CUSTOMER table by customer_id, while the Stock-Level

transaction does not access the CUSTOMER table.

These changes seem simple, but as can be seen in the following Section, they have a

profound effect on the performance of the overall system. In the following Sections, we

show how the TPCC-UVA database design was modelled for the different database

designs: I1, I2, and I3. The measurement of DB page access time was conducted as

specified in Section 4.4.1.

To calculate the service demands for the queueing network models for the I1, I2, and I3

database designs, we have used the same assumption as in Section 4.4.2 including the

database initial loading size. The number of DB I/O pages for the designs I1, I2, and I3

differ from those in Table 4.4 only for the CUSTOMER table; this is shown in Table

4.6. The values in Table 4.6 will be used for all our experiments regardless of the

number of clients or the length of the execution run, as stated in Section 4.4.2. The

service demand of a transaction on the relevant table is the calculated number of I/O DB

pages needed by the transaction on that table × the mean time to access a DB page.

Therefore, for the three designs, the transaction service demands will be the values in

Table 4.6 multiplied by the mean DB page access time.

The queueing network performance model has the same structure as that of Figure 4.2

since the designs I1, I2, and I3 differ from the original TPCC-UVA design in service

demands, not in transaction processing or order of access to the tables.

For all these experiments, the queueing network model was solved using simulation

using QNAP2. In addition, the experimental setup was that of Section 4.3.

 94

Table 4.6 Number of I/O DB pages for the TPCC-UVA transactions.

number of I/O DB pages

III Transaction
I II

I1 I2 I3
IV V VI VII VIII IX

New-Order 0.75 3.04 2.33 2.33 251.26 - 4.34 3.98 47.6 44.7 17.1

Payment 2.75 3.04 6.89 152.93 253.26 2 - - - - -

Order-Status - - 4.89 151.73 251.26 - 10.34 - 2.76 - -

Delivery - - 43.3 43.3 2532.6 - 43.4 39.8 47.6 - -

Stock-Level - 1.04 - - - - - - 21.76 201.47 -

I = WAREHOUSE, II= DISTRICT, III= CUSTOMER, IV= HISTORY, V= ORDER, VI= NEW-

ORDER, VII= ORDER-LINE, VIII= STOCK, IX= ITEM

4.6.2 Experimental Results

The TPCC-UVA system was configured to run with 100 warehouses, each with 2

districts, i.e. 100x2 clients for each design. The measurement interval was 120 minutes

as specified by the TPC-C benchmark in which the system is in steady state. To

determine the steady state for each design, the system was run with a ramp-up period of

20 minutes and a measurement interval of 6 hours for the I1 design and a ramp-up

period of 30 minutes and a measurement interval of 7 hours for the I3 design. The mean

response time per minute was plotted for the New-Order transaction. Figures 4.9 and

4.10 show the resulting graphs.

From Figures 4.9 and 4.10 the steady state for the two designs I1 and I3, is reached with

a ramp-up period of 100 and 170 minutes, respectively. For I2, the steady state is based

on the results of the previous Section in which the steady state is reached with a ramp-

up period of 140 minutes. The database was initialized with data for 100x10 clients, as

stated in Section 4.4.2. To measure the mean DB page access time, the TPCC-UVA was

run 3 different times for each design (using the strace utility as stated in Section 4.4.1).

The mean DB page access time of all 3 runs was used to parameterize the queueing

network model for each design.

 95

0

10

20

30

40

50

60

70

0 40 80 120 160 200 240

Measurement Interval (min)

M
e
a
n

 R
e
sp

o
n
se

 T
im

e
 (

se
c
)

Figure 4.9 New-Order transaction mean response time per minute for a ramp-up period of 20 minutes

and measurement interval of 4 hours for 100x2 clients for the I1 database design. The TPCC-UVA

system starts to stabilize 80 minutes into the measurement interval, i.e. 100 minutes from the beginning

of the system run.

0

20

40

60

80

100

120

140

160

180

0 60 120 180 240 300 360 420

Measurement Interval (min)

M
ea

n
 R

e
sp

o
n

se
 T

im
e
 (

se
c
)

Figure 4.10 New-Order transaction mean response time per minute for a ramp-up period of 30 minutes

and measurement interval of 7 hours for 100x2 clients for the I3 database design. The TPCC-UVA

system starts to stabilize 140 minutes into the measurement interval, i.e. 170 minutes from the

beginning of the system run.

To measure the TPCC-UVA transaction performance metrics the system was run

another 3 times, for each design, to collect response times for the transactions. The

response times were averaged and compared to the simulation results.

 96

Figures 4.11 – 4.15 detail the measured and modelled mean response times per minute

during the measurement interval for all the transactions for these three designs. It can be

seen from Figures 4.11 – 4.15 that the best design, in terms of response time, is I1 and

the worst design is I3. This is an intuitive result, since I1 uses indexes that are tailored to

the transaction usage. I2 uses only one index; this forces the transactions that access the

CUSTOMER table by customer_lastname to read all the DB pages of the relevant

district from the CUSTOMER table. This is due to the fact that customer data is unique

for each district in each warehouse. I3 forces the transactions to access all the customer

pages for the relevant district on any access to the table, whether by customer_id or

customer_lastname.

From Figures 4.11 – 4.15, as well as from Table 4.7, it can be seen that the performance

model gives an excellent approximation for the mean response time per minute for the

transactions for I1 (8% prediction error), but fails to achieve the same accuracy for I2

(23% prediction error) and I3 (25% prediction error), in which it gave the lower bound

on response time. Nonetheless, these results are acceptable at design time.

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
e
sp

o
n

se
 T

im
e
 (

se
c)

Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

es
p
o
n
se

 T
im

e
 (

se
c
) Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

e
sp

o
n
se

 T
im

e
(s

e
c)

Measurement Model

(a) (b) (c)

Figure 4.11 Comparison of the New-Order transaction mean response time per minute for 100x2

clients for the design (a) I1 (b) I2 (c) I3.

 97

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
e
sp

o
n
se

 T
im

e
(s

ec
)

Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

es
p

o
n

se
 T

im
e

(s
ec

)

Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

e
sp

o
n
se

 T
im

e
(s

ec
)

Measurement Model

(a) (b) (c)

Figure 4.12 Comparison of the Payment transaction mean response time per minute for 100x2 clients

for the design (a) I1 (b) I2 (c) I3.

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

es
p
o

n
se

 T
im

e
(s

ec
)

Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

es
p

o
n

se
 T

im
e

(s
ec

) Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
e
sp

o
n

se
 T

im
e

(s
ec

) Measurement Model

(a) (b) (c)

Figure 4.13 Comparison of the Order-Status transaction mean response time per minute for 100x2

clients for the design (a) I1 (b) I2 (c) I3.

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

es
p

o
n
se

 T
im

e
 (

se
c)

Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

es
p
o
n
se

 T
im

e
 (

se
c
) Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

es
p

o
n

se
 T

im
e

(s
e
c)

Measurement Model

(a) (b) (c)

Figure 4.14 Comparison of the Delivery transaction mean response time per minute for 100x2 clients

for the design (a) I1 (b) I2 (c) I3.

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

e
sp

o
n
se

 T
im

e
(s

e
c)

Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
e
sp

o
n
se

 T
im

e
(s

ec
) Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
a
n
 R

es
p
o
n
se

 T
im

e
 (

se
c
) Measurement Model

(a) (b) (c)

Figure 4.15 Comparison of the Stock-Level transaction mean response time per minute for 100x2

clients for the design (a) I1 (b) I2 (c) I3.

 98

Table 4.7 Comparison of transaction mean response times for different designs.

Response Time

(sec)

Response Time

(sec)
DB

Design
Trans

Measured Modelled

% Error

per trans

% Overall

Error

New-Order 8.32 7.61 8.57

Payment 8.25 7.48 9.33

Order-Status 8.30 7.60 8.37

Delivery 8.46 7.59 10.36

I1

Stock-Level 8.13 7.66 5.79

8.48

New-Order 19.10 14.70 23.04

Payment 19.00 14.72 22.53

Order-Status 19.11 14.75 22.81

Delivery 19.15 14.67 23.36

I2

Stock-Level 19.71 14.77 25.05

23.36

New-Order 40.15 30.35 24.42

Payment 39.95 30.18 24.45

Order-Status 40.04 30.18 24.63

Delivery 40.54 30.7 24.27

I3

Stock-Level 40.83 30.07 26.34

24.82

4.6.3 Analysis

The performance model uses the mean DB page access time as a metric to calculate

transaction response times, this is based on assuming that transaction access to DB

pages is random; i.e. sequential access is rare. The response time of a transaction

depends on the sequence of its DB page access requests and the time needed to fulfil

these requests.

In order to investigate the effect of the TPCC-UVA database design change, we

analyzed the DB page access trace (from the strace utility) for each of the three designs

during the measurement interval. For each design, we looked at a trace for one run, in

which we took a random sample of DB page access times for 4500 DB pages in

sequence. Given that the TPCC-UVA has one transaction in the database at a time, this

trace represents a sequence of transaction requests for table and index DB pages from

disk. This is illustrated in Figure 4.16. In Figure 4.16 (and Figure 4.17), a DB page with

 99

a long access time represents random I/O, while very short access times represent

sequential I/O.

0

0.01

0.02

0.03

0.04

0.05

0 450 900 1350 1800 2250 2700 3150 3600 4050 4500

DB page order

D
B

 p
ag

e
 a

cc
es

s
ti

m
e
 (

se
c)

0

0.01

0.02

0.03

0.04

0.05

0 450 900 1350 1800 2250 2700 3150 3600 4050 4500

DB page order

D
B

 p
a
g

e
ac

c
es

s
ti

m
e

(s
ec

)

(a) (b)

0

0.01

0.02

0.03

0.04

0.05

0 450 900 1350 1800 2250 2700 3150 3600 4050 4500

DB page order

D
B

 p
a

g
e

 a
c

c
e

ss
 t

im
e

 (
se

c
)

 (c)

Figure 4.16 DB page access trace for 100x2 clients for the design (a) I1 (b) I2 (c) I3.

 100

0

0.01

0.02

0.03

0.04

0.05

0 420 840 1260 1680 2100 2520 2940 3360 3780 4200

DB page order

D
B

 p
ag

e
 a

c
c
e
ss

 t
im

e
 (

se
c
)

0

0.01

0.02

0.03

0.04

0.05

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

DB page order

D
B

 p
a
g
e
 a

c
ce

ss
 t

im
e
 (

se
c
)

(a) (b)

0

0.01

0.02

0.03

0.04

0.05

0 420 840 1260 1680 2100 2520 2940 3360 3780 4200

DB page order

D
B

 p
a
g

e
 a

cc
e
ss

 t
im

e
 (

se
c
)

 (c)

Figure 4.17 CUSTOMER table DB page access trace for 100x2 clients for the design (a) I1 (b) I2 (c) I3.

As can be seen from Figure 4.16(a), transaction access to DB pages is random, with few

sequential accesses for I1, this is expected due to the index design. For I2, Figure

4.16(b), access is more evenly divided between random and sequential access.

However, from Figure 4.16(c), for I3, access is mostly sequential with few random

accesses. This is apparent in Figure 4.17, in which a random sample of 4200 DB page

access times from a trace of the transaction requests to the CUSTOMER table and its

indexes for the three designs is shown. The effect of index design change can be seen, in

which for I1 access to the CUSTOMER table is random with rare sequential access

(Figure 4.17(a)), while for I3 it is sequential with rare random access (Figure 4.17(c)).

The reason that I3 displays such behaviour is due to the fact that the TPCC-UVA loads

the CUSTOMER table in key sort order, therefore pages of customers of a certain

 101

district are ordered logically and physically, causing sequential access. This is not a

feature of real systems, customer data would be expected to be randomly distributed

through the whole table, and therefore, lead to large random access when conducting a

partial table scan, not large sequential access.

From Figure 4.16 and Figure 4.17, for I3 short DB page response times are dominant per

transaction: the disk head will move to the first page of the scan in the longest time and

then sequentially scan the rest of the table in physical disk order. Thus, the access of the

following DB pages will take significantly less time than the initial page. Since short

response times are dominant per transaction, and therefore overall, the calculation of the

DB page mean access time will favour the short responses. Hence, the calculated DB

page mean access time will not accurately represent the effect of the initial random

access to DB pages on transaction response time (this is formulated mathematically in

Figure 4.18). Therefore, the calculated DB page mean access time will not accurately

approximate the transaction mean DB page access behaviour. Consequently, the

performance model will underestimate the transaction response time.

For I2, sequential scans are not dominant, so the calculated DB page mean access time

will give a better approximation of the transaction mean DB page access behaviour.

Thus, the performance model gives a better estimate. For I1, random access is dominant,

and therefore, the performance model gives excellent results for transaction mean

response times per minute.

 102

Figure 4.18 The effect of large values on the mean of a population.

In conclusion, when access was overwhelmingly random with rare sequential access the

performance model gives an excellent approximation of the mean response time. When

the database design exhibited less random access and more sequential access the model

tends to underestimate the mean response time, giving a lower bound on the mean

response time. A good design, in general, will always consider more random access and

less sequential access.

In general, good database designs favour random access to sequential access [84]. Full

and partial table scans are avoided except when the table is very small and frequently

Define a set of values Nixi ,,3,2,1, K= where N is large

Assume for a value jx , the following holds:

Nijixx ij ,,2,1,, K=≠>>

and

∑
≠

>>
N

ji

ij xx

Dividing both sides by N

∑
≠

>>
N

ji

i

j
x

NN

x 1

Add
N

x j
to both sides

∑
≠

+>>
N

ji

i

jj
x

NN

x

N

x 1
2 (1)

The right side of (1) is the mean (x

) of the values ,,,3,2,1, Nixi K=

therefore (1) becomes:

x
N

x j
>>

2
 (2)

Given that N is large, from (2) this implies

xx j >>

 103

accessed, in which the performance lost is negligible in comparison to random I/O. A

situation like I3 is extremely rare and well beyond what is expected in actual DB

systems. Hence, the use of the DB page mean access time as a metric in the

performance model is suitable for realistic designs. Given that, if the rows of the

CUSTOMER table were randomly distributed, the performance model would give

results for I3 similar to that of I1.

4.7 Summary

In this Chapter, we have modelled the TPC-C benchmark using the queueing networks

database design performance evaluation model. The performance model was validated

against actual system runs of the TPCC-UVA open source implementation of the TPC-

C benchmark. The experimental results indicate that this modelling technique has the

ability to evaluate expected database system performance from database designs. It has

been shown that the model was able to give the upper bound of system performance in

the steady state for the TPCC-UVA implementation of the TPC-C benchmark for

different workloads, with accuracy improving as the workload increased.

In addition, we have utilized the queueing network performance evaluation model in the

performance comparison of different database designs for the TPCC-UVA system. The

experimental results indicate that this modelling technique was able to give an excellent

approximation of the system response time in the steady state for the TPCC-UVA

implementation of the TPC-C benchmark for database designs with dominant random

I/O DB page access.

 104

In the next Chapter, we extend the database design queueing network performance

evaluation model to incorporate database designs with active database rules.

 105

Chapter 5

Modelling Active Database Rules

5.1 Introduction

In this Chapter, we model active database rules or triggers. Our definition of triggers is

based on the SQL: 2003 standard [47]. The significance of representing triggers in a

database performance model is important due to:

• the complexity of designing triggers in database systems [84],

• the fact that poor trigger designs are a cause of database performance problems

[34], and

• it is difficult for a database designer to visualize the execution of triggers [85].

It is our belief that modelling database system design performance is not complete

without the ability to represent triggers in the database design. The extension of our

database design performance evaluation model to incorporate triggers is an

improvement over previous modelling methods.

In the following sections, we extend the database design performance evaluation model

to incorporate database triggers. We show the calculation of service demands for

transactions that invoke triggers and illustrate the extended algorithm for calculating the

 106

transaction path through the queueing network. Finally, we validate our model by

comparing the results with a modified TPCC-UVA database design that incorporates an

invocation of a trigger. The work in this Chapter has been described in [78].

5.2 Modelling Active Database Rules

An active rule or a trigger is a procedure that is run or activated by the DBMS when a

certain event happens in the database [84]. Triggers are associated with events that

occur in the form of INSERT, DELETE or UPDATE SQL statements on the tables of

the database. A trigger is only activated when the event meets the condition of the

trigger, i.e. a test condition or a query that evaluates to true (the result set is nonempty).

When a trigger is run it performs an action that can be any set of SQL statements or

procedural computations, depending on the DBMS implementation.

A trigger can be configured to execute before the event that applies changes to the

database or after the changes are applied, these are referred to as BEFORE or AFTER

triggers. In addition, the rate at which a trigger executes its action when activated can be

defined. If an action is to be executed for each row modified by the event, then it is a

row-level trigger. However, if it is defined to execute only once per activating event,

then it is a statement-level trigger.

A transaction that contains a statement that will lead to trigger activation and execution

is blocked until the trigger finishes successfully. Another option is to allow the

execution of the trigger to be deferred to the end of the transaction execution or to

execute instead of the activating statement, or asynchronously as part of another

 107

transaction. Given that triggers execute in response to other actions on the database,

they are considered part of the transaction that activates them. Hence, the activating

transaction does not commit unless the trigger completes successfully (and all other

triggers that are implicitly fired due to the actions of the initial trigger). We will only

consider modelling blocking triggers. Deferred triggers can be modelled as blocking

triggers at the end of the transaction. The model can be easily extended to instead of and

asynchronous triggers.

Based on this, we represent triggers in our performance model as sub-transactions of the

original transaction that invoked the trigger. The invoked trigger must complete first

before the transaction can proceed with processing, i.e. we are modelling blocking

triggers. Thus, a trigger’s service demands and traversal of the queueing network are

calculated in the same manner as transactions. However, any transaction that invokes a

trigger will have its path through the queueing network altered by the addition of the

path of the activated trigger. For example, if a transaction accesses three tables, A, B,

and C and the statements that access table B activate a BEFORE and AFTER trigger on

that table, then the queueing network model for this transaction will be altered to

represent the access of the BEFORE and AFTER triggers to table B as detailed in

Figure 5.1.

Based on the SQL:2003 standard, we assume a trigger can have the same functionality

as a transaction, i.e. there are no restrictions on the control statements or the SQL

statements executed in a trigger. PostgreSQL allows this [102], however other DBMSs

have some restrictions [71].

 108

Figure 5.1 A queueing network model with trigger invocations.

In the following Section, the formal specification of the queueing network model for

database designs is modified to reflect the addition of triggers to the database design.

5.3 Extension of the Formal Specification for Triggers

The modifications to the formal definition presented in Section 3.3 are as follows:

• The definition of a table is modified by adding a Trigger attribute, which is

defined accordingly.

• The algorithm to calculate the customer queueing network traversal path is

modified to incorporate the invocation of BEFORE and AFTER triggers in the

path. The algorithm was redesigned from that of Section 3.3 into a main

algorithm that invokes a second recursive algorithm. All variables are global and

parameters are assumed to be passed by reference. The recursive design of the

second algorithm allows it to take into account triggers that activate triggers.

server A

server B

server C

BEFORE trigger server

AFTER trigger server

 109

5.3.1 Trigger Formal Specification

As stated in Section 3.3, a database design can be formally described as DBDesign = (R,

T), where R is the set of relations or tables and T is the set of transactions that access

these tables. Define each table ri in R as:

ri = (<ordered set of> A, I , [uniqueness constraint]
*
, expected number of rows,

average row length, Trigger*
)

where:

• A (set of attributes of ri) and I (the set of indexes of r i) are as defined in

Section 3.3.

• Trigger is the set of triggers associated with the table.

Define each triggerj in T rigger as:

triggerj = (event, time, level, <ordered set of> S
, trigDBpages[ri ∈R])

where:

• event is the activating event: [UPDATE | INSERT | DELETE] SQL statement.

There can only be one such triggering event per triggerj. In addition, we

assume that each table cannot have more than one trigger with the same event.

• time = [BEFORE | AFTER], which specifies when the trigger action should

execute, before or after the triggering event.

 110

• level = [row | statement], which specifies if the trigger will execute for each

row accessed by the triggering event or once after the triggering event. The

value of level affects the service demand of the trigger.

• S is the ordered set of statements of the trigger and is defined as that of the

transaction; this corresponds to the trigger action.

• trigDBpages[ri ∈R], is the service demand of triggerj on each ri ∈R, which

can be defined as:

∀ ri
∈R , trigDBpages[ri ∈R] =

 ∑ =

||

1

S

k ks .statDBpages[ri],

where sk is the k
th

 statement in the trigger. This formula calculates the expected

number of database pages that the trigger will use, in isolation. The final number

depends on the invoking transaction and whether the trigger is a row-level or a

statement-level trigger.

5.3.2 Calculating Service Demands for Transactions that Invoke

Triggers

The service demand for a trigger depends on the invoking transaction and whether the

trigger is a row-level or statement-level trigger. Therefore, if a transaction tj fires a

trigger triggeri that in turn accesses a table ri, then the service demands of triggeri

on table ri depend on the query q firing the trigger and the statement sk it resides in.

 111

The calculation of the service demands for triggeri that is invoked by tj are based on

our initial assumption that if a transaction accesses a table in multiple SQL statements,

these statements are in sequence (see Section 3.3.1). The consequence of this

assumption is that if a transaction tj accesses table ri, then accesses table ri+1, and in the

process fires a BEFORE trigger, triggeri , on table ri+1, and triggeri in turn accesses

table rk , (Figure 5.2), then one of the following must hold:

 rk = ri or rk = ri+1 or rk = rn where rn ∈R is not accessed by tj.

The same applies if ri has an AFTER trigger that accesses table rk and is invoked by tj.

Figure 5.2 A BEFORE trigger invocation.

In addition, the assumption that all DB pages of a transaction will be in the buffer until

the transaction commits results in that the first access to a table’s data is the significant

access, which will be the service demand on the table. Any subsequent access during the

execution of the transaction will have a service demand of zero. However, if subsequent

accesses access different pages, than that will be added to the initial service demand.

The general formulas given below assume that the trigger will access different pages

than that of the invoking transaction.

server ri server ri+1

server rk
BEFORE triggeri

 112

This assumption simplifies the calculation of the service demands, thus serving to

explain the concept without the complicated details. In addition, it simplifies the

calculation of the routing path of the transaction for the queueing network model. The

general formula, in which access of a trigger to a table is not restricted, can be modelled

by changing the customer type when a trigger is invoked and returning to the original

customer type after the trigger completes execution. This will not affect the queueing

network routing table with regard to the overall table access, nor will it affect the overall

service demands on the tables. However, the calculation of the transaction service

demands for tables accessed by both the transaction and the trigger will now be divided

between them.

For each transaction tj, the trigger service demands depend on the type of statement sk

in S that make up tj. The algorithm for calculating the transaction service demand when

the trigger is invoked from a query q is:

if sk = q, then
 ∀ ri ∈q.Access

 ∀ triggern ∈ ri

 if (ri .Trigger is not NULL) and (ri .triggern.event = q.type) then

 if ri . triggern.level = statement then

tj.tranDBpages[ri∈R] =

 tj.tranDBpages[ri∈R] +

 triggern.trigDBpages[ri∈R]

 else (row-level trigger)

tj.tranDBpages[ri∈R] =

 tj.tranDBpages[ri∈R] +

 (# of rows accessed by q) x triggern.trigDBpages[ri∈R]
 end if

 end if

 end if

The algorithm for calculating the transaction service demand when the trigger is

invoked from within a loop is:

 113

if sk = loop, and N is the number of loop iterations, then

 ∀ qm ∈loop

 ∀ ri ∈ qm.Access

 ∀ triggern ∈ ri

 if (ri . Trigger is not NULL) and (ri . triggern.event = qm.type)
 then

 if ri . triggern.level = statement then

 tj.tranDBpages[ri∈R] =

 tj.tranDBpages[ri∈R] +

 N× triggern.trigDBpages[ri∈R]

 else (row-level trigger)

tj.tranDBpages[ri∈R] =

 tj.tranDBpages[ri∈R] +

 N × (# of rows accessed by qm) x triggern.trigDBpages[ri∈R]

 end if

 end if

 end if

The algorithm for calculating the service demand when the trigger is invoked from

within a branch statement is:

if sk = branch, then

 ∀ branchi

 ∀ qm ∈ branchi

 ∀ ri ∈ qm.Access

 ∀ triggern ∈ rk

 if (ri . Trigger is not NULL) and (ri .triggern.event = qm.type)
 then

 if ri .triggern.level = statement then

tj.tranDBpages[ri∈R] =

 tj.tranDBpages[ri∈R] +

 triggern.trigDBpages[ri∈R]

 else (row-level trigger)

tj.tranDBpages[ri∈R] =

 tj.tranDBpages[ri∈R] +

 (# of rows accessed by qm) x triggern.trigDBpages[ri∈R]

 end if

 end if

 end if

 114

5.3.3 Calculating the Routing Path

In order to simplify the routing path algorithm, it is assumed that when sk = branch,

i.e. a branch statement, that ∀ branchi ∈branch the following holds:

• the first table accessed in branchi cannot activate a BEFORE trigger and

• the last table accessed in branchi cannot activate an AFTER trigger.

Consequently if branchi accesses only one table, than that table cannot activate any

triggers.

• All other tables in branchi cannot activate a branch statement as a BEFORE

trigger or as an AFTER trigger.

The algorithm can be easily extended to include these previous cases. Algorithm 5.1 and

5.2 detail the calculation of the queueing network traversal path for a database design

with BEFORE and AFTER triggers. The additions to the original algorithm in Section

3.3 are highlighted.

 115

Algorithm 5.1: Calculating Customer Class Path

1: Let current_table be the current table in the path of ti

2: current_table ← 0

3: Let branch[n] be a vector of rk ∈R , that holds the last table accessed by a

branch[i] of a branch statement, where n is the number of branches

4: branch[] ← nil (element by element assignment)

5: Let bran_table be the current table of a branch statement

6: bran_table ← 0

7: Let prev_branch[] be a vector that holds the initial value of branch[]

8: prev_branch ← nil

9: ∀ ti ∈T

10: ∀ sj ∈ ti .S

11: ConnectPath(sj , current_table , branch[])
12: if sj is the last statement in ti then

13: if branch[] ≠ nil then

14: for branch[1] to | branch[]| do

15: P[ci, branch[], 0] ← 1

16: end for

17: else

18: P[ci, current_table, 0] ← 1

19: end if

20: end if
21: (the transaction leaves the network after leaving the last

22: table accessed by the last SQL statement of the final statement)

23: end algorithm

Algorithm 5.2 : Function ConnectPath

Function ConnectPath (sj , current_table , branch[])
1: case sj = q

2: ∀ rk ∈q.Access
3: if (rk .Trigger is not NULL) and

4: (∃ rk . triggeri.time = BEFORE) and

5: (rk . triggeri.event = q.type)
6: then

7: ∀ sj ∈ triggeri .S

8: ConnectPath(sj , current_table , branch[])

9: end if –before trigger
10:
11: if (rk is first table accessed by q) and branch[] ≠ nil then

 (connect the last tables accessed by the previous branch statement to

the first table of this SQL statement)

12: for branch[1] to | branch[]| do

13: P[ci, branch[], rk] ← 1

14: end for
15: branch[] ← nil

16: current_table ← rk

 116

17: else

18: P[ci, current_table, rk]
 1 ← 1

19: current_table ← rk

20: end if
21:

22: if (rk .Trigger is not NULL) and

23: (∃ rk . triggeri.time = AFTER) and

24: (rk . triggeri.event = q.type)
25: then

26: ∀ sj ∈ triggeri .S

27: ConnectPath(sj , current_table , branch[])

28: end if –after trigger
29:

30: case sj = loop

31: ∀qm ∈loop

32: ∀ rk ∈ qm.Access
33: if (rk .Trigger is not NULL) and

34: (∃ rk . triggeri.time = BEFORE) and

35: (rk . triggeri.event = qm.type)
36: then

37: ∀ sj ∈ triggeri .S

38: ConnectPath(sj , current_table , branch[])

39: end if –before trigger
40:
41: if (qm is first SQL statement) and (rk is first table accessed by qm)

 and branch[] ≠ nil then

 (connect the last tables accessed by the previous branch statement to

the first table of this SQL statement)

42: for branch[1] to | branch[]| do

43: P[ci, branch[], rk] ← 1

44: end for
45: branch[] ← nil

46: current_table ← rk

47: else

48: P[ci, current_table, rk]

← 1

49: current_table ← rk

50: end if
51:

52: if (rk .Trigger is not NULL) and

53: (∃ rk . triggeri.time = AFTER) and

54: (rk . triggeri.event = qm.type)
55: then

56: ∀ sj ∈ triggeri .S

57: ConnectPath(sj , current_table , branch[])

58: end if –after trigger
59:

1 P[ci, 0, rk] gives the entry server for ti. Unassigned values take the value zero.

 117

60: case sj = branch

61: prev_branch[] ← branch[]

62: for i in n do (total number of branches)

63: bran_table ← current_table

64: ∀qm ∈branchi

65: ∀ rk ∈ qm.Access
66: if (rk .Trigger is not NULL) and

67: (∃ rk . triggeri.time = BEFORE) and

68: (rk . triggeri.event = qm.type)
69: then

70: ∀ sj ∈ triggeri .S

71: ConnectPath(sj , bran_table , null)

72: (branch[] is null due to the assumption that the first

 table in branchi does NOT have a BEFORE trigger)

73: end if –before trigger
74:
75: if (qm is first SQL statement) and

 (rk is first table accessed by qm) then

76: Let pi be the probability of accessing branchi

77: if prev_branch[] ≠ nil then

 (connect the last tables accessed by the previous branch

 statement to the first table of this branch’s SQL statement)

78: for prev_branch[1] to | prev_branch[]| do

79: P[ci, prev_branch[], rk] ← pi

80: end for

81: bran_table ← rk

82: else

83: P[ci, bran_table, rk] ← pi

84: bran_table ← rk

85: end if

86: else

87: P[ci, bran_table, rk] ← 1

88: bran_table ← rk

89: end if
90:

91: if (rk .Trigger is not NULL) and

92: (∃ rk . triggeri.time = AFTER) and

93: (rk . triggeri.event = qm.type)
94: then

95: ∀ sj ∈ triggeri .S

96: ConnectPath(sj , bran_table , null)

97: end if –after trigger

98: branch[i] ← rk

99: end for
100: prev_branch ← nil

101: end case

102: end function algorithm

 118

5.4 TPCC-UVA Trigger Performance Modelling

Due to the limitations of the experimental setup, we have seen that designs with triggers

whose actions lead to the invocation of other triggers lead to rapid system saturation and

stability is never achieved. This is demonstrated in Figure 5.3 in which an AFTER

INSERT trigger on the HISTORY table invokes an AFTER UPDATE trigger on the

ORDERCopy table (see below). Figure 5.3 shows the response time of the New-Order

transaction for 100x1 clients. Therefore, the experiments were restricted to modelling

simple trigger designs.

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500

Measurement Interval (min)

M
e
a
n
 R

es
p
o
n
se

 T
im

e
(s

e
c
)

Figure 5.3 New-Order transaction mean response time per minute for a ramp-up period of 20 minutes

and measurement interval of 480 minutes for 100x1 clients.

For this experiment, we changed the design of the TPCC-UVA system by adding an

AFTER INSERT trigger on the HISTORY table. This trigger can only be invoked by

the Payment transaction, which is the only transaction that inserts rows into the

HISTORY table.

 119

In order not to affect the data in the other tables, a new table was created, ORDERCopy,

which is an exact duplicate of the original ORDER table including index and keys.

There are two scenarios for the design of the AFTER INSERT trigger on the HISTORY

table, trigger1 and trigger2, respectively.

Trigger1 updates the o_carrier_id field of the ORDERCopy table for 300 orders of

the corresponding district of the triggering INSERT statement on HISTORY. Figure 5.4

shows the details of trigger1, where new.h_w_id and new.h_d_id correspond to the

values inserted into the HISTORY table by the Payment transaction.

Figure 5.4 Details of trigger1: AFTER UPDATE trigger on HISTORY.

Trigger2 counts the number of orders of the corresponding district of the triggering

INSERT statement on HISTORY using a SELECT statement. Figure 5.5 details

trigger2. In addition, new.h_w_id and new.h_d_id correspond to the values inserted

into the HISTORY table by the Payment transaction.

CREATE OR REPLACE FUNCTION update_ORDERCopy() RETURNS TRIGGER

AS $trigger1$

BEGIN

update ORDERCopy set o_carrier_id=1 where o_w_id = new.h_w_id

and o_d_id = new.h_d_id and o_id between 1500 and 1800;

RETURN new;

END;

 120

 Figure 5.5 Details of trigger2: AFTER INSERT trigger on HISTORY.

Table 5.1 shows the number of DB pages for the queueing network model for the

TPCC-UVA database design. The values in Table 5.1 are calculated in the same manner

as those in Section 4.4.2, the difference is in the DB pages used by trigger1 and trigger2

(shown as t1 and t2 in Table 5.1) on the ORDERCopy table. The calculation methods

for the service demands for trigger1 and trigger2 are similar to those presented in

Appendix C.

Using the algorithm in the previous section, the corresponding queueing network model

for the TPCC-UVA design with a trigger access to ORDERCopy table is in Figure 5.6.

The queueing network model is identical for the TPCC-UVA design with trigger1 or

trigger2. The difference between the designs is in the service demands on the

ORDERCopy table; however, the traversal of the queueing network is similar for both

designs.

CREATE OR REPLACE FUNCTION select_from_ORDERCopy()RETURNS

TRIGGER AS $trigger2$

DECLARE

new_did int;

BEGIN

select count(*) into new_did from ORDERCopy where o_w_id =

new.h_w_id and o_d_id = new.h_d_id;

RETURN new;

END;

 121

Table 5.1 Number of I/O DB pages for the TPCC-UVA transactions.

number of I/O DB pages

X Transaction
I II III IV V VI VII VIII IX

t1 t2

New-Order 0.75 3.04 2.33 - 4.34 3.98 47.6 44.7 17.1 - -

Payment 2.75 3.04 152.93 2 - - - - - 4.34 10.34

Order-Status - - 151.73 - 10.34 - 2.76 - - - -

Delivery - - 43.3 - 43.4 39.8 47.6 - - - -

Stock-Level - 1.04 - - - - 21.76 201.47 - - -

I = WAREHOUSE, II= DISTRICT, III= CUSTOMER, IV= HISTORY, V= ORDER, VI= NEW-

ORDER, VII= ORDER-LINE, VIII= STOCK, IX= ITEM, X= ORDERCopy

Figure 5.6 TPCC-UVA queueing network model with ORDERCopy table.

5.4.1 Experimental Results

The TPCC-UVA system was configured to run with 100 warehouses, each with 2

districts, i.e. 100x2 clients for each design: trigger1 and trigger2. The measurement

interval was 120 minutes, as specified by the TPC-C benchmark in which the system is

in the steady state. To determine the steady state for the designs trigger1 and trigger2,

the system was run with a ramp-up period of 20 minutes and a measurement interval of

8 hours for the trigger1 design and a ramp-up period of 20 minutes, and a measurement

 122

interval of 5 hours for the trigger2 design. The mean response time per minute was

plotted for the New-Order transaction. Figures 5.7 and 5.8 show the resulting graphs.

To reach the steady state for the designs trigger1 and trigger2 ramp-up periods of 160

and 150 minutes, respectively, were used, as can be seen from Figures 5.7 and 5.8. The

database was initialized with data for 100x10 clients, as stated in Section 4.4.2. To

measure the mean DB page access time, the TPCC-UVA was run 3 different times for

each design (using the strace utility). The mean DB page access time of all 3 runs was

used to parameterize the queueing network model for each design.

To measure the TPCC-UVA transaction performance metrics the system was run

another 3 times, for each design, to collect response times for the transactions. The

response times were averaged and compared to the simulation results. The 95%

confidence intervals were obtained for the system and simulation results, but these were

too tight to show on the graphs.

 123

0

10

20

30

40

50

60

70

0 100 200 300 400 500

Measurement Interval (min)

M
e
a
n
 R

e
sp

o
n
se

 T
im

e
 (

se
c
)

Figure 5.7 New-Order transaction mean response time per minute for a ramp-up period of 20 minutes

and measurement interval of 480 minutes for 100x2 clients. The TPCC-UVA system with trigger1

starts to stabilize 140 minutes into the measurement interval, i.e. 160 minutes from the beginning of

the system run.

0

10

20

30

40

50

60

0 50 100 150 200 250 300

Measurement Interval (min)

M
e
a
n

 R
e
sp

o
n

se
 T

im
e
 (

se
c
)

Figure 5.8 New-Order transaction mean response time per minute for a ramp-up period of 20 minutes

and measurement interval of 300 minutes for 100x2 clients. The TPCC-UVA system with trigger2

starts to stabilize 130 minutes into the measurement interval, i.e. 150 minutes from the beginning of

the system run.

 124

Figures 5.9 – 5.13 detail the measured and modelled mean response times per minute

during the measurement interval for the five transactions for the TPCC-UVA trigger1

and trigger2 designs. Table 5.2 shows the measured and modelled mean response time

per transaction for the two designs calculated during the measurement interval. We

would expect trigger1 to have better performance than trigger2, given that the design

for trigger2 accesses more DB pages than trigger1 on the ORDERCopy table (see Table

5.1). However, the performance of trigger2 was 20% better than that of trigger1. This

is due to the fact that processing time increases for the trigger response time when

executing an UPDATE statement in relation to when executing a SELECT statement.

It can be seen from Figures 5.9 – 5.13 and Table 5.2 that the performance model gives

an excellent approximation of the mean response time per minute for the transactions

for trigger2 (approximately 18% prediction error), but fails to achieve the same

accuracy for trigger1 (approximately 39% prediction error). The improved prediction

for trigger2 is related to the predominance of DB I/O time in the overall trigger

response time. However, for trigger1, where processing time is predominant in the

overall trigger response time, the performance model deviated from giving an accurate

estimation. Given that the performance model does not take processing demands into

consideration this result was to be expected.

 125

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o
n
se

 T
im

e
(s

ec
) Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o
n
se

 T
im

e
(s

ec
) Measurement Model

(a) (b)

Figure 5.9 Comparison of the New-Order transaction mean response time per minute for the TPCC-

UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of 120

minutes.

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o

n
se

 T
im

e
 (

se
c)

Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o

n
se

 T
im

e
 (

se
c)

Measurement Model

(a) (b)

Figure 5.10 Comparison of the Payment transaction mean response time per minute for the TPCC-

UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of 120

minutes.

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o

n
se

 T
im

e
 (

se
c)

Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o

n
se

 T
im

e
 (

se
c)

Measurement Model

(a) (b)

Figure 5.11 Comparison of the Order-Status transaction mean response time per minute for the

TPCC-UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of

120 minutes.

 126

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o

n
se

 T
im

e
 (

se
c)

Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o

n
se

 T
im

e
 (

se
c)

Measurement Model

(a) (b)

Figure 5.12 Comparison of the Delivery transaction mean response time per minute for the TPCC-

UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of 120

minutes.

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o

n
se

 T
im

e
 (

se
c)

Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o

n
se

 T
im

e
 (

se
c)

Measurement Model

(a) (b)

Figure 5.13 Comparison of the Stock transaction mean response time per minute for the TPCC-UVA

with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of 120 minutes.

Table 5.2 Comparison of transaction mean response times for TPCC-UVA with trigger1 and trigger2

designs.

Response Time

(sec)

Response Time

(sec) Design Transaction

Measured Modelled

% Error

per trans

% Overall

Error

New-Order 33.32 20.52 38.41

Payment 33.19 20.55 38.08

Order-Status 33.28 20.65 37.96

Delivery 33.36 20.5 38.55

trigger1

Stock-Level 33.96 20.61 39.3

38.46

New-Order 26.85 22.14 17.56

Payment 26.71 22.17 16.99

Order-Status 26.88 22.21 17.36

Delivery 26.93 22.14 17.8

trigger2

Stock-Level 27.42 22.21 19.02

17.75

 127

5.5 Summary

In this Chapter, an extension of the database design queueing network performance

evaluation model for active database rules was presented. The formal specification for

database triggers was given. In addition, a calculation of the service demands for

triggers and transactions that activate triggers was also presented. A modified algorithm

to calculate the path of a transaction that invokes a trigger through the queueing network

was given.

The experimental results have shown that the performance model can give an accurate

estimation of the mean response time for database designs in which triggers have

predominant I/O processing. This is in agreement with the results previously discussed

in Chapter 4, where it was shown that the performance model is applicable to designs of

large databases where random disk I/O is the dominant cost factor and in which

processing is negligible.

In the next Chapter, the database design queueing network model is extended to

incorporate referential integrity checking.

 128

Chapter 6

Modelling Referential Integrity

6.1 Introduction

In this Chapter, we model referential integrity or foreign key checking in database

systems. Foreign keys are used to maintain a parent/child relationship between tables.

Referential integrity checking is implemented in a way very similar to triggers in

DBMS except that referential integrity checks are system invoked. The importance of

modelling referential integrity checks in a database performance model is due to the fact

that such checks incur performance costs on the database [10, 72].

In the following sections, we extend the database design performance evaluation model

to incorporate referential integrity checking. We show the calculation of service

demands for transactions that invoke foreign key checks and illustrate the extended

algorithm for calculating the transaction path through the queueing network. To validate

our performance evaluation model we modify the TPCC-UVA database design by

including a parent/child relationship and compare the system performance to our model

results.

 129

6.2 Modelling Referential Integrity Checking

Referential integrity checks are implemented in DBMS as system invoked procedures.

A referential integrity check means that another table or tables are read by the DBMS to

check the existence of the value of the referenced field. Due to the similarity in

execution between triggers and referential integrity checks, we model referential

integrity checks similarly to modelling AFTER triggers. The main difference is that in

the majority of DBMS a referential integrity check from the child table to the parent

table is an index scan on the primary key index of the parent table [10, 44, 72], as the

foreign key must match a value of the primary key. Hence, referential integrity checks

incur no table access. However, in PostgreSQL, we have noticed when looking at the

TPCC-UVA system statistics with foreign key references, that the actual DB page was

read when PostgreSQL performed a referential integrity check.

Referential integrity maintains a parent/child relationship between the referenced table

and the referencing table. A DBMS handles referential integrity enforcement depending

on the operations that cause the foreign key checks. These are [84]:

(a) operations on the parent table: which would be a DELETE/UPDATE of the

referenced field. The options provided by the DBMS are:

� CASCADE: DELETE/UPDATE all child references,

� DISALLOW: prevent the operation as long as a child row exists,

and

 130

� DEFAULT VALUE: update the foreign key of the child rows

with a default value, including NULL.

For the CASCADE and DEFAULT VALUE cases, a table access will happen in order

to execute the operation on the child rows. However, for the DISALLOW operation a

table access will be needed only if the foreign key column is not indexed.

(b) operations on the child table: an INSERT/UPDATE of a foreign key field. The

inserted/updated foreign key value is checked against the referenced field in the parent

table. The operation is rejected if the inserted/updated field value does not exist in the

parent table.

The time when the DBMS checks the referential integrity constraints can be specified

when defining a foreign key on a table. The options are:

• IMMEDIATE: check immediately after SQL statement execution, or

• DEFERRED: defer checking until transaction commit time.

To model foreign key referencing, we model them as we have modelled triggers, i.e. as

sub-transactions that are part of the invoking transaction. For simplicity, we assume the

mode on the parent is to DISALLOW an operation violating referential integrity, if a

child row exists. Therefore, we do not consider the effect of this in our model. However,

the model can be easily extended to allow for such conditions.

To model a foreign key check in the IMMEDIATE execution mode, we model the

referential integrity check on the parent table as another table access after leaving the

 131

invoking child server. For example, if a transaction accesses three tables, A, B and C

and the statements that access tables A and B both cause a referential integrity check to

parent tables A′ and B′. Then the queueing network model for this transaction will be

altered to represent the referential integrity check, i.e. the access of the parent tables A′

and B′, as detailed in Figure 6.1.

Figure 6.1 A queueing network model with IMMEDIATE referiential integrity checking.

For referential integrity checking in the DEFERRED mode, the referential integrity

check for all parent tables will be in sequence after the last table accessed in the

transaction. Using the previous example, the referential integrity check to the parent

tables A′ and B′ will happen before transaction commit, i.e. before the transaction leaves

the queueing network. Thus the queueing network model for the transaction will be

altered to represent the referential integrity check, i.e. access of the parent tables A′ and

B′, as detailed in Figure 6.2.

In the following section, the formal specification of the queueing network model of

Section 3.3 is modified to reflect the addition of foreign keys to the database design.

server A

server B

server C

referential integrity server B′ referential integrity server A′

 132

Figure 6.2 A queueing network model with DEFERRED referiential integrity checking.

6.3 Extension of the Formal Specification for Foreign Keys

The modifications to the formal definition presented in Section 3.3 are as follows:

• The definition of a table is modified by adding a FK (foreign key) attribute,

which is defined in the next Section.

• The algorithm to calculate the customer queueing network traversal path is

modified to incorporate the invocation of referential integrity checks in the path.

The algorithm was redesigned from that of Section 3.3 into a main algorithm

that invokes a second recursive algorithm. All variables are global and

parameters are assumed to be passed by reference.

6.3.1 Referential Integrity Formal Specification

As stated in Section 3.3, a database design can be formally described as DBDesign =

(R, T), where R is the set of relations or tables and T is the set of transactions that

access these tables. Define each table ri in R as:

server A

server B

server C

referential integrity server A′ referential integrity server B′

 133

ri = (<ordered set of> A, I , [uniqueness constraint]
*
, expected number of rows,

average row length, FK*
)

where:

• FK is the set of referential integrity constraints associated with the table.

 Define each fkk in FK as:

fkk = (rk , ref_attribute, mode, <ordered set of> S
, FKDBpages[rk])

where:

• rk ∈ R is the parent table.

• ref_attribute is the uniqueness constraint of rk , i.e. the referenced column or

attribute.

• mode is the time the referential integrity check is made: [IMMEDIATE |

DEFERRED].

• S is the ordered set of statements that will be executed on the parent table, in this

case S = s1 = q , such that:

o q is a SQL statement and can be described as:

q = (type, <ordered set of> Access, DBpages[rk]),

 134

and given that a referential integrity check is an implicit SELECT:

� type is a SELECT statement where the condition clause and the

retained attribute refer to the referenced column;

� Access is the parent table rk ∈ R ;

� DBpages[rk] is calculated as previously stated in reference to the

parent table rk it accesses; which will be a primary index scan for

the foreign key.

Even though a reference check is not an actual query, we use this notation in order to be

compatible with the routing algorithm and for calculation purposes (implicit SELECT

resolved by index scan).

For the special case of referential integrity:

FKDBpages[rk] = s1.statDBpages[rk] = q.DBpages[rk]

This formula calculates the expected number of DBpages that a referential integrity

check will use, in isolation. The final number depends on the invoking transaction and

the number of checks needed.

 135

6.3.2 Calculating Service Demands for Transactions that Invoke

Referential Integrity Checks

If a transaction tj has a foreign key fki on a parent table ri, then the service demands for

the referential check of fki on table ri depend on the number of rows of the query q that

invoke the check, as well as the statement sk that q resides in. In addition, the

calculation of referential integrity service demands is based on the assumption that if a

transaction accesses a table in multiple SQL statements, these statements are in

sequence (see Section 3.3.1) and that buffering is on a transaction-by-transaction basis.

Consider that we have two tables: A the parent table and B the child table which

references A. Based on the previous assumptions, if a transaction accesses table A and

B, then a referential check is allowed only in the following scenarios:

• A primary index access to A, then an UPDATE/INSERT to B causing a

reference check to rows in A. Given that the referential integrity check will

need an index scan only and since the index of A will already be in the buffer,

this scenario will not add any extra service demands for the transaction, i.e. extra

service demands on A due to the reference check is nil. Hence, the queueing

network model will not change due to the addition of a referential integrity

check, nor will the service demands of the transaction. In consequence, the SQL

statements that access B do not have to strictly be in sequence to SQL statements

that access A.

 136

• An access to B that causes a reference check on A, that is followed by a

primary index access to A. This will only incur the cost of allocating the rows

of A since the index will already be in the buffer. Therefore, the total service

demand on A will be the index access service demand plus the row access

service demand. In this scenario, the SQL statements that access A must strictly

be in sequence to the SQL statements that access B.

• Access to B which invokes a referential integrity check to a table A and A is

never directly accessed by the transaction. In this case, the referential check

will add a new server to the queueing network with new service demands to the

transaction. In this case the referential integrity check on A will automatically

follow the access to B.

• Access to B where the foreign key reference is recursive, i.e. B references

columns in the same table B. In this case the index is already in the buffer, the

reference check will not add an additional service demand to table B, and there

will be no changes to the queueing network.

The implication of the above scenarios is that if a transaction tj accesses a set of tables,

and ∃ rk ∈R which references a parent table ri , then one of the following must hold:

rk = ri-1 or rk = ri or rk ≥ ri+1 or ri = rn where rn ∈R is not accessed by tj.

In addition, if the referential integrity is in DEFERRED mode then only the following

holds:

 137

ri = rn where rn ∈R is not accessed by tj

Building on the previous scenarios, for each transaction tj that accesses a set of tables

Rt, the reference check service demand does not differ depending on the type of sk in S

that make up tj when ri ∈Rt. The algorithm for calculating the service demand when sk

= q is:

if sk = q, then
 ∀ rk ∈q.Access
 ∀ fki ∈ rk

 if (q.type in (INSERT| UPDATE)) and

 (∃ q.aj = fki.ref_attribute) then

 if (ri ∉Rt) then

 tj.tranDBpages[ri ∈R]=

 fki.FKDBpages[ri ∈R]

 --where q.aj is the retained attributes of q and ri is the parent table

 else

 -- when ri ∈Rt

 use the original calculation for ri as the reference check does not

 change the service demand

 end if

 end if

 end if

For the loop structure, since access is to the index, which will be in the buffer for each

iteration of the loop, the service demand does not depend on the number of loop

iterations.

if sk = loop, and n is the number of loop iterations, then
 ∀ qm ∈loop

 ∀ rk ∈ qm.Access
 ∀ fki ∈ rk

 if (qm.type in (INSERT| UPDATE)) and

 (∃ qm.aj = fki.ref_attribute) then

 138

 if (ri ∉Rt) then

 tj.tranDBpages[ri ∈R]=

 fki.FKDBpages[ri ∈R]

 --where qm.aj is the retained attributes of qm and ri is the parent table

 else

 -- when ri ∈Rt

 use the original calculation for ri as the reference check does not

 change the service demand

 end if

 end if

end if

The same applies for the branch structure:

if sk = branch, then

∀ branchi

 ∀ qm ∈ branchi

 ∀ rk ∈ qm.Access
 ∀ fki ∈ rk

 if (qm.type in (INSERT| UPDATE)) and

 (∃ qm.aj = fki.ref_attribute) then

 if (ri ∉Rt) then

 tj.tranDBpages[ri ∈R] =

 fki.FKDBpages[ri ∈R]

 --where qm.aj is the retained attributes of qm and ri is the parent table

 else

 -- when ri ∈Rt

 use the original calculation for ri as the reference check does not

 change the service demand

 end if

 end if

 end if

6.3.3 Calculating the Routing Path

In order to simplify the routing path algorithm, it is assumed when sk = branch, i.e. a

branch statement, ∀ branchi ∈branch that:

• the last table accessed in branchi cannot invoke a foreign key reference check.

 139

Consequently, if branchi accesses only one table, then that table cannot invoke any

reference checks.

The algorithm can be easily extended to include these cases. Algorithm 6.1 and 6.2

detail the calculation of the queueing network traversal path for a database design with

foreign key constraints. The additions to the original algorithm in Section 3.3 are

highlighted.

Algorithm 6.1: Calculating Customer Class Path

1: Let current_table be the current table in the path of ti

2: current_table ← 0

3: Let branch[n] be a vector of rk ∈R , that holds the last table accessed by a

branch[i] of a branch statement, where n is the number of branches

4: branch[] ← nil (element by element assignment)

5: Let bran_table be the current table of a branch statement

6: bran_table ← 0

7: Let prev_branch[] be a vector that holds the initial value of branch[]

8: prev_branch ← nil

9: Let D be the set of deferred referential integrity checks

10: ∀ ti ∈T

11: ∀ sj ∈ ti.S

12: ConnectPath(sj , current_table , branch[])

13: if sj is the last statement in ti then

14: if D is empty then

 -- no DEFERRED FK

15: if branch[] ≠ nil then

16: for branch[1] to | branch[]| do

17: P[ci, branch[], 0] ← 1

18: end for

19: else

20: P[ci, current_table, 0] ← 1

21: end if

22: else

23: ∀ rk.fki ∈D

24: ConnectPath(fki.s1 , current_table , branch[])

25: P[ci, current_table, 0] ← 1

26: end if -- DEFERRED

27: end if
28: (the transaction leaves the network after leaving the last

29: table accessed by the last SQL statement of the final statement)

30: end algorithm

 140

Algorithm 6.2 : Function ConnectPath

Function ConnectPath(sj , current_table , branch[])
1: case sj = q

2: ∀ rk ∈q.Access
3:
4: if (rk is first table accessed by q) and branch[] ≠ nil then

 (connect the last tables accessed by the previous branch statement to

the first table of this SQL statement)

5: for branch[1] to | branch[]| do

6: P[ci, branch[], rk] ← 1

7: end for
8: branch[] ← nil

9: current_table ← rk

10: else

11: P[ci, current_table, rk]
 1 ← 1

12: current_table ← rk

13: end if
14:

15: if (q.type in (INSERT| UPDATE)) and

 (rk.FK is not NULL)

16: then

17: ∀ fki ∈ rk.FK where

 (∃q.aj = rk.fki.ref_attribute)

18: if fki.mode = IMMEDIATE then

19: ConnectPath(fki.s1 , current_table , branch[])

20: else –DEFERRED

21: Add rk.fki to D

22: end if

23: end if –FK reference
24:

25: case sj = loop

26: ∀ qm ∈loop

27: ∀ rk ∈ qm.Access
28:
29: if (qm is first SQL statement) and (rk is first table accessed by qm)
 and branch[] ≠ nil then

 (connect the last tables accessed by the previous branch statement to

the first table of this SQL statement)

30: for branch[1] to | branch[]| do

31: P[ci, branch[], rk] ← 1

32: end for
33: branch[] ← nil

34: current_table ← rk

35: else

36: P[ci, current_table, rk]

← 1

37: current_table ← rk

38: end if

1 P[ci, 0, rk] gives the entry server for ti. Unassigned values take the value zero.

 141

39:

40: if (qm.type in (INSERT| UPDATE)) and

 (rk.FK is not NULL)

41: then

42: ∀ fki ∈ rk.FK where

 (∃qm.aj = rk.fki.ref_attribute)

43: if fki.mode = IMMEDIATE then

44: ConnectPath(fki.s1 , current_table , branch[])

45: else –DEFERRED

46: Add rk.fki to D

47: end if

48: end if –FK reference
49:

50: case sj = branch

51: prev_branch[] ← branch[]

52: for i in n do (total number of branches)

53: bran_table ← current_table

54: ∀qm ∈branchi

55: ∀ rk ∈ qm.Access
56:
57: if (qm is first SQL statement) and
 (rk is first table accessed by qm) then

58: Let pi be the probability of accessing branchi

59: if prev_branch[] ≠ nil then

(connect the last tables accessed by the previous branch statement to

the first table of this branch’s SQL statement)

60: for prev_branch[1] to | prev_branch[]| do

61: P[ci, prev_branch[], rk] ← pi

62: end for

63: bran_table ← rk

64: else

65: P[ci, bran_table, rk] ← pi

66: bran_table ← rk

67: end if

68: else

69: P[ci, bran_table, rk] ← 1

70: bran_table ← rk

71: end if
72:

73: if (qm.type in (INSERT| UPDATE)) and

 (rk.FK is not NULL)

74: then

75: ∀ fki ∈ rk.FK where

 (∃qm.aj = rk.fki.ref_attribute)

76: if fki.mode = IMMEDIATE then

77: ConnectPath(fki.s1 , current_table , branch[])

78: else –DEFERRED

79: Add rk.fki to D

80: end if

81: end if –FK reference

82: branch[i] ← rk

83: end for

 142

84: prev_branch ← nil

85: end case

86: end function algorithm

6.4 TPCC-UVA Foreign Key Performance Modelling

Due to the constraints of the experimental setup, in this Section, we model a simple

referential integrity check. In order not to affect the data in the other tables, we modified

the design of the TPCC-UVA system by adding a new table, ITEMCopy, which is an

exact copy of the original ITEM table including index and keys. We defined a foreign

key constraint on the ORDER_LINE table that references the primary key on the

ITEMCopy table. The referential integrity check is DEFERRABLE, as that is the least

process intensive in PostgreSQL [102].

Figure 6.3 shows the details of the foreign key constraint definition. The resulting

referential integrity checks will affect the New-Order transaction only: it is the only

transaction that INSERTs items into the ORDER_LINE table. The other transactions

SELECT from the ORDER_LINE table (Order-Status and Stock) or DELETE from it

(Delivery).

Figure 6.3 Details of the foreign key constraint on the ORDER-LINE table.

Table 6.1 shows the number of DB pages for the queueing network model for the

TPCC-UVA database design. The values in Table 6.1 are calculated in the same manner

alter table ORDER-LINE add CONSTRAINT fk1 FOREIGN KEY

(ol_i_id) REFERENCES ITEMCopy (i_id) DEFERRABLE;

 143

as those in Section 4.4.2, the difference is in the DB pages used for the foreign key

referential check on the ITEMCopy table. The calculation methods for the service

demands are similar to those presented in Appendix C. It would be expected that the

referential integrity check would only read the index to check the inserted field;

however, we have noticed from the collected statistics that PostgreSQL does a complete

row fetch for each referential integrity check. Therefore, the number of pages needed

for the referential integrity check is calculated in the same way as that of a SELECT

statement.

Using the algorithm in the previous section, the corresponding queueing network model

for the TPCC-UVA design with a referential integrity check to the ITEMCopy table is

in Figure 6.4. Given that the referential integrity check is DEFERRED, the ITEMCopy

table will be the last table accessed by the New-Order transaction.

Table 6.1 Number of I/O DB pages for the TPCC-UVA transactions.

number of I/O DB pages

Transaction
I II III IV V VI VII VIII IX X

New-Order 0.75 3.04 2.33 - 4.34 3.98 47.6 44.7 17.1 17.1

Payment 2.75 3.04 152.93 2 - - - - - -

Order-Status - - 151.73 - 10.34 - 2.76 - - -

Delivery - - 43.3 - 43.4 39.8 47.6 - - -

Stock-Level - 1.04 - - - - 21.76 201.47 - -

I = WAREHOUSE, II= DISTRICT, III= CUSTOMER, IV= HISTORY, V= ORDER, VI= NEW-

ORDER, VII= ORDER-LINE, VIII= STOCK, IX= ITEM, X= ITEMCopy

 144

Figure 6.4 TPCC-UVA queueing network model with ITEMCopy table.

6.4.1 Experimental Results

The TPCC-UVA system was configured to run with 100 warehouses, each with 2

districts, i.e. 100x2 clients with the addition of the foreign key references mentioned

previously. The measurement interval was 120 minutes, as specified by the TPC-C

benchmark in which the system is in the steady state. The steady state for the TPCC-

UVA design was determined by running the system with a ramp-up period of 20

minutes and a measurement interval of 8 hours. The mean response time per minute was

plotted for the New-Order transaction, as detailed in Figure 6.5.

 145

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400 450 500

Measurement Interval (min)

M
e
an

 R
es

p
o
n

se
 T

im
e
 (

se
c
)

Figure 6.5 New-Order transaction mean response time per minute for a ramp-up period of 20 minutes

and measurement interval of 480 minutes for 100x2 clients. The TPCC-UVA system starts to stabilize

120 minutes into the measurement interval, i.e. 140 minutes from the beginning of the system run.

To reach the steady state for the TPCC-UVA design, a ramp-up period of 140 minutes

was used. The database was initialized with data for 100x10 clients, as stated in Section

4.4.2. To measure the mean DB page access time, the TPCC-UVA was run 3 different

times (using the strace utility). The mean DB page access time of all 3 runs was used to

parameterize the queueing network model for the design.

To measure the TPCC-UVA transaction performance metrics the system was run

another 3 times, to collect response times for the transactions. The response times were

averaged and compared to the simulation results. The 95% confidence intervals were

obtained for the system and simulation results, but these were too tight to show on the

graphs.

 146

Figures 6.6(a) to 6.6(e) detail the measured and modelled mean response times per

minute during the measurement interval for the five transactions for the TPCC-UVA

design. Table 6.2 shows the measured and modelled mean response time per transaction

calculated during the measurement interval. We would expect the model to give an

accurate prediction of the mean response time per minute for the design. However, as

can be seen from Figures 6.6(a) to 6.6(e) and Table 6.2 the model has an approximately

36% prediction error.

To investigate the reason for this, we modified our original TPCC-UVA design by

adding a foreign key reference on the ORDER-LINE table to the ITEM table. In this

design, referential integrity checking for the New-Order transaction would not incur an

I/O disk access; since the referenced rows of the ITEM table would already be in the

DB buffer due to the execution of a SELECT statement prior to the INSERT statement

in the New-Order transaction (see Appendix C). To measure the transaction response

times the system was run 3 times, and the transaction response times were averaged.

As can be seen from Table 6.3 the measured mean transaction response times for the

design referencing the ITEM table are similar to the mean transaction response times for

the design referencing the ITEMCopy table. In addition, in Table 6.3, the transaction

mean response times for the original TPCC-UVA design without referential integrity

(from Table 4.7) are shown. The new design differs from the original TPCC-UVA

design in the addition of the referential integrity check on the ITEM table. Therefore,

the increased transaction response time for the new design is due to the processing of

the referential integrity checks. Given that the model does not consider processing time,

the error rate is justified.

 147

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

es
p
o
n
se

 T
im

e
(s

ec
) Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
a
n
 R

e
sp

o
n

se
 T

im
e
 (

se
c
) Measurement Model

(a) (b)

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

es
p

o
n
se

 T
im

e
 (

se
c)

Measurement Model

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
a
n
 R

e
sp

o
n

se
 T

im
e
 (

se
c
) Measurement Model

(c) (d)

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
a
n

 R
es

p
o
n

se
 T

im
e
 (

se
c
) Measurement Model

 (e)

Figure 6.6 Comparison of the (a) New-Order (b) Payement (c) Order-Status (d) Delivery (e) Stock-

Level transactions mean response time per minute for a measurement interval of 120 minutes for

100x2 clients.

 148

This processing overhead is due to the effect of referential integrity checks on INSERT

statements which cause processing similar to a JOIN on the foreign key [95]. In

addition, it has been reported that PostgreSQL has known performance problems when

issuing INSERTs to tables with foreign key references [99].

Table 6.2 Comparison of transaction mean response times for the TPCC-UVA design with foreign key

referencing.

Response Time

(sec)

Response Time

(sec) Transaction

Measured Modelled

% Error

per trans

% Overall

Error

New-Order 25.47 16.35 35.8

Payment 25.31 16.37 35.34

Order-Status 25.47 16.43 35.48

Delivery 25.47 16.35 35.81

Stock-Level 26 16.44 36.77

35.84

Table 6.3 Transaction mean response times for the TPCC-UVA design with foreign key referencing

the ITEM table and TPCC-UVA original design.

TPCC-UVA design with

referential integrity

Original TPCC-UVA

design Transaction
Measured Response Time

(sec)

Measured Response Time

(sec)

New-Order 24.3 19.10

Payment 24.17 19.00

Order-Status 24.38 19.11

Delivery 24.59 19.15

Stock-Level 25.2 19.71

6.5 Summary

In this Chapter, an extension of the database design queueing network performance

evaluation model for referential integrity was presented. The formal specification for

database foreign keys was given. In addition, a calculation of the service demands for

transactions that invoke foreign key reference checks was also presented. A modified

 149

algorithm to calculate a transaction’s path through the queueing network with referential

integrity checking was given.

The experimental results have shown that the performance model is able to give an

accurate estimation of the mean response time for database designs with referential

integrity checks only if the DBMS is efficient in handling foreign key referential

integrity processing.

 150

Chapter 7 Conclusions and Future

Work

The main contribution of this thesis is the development of a novel performance

evaluation method for database designs based on queueing networks. We have provided

a formalism that captures the essential database design features while keeping the

performance model sufficiently simple to be accessible to database designers who are

unlikely to be specialists in queueing theory. This contribution is significant in that the

majority of performance evaluation models for database systems target capacity

planning or overall system properties, with limited work in detailed database transaction

processing and behaviour.

In this Chapter, a summary of the main contributions of the thesis is provided along

with directions for future work.

7.1 Main Contributions

This thesis contributes a novel performance evaluation method using queueing networks

for database design performance evaluation. This work is considered to be an

improvement over previous methodologies in that the transaction is modelled at a finer

granularity, thus providing for feedback at an early stage in the design process that is

more relevant and useful to the database designer. Moreover, detailed knowledge and

modelling of the hardware architecture is not required. In addition, the method provides

 151

for the explicit representation of active database rules and referential integrity in the

queueing network models.

We have introduced the database design queueing network performance evaluation

model with a formal specification describing the transformation between database

designs and queueing network models. The accuracy of this model has been validated

by modelling the TPCC-UVA open source implementation of the TPC-C benchmark.

Through experimentation with different database designs, results have shown that the

database design queueing network model is applicable to designs of large databases

where random disk I/O is the dominant cost factor and in which processing costs are

negligible.

The simplicity of the modelling algorithms permits the direct mapping between

database design entities and queueing networks. Thus, its application is straightforward

for database designers. This allows for easy integration of our modelling technique into

early database system development phases. The model is useful in providing what if

comparisons of database designs before database system implementation. Furthermore,

the method is suitable for post-deployment database system performance tuning, and in

such a case, the parameterization of the queueing model can be extracted from traces of

the database system or from DBMS statistics.

The queueing network models presented in this thesis were for centralized databases.

The modelling technique can be applied to distributed databases, in which each

distributed node can be modelled as a database design queueing model. For multi-tier

applications, the database tier can be represented as a database design queueing model.

 152

Another contribution of the thesis is a classification of the modelling of transactions in

database and DBMS queueing network models. This classification is based on the level

of detail of the representation of the database transaction’s internal design in the

queueing network models. We have identified four main categories: the black box, the

transaction processing, the transaction size and the transaction phase models. We have

shown that the majority of queueung network models for databases and DBMS

components fall into the transaction processing category. While the transaction size and

phase category is predominated by studies of DBMS concurrency control mechanisms.

From this categorization, we have identified that the main assumption for transaction

service demand is that of exponentially distributed service times. However, justification

for this assumption in the context of database systems and transactions was only

provided for models that fall into the black box category. In this thesis, we have

contributed a justification for the exponential service time assumption for transactions

in queueing network models for the other categories, i.e. when transaction details are

modelled.

7.2 Future Work

For future work, the formal specification and its related algorithms can form the basis

on which to develop a database design analysis tool for implementing this performance

evaluation technique. The algorithms for calculating the service demands and routing

paths for transactions would need to be extended to include the cases that were excluded

in the thesis. This would lead into an investigation of database designs for distributed,

 153

replicated and multi-tier database applications to research their detailed performance

behaviour.

The effect of processing in referential integrity checks and active database rules needs

to be addressed by extending the cost model to incorporate processing costs. In addition,

the costing method can be extended with commercial DBMS specific constraints, e.g.

page and row header sizes, which will allow for more accurate estimations. To provide

for more realistic database designs and workloads, locking contention will need to be

incorporated in the queueing network model. Moreover, more complex access methods

can be integrated into the cost model, e.g. bitmap and R-tree indexes.

Another direction would be investigating the extension of the database design queueing

network model beyond relational databases, e.g. document-oriented, object-oriented or

XML databases.

Finally, an interesting direction would involve investigating the integration of the

database design queueing network model with currently available queueing network

models for different hardware architectures.

 154

Appendix A: The TPC-C Transaction

Specification

This Appendix is summarized from [113].

A.1 The New-Order Transaction

New Order

Transaction

The New-Order business transaction consists of entering a complete order through a

single database transaction. It represents a mid-weight, read-write transaction with a

high frequency of execution and stringent response time requirements to satisfy on-line

users. This transaction is the backbone of the workload. It is designed to place a

variable load on the system to reflect on-line database activity as typically found in

production environments.

 Body Constraints

For a given warehouse number (W_ID), For any given terminal, the home

warehouse number (W_ID) is constant

district number (D_W_ID , D_ID), randomly selected within [1 .. 10] from

the home warehouse (D_W_ID =

W_ID)

customer number (C_W_ID , C_D_ID , C_

ID),

non-uniform random customer number

(C_ID) is selected using the

NURand(1023,1,3000) function from

the selected district number (C_D_ID =

D_ID) and the home warehouse

number (C_W_ID = W_ID).

count of items (ol_cnt, not communicated to

the SUT),

randomly selected within [5 .. 15] (an

average of 10).

Input

and for a

given set of

items

 (OL_I_ID), A fixed 1% of the New-Order

transactions are chosen at random to

simulate user data entry errors and

exercise the performance of rolling

back update transactions. This must be

implemented by generating a random

number rbk within [1 .. 100].

A non-uniform random item number

(OL_I_ID) is selected using the

NURand(8191,1,100000) function. If

this is the last item on the order and rbk

= 1 (see Clause 2.4.1.4), then the item

number is set to an unused value

causing rollback.

 155

supplying warehouses

(OL_SUPPLY_W_ID),

A supplying warehouse number

(OL_SUPPLY_W_ID) is selected as

the home warehouse 99% of the time

and as a remote warehouse 1% of the

time.

This can be implemented by generating

a random number x within [1 .. 100];

- If x > 1, the item is supplied from the

home warehouse (OL_SUPPLY_W_ID

= W_ID).

- If x = 1, the item is supplied from a

remote warehouse

(OL_SUPPLY_W_ID is randomly

selected within the range of active

warehouses other than W_ID).

Comment 1: With an average of 10

items per order, approximately 90% of

all orders can be supplied in full by

stocks from the home warehouse.

Comment 2: If the system is

configured for a single warehouse, then

all items are supplied from that single

home warehouse.

quantities

(OL_QUANTITY):

is randomly selected within [1 .. 10].

S_remote Set to 1 if remote order-line

o_all_local If the order includes only home order-

lines, then O_ALL_LOCAL is set to 1,

otherwise O_ALL_LOCAL is set to 0.

A.2 The Payment Transaction

Payment

Transaction

The Payment business transaction updates the customer's balance and reflects the payment

on the district and warehouse sales statistics. It represents a light-weight, read-write

transaction with a high frequency of execution and stringent response time requirements

to satisfy on-line users. In addition, this transaction includes non-primary key access to

the CUSTOMER table.

 Body Constraints

the home warehouse number (W_ID) For any given terminal, is constant over

the whole measurement

The district number (D_W_ID,D_ID) is randomly selected within [1 ..10]

from the home warehouse (D_W_ID) =

W_ID).

(C_W_ID , C_D_ID,

C_LAST)

The

customer is

randomly

selected 60%

of the time

by last name

Input

The customer id

(C_W_ID , C_D_ID ,

C_ID).

40% of the

time by

This can be

implemented by

generating a random

numbers y within [1 ..

100];

• If y <= 60 a customer

last name (C_LAST) is

 156

number generated according to

Clause 4.3.2.3 from a

non-uniform random

value using the

NURand(255,0,999)

function. The customer

is using his/her last

name and is one of the

possibly several

customers with that last

name.

• If y > 60 a non-

uniform random

customer number

(C_ID) is selected using

the

NURand(1023,1,3000)

function. The customer

is using his/her

customer number.

 Independent of the mode of selection,

the customer resident warehouse is the

home warehouse 85% of the time and is

a randomly selected remote warehouse

15% of the time. This can be

implemented by generating a random

numbers x within [1 .. 100];

• If x <= 85 a customer is selected

from the selected district number

(C_D_ID = D_ID) and the home

warehouse number (C_W_ID = W_ID).

The customer is paying through his/her

own warehouse.

• If x > 85 a customer is selected from

a random district number (C_D_ID is

randomly selected within [1 .. 10]), and

a random remote warehouse number

(C_W_ID is randomly selected within

the range of active warehouses (see

Clause 4.2.2), and C_W_ID ≠ W_ID).

The customer is paying through a

warehouse and a district other than

his/her own.

The payment amount (H_AMOUNT) is randomly selected within [1.00 ..

5,000.00].

The payment date (H_DATE) cr_date generated within the SUT by using the

current system date and time.

 157

A.3 The Order-Status Transaction

Order-Status

Transaction

The Order-Status business transaction queries the status of a customer's last order. It

represents a mid-weight read-only database transaction with a low frequency of

execution and response time requirement to satisfy on-line users. In addition, this table

includes non-primary key access to the CUSTOMER table.

 Body Constraints

home warehouse number (W_ID) constant over the whole measurement

interval.

The district number (D_ID) is randomly selected within [1 ..10] from the

home warehouse.

The customer id (C_W_ID,

C_D_ID,

C_LAST)

The customer

is randomly

selected 60%

of the time by

last name from

the selected

district

(C_D_ID =

D_ID) and the

home

warehouse

number

(C_W_ID =

W_ID).

Input

 (C_W_ID,

C_D_ID, C_ID)

 and 40% of

the time by

number from

the selected

district

(C_D_ID =

D_ID) and the

home

warehouse

number

(C_W_ID =

W_ID).

This can be implemented

by generating a random

number y within [1 .. 100];

• If y <= 60 a customer

last name (C_LAST) is

generated according to

Clause 4.3.2.3 from a non-

uniform random value

using the

NURand(255,0,999)

function. The customer is

using his/her last name

and is one of the, possibly

several, customers with

that last name.

• If y > 60 a non-uniform

random customer number

(C_ID) is selected using

the NURand(1023,1,3000)

function. The customer is

using his/her customer

number.

 158

A.4 The Delivery Transaction

Delivery

Transaction

The Delivery business transaction consists of processing a batch of 10 new (not yet

delivered) orders. Each order is processed (delivered) in full within the scope of a read-

write database transaction. The number of orders delivered as a group (or batched)

within the same database transaction is implementation specific. The business

transaction, comprised of one or more (up to 10) database transactions, has a low

frequency of execution and must complete within a relaxed response time requirement.

The Delivery transaction is intended to be executed in deferred mode through a

queueing mechanism, rather than interactively, with terminal response indicating

transaction completion. The result of the deferred execution is recorded into a result

file.

 Body Constraints

the home warehouse number (W_ID) For any given terminal, is constant

over the whole measurement

interval.

the carrier number (O_CARRIER_ID) is randomly selected within [1 ..

10].

Input

The delivery date (OL_DELIVERY_D) is generated within the SUT by

using the current system date and

time.

A.5 The Stock-Level Transaction

Stock-Level

Transaction

The Stock-Level business transaction determines the number of recently sold items that

have a stock level below a specified threshold. It represents a heavy read-only database

transaction with a low frequency of execution, a relaxed response time requirement,

and relaxed consistency requirements.

 Body Constraints

the home warehouse number (W_ID)

The district number (D_ID)

Each terminal must use a unique

value of (W_ID, D_ID) that is

constant over the whole

measurement, i.e., D_IDs cannot

be re-used within a warehouse

Input

the threshold of minimum quantity in stock

(threshold)

is selected at random within [10 ..

20].

 159

Appendix B: The TPCC-UVA Table

Specifications

The TPCC-UVA database table specification provided here are taken from the source

code. The information regarding the population of the tables is taken from the TPC-C

benchmark [113]. This design represents the table used in our performance experiments,

e.g. foreign key referencing is not shown.

 160

TABLE NAME Columns Distribution Database Population Index

w_id int4 2*W unique IDs unique within [W]

w_name varchar(10) random a-string [6 .. 10]
1

w_street_1 varchar(20) random a-string [10 .. 20]

w_street_2 varchar(20) random a-string [10 .. 20]

w_city varchar(20) random a-string [10 .. 20]

w_state char(2) random a-string of 2 letters

w_zip char(9) generated according to
2

w_tax float4 random within [0.0000 .. 0.2000]

WAREHOUSE

w_ytd float8

 300,000.00

wareh1 PRIMARY

KEY (w_id)

populated

sequentially sorted

by w_id

1
 The notation random a-string [x .. y] (respectively, n-string [x .. y]) represents a string of random alphanumeric (respectively, numeric) characters of a

random length of minimum x, maximum y, and mean (y+x)/2.

Comment 1: The character set used must be able to represent a minimum of 128 different characters.

Comment 2: Generating such strings can be implemented by the concatenation of two strings selected at random from two separate arrays of strings, and

where:

1. Both arrays contain a minimum of 10 different strings of characters.

2. The first array contains strings of x characters.

3. The second array contains strings of lengths uniformly distributed between zero and (y - x) characters.

4. Both arrays may contain strings that are pertinent to the row and the attribute (e.g., use an actual first name for C_FIRST) instead of strings of random

characters, as long as this does not bring any improvement to the reported metrics.

2
 The warehouse zip code (W_ZIP), the district zip code (D_ZIP) and the customer zip code (C_ZIP) must be generated by the concatenation of:

1. A random n-string of 4 numbers, and

2. The constant string '11111'.

Given a random n-string between 0 and 9999, the zip codes are determined by concatenating the n-string and the constant '11111'. This will create 10,000

unique zip codes. For example, the n-string 0503 concatenated with 11111, will make the zip code 050311111.

Comment: With 30,000 customers per warehouse and 10,000 zip codes available, there will be an average of 3 customers per warehouse with the same

zip code.

 161

d_id int4 20 unique IDs - 10

are populated per

warehouse

unique within [10]

d_w_id int4 2*W unique IDs = W_ID

d_name varchar(10) random a-string [6 .. 10]

d_street_1 varchar(20) random a-string [10 .. 20]

d_street_2 varchar(20) random a-string [10 .. 20]

d_city varchar(20) random a-string [10 .. 20]

d_state char(2) random a-string of 2 letters

d_zip char(9) generated according to
2

d_tax float4 random within [0.0000 .. 0.2000]

d_ytd float8 30,000.00

DISTRICT

d_next_o_id int4 10,000,000 unique

IDs

3,001

dist1 PRIMARY

KEY

(d_w_id,d_id),

populated

sequentially sorted

by d_id, w_id

c_id int4 96,000 unique IDs

- 3,000 are

populated per

district

unique within [3,000]

c_d_id int4 20 unique IDs = D_ID

c_w_id int4 2*W unique IDs D_W_ID

c_first varchar(16) random a-string [8 .. 16]

CUSTOMER

c_middle char(2) "OE"

custom1

PRIMARY KEY

(c_w_id, c_d_id,

c_id),

populated

sequentially sorted

by c_id, c_d_id,

c_w_id:

All customers of 1
st

dist, 1
st
 ware,

2
nd

 dist, 1
st
 ware,

…..

10
th

 dist, 1
st
 ware,

…..

10
th

 dist, nth ware

 162

c_last varchar(16) generated according to
1
, iterating through the

range of [0 .. 999] for the first 1,000 customers,

and generating a non-uniform random number

1
 The customer last name (C_LAST) must be generated by the concatenation of three variable length syllables selected from the following list:

 0 1 2 3 4 5 6 7 8 9

 BAR OUGHT ABLE PRI PRES ESE ANTI CALLY ATION EING

Given a number between 0 and 999, each of the three syllables is determined by the corresponding digit in the three digit representation of the number.

For example, the number 371 generates the name PRICALLYOUGHT, and the number 40 generates the name BARPRESBAR.

2
 The term non-uniform random, used only for generating customer numbers, customer last names, and item numbers, means an independently selected

and non-uniformly distributed random number over the specified range of values [x .. y]. This number must be generated by using the function NURand

which produces positions within the range [x .. y]. The results of NURand might have to be converted to produce a name or a number valid for the

implementation.

NURand(A, x, y) = (((random(0, A) | random(x, y)) + C) % (y - x + 1)) + x

where:

• exp-1 | exp-2 stands for the bitwise logical OR operation between exp-1 and exp-2

• exp-1 % exp-2 stands for exp-1 modulo exp-2

• random(x, y) stands for randomly selected within [x .. y]

• A is a constant chosen according to the size of the range [x .. y]

o for C_LAST, the range is [0 .. 999] and A = 255

o for C_ID, the range is [1 .. 3000] and A = 1023

o for OL_I_ID, the range is [1 .. 100000] and A = 8191

• C is a run-time constant randomly chosen within [0 .. A] that can be varied without altering performance. The same C value, per field (C_LAST,

C_ID, and OL_I_ID), must be used by all emulated terminals.

In order that the value of C used for C_LAST does not alter performance the following must be true:

• Let C-Load be the value of C used to generate C_LAST when populating the database. C-Load is a value in the range of [0..255] including 0

and 255.

• Let C-Run be the value of C used to generate C_LAST for the measurement run.

• Let C-Delta be the absolute value of the difference between C-Load and C-Run. C-Delta must be a value in the range of [65..119] including

the values of 65 and 119 and excluding the value of 96 and 112.

 163

using the function NURand(255,0,999) for each

of the remaining 2,000 customers. The run-time

constant C
2
 used for the database population must

be randomly chosen independently from the test

run(s).

c_street_1 varchar(20) random a-string [10 .. 20]

c_street_2 varchar(20) random a-string [10 .. 20]

c_city varchar(20) random a-string [10 .. 20]

c_state char(2) random a-string of 2 letters

c_zip char(9) generated according to
2

c_phone char(16) random n-string
1
 of 16 numbers

c_since timestamp

DEFAULT '1970-01-01'

 date/time given by the operating system when the

CUSTOMER table was populated.

c_credit char(2) ‘GC’ or ‘BC’ "GC". For 10% of the rows, selected at random,

C_CREDIT = "BC"

c_credit_lim float8 50,000.00

c_discount float4 random within [0.0000 .. 0.5000]

c_balance float8 -10.00

c_ytd_payment float8 10.00

c_payment_cnt int2 1

c_delivery_cnt int2 0

c_data varchar(500) random a-string [300 .. 500]

h_c_id int4 96,000 unique IDs = C_ID

h_c_d_id int4 20 unique IDs H_D_ID = D_ID

h_c_w_id number 2*W unique IDs = H_W_ID = W_ID

h_d_id int4 20 unique IDs H_D_ID = D_ID

h_w_id int4 2*W unique IDs = H_W_ID = W_ID

h_date timestamp

DEFAULT '1970-01-01'

 current date and time

h_amount float4 10.00

HISTORY

h_data varchar(24) random a-string [12 .. 24]

populated

sequentially sorted

by h_c_id,

h_c_d_id,

h_c_w_id:

All customers of 1
st

dist, 1
st
 ware,

2
nd

 dist, 1
st
 ware,

…..

10
th

 dist, 1
st
 ware,

…..

10
th

 dist, nth ware

 164

o_id int4 10,000,000 unique

IDs

unique within [3,000]

o_w_id int4 2*W unique IDs = W_ID

o_d_id int4 20 unique IDs = D_ID

o_c_id int4 96,000 unique IDs selected sequentially from a random permutation

of [1 .. 3,000]

o_entry_d timestamp

DEFAULT '1970-01-01’

 current date/time given by the operating system

o_carrier_id int2

DEFAULT 0

10 unique IDs or

null

random within [1 .. 10] if O_ID < 2,101, null

otherwise

o_ol_cnt int2 random within [5 .. 15]

ORDER

o_all_local int2

 1

orderr1 PRIMARY

KEY (o_w_id,

o_d_id, o_id)

 populated

sequentially sorted

by o_id, o_d_id,

o_w_id:

All orders of 1
st

dist, 1
st
 ware,

2
nd

 dist, 1
st
 ware,

…..

10
th

 dist, 1
st
 ware,

…..

10
th

 dist, nth ware

no_o_id int4 10,000,000 unique

IDs

= O_ID, with O_ID between 2,101 and 3,000

no_d_id int4 2*W unique IDs = W_ID

NEW ORDER

no_w_id int4 20 unique IDs = D_ID

no1 PRIMARY

KEY (no_w_id,

no_d_id, no_o_id),

populated

sequentially sorted

by no_o_id,

no_d_id, no_w_id:

All new-orders of

1
st
 dist, 1

st
 ware,

2
nd

 dist, 1
st
 ware,

…..

10
th

 dist, 1
st
 ware,

..10
th

 dist, nth ware

 165

ol_o_id int4 10,000,000 unique

IDs

= O_ID

ol_d_id int4 20 unique IDs = D_ID

ol_w_id int4 2*W unique IDs = W_ID

ol_number int2 15 unique IDs unique within [O_OL_CNT]

ol_i_id int4 200,000 unique IDs random within [1 .. 100,000]

ol_supply_w_id int4 2*W unique IDs = W_ID

ol_delivery_d
timestamp DEFAULT
'1970-01-01'

 = O_ENTRY_D if OL_O_ID < 2,101, null

otherwise

ol_quantity int2 5

ol_amount
numeric(6,2)

 = 0.00 if OL_O_ID < 2,101, random within [0.01

.. 9,999.99] otherwise

ORDER-LINE

ol_dist_info char(24)

 random a-string of 24 letters

ol1 PRIMARY

KEY (ol_w_id,

ol_d_id, ol_o_id,

ol_number),

populated

sequentially sorted

by ol_o_id,

ol_d_id, ol_w_id,

ol_number:

All order-lines of

1
st
 dist, 1

st
 ware,

2
nd

 dist, 1
st
 ware,

…..

10
th

 dist, 1
st
 ware,

…..

10
th

 dist, nth ware

 166

s_i_id int4 200,000 unique IDs

– 100,000

populated per

warehouse

unique within [100,000]

s_w_id int4 2*W unique IDs = W_ID

s_quantity int2 random within [10 .. 100]

s_dist_01 char(24) random a-string
1
 of 24 letters

s_dist_02 char(24) random a-string of 24 letters

s_dist_03 char(24) random a-string of 24 letters

s_dist_04 char(24) random a-string of 24 letters

s_dist_05 char(24) random a-string of 24 letters

s_dist_06 char(24) random a-string of 24 letters

s_dist_07 char(24) random a-string of 24 letters

s_dist_08 char(24) random a-string of 24 letters

s_dist_09 char(24) random a-string of 24 letters

s_dist_10 char(24) random a-string of 24 letters

s_ytd numeric(8,2) 0

s_order_cnt int2 0

s_remote_cnt int2 0

STOCK

s_data varchar(50) random a-string [26 .. 50]. For 10% of the rows,

selected at random, the string "ORIGINAL" must

be held by 8 consecutive characters starting at a

random position within S_DATA

stock1 PRIMARY

KEY (s_w_id,

s_i_id)

populated

sequentially sorted

by s_i_id , s_w_id

i_id int4 200,000 unique IDs

– 100,000 items are

populated

unique within [100,000]

i_im_id int4 200,000 unique IDs random within [1 .. 10,000]

i_name varchar(24) random a-string
1
 [14 .. 24]

i_price float8 random within [1.00 .. 100.00]

ITEM

i_data varchar(50) random a-string
1
 [26 .. 50]. For 10% of the rows,

selected at random, the string "ORIGINAL" must

be held by 8 consecutive characters starting at a

random position within I_DATA

item1 PRIMARY

KEY (i_id)

populated

sequentially sorted

by i_id

 167

Appendix C: The TPCC-UVA

Transaction SQL Source Code and

Service Demand Calculation

In this Appendix, the SQL source code of the TPCC-UVA system is detailed. Due to

space considerations, we have removed all other code in the transactions. The

calculation of the service demands for the SQL statements is based on Section 4.4.2 and

the TPCC-UVA table designs in Appendix B.

C.1 Calculation of TPCC-UVA Index I/O Cost

To calculate tree index fan-out, we assume index pages are fully loaded and ignoring

header size. The index fan-out is:

 SizeIndexEntryPageSize

where PageSize is the DB page size and IndexEntrySize is the size of the index key +

index pointer. The PostgreSQL index pointer size is 6 bytes long [31]. PostgreSQL page

size is 8192 bytes [102]. Table C.1 shows the fan-out values for the indexes of the

TPCC-UVA database design.

 168

Table C.2 shows a partial calculation of the I/O cost for the TPCC-UVA database

design based on the cost model in Section. These values are used in the following

sections.

 169

Table C.1 Calculation of the TPCC-UVA index fan-out.

 WAREHOUSE DISTRICT CUSTOMER HISTORY ORDER
NEW-

ORDER

ORDER-

LINE
STOCK ITEM

 1 10 30,000 30,000 30,000 9,000 300,000 100,000 100,000

of rows 100 1,000 3,000,000 3,000,000 3,000,000 900,000 30,000,000
10,000,00

0
100,000

row length in

bytes
89 95 655 46 24 8 54 306 82

key w_id d_w_id,d_id
c_w_id, c_d_id,

c_id

o_w_id,

o_d_id, o_id

no_w_id,

no_d_id,

no_o_id

ol_w_id,

ol_d_id,

ol_o_id,

ol_number

s_w_id,

s_i_id
i_id

key size in bytes 2 4 8 0 8 8 10 6 4

index entry size

in bytes
8 10 14 0 14 8 16 12 10

fan-out (F) 1024 820 586 0 586 1024 512 683 820

 170

Table C.2 Partial calculation of the TPCC-UVA index I/O cost.

 WAREHOUSE DISTRICT CUSTOMER HISTORY ORDER
NEW-

ORDER

ORDER-

LINE
STOCK ITEM

 1 10 30,000 30,000 30,000 9,000 300,000 100,000 100,000

of rows 100 1,000 3,000,000 3,000,000 3,000,000 900,000 30,000,000 10,000,000 100,000

row length in bytes 89 95 655 46 24 8 54 306 82

table size in bytes 8,900 95,000 1,965,000,000 138,000,000 72,000,000 7,200,000 1,620,000,000 3,060,000,000 8,200,000

rows per page (

PostgreSQL page

size / row length)

93 87 13 179 342 1,024 152 27 100

total # of pages (B) 2 12 239,869 16,846 8,790 879 197,754 373,536 1,001

index fan-out (F) 1024 820 586 0 586 1024 512 683 820

log2B 1 3.58 17.87 14.04 13.1 9.78 17.59 18.51 9.97

logFB 0.1 0.37 1.94 0 1.42 0.98 1.95 1.97 1.03

(index:row) ratio (R) 0.09 0.11 0.02 0 0.58 1 0.3 0.04 0.12

logF(index:row)*B -0.25 0.04 1.33 0 1.34 0.98 1.76 1.47 0.71

 171

C.2 The New-Order Transaction

Source SQL Statements Formulas for Service Demands

SELECT w_tax, c_discount,

c_last, c_credit

INTO :w_tax, :c_discount,

:c_last, :c_credit

FROM warehouse, customer

WHERE w_id=:w_id AND

c_w_id=:w_id AND c_d_id=:d_id

AND c_id=:c_id;

The warehouse table is the smaller of the two tables,

therefore the query optimizer will choose it first.

WAREHOUSE:

b-tree unclustered tree index: equality on index key

cost = D(1+ logFRB) = D(1+ (-0.25)) = 0.75D

CUSTOMER

b-tree unclustered tree index: equality on index key

cost = D(1+ logFRB) = D(1+1.33) = 2.33D

SELECT d_next_o_id, d_tax

INTO :d_next_o_id, :d_tax

FROM district

WHERE d_id=:d_id AND

d_w_id=:w_id;

b-tree unclustered tree index: equality on index key

cost = D(1+ logFRB) = D(1+ (0.04)) = 1.04D

UPDATE district SET

d_next_o_id=:d_next_o_id+1

WHERE d_id=:d_id AND

d_w_id=:w_id;

b-tree unclustered tree index: equality on index key

search plus Update:

cost = Search + 2D

the initial DB pages arein the buffer,

cost = 0 + 2D = 2D

INSERT INTO new_order (no_o_id,

no_d_id, no_w_id)

VALUES (:o_id, :d_id, :w_id);

Even though all the information in the rows are available

in the index, PostgreSQL does a table look-up [102],

therefore:

Insert unclusterd tree index

cost = D(3 + logFRB) = D(3 + 0.98) = 3.98D

while((i<15) && (new_order->item[i].flag==1)) here we assume an average

of 10 items to an order

SELECT i_price, i_name,

i_data INTO :i_price,

:i_name, :i_data

FROM item

WHERE i_id=:ol_i_id;

b-tree unclustered tree index: equality on index key

cost = 10x D(1+ logFRB) = 10xD(1+0.71) = 17.1D

SELECT s_quantity, s_data,

s_dist_01, s_dist_02,

s_dist_03, s_dist_04,

s_dist_05, s_dist_06,

s_dist_07, s_dist_08,

s_dist_09, s_dist_10

INTO :s_quantity, :s_data,

:s_dist_01, :s_dist_02,

:s_dist_03, :s_dist_04,

b-tree unclustered tree index: equality on index key

cost = 10x D(1+ logFRB) = 10xD(1+1.47) = 24.7D

 172

:s_dist_05, :s_dist_06,

:s_dist_07, :s_dist_08,

:s_dist_09, :s_dist_10

FROM stock

WHERE s_i_id = :ol_i_id

AND s_w_id =

:ol_supply_w_id;

if

s_quantity>=ol_quantity+10)

{

 s_quantity=s_quantity-

ol_quantity;

EXEC SQL

UPDATE stock SET

s_quantity=:s_quantity

WHERE s_i_id = :ol_i_id AND

s_w_id = :ol_supply_w_id;

 }

else{

s_quantity=(s_quantity-

ol_quantity)+91;

EXEC SQL

UPDATE stock SET

s_quantity=:s_quantity

WHERE s_i_id = :ol_i_id AND

s_w_id = :ol_supply_w_id;

 }}/*end if*/

UPDATE stock SET

s_ytd=:s_ytd+cast(:ol_quant

ity as real),

s_order_cnt=:s_order_cnt+1

WHERE s_i_id = :ol_i_id AND

s_w_id = :ol_supply_w_id;

if(ol_supply_w_id!=w_id){

EXEC SQL

UPDATE stock SET

s_remote_cnt=:s_remote_cnt+

1

WHERE s_i_id = :ol_i_id AND

s_w_id = :ol_supply_w_id;

o_all_local=0;

 }/*end if*/

The DB pages for the rows affected by these SQL

statements will be in the buffer from the previous

statement. Therefore, all the UPDATEs will be on the

buffered pages and will only be written back once at the

end of the transaction.

cost = 10xcost of writing an update =10x(2D) = 20D

EXEC SQL

INSERT INTO order_line

(ol_o_id, ol_d_id, ol_w_id,

ol_number, ol_i_id,

ol_supply_w_id,

ol_quantity, ol_amount,

ol_dist_info)

VALUES (:o_id, :d_id,

:w_id, :ol_number,

:ol_i_id, :ol_supply_w_id,

Insert unclustered tree index

cost = 10xD(3 + logFRB) = 10xD(3 + 1.76) = 47.6D

 173

:ol_quantity, :ol_amount,

:ol_dist_info);

i++; /*increments the

number of items*/

}/*end while*/

INSERT INTO orderr (o_id,

o_d_id, o_w_id, o_c_id,

o_entry_d, o_carrier_id,

o_all_local)

VALUES (:o_id, :d_id, :w_id,

:c_id, :o_entry_d, 0,

:o_all_local);

Insert unclustered tree index

cost = D(3 + logFRB) = D(3 + 1.34) = 4.34D

if (o_all_local==0){

EXEC SQL UPDATE orderr SET

o_all_local=:o_all_local

WHERE o_id=:o_id AND

o_d_id=:d_id AND o_w_id=:w_id;

}/*end if*/

The previous INSERT statement brings the DB page into

the buffer. It will be UPDATED and written only ONE

time to disk. This was already accounted for by the

INSERT cost.

C.3 The Payment Transaction

Source SQL Statements Formulas for Service Demands
EXEC SQL

SELECT w_name, w_street_1,

w_street_2, w_city, w_state,

w_zip

INTO :w_name, :w_street_1,

:w_street_2, :w_city, :w_state,

:w_zip

FROM warehouse

WHERE w_id = :w_id;

b-tree unclustered tree index: equality on index key

cost = D(1+ logFRB) = D(1+ (-0.25)) = 0.75D

EXEC SQL

UPDATE warehouse

SET w_ytd = w_ytd + :h_amount

WHERE w_id = :w_id;

b-tree unclustered tree index: equality on index key

search plus Update:

cost = Search + 2D

the initial DB pages are in the buffer,

cost = 0 + 2D = 2D

EXEC SQL

SELECT d_name, d_street_1,

d_street_2, d_city, d_state,

d_zip

INTO :d_name, :d_street_1,

:d_street_2, :d_city, :d_state,

:d_zip

FROM district

WHERE d_w_id = :w_id AND

d_id = :d_id;

b-tree unclustered tree index: equality on index key

cost = D(1+ logFRB) = D(1+ 0.04) = 1.04D

EXEC SQL

UPDATE district

b-tree unclustered tree index: equality on index key

search plus Update:

 174

SET d_ytd = d_ytd + :h_amount

WHERE d_id = :d_id AND

d_w_id = :w_id;

cost = Search + 2D

the initial DB pages are in the buffer,

cost = 0 + 2D = 2D

if (c_id == 0) { /*Customer

selects BY C_LAST*/

EXEC SQL

SELECT count(c_id)

INTO :cont

FROM customer

WHERE c_last = :c_last AND

c_d_id = :c_d_id AND c_w_id =

:c_w_id;

EXEC SQL

DECLARE c_porlast CURSOR FOR

SELECT c_id, c_first,

c_middle, c_street_1,

c_street_2, c_city, c_state,

c_zip, c_phone, c_credit,

c_credit_lim, c_discount,

c_balance, c_since

FROM customer

WHERE c_w_id = :c_w_id AND

c_d_id = :c_d_id AND c_last =

:c_last

ORDER BY c_first;

EXEC SQL OPEN c_porlast; /*It

initializes the cursor*/

for (i = 0; i < cont/2; i++){

EXEC SQL FETCH FROM c_porlast

INTO :c_id, :c_first,

:c_middle, :c_street_1,

:c_street_2, :c_city,

:c_state, :c_zip, :c_phone,

:c_credit, :c_credit_lim,

:c_discount, :c_balance,

:c_since;

EXEC SQL CLOSE c_porlast;

} else { /* Customer selects

BY C_ID */

EXEC SQL

SELECT c_first, c_middle,

c_last, c_street_1,

c_street_2, c_city, c_state,

c_zip, c_phone, c_credit,

c_discount, c_balance,c_since

INTO :c_first, :c_middle,

:c_last, :c_street_1,

By customer last name

b-tree unclustered index, partial match range search

Given that the file is sorted on the key, it will be a range

search, however the DB pages depend on the qualifying

number of pages and not the number of records.

Cost = D(logFRB + # of matching pages)

 = D(1.33 + 250) = 251.33D

b-tree unclustered tree index: equality on index key

search plus Update:

cost = Search + 2D

the initial DB pages are in the buffer,

cost = 0 + 2D = 2D

total = 253.33D

By customer id

b-tree unclustered tree index: equality on index key

cost = D(1+ logFRB) =D(1+ 1.33) = 2.33D

Average: 60% by customer last name, 40% by customer

id

total cost = [(.6)(253.33) + (.4)(2.33)]D = 152.93D

The rest of the SQL statements , the rows affected by

these SQL statements will be in the buffer from the

previous statements.

 175

:c_street_2, :c_city,

:c_state, :c_zip, :c_phone,

:c_credit, :c_discount,

:c_balance,:c_since

FROM customer

WHERE c_w_id = :w_id AND

c_d_id = :d_id AND

c_id = :c_id;

} /* if (c_id == 0) */

EXEC SQL

UPDATE customer

SET c_balance = c_balance -

:h_amount, c_ytd_payment =

c_ytd_payment + :h_amount,

c_payment_cnt = c_payment_cnt

+1

WHERE c_w_id = :c_w_id AND

c_d_id = :c_d_id AND c_id =

:c_id;

if (c_credit[0]=='B'){

EXEC SQL

SELECT c_data

INTO :c_data

FROM customer

WHERE c_id =:c_id AND

c_w_id=:c_w_id

AND c_d_id=:c_d_id;

EXEC SQL

UPDATE customer SET

c_data=:c_new_data

WHERE c_w_id=:c_w_id AND

c_d_id = :c_d_id AND c_id =

:c_id;

} /*end if*/

EXEC SQL

INSERT INTO history (h_c_d_id,

h_c_w_id, h_c_id, h_d_id,

h_w_id, h_date, h_amount,

h_data)

VALUES (:c_d_id, :c_w_id,

:c_id, :d_id,:w_id,:h_date,

:h_amount, :h_data);

INSERT into heap file

Cost = 2D

 176

C.4 The Order-Status Transaction

Source SQL Statements Formulas for Service Demands

if (c_id != 0){ /*Customer

selects BY C_ID

EXEC SQL

SELECT c_balance, c_first,

c_middle, c_last

INTO :c_balance, :c_first,

:c_middle, :c_last

FROM customer

WHERE c_w_id = :w_id AND

c_d_id = :d_id AND

c_id = :c_id;

} else { /*Customer selects

POR C_LAST*/

EXEC SQL

SELECT count(c_id)

INTO :cont

FROM customer

WHERE c_last = :c_last AND

c_w_id = :w_id AND

c_d_id = :d_id;

EXEC SQL DECLARE c_porlast2

CURSOR FOR

SELECT c_id, c_first,

c_middle, c_balance

FROM customer

WHERE c_w_id = :w_id AND

c_d_id = :d_id AND c_last =

:c_last

ORDER BY c_first;

EXEC SQL OPEN c_porlast2;

for (i = 0; i < cont/2; i++){

EXEC SQL FETCH FROM

c_porlast2

INTO :c_id, :c_first,

:c_middle, :c_balance;

} /*end for*/

} /* end if*/

By customer last name

b-tree unclustered index, partial match range search

Given that the file is sorted on the key, it will be a range

search, however the DB pages depend on the qualifying

number of pages and not the number of records.

Cost = D(logFRB + # of matching pages)

 = D(1.33 + 250) = 251.33D

By customer id

b-tree unclustered tree index: equality on index key

cost = D(1+ logFRB) =D(1+ 1.33) = 2.33D

Average: 60% by customer last name, 40% by customer

id

total cost = [(.6)(251.33) + (.4)(2.33)]D = 151.93D

EXEC SQL DECLARE cur_ordenes

CURSOR FOR

SELECT o_id, o_entry_d,

o_carrier_id

FROM orderr

WHERE o_w_id = :w_id AND o_d_id

= :d_id AND o_c_id = :c_id

ORDER BY o_id DESC; /*in

b-tree unclustered index, partial match range search

Given that the file is sorted on the key, it will be a range

search, however the DB pages depend on the qualifying

number of pages and not the number of records.

Cost = D(logFRB + # of matching pages)

 = D(1.34 + 9) = 10.34D

 177

descending order of the serial

number*/

EXEC SQL OPEN cur_ordenes;

EXEC SQL DECLARE cur_ord_lines

CURSOR FOR

SELECT ol_i_id, ol_supply_w_id,

ol_quantity, ol_amount,

ol_delivery_d

FROM order_line

WHERE ol_w_id = :w_id AND

ol_d_id = :d_id AND ol_o_id =

:o_id;

EXEC SQL OPEN cur_ord_lines;

b-tree unclustered index, partial match range search

Given that one transaction is running at a time, we

assume that the order-lines of one order will be on one

DB page. Hence, the cost will be by number of pages not

number of matching records.

Cost = D(logFRB + # of matching pages)

 = D(1.76 + 1) = 2.76D

C.5 The Delivery Transaction

Source SQL Statements Formulas for Service Demands

for (no_d_id = 1; no_d_id <=

10; no_d_id++){

EXEC SQL SELECT min(no_o_id)

INTO :no_o_id

FROM new_order

WHERE no_w_id = :w_id AND

no_d_id = :no_d_id;

b-tree unclustered tree index: equality on index key

cost = 10xD(1+ logFRB) = 10xD(1+ 0.98) = 19.8D

EXEC SQL

DELETE FROM new_order

WHERE no_o_id = :no_o_id AND

no_w_id = :w_id AND

no_d_id = :no_d_id;

b-tree unclustered tree index: equality on index key

search plus DELETE:

cost =10x[Search + 2D]

the initial DB pages are in the buffer,

cost =10x[0 + 2D] = 20D

EXEC SQL SELECT o_c_id

INTO :o_c_id

FROM orderr

WHERE o_w_id = :w_id AND

o_d_id = :no_d_id AND

o_id = :no_o_id;

b-tree unclustered tree index: equality on index key

cost = 10xD(1+ logFRB) = 10xD(1+ 1.34) = 23.4D

EXEC SQL UPDATE orderr

SET o_carrier_id =

:o_carrier_id

WHERE o_w_id = :w_id AND

o_d_id = :no_d_id AND

o_id = :no_o_id;

b-tree unclustered tree index: equality on index key

search plus UPDATE:

cost =10x[Search + 2D]

the initial DB pages are in the buffer,

cost =10x[0 + 2D] = 20D

EXEC SQL

UPDATE order_line

SET ol_delivery_d =

:ol_delivery_d

b-tree unclustered index, partial match range search

Given that one transaction is running at a time, we

assume that the order-lines of one order will be on one

DB page. Hence, the cost will be by number of pages not

 178

WHERE ol_o_id = :no_o_id AND

ol_w_id = :w_id AND

ol_d_id = :no_d_id;

number of matching records.

Cost = 10x [Search + 2D]

 = 10x [D(logFRB + # of matching pages) + 2D]

 = 10x [D(1.76 + 1) + 2D] = 47.6D

EXEC SQL

SELECT sum(ol_amount)

INTO :c_balance

FROM order_line

WHERE ol_o_id = :no_o_id AND

ol_w_id = :w_id AND

ol_d_id = :no_d_id;

b-tree unclustered tree index: equality on index key

DB pages already in buffer from previous statement

EXEC SQL

UPDATE customer

SET c_balance = c_balance +

:c_balance,

c_delivery_cnt =

c_delivery_cnt + 1

WHERE c_w_id = :w_id AND

c_d_id = :no_d_id AND

c_id = :o_c_id;

b-tree unclustered tree index: equality on index key

search plus UPDATE:

cost = 10x[Search + 2D]

 = 10x [D(1+ logFRB) + 2D]

 = 10x [D(1 + 1.33) + 2D] = 43.3D

C.6 The Stock-Level Transaction

Source SQL Statements Formulas for Service Demands
EXEC SQL SELECT d_next_o_id

INTO :d_next_o_id

FROM district

WHERE d_id = :d_id AND

d_w_id = :w_id;

b-tree unclustered tree index: equality on index key

cost = D(1+ logFRB) = D(1+ 0.04) = 1.04D

EXEC SQL

SELECT COUNT(DISTINCT (s_i_id))

INTO :lowstock

FROM stock, order_line

WHERE ol_w_id = :w_id AND

ol_d_id = :d_id AND

ol_o_id < :d_next_o_id AND

ol_o_id >= :d_next_o_id -20

AND s_w_id = :w_id AND

s_i_id = ol_i_id AND

s_quantity < :threshold;

This will be an nested-index JOIN, with the ORDER-

LINE rows in the outer-loop and the inner loop

ORDER-LINE:

b-tree unclustered tree index: range search

for 20 orders. Given that one transaction is running at a

time, we assume that the order-lines of one order will be

on one DB page.

cost = D(logFB + # of matching pages)

 = D(1.76 + 20) = 21.76D

STOCK

Assuming 10 items per order, this gives 200 items

b-tree unclustered tree index: range search

cost = D(logFRB + # of matching records)

 = D(1.47 + 200) = 201.47D

 179

Appendix D: QNAP2 Model

QNAP2 is a software tool for describing and solving queueing networks. It provides a

collection of solution methods for queueing network models, including exact and

approximate methods and discrete event simulation. In addition, the tool has a Pascal-

like language for model description, analysis control and result representation. The

model parameters are specified for the tool, i.e. number of customer classes, arrival

rates, service demand for each server and routing probabilities. Models are solved by

invoking QNAP2 on the command line with the model description as input to the tool.

The tool solves the model based on the method specified in the description and produces

the results. In this Appendix, an example of a QNAP2 model description for the TPCC-

UVA queueing network models is presented.

D.1 Queueing Network Model Description

The TPCC-UVA clients are described in QNAP2 in Figure D.1. Each client, up to the

maximum number of clients, will choose a transaction using a weighted random

function. The client waits a constant transaction keying time, then sends the transaction

customer to the transaction monitor and waits until it receives a signal that the customer

has completed (left the queueing network). After transaction completion, the client will

wait an exponentially distributed think time and the process starts again.

 180

/station/ name = clients(1 step 1 until maxcus);

 type = source;

 service = begin

 if time=0 then

 set(cust_out); &initialize the flag

 wait(cust_out); &wait for a customer to leave the network

 reset(cust_out); &reset flag to prevent other customers from entering

if time<> 0 then &think time for previous customer class leaving the network

 begin

 cl:=c(curr_cl);

 exp(cl.lamda);

 end

 else cst(0.0000001); &entered when time=0, so memory does not overflow

 wran := rint(1,100); &random number between 1 and 100

 if wran <=43 then

 cl:=c(2) &Payment

 else if wran <=47 then

 cl:=c(3) &Order-Status

 else if wran <=51 then

 cl:=c(4) &Delivery

 else if wran <=55 then

 cl:=c(5) &Stock_Level

 else cl:=c(1); &new order

 customer.cl_id:=cl.idcl;

 customer.sender:=idq; &let current customer take the client id

 curr_cl:=cl.idcl; &assign this client, the class of current customer

 cst(cl.key_time); &min constant keying time of user, for chosen transaction

 if server(cl.entrytab).nb >= server(cl.entrytab).N then

 begin

 ndrop:=ndrop+1;

 transit(out);

 set(cust_out);

 end

 else

 begin

 cl:=c(customer.cl_id);

 customer.b_time:=time;

 if cl.idcl=4 then

 begin

 set(clients(customer.sender).cust_out);
 &set flag, only for delivery transaction when queued

 end;

 transit(server(cl.entrytab),c(cl.idcl));

 end;

end; &client description

Figure D.1 QNAP2 description of the TPCC-UVA clients.

 181

Figure D.2 details the description of the queueing servers. Each server will service the

current customer/transaction based on its specified service demand. The service

demands for the Order-Status transaction are calculated based on the number of New-

Order transactions already executed. After the customer completes service, based on its

routing probabilities it will move to the next server or leave the network. When a

transaction leaves the network the transaction monitor and client are signalled.

/station/ name = server(1 step 1 until maxq);

 sched = fifo;

 service = begin

 L2:

 if idq=5 then &count number of new-order transactions in order table

 begin

 if customer.cl_id=1 then

 c_order:=c_order+1;

 end;

 if cl.entrytab=idq then &if server is the transaction monitor

 begin

 q:=server(idq);

 if q.nbin=1 then set(tm_out);

 &for server 10 which represents the transaction monitor

 wait(tm_out); &wait for a customer to leave the network

 reset(tm_out); &reset flag to prevent other customers from entering

 end

 else

 begin

 if idq=5 then &if server is the order table

 begin

 if customer.cl_id = 3 then &order-status transaction

 begin

 prob:=c_order/maxcus;

 num_pg:=c_order/374;

 if prob>=num_pg then

 begin

 exp((miou(idq)+num_pg)*0.001199);

 end

 else

 begin

 exp((miou(idq)+prob)*0.001199);

 end;

 end

 else &other transactions in the order table

 begin

 exp(miou(idq)*0.001199);

 end;

 end

 182

 else &other tables

 begin

 exp(miou(idq)*0.001199);

 end;

 end;

 norm:=1.0;

 if trans0(idq)>0.0 then

 if draw(trans0(idq)) then

 begin

 if customer.cl_id<>4 then
 &delivery already set the flag on first entry table

 begin

 set(clients(customer.sender).cust_out);
 &read current customer's sender id to set its flag

 end;

 set(tm_out);
 &the tm waits for the network to become empty before allowing anyone in

 customer.e_time:=time;

 transit(out);

 goto L1;

 end

 else norm:=norm-trans0(idq);

 for m:=1 step 1 until M do

 begin

 for j:=1 step 1 until R do

 begin

 if trans(idq,m,j)>0 then

 if draw(trans(idq,m,j)/norm) then

 begin

 q:=server(m);

 if q.nb=q.N then

 begin

 goto L2;

 end

 else transit(q,c(j));

 end

 else norm:=norm-trans(idq,m,j);

 end;

 end;

L1: end; & service ends

Figure D.2 QNAP2 description of the TPCC-UVA queueing network servers.

 183

References

[1] E. J. Adams, "Workload models for DBMS performance evaluation," in Proc. of

the Thirteenth ACM Annual Conference on Computer Science. New Orleans,

Louisiana, USA: ACM Press, 1985, pp. 185 -195.

[2] Z. Agrawal, S. Chaudhuri, L. Kollar, A. P. Marathe, V. R. Narasayya, and M.

Syamala, "Database Tuning Advisor for Microsoft SQL Server 2005," in Proc.

VLDB'04. Toronto, Canada, 2004, pp. 1110-1121.

[3] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, "DBMSs on a modern

processor: where does time go?," in Proceedings of the 25th International

Conference on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann

Publishers Inc., 1999, pp. 266-277.

[4] F. Andolfi, F. Aquilani, S. Balsamo, and P. Inverardi, "Deriving performance

models of software architectures from message sequence charts," in Proceedings

of the 2nd International Workshop on Software and Performance. Ottawa,

Ontario, Canada: ACM, 2000, pp. 47-57.

[5] F. Aquilani, S. Balsamo, and P. Inverardi, "Performance analysis at the software

architectural design level," Performance Evaluation, vol. 45, no. 2-3, 2001, pp.

147-178.

[6] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, "Multi-tenant

databases for software as a service: schema-mapping techniques," in

Proceedings of the 2008 ACM SIGMOD international conference on

Management of data. Vancouver, Canada: ACM, 2008, pp. 1195-1206.

[7] F. Baccelli and E. G. Coffman, "A data base replication analysis using an

M/M/m queue with service interruptions," SIGMETRICS Performance

Evaluation Review, vol. 11, no. 4, 1982, pp. 102-107.

[8] S. Balsamo, "Product Form Queueing Networks," in Performance Evaluation:

Origins and Directions, vol. 1769/2000, LNCS, 2000, pp. 377-401.

[9] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, "Model-based

performance prediction in software development: a survey," IEEE Transactions

on Software Engineering, vol. 30, no. 5, 2004, pp. 295-310.

[10] I. Ben-Gan and T. Moreau, Advanced Transact-SQL for SQL Server 2000:

APress, 2000.

[11] P. Bernstein and E. Newcomer, Principles of transaction processing: Morgan

Kaufmann Publishers Inc., 2009.

[12] G. Bolch, S. Greiner, H. d. Meer, and K. S. Trivedi, Queueing Networks and

Markov Chains - Modeling and Performance Evaluation with Computer Science

Applications, 2nd ed: Wiley-Interscience, 2006.

[13] R. Bonilla-Lucas, P. Plachta, A. Sachedina, D. Jimenez-Gonzalez, C. Zuzarte,

and J. L. Larriba-Pey, "Characterization of the data access behavior for TPC-C

traces," in Proc. of the 2004 IEEE International Symposium on Performance

Analysis of Systems and Software. Austin, Texas, USA: IEEE Computer Society,

2004, pp. 115-122.

 184

[14] J. A. Brumfield, J. L. Miller, and H. T. Chou, "Performance modeling of

distributed object-oriented database systems," in Proceedings of the 1st

International Symposium on Databases in Parallel and Distributed Systems.

Austin, Texas, United States: IEEE Computer Society Press, 1988, pp. 22-32.

[15] N. Bruno and S. Chaudhuri, "Interactive Physical Design Tuning," in 26th IEEE

International Conference on Data Engineering. Long Beach, California, USA

2010.

[16] D. K. Burleson, Oracle high-performance SQL tuning, 1st ed. Berkeley, Calif.:

Osborne/McGraw-Hill, 2001.

[17] J. P. Buzen, "Computational algorithms for closed queueing networks with

exponential servers," Communications of the ACM, vol. 16, no. 9, 1973, pp. 527-

531.

[18] M. J. Carey, R. Jauhari, and M. Livny, "On Transaction Boundaries in Active

Databases: A Performance Perspective," IEEE Transactions on Knowledge and

Data Engineering, vol. 3, no. 3, 1991, pp. 320-336.

[19] I. R. Casas and K. C. Sevcik, "A buffer management model for use in predicting

overall database system performance," in Proceedings of the Fifth International

Conference on Data Engineering. Los Angeles, CA, 1989, pp. 463 - 469.

[20] I. R. Casas and K. C. Sevcik, "Structure and validation of an analytic

performance predictor for System 2000 databases," Information Systems and

Operational Research (INFOR), vol. 27, no. 2, 1989, pp. 129-144.

[21] S. Ceri, C. Gennaro, S. Paraboschi, and G. Serazzi, "Effective Scheduling of

Detached Rules in Active Databases," IEEE Transactions on Knowledge and

Data Engineering, vol. 15, no. 1, 2003, pp. 2-13.

[22] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry, "Improving hash join

performance through prefetching," ACM Trans. on Database Systems, vol. 32,
no. 3, 2007, pp. 17/1-36.

[23] B. Ciciani, D. M. Dias, and P. S. Yu, "Analysis of Replication in Distributed

Database Systems," IEEE Transactions on Knowledge and Data Engineering,

vol. 2, no. 2, 1990, pp. 247-261.

[24] B. Ciciani, D. M. Dias, and P. S. Yu, "Analysis of Concurrency-Coherency

Control Protocols for Distributed Transaction Processing Systems with Regional

Locality," IEEE Transactions on Software Engineering, vol. 18, no. 10, 1992,

pp. 899-914.

[25] V. Cortellessa, A. D'Ambrogio, and G. Iazeolla, "Automatic derivation of

software performance models from CASE documents," Performance

Evaluation, vol. 45, no. 2-3, 2001, pp. 81-105.

[26] V. Cortellessa, A. Di Marco, and P. Inverardi, "Three performance models at

work: a software designer perspective," Electronic Notes in Theoretical

Computer Science, vol. 97, 2004, pp. 219-239.

[27] V. Cortellessa and R. Mirandola, "PRIMA-UML: a performance validation

incremental methodology on early UML diagrams," Science of Computer

Programming, vol. 44, no. 1, 2002, pp. 101-129.

[28] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin,

"Automatic SQL Tuning in Oracle 10g," in Proc. VLDB'04. Toronto, Canada,

2004, pp. 1098-1109.

[29] C. J. Date, An introduction to database systems, 8th ed. Reading, Mass.:

Addison-Wesley, 2004.

 185

[30] E. W. Dempster, N. T. Tomov, M. H. Williams, H. Taylor, A. Burger, P.

Trinder, J. Lu, and P. Broughton, "Modelling Parallel Oracle for Performance

Prediction," Distributed Parallel Databases, vol. 13, no. 3, 2003, pp. 251-269.

[31] Doxygen, "PostgreSQL Source Code: PGROOT\src\include\storage\itemptr.h,"

2010.

[32] R. Elmasri and S. B. Navathe, Fundamentals of database systems, 5th ed:

Addison-Wesley, 2007.

[33] S. Elnikety, S. Dropsho, E. Cecchet, and W. Zwaenepoel, "Predicting replicated

database scalability from standalone database profiling," in Proceedings of the

4th ACM European Conference on Computer Systems. Nuremberg, Germany:

ACM, 2009, pp. 303-316.

[34] A. Geppert and K. R. Dittrich, "Performance Assessment," in Active Rules in

Database Systems, Norman Paton, Ed., 1999, pp. 103 -126.

[35] B. M. M. Gijsen, R. D. van der Mei, P. Engelberts, J. L. van den Berg, and K.

M. C. van Wingerden, "Sojourn time approximations in queueing networks with

feedback," Performance Evaluation, vol. 63, no. 8, 2006, pp. 743-758.

[36] P. B. Goes and U. Sumita, "Stochastic models for performance analysis of

database recovery control," IEEE Transactions on Computers, vol. 44, no. 4,

1995, pp. 561 - 576.

[37] N. Goodman, R. Suri, and Y. C. Tay, "A simple analytic model for performance

of exclusive locking in database systems," in Proceedings of the 2nd ACM

SIGACT-SIGMOD Symposium on Principles of Database Systems. Atlanta,

Georgia: ACM Press, 1983, pp. 203-215.

[38] R. A. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eri, H. Nueckel, and J. P.

Shen, "Scaling and Characterizing Database Workloads: Bridging the Gap

between Research and Practice," in Proceedings of the 36th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-36'03): IEEE

Computer Society, 2003, pp. 151-162.

[39] U. Harder and P. G. Harrison, "A queueing network model of Oracle Parallel

Server," in UKPEW 1999.

[40] H. S. Hassanein and M. E. El-Sharkawi, "Performance modeling of nested

transactions in database systems," in Proceedings of the 2000 Conference of the

IBM Centre for Advanced Studies on Collaborative Research. Mississauga,

Ontario, Canada: IBM Press, 2000, pp. 4.

[41] W. W. Hsu, A. J. Smith, and H. C. Young, "Characteristics of production

database workloads and the TPC benchmarks," IBM Systems Journal, vol. 40,

no. 3, 2001, pp. 781 - 802.

[42] W. W. Hsu, A. J. Smith, and H. C. Young, "I/O reference behavior of production

database workloads and the TPC benchmarks-an analysis at the logical level,"

ACM Trans. Database Syst., vol. 26, no. 1, 2001, pp. 96-143.

[43] W. F. Hyslop and K. C. Sevcik, "Performance prediction of relational database

systems," in Proc. of the Canadian Computer Measurement Group (CMG)

Conference. Toronto, Canada, 1991, pp. 298-312.

[44] IBM, "IBM DB2 Version 9.7 for Linux, UNIX, and Windows: Designing

foreign key (referential) constraints," 2005.

[45] S. Idreos, M. Kersten, and S. Manegold, "Database Cracking," in 3rd Biennial

Conference on Innovative Data Systems Research. Asilomar, CA, USA, 2007,

pp. 68-78.

 186

[46] I. F. Ilyas, J. Rao, G. Lohman, D. Gao, and E. Lin, "Estimating compilation time

of a query optimizer," in Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data. San Diego, California: ACM Press, 2003,

pp. 373-384.

[47] International Organization for Standardization, "International Standard ISO/IEC

9075-1:2003 (SQL:2003)," 2006.

[48] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A. Nandi, and C.

Yu, "Making database systems usable," in Proceedings of the 2007 ACM

SIGMOD International Conference on Management of Data. Beijing, China:

ACM, 2007, pp. 13-24.

[49] B.-C. Jenq, W. H. Kohler, and D. Towsley, "A Queueing Network Model for a

Distributed Database Testbed System," IEEE Transactions on Software

Engineering, vol. 14, no. 7, 1988, pp. 908-921.

[50] D. G. Kendall, "Stochastic Processes Occurring in the Theory of Queues and

their Analysis by the Method of the Imbedded Markov Chain," The Annals of

Mathematical Statistics, vol. 24, no. 3, 1953, pp. 338–354.

[51] M. Kifer, A. J. Bernstein, and P. M. Lewis, Database systems: an application-

oriented approach, 2nd ed. Boston: Pearson/Addison Wesley, 2005.

[52] L. Kleinrock, Queueing systems, vol.1: theory. New York; London: Wiley-

Interscience, 1975.

[53] L. Kleinrock, Queueing systems. vol.2: computer applications. New York;

London: Wiley, 1976.

[54] S. S. Lavenberg, Computer Performance Modeling Handbook. New York:

Academic Press, Inc., 1983.

[55] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative

System Performance: Computer System Analysis Using Queueing Network

Models: Prentice-Hall, 1984.

[56] M. Lee and G. Bieker, Mastering Microsoft SQL Server 2008. Hoboken, N.J.:

Wiley, 2009.

[57] S. T. Leutenegger and D. Dias, "A modeling study of the TPC-C benchmark," in

Proc. SIGMOD'93. Washington, D.C., United States: ACM Press, 1993, pp. 22-

31.

[58] D. R. Llanos, "tpcc-uva: an open-source implementation of the TPC-C

benchmark - Installation and User Guide," University of Valladolid, Spain,

2006.

[59] D. R. Llanos, "TPCC-UVa: An open-source TPC-C implementation for global

performance measurement of computer systems," SIGMOD Record, vol. 35, no.

4, 2006, pp. 6-15.

[60] N. Mabanza, J. Chadwick, and G. S. V. R. K. Rao, "Performance evaluation of

open source native XML databases - a case study," in The 8th International

Conference on Advanced Communication Technology, 2006 (ICACT 2006).

Gangwon-Do, Republic of Korea, 2006, pp. 1861-1865.

[61] S. Manegold, P. Boncz, and M. Kersten, "Optimizing database architecture for

the new bottleneck: memory access," The VLDB Journal, vol. 9, no. 3, 2000, pp.

231 - 246.

[62] D. Menascé and M. Bennani, "Analytic performance models for single class and

multiple class multithreaded software servers," in Proc. of the International

 187

Computer Measurement Group (CMG) Conference. Reno, NV, USA, 2006, pp.

475–482.

[63] D. A. Menascé, "CLISSPE: A Language for Client/Server Software

Performance Engineering," Dept. of Computer Science, George Mason Univ.,

Technical Report, 1997.

[64] D. A. Menascé, "Software, performance, or engineering?," in Proceedings of the

3rd International Workshop on Software and Performance (WOSP'02). Rome,

Italy: ACM Press, 2002, pp. 239-242.

[65] D. A. Menascé, V. A. F. Almeida, and L. W. Dowdy, Performance by design:

computer capacity planning by example. Upper Saddle River, NJ: Prentice Hall,

2004.

[66] D. A. Menascé, D. Barbar, and R. Dodge, "Preserving QoS of e-commerce sites

through self-tuning: a performance model approach," in Proceedings of the 3rd

ACM Conference on Electronic Commerce. Tampa, Florida, USA: ACM, 2001,

pp. 224-234.

[67] D. A. Menascé and H. Gomaa, "A method for design and performance modeling

of client/server systems," IEEE Transactions on Software Engineering, vol. 26,

no. 11, 2000, pp. 1066-1085.

[68] R. J. T. Morris and W. S. Wong, "Performance analysis of locking and

optimistic concurrency control algorithms," Performance Evaluation, vol. 5, no.

2, 1985, pp. 105-118.

[69] E. J. Naiburg and R. A. Maksimchuck, UML for database design. Boston;

London: Addison-Wesley, 2001.

[70] M. Nicola and M. Jarke, "Performance modeling of distributed and replicated

databases," IEEE Transactions on Knowledge and Data Engineering, vol. 12,

no. 4, 2000, pp. 645-672.
[71] Oracle Corporation, "Oracle® Database Application Developer's Guide -

Fundamentals 10g Release 2 (10.2)," 2005.

[72] Oracle Corporation, "Oracle® Database Concepts, 10g Release 2 (10.2)," 2005.

[73] Oracle Corporation, "Oracle® Database Performance Tuning Guide, 11g

Release 2 (11.2)," 2010.

[74] R. Osman, I. Awan, and M. E. Woodward, "Queuing networks for the

performance evaluation of database designs," in the 24th UK Performance

Engineering Workshop (UKPEW 2008): Dept of Computing, Imperial College

London, 2008, pp. 172-183.

[75] R. Osman, I. Awan, and M. E. Woodward, "Application of Queueing Network

Models in the Performance Evaluation of Database Designs," in Proceedings of

the 3rd International Workshop on the Practical Application of Stochastic

Modelling (PASM 2008), vol. 232, Electronic Notes in Theoretical Computer

Science, 2009, pp. 101-124.

[76] R. Osman, I. Awan, and M. E. Woodward, "Towards a Performance Evaluation

Model for Database Designs," in Proceedings of the 2nd International

Conference on Computer Science and its Applications (CSA 2009). Jeju Island,

South Korea, 2009, pp. 165 - 170.

[77] R. Osman, I. Awan, and M. E. Woodward, "Performance Evaluation of

Database Designs," in Proceedings of the 24th IEEE International Conference

on Advanced Information Networking and Applications (AINA-2010). Perth,

Australia, 2010, pp. 42-49.

 188

[78] R. Osman, I. Awan, and M. E. Woodward, "QuePED: Revisiting Queueing

Networks for the Performance Evaluation of Database Designs," Simulation

Modelling Practice and Theory (accepted for publication), 2010.

[79] D. C. Petriu and X. Wang, "From UML Descriptions of High-Level Software

Architectures to LQN Performance Models," in Proceedings of the International

Workshop on Applications of Graph Transformations with Industrial Relevance:

Springer-Verlag, 2000, pp. 47-62.

[80] D. C. Petriu and C. M. Woodside, "Software Performance Models from System

Scenarios in Use Case Maps," in Proceedings of the 12th International

Conference on Computer Performance Evaluation, Modelling Techniques and

Tools: Springer-Verlag, 2002, pp. 141-158.

[81] R. Pooley "Software engineering and performance: a roadmap," in Proceedings

of the Conference on The Future of Software Engineering. Limerick, Ireland:

ICSE '00. ACM Press, New York, NY, 2000, pp. 189-199.

[82] D. Potier, New users' introduction to QNAP2: INRIA, 1984.

[83] D. Potier and P. Leblanc, "Analysis of locking policies in database management

systems," Communications of the ACM, vol. 23, no. 10, 1980, pp. 584-593.

[84] R. Ramakrishnan and J. Gehrke, Database management systems, 3rd ed. Boston,

Mass.: McGraw-Hill, 2003.

[85] T. Risch and M. Skold, "Monitoring Complex Rule Conditions," in Active Rules

in Database Systems, Norman Paton, Ed., 1999, pp. 81-102.

[86] J. Rolia, G. Casale, D. Krishnamurthy, S. Dawson, and S. Kraft, "Predictive

modelling of SAP ERP applications: challenges and solutions," in Proceedings

of the Fourth International ICST Conference on Performance Evaluation

Methodologies and Tools. Pisa, Italy: ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), 2009, pp. 1-9.
[87] J. A. Rolia and K. C. Sevcik, "The Method of Layers," IEEE Transactions on

Software Engineering, vol. 21, no. 8, 1995, pp. 689-700.

[88] S. Salza and M. Renzitti, "Performance modelling of parallel database systems,"

Informatica, vol. 22, 1998, pp. 127-139.

[89] S. Salza and R. Tomasso, "A modelling tool for the performance analysis of

relational database applications," in Proc of 6th Int’l Conf. on Modelling

Techniques and Tools for Computer Performance Evaluation. University of

Edinburgh, 1992, pp. 323-338.

[90] P. D. Sanzo, R. Palmieri, B. Ciciani, F. Quaglia, and P. Romano, "Analytical

modeling of lock-based concurrency control with arbitrary transaction data

access patterns," in Proceedings of the first joint WOSP/SIPEW International

Conference on Performance Engineering. San Jose, California, USA: ACM,

2010, pp. 69-78.

[91] A. Schmietendorf, E. Dimitrov, and R. R. Dumke, "Process models for the

software development and performance engineering tasks," in Proceedings of

the 3rd International Workshop on Software and Performance. Rome, Italy:

ACM Press, 2002.

[92] K. C. Sevcik, "Data Base System Performance Prediction Using an Analytical

Model," in Proc. VLDB'81. Cannes, France: IEEE Computer Society, 1981, pp.

182 -198.

[93] L. D. Shapiro, "Join processing in database systems with large main memories,"

ACM Trans. on Database Systems, vol. 11, no. 3, 1986, pp. 239-264.

 189

[94] D. Shasha and P. Bonnet, "Database tuning: principles, experiments, and

troubleshooting techniques," in Proceedings of the 2002 ACM SIGMOD

International Conference on Management of Data. Madison, Wisconsin: ACM

Press, 2002, pp. 637.

[95] D. Shasha and P. Bonnet, Database tuning: principles, experiments, and

troubleshooting techniques. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 2003.

[96] A. P. Sheth, A. Singhal, and M. T. Liu, "An Analysis of the Effect of Network

Parameters on the Performance of Distributed Database Systems," IEEE

Transactions on Software Engineering, vol. 11, no. 10, 1985, pp. 1174-1184.

[97] C. U. Smith, Performance engineering of software systems. Reading, Mass.;

London: Addison-Wesley, 1990.

[98] C. U. Smith and L. G. Williams, Performance solutions : a practical guide to

creating responsive, scalable software. Boston, MA; London: Addison-Wesley,

2001.

[99] Stack Overflow, "PostgreSQL, Foreign Keys, Insert Speed & Django," 2010.

[100] S. Y. W. Su, S. Ranka, and X. He, "Performance analysis of parallel query

processing algorithms for object-oriented databases," IEEE Transactions on

Knowledge and Data Engineering, vol. 12, no. 6, 2000, pp. 979-996.

[101] Y. Tao and P. Dimitris, "Performance analysis of R*-trees with arbitrary node

extents," IEEE Transactions on Knowledge and Data Engineering, vol. 16, no.

6, 2004, pp. 653-668.

[102] The PostgreSQL Global Development Group, "PostgreSQL 8.3.3

Documentation," 2008.

[103] A. Thomasain, "Performance analysis of concurrency control methods," in

Performance Evaluation: Origins and Directions, vol. 1769, LNCS, G. Haring,
C. Lindemann, and M. Reiser, Eds. Heidelberg: Springer-Verlag, 2000, pp. 329-

354.

[104] A. Thomasain, "Performance analysis of database systems," in Performance

Evaluation: Origins and Directions, vol. 1769, LNCS, G. Haring, C. Lindemann,

and M. Reiser, Eds. Heidelberg: Springer-Verlag, 2000, pp. 305-327.

[105] A. Thomasian, "Performance Evaluation of Centralized Databases with Static

Locking," IEEE Transactions on Software Engineering, vol. 11, no. 4, 1985, pp.

346-355.

[106] A. Thomasian, "Checkpointing for Optimistic Concurrency Control Methods,"

IEEE Transactions on Knowledge and Data Engineering, vol. 7, no. 2, 1995, pp.

332-339.

[107] A. Thomasian and I. K. Ryu, "A decomposition solution to the queueing

network model of the centralized DBMS with static locking," in Proceedings of

the 1983 ACM SIGMETRICS Conference on Measurement and Modeling of

Computer Systems. Minneapolis, Minnesota, United States: ACM, 1983, pp. 82-

92.

[108] A. Thomasian and I. K. Ryu, "A Recursive Solution Method to Analyze the

Performance of Static Locking Systems," IEEE Transactions of Software

Engineering, vol. 15, no. 10, 1989, pp. 1147-1156.

[109] A. Thomasian and I. K. Ryu, "Performance Analysis of Two-Phase Locking,"

IEEE Transactions on Software Engineering, vol. 17, no. 5, 1991, pp. 386-402.

 190

[110] N. Tomov, E. Dempster, M. H. Williams, P. J. B. King, and A. Burger,

"Approximate Estimation of Transaction Response Time," The Computer

Journal, vol. 42, no. 3, 1999, pp. 241-250.

[111] N. Tomov, E. W. Dempster, M. H. Williams, A. Burger, H. Taylor, P. J. B.

King, and P. Broughton, "Some results from a new technique for response time

estimation in parallel DBMS," in Proceedings of the International Conference

on High-Performance Computing and Networking Europe 1999, vol. Volume

1593/1999, Lecture Notes in Computer Science, J. Hartmanis and J. van

Leeuwen G. Goos, Ed. Amsterdam, The Netherlands: Springer-Verlag, 1999, pp.

713-721.

[112] N. Tomov, E. W. Dempster, M. H. Williams, A. Burger, H. Taylor, P. J. B.

King, and P. Broughton, "Analytical response time estimation in parallel

relational database systems," Parallel Computing, vol. 30, no. 2, 2004, pp. 249-

283.

[113] Transaction Processing Performance Council, "TPC benchmark C: standard

specification, revision 5.8.0," 2006.

[114] Transaction Processing Performance Council, "About the TPC," 2007.

[115] Transaction Processing Performance Council, "Overview of the TPC benchmark

C: the order-entry benchmark," 2007.

[116] K. S. Trivedi, Probability and statistics with reliability, queuing and computer

science applications: John Wiley and Sons Ltd., 2002.

[117] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, "An

analytical model for multi-tier internet services and its applications," in

Proceedings of the 2005 ACM SIGMETRICS International Conference on

Measurement and Modeling of Computer Systems. Banff, Alberta, Canada:

ACM, 2005, pp. 291-302.
[118] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback, "Self-tuning database

technology and information services: from wishful thinking to viable

engineering," in Proc. VLDB'02. Hong Kong, China: Morgan Kaufmann, 2002,

pp. 20-31.

[119] L. G. Williams and C. U. Smith, "PASA
SM

: An Architectural Approach to

Fixing Software Performance Problems," in 28th International Computer

Measurement Group Conference. Reno, Nevada, USA, 2002.

[120] M. H. Williams, E. W. Dempster, N. T. Tomov, C. S. Pua, H. Taylor, A. Burger,

J. Lu, and P. Broughton, "An Analytical Tool for Predicting the Performance of

Parallel Relational Databases," Concurrency: Practice and Experience, vol. 11,

no. 11, 1999, pp. 635-653.

[121] Y. Xi, P. Martin, and W. Powley, "An analytical model for buffer hit rate

prediction," in Proceedings of the 2001 Conference of the Centre for Advanced

Studies on Collaborative Research. Toronto, Ontario, Canada: IBM Centre for

Advanced Studies Conference. IBM Press, 2001, pp. 18.

[122] P. S. Yu, S. Balsamo, and Y. H. Lee, "Dynamic Transaction Routing in

Distributed Database Systems," IEEE Trans. Softw. Eng., vol. 14, no. 9, 1988,

pp. 1307-1318.

[123] D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman, A. Storm, C. Garcia-Arellano,

and S. Fadden, "DB2 Design Advisor: Integrated Automatic Physical Database

Design," in Proc. VLDB'04. Toronto, Canada, 2004, pp. 1087-1097.

	cover_sheet_thesis
	University of Bradford eThesis

	Thesis Rasha Osman

