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i 

Abstract 

Databases form the common component of many software systems, including mission 

critical transaction processing systems and multi-tier Internet applications. There is a 

large body of research in the performance of database management system components, 

while studies of overall database system performance have been limited. Moreover, 

performance models specifically targeted at the database design have not been 

extensively studied. 

This thesis attempts to address this concern by proposing a performance evaluation 

method for database designs based on queueing network models. The method is targeted 

at designs of large databases in which I/O is the dominant cost factor. The database 

design queueing network performance model is suitable in providing what if 

comparisons of database designs before database system implementation. 

A formal specification that captures the essential database design features while keeping 

the performance model sufficiently simple is presented. Furthermore, the simplicity of 

the modelling algorithms permits the direct mapping between database design entities 

and queueing network models. This affords for a more applicable performance model 

that provides relevant feedback to database designers and can be straightforwardly 

integrated into early database design development phases. The accuracy of the 

modelling technique is validated by modelling an open source implementation of the 

TPC-C benchmark.  
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The contribution of this thesis is considered to be significant in that the majority of 

performance evaluation models for database systems target capacity planning or overall 

system properties, with limited work in detailed database transaction processing and 

behaviour. In addition, this work is deemed to be an improvement over previous 

methodologies in that the transaction is modelled at a finer granularity, and that the 

database design queueing network model provides for the explicit representation of 

active database rules and referential integrity constraints. 
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Chapter 1 Introduction 

The recognition of the need for detailed software design representation and performance 

evaluation has been the catalyst for the development of various software performance 

engineering methodologies [9, 64, 97, 98]. Furthermore, it has been established that for 

software system performance modelling to give accurate predictions, more 

comprehensive performance models need to be developed that provide for detailed 

software design modelling and evaluation [91, 97, 98]. The importance of performance 

evaluation of software systems at early design phases was initially proposed by 

Lazowska et al. [55] using software level queueing network performance models. 

Lazowska’s ideas were further developed by Smith [97] into the software performance 

engineering methodology. 

Since Smith introduced the software performance engineering methodology the 

evaluation of software performance during the software lifecycle has not been 

uniformly adopted by the software engineering community [64], mainly due to the 

academic nature of performance models which do not appeal to software engineers in 

industry [81]. Hence, for a performance model to be usable, it must be able to reflect the 

application domain in such a way that it can be seamlessly integrated into the software 

development lifecycle. 

This thesis provides a performance evaluation methodology for database designs that is 

more closely aligned with the database design domain. This is to provide for a more 

applicable performance model that provides more relevant feedback to database 
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designers and can be straightforwardly integrated into the database development 

lifecycle. 

1.1 Motivation 

A necessary part of any computer, communication network or system is information 

storage and retrieval. Jagadish et al. [48] have recognized that even though the majority 

of the available data resides in unstructured and semi-structured formats outside of 

traditional databases, databases are still the superior technology for data and information 

storage and retrieval [48]. Databases form the backend of online transaction processing 

systems, service-oriented architectures and multi-tier applications [11], all with critical 

performance requirements.  

In more recent trends in database systems, the Internet has allowed for the outsourcing 

of database applications as a service and for multi-tenant architectures in which multiple 

businesses are consolidated onto the same physical database [6]. These new 

architectures lend to more complex database schemas and designs, and thus more 

complex performance problems. Therefore, databases that perform efficiently and 

which are matched to the user demands are crucial to the performance of these systems 

as a whole. It is apparent that the design of efficient databases, optimised to meet the 

projected traffic demands becomes a crucial part within the overall design process of 

any computer system. 

Jagadish et al. [48] have considered the recent decline in the utilization of database 

technology, in comparison to the success of search engines, a symptom of database 
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usability and not database obsoleteness. Given that the performance of the database 

affects the performance of the applications that depend on  it [104], the performance of 

the database system accordingly affects its usability. Thus, a method in aiding in the 

design of more responsive databases is needed. 

Moreover, the performance tuning of database systems in industry is a practical and 

complex problem, involving the combined knowledge of the database system design 

and operation, the underlying database management system (DBMS) and its 

functionality, the operating system, and the underlying hardware platform [28, 95]. 

Performance tuning is a major contributor to the total cost of ownership of database 

systems [48, 118]. The complexity and significance of database system performance 

tuning has led commercial database vendors to develop a number of database system 

performance tuning prototypes for the major DBMS [2, 15, 28, 123]. Hence, the 

problem is a current and significant one.  

The software performance evaluation literature has expanded greatly in the last decade, 

with the majority of the software performance models targeted at the software 

architecture level of systems [9]. However, work in performance evaluation of database 

systems has been limited [104]. In most analytical models for database systems, it is 

assumed that the number of times a transaction visits the system resources and the 

distribution of service times at each station can be measured directly. Unfortunately, this 

is easier said than done, leading to complications in implementing the performance 

models in early system design phases. Moreover, the main emphasis of these models is 

capacity planning [1, 20, 43, 67, 89, 92], and in so, the feedback is not relevant to the 
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database designer.  

In this thesis, we suggest that the more natural the specification of the service demands 

and their ability to map to the original design, the easier it is to specify these 

measurements. Additionally, this thesis has recognized the need for a special-purpose 

performance evaluation method for database designs. The method should take into 

account the changing state of the database system, the relationships between the 

different structures of the database design, and the granularity of the expected feedback. 

These performance models can be used by the database designer for evaluating different 

design options before system implementation, in determining the configuration of the 

system to meet user needs after deployment, and for post-deployment performance 

tuning.  

Furthermore, we note that the performance evaluation of many software and hardware 

architectures is based on the use of queueing network models [9] and this suggests that 

the database design performance evaluation method should also be similarly based. This 

will allow, in the future, for the two performance models to be integrated into a single 

queueing network model which combines both the hardware architecture and its 

associated database systems. 

This thesis contributes a database design performance evaluation model within a 

queueing network environment; however, at a finer granularity which allows the 

database design constructs to be modelled and evaluated. This is a radical departure 

from previous database design performance methods, which consider the database 

design only in terms of processing demands on the hardware architecture [1, 20, 43, 67, 
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89, 92]. By using queueing networks to model the dynamic behaviour of the database 

design, the database designer can evaluate the expected performance of the design, 

before the physical deployment of the database system.  

1.2 Objectives 

The objective of the research presented in this thesis is to develop a novel performance 

evaluation methodology for database system designs based on queueing networks. This 

methodology should encompass the following aspects: 

• provide performance feedback at a granularity that is relevant to database 

designers; 

• be applicable to the performance evaluation of database designs at design time; 

• provide a simple formulation to map database system design specifications to 

queueing network models; 

• have the ability to model modern DBMS functionality, i.e. active database rules 

and referential integrity. 

1.3 Contributions 

The contributions of this thesis are: 

• A novel modelling methodology for database designs using queueing networks. 
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The methodology allows for the modelling of detailed database designs 

improving over previous methods in the literature through: (1) the modelling of 

the transaction processing on database tables, (2) the incorporation of active 

database rules and referential integrity, and (3) the fact that detailed knowledge 

and performance modelling of the hardware architecture is not required. This 

makes the methodology more applicable for use by database designers in 

comparison to previous approaches. 

• A formal specification of the methodology providing: (1) a description of 

database designs and transactions, (2) an algorithm to map database designs to 

queueing network models, and (3) an algorithm to extract transaction routing 

probabilities for the queueing network model.   

• A categorization of transaction modelling in queueing network performance 

models for database systems and DBMS components. This categorization 

classifies the models in the literature based on the level of detail of the 

representation of the internal details of the database transaction. 

• A justification for the exponential service time assumption for transactions in 

queueing network models in which transaction details are represented.  

1.4 Thesis Outline 

The rest of the thesis is structured as follows: 
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Chapter 2 presents background material in database design terminology and in 

queueing networks. A categorization of transaction modelling in database system 

queueing network models is presented with examples from the literature. In addition, 

previous methodologies of database system performance models and their shortcomings 

are discussed.  

Chapter 3 introduces our approach for the modelling of database designs using 

queueing networks. The details regarding the steps to apply the method are given along 

with a formal specification of the transformation of database designs to queueing 

networks. 

Chapter 4 details the modelling of the TPC-C benchmark using our modelling 

technique. Results are presented for the comparison of the model with the TPCC-UVA 

open source implementation of the TPC-C benchmark. In addition, a comparison is 

conducted between different database designs. 

Chapter 5 presents the modelling of active database rules. The formal specification of 

Chapter 4 is extended to include active database rules. The extended model is validated 

by comparing its results with a modified version of the TPCC-UVA implementation 

that incorporates active database rules. 

Chapter 6 details the modelling of referential integrity constraints using queueing 

networks. The formal specification of Chapter 4 is extended to incorporate database 

tables with referential integrity constraints. A comparison is conducted with a modified 

version of the TPCC-UVA implementation with referential integrity constraints. 
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Chapter 7 concludes the thesis by summarizing and discussing the contributions, with a 

discussion of future work.  

Appendices A, B and C provide details of the TPC-C benchmark and the TPCC-UVA 

implementation. 

Appendix D gives examples of the QNAP2 simulation model descriptions. 
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Chapter 2 Background and Related 

Work 

2.1 Introduction 

In this Chapter, the context for the thesis is set by reviewing the database and DBMS 

queueing network performance evaluation models in the literature. The Chapter begins 

with an overview of database design terminology and a brief discussion on database 

system performance tuning. Then, queueing networks and their applicability to software 

system performance evaluation are discussed. A categorization of database transaction 

modelling representations in the literature is presented, followed by a justification of the 

exponential service time assumption for transactions in database and DBMS queueing 

network models. The performance evaluation methodologies targeted at database 

system performance evaluation are detailed and their shortcomings are discussed. 

Finally, the Chapter concludes with the justification of our modelling approach for 

database designs and database systems and our contributions. 

2.2 An Overview of Database Design Concepts 

Databases (DB) are used to store collections of related data. Database management 

systems (DBMS) are the underlying runtime environment for a database. A DBMS 

provides a high-level language to define the structure of the data; known as the data 
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definition language (DDL). In addition, DBMS have high-level languages to access and 

modify data in the database; this is the data manipulation language (DML). The 

standard DML is the Structured Query Language (SQL) [47], which is based on 

relational calculus [32]. Database access entails either: a request for data, i.e. a SQL 

SELECT statement or a modification of the data, i.e. SQL INSERT, UPDATE or 

DELETE statements. Programs that access the database are called transactions and are 

written in a data manipulation language such as SQL or in a procedural language with 

SQL extensions. Transactions are executed by the DBMS as one atomic unit. 

Database designers are assigned the task of transforming an enterprise’s data from its 

external representation in the real world to a representation that can be stored in the 

database. The first step in this transformation is the conceptual data model of the 

database. The conceptual data model represents real-world data using the entity-

relationship (E-R) model or UML class diagrams [51, 69, 84]. At this stage, the data is 

represented as entities with attributes. In addition, relations between the different 

entities are represented. For example, if the entities are employees and departments, 

then the attributes of an employee would include his/her name and employee number. A 

relationship would be Works-In, which is an employee working in a certain department. 

This is illustrated in Figure 2.1. Details of entity-relationship diagrams and their 

constraints are in [51, 69, 84]. 
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Figure 2.1 An entity-relationship model. 

The next step is the logical database design, which describes the logical schema of the 

database. The logical schema is the transformation of the conceptual data model to a 

logical data model, which constitutes the data model of the database. In this work we 

refer only to the relational data model and relational databases. A relational database 

consists of relations or tables, which are constructed from records/rows and 

fields/columns: these terms will be used interchangeably. Each column has a specific 

domain which specifies the data type that can be stored in the column. Columns can 

have constraints, e.g. a column that uniquely defines a row is a primary key, and a 

column that has values related to a primary key of another table is a foreign key. A 

foreign key is known as a referential integrity constraint. Figure 2.2 gives an example 

of a relational model for the employee and department data. Properties of keys under the 

relational model are rigorously defined in [29]. 

Employees 

emp no 

emp name 

Departments 

dept name 

dept no 

Works_In 
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Figure 2.2 A relational logical database design. 

The next stage is the physical database design, where the logical database model is 

extended to describe the physical storage of the database [51, 84]. The physical database 

design includes modelling the following [51, 69, 84]: 

• the data table’s indexes, which are auxiliary data structures that support rapid 

access to the rows of a table;  

• database and data table partitions; i.e. dividing a table or database into multiple 

physical data files or locations; 

• DBMS schemas, tablespaces, which are the logical grouping of database tables; 

• data files, which are the physical storage files of the database schemas and 

tablespaces; 
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• any additional properties of the DBMS chosen for deployment, i.e. views and 

triggers. Views are stored SQL SELECT statements that are automatically 

computed when a view is referenced. Triggers are event-condition-action rules 

that monitor the occurrence of a database event, e.g. an update of a certain 

column, and execute the given action if their condition evaluates to true. 

Triggers are also known as active database rules. 

Figure 2.2 illustrates an index and a trigger on the Employee table, and a view on the 

Employee and Department tables. Figure 2.3 shows a physical design of a database with 

a single schema, and two tablespaces, where each tablespace is stored on one or two 

physical data files. The database is partitioned over two physical disks. 

 

Figure 2.3 A physical database design. 

When an SQL query is submitted to the DBMS, it is executed in the following steps 

[32]:  
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Translating SQL queries into relational algebra expressions: The SQL query is 

parsed and then validated against the definition of the database schema by checking that 

all relation and attribute names are correct and semantically meaningful. The SQL query 

is then translated into its equivalent relational algebra expression. This is further 

transformed into a query tree data structure. A query tree represents the input relations 

of the SQL query as leaf nodes and the relational algebra operations as internal nodes. 

An execution of the query tree consists of executing an internal node when its operands 

are available and then replacing the internal node with the result relation. The query tree 

execution terminates when the root node is executed and produces the result of the 

query. Figure 2.4 details a relational algebra expression and query tree for the following 

SQL query based on the database design of Figure 2.2: 

SELECT emp_no,emp_name FROM EMPLOYEE, DEPARTMENT 

WHERE dept_name = ‘HR’ and  

    DEPARTMENT.dept_no=EMPLOYEE.dept_no 

From Figure 2.4, the π symbol represents the relational algebra project operation, 

which picks out a subset of columns from the table. The σ symbol represents the select 

operation, which selects a subset of the rows of a table based on a certain condition. The 

JOIN operation concatenates rows of two or more tables usually based on equal values 

in the JOINed columns. The result of a relational algebra operation is the result relation 

or table. The query tree represents an initial representation of the relational algebra 

expression. 

Query optimization: Next, the DBMS query optimizer transforms the initial query tree 

to an equivalent more efficient query tree, known as the optimized query tree. Heuristic 
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optimization rules are applied in this transformation. Examples of optimization rules 

include: perform a select before a JOIN or use indexes before table scans. The rules take 

into account the expected relational algebra operation result size and aim to produce the 

smallest result set possible for each relational algebra operation. Figure 2.4(b) is the 

optimized query tree for the previous SQL query.  

 

Figure 2.4 A (a) relational algebra expresion and (b) equivalent query tree. 

Access plan: The optimized query tree is used to prepare an execution or access plan. 

The access plan for a relational algebra expression is the optimized query tree with 

information about the access methods (e.g. indexes) available for each relation and the 

algorithms used to compute the relational operators. For the query tree in Figure 2.4, 

each relational algebra operation is annotated with the access methods for each relation, 

e.g. a table scan for the DEPARTMENT table since there is no index to access the 

dept_name field. 
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Execution: The access plan is converted to executable code and run against the 

database to produce the results of the SQL query. 

More details on database design and DBMS functionality can be found in [51, 84]. 

Details of relational algebra, query trees and optimizing heuristics are in [32]. 

2.3 Database System Performance Tuning 

Database system performance tuning is a post deployment activity performed by the 

database administrator (DBA). Performance problems of database systems manifest 

themselves in query and transaction response time. Hence, the performance tuning 

effort is concentrated on the database and the transactions accessing the database.  

Database performance tuning is a difficult task in that the DBA must be familiar with 

the database system design and operation, the underlying DBMS and its functionality, 

the operating system, and the hardware platform that runs the database system [28, 94]. 

It is the major contributor to the total cost of ownership of database systems [48, 118].  

Performance tuning of database systems involves one or all of the following activities 

[51, 84, 94]: 

• restructuring of high-use SQL statements and transactions: avoiding costly 

access plans due to faulty statement structures; 

• index tuning: adding or removing indexes, changing index types or redesigning 
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existing indexes;   

• table redesign: decomposing a table into smaller tables (normalization) or 

collecting small tables into one large table (de-normalization); 

• tuning concurrent access: reducing table and row lock contention and 

eliminating hot spots; 

• physical placement of data on disks: e.g. distributing heavily used objects on 

different disks or nodes; 

• optimizing DBMS data blocks, query optimization and buffer management 

techniques, and utilizing DBMS specific extensions and features [16]; 

• evaluating the amount of physical resources available to the database system, 

e.g. CPUs, disks, main memory, etc. 

It is important to note that database performance tuning must go hand in hand with the 

specification of the application that uses the database; the application may uphold 

certain constraints depending on the results given by a certain SQL statement or may 

depend on certain table structures. Any changes to the SQL statements or table 

structures that are not reflected in the application may produce unexpected results.  

The complexity and significance of database system performance tuning has led 

commercial database vendors to develop a number of database system performance 

tuning prototypes for the major DBMS [2, 15, 28, 123]. These tools rely on query 
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optimizers and statistics from production databases to give recommendations for 

performance improvements, e.g. SQL statement restructuring, index and view 

recommendations, and table partitioning [2, 15, 28, 123]. 

As indicated above, optimal performance improvement of the database is achieved 

through redesigning artefacts of the logical and physical database designs, through 

either manual procedures or automated tools. Furthermore, the coupling between the 

application program and the database inevitably means an understanding of the 

application design is needed for effective database tuning. 

This being stated, the logical and physical database design structures are the main 

contributors to DB system performance problems. Therefore, an early evaluation of 

their performance at DB system design time, coupled with the knowledge of the 

application design, would be an effective factor in the reduction of post deployment 

database tuning. 

2.4 Queueing Networks 

Queueing networks were initially used in operational research to predict the 

performance of customer-facing systems. They have been successfully applied for the 

performance evaluation of computer and telecommunication systems [52-55, 116], and 

software system designs [9, 65, 97].  

Queueing networks are a collection of individual queues or queueing stations; they are 

based on the concept of modelling contention in resource sharing systems. In a queue, 
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the shared resource is represented as a server that provides services to waiting 

customers or jobs. Customers requesting service wait for the server to be free by 

queueing at the server. Depending on the queueing (scheduling) discipline, a customer 

enters for service after the server completes its last job. After completing service, 

according to the routing probabilities, this customer then leaves the server to queue for 

another server, re-enters the same server again for more service, or leaves the network 

completely (Figure 2.5).  

 

Figure 2.5 An example of a queueing network. 

Some common queueing disciplines are [52]: first-come-first-served (FCFS), which 

serves customers based on the order of arrival; last-come-first-served (LCFS), in which 

the last arriving customer is served first; priority queueing, in which the customer with 

the highest priority is served first; processor sharing (PS), which shares the server 

capacity with all the waiting customers in parallel and random service, in which 

customers are chosen for service at random. 

The types of queueing networks are: open queueing networks, which are characterized 
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by customers arriving from outside the queueing network and after receiving service 

depart from the network. In closed queueing networks, customers are resident in the 

network; the number of customers in the network is always constant. Mixed queueing 

networks have customers of both types. 

The behaviour of the queueing network and the behaviour of customers receiving or 

waiting to receive service in the queueing network are characterized by: (1) the arrival 

rate of customers to the queueing network (open queueing network); (2) the client think 

time – the time it takes a client to send a request to the queueing network (closed 

queueing network); (3) the statistical distribution of service times for each customer; if 

this distribution varies between different groups of customers then the customers are 

grouped into customer classes and service distributions are specified by class; (4) the 

maximum queue or buffer size, which is the maximum number of customers allowed to 

wait to be serviced. Kendall’s notation [50] is usually used to specify these 

characteristics and when using this a queue is represented as A/S/c/m/N, where:   

• A is the customer inter-arrival time distribution, e.g. M for 

memoryless/exponential, G for general, and D for deterministic interarrival 

distributions. 

• S  is the service time distribution, which can also be M, G, or D distributions. 

• c is the number of servers providing service for the customers in the queue. 

• m is the queue or buffer size, which is the maximum number of customers 
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allowed to wait for service. It can also represent the maximum number of 

customers allowed in the queue plus the customer in service. The default buffer 

size is an infinite buffer. 

• N is the maximum number of customers in the system; the default is an infinite 

number of customers.  

Solving a queueing network model analytically or by simulation gives feedback on 

system performance, e.g. customer response time, throughput and waiting time. These 

performance measures are calculated on the assumption that the queueing network is in 

equilibrium (a steady state), i.e. the rate of arrivals to the queueing network is equal to 

the rate of departures from the network. A large class of queueing networks, known as 

product form queueing networks [8], have direct analytical solutions based on the 

parameters of the queueing network. 

Extended Queueing Network (EQN) models [12] have been introduced to incorporate 

features of actual computer systems in classical queueing network models, e.g., 

synchronization, concurrency and simultaneous resource possession. Another extension 

to classical queueing networks are Layered Queueing Network (LQN) models [87], 

which allow for the modelling of software and hardware contention in distributed and 

multiprocessor systems. 

2.4.1 Queueing Networks for Software Performance Evaluation 

The use of queueing networks and EQNs has been prevalent in software performance 

evaluation methodologies [4, 5, 9, 25, 27, 79, 80, 97, 98]. This is essentially due to 
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their widespread use in computer system modelling and to their natural mapping onto 

software system design phase artefacts, especially software architecture components [4, 

5, 9, 26, 79, 119]. However, it has been noted that queueing networks are not powerful 

enough to model late software lifecycle details [26], e.g. component processing details. 

2.5 Performance Evaluation of DBMS Components 

Performance evaluation studies of databases concentrate on the fundamental 

components of the DBMS [104], e.g. the evaluation of storage and buffer management 

techniques [61, 121], query processing [46] and optimization [22, 93], transaction 

locking [37] and recovery algorithms [36], and index structures and their utilization [40, 

45, 101]. There have also been studies of the performance analysis of unique 

characteristics of different database models, e.g. object-oriented [14, 100], distributed 

[70] and active [18] databases, and the assessment of commercial [3] and open source 

[60] DBMS. Recently, studies have been conducted on the performance evaluation of 

database system application architectures, i.e. multi-tiered Internet applications with 

back-end databases [86, 117]. Analytical modelling, simulation or empirical 

experiments are the main methodologies used for performance evaluation. Thomasian 

has documented performance evaluation models of database system components [104] 

and concurrency control mechanisms in database systems [103], while Nicola and Jarke 

[70] have surveyed performance models of distributed and replicated databases. 

Even though the performance of the database system and DBMS components have been 

extensively studied, studies of overall database system performance are very limited 
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[104], consisting mostly of the performance models to be described in Section 2.8.  

2.6 A Categorization of Transactions in Database 

Performance Models 

Analytical models of database systems or DBMS components, as is the convention for 

all analytical models, are basically identified by the phenomena they study, e.g. 

concurrency control, or the solution method used, e.g. hierarchical or recursive. In an 

overview of the literature of performance modelling of databases and DBMS 

components, we have identified a set of techniques in representing databases and 

database transactions in analytical queueing models.  

We have restricted our overview of the literature to performance evaluation studies that 

model some form of interaction between transactions and a database. Models in which a 

specific aspect of databases or DBMS, e.g. buffering algorithms, is studied in isolation 

are outside the scope of this categorization as they do not constitute complete 

interactions with a database. The objective of this categorization is to define the trends 

in modelling and defining transactions in queueing models for database and DBMS 

component performance evaluations. To the best of our knowledge, no such 

classification currently exists in the literature. 

The queueing network performance evaluation studies in the literature have been 

classified based on the level of detail in which the database transaction’s internal design 

is represented in the models. We have identified four distinct categories of transaction 

representation which will be referred to as follows: the black box model, the 
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transaction processing model, the transaction size model and the transaction phase 

model. A description of each category follows with the relevant studies from the 

literature. 

The following convention is used when describing the studies: we assume a database D 

with d database objects and is accessed by T = {T1, T2, …, Tn} transaction classes. 

2.6.1 The Black Box Model 

In the black box model, when the database D is a centralized database it is represented 

as a single queueing node. In the case of a distributed database, it is represented as 

multiple queueing nodes, where each node represents a distributed database site. The 

internal design of the transaction is not represented in the queueing model, as the goal of 

the performance evaluation is to represent the workload of the transactions at the system 

level. Each transaction class Ti accessing D has an arrival rate iλ  and a service demand 

iµ on the queueing node D (Figure 2.6 (a)). 

It is common in analytical models for replicated and distributed databases to model the 

database site as a single queueing service center and the transaction as a workload class 

in the system [70], e.g. Baccelli and Coffman [7] use an M/M/m/FCFS queue to model 

m local sites. Ciciani et al. [23, 24] study the effect of distributed concurrency control 

protocols on replicated distributed databases by modelling each local database site as an 

M/M/1 queue. For multi-tiered Internet applications with backend databases, Urgaonkar 

et al. [117] describe a queueing network model in which each tier, including the 
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database tier, is represented as a processor sharing queue. 

 

Figure 2.6 A representation of (a) the black box model and (b) the transaction processing model. 

2.6.2 The Transaction Processing Model 

For the transaction processing model, the database D is represented by the underlying 

hardware architecture using the central server model [17] or its variations. Each 

transaction class Ti accessing D is defined by its service demand on the hardware 

architecture and flows through the system probabilistically (Figure 2.6 (b)). For closed 

queueing networks, the number of transaction classes in the system is restricted by the 

maximum multiprogramming level. This model is used to represent a centralized 

database or a site in a distributed database.  

We have found the transaction processing model to be the prevalent category used to 

represent centralized databases or the database tier in multi-tiered applications as 

detailed below. Menascé et al. [65] provide many examples of modelling centralized 

database servers using this model in which transaction classes are represented by their 
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service demands on the hardware resources. 

Sheth et al. [96] evaluate the effect of networks delays on concurrency control protocols 

of distributed database systems by modelling each distributed site as a central server 

model with M/M/1/FCFS queues for the CPU, disk and network connections. A 

replicated database instance is represented as a central server model in [33], with 

additional delay centers to represent the distributed system functionality. 

Menascé et al. [62, 66] represent an n-tier multithreaded server system modelled as a 

software contention model and a hardware contention model. The software contention 

model is modelled as a Markov chain representing the arrival and completion of jobs. 

The rate at which the jobs are completed is determined by the solution to the hardware 

contention model, which is a closed queueing network of a CPU and disk with k jobs in 

the system. Gijsen et al. [35] model a multi-tiered application as an open queueing 

network with Poisson arrivals. The front-end application server is assumed to be the 

CPU and is modelled as a processor-sharing queue, while parallel access to the backend 

database is modelled as a multi-server FCFS queue with exponential service times. 

Ceri et al. [21] study the performance of detached triggers in active databases. The 

scheduling and execution of jobs and detached triggers is modelled as a queueing 

network with one CPU and a set of homogeneous disks, where each disk represents a 

subset of the database. A dispatcher queue represents the scheduling of detached 

triggers. Triggers are activated probabilistically for each transaction in the system and 

arrive at the dispatcher when their corresponding transaction completes. The model 
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assumes Poisson arrivals for transactions and a constant arrival rate for batched jobs. 

Moreover, the database system performance models discussed in Section 2.8 [1, 20, 43, 

67, 89, 92, 112] all follow the transaction processing model. 

2.6.3 The Transaction Size Model 

The transaction size model describes each transaction class Ti accessing D based on the 

number of data objects ni it accesses from the d database objects. The performance 

evaluation studies in this category are limited to concurrency control methods. 

In [68, 83, 107], modelling of static exclusive locks in centralized databases is 

considered. A transaction class accesses a constant set N of data items randomly chosen 

from the total number of data elements in the database. This set N, is used to calculate 

the locking conflict probabilities for transactions entering the system. For the hardware 

architecture, the CPU is represented with a processing sharing queue, exponential FCFS 

disk service rates and a maximum multiprogramming level. Thomasian and Ryu [108] 

extend the model in [107] to represent shared locks in addition to exclusive locks, with a 

variable number of locks per transaction class. Furthermore, Thomasian and Ryu [109] 

model two-phase dynamic locking using the same basic modelling assumptions for 

transaction classes and lock acquisition as in [108]. 

The static lock acquisition model in [68, 83, 107, 108] is probabilistic, i.e. the locks 

assigned to a transaction class are determined by a certain probability. However, 

Thomasian [105] proposes a deterministic lock acquisition model, in which the number 

of locks acquired by a transaction class are predetermined per class. This is closer to 
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actual transaction lock requests. Therefore, only compatible transaction classes 

accessing disjoint data objects can be processed concurrently. The queueing model used 

by Thomasian [105] is similar to [68, 83, 107, 108], with a fixed number of transaction 

classes that arrive with random frequencies.  

Harder and Harrison [39] present an analytical model that combines traditional locks 

with Oracle Parallel Server locks. However, the transaction size is based on the number 

of locks acquired by the transaction class per database tablespace. Parameterization of 

the model is assumed to be from measurements of a real system. 

2.6.4 The Transaction Phase Model 

For the transaction phase model, each transaction class Ti accessing D is classified 

based on the number of phases it contains. Movement through the phases is 

probabilistic. Figure 2.7 illustrates the division of a transaction into n phases.    

 

Figure 2.7 A representation of the transaction phase model, where pi is the probability of a transaction 

moving from phase i to phase i+1. 

Jenq et al. [49] present an analytical model of a distributed database testbed system in 

which transactions are divided into phases corresponding to the steps a distributed 

transaction needs to complete execution. A transaction moves from one phase to the 

next based on a phase transition probability. Transactions access database records 
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randomly and uniformly. Each transaction issues a fixed number of requests and each 

request accesses a fixed number of DB records. Lock requests are uniformly distributed 

over the lifetime of the transaction. Each distributed site is modelled as an extended 

central server model with delay centres representing synchronization delays. 

Yu et al. [122] analyze routing in locally distributed databases. Transactions are divided 

into two phases: application processing, representing the front-end system and database 

request processing representing the mean distributed processing of the transaction 

database requests. The transactions are divided into classes based on their processing 

times in each phase. Each transaction class Ci has a Poisson arrival rate iλ  and an 

exponential I/O disk access service demand iµ , for each database request at a site. The 

transaction class starts in the application phase, then moves to the database request 

phase with a probability pk for each distributed site Dk or leaves the network with 

probability 1- ∑ kp . Each distributed node is represented by a single server processor-

sharing queue for the CPU, and the I/O system is represented by an infinite FCFS 

queue. 

Thomasian [106] studies the effect of checkpointing on transaction performance. 

Transactions are assumed to access n data objects in n+1 steps; each step is preceded by 

an access to a data object. A transaction moves from one step to the next with a 

probability pi, i.e. the probability of no data conflict or restart. The conflict probability 

is proportional to the number of objects the transaction has currently accessed. Access 

to data objects is uniform and the time to access a data object is assumed to be 

exponential. An analysis to determine the optimal number of checkpoints and their 
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position in transaction execution is given. 

Sanzo et al. describe a performance analysis of locked-based concurrency control in 

[90]. The transaction data manipulations are modelled as a sequence of m execution 

phases, starting with a begin phase, then m-2 write or read operations on the data items, 

and finally, a commit phase. Each phase is assumed to use an exponentially distributed 

number of CPU instructions. This is to cater to the underlying M/M/k model for the 

CPU, where k is the number of CPU cores. The disk is assumed to have a fixed I/O 

delay. Transactions arrive according to a Poisson process. Lock holding time for each 

data item accessed by a transaction depends on the access order of that item, i.e. items 

accessed first will have a longer lock holding time than objects accessed last; lock 

holding time is also exponentially distributed. Movement between phases depends on 

the lock conflict probability of that phase, which is calculated based on the transaction 

access pattern. The transaction access pattern specifies the probability that the k
th

 

operation accesses the i
th

 data item and that the probability of the operation is a write. 

2.6.5 Discussion 

The previous classification mirrors the fact that the goal of the performance analysis 

dictates the detail at which the transaction is represented in the queueing network 

model. When the concern is to evaluate performance at the system level, in which 

transaction internal details are irrelevant or negligible in their effect on performance, the 

transaction is represented as a workload on the system. This is the main characterization 

for the black box model studies. Capacity planning performance studies represent the 

details of the hardware architecture being evaluated; hence the transaction is modelled 
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as its processing demands on the hardware architecture.  

For the transaction size and phase categories, we notice the predominance of models 

that evaluate and study concurrency control in centralized or distributed databases. 

Here, the internal structure of the transaction affects the performance of the studied 

system; hence it must be taken into consideration in the queueing model.  

In general, for a queueing model to be a realistic representation of a database system it 

is imperative that the model represents the details of the transactions that affect the 

performance. 

2.7 The Exponential Service Time Assumption 

The majority of distributed database queueing network models assume transaction 

service time is exponentially distributed at the distributed database site [70]. For models 

of centralized databases, we have found the majority assume transaction disk service 

time is exponential [33, 35, 62, 65, 66, 68, 83, 105, 107-109].  Transaction time to 

access a data object is assumed exponentially distributed in [106]. While [90] assumes 

that the number of CPU instructions per transaction phase and lock holding time are 

exponentially distributed. However, these models do not provide justification for this 

assumption in the context of database systems and transactions. In this section, we 

provide justifications for the exponential service time assumption in the context of 

database systems. 

When transaction internal details and processing are not modelled in the queueing 
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network model, i.e. the black box category, the justification for the distribution of 

service times should be directed towards the overall expectation of the transaction 

workload. Nicola and Jarke [70] provide a justification for the exponential service time 

assumption for transactions when the database is represented as a single queueing node. 

They build on the expectation that transactions that access a small or moderate number 

of data objects occur more frequently than transactions referencing a large number of 

data objects. For this to hold, the number of data objects accessed by a transaction must 

follow a geometric distribution. Given that transaction service time is directly related to 

the number of data objects referenced, then transaction service time can be assumed to 

be exponentially distributed, which is the continuous equivalent of the geometric 

distribution. 

However, when transaction internal details and processing are modelled, i.e. the 

transaction processing, size and phase categories, then justification of the exponential 

service times needs to be directed to disk or data object access time. This, for both 

cases, is the DB I/O page access time. Below we provide a justification for the 

exponential service time for transactions when the queueing network model represents 

the details of transaction processing.  

The number of I/O DB pages to access a data object will depend on the type of the data 

object accessed and its access method.  For example, if the data object accessed is a 

table, e.g. a full table scan, then the number of I/O DB pages can range from one page 

for a small table to a very large number of pages for a large table.  Similarly, if the data 

object accessed is a row in a table, the number of I/O DB pages will depend on the 

index used and the type of query.  This number can again range from one for a 
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random record with a precise index; to a small number for an inefficient index or a 

range search; to a large number when no index exists that satisfies the query. Clearly, a 

small number of DB pages are more common than a large number DB pages. Thus, the 

expected number of I/O DB pages will follow a geometric distribution. Hence, disk and 

data object access service times for a transaction can be approximated by the 

exponential distribution. 

2.8 Database System Performance Evaluation Methodologies 

Contrary to the vast amount of performance evaluation studies of individual DBMS 

components and constructs, there is a lack of research into the overall performance 

evaluation of database systems [104]. In this Section, we present database system 

performance evaluation methodologies found in the literature. The majority of these 

methodologies are based, intentionally or not, on Sevcik’s layered performance 

evaluation methodology [92], described in the following Section. 

2.8.1 A General Framework for Database System Performance 

Prediction 

To the best of our knowledge, the first approach which presented a performance 

evaluation methodology for database systems using queueing networks was introduced 

by Kenneth Sevcik [92]. Sevcik describes a framework for estimating workload 

characteristics of a database system as input parameters to a queueing network model. 

The framework was not directly related to a certain database model, but catered for the 

data models at that time – mainly hierarchical and relational data models [92]. The 
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framework proposed the use of information from the logical and physical designs of the 

database system, together with the characteristics of the DBMS to map the workload of 

a database system onto a queueing network model.  

Sevcik divides his framework into layers that map directly onto the steps in designing 

and implementing a database system. The transformation from one layer to the next is 

based on a database design decision. The framework consists of the following six layers 

[92]: abstract world, logical database, physical database, data unit access, physical I/O 

access and device loading layers (Figure 2.8). 

In the abstract world layer, the data entities are specified with attribute range, 

distribution and correlation. The transactions are denoted with frequency of occurrence 

and relationships to entities. In the logical database layer, the output of the previous 

phase is transformed to a representation depending on the choice of the logical data 

model and data manipulation language. In the context of the relational model, this 

would represent the data entities as relations with attributes and number of rows. For the 

transactions, the structure and data manipulation language constructs are specified, in 

addition to rates of occurrence and percentage of database entities used. 
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Figure 2.8 Sevcik’s database system performance evaluation framework. 

Next, in the physical database layer, indexes are specified and a linkage is established 

between relations and the physical files that hold the relations. Transactions are 

specified procedurally, and each transaction type is characterized by its pattern of access 

to the physical files. 

In the data unit access layer, the physical database characteristics are transformed to be 

more similar to the characteristics of the input parameters of queueing network models. 

Relations and indexes allocated to the same physical data file are considered to be data 
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units and their storage size is determined. Transactions are specified as task classes, 

characterized by arrival rates, average number of CPU instructions and average number 

of accesses to each data unit. In addition, other concurrent workloads on the hardware 

are classified as task classes. For all task classes, the degree of randomness of access to 

the data units is specified on a scale of zero to one. 

Then, in the physical I/O access layer, data units are distributed over the physical 

devices and the service demands and arrival rates for each task class per physical device 

is determined. Next, in the device loading layer, the service times for each task class per 

physical device are calculated. Finally, the appropriate queueing network model is 

solved by using the final outputs of the previous layers. Calculations of service demands 

and service times depend on the environment of the database system, i.e. the hardware 

and software configurations and the DBMS query optimizer and buffer management 

strategies. The queueing network service demand distributions depend on the model 

used to represent the hardware architecture. 

2.8.2 Methodologies Based on Sevcik’s Layered Approach 

The application of Sevcik’s general framework was extended to other performance 

evaluation models based on his layering approach. These models are discussed next. 

2.8.2.1 The Hierarchical DBMS Evaluation Model 

The hierarchical DBMS evaluation model presented by Adams [1], is a five-layer 

hierarchy that describes workload acquisition and characterization for relational 

database systems. The five layers are: the enterprise, logical database design, logical 
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data organization, physical storage organization and underlying machine levels.  With 

transformations similar to those in [92], the layered model presents the steps to 

gradually transform a database system description into input parameters for a queueing 

network model. The database system workload characteristics are mapped onto a 

queueing network model of the underlying hardware devices that the database system 

will run on. 

2.8.2.2 The Prophet Model 

Casas and Sevcik [20] describe the Prophet model, which is an extension of [92], as a 

layered database performance evaluation model proposed for general database data 

models. The model consists of four levels: semantic representation, schema database, 

internal database and system hardware. Workload characteristics for the database 

system are transformed from level to level to provide performance measures to evaluate 

design decisions. For the internal database layer a buffer management sub-model is used 

to determine buffer hit rates. It is assumed that database block references are Bradford-

Zipf distributed [19] over the database blocks. The final stage is the performance 

evaluation of the input parameters for a queueing network model of the system 

hardware devices. 

2.8.2.3 The MOSES Model and JOSHUA Prototype 

Hyslop and Sevcik [43] propose an extension to [20], which is a layered model for the 

relational data model, with a tool supporting a relational query optimizer. The model, 

denoted as MOSES (Model of Sql-Equivalent Systems), was implemented using a 

prototype tool: JOSHUA. The MOSES model consists of seven layers based on the 
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layers in [92] and an extension of [20], but tailored to the relational data model. The 

seven layers are: the semantic model, schema database, query optimizer, internal 

database, physical I/O, resource allocation and concurrent processes. The tool supports a 

relational optimizer that transforms the relational algebra representation of the 

transactions into an optimized access path. The database system is transformed layer by 

layer to be mapped onto a queueing network model representing the device layout and 

communication channels. Parameters defining the buffer hit rate, the device speed and 

network latency are defined or calculated by the model. An analytical model is used to 

estimate lock conflicts and concurrency. 

2.8.2.4 A Relational Database Performance Analysis Tool 

Salza and Tomasso [89] present a methodology and tool for the cost and performance 

analysis of relational database applications. The methodology is based on specifying a 

static workload and a dynamic workload for a queueing network model of the hardware 

devices of a database computer system. The static workload consists of the database 

structure: the tables, their cardinality and attributes. The dynamic workload comprises 

the set of transaction types, their relative arrival rates, SQL definition, the selectivity of 

the SQL predicates and the transaction CPU and I/O overhead. The tool has a query 

optimizer simulator to calculate expected transaction demands and a buffering algorithm 

to compute transaction buffer hit rates. The resource demands of the transactions in 

terms of CPU and I/O demands are calculated and used as input to a queueing network 

model of the computer system. The queueing network model is a multi-class product-

form open queueing network, with a customer class for each transaction type and 

service centers for the CPU and disks. Salza and Renzitti [88] conducted similar work 
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for parallel database systems. 

2.8.2.5 CLISSPE: CLIent/Server Software Performance Evaluation Tool 

A more recent attempt to evaluate database system performance at a more detailed level 

is a method for performance evaluation of client/server architectures using queueing 

networks proposed by Menascé and Gomaa [67]. Client/server system performance is 

calculated by estimating transaction service demands on the database through 

calculating the amount of I/O perceived depending on the access path of the DBMS 

[67].  

The workload characterization and service demands for a queueing network model are 

calculated by modelling the client/server system using the CLISSPE (CLIent/Server 

Software Performance Evaluation) language [63]. The CLISSPE language provides the 

developer with the ability to specify hardware and software configurations and 

performance characteristics for clients, servers, networks, commercial DBMSs, 

relational database tables and transactions in the client/server system, which is 

systematically translated into service demands on the hardware resources [67]. Figure 

2.9 gives an example of a CLISSPE specification for an Ethernet LAN with 100 clients, 

one server and the EMP table residing on an Oracle DBMS on the server. 
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Figure 2.9 CLISSPE specification of a simple client/server application. 

Database tables are specified in the CLISSPE language, by declaring their structure, and 

their attribute range, selectivity, and cardinality, as well as the type of index on the 

table. Transactions are specified by describing their functionality, with specific 

commands for accessing and modifying database tables. The service demand for a 

transaction is the sum of the service demands of all the database commands it contains, 

Model Example 

 
declaration ! declaring the hardware, software and database tables 

 
client HR type= PCWinXP number= 100; 

….. 
server DeptServer type= UnixServer dbms= oracle DB_Buffsize= 100 num_CPUs = 2 

             disk dsk001 seek= 0.02 latency= 0.0083 xfer_rate= 20 

             disk dsk002 seek= 0.02 latency= 0.0083 xfer_rate= 10; 

… 
table emp num_rows= 200 row_size= 512 dbms= oracle 

columns= (emp_no, emp_name, dept_name) 

index= ( key= ( emp_no ) key_size= 16 btree ) ; 

 
network DeptLAN type= Ethernet; 

 
transaction assign rate= 100; 

end_declaration; 
 

mapping ! mapping the software onto the hardware 

server DeptServer is_in network DeptLAN; 

… 
table emp in server DeptServe (dsk001 : 0.4, dsk002 : 0.6) ; 

…. 
transaction List submitted_by client HR ; 

end_mapping; 
 

transaction List running_on server DeptServer ; 

   if 0.3 then ! probability of execution 

       select from emp where dept_name (5)   ! five distinct dept names in emp table 

       if 0.8 then 

           loop 5 

              select from emp where emp_name (200) ; 

           end_loop; 

        end_if; 

    end_if; 

end_transaction; 

end_model; 
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in addition to the service demands of the procedural commands. A built-in model of a 

DBMS query optimizer allows the CLISSPE compiler to estimate the service demands 

for database transactions [67]. 

In this method, the performance characteristics of the database are taken from the 

logical and physical designs. The CLISSPE language is able to model a simple database 

system: tables without hierarchical relationships and SELECT and simple UPDATE 

statements with indexes and access path calculations. Lock contention, active database 

rules and referential integrity constraints are not covered in the specification of the 

language. 

2.8.2.6 Discussion 

The previous performance evaluation methodologies are based on the same 

methodology for estimating workload characteristics from a database system for use as 

input parameters to a queueing network model, which represents the physical hardware 

configuration of the final system. These methodologies provide for simple database 

designs, mainly due to historical reasons [1, 20, 43, 92] (the methodologies were 

proposed before the maturity of the relational model), or due to lack of representation of 

modern DBMS functionality [67, 89], e.g. referential integrity and active database rules. 

The main objective that defines the aforementioned performance evaluation tools and 

methodologies is the definition of a technique to extract performance parameters for 

queueing network models from the characteristics of database transactions and tables. 

The concern is in providing these parameters for a queueing network model that 

represents the hardware architecture of the evaluated system. The consequence is that 
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performance problems are identified on hardware devices, thereby giving a general 

indication to the database designer of where the problem is: e.g. the bottleneck is on 

Disk2, therefore review all transactions that access Disk2. This information, however, is 

not beneficial to the database designer during the actual design process. 

Furthermore, to explain these concepts, assume we have a database system composed of 

two classes of transactions: t1 and t2. Transaction class t1 SELECTs from table r1 and 

INSERTs into table r2. Transaction class t2 SELECTs from table r2 only. The 

transactions arrive for execution at the database server with rate λ1 for t1 and λ2 for t2. 

The database server is composed of a single CPU and two identical disks. The previous 

methodologies apply a systematic transformation of the database system design, i.e. the 

transaction and table specifications, to map the transaction class service demands on the 

CPU and disks. The service demands are calculated depending on the amount of CPU 

processing needed by each transaction to execute its SQL statements, and depending on 

which disk the physical files for tables r1 and r2 reside. These transformations will result 

in the queueing network model of Figure 2.10. For this queueing model, each 

transaction class will have a specified service demand on the CPU and disks, in addition 

to probabilities for visiting the CPU and disks. 
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Figure 2.10 A queueing network model for a database system using the methodologies in the 

literature. 

As can be seen from Figure 2.10, the transaction is the smallest evaluated granularity 

which is represented as a customer class in a multi-class queueing network. The service 

demands of the transaction are divided between the disks and the CPUs in the hardware 

architecture. Response times will be evaluated at the level of the transaction; hence, the 

models are incapable of evaluating at a smaller granularity, e.g. which SQL statement 

caused the overall delay of the transaction. Moreover, the abstraction of the details of a 

transaction as service demands on the hardware devices does not lend to the 

straightforward representation and assessment of modern DBMS functionality, e.g. 

referential integrity and active database rules. In particular, that these functionalities 

affect the performance of other transactions in the database system. 

In addition, performance evaluation is conducted at the final stage of the overall system 

design process, after all design decisions have been bound at the upper layers of the 
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database design process, even though enough information is available in the early 

design stages to permit performance assessment. Hence, bottlenecks that are identified 

on hardware devices are resolved through a reverse process, by backtracking to the early 

software and database design artifacts to identify the cause of the performance problem, 

and then redesigning and re-evaluating the performance model once more. This leads to 

delays in feedback, complicates the performance evaluation methods and affects their 

accurate application. Moreover, it questions the applicability of these methods in an 

industrial setting. 

2.8.3 An Approach for Parallel Relational Database System 

Performance Evaluation 

Tomov et al. [112] describe an analytical performance evaluation model for relational 

parallel databases, targeted at DB administrators and not DB developers. In this method, 

the authors categorize transactions based on their pattern of resource consumption on 

the hardware architecture in a typical parallel DBMS. The methodology assumes the 

availability of a partial query execution plan for each transaction accessing the DBMS. 

This execution plan can be obtained from a DBMS query optimizer, and in that case, the 

methodology takes advantage of the optimization strategy of the DBMS.  

The method consists of three stages. The first stage is the preparation stage, in which 

query execution plans are transformed into a set of low-level resource consumption 

specifications that represent the execution of the query on the hardware architecture. 

The output of this stage is a query resource usage profile for every node in the query 

execution plan of a transaction, with regard to all hardware resources of the system, e.g. 
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number of visits, usage per visit and specification of parallel execution points. The 

resource usage profile contains control structures and lower-level operations that 

describe the sequential and parallel usage of hardware resources for each node in the 

query execution plan. Figure 2.11(a) shows an example of a simple resource usage 

profile for two transaction classes. The keyword loop represents the repeated sequential 

usage of the set of resources, i.e. the expected number of visits. 

T1 

arrival rate = λ1 

loop 5 
resCPU   0.32 sec 

resDisk1 0.6 sec 

resDisk2 1.46 sec 

T2 

arrival rate = λ2 

loop 10 
resCPU   0.5 sec 

resDisk1 1.0 sec 

 

(a) 

 

 

Figure 2.11 An example of (a) a resource usage profile and (b) the corresponsing queueing network 

for two transaction classes. 

The second stage is the estimation of the mean resource response time. In this stage the 

prediction of the response time for the hardware resources of the system, e.g. CPUs and 

disks, is based on all the query resource usage profiles identified in the previous step. 

This is conducted through the evaluation of an open, multi-class queueing network in 

T1 = 0.32 

T2 = 0.5 
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which the hardware resources represent FCFS servers. Each query resource usage 

profile represents a customer class in the network, with the service demands and 

transitions among the servers determined from the resource usage profile. From Figure 

2.11(a), the transition probabilities for the customer classes are calculated from the 

structure of the resource usage profiles for each transaction class, resulting in the 

queueing network model of Figure 2.11(b). 

The servers in the multi-class queueing network are considered a mixture of M/M/1 and 

M/G/1 queues. A heuristic rule was formulated in [110] in which the dominant resource 

in terms of utilization and relative visit ratio is designated as an M/G/1 queue. This 

combination of M/M/1 and M/G/1 queues with the application of the heuristic rule was 

shown to give similar results to that of more complicated approximation techniques for 

non-product form queueing networks [110, 111]. Solving the queueing network gives 

the waiting time for each hardware resource. 

The final stage is the estimation of the mean query response time using the query 

resource usage profile and the estimated response times of individual hardware 

resources from the previous stage. This is accomplished by accumulating usage time as 

the query resource usage profile is traversed, while taking into account intra-operator 

parallelism.  

A tool was developed to implement this methodology: STEADY (System Throughput 

Estimator for Advanced Database sYstems) [120]. The method was validated against 

measurements from actual DBMS systems running on parallel machines using simple 
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queries [30, 112]. 

2.8.3.1 Discussion 

The authors explicitly stated that the approach is not intended for database developers, 

but for database administrators. This is evident in that the modelling of the transactions 

start with the execution plan for the queries that make up the transaction. This, in regard 

to pre-implementation performance evaluation, implies at best a database system design 

at its final stages or at worst a completed system. Nonetheless, we shall discuss this 

approach based on its suitability for design time performance evaluation. 

Unlike the previous methodologies, it allows for detailed representation of transaction 

processing, thus allowing the determination of SQL statements that cause bottlenecks or 

have unrealistic response times. Moreover, the transaction response times are calculated 

in steps, separating the underlying hardware architecture response time from the 

calculation of transaction response time. This allows for the evaluation of parallel 

transaction execution without complicating the underlying queueing network model of 

the hardware architecture. 

However, the methodology suffers from the same drawbacks as the methodologies in 

the previous section. Mainly, performance evaluation is conducted very late in the 

development cycle and the methodology has been shown to apply to simple queries, as 

query execution plans do not depict active database rules or referential integrity checks 

[56, 73, 102]. 
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2.9 Summary and Contribution 

In this Chapter, we have contributed a categorization of the modelling of transactions in 

database and DBMS queueing network models. We have shown that the majority of 

queueing network models for databases and DBMS components fall into the transaction 

processing category, which implies the ability of the performance analyst to be able to 

determine the service demand of a transaction on the CPU and disk. This is not 

straightforward, nor is it easily measureable, while at the same time constituting a 

different domain for database designers. This reiterates the fact that the majority of 

models target capacity planning or overall system properties in generic systems. Work 

in detailed database transaction processing and behaviour is rarely studied. 

In addition, we have contributed a justification for the exponential service time 

assumption for transactions in queueing network models, when transaction details are 

modelled. 

With regard to the overview of the analytical performance evaluation methodologies 

developed for database system performance evaluation, we have identified the main 

shortcomings of these performance methodologies: the evaluation of overall database 

system performance is modelled by mapping the database system workload onto the 

hardware architecture of the system. Given that database systems are a major category 

of software systems, more detailed performance evaluation models are needed to 

correspond to the performance models available for different hardware architectures and 

software components.   
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The contribution of this work, in contrast to [1, 20, 43, 67, 89, 92, 112], is in (1) the 

representation of the transaction in the queueing model, and (2) the level at which the 

performance evaluation is conducted. In our method, we model the transactions as a set 

of phases – each phase corresponds to an access to a table as the transaction interacts 

with the database. The probability of accessing a table depends on the procedural 

structure of the transaction. Each table is modelled as a server in the queueing network. 

Transaction service times are assumed to be exponentially distributed, with a mean 

corresponding to the average number of I/O DB pages needed by the transaction on the 

table. Other properties of the queueing network model depend on the modelled database 

system characteristics. This work is similar to Tomov et al. [112], in that the sequential 

procedural structure of the transaction is used to decide the routing of the transaction in 

the queueing network. However, Tomov et al. assume service demands are on the 

hardware devices, while we assume service demands are on the tables. 

The work in this thesis is an improvement over [1, 20, 43, 67, 89, 92] in that the 

transaction is modelled at a finer granularity, thus providing for feedback that is more 

relevant and useful to the database designer. Moreover, unlike [1, 20, 43, 67, 89, 92, 

112], detailed knowledge and modelling of the hardware architecture is not required. 

Hence, database designs can easily be mapped onto the queueing network model. This 

simplifies the approach for database designers and allows the application of the method 

in early DB system design phases. Furthermore, this method provides for the explicit 

representation of active database rules and referential integrity in the queueing network 

models. 
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Chapter 3  

A Queueing Networks Approach for 

the Performance Modelling of 

Database Designs 

3.1 Introduction 

Database system performance is measured in terms of query and transaction response 

time – the major indicator of a system capacity problem. After a database system has 

exhibited a performance problem, the main effort of post-deployment performance 

tuning is concentrated on the revision of the design of the database and the transactions 

running against the database [51, 84, 95, 123]. Hence, if the flaws of the database design 

had been discovered before system implementation and deployment, some of the post-

deployment performance problems would have been avoided. 

In addition to the general acceptance of the high impact of the performance evaluation 

of software systems in early development lifecycle phases, a performance evaluation 

method for database designs has the following benefits: 
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• prevents the propagation of design problems to the detailed design and 

implementation stages of a database system; 

• simplifies work for database designers as well as application developers; 

performance evaluation feedback is relevant to the current state of the 

development process, thereby preventing costly backtracking to change 

requirements or application design;  

• integrates performance evaluation in the database design process as well as the 

software development process; 

• contributes in minimizing post-deployment database system performance tuning. 

Performance modelling of database designs is possible because transaction execution 

costs can be estimated from the procedural structure of the transaction design, i.e. from 

the SQL statements, the procedural statements and the structure and relationships 

between tables, by using database query optimization and costing techniques [32, 51, 

84].  

At the design stage of database development, query optimization techniques are used as 

guidelines in designing efficient queries and transactions. These techniques can be 

adapted by a database designer to optimize a given SQL statement, at design time, in 

isolation, but are very cumbersome to use when considering the effect of a query on the 

performance of other transactions, or the effect of concurrent access to the database of 

different transactions or different invocations of the same transaction. Being so, the 

trend is to wait until database system deployment, when the effect of concurrency and 
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the interaction of different transactions will be clearer, to optimize the performance of 

problematic queries and updates [32, 84].  

By using a performance model to evaluate the dynamic behaviour of the database 

design, the database designer can assess the expected performance of the design, before 

the physical deployment of the database system.  

This Chapter describes the database design queueing network performance evaluation 

model. The steps in building the model are introduced and the transaction service 

demand calculation method is detailed. In addition, a formal specification of a database 

design, a queueing network and the transformation mechanism from a database design 

to the corresponding queueing network model is presented. The material in this Chapter 

has been outlined in [77]. 

3.2 The Database Design Queueing Network Model 

Consider a database design composed of a set of tables and the transactions that access 

these tables. For each table the following is defined:  

• the attribute data types and selectivity, 

• the expected number of rows and row length,  

• the index types and structure.  

For each transaction the following is known: 
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• the rate of occurrence or its percentage of the total transactions,  

• the SQL statements that make up the transaction, i.e. the tables that are accessed, 

the joined/retained attributes and their sequence and selectivity,  

• the transaction structure, i.e. the procedural statements which enclose the SQL 

statements. 

In our database design performance model, we represent the interaction between tables 

and transactions as a queueing system. In the queueing system, the tables will represent 

the shared resources, i.e. the servers, and the transactions that use these resources are the 

customers. The total time for a client to process procedural statements can be 

aggregated for each transaction as the client think time. Network latency can be 

represented as a delay resource in the queueing network.  

Disk I/O cost is the dominant factor in query execution costs [42, 84], especially for 

large databases [38]; this is the cost criteria used to calculate the service demands for 

transactions for our queueing network models. We currently ignore SQL processing 

times, SQL aggregate function processing times and temporary table in-memory 

operations. Referential integrity processing and active database rule invocations are 

covered in Chapters 5 and 6, respectively. Other performance evaluation inputs, e.g. the 

number of transaction invocations and user population are available, or can be 

calculated from the database system design [98].  

To model relational algebra JOIN operations between tables, we represent transaction 

access to these tables as sequential access, based on the order of access defined on the 



 54 

optimized query tree for the JOIN statement. Assuming DBMS query optimizers use 

left-deep query trees [84] to decide on an execution plan for a transaction, the order of 

table accesses for the JOIN operation will be the left-deep traversal of the JOIN 

operation’s optimized query tree. 

In the following sections, the process of modelling a database design using queueing 

networks will be described. 

3.2.1 Specifying Service Demands 

The table and transaction specifications are used to calculate the number of DB I/O 

pages accessed by the transaction, by applying  query optimization and costing 

techniques [32, 84]. A DBMS query cost optimizer builds a query tree to represent the 

SQL query based on the most efficient method to evaluate the query and, in turn, 

implement the relational operators. Efficiency is measured in DB I/O pages [32, 84]. 

Therefore, the optimized query tree provides the optimal access plan for the SQL query, 

in terms of the most efficient order to access the tables, as well as the number of I/O DB 

pages needed to retrieve the data.  

A transaction may access more than one table or the same table more than once. Since 

DB I/O pages are the cost factor of the transactions, in our model we use the worst case 

scenario: all data pages are flushed from memory after a transaction completes its 

operations on the data; i.e. buffering is on a transaction-by-transaction basis only and 

skewed access to the data or large buffers are not accounted for. The consequence is that 

the service demand calculated for a transaction will use the number of unique DB pages 

accessed by the transaction. 
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To complete the calculation of the service demands on the tables, table physical 

structure (e.g. clustering and partitioning) and index types are used to calculate the final 

service demands, i.e. the total time to access the calculated number of I/O DB pages, 

using the formulae of the cost model described in [84] which is detailed in the next 

Section. 

3.2.1.1 The Service Demand Cost Model 

The cost model we use to estimate the expected execution time of DB I/O for a SQL 

statement is the cost model specified in [84]. The cost model is based on the underlying 

file organization of the DB table: heap file with no index, sorted file, clustered B+ tree 

file, clustered hash index file, heap file with an unclustered B+ index and heap file with 

an unclustered hash index.  

The operations that can be executed by a SQL statement on a table are: 

• Sequential scans: fetch all rows of a table, i.e. fetch all the DB pages for a table 

into the DB buffer. 

• Search with equality selection: fetch all rows that satisfy an equality condition 

on an index key field. This encompasses fetching the DB pages of a table that 

contain the qualifying rows. However, we ignore the processing time to locate 

the correct row within the fetched page. 

• Search with range selection: fetch all rows satisfying a range condition on the 

index key fields, once more ignoring processing times to locate the rows within 

fetched pages. 
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• Insert a new row: locate the DB page in which the row will be inserted, fetch 

the DB page from disk, modify it to include the new row, then write it back to 

disk. 

• Update/delete an existing row: identify the DB page that contains the specific 

row, fetch it from disk, delete/update the row, then write the DB page back to 

disk. 

For the cost model we use the following notations: 

• B : denotes the total number of DB pages in a table, neglecting all header 

information, i.e. DB pages are assumed to be fully loaded with no space 

considerations for page or row headers. 

• D : the average time to read or write a DB page to/from disk, i.e. average DB 

page I/O time;   

• F : the tree index fan-out, i.e. the average number of children for a non-leaf 

node; 

• R : ratio of the index entry size to the table row size. 

The cost model is summarized in Table 3.1. In the next Section, the formulae are 

derived for a heap file with an unclustered B+ tree index, which is the file organization 

used in the experiments in the following Chapters. Details for the other file 

organizations can be found in  [84]. 
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Table 3.1 I/O DB page cost model for SQL operations. 

Table Type Scan 
Equality 

Search 
Range Search Insert 

Update/ 

Delete 

Heap BD 0.5BD BD 2D Search + D 

Sorted BD Dlog2B D( log2B + # of  matching pages) Search + BD Search + BD 

Clustered tree index BD DlogFB D( logFB + # of  matching pages) Search + D Search + D 

Clustered hash index BD 1.2D 1.2D( # of hash  keys in range) Search + D Search + D 

Unclustered tree index BD( # of  records per page + R) D(1+ logFRB) D( logFRB + # of  matching records) D(3 + logFRB )  Search + 2D 

Unclustered hash index BD( # of  records per page + R) 2D BD 4D Search + 2D 

B: denotes the number of DB pages in a table neglecting header information, i.e. pages are fully loaded, D: the average time to read or write a DB page, F: the tree 

index fan-out, R: ratio of the index entry size to the table row size
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Calculating I/O Cost for a Heap File with an Unclustered Tree Index [84] 

Scan: To perform a full table scan, scan the leaf level of the index and fetch the 

corresponding row for each index entry. The cost of reading all index entries is RBD. 

Then we have to fetch all the corresponding rows. Given that this is an unclustered tree 

index, each leaf entry can point to a different DB page. Therefore, the cost of fetching 

all the rows is one I/O disk access per row, i.e. the number of rows per page × BD. 

Thus, the total cost of a full table scan is BD(the number of  records per page + R). 

Search with equality on the index key: Locate the first page containing the desired 

index entries by fetching all index pages from the root to the appropriate leaf; this takes 

logFRB steps. Each step costs a disk I/O, thus the cost is: DlogFRB. The qualifying data 

row will cost an additional disk I/O. Hence the total cost is: D(1+ logFRB).  

Search with range selection: The first qualifying row in the range costs the same as a 

search for a row with equality on the index key: D(1+ logFRB). Then index data entries 

are retrieved sequentially until an entry that does not satisfy the range selection is found. 

Each retrieved index entry incurs one I/O to fetch the corresponding row. This will cost: 

(the total number of matching records – 1). Therefore, the total cost is: D(logFRB + 

number of  matching records). 

Insert: When inserting a row, it is first inserted into the heap file at a cost of one disk 

access to read the DB page and another to write the modified page to disk, i.e. 2D. In 

addition, the corresponding data entry must be inserted into the index. The cost of 

finding the correct leaf page is DlogFRB and writing the modified index page to disk 

costs another I/O disk access. Hence, the total cost is: D(3 + logFRB). 
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Update/Delete: The cost of locating the row in the table and locating the index entry is: 

DlogFRB + D. To write the modified table and index pages to disk costs: 2D. Therefore 

the total cost is: D(3 + logFRB): which is the cost of the equality search plus 2D. 

3.2.2 Building the Queueing Network Model 

The steps to build the queueing network model are: 

Step 1: Specify queueing network model structure:  

(a) Servers: each table in the database design is a server in the queueing network; 

partitioned or replicated tables are represented as separate servers.  

(b) Customer classes: each transaction type is considered as a different customer 

class: transaction types that access identical tables with equal service demands 

may be considered as one class. 

(c) Scheduling discipline is FCFS: DBMS use queues to control access to data 

objects; a new transaction is given access to a data object depending on the state 

of the current transactions waiting to access or currently accessing the data 

object. Depending on the concurrency control mechanism implemented by the 

DBMS, access is either granted immediately to the new transaction, or it is 

forced to wait behind the current transactions [84]. The effect of FCFS is in 

forcing all transactions to wait.  

Given that the queueing network model represents the whole database, a 

transaction still inside the queueing network is analogous to a transaction still 
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accessing the database, i.e. has not committed or aborted. In this scenario, when 

transaction A finishes service at table X and enters table Y, any transaction 

entering table X, is in fact accessing table X in parallel with transaction A. 

Therefore, FCFS gives serial access at the transaction statement level (i.e. at the 

lowest granularity of access: the row level in this case), but the model gives 

parallel access at the transaction level.  

(d) Queue length is infinite: this is based on the assumption that aborts due to 

deadlocks are rare in DBMS [84] and system overload causes long response 

times instead of transaction aborts. 

Step 2: Specify performance characteristics for the customer classes:  

(a) Transaction service demands on each server: the total cost of executing the 

SQL statements in terms of I/O DB pages. Service times are assumed to be 

exponentially distributed, with the mean being the service demands calculated 

in the previous section. A justification for exponential service times was 

provided in Chapter 2.  

(b) Transaction rate: for open queueing networks: arrival rates, and for closed 

queueing networks: transaction think times and number in system. 

Step 3: Specify the routing table for the customer classes: i.e. the order in which the 

transactions access their tables. This is derived from the procedural structure of the 

transaction. In addition, for tables in JOIN statements the order of the left-deep traversal 

of the optimized query tree is used. 
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Step 4: Solve the queueing network model: depending on the complexity of the 

queueing network model and the solution method used, the queueing network model 

can specify the bottleneck tables, total access compared to other tables, and transaction 

response times and response time distributions [74-76].  

Table 3.2 summarizes the mapping between database design entities and queueing 

network models. 

Table 3.2  Mapping between database designs and queueing network models. 

Database Design Queueing Network Model 

table server 

transaction type customer class 

transaction rate of occurrence or percentage of total 

transactions 

arrival rate or number in system 

cost of I/O DB pages needed to execute the SQL 

statements of the transaction on a table  

customer class service demand on a server 

order of SQL statements in the transaction traversal path of the customer class 

 

3.2.3 An Example 

Consider a simple database design that consists of two heap organized tables: 

EMP(emp_no, emp_name, dept_no) and DEPT (dept_no, dept_name) and two 

transactions, New_Emp and List_Emp (Figure 3.1). Each transaction is composed of a 

number of SQL statements and procedural statements. A queueing network model of 

this database system design can be built, using the steps detailed in the previous section 

and the cost model of Table 3.1. 
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Transaction New_Emp 

Input Parameters:  

      (:emp_no_var, :emp_name_var, :dept_name_var) 

Body 

 

SELECT dept_no INTO :dept_no_var  

FROM DEPT 

WHERE dept_name=:dept_name_var; 

 

INSERT INTO EMP  

VALUES  

         (:emp_no_var, :emp_name_var,:dept_no_var); 

 

show_message(‘Operation Successful’); 

 

End Transaction; 

Transaction List_Emp 

Input Parameters:  

             (:dept_no_var) 

Body 

 

SELECT emp_no,emp_name  

FROM EMP 

WHERE dept_no=:dept_no_var; 

 

Print_List_Procedure; 

 

End Transaction; 

 

Figure 3.1 Details of New_Emp and List_Emp transactions. 

Each table in the database design is a server in the queueing network – from the 

example, EMP and DEPT are the servers in the queueing network model. Each 

transaction represents a customer class in the queueing network. The order in which the 

tables are accessed by each transaction is: for the New_Emp transaction, DEPT then 

EMP. The List_Emp accesses the EMP table only. This gives the queueing network 

model of Figure 3.2. 

 

Figure 3.2 A queueing network model for the database design example. 

The service demand on each server (table) is equal to the total time to access the data, 

which is the cost of the DB pages needed to be retrieved from disk. Neither table has an 

index; therefore, we will use the heap table cost model. Assume the size of the EMP and 
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DEPT tables in DB pages are twelve and two pages, respectively, and that the duration 

of one disk access is arbitrarily chosen as one second. Table 3.3 shows the service 

demands for each transaction on each table. Arrival rates (open network) or number in 

system (closed network) can be derived from the database system design specifications 

and the model can be solved. 

Using the information from the results of the performance evaluation, the database 

designer can decide whether the expected response time of the transactions is suitable. If 

not, the other results, like the residence time, can be traced back to specific transactions 

or tables. Changing the design properties will change the number of DB I/O pages 

accessed by each transaction, thereby changing the result of the model: hence, it is 

possible to experiment with different indexes, table sizes, table structures, etc. 

Table 3.3 Service demands for the New_Emp and List_Emp transactions. 

Service Demand (in seconds) 
Transaction 

EMP DEPT 

New_Emp 12D=12 0.5BD=1 

List_Emp 0.5BD=6 0 

3.3 The Formal Specification 

In this section, we present a formal specification of the process of modelling a database 

design using queueing networks. To formally describe the queueing network database 

design performance evaluation technique we will use the notation described in Table 

3.4. 
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Table 3.4   Formal specification notation. 

Notation Usage 

| x | cardinality 

| choice 

C class type 

ci class instance 

. class member access 

<…> comments 

( ... ) grouping 

A[i] vector 

A[i,j] matrix 

[ ... ]* repetition: 0 or more 

[ ... ]
+
 repetition: 1 or more 

[ ... ]
n
 repetition: n times 

 

3.3.1 Database Design Formal Specification 

A database design can be formally described as DBDesign = (R , T), where R is the set 

of relations or tables and T is the set of transactions that access these tables. Define each 

table ri in R as:  

ri = (<ordered set of> A, I , [uniqueness constraint]
*
, expected number of rows, 

average row length) 

where  

• A  is the set of attributes of ri. For each attribute aj in A, the data type, range 

and selectivity or probability distribution is defined. 
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• I is the set of indexes of ri. For each index in in I, its type and structure is 

defined. 

If a table is denormalized into n partitions, it is represented as n different tables. If n 

tables are clustered, they are represented as one table. 

Define each transaction tj in T as: 

tj = (<ordered set of> S 
, Rate, tranDBpages[ri ∈R] 

 
) 

where S is the ordered set of statements of the transaction, and sk in S is defined as:  

sk =  (q | loop | branch,  statDBpages[ri ∈R] ) 

such that: 

• q is a SQL statement and can be described as:  

q = ( type, <ordered set of> Access, DBpages[ri ∈R] ), 

and 

o type is either a SELECT,  UPDATE, INSERT or DELETE SQL 

statement including the conditional clause parameters; 
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o Access is the ordered set of tables (ri ∈R) that are accessed by q, 

including the joined/retained attributes (aj ∈A.ri) and their sequence 

and selectivity;  

o DBpages[ ir ∈R] can be described as: Let Bi be the number of DB I/O 

pages calculated for the given SQL statement q on each table ri it 

accesses; then the cost of accessing these DB pages is: 

DBpages[ri ∈R]  =  Bi ×D, 

where D is the mean time to read or write a DB page. The value Bi×D is 

also known as the service demand.  Details of the calculation method for 

Bi×D  were stated in Section 3.2.1. 

• loop is a loop statement and is described as: 

loop = (<ordered sequence of> q 
+
, total-iterations ). 

• branch is a conditional branch statement, which is described as: 

branch = [ (<ordered sequence of> q 
+
 , pi) ]

total number of branches 
, 

where pi = probability of accessing branchi, ∑
=

|.|

1

branch

i

ip = 1. 

The service demand or total cost of accessing the DB I/O pages calculated for the 

statement sk, for all accessed tables, is statDBpages[ri ∈R]. This calculation depends 

on the type of sk. 
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• If sk = q, then statDBpages[ri∈R] can be described as: ∀ ri∈R, 

statDBpages[ri ∈R]  = q.DBpages[ri].  

• If  sk = loop, then statDBpages[ri ∈R] is:  

∀  ri ∈R , statDBpages[ri∈R]  =  ∑
=

|.|

1

qloop

m

mqn .DBpages[ri], 

where n is the number of loop iterations and qm is the m
th

 SQL statement in the 

loop.   

• If sk = branch, then statDBpages[ri∈R] can be described as: 

∀ ri∈R, statDBpages[ri∈R]  =  ∑∑
==

|]._[|

11

qjbranch

m

m

n

j

q .DBpages[ri], 

where n is the total number of branches and qm is the m
th

 SQL statement in the 

branch. For simplicity, we assume that each SQL statement in a branch accesses 

a different table. 

For the transaction tj, Rate can be defined as: 

Rate = arrival rate | (think time, [% of total transactions | average number in system] ), 

and tranDBpages[ri ∈R], which is the service demand of tj on each ri ∈R, can be 

defined as:  
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∀ ri∈R , tranDBpages[ri ∈R] =
 
 ∑ =

||

1

S

k ks .statDBpages[ri], 

where sk is the k
th

 statement in the transaction. 

For simplicity, in this specification, we are assuming that if a transaction accesses a 

table in multiple SQL statements, these statements are in sequence. This is to 

accommodate for a simple routing path algorithm (see Section 3.3.3) in which a 

transaction class visits a server (table) only once. A general routing algorithm, in which 

multiple visits to the same table are allowed can be specified by changing the customer 

type for each distinct visit to a table, as it would be expected that the service demand, 

i.e. the number of DB pages, would be different for each visit. 

3.3.2 Queueing Network Model Formal Specification 

The queueing network model can be formally described as:  

QN = (Server 
,  C 

,  λ[C] , D [Server, C], P [C, Server, Server] ) 

where:  

• Server is the set of resources of the queueing network. Each serveri 

∈Server is a FCFS service center with exponential service time and infinite 

queue capacity.  

• C   is the set of customer classes seeking service in the queueing network. 
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• λ [C]  is a defined as:  ∀  ci ∈C :  

λ [i]  = (<open queueing network> arrival rate | <closed queueing network> ( think 

time, [ % of total transactions | average number in system ]) 

• D [Server, C ] is a |Server | ×  |C | matrix of the mean service demands of the 

customers on the queueing network. D [Server, C ] is defined as ∀  serveri 

∈Server, ∀ cj ∈C ,  D [i, j] = the service demand of cj on serveri. 

• P [C, Server, Server] is a |C | ×  |Server | ×  |Server | matrix of the path a 

customer class traverses through the queueing network. P [C, Server, Server] 

is defined as: ∀ ci∈C, ∀ serverj ∈Server, ∀  serverk ∈Server, P[i, j, k] is 

the probability of ci moving to serverk  when leaving serverj. In addition, 

∀ ci∈C, for each serverj∈Server,  [ ] 1,,
||

,1

=∑
≠=

Server

kjk

i kjcP . 

3.3.3 Building the Queueing Network Model from the Database 

Design 

To transform the database design DBDesign = (R , T) into the queueing network QN = 

(Server, C,  λ[C] , D [Server, C], P [C, Server, Server]) apply the following: 

• serveri  = ri , ∀  serveri ∈Server, ∀  ri ∈R, where |Server| = |R|, 

partitioned or replicated tables are represented as separate servers. 
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• ci = ti , ∀  ci ∈C, ∀  ti ∈T, where |C | = |T |, transaction types that access 

identical tables with equal service demands may be considered as one class. 

• λ [i] = ti.Rate, ∀  λ[i] ∈  λ[C] , ∀  ti ∈T. 

• D [i, j] =  tj.tranDBpages[ri]. 

• P [i, j, k] is calculated using Algorithm 3.1. The algorithm takes as input the 

formal description of each transaction tj in T and outputs the routing 

probabilities for the corresponding customer class ci. 

Algorithm 3.1: Calculating Customer Class Path 

 

1: ∀  ti ∈T  

2: Let current_table be the current table in the path of ti  

3: current_table ← 0 

4: Let branch[n] be a vector of rk ∈R , that holds the last table accessed by a 

branch[i] of a branch statement, where n is the number of branches 

5: branch[] ← nil (element by element assignment) 

6: Let bran_table be the current table of a branch statement  

7: bran_table ← 0 

8: Let prev_branch[] be a vector that holds the initial value of branch[] 

9: prev_branch ← nil 

10: ∀ sj ∈ ti .S 

11: case sj = q   

12:  ∀  rk ∈q.Access 
13:        if (rk  is first table accessed by q)  and branch[] ≠ nil then    

        (connect the last tables accessed by the previous branch statement 

                              to the first table of this SQL statement) 

 

14:          for branch[1] to | branch[]| do 

15:               P[ci, branch[], rk]  ← 1 

16:          end for 
17:          branch[] ← nil 

18:          current_table ← rk 
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19:        else  

20:        P[ci, current_table, rk]
 1  ← 1  

21:         current_table ← rk 

22:         end if 

23: case sj = loop 

24:    ∀qm ∈loop 

25:       ∀ rk ∈ qm.Access 
26:        if (qm is first SQL statement) and (rk  is first table accessed by qm)  
                                       and branch[] ≠ nil then    

  (connect the last tables accessed by the previous branch statement to 

the first table of this SQL statement) 

 

27:                   for branch[1] to | branch[]| do 

28:               P[ci, branch[], rk]  ← 1 

29:             end for 
30:             branch[] ← nil 

31:            current_table ← rk 

32:       else  

33:           P[ci, current_table, rk]
 
← 1  

34:           current_table ← rk 

35:       end if 

36: case sj = branch 

37:    prev_branch[] ← branch[] 

38:   for i in n do (total number of branches)   

39: bran_table ← current_table 

40: ∀qm ∈branchi  

41:  ∀ rk ∈ qm.Access 
42:       if (qm is first SQL statement) and  
                                               (rk  is first table accessed by qm)  then 

43:         Let pi be the probability of accessing branchi 

44:         if prev_branch[] ≠ nil then  

(connect the last tables accessed by the previous branch statement to 

the first table of this branch’s SQL statement) 

 

45:                  for prev_branch[1] to | prev_branch[]| do 

46:            P[ci, prev_branch[], rk]  ← pi 

47:             end for 

48:            bran_table ← rk 

49:         else  

50:                         P[ci, bran_table, rk]  ← pi  

51:           bran_table ← rk 

52:         end if 

53:  else 

54:      P[ci, bran_table, rk]  ← 1  

55:       bran_table ← rk 

56:  end if 

57:           branch[i] ← rk 

58:   end for 
59:   prev_branch ← nil 

60: end case 

                                                
1 P[ci, 0, rk] gives the entry server for ti. Unassigned values take the value zero. 
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61: if sj  is the last statement in ti  then 

62:         if branch[] ≠ nil then 

63:                 for branch[1] to | branch[]| do 

64:     P[ci, branch[], 0]  ← 1 

65:    end for 

66:           else 

67:  P[ci, current_table, 0]  ← 1 

68:          end if  
69:  end if  (the transaction leaves the network after leaving the last table accessed 

by the last SQL statement of the final statement) 

3.4 Summary 

In this Chapter, the database design queueing network performance evaluation model 

was introduced. The cost model for calculating service demands for the transactions was 

presented. A formal specification of the model and the transformation between database 

designs and corresponding queueing network models was described. The formal 

specification and its related algorithms can form the basis upon which to develop a tool 

for implementing this performance evaluation technique. 
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Chapter 4  

Modelling the TPC-C Benchmark 

4.1 Introduction 

In order to validate and evaluate our database performance evaluation technique, we 

compare the results of a queueing network model to the performance of an actual 

database system. We have chosen the Transaction Processing Performance Council 

(TPC) benchmark [113] as the database design specification. In this Chapter, we model 

the TPC-C benchmark and compare the results of the queueing network database 

performance model with the TPCC-UVA open source implementation of the TPC-C 

benchmark developed at the University of Valladolid, Spain [59]. The purpose of the 

database performance evaluation model is to provide the database designer with the 

ability to compare between different database designs at database system design time. In 

Section 4.6, we conduct a comparison between three different designs for the TPCC-

UVA system using the queueing network performance evaluation model. The results in 

this Chapter have been published in [76, 77]. 

4.2 The TPC-C Benchmark 

The Transaction Processing Performance Council (TPC) [114] TPC-C benchmark [113] 

is an on-line transaction processing (OLTP) benchmark. It is written to be as 

representative as possible to actual production applications and environments. However, 
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the TPC-C benchmark has some shortcomings in its ability to represent actual OLTP 

database applications and workloads: the benchmark’s accommodation of known 

optimal memory buffering techniques cannot be replicated on real workloads [57], its 

workload is considerably different from actual production workloads [41] and its I/O 

reference behaviour does not replicate that of actual production systems [13, 42]. 

In spite of the aforementioned shortcomings, the TPC-C benchmark is still the de facto 

standard benchmark for OLTP systems in industry, as well as being the only database 

system benchmark with published results for different software and hardware 

configurations. Moreover, the purpose of this work is to establish the ability to model 

database designs using queueing networks; thereby, for our purposes, and in this 

context, we believe that the TPC-C benchmark fulfils our needs and its shortcomings 

can be viewed as particular properties or specifications of the database system under 

evaluation.   

The TPC-C benchmark revision 5.8.0 [113, 115] is used as an example of a database 

system design. The TPC-C benchmark is a design specification of an order-entry 

system. The benchmark portrays a wholesale supply company with a set of sales 

districts and associated warehouses. Each warehouse covers 10 districts, each district 

serves 3,000 customers. Warehouses hold stock of 100,000 items. Customers can place 

new orders or enquire about the status of existing orders. Orders have an average of 10 

items (order lines). For all order lines 1% are from items not in stock at the district’s 

warehouse and must be supplied by another warehouse. The order-entry system 

provides for the entering of customer payments, the processing of orders for delivery 

and the identification of shortages in stock levels. 
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The TPC-C specification is composed of [113]: 

• 9 tables (WAREHOUSE, DISTRICT, CUSTOMER, HISTORY, ORDER, 

NEW-ORDER, ORDER-LINE, STOCK, ITEM) and 

• 5 transactions (New-Order, Payment, Order-Status, Delivery, Stock-Level). 

A brief description of the transactions is in Table 4.1. The details of the design of the 

tables, the relationships between them, the restrictions on the random data generation 

for populating the database and the details of transaction functionality can be found in 

[113]. Appendix A summarizes the transaction descriptions and Appendix B shows 

table structure and data population specifications. 

Table 4.1 Summary of the TPC-C benchmark transactions. 

Transaction Description 

Min. % of the 

total number 

of 

transactions  

Min Mean of 

Think Time 

Distribution 

(seconds) 

Min 

Keying 

Time 

 (seconds) 

New-Order Initiates a new order No minimum 12 18 

Payment 

Updates the customer’s balance 

and reflects the payment on the 

district and warehouse sales 

statistics 

43 12 3 

Order-Status 
Queries the status of a 

customer’s last order 
4 10 2 

Delivery 

Processes a batch of 10 new 

orders, one for each district for a 

given warehouse 

4 5 2 

Stock-Level 

Counts the number of items in 

the last 20 orders in a district 

that fall below the stock 

threshold 

4 5 2 

 

The mean keying and think times for the different transactions are specified in Table 

4.1. In view of the fact that the TPC-C benchmark is emulating a real user environment, 

it states that after transaction i finishes executing and returns the result to the user, the 
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user processes that data (think time of transaction i) before choosing a new transaction 

and keying in its parameters (keying time for transaction i+1). 

The TPC-C benchmark also includes performance specifications related to the 

implementation of the database system, such as [113]: 

• regulation of the transaction mix during the measurement period (Table 4.1); 

• database population and scaling requirements: Table 4.2 shows the scaling 

requirements based on the number of warehouses in the database;  

• randomness and probabilities of values for the initial database loading; 

• the probability of operations on the database and the probability of choosing the 

values of the parameters for the transactions; 

• the required performance results. 

Table 4.2 Scaling requirements for the TPC-C database. 

Table Name 
Cardinality 

(in rows) 

WAREHOUSE 1 

DISTRICT 10 

CUSTOMER 30,000 

HISTORY 30,000 

ORDER 30,000 

NEW-ORDER 9,000 

ORDER-LINE 300,000 

STOCK 100,000 

ITEM 100,000 
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However, we incorporated the following assumptions to the TPC-C benchmark 

specifications when modelling our queueing network performance models:  

• The TPC-C benchmark specification states that:  

o 1% of all New-Order transactions rollback, we assume that no 

transaction rolls back;  

o the Payment and Order-Status transactions are invoked 60% of the time 

using the customer’s last name and 40% of the time using customer_id. 

We calculated the I/O costs based on the average number of pages 

needed for access by customer last name and customer_id.  

• We use the average value for all parameters, e.g. the number of items in an order 

is randomly selected between 5 and 15, we assume 10 items to an order. 

4.3 The TPCC-UVA Implementation 

The TPCC-UVA [59] is an open source implementation of the TPC-C benchmark for 

the PostgreSQL database. TPCC-UVA is written in C language for Linux systems. It is 

composed of a set of remote terminal emulators that simulate the behaviour of users 

based on the TPC-C benchmark specifications. Figure 4.1 details the TPCC-UVA 

architecture. 
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Figure 4.1  The TPCC-UVA architecture. 

The TPCC-UVA implementation is composed of modules that implement the TPC-C 

benchmark system. They provide for all of the processing needed to measure the 

performance of the system. These modules are [59]: 

• The benchmark controller: this is the user interface of the TPCC-UVA system, 

it allows for (1) the initial population of the database based on the selected 

number of warehouses, (2) the launch of different experiments on the populated 

database for different combinations of warehouses and districts by specifying the 

ramp-up and measurement intervals and (3) provides the results summary in 

report and graphical formats. 

• The remote terminal emulator: each district specified in an experiment 

represents a remote system terminal according to the TPC-C specifications. 

There is one remote terminal emulator process per active terminal in the 

benchmark execution. The remote terminal emulator simulates the activity of a 

remote terminal (transaction generation, waiting times, keying times, etc) as 
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specified in the TPC-C benchmark. In addition, each remote terminal emulator 

logs the response times for all transactions executed by the terminal. 

• The transaction monitor: all database requests from the remote terminal 

emulators are sent to the transaction monitor, which in turn executes the queries 

on the underlying database system. 

The communication between the transaction monitor and the remote terminal emulators 

is by a shared memory queue of pending transaction requests. The execution order of 

transaction requests is FCFS. Semaphores are used to synchronize the read and writes of 

the remote terminal emulator and transaction monitor to the queue. When a transaction 

completes execution on the database the results are transmitted from the transaction 

monitor to the issuing remote terminal emulator through a semaphore synchronized 

shared-memory data structure. 

Appendix B details the TPCC-UVA database table structures with the TPC-C data 

population specifications. Appendix C illustrates the TPCC-UVA transactions’ SQL 

source code. 

For our performance evaluation experiments we have used the TPCC-UVA system as 

provided. However, we incorporated the following modifications to the TPCC-UVA 

implementation:  

• we modified the implementation of the nonuniform random function used for 

data generation [113] in the TPCC-UVA  to use the parameter value C=1, to 

simplify  transaction service demand calculations (see Appendix B);  
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• foreign key references in all tables were removed; this prevents the processing 

overhead of foreign keys which is currently not represented in the model;  

• the initial database check which read the whole database into the database buffer 

was removed. This allowed the actual transactions to fill the buffer as needed, 

hence the simulated model and the implementation begin from the same initial 

state: an empty buffer; 

• the implementation of the New-Order transaction was edited to place SQL 

statements accessing the same table in sequence (this affected only one SQL 

query accessing one table); this did not change the functionality of the 

transaction, but simplified the design of the queueing network model. 

The TPCC-UVA experimental platform was a Pentium 4 Dual Core Processor at 2.4 

GHz with 2GB RAM and 150 GB HD running Linux. All software has the default 

configuration and the TPCC-UVA and PostgreSQL database version 8.3.3 [102] were 

installed as stated in [58], with the modifications stated above. 

4.4 Building the Performance Evaluation Model 

To build the queueing network model for the TPCC-UVA database design, the design 

specification of the TPC-C benchmark was used to specify the probability of operations 

on the database and the distribution of the parameter values for the transactions. 
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4.4.1 Measuring DB Page Access Time 

In order to collect information on the time it takes the kernel to fulfil a DB page request 

we employ the Linux strace utility to trace read and write system calls to database 

files between the PostgreSQL database engine and the Linux kernel. The strace utility 

provides the time duration to fulfil these system calls.  The arithmetic mean is taken of 

the times to fulfil all the read and write system calls to database files during the 

experiment measurement interval. This gives the mean DB page access time, which 

accounts for actual DB page requests; any pages already in the DB buffer before the 

beginning of the measurement interval will not be accounted for. 

Given that the mean DB page access time is calculated during the measurement interval 

only, it will give the mean kernel response time when the TPCC-UVA system is in the 

steady state. 

4.4.2 Calculating Transaction Service Demands 

The database initial loading size is based on the database population specification of the 

TPC-C benchmark [113]. We have used data for 100 warehouses, each with 10 districts, 

i.e. 100x10 clients (Table 4.3). This is the initial configuration for all our experiments 

irrespective of the actual number of clients used in an experiment and is used to 

calculate service demands for the transactions for the queueing network model. TPCC-

UVA actual data will vary slightly due to random generation. 
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Table 4.3 Initial loading size for the TPCC-UVA queueing network model. 

Table Name 
Cardinality 

(in rows) 

Rows Per 
Pagea 

(in rows) 

WAREHOUSE 100 93 

DISTRICT 1,000 87 

CUSTOMER 3,000,000 13 

HISTORY 3,000,000 179 

ORDER 3,000,000 342 

NEW-ORDER 900,000 1,024 

ORDER-LINE 30,000,000 152 

STOCK 10,000,000 27 

ITEM 100,000 100 
aPostgreSQL DB page size is 8 Kbytes. DB pages are fully loaded. 

Using query optimization techniques and the cost model in Table 3.1, the number of DB 

pages needed by each TPCC-UVA transaction is calculated from the tables, index 

structures and SQL statements described in the source code. In addition, from the 

TPCC-UVA implementation, the process in which the data was initially generated and 

loaded into the database was taken into account, e.g. some tables were loaded in key 

sort order. This gives the values in Table 4.4. Appendix C details the transaction SQL 

statements and the corresponding formulas used to derive the values in Table 4.4.  

The values in Table 4.4 will be used for all our experiments regardless of the number of 

clients or the length of the execution run. This is due to the fact that the TPCC-UVA 

transaction access to data does not depend on the table size. 

Table 4.4 Number of I/O DB pages for the TPCC-UVA transactions. 

number of I/O DB pages 
Transaction 

I II III IV V VI VII VIII IX 

New-Order 0.75 3.04 2.33 - 4.34 3.98 47.6 44.7 17.1 

Payment 2.75 3.04 152.93 2 - - - - - 

Order-Status - - 151.73 - 10.34 - 2.76 - - 

Delivery - - 43.3 - 43.4 39.8 47.6 - - 

Stock-Level - 1.04 - - - - 21.76 201.47 - 

I = WAREHOUSE, II= DISTRICT, III= CUSTOMER, IV= HISTORY, V= ORDER, VI= NEW-ORDER, VII= 

ORDER-LINE, VIII= STOCK, IX= ITEM 
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One exception is the Order-Status transaction, in which the number of DB pages 

accessed on the ORDER table depends on the number of New-Order transactions 

executed; we have incorporated this in the queueing network model simulation (details 

in Appendix D). The value shown in Table 4.4 for the Order-Status transaction on the 

ORDER table is the initial value.   

The service demand of a transaction on the relevant table is the calculated number of 

I/O DB pages needed by the transaction on that table × the mean time to access a DB 

page. Therefore, for the TPCC-UVA transactions, their service demands will be the 

values in Table 4.4 multiplied by the mean DB page access time calculated in the 

previous Section. 

4.4.3 Building the Queueing Network Model 

Applying the steps described in Section 3.2, the queueing network model for the TPCC-

UVA database system has 9 servers (tables) and 5 customer classes (transactions) with 

service demands on each server, as calculated in the previous Sections. 

From the TPCC-UVA transaction structure, the order in which each transaction accesses 

its tables is used to define how it will traverse the queueing network. In addition, the 

TPCC-UVA architecture has one transaction monitor that receives all requests from the 

remote terminal emulators, which are queued for service by order of arrival [59]. As a 

consequence, there is only one transaction being processed in the DB at a time. The 

transaction monitor is represented as a queue without a service center in the queueing 

network model. A customer leaves the transaction monitor queue and begins service in 

the database only after the last customer finishes service. Hence the database acts as the 
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service center for the transaction monitor queue. This gives us the multi-class queueing 

network of Figure 4.2. 

For all our experiments, the queueing network model was solved using simulation using 

QNAP2, a discrete-event simulator for queueing networks [82]. The details of the 

QNAP2 model descriptions are in Appendix D. 

 

Figure 4.2 TPCC-UVA queueing network model. 

4.5 Experimental Results 

The TPCC-UVA system was configured to run with 100 warehouses, each with 2 

districts, i.e. 100x2 clients. The ramp-up period was 20 minutes and the measurement 

interval 2 hours, as specified by the TPC-C benchmark [113]. The database was 

initialized with data for 100x10 clients, as stated in Section 4.4.2. To measure the mean 



 85 

DB page access time, the TPCC-UVA was run 5 different times (using the strace utility 

as stated in Section 4.4.1). The mean DB page access time of all 5 runs was used to 

parameterize the queueing network model. 

To measure the TPCC-UVA transaction performance metrics the system was run 

another 5 times to collect response times for the transactions; these were averaged and 

compared to the simulation results. The 95% confidence intervals were obtained for the 

system and simulation results, but these were too tight to show on the graphs.  

4.5.1 Transaction Mean Response Time and Mean Throughput 

For the overall mean transaction response time the model underestimated the mean 

transaction response times by an average of 18.4% and hence, overestimated the 

performance. However, for mean response times per minute the model gave a better 

approximation. Figure 4.3(a) details the measured and modelled mean response times 

per minute during the measurement interval for the New-Order transaction. It can be 

seen from Figure 4.3(a) that the model underestimates the mean response time for the 

New-Order transaction; however, towards the end of the measurement interval, the 

measured response time slowly approached the modelled response time. This is 

apparent in Figure 4.3(b), in which the measurement interval was extended to 4 hours 

for one test run. In Figure 4.3(b) the measured system has become stable demonstrating 

good agreement between measured and modelled response times per minute. 
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Figure 4.3 Comparison of the New-Order transaction mean response time per minute for a 

measurement interval of (a) 2 hours (b) 4 hours and mean throughput per minute for a measurement 

interval of (c) 2 hours (d) 4 hours for 100x2 clients. 

The convergence of the measured system to the model is due to the fact that initially the 

system buffer is empty and as time passes it is populated by the transactions. Therefore, 

after a certain time, frequently accessed pages are resident in the buffer for all 

transactions, e.g. the WAREHOUSE and DISTRICT tables, which is when the system 

starts to stabilize and converge to the model. 

Figure 4.3(c) compares the mean throughput per minute for the New-Order transaction 

during the 2 hour measurement interval. Since the model expressed shorter response 

times, it shows higher throughput than the measured throughput, giving an 

overestimation for the measured throughput. In Figure 4.3(d), in which the measurement 

interval was extended to 4 hours for one test run, the modelled throughput per minute 
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gives a better approximation of the measured throughput per minute. Results for the 

other transactions are similar. 

4.5.2 Scalability 

We have shown that the model is able to capture the steady-state performance of the 

TPCC-UVA system, giving a lower bound on the mean response time per minute of the 

transactions. From the results of the previous section, the TPCC-UVA system begins to 

stabilize about 120 minutes into the measurement interval. Therefore, for the following 

experiments, the ramp-up period was increased from 20 to 140 minutes and the 

measurement interval was one hour. 

To establish the scalability of the model for different workloads the TPCC-UVA system 

was run 3 times to measure the mean DB page access time, and then it was run an 

additional 3 times to collect response times for the transactions. The experiment was 

conducted for 100 (100x1), 200 (100x2) and 300 (100x3) clients.  

Figures 4.4 to 4.8 show the mean response time per minute for the one-hour 

measurement interval for all the transactions for these different workloads. It can be 

seen as the workload increases the system takes longer to stabilize. This is due to the 

increase in I/O activity of the TPCC-UVA database with the increase in the workload. 

The TPCC-UVA database index design forces a transaction to read large amounts of 

data into the buffer. This data is inadequate for other transactions due to the data 

distribution, e.g. customer data is unique for each district in each warehouse. Therefore, 

as the number of clients increases the amount of distinct data for each transaction 

increases, thereby decreasing the buffer hit rate per transaction. 
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Prior to system stability, the modelled mean response time per minute gives the lower 

bound on transaction response time per minute, irrespective of the workload. However, 

as the system shows signs of stability, the measured mean response time per minute 

approaches the modelled mean response time per minute. Therefore, the model scales to 

capture the steady state performance of the TPCC-UVA transactions. 

Table 4.5 shows the measured and modelled mean response time per transaction for the 

different workloads calculated during the measurement interval. From Table 4.5 the 

model underestimates the mean response time for small workloads; this is due to the 

fact that processing time is the principal cost factor for transaction response time for 

small workloads. However, as the workload increases, and consequently the DB size 

increases, disk I/O time becomes the dominant cost factor, hence the model gives more 

accurate approximations. This is evident for the Stock-Level transaction. The Stock-

Level transaction performs an SQL JOIN that is processed by the database using 

temporary tables [84], this is not considered in the cost metric for the model when 

calculating transaction service demands. Therefore, when processing time was 

prevalent, the model gave a high error rate for the Stock-Level transaction, relative to 

other transactions, however when disk I/O became prevalent the model accuracy rate 

increased for the Stock-Level transaction. 
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Figure 4.4 Comparison of the New-Order transaction mean response time per minute for different 

number of clients. 
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Figure 4.5 Comparison of the Payment transaction mean response time per minute for different 

number of clients. 
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Figure 4.6 Comparison of the Order-Status transaction mean response time per minute for different 

number of clients. 
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Figure 4.7 Comparison of the Delivery transaction mean response time per minute for different 

number of clients. 

 



 91 

0

1

2

3

4

5

0 10 20 30 40 50 60

Measurement Interval (min)

100x1

M
e
an

 R
e
sp

o
n

se
 T

im
e 

(s
ec

)

Measurement Model

 

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x2

M
e
an

 R
e
sp

o
n

se
 T

im
e 

(s
ec

)

Measurement Model

 
 

0

10

20

30

40

50

0 10 20 30 40 50 60

Measurement Interval (min)

100x3

M
e
an

 R
e
sp

o
n

se
 T

im
e
 (

se
c)

Measurement Model

 

 

Figure 4.8 Comparison of the Stock-Level transaction mean response time per minute for different 

number of clients. 

 

Table 4.5 Comparison of transaction mean response times for different number of clients. 

Response 

Time (sec) 

Response Time 

(sec) 
# of 

Clients 
Trans 

Measured Modelled 

% Error 

per trans 

% Overall 

Error 

New-Order 0.57 0.37 33.93 

Payment 0.47 0.41 12.01 

Order-Status 0.58 0.46 20.42 

Delivery 0.73 0.43 40.63 

100x1 

Stock-Level 0.86 0.46 46.68 

30.74 

 

New-Order 18.28 16.25 11.08 

Payment 18.20 16.29 10.50 

Order-Status 18.31 16.27 11.13 

Delivery 18.36 16.11 12.26 

100x2 

Stock-Level 18.79 16.24 13.59 

11.71 

 

New-Order 41.56 38.26 7.95 

Payment 41.49 38.29 7.72 

Order-Status 41.56 37.91 8.8 

Delivery 41.62 38.01 8.69 

100x3 

Stock-Level 42.05 38.34 8.82 

8.39 
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4.6 A Performance Comparison of Different Database 

Designs 

The purpose of the database performance evaluation model is to provide the database 

designer with the ability to compare different database designs at database system 

design time. In this Section, we compare three different designs for the TPCC-UVA 

system. 

4.6.1 The Database Design Descriptions 

Using the database design of the TPCC-UVA application, we configured three different 

database designs to achieve different DB I/O page activity.  This was conducted by 

changing the indexes on the CUSTOMER table given that it is the most accessed table. 

The three designs are: 

• I1: primary  B-tree index on (warehouse_id, district_id, customer_id), and 

secondary b-tree index on (warehouse_id, district_id, customer_lastname); 

• I2: B-tree index on (warehouse_id, district_id, customer_id), this is the original 

design of the TPCC-UVA; 

• I3: B-tree index on (warehouse_id, district_id). 

The indexes were chosen with regard to the way the transactions accessed the 

CUSTOMER table; the Payment and Order-Status transactions are invoked 60% of the 

time using the customer’s last name and 40% of the time using customer_id, the rest of 
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the transactions access the CUSTOMER table by customer_id, while the Stock-Level 

transaction does not access the CUSTOMER table.  

These changes seem simple, but as can be seen in the following Section, they have a 

profound effect on the performance of the overall system. In the following Sections, we 

show how the TPCC-UVA database design was modelled for the different database 

designs: I1, I2, and I3. The measurement of DB page access time was conducted as 

specified in Section 4.4.1. 

To calculate the service demands for the queueing network models for the I1, I2, and I3 

database designs, we have used the same assumption as in Section 4.4.2 including the 

database initial loading size. The number of DB I/O pages for the designs I1, I2, and I3 

differ from those in Table 4.4 only for the CUSTOMER table; this is shown in Table 

4.6. The values in Table 4.6 will be used for all our experiments regardless of the 

number of clients or the length of the execution run, as stated in Section 4.4.2. The 

service demand of a transaction on the relevant table is the calculated number of I/O DB 

pages needed by the transaction on that table × the mean time to access a DB page. 

Therefore, for the three designs, the transaction service demands will be the values in 

Table 4.6 multiplied by the mean DB page access time.  

The queueing network performance model has the same structure as that of Figure 4.2 

since the designs I1, I2, and I3 differ from the original TPCC-UVA design in service 

demands, not in transaction processing or order of access to the tables. 

For all these experiments, the queueing network model was solved using simulation 

using QNAP2. In addition, the experimental setup was that of Section 4.3. 
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Table 4.6 Number of I/O DB pages for the TPCC-UVA transactions. 

number of I/O DB pages 

III Transaction 
I II 

I1 I2 I3 
IV V VI VII VIII IX 

New-Order 0.75 3.04 2.33 2.33 251.26 - 4.34 3.98 47.6 44.7 17.1 

Payment 2.75 3.04 6.89 152.93 253.26 2 - - - - - 

Order-Status - - 4.89 151.73 251.26 - 10.34 - 2.76 - - 

Delivery - - 43.3 43.3 2532.6 - 43.4 39.8 47.6 - - 

Stock-Level - 1.04 - - - - - - 21.76 201.47 - 

I = WAREHOUSE, II= DISTRICT, III= CUSTOMER, IV= HISTORY, V= ORDER, VI= NEW-

ORDER, VII= ORDER-LINE, VIII= STOCK, IX= ITEM 

 

4.6.2 Experimental Results 

The TPCC-UVA system was configured to run with 100 warehouses, each with 2 

districts, i.e. 100x2 clients for each design. The measurement interval was 120 minutes 

as specified by the TPC-C benchmark in which the system is in steady state. To 

determine the steady state for each design, the system was run with a ramp-up period of 

20 minutes and a measurement interval of 6 hours for the I1 design and a ramp-up 

period of 30 minutes and a measurement interval of 7 hours for the I3 design. The mean 

response time per minute was plotted for the New-Order transaction. Figures 4.9 and 

4.10 show the resulting graphs.     

From Figures 4.9 and 4.10 the steady state for the two designs I1 and I3, is reached with 

a ramp-up period of 100 and 170 minutes, respectively. For I2, the steady state is based 

on the results of the previous Section in which the steady state is reached with a ramp-

up period of 140 minutes. The database was initialized with data for 100x10 clients, as 

stated in Section 4.4.2. To measure the mean DB page access time, the TPCC-UVA was 

run 3 different times for each design (using the strace utility as stated in Section 4.4.1). 

The mean DB page access time of all 3 runs was used to parameterize the queueing 

network model for each design. 
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Figure 4.9 New-Order transaction mean response time per minute for a ramp-up period of 20 minutes 

and measurement interval of 4 hours for 100x2 clients for the I1 database design. The TPCC-UVA 

system starts to stabilize 80 minutes into the measurement interval, i.e. 100 minutes from the beginning 

of the system run. 
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Figure 4.10 New-Order transaction mean response time per minute for a ramp-up period of 30 minutes 

and measurement interval of 7 hours for 100x2 clients for the I3 database design. The TPCC-UVA 

system starts to stabilize 140 minutes into the measurement interval, i.e. 170 minutes from the 

beginning of the system run. 

To measure the TPCC-UVA transaction performance metrics the system was run 

another 3 times, for each design, to collect response times for the transactions. The 

response times were averaged and compared to the simulation results. 
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Figures 4.11 – 4.15 detail the measured and modelled mean response times per minute 

during the measurement interval for all the transactions for these three designs. It can be 

seen from Figures 4.11 – 4.15 that the best design, in terms of response time, is I1 and 

the worst design is I3. This is an intuitive result, since I1 uses indexes that are tailored to 

the transaction usage. I2 uses only one index; this forces the transactions that access the 

CUSTOMER table by customer_lastname to read all the DB pages of the relevant 

district from the CUSTOMER table. This is due to the fact that customer data is unique 

for each district in each warehouse. I3 forces the transactions to access all the customer 

pages for the relevant district on any access to the table, whether by customer_id or 

customer_lastname. 

From Figures 4.11 – 4.15, as well as from Table 4.7, it can be seen that the performance 

model gives an excellent approximation for the mean response time per minute for the 

transactions for I1 (8% prediction error), but fails to achieve the same accuracy for I2 

(23% prediction error) and I3 (25% prediction error), in which it gave the lower bound 

on response time. Nonetheless, these results are acceptable at design time. 
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Figure 4.11 Comparison of the New-Order transaction mean response time per minute for 100x2 

clients for the design (a) I1 (b) I2 (c) I3. 

 

 



 97 

   

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
e
sp

o
n
se

 T
im

e 
(s

ec
)

Measurement Model

 

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

es
p

o
n

se
 T

im
e 

(s
ec

)

Measurement Model

 

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
ea

n
 R

e
sp

o
n
se

 T
im

e 
(s

ec
)

Measurement Model

 
(a) (b) (c) 

Figure 4.12 Comparison of the Payment transaction mean response time per minute for 100x2 clients 

for the design (a) I1 (b) I2 (c) I3. 
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Figure 4.13 Comparison of the Order-Status transaction mean response time per minute for 100x2 

clients for the design (a) I1 (b) I2 (c) I3. 
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Figure 4.14 Comparison of the Delivery transaction mean response time per minute for 100x2 clients 

for the design (a) I1 (b) I2 (c) I3. 
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Figure 4.15 Comparison of the Stock-Level transaction mean response time per minute for 100x2 

clients for the design (a) I1 (b) I2 (c) I3. 
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Table 4.7 Comparison of transaction mean response times for different designs. 

Response Time 

(sec) 

Response Time 

(sec) 
DB 

Design 
Trans 

Measured Modelled 

% Error 

per trans 

% Overall 

Error 

New-Order 8.32 7.61 8.57 

Payment 8.25 7.48 9.33 

Order-Status 8.30 7.60 8.37 

Delivery 8.46 7.59 10.36 

I1 

Stock-Level 8.13 7.66 5.79 

8.48 

New-Order 19.10 14.70 23.04 

Payment 19.00 14.72 22.53 

Order-Status 19.11 14.75 22.81 

Delivery 19.15 14.67 23.36 

I2 

Stock-Level 19.71 14.77 25.05 

23.36 

 

New-Order 40.15 30.35 24.42 

Payment 39.95 30.18 24.45 

Order-Status 40.04 30.18 24.63 

Delivery 40.54 30.7 24.27 

I3 

Stock-Level 40.83 30.07 26.34 

24.82 

 

 

4.6.3 Analysis 

The performance model uses the mean DB page access time as a metric to calculate 

transaction response times, this is based on assuming that transaction access to DB 

pages is random; i.e. sequential access is rare. The response time of a transaction 

depends on the sequence of its DB page access requests and the time needed to fulfil 

these requests. 

In order to investigate the effect of the TPCC-UVA database design change, we 

analyzed the DB page access trace (from the strace utility) for each of the three designs 

during the measurement interval.  For each design, we looked at a trace for one run, in 

which we took a random sample of DB page access times for 4500 DB pages in 

sequence. Given that the TPCC-UVA has one transaction in the database at a time, this 

trace represents a sequence of transaction requests for table and index DB pages from 

disk. This is illustrated in Figure 4.16. In Figure 4.16 (and Figure 4.17), a DB page with  
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a long access time represents random I/O, while very short access times represent 

sequential I/O. 
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Figure 4.16 DB page access trace for 100x2 clients for the design (a) I1 (b) I2 (c) I3. 
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Figure 4.17 CUSTOMER table DB page access trace for 100x2 clients for the design (a) I1 (b) I2 (c) I3. 

As can be seen from Figure 4.16(a), transaction access to DB pages is random, with few 

sequential accesses for I1, this is expected due to the index design. For I2, Figure 

4.16(b), access is more evenly divided between random and sequential access. 

However, from Figure 4.16(c), for I3, access is mostly sequential with few random 

accesses. This is apparent in Figure 4.17, in which a random sample of 4200 DB page 

access times from a trace of the transaction requests to the CUSTOMER table and its 

indexes for the three designs is shown. The effect of index design change can be seen, in 

which for I1 access to the CUSTOMER table is random with rare sequential access 

(Figure 4.17(a)), while for I3 it is sequential with rare random access (Figure 4.17(c)). 

The reason that I3 displays such behaviour is due to the fact that the TPCC-UVA loads 

the CUSTOMER table in key sort order, therefore pages of customers of a certain 
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district are ordered logically and physically, causing sequential access. This is not a 

feature of real systems, customer data would be expected to be randomly distributed 

through the whole table, and therefore, lead to large random access when conducting a 

partial table scan, not large sequential access.  

From Figure 4.16 and Figure 4.17, for I3 short DB page response times are dominant per 

transaction: the disk head will move to the first page of the scan in the longest time and 

then sequentially scan the rest of the table in physical disk order. Thus, the access of the 

following DB pages will take significantly less time than the initial page. Since short 

response times are dominant per transaction, and therefore overall, the calculation of the 

DB page mean access time will favour the short responses. Hence, the calculated DB 

page mean access time will not accurately represent the effect of the initial random 

access to DB pages on transaction response time (this is formulated mathematically in 

Figure 4.18). Therefore, the calculated DB page mean access time will not accurately 

approximate the transaction mean DB page access behaviour. Consequently, the 

performance model will underestimate the transaction response time. 

For I2, sequential scans are not dominant, so the calculated DB page mean access time 

will give a better approximation of the transaction mean DB page access behaviour. 

Thus, the performance model gives a better estimate. For I1, random access is dominant, 

and therefore, the performance model gives excellent results for transaction mean 

response times per minute. 
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Figure 4.18 The effect of large values on the mean of a population. 

In conclusion, when access was overwhelmingly random with rare sequential access the 

performance model gives an excellent approximation of the mean response time. When 

the database design exhibited less random access and more sequential access the model 

tends to underestimate the mean response time, giving a lower bound on the mean 

response time. A good design, in general, will always consider more random access and 

less sequential access. 

In general, good database designs favour random access to sequential access [84]. Full 

and partial table scans are avoided except when the table is very small and frequently 
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accessed, in which the performance lost is negligible in comparison to random I/O. A 

situation like I3 is extremely rare and well beyond what is expected in actual DB 

systems. Hence, the use of the DB page mean access time as a metric in the 

performance model is suitable for realistic designs. Given that, if the rows of the 

CUSTOMER table were randomly distributed, the performance model would give 

results for I3 similar to that of I1. 

4.7 Summary 

In this Chapter, we have modelled the TPC-C benchmark using the queueing networks 

database design performance evaluation model. The performance model was validated 

against actual system runs of the TPCC-UVA open source implementation of the TPC-

C benchmark. The experimental results indicate that this modelling technique has the 

ability to evaluate expected database system performance from database designs. It has 

been shown that the model was able to give the upper bound of system performance in 

the steady state for the TPCC-UVA implementation of the TPC-C benchmark for 

different workloads, with accuracy improving as the workload increased. 

In addition, we have utilized the queueing network performance evaluation model in the 

performance comparison of different database designs for the TPCC-UVA system. The 

experimental results indicate that this modelling technique was able to give an excellent 

approximation of the system response time in the steady state for the TPCC-UVA 

implementation of the TPC-C benchmark for database designs with dominant random 

I/O DB page access.  
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In the next Chapter, we extend the database design queueing network performance 

evaluation model to incorporate database designs with active database rules. 



 105 

Chapter 5  

Modelling Active Database Rules 

5.1 Introduction 

In this Chapter, we model active database rules or triggers. Our definition of triggers is 

based on the SQL: 2003 standard [47]. The significance of representing triggers in a 

database performance model is important due to:  

• the complexity of designing triggers in database systems [84], 

• the fact that poor trigger designs are a cause of database performance problems 

[34],  and 

• it is difficult for a database designer to visualize the execution of triggers [85]. 

It is our belief that modelling database system design performance is not complete 

without the ability to represent triggers in the database design. The extension of our 

database design performance evaluation model to incorporate triggers is an 

improvement over previous modelling methods.  

In the following sections, we extend the database design performance evaluation model 

to incorporate database triggers. We show the calculation of service demands for 

transactions that invoke triggers and illustrate the extended algorithm for calculating the 
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transaction path through the queueing network. Finally, we validate our model by 

comparing the results with a modified TPCC-UVA database design that incorporates an 

invocation of a trigger. The work in this Chapter has been described in [78]. 

5.2 Modelling Active Database Rules 

An active rule or a trigger is a procedure that is run or activated by the DBMS when a 

certain event happens in the database [84]. Triggers are associated with events that 

occur in the form of INSERT, DELETE or UPDATE SQL statements on the tables of 

the database. A trigger is only activated when the event meets the condition of the 

trigger, i.e. a test condition or a query that evaluates to true (the result set is nonempty). 

When a trigger is run it performs an action that can be any set of SQL statements or 

procedural computations, depending on the DBMS implementation. 

A trigger can be configured to execute before the event that applies changes to the 

database or after the changes are applied, these are referred to as BEFORE or AFTER 

triggers. In addition, the rate at which a trigger executes its action when activated can be 

defined. If an action is to be executed for each row modified by the event, then it is a 

row-level trigger. However, if it is defined to execute only once per activating event, 

then it is a statement-level trigger. 

A transaction that contains a statement that will lead to trigger activation and execution 

is blocked until the trigger finishes successfully. Another option is to allow the 

execution of the trigger to be deferred to the end of the transaction execution or to 

execute instead of the activating statement, or asynchronously as part of another 
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transaction. Given that triggers execute in response to other actions on the database, 

they are considered part of the transaction that activates them. Hence, the activating 

transaction does not commit unless the trigger completes successfully (and all other 

triggers that are implicitly fired due to the actions of the initial trigger). We will only 

consider modelling blocking triggers. Deferred triggers can be modelled as blocking 

triggers at the end of the transaction. The model can be easily extended to instead of and 

asynchronous triggers. 

Based on this, we represent triggers in our performance model as sub-transactions of the 

original transaction that invoked the trigger. The invoked trigger must complete first 

before the transaction can proceed with processing, i.e. we are modelling blocking 

triggers. Thus, a trigger’s service demands and traversal of the queueing network are 

calculated in the same manner as transactions. However, any transaction that invokes a 

trigger will have its path through the queueing network altered by the addition of the 

path of the activated trigger. For example, if a transaction accesses three tables, A, B, 

and C and the statements that access table B activate a BEFORE and AFTER trigger on 

that table, then the queueing network model for this transaction will be altered to 

represent the access of the BEFORE and AFTER triggers to table B as detailed in 

Figure 5.1.  

Based on the SQL:2003 standard, we assume a trigger can have the same functionality 

as a transaction, i.e. there are no restrictions on the control statements or the SQL 

statements executed in a trigger. PostgreSQL allows this [102], however other DBMSs 

have some restrictions [71]. 
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Figure 5.1 A queueing network model with trigger invocations. 

In the following Section, the formal specification of the queueing network model for 

database designs is modified to reflect the addition of triggers to the database design.  

5.3 Extension of the Formal Specification for Triggers 

The modifications to the formal definition presented in Section 3.3 are as follows: 

• The definition of a table is modified by adding a Trigger attribute, which is 

defined accordingly. 

• The algorithm to calculate the customer queueing network traversal path is 

modified to incorporate the invocation of BEFORE and AFTER triggers in the 

path. The algorithm was redesigned from that of Section 3.3 into a main 

algorithm that invokes a second recursive algorithm. All variables are global and 

parameters are assumed to be passed by reference. The recursive design of the 

second algorithm allows it to take into account triggers that activate triggers. 

server A 

server B 

server C 

BEFORE trigger server 

AFTER trigger server  
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5.3.1 Trigger Formal Specification 

As stated in Section 3.3, a database design can be formally described as DBDesign = (R, 

T), where R is the set of relations or tables and T is the set of transactions that access 

these tables. Define each table ri in R as:  

ri = (<ordered set of> A, I , [uniqueness constraint]
*
, expected number of rows, 

average row length, Trigger*
) 

where: 

• A  (set of attributes of ri ) and I  (the set of indexes of r i) are as defined in 

Section 3.3. 

• Trigger is the set of triggers associated with the table.  

Define each triggerj in T rigger as: 

 

triggerj = (event, time, level, <ordered set of> S 
, trigDBpages[ri ∈R] ) 

where:  

• event is the activating event: [UPDATE | INSERT | DELETE] SQL statement. 

There can only be one such triggering event per triggerj. In addition, we 

assume that each table cannot have more than one trigger with the same event.  

• time = [BEFORE | AFTER], which specifies when the trigger action should 

execute, before or after the triggering event. 
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• level = [row | statement], which specifies if the trigger will execute for each 

row accessed by the triggering event or once after the triggering event. The 

value of level affects the service demand of the trigger.   

• S is the ordered set of statements of the trigger and is defined as that of the 

transaction; this corresponds to the trigger action. 

• trigDBpages[ri ∈R], is the service demand of triggerj on each ri ∈R, which 

can be defined as:  

∀ ri
∈R , trigDBpages[ri ∈R] =

 
 ∑ =

||

1

S

k ks .statDBpages[ri], 

where sk is the k
th

 statement in the trigger. This formula calculates the expected 

number of database pages that the trigger will use, in isolation. The final number 

depends on the invoking transaction and whether the trigger is a row-level or a 

statement-level trigger. 

5.3.2 Calculating Service Demands for Transactions that Invoke 

Triggers 

The service demand for a trigger depends on the invoking transaction and whether the 

trigger is a row-level or statement-level trigger. Therefore, if a transaction tj fires a 

trigger triggeri that in turn accesses a table ri, then the service demands of triggeri 

on table ri depend on the query q firing the trigger and the statement sk it resides in.  
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The calculation of the service demands for triggeri that is invoked by tj are based on 

our initial assumption that if a transaction accesses a table in multiple SQL statements, 

these statements are in sequence (see Section 3.3.1). The consequence of this 

assumption is that if a transaction tj accesses table ri, then accesses table ri+1, and in the 

process fires a  BEFORE trigger, triggeri , on table ri+1, and triggeri in turn accesses 

table rk , (Figure 5.2), then one of the following must hold: 

       rk = ri or rk = ri+1 or rk = rn where rn ∈R is not accessed by tj. 

The same applies if ri has an AFTER trigger that accesses table rk  and is invoked by tj.      

 

Figure 5.2 A BEFORE trigger invocation. 

In addition, the assumption that all DB pages of a transaction will be in the buffer until 

the transaction commits results in that the first access to a table’s data is the significant 

access, which will be the service demand on the table. Any subsequent access during the 

execution of the transaction will have a service demand of zero. However, if subsequent 

accesses access different pages, than that will be added to the initial service demand. 

The general formulas given below assume that the trigger will access different pages 

than that of the invoking transaction. 

server ri server ri+1 

server rk 
BEFORE triggeri 
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This assumption simplifies the calculation of the service demands, thus serving to 

explain the concept without the complicated details. In addition, it simplifies the 

calculation of the routing path of the transaction for the queueing network model. The 

general formula, in which access of a trigger to a table is not restricted, can be modelled 

by changing the customer type when a trigger is invoked and returning to the original 

customer type after the trigger completes execution. This will not affect the queueing 

network routing table with regard to the overall table access, nor will it affect the overall 

service demands on the tables. However, the calculation of the transaction service 

demands for tables accessed by both the transaction and the trigger will now be divided 

between them. 

For each transaction tj, the trigger service demands depend on the type of statement sk  

in S that make up tj. The algorithm for calculating the transaction service demand when 

the trigger is invoked from a query q is: 

if  sk = q, then  
            ∀  ri ∈q.Access 

                ∀  triggern ∈ ri 

                    if (ri .Trigger is not NULL) and (ri .triggern.event = q.type ) then 

 if ri . triggern.level = statement then 

tj.tranDBpages[ri∈R] =
 
 tj.tranDBpages[ri∈R]  +    

                                        triggern.trigDBpages[ri∈R] 

 else  (row-level trigger) 

tj.tranDBpages[ri∈R] =
 
 tj.tranDBpages[ri∈R]  +  

                                               (# of rows accessed by q) x  triggern.trigDBpages[ri∈R] 
 end if 

                   end if 

  end if 
 

The algorithm for calculating the transaction service demand when the trigger is 

invoked from within a loop is:  
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if   sk = loop, and N is the number of loop iterations, then  

       ∀ qm ∈loop 

               ∀  ri ∈ qm.Access 

                    ∀  triggern ∈ ri 

                         if (ri . Trigger is not NULL) and (ri . triggern.event = qm.type )  
                         then 

      if ri . triggern.level = statement then 

           tj.tranDBpages[ri∈R] =
 
 tj.tranDBpages[ri∈R]  +   

        N× triggern.trigDBpages[ri∈R] 

         else  (row-level trigger) 

tj.tranDBpages[ri∈R] =
 
 tj.tranDBpages[ri∈R]  +   

 N ×  (# of rows accessed by qm) x triggern.trigDBpages[ri∈R] 

      end if 

                         end if 

       end if 

The algorithm for calculating the service demand when the trigger is invoked from 

within a branch statement is:  

if sk = branch, then 

         ∀ branchi  

              ∀ qm ∈ branchi 

                   ∀  ri ∈ qm.Access 

                        ∀  triggern ∈ rk 

                           if (ri . Trigger is not NULL) and (ri .triggern.event = qm.type )  
  then 

           if ri .triggern.level = statement then 

tj.tranDBpages[ri∈R] =
 
 tj.tranDBpages[ri∈R]  +   

  triggern.trigDBpages[ri∈R] 

  else  (row-level trigger) 

tj.tranDBpages[ri∈R] =
 
 tj.tranDBpages[ri∈R]  +   

                                             (# of rows accessed by qm) x triggern.trigDBpages[ri∈R] 

  end if 

                    end if 

        end if 
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5.3.3 Calculating the Routing Path 

In order to simplify the routing path algorithm, it is assumed that when sk = branch, 

i.e. a branch statement, that ∀  branchi ∈branch the following holds: 

• the first table accessed in branchi cannot activate a BEFORE trigger and  

• the last table accessed in branchi cannot activate an AFTER trigger.  

Consequently if branchi accesses only one table, than that table cannot activate any 

triggers.  

• All other tables in branchi cannot activate a branch statement as a BEFORE 

trigger or as an AFTER trigger.  

The algorithm can be easily extended to include these previous cases. Algorithm 5.1 and 

5.2 detail the calculation of the queueing network traversal path for a database design 

with BEFORE and AFTER triggers. The additions to the original algorithm in Section 

3.3 are highlighted. 
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Algorithm 5.1: Calculating Customer Class Path 

 

1: Let current_table be the current table in the path of ti  

2: current_table ← 0 

3: Let branch[n] be a vector of rk ∈R , that holds the last table accessed by a 

branch[i] of a branch statement, where n is the number of branches 

4: branch[] ← nil (element by element assignment) 

5: Let bran_table be the current table of a branch statement  

6: bran_table ← 0 

7: Let prev_branch[] be a vector that holds the initial value of branch[] 

8: prev_branch ← nil 

9:    ∀  ti ∈T  

10:    ∀ sj ∈ ti .S 

11:             ConnectPath(sj ,  current_table , branch[]    ) 
12:         if sj  is the last statement in ti  then 

13:              if branch[] ≠ nil then 

14:                    for branch[1] to | branch[]| do 

15:           P[ci, branch[], 0]  ← 1 

16:                    end for 

17:               else 

18:                   P[ci, current_table, 0]  ← 1 

19:               end if     

20:         end if  
21: (the transaction leaves the network after leaving the last 

22: table accessed by the last SQL statement of the final statement) 

23: end algorithm                 
 

 

Algorithm 5.2 : Function ConnectPath 

 

Function ConnectPath (sj , current_table  , branch[] ) 
1: case sj = q   

2: ∀  rk ∈q.Access 
3:       if (rk .Trigger is not NULL) and  

4:                                   ( ∃  rk . triggeri.time = BEFORE) and 

5:                                   (rk . triggeri.event = q.type ) 
6:      then 

7:            ∀ sj ∈ triggeri .S 

8:                           ConnectPath(sj , current_table , branch[] ) 

9:      end if –before trigger 
10:    
11:      if (rk  is first table accessed by q)  and branch[] ≠ nil then    

  (connect the last tables accessed by the previous branch statement to 

the first table of this SQL statement) 

 

12:    for branch[1] to | branch[]| do 

13:     P[ci, branch[], rk]  ← 1 

14:    end for 
15:    branch[] ← nil 

16:    current_table ← rk 
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17:      else  

18:    P[ci, current_table, rk]
 1  ← 1  

19:    current_table ← rk 

20:      end if 
21:  

22:      if (rk .Trigger is not NULL) and  

23:                                   ( ∃  rk . triggeri.time = AFTER) and 

24:                                    (rk . triggeri.event = q.type ) 
25:      then 

26:            ∀ sj ∈ triggeri .S 

27:                            ConnectPath(sj , current_table , branch[] ) 

28:      end if –after trigger 
29:  

30: case sj = loop 

31:   ∀qm ∈loop 

32:    ∀ rk ∈ qm.Access 
33:             if (rk .Trigger is not NULL) and  

34:                                      ( ∃  rk . triggeri.time = BEFORE) and 

35:                                      (rk . triggeri.event = qm.type ) 
36:              then 

37:                     ∀ sj ∈ triggeri .S 

38:                              ConnectPath(sj , current_table , branch[] ) 

39:               end if –before trigger 
40:      
41:       if (qm is first SQL statement) and (rk  is first table accessed by qm)  

                                                                       and branch[] ≠ nil then    

  (connect the last tables accessed by the previous branch statement to 

the first table of this SQL statement) 

 

42:               for branch[1] to | branch[]| do 

43:           P[ci, branch[], rk]  ← 1 

44:        end for 
45:       branch[] ← nil 

46:       current_table ← rk 

47:       else  

48:       P[ci, current_table, rk]
 
← 1  

49:        current_table ← rk 

50:       end if 
51:      

52:                if (rk .Trigger is not NULL) and  

53:                                        ( ∃  rk . triggeri.time = AFTER) and 

54:                                        (rk . triggeri.event = qm.type ) 
55:                then 

56:                      ∀ sj ∈ triggeri .S 

57:                                   ConnectPath(sj , current_table , branch[] ) 

58:                end if –after trigger 
59:  

                                                
1 P[ci, 0, rk] gives the entry server for ti. Unassigned values take the value zero. 
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60: case sj = branch 

61:  prev_branch[] ← branch[] 

62: for i in n do (total number of branches)   

63: bran_table ← current_table 

64: ∀qm ∈branchi  

65:  ∀ rk ∈ qm.Access 
66:                      if (rk .Trigger is not NULL) and  

67:                                         ( ∃  rk . triggeri.time = BEFORE) and 

68:                                         (rk . triggeri.event = qm.type ) 
69:                      then 

70:                             ∀ sj ∈ triggeri .S 

71:                                        ConnectPath(sj , bran_table , null ) 

72:                                 (branch[] is null due to the assumption that the first 

                                           table in branchi   does NOT have a BEFORE trigger)  

73:            end if –before trigger 
74:    
75:       if (qm is first SQL statement) and  

                                                  (rk  is first table accessed by qm)  then 

76:            Let pi be the probability of accessing branchi 

77:            if prev_branch[] ≠ nil then  

                       (connect the last tables accessed by the previous branch 

                    statement to the first table of this branch’s SQL statement) 

 

78:                      for prev_branch[1] to | prev_branch[]| do 

79:            P[ci, prev_branch[], rk]  ← pi 

80:                end for 

81:                bran_table ← rk 

82:          else  

83:              P[ci, bran_table, rk]  ← pi  

84:              bran_table ← rk 

85:         end if 

86:    else 

87:      P[ci, bran_table, rk]  ← 1  

88:       bran_table ← rk 

89: end if 
90:                    

91:                    if (rk .Trigger is not NULL) and  

92:                                          ( ∃  rk . triggeri.time = AFTER) and 

93:                                          (rk . triggeri.event = qm.type ) 
94:                   then 

95:                                 ∀ sj ∈ triggeri .S 

96:                                        ConnectPath(sj , bran_table , null ) 

97:                  end if –after trigger 

98:         branch[i] ← rk 

99: end for 
100:     prev_branch ← nil 

101:  end case 

102:  end function algorithm 
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5.4 TPCC-UVA Trigger Performance Modelling 

Due to the limitations of the experimental setup, we have seen that designs with triggers 

whose actions lead to the invocation of other triggers lead to rapid system saturation and 

stability is never achieved. This is demonstrated in Figure 5.3 in which an AFTER 

INSERT trigger on the HISTORY table invokes an AFTER UPDATE trigger on the 

ORDERCopy table (see below). Figure 5.3 shows the response time of the New-Order 

transaction for 100x1 clients. Therefore, the experiments were restricted to modelling 

simple trigger designs. 
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Figure 5.3 New-Order transaction mean response time per minute for a ramp-up period of 20 minutes 

and measurement interval of 480 minutes for 100x1 clients. 

For this experiment, we changed the design of the TPCC-UVA system by adding an 

AFTER INSERT trigger on the HISTORY table. This trigger can only be invoked by 

the Payment transaction, which is the only transaction that inserts rows into the 

HISTORY table.  
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In order not to affect the data in the other tables, a new table was created, ORDERCopy, 

which is an exact duplicate of the original ORDER table including index and keys. 

There are two scenarios for the design of the AFTER INSERT trigger on the HISTORY 

table, trigger1 and trigger2, respectively.  

Trigger1 updates the o_carrier_id field of the ORDERCopy table for 300 orders of 

the corresponding district of the triggering INSERT statement on HISTORY. Figure 5.4 

shows the details of trigger1, where new.h_w_id and new.h_d_id correspond to the 

values inserted into the HISTORY table by the Payment transaction.  

 

 

Figure 5.4 Details of trigger1: AFTER UPDATE  trigger on HISTORY. 

Trigger2 counts the number of orders of the corresponding district of the triggering 

INSERT statement on HISTORY using a SELECT statement. Figure 5.5 details 

trigger2.  In addition, new.h_w_id and new.h_d_id correspond to the values inserted 

into the HISTORY table by the Payment transaction. 

CREATE OR REPLACE FUNCTION update_ORDERCopy() RETURNS TRIGGER 

AS $trigger1$ 

 

BEGIN 

 

update ORDERCopy set o_carrier_id=1 where o_w_id = new.h_w_id 

and o_d_id = new.h_d_id and o_id between 1500 and 1800; 

 

RETURN new; 

 

END; 
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 Figure 5.5 Details of trigger2: AFTER INSERT trigger on HISTORY. 

Table 5.1 shows the number of DB pages for the queueing network model for the 

TPCC-UVA database design. The values in Table 5.1 are calculated in the same manner 

as those in Section 4.4.2, the difference is in the DB pages used by trigger1 and trigger2 

(shown as t1 and t2 in Table 5.1) on the ORDERCopy table. The calculation methods 

for the service demands for trigger1 and trigger2 are similar to those presented in 

Appendix C.  

Using the algorithm in the previous section, the corresponding queueing network model 

for the TPCC-UVA design with a trigger access to ORDERCopy table is in Figure 5.6. 

The queueing network model is identical for the TPCC-UVA design with trigger1 or 

trigger2. The difference between the designs is in the service demands on the 

ORDERCopy table; however, the traversal of the queueing network is similar for both 

designs. 

 

CREATE OR REPLACE FUNCTION select_from_ORDERCopy()RETURNS 

TRIGGER AS $trigger2$ 

 

DECLARE 

new_did int; 

 

BEGIN 

 

select count(*) into new_did from ORDERCopy where o_w_id = 

new.h_w_id and o_d_id = new.h_d_id; 

 

RETURN new; 

 
END; 
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Table 5.1 Number of I/O DB pages for the TPCC-UVA transactions. 

number of I/O DB pages 

X Transaction 
I II III IV V VI VII VIII IX 

t1 t2 

New-Order 0.75 3.04 2.33 - 4.34 3.98 47.6 44.7 17.1 - - 

Payment 2.75 3.04 152.93 2 - - - - - 4.34 10.34 

Order-Status - - 151.73 - 10.34 - 2.76 - - - - 

Delivery - - 43.3 - 43.4 39.8 47.6 - - - - 

Stock-Level - 1.04 - - - - 21.76 201.47 - - - 

I = WAREHOUSE, II= DISTRICT, III= CUSTOMER, IV= HISTORY, V= ORDER, VI= NEW-

ORDER, VII= ORDER-LINE, VIII= STOCK, IX= ITEM, X= ORDERCopy 

 

 

Figure 5.6 TPCC-UVA queueing network model with ORDERCopy table. 

5.4.1 Experimental Results 

The TPCC-UVA system was configured to run with 100 warehouses, each with 2 

districts, i.e. 100x2 clients for each design: trigger1 and trigger2. The measurement 

interval was 120 minutes, as specified by the TPC-C benchmark in which the system is 

in the steady state. To determine the steady state for the designs trigger1 and trigger2, 

the system was run with a ramp-up period of 20 minutes and a measurement interval of 

8 hours for the trigger1 design and a ramp-up period of 20 minutes, and a measurement 
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interval of 5 hours for the trigger2 design. The mean response time per minute was 

plotted for the New-Order transaction. Figures 5.7 and 5.8 show the resulting graphs.    

To reach the steady state for the designs trigger1 and trigger2 ramp-up periods of 160 

and 150 minutes, respectively, were used, as can be seen from Figures 5.7 and 5.8. The 

database was initialized with data for 100x10 clients, as stated in Section 4.4.2. To 

measure the mean DB page access time, the TPCC-UVA was run 3 different times for 

each design (using the strace utility). The mean DB page access time of all 3 runs was 

used to parameterize the queueing network model for each design. 

To measure the TPCC-UVA transaction performance metrics the system was run 

another 3 times, for each design, to collect response times for the transactions. The 

response times were averaged and compared to the simulation results. The 95% 

confidence intervals were obtained for the system and simulation results, but these were 

too tight to show on the graphs.  
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Figure 5.7 New-Order transaction mean response time per minute for a ramp-up period of 20 minutes 

and measurement interval of 480 minutes for 100x2 clients. The TPCC-UVA system with trigger1 

starts to stabilize 140 minutes into the measurement interval, i.e. 160 minutes from the beginning of 

the system run. 
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Figure 5.8 New-Order transaction mean response time per minute for a ramp-up period of 20 minutes 

and measurement interval of 300 minutes for 100x2 clients. The TPCC-UVA system with trigger2 

starts to stabilize 130 minutes into the measurement interval, i.e. 150 minutes from the beginning of 

the system run. 
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Figures 5.9 – 5.13 detail the measured and modelled mean response times per minute 

during the measurement interval for the five transactions for the TPCC-UVA trigger1 

and trigger2 designs. Table 5.2 shows the measured and modelled mean response time 

per transaction for the two designs calculated during the measurement interval. We 

would expect trigger1 to have better performance than trigger2, given that the design 

for trigger2 accesses more DB pages than trigger1 on the ORDERCopy table (see Table 

5.1). However, the performance of trigger2  was  20% better than that of trigger1. This 

is due to the fact that processing time increases for the trigger response time when 

executing an UPDATE statement in relation to when executing a SELECT statement.  

It can be seen from Figures 5.9 – 5.13 and Table 5.2 that the performance model gives 

an excellent approximation of the mean response time per minute for the transactions 

for trigger2 (approximately 18% prediction error), but fails to achieve the same 

accuracy for trigger1 (approximately 39% prediction error). The improved prediction 

for trigger2 is related to the predominance of DB I/O time in the overall trigger 

response time. However, for trigger1, where processing time is predominant in the 

overall trigger response time, the performance model deviated from giving an accurate 

estimation. Given that the performance model does not take processing demands into 

consideration this result was to be expected. 
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(a) (b) 

Figure 5.9 Comparison of the New-Order transaction mean response time per minute for the  TPCC-

UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of 120 

minutes. 
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(a) (b) 

Figure 5.10 Comparison of the Payment transaction mean response time per minute for the  TPCC-

UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of 120 

minutes. 

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o

n
se

 T
im

e
 (

se
c)

Measurement Model

 

0

10

20

30

40

50

60

0 20 40 60 80 100 120

Measurement Interval (min)

M
e
an

 R
es

p
o

n
se

 T
im

e
 (

se
c)

Measurement Model

 
(a) (b) 

Figure 5.11 Comparison of the Order-Status transaction mean response time per minute for the  

TPCC-UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of 

120 minutes. 
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(a) (b) 

Figure 5.12 Comparison of the Delivery transaction mean response time per minute for the  TPCC-

UVA with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of 120 

minutes. 
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(a) (b) 

Figure 5.13 Comparison of the Stock transaction mean response time per minute for the  TPCC-UVA 

with (a) trigger1 and (b) trigger2 designs for 100x2 clients and measurement interval of 120 minutes. 

Table 5.2 Comparison of transaction mean response times for TPCC-UVA with  trigger1 and trigger2 

designs. 

Response Time 

(sec) 

Response Time 

(sec) Design Transaction 

Measured Modelled 

% Error 

per trans 

% Overall 

Error 

New-Order 33.32 20.52 38.41 

Payment 33.19 20.55 38.08 

Order-Status 33.28 20.65 37.96 

Delivery 33.36 20.5 38.55 

trigger1 

Stock-Level 33.96 20.61 39.3 

38.46 

 

 

New-Order 26.85 22.14 17.56 

Payment 26.71 22.17 16.99 

Order-Status 26.88 22.21 17.36 

Delivery 26.93 22.14 17.8 

trigger2 

Stock-Level 27.42 22.21 19.02 

17.75 
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5.5 Summary 

In this Chapter, an extension of the database design queueing network performance 

evaluation model for active database rules was presented. The formal specification for 

database triggers was given. In addition, a calculation of the service demands for 

triggers and transactions that activate triggers was also presented. A modified algorithm 

to calculate the path of a transaction that invokes a trigger through the queueing network 

was given.  

The experimental results have shown that the performance model can give an accurate 

estimation of the mean response time for database designs in which triggers have 

predominant I/O processing. This is in agreement with the results previously discussed 

in Chapter 4, where it was shown that the performance model is applicable to designs of 

large databases where random disk I/O is the dominant cost factor and in which 

processing is negligible. 

In the next Chapter, the database design queueing network model is extended to 

incorporate referential integrity checking. 
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Chapter 6  

Modelling Referential Integrity 

6.1 Introduction 

In this Chapter, we model referential integrity or foreign key checking in database 

systems. Foreign keys are used to maintain a parent/child relationship between tables. 

Referential integrity checking is implemented in a way very similar to triggers in 

DBMS except that referential integrity checks are system invoked. The importance of 

modelling referential integrity checks in a database performance model is due to the fact 

that such checks incur performance costs on the database [10, 72]. 

In the following sections, we extend the database design performance evaluation model 

to incorporate referential integrity checking. We show the calculation of service 

demands for transactions that invoke foreign key checks and illustrate the extended 

algorithm for calculating the transaction path through the queueing network. To validate 

our performance evaluation model we modify the TPCC-UVA database design by 

including a parent/child relationship and compare the system performance to our model 

results. 
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6.2 Modelling Referential Integrity Checking 

Referential integrity checks are implemented in DBMS as system invoked procedures. 

A referential integrity check means that another table or tables are read by the DBMS to 

check the existence of the value of the referenced field. Due to the similarity in 

execution between triggers and referential integrity checks, we model referential 

integrity checks similarly to modelling AFTER triggers. The main difference is that in 

the majority of DBMS a referential integrity check from the child table to the parent 

table is an index scan on the primary key index of the parent table [10, 44, 72], as the 

foreign key must match a value of the primary key. Hence, referential integrity checks 

incur no table access. However, in PostgreSQL, we have noticed when looking at the 

TPCC-UVA system statistics with foreign key references, that the actual DB page was 

read when PostgreSQL performed a referential integrity check. 

Referential integrity maintains a parent/child relationship between the referenced table 

and the referencing table. A DBMS handles referential integrity enforcement depending 

on the operations that cause the foreign key checks. These are [84]:  

(a) operations on the parent table: which would be a DELETE/UPDATE of the 

referenced field. The options provided by the DBMS are: 

� CASCADE: DELETE/UPDATE all child references, 

� DISALLOW: prevent the operation as long as a child row exists, 

and 
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� DEFAULT VALUE: update the foreign key of the child rows 

with a default value, including NULL. 

For the CASCADE and DEFAULT VALUE cases, a table access will happen in order 

to execute the operation on the child rows. However, for the DISALLOW operation a 

table access will be needed only if the foreign key column is not indexed. 

(b) operations on the child table: an INSERT/UPDATE of a foreign key field. The 

inserted/updated foreign key value is checked against the referenced field in the parent 

table. The operation is rejected if the inserted/updated field value does not exist in the 

parent table. 

The time when the DBMS checks the referential integrity constraints can be specified 

when defining a foreign key on a table. The options are: 

• IMMEDIATE: check immediately after SQL statement execution, or 

• DEFERRED: defer checking until transaction commit time. 

To model foreign key referencing, we model them as we have modelled triggers, i.e. as 

sub-transactions that are part of the invoking transaction. For simplicity, we assume the 

mode on the parent is to DISALLOW an operation violating referential integrity, if a 

child row exists. Therefore, we do not consider the effect of this in our model. However, 

the model can be easily extended to allow for such conditions. 

To model a foreign key check in the IMMEDIATE execution mode, we model the 

referential integrity check on the parent table as another table access after leaving the 
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invoking child server. For example, if a transaction accesses three tables, A, B and C 

and the statements that access tables A and B both cause a referential integrity check to 

parent tables A′ and B′. Then the queueing network model for this transaction will be 

altered to represent the referential integrity check, i.e. the access of the parent tables A′ 

and B′, as detailed in Figure 6.1. 

 

Figure 6.1 A queueing network model with IMMEDIATE referiential integrity checking. 

For referential integrity checking in the DEFERRED mode, the referential integrity 

check for all parent tables will be in sequence after the last table accessed in the 

transaction. Using the previous example, the referential integrity check to the parent 

tables A′ and B′ will happen before transaction commit, i.e. before the transaction leaves 

the queueing network. Thus the queueing network model for the transaction will be 

altered to represent the referential integrity check, i.e. access of the parent tables A′ and 

B′, as detailed in Figure 6.2. 

In the following section, the formal specification of the queueing network model of 

Section 3.3 is modified to reflect the addition of foreign keys to the database design. 

server A 

 

server B 

 

server C 

 

referential integrity server B′ referential integrity server A′ 
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Figure 6.2 A queueing network model with DEFERRED referiential integrity checking. 

6.3 Extension of the Formal Specification for Foreign Keys 

The modifications to the formal definition presented in Section 3.3 are as follows: 

• The definition of a table is modified by adding a FK (foreign key) attribute, 

which is defined in the next Section. 

• The algorithm to calculate the customer queueing network traversal path is 

modified to incorporate the invocation of referential integrity checks in the path. 

The algorithm was redesigned from that of Section 3.3 into a main algorithm 

that invokes a second recursive algorithm. All variables are global and 

parameters are assumed to be passed by reference. 

6.3.1 Referential Integrity Formal Specification 

As stated in Section 3.3, a database design can be formally described as DBDesign = 

(R, T), where R is the set of relations or tables and T is the set of transactions that 

access these tables. Define each table ri in R as: 

server A 

 

server B 

 

server C 

 

referential integrity server A′ referential integrity server B′ 
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ri = (<ordered set of> A, I , [uniqueness constraint]
*
, expected number of rows, 

average row length, FK*
) 

where:  

• FK is the set of referential integrity constraints associated with the table.  

 Define each fkk in FK as: 

fkk = (rk , ref_attribute, mode, <ordered set of> S 
, FKDBpages[rk] ) 

where:  

• rk ∈ R is the parent table. 

• ref_attribute is the uniqueness constraint of rk , i.e. the referenced column or 

attribute. 

• mode is the time the referential integrity check is made: [IMMEDIATE | 

DEFERRED].  

• S is the ordered set of statements that will be executed on the parent table, in this 

case  S = s1 = q , such that: 

o q is a SQL statement and can be described as:  

q = (type, <ordered set of> Access, DBpages[rk] ), 
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and given that a referential integrity check is an implicit SELECT: 

� type is a SELECT statement where the condition clause and the 

retained attribute refer to the referenced column; 

� Access is the parent table rk ∈ R ; 

� DBpages[rk] is calculated as previously stated in reference to the 

parent table rk it accesses; which will be a primary index scan for 

the foreign key. 

Even though a reference check is not an actual query, we use this notation in order to be 

compatible with the routing algorithm and for calculation purposes (implicit SELECT 

resolved by index scan). 

For the special case of referential integrity: 

FKDBpages[rk]  =  s1.statDBpages[rk] =  q.DBpages[rk] 

This formula calculates the expected number of DBpages that a referential integrity 

check will use, in isolation. The final number depends on the invoking transaction and 

the number of checks needed. 
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6.3.2 Calculating Service Demands for Transactions that Invoke 

Referential Integrity Checks 

If a transaction tj has a foreign key fki on a parent table ri, then the service demands for 

the referential check of fki on table ri depend on the number of rows of the query q that 

invoke the check, as well as the statement sk that q resides in. In addition, the 

calculation of referential integrity service demands is based on the assumption that if a 

transaction accesses a table in multiple SQL statements, these statements are in 

sequence (see Section 3.3.1) and that buffering is on a transaction-by-transaction basis.  

Consider that we have two tables: A the parent table and B the child table which 

references A. Based on the previous assumptions, if a transaction accesses table A and 

B, then a referential check is allowed only in the following scenarios: 

• A primary index access to A, then an UPDATE/INSERT to B causing a 

reference check to rows in A.  Given that the referential integrity check will 

need an index scan only and since the index of A will already be in the buffer, 

this scenario will not add any extra service demands for the transaction, i.e. extra 

service demands on A due to the reference check is nil. Hence, the queueing 

network model will not change due to the addition of a referential integrity 

check, nor will the service demands of the transaction. In consequence, the SQL 

statements that access B do not have to strictly be in sequence to SQL statements 

that access A. 
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• An access to B that causes a reference check on A, that is followed by a 

primary index access to A. This will only incur the cost of allocating the rows 

of A since the index will already be in the buffer. Therefore, the total service 

demand on A will be the index access service demand plus the row access 

service demand. In this scenario, the SQL statements that access A must strictly 

be in sequence to the SQL statements that access B. 

• Access to B which invokes a referential integrity check to a table A and A is 

never directly accessed by the transaction. In this case, the referential check 

will add a new server to the queueing network with new service demands to the 

transaction. In this case the referential integrity check on A will automatically 

follow the access to B. 

• Access to B where the foreign key reference is recursive, i.e. B references 

columns in the same table B. In this case the index is already in the buffer, the 

reference check will not add an additional service demand to table B, and there 

will be no changes to the queueing network. 

The implication of the above scenarios is that if a transaction tj accesses a set of tables, 

and ∃ rk  ∈R  which references a parent table ri , then one of the following must hold: 

rk = ri-1  or  rk = ri or  rk ≥ ri+1  or  ri = rn where rn ∈R is not accessed by tj. 

In addition, if the referential integrity is in DEFERRED mode then only the following 

holds: 
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ri = rn where rn ∈R is not accessed by tj 

Building on the previous scenarios, for each transaction tj that accesses a set of tables 

Rt, the reference check service demand does not differ depending on the type of sk in S 

that make up tj when ri ∈Rt. The algorithm for calculating the service demand when sk 

= q is:  

if  sk = q, then  
            ∀  rk ∈q.Access 
                ∀  fki ∈ rk 

                   if (q.type in (INSERT| UPDATE )) and  

  ( ∃ q.aj  =  fki.ref_attribute) then 

                            if (ri ∉Rt)  then   

                                         tj.tranDBpages[ri ∈R]=
 
 fki.FKDBpages[ri ∈R] 

 --where q.aj  is the retained attributes of q and ri is the parent table   

                

                           else    

                               -- when ri ∈Rt   

  use the original calculation for ri  as the reference check does not  

  change the service demand     

                            end if 

                   end if 

        end if 
 

For the loop structure, since access is to the index, which will be in the buffer for each 

iteration of the loop, the service demand does not depend on the number of loop 

iterations.  

if  sk = loop, and n is the number of loop iterations, then  
     ∀ qm ∈loop 

        ∀  rk ∈ qm.Access 
           ∀  fki ∈ rk 

                   if (qm.type in (INSERT| UPDATE )) and  

  ( ∃ qm.aj  =  fki.ref_attribute) then 
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                            if (ri ∉Rt)  then   

                                         tj.tranDBpages[ri ∈R]=
 
 fki.FKDBpages[ri ∈R] 

 --where qm.aj  is the retained attributes of qm and ri is the parent table   

                

                           else    

                               -- when ri  ∈Rt   

  use the original calculation for ri   as the reference check does not  

  change the service demand     

                            end if 

                   end if 

end if 

 
The same applies for the branch structure: 

if sk = branch, then 

∀ branchi  

     ∀ qm ∈ branchi 

        ∀  rk ∈ qm.Access 
            ∀  fki ∈ rk 

                   if (qm.type in (INSERT| UPDATE )) and  

  ( ∃ qm.aj  =  fki.ref_attribute) then 

                            if (ri ∉Rt)  then   

                                         tj.tranDBpages[ri ∈R] =
 
 fki.FKDBpages[ri ∈R] 

 --where qm.aj  is the retained attributes of qm and ri is the parent table   

                

                           else    

                               -- when ri  ∈Rt   

  use the original calculation for ri   as the reference check does not  

  change the service demand     

                            end if 

                   end if 

  end if   

6.3.3 Calculating the Routing Path 

In order to simplify the routing path algorithm, it is assumed when sk = branch, i.e. a 

branch statement, ∀  branchi ∈branch that: 

• the last table accessed in branchi cannot invoke a foreign key reference check.  



 139 

Consequently, if branchi accesses only one table, then that table cannot invoke any 

reference checks.  

The algorithm can be easily extended to include these cases. Algorithm 6.1 and 6.2 

detail the calculation of the queueing network traversal path for a database design with 

foreign key constraints. The additions to the original algorithm in Section 3.3 are 

highlighted. 

Algorithm 6.1: Calculating Customer Class Path 

 

1: Let current_table be the current table in the path of ti  

2: current_table ← 0 

3: Let branch[n] be a vector of rk ∈R , that holds the last table accessed by a 

branch[i] of a branch statement, where n is the number of branches 

4: branch[] ← nil (element by element assignment) 

5: Let bran_table be the current table of a branch statement  

6: bran_table ← 0 

7: Let prev_branch[] be a vector that holds the initial value of branch[] 

8: prev_branch ← nil 

9: Let D be the set of deferred referential integrity checks 

10: ∀  ti ∈T  

11:    ∀ sj ∈ ti.S 

12:             ConnectPath(sj , current_table , branch[] ) 

13:        if sj  is the last statement in ti  then 

14:                   if  D is empty then 

                                           -- no DEFERRED FK 

15:                          if branch[] ≠ nil then 

16:                              for branch[1] to | branch[]| do 

17:                P[ci, branch[], 0]  ← 1 

18:                               end for 

19:                          else 

20:                              P[ci, current_table, 0]  ← 1 

21:                          end if       

22:                    else       

23:                        ∀ rk.fki  ∈D 

24:                                 ConnectPath( fki.s1 , current_table , branch[] ) 

25:                  P[ci, current_table, 0]  ← 1 

26:                    end if -- DEFERRED 

27:        end if  
28: (the transaction leaves the network after leaving the last 

29:  table accessed by the last SQL statement of the final statement) 

30: end algorithm 
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Algorithm 6.2 : Function ConnectPath 

 

Function ConnectPath(sj , current_table , branch[]  ) 
1: case sj = q   

2: ∀  rk ∈q.Access 
3:          
4:      if (rk  is first table accessed by q)  and branch[] ≠ nil then    

  (connect the last tables accessed by the previous branch statement to 

the first table of this SQL statement) 

 

5:         for branch[1] to | branch[]| do 

6:                 P[ci, branch[], rk]  ← 1 

7:         end for 
8:         branch[] ← nil 

9:        current_table ← rk 

10:       else  

11:        P[ci, current_table, rk]
 1  ← 1  

12:         current_table ← rk 

13:       end if 
14:  

15:       if (q.type in (INSERT| UPDATE )) and  

                                                                    (rk.FK  is not NULL )                            

16:       then 

17:               ∀ fki ∈ rk.FK  where  

                                                          ( ∃q.aj  =  rk.fki.ref_attribute) 

18:                         if  fki.mode = IMMEDIATE then  

19:                                              ConnectPath(fki.s1 , current_table , branch[] ) 

20:                         else –DEFERRED 

21:                                     Add rk.fki   to D 

22:                         end if     

23:         end if –FK reference 
24:  

25: case sj = loop 

26:    ∀ qm ∈loop 

27:         ∀ rk ∈ qm.Access 
28:           
29:              if (qm is first SQL statement) and (rk  is first table accessed by qm)   
                                 and branch[] ≠ nil then    

  (connect the last tables accessed by the previous branch statement to 

the first table of this SQL statement) 

 

30:               for branch[1] to | branch[]| do 

31:                              P[ci, branch[], rk]  ← 1 

32:                       end for 
33:                     branch[] ← nil 

34:                     current_table ← rk 

35:              else  

36:                    P[ci, current_table, rk]
 
← 1  

37:                     current_table ← rk 

38:              end if 

                                                
1 P[ci, 0, rk] gives the entry server for ti. Unassigned values take the value zero. 
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39:      

40:              if (qm.type in (INSERT| UPDATE )) and  

                                                                      (rk.FK  is not NULL )                              

41:              then 

42:                          ∀ fki ∈ rk.FK  where  

                                                                       ( ∃qm.aj  =  rk.fki.ref_attribute) 

43:                                     if  fki.mode = IMMEDIATE then  

44:                                                ConnectPath(fki.s1 , current_table , branch[]) 

45:                                     else –DEFERRED 

46:                                                Add rk.fki   to D 

47:                                     end if     

48:               end if –FK reference 
49:   

50: case sj = branch 

51:    prev_branch[] ← branch[] 

52:    for i in n do (total number of branches)   

53:          bran_table ← current_table 

54:         ∀qm ∈branchi  

55:                ∀ rk ∈ qm.Access 
56:                         
57:                      if (qm is first SQL statement) and  
                                                             (rk  is first table accessed by qm)  then 

58:                                Let pi be the probability of accessing branchi 

59:                                if prev_branch[] ≠ nil then  

(connect the last tables accessed by the previous branch statement to 

the first table of this branch’s SQL statement) 

 

60:                        for prev_branch[1] to | prev_branch[]| do 

61:                                    P[ci, prev_branch[], rk]  ← pi 

62:                 end for 

63:                 bran_table ← rk 

64:             else  

65:                 P[ci, bran_table, rk]  ← pi  

66:                 bran_table ← rk 

67:             end if 

68:   else 

69:        P[ci, bran_table, rk]  ← 1  

70:          bran_table ← rk 

71:  end if 
72:                    

73:                    if (qm.type in (INSERT| UPDATE )) and  

                                                                              (rk.FK  is not NULL )                              

74:                    then 

75:                             ∀ fki ∈ rk.FK  where  

                                                                            ( ∃qm.aj  =  rk.fki.ref_attribute) 

76:                                         if  fki.mode = IMMEDIATE then  

77:                                                ConnectPath(fki.s1 , current_table , branch[] ) 

78:                                         else –DEFERRED 

79:                                                 Add rk.fki   to D 

80:                                         end if     

81:                     end if –FK reference 

82:        branch[i] ← rk 

83:   end for 
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84:   prev_branch ← nil 

85: end case 

86: end function algorithm 

 

6.4 TPCC-UVA Foreign Key Performance Modelling 

Due to the constraints of the experimental setup, in this Section, we model a simple 

referential integrity check. In order not to affect the data in the other tables, we modified 

the design of the TPCC-UVA system by adding a new table, ITEMCopy, which is an 

exact copy of the original ITEM table including index and keys. We defined a foreign 

key constraint on the ORDER_LINE table that references the primary key on the 

ITEMCopy table. The referential integrity check is DEFERRABLE, as that is the least 

process intensive in PostgreSQL [102]. 

Figure 6.3 shows the details of the foreign key constraint definition. The resulting 

referential integrity checks will affect the New-Order transaction only: it is the only 

transaction that INSERTs items into the ORDER_LINE table. The other transactions 

SELECT from the ORDER_LINE table (Order-Status and Stock) or DELETE from it 

(Delivery).  

 

Figure 6.3 Details of the foreign key constraint on the ORDER-LINE table. 

Table 6.1 shows the number of DB pages for the queueing network model for the 

TPCC-UVA database design. The values in Table 6.1 are calculated in the same manner 

alter table ORDER-LINE add CONSTRAINT fk1 FOREIGN KEY 

(ol_i_id) REFERENCES ITEMCopy (i_id) DEFERRABLE; 
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as those in Section 4.4.2, the difference is in the DB pages used for the foreign key 

referential check on the ITEMCopy table. The calculation methods for the service 

demands are similar to those presented in Appendix C. It would be expected that the 

referential integrity check would only read the index to check the inserted field; 

however, we have noticed from the collected statistics that PostgreSQL does a complete 

row fetch for each referential integrity check. Therefore, the number of pages needed 

for the referential integrity check is calculated in the same way as that of a SELECT 

statement. 

Using the algorithm in the previous section, the corresponding queueing network model 

for the TPCC-UVA design with a referential integrity check to the ITEMCopy table is 

in Figure 6.4. Given that the referential integrity check is DEFERRED, the ITEMCopy 

table will be the last table accessed by the New-Order transaction. 

Table 6.1 Number of I/O DB pages for the TPCC-UVA transactions. 

number of I/O DB pages 

Transaction 
I II III IV V VI VII VIII IX X 

New-Order 0.75 3.04 2.33 - 4.34 3.98 47.6 44.7 17.1 17.1 

Payment 2.75 3.04 152.93 2 - - - - - - 

Order-Status - - 151.73 - 10.34 - 2.76 - - - 

Delivery - - 43.3 - 43.4 39.8 47.6 - - - 

Stock-Level - 1.04 - - - - 21.76 201.47 - - 

I = WAREHOUSE, II= DISTRICT, III= CUSTOMER, IV= HISTORY, V= ORDER, VI= NEW-

ORDER, VII= ORDER-LINE, VIII= STOCK, IX= ITEM, X= ITEMCopy 

 



 144 

 

Figure 6.4 TPCC-UVA queueing network model with ITEMCopy table. 

6.4.1 Experimental Results 

The TPCC-UVA system was configured to run with 100 warehouses, each with 2 

districts, i.e. 100x2 clients with the addition of the foreign key references mentioned 

previously. The measurement interval was 120 minutes, as specified by the TPC-C 

benchmark in which the system is in the steady state. The steady state for the TPCC-

UVA design was determined by running the system with a ramp-up period of 20 

minutes and a measurement interval of 8 hours. The mean response time per minute was 

plotted for the New-Order transaction, as detailed in Figure 6.5.  
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Figure 6.5 New-Order transaction mean response time per minute for a ramp-up period of 20 minutes 

and measurement interval of 480 minutes for 100x2 clients. The TPCC-UVA system starts to stabilize 

120 minutes into the measurement interval, i.e. 140 minutes from the beginning of the system run. 

To reach the steady state for the TPCC-UVA design, a ramp-up period of 140 minutes 

was used. The database was initialized with data for 100x10 clients, as stated in Section 

4.4.2. To measure the mean DB page access time, the TPCC-UVA was run 3 different 

times (using the strace utility). The mean DB page access time of all 3 runs was used to 

parameterize the queueing network model for the design. 

To measure the TPCC-UVA transaction performance metrics the system was run 

another 3 times, to collect response times for the transactions. The response times were 

averaged and compared to the simulation results. The 95% confidence intervals were 

obtained for the system and simulation results, but these were too tight to show on the 

graphs.  
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Figures 6.6(a) to 6.6(e) detail the measured and modelled mean response times per 

minute during the measurement interval for the five transactions for the TPCC-UVA 

design. Table 6.2 shows the measured and modelled mean response time per transaction 

calculated during the measurement interval. We would expect the model to give an 

accurate prediction of the mean response time per minute for the design. However, as 

can be seen from Figures 6.6(a) to 6.6(e) and Table 6.2 the model has an approximately 

36% prediction error. 

To investigate the reason for this, we modified our original TPCC-UVA design by 

adding a foreign key reference on the ORDER-LINE table to the ITEM table. In this 

design, referential integrity checking for the New-Order transaction would not incur an 

I/O disk access; since the referenced rows of the ITEM table would already be in the 

DB buffer due to the execution of a SELECT statement prior to the INSERT statement 

in the New-Order transaction (see Appendix C). To measure the transaction response 

times the system was run 3 times, and the transaction response times were averaged.  

As can be seen from Table 6.3 the measured mean transaction response times for the 

design referencing the ITEM table are similar to the mean transaction response times for 

the design referencing the ITEMCopy table. In addition, in Table 6.3, the transaction 

mean response times for the original TPCC-UVA design without referential integrity 

(from Table 4.7) are shown. The new design differs from the original TPCC-UVA 

design in the addition of the referential integrity check on the ITEM table. Therefore, 

the increased transaction response time for the new design is due to the processing of 

the referential integrity checks. Given that the model does not consider processing time, 

the error rate is justified. 
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 (e)  

Figure 6.6 Comparison of the (a) New-Order (b) Payement (c) Order-Status (d) Delivery (e) Stock-

Level transactions mean response time per minute for a measurement interval of 120 minutes for 

100x2 clients. 
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This processing overhead is due to the effect of referential integrity checks on INSERT 

statements which cause processing similar to a JOIN on the foreign key [95]. In 

addition, it has been reported that PostgreSQL has known performance problems when 

issuing INSERTs to tables with foreign key references [99]. 

Table 6.2 Comparison of transaction mean response times for the TPCC-UVA design with foreign key 

referencing. 

Response Time 

(sec) 

Response Time 

(sec) Transaction 

Measured Modelled 

% Error 

per trans 

% Overall 

Error 

New-Order 25.47 16.35 35.8 

Payment 25.31 16.37 35.34 

Order-Status 25.47 16.43 35.48 

Delivery 25.47 16.35 35.81 

Stock-Level 26 16.44 36.77 

35.84 

 

 

Table 6.3 Transaction mean response times for the TPCC-UVA design with foreign key referencing 

the ITEM table and TPCC-UVA original design. 

TPCC-UVA design with 

referential integrity 

Original TPCC-UVA 

design Transaction 
Measured Response Time 

(sec) 

Measured Response Time 

(sec) 

New-Order 24.3 19.10 

Payment 24.17 19.00 

Order-Status 24.38 19.11 

Delivery 24.59 19.15 

Stock-Level 25.2 19.71 

 

6.5 Summary 

In this Chapter, an extension of the database design queueing network performance 

evaluation model for referential integrity was presented. The formal specification for 

database foreign keys was given. In addition, a calculation of the service demands for 

transactions that invoke foreign key reference checks was also presented. A modified 
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algorithm to calculate a transaction’s path through the queueing network with referential 

integrity checking was given.  

The experimental results have shown that the performance model is able to give an 

accurate estimation of the mean response time for database designs with referential 

integrity checks only if the DBMS is efficient in handling foreign key referential 

integrity processing. 
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Chapter 7 Conclusions and Future 

Work 

The main contribution of this thesis is the development of a novel performance 

evaluation method for database designs based on queueing networks. We have provided 

a formalism that captures the essential database design features while keeping the 

performance model sufficiently simple to be accessible to database designers who are 

unlikely to be specialists in queueing theory. This contribution is significant in that the 

majority of performance evaluation models for database systems target capacity 

planning or overall system properties, with limited work in detailed database transaction 

processing and behaviour. 

In this Chapter, a summary of the main contributions of the thesis is provided along 

with directions for future work. 

7.1 Main Contributions 

This thesis contributes a novel performance evaluation method using queueing networks 

for database design performance evaluation. This work is considered to be an 

improvement over previous methodologies in that the transaction is modelled at a finer 

granularity, thus providing for feedback at an early stage in the design process that is 

more relevant and useful to the database designer. Moreover, detailed knowledge and 

modelling of the hardware architecture is not required. In addition, the method provides 
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for the explicit representation of active database rules and referential integrity in the 

queueing network models. 

We have introduced the database design queueing network performance evaluation 

model with a formal specification describing the transformation between database 

designs and queueing network models. The accuracy of this model has been validated 

by modelling the TPCC-UVA open source implementation of the TPC-C benchmark. 

Through experimentation with different database designs, results have shown that the 

database design queueing network model is applicable to designs of large databases 

where random disk I/O is the dominant cost factor and in which processing costs are 

negligible.  

The simplicity of the modelling algorithms permits the direct mapping between 

database design entities and queueing networks. Thus, its application is straightforward 

for database designers. This allows for easy integration of our modelling technique into 

early database system development phases. The model is useful in providing what if 

comparisons of database designs before database system implementation. Furthermore, 

the method is suitable for post-deployment database system performance tuning, and in 

such a case, the parameterization of the queueing model can be extracted from traces of 

the database system or from DBMS statistics. 

The queueing network models presented in this thesis were for centralized databases. 

The modelling technique can be applied to distributed databases, in which each 

distributed node can be modelled as a database design queueing model. For multi-tier 

applications, the database tier can be represented as a database design queueing model. 
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Another contribution of the thesis is a classification of the modelling of transactions in 

database and DBMS queueing network models. This classification is based on the level 

of detail of the representation of the database transaction’s internal design in the 

queueing network models. We have identified four main categories: the black box, the 

transaction processing, the transaction size and the transaction phase models. We have 

shown that the majority of queueung network models for databases and DBMS 

components fall into the transaction processing category. While the transaction size and 

phase category is predominated by studies of DBMS concurrency control mechanisms.   

From this categorization, we have identified that the main assumption for transaction 

service demand is that of exponentially distributed service times. However, justification 

for this assumption in the context of database systems and transactions was only 

provided for models that fall into the black box category. In this thesis, we have 

contributed a justification for the exponential service time assumption for transactions 

in queueing network models for the other categories, i.e. when transaction details are 

modelled. 

7.2 Future Work 

For future work, the formal specification and its related algorithms can form the basis 

on which to develop a database design analysis tool for implementing this performance 

evaluation technique. The algorithms for calculating the service demands and routing 

paths for transactions would need to be extended to include the cases that were excluded 

in the thesis. This would lead into an investigation of database designs for distributed, 
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replicated and multi-tier database applications to research their detailed performance 

behaviour. 

The effect of processing in referential integrity checks and active database rules needs 

to be addressed by extending the cost model to incorporate processing costs. In addition, 

the costing method can be extended with commercial DBMS specific constraints, e.g. 

page and row header sizes, which will allow for more accurate estimations. To provide 

for more realistic database designs and workloads, locking contention will need to be 

incorporated in the queueing network model. Moreover, more complex access methods 

can be integrated into the cost model, e.g. bitmap and R-tree indexes. 

Another direction would be investigating the extension of the database design queueing 

network model beyond relational databases, e.g. document-oriented, object-oriented or 

XML databases. 

Finally, an interesting direction would involve investigating the integration of the 

database design queueing network model with currently available queueing network 

models for different hardware architectures.  
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Appendix A: The TPC-C Transaction 

Specification 

This Appendix is summarized from [113]. 

A.1 The New-Order Transaction 

New Order 

Transaction 

The New-Order business transaction consists of entering a complete order through a 

single database transaction. It represents a mid-weight, read-write transaction with a 

high frequency of execution and stringent response time requirements to satisfy on-line 

users. This transaction is the backbone of the workload. It is designed to place a 

variable load on the system to reflect on-line database activity as typically found in 

production environments.  

 Body Constraints 

For a given warehouse number (W_ID), For any given terminal, the home 

warehouse number (W_ID) is constant  

district number (D_W_ID , D_ID),  randomly selected within [1 .. 10] from 

the home warehouse (D_W_ID = 

W_ID)  

customer number (C_W_ID , C_D_ID , C_ 

ID),  

non-uniform random customer number 

(C_ID) is selected using the 

NURand(1023,1,3000) function from 

the selected district number (C_D_ID = 

D_ID) and the home warehouse 

number (C_W_ID = W_ID). 

count of items (ol_cnt, not communicated to 

the SUT),  

randomly selected within [5 .. 15] (an 

average of 10).  

Input 

and for a 

given set of 

items 

 (OL_I_ID),  A fixed 1% of the New-Order 

transactions are chosen at random to 

simulate user data entry errors and 

exercise the performance of rolling 

back update transactions. This must be 

implemented by generating a random 

number rbk within [1 .. 100].  

 

A non-uniform random item number 

(OL_I_ID) is selected using the 

NURand(8191,1,100000) function. If 

this is the last item on the order and rbk 

= 1 (see Clause 2.4.1.4), then the item 

number is set to an unused value 

causing rollback.  
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supplying warehouses 

(OL_SUPPLY_W_ID), 

A supplying warehouse number 

(OL_SUPPLY_W_ID) is selected as 

the home warehouse 99% of the time 

and as a remote warehouse 1% of the 

time.  

This can be implemented by generating 

a random number x within [1 .. 100];  

- If x > 1, the item is supplied from the 

home warehouse (OL_SUPPLY_W_ID 

= W_ID).  

- If x = 1, the item is supplied from a 

remote warehouse 

(OL_SUPPLY_W_ID is randomly 

selected within the range of active 

warehouses other than W_ID).  

Comment 1: With an average of 10 

items per order, approximately 90% of 

all orders can be supplied in full by 

stocks from the home warehouse.  

Comment 2: If the system is 

configured for a single warehouse, then 

all items are supplied from that single 

home warehouse.  

quantities 

(OL_QUANTITY): 

is randomly selected within [1 .. 10].  

S_remote Set to 1 if remote order-line 

o_all_local If the order includes only home order-

lines, then O_ALL_LOCAL is set to 1, 

otherwise O_ALL_LOCAL is set to 0.  

 

A.2 The Payment Transaction 

Payment 

Transaction 

The Payment business transaction updates the customer's balance and reflects the payment 

on the district and warehouse sales statistics. It represents a light-weight, read-write 

transaction with a high frequency of execution and stringent response time requirements 

to satisfy on-line users. In addition, this transaction includes non-primary key access to 

the CUSTOMER table.  

 Body Constraints 

the home warehouse number (W_ID) For any given terminal, is constant over 

the whole measurement  

The district number (D_W_ID,D_ID)  is randomly selected within [1 ..10] 

from the home warehouse (D_W_ID) = 

W_ID). 

(C_W_ID , C_D_ID, 

C_LAST)  

The 

customer is 

randomly 

selected 60% 

of the time 

by last name  

Input 

The customer id 

(C_W_ID , C_D_ID , 

C_ID). 

40% of the 

time by 

This can be 

implemented by 

generating a random 

numbers y within [1 .. 

100]; 

• If y <= 60 a customer 

last name (C_LAST) is 
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number  generated according to 

Clause 4.3.2.3 from a 

non-uniform random 

value using the 

NURand(255,0,999) 

function. The customer 

is using his/her last 

name and is one of the 

possibly several 

customers with that last 

name.  

• If y > 60 a non-

uniform random 

customer number 

(C_ID) is selected using 

the 

NURand(1023,1,3000) 

function. The customer 

is using his/her 

customer number. 

 Independent of the mode of selection, 

the customer resident warehouse is the 

home warehouse 85% of the time and is 

a randomly selected remote warehouse 

15% of the time. This can be 

implemented by generating a random 

numbers x within [1 .. 100]; 

• If x <= 85 a customer is selected 

from the selected district number 

(C_D_ID = D_ID) and the home 

warehouse number (C_W_ID = W_ID). 

The customer is paying through his/her 

own warehouse.  

• If x > 85 a customer is selected from 

a random district number (C_D_ID is 

randomly selected within [1 .. 10]), and 

a random remote warehouse number 

(C_W_ID is randomly selected within 

the range of active warehouses (see 

Clause 4.2.2), and C_W_ID ≠ W_ID). 

The customer is paying through a 

warehouse and a district other than 

his/her own.  

The payment amount (H_AMOUNT) is randomly selected within [1.00 .. 

5,000.00].  

The payment date (H_DATE) cr_date generated within the SUT by using the 

current system date and time.  
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A.3 The Order-Status Transaction 

Order-Status 

Transaction 

The Order-Status business transaction queries the status of a customer's last order. It 

represents a mid-weight read-only database transaction with a low frequency of 

execution and response time requirement to satisfy on-line users. In addition, this table 

includes non-primary key access to the CUSTOMER table.  

 Body Constraints 

home warehouse number (W_ID) constant over the whole measurement 

interval.  

The district number (D_ID) is randomly selected within [1 ..10] from the 

home warehouse. 

The customer id (C_W_ID, 

C_D_ID, 

C_LAST) 

The customer 

is randomly 

selected 60% 

of the time by 

last name from 

the selected 

district  

(C_D_ID = 

D_ID) and the 

home 

warehouse 

number  

(C_W_ID = 

W_ID).  

Input 

 (C_W_ID, 

C_D_ID, C_ID) 

 and 40% of 

the time by 

number from 

the selected 

district 

(C_D_ID = 

D_ID) and the 

home 

warehouse 

number  

(C_W_ID = 

W_ID). 

This can be implemented 

by generating a random 

number y within [1 .. 100];  

• If y <= 60 a customer 

last name (C_LAST) is 

generated according to 

Clause 4.3.2.3 from a non-

uniform random value 

using the 

NURand(255,0,999) 

function. The customer is 

using his/her last name 

and is one of the, possibly 

several, customers with 

that last name. 

• If y > 60 a non-uniform 

random customer number 

(C_ID) is selected using 

the NURand(1023,1,3000) 

function. The customer is 

using his/her customer 

number. 
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A.4 The Delivery Transaction 

Delivery 

Transaction 

The Delivery business transaction consists of processing a batch of 10 new (not yet 

delivered) orders. Each order is processed (delivered) in full within the scope of a read-

write database transaction. The number of orders delivered as a group (or batched) 

within the same database transaction is implementation specific. The business 

transaction, comprised of one or more (up to 10) database transactions, has a low 

frequency of execution and must complete within a relaxed response time requirement.  

The Delivery transaction is intended to be executed in deferred mode through a 

queueing mechanism, rather than interactively, with terminal response indicating 

transaction completion. The result of the deferred execution is recorded into a result 

file.  

 Body Constraints 

the home warehouse number (W_ID) For any given terminal, is constant 

over the whole measurement 

interval.  

the carrier number (O_CARRIER_ID) is randomly selected within [1 .. 

10].  

Input 

The delivery date (OL_DELIVERY_D) is generated within the SUT by 

using the current system date and 

time.  

 

 

A.5 The Stock-Level Transaction 

Stock-Level 

Transaction 

The Stock-Level business transaction determines the number of recently sold items that 

have a stock level below a specified threshold. It represents a heavy read-only database 

transaction with a low frequency of execution, a relaxed response time requirement, 

and relaxed consistency requirements.  

 Body Constraints 

the home warehouse number (W_ID) 

The district number (D_ID) 

Each terminal must use a unique 

value of (W_ID, D_ID) that is 

constant over the whole 

measurement, i.e., D_IDs cannot 

be re-used within a warehouse 

Input 

the threshold of minimum quantity in stock 

(threshold) 

is selected at random within [10 .. 

20].  
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Appendix B: The TPCC-UVA Table 

Specifications 

The TPCC-UVA database table specification provided here are taken from the source 

code. The information regarding the population of the tables is taken from the TPC-C 

benchmark [113]. This design represents the table used in our performance experiments, 

e.g. foreign key referencing is not shown. 
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TABLE NAME Columns Distribution Database Population Index 

w_id int4 2*W unique IDs unique within [W]  

w_name varchar(10)  random a-string [6 .. 10]
1
  

w_street_1 varchar(20)  random a-string [10 .. 20]  

w_street_2 varchar(20)  random a-string [10 .. 20]  

w_city varchar(20)  random a-string [10 .. 20]  

w_state char(2)  random a-string of 2 letters  

w_zip char(9)  generated according to 
2
  

w_tax float4  random within [0.0000 .. 0.2000]  

WAREHOUSE 

w_ytd float8 

 

 300,000.00  

 

 

wareh1 PRIMARY 

KEY (w_id) 

 

 

populated 

sequentially sorted 

by w_id 

                                                 
1
 The notation random a-string [x .. y] (respectively, n-string [x .. y]) represents a string of random alphanumeric (respectively, numeric) characters of a 

random length of minimum x, maximum y, and mean (y+x)/2.  

Comment 1: The character set used must be able to represent a minimum of 128 different characters.  

Comment 2: Generating such strings can be implemented by the concatenation of two strings selected at random from two separate arrays of strings, and 

where:  

1. Both arrays contain a minimum of 10 different strings of characters.  

2. The first array contains strings of x characters.  

3. The second array contains strings of lengths uniformly distributed between zero and (y - x) characters.  

4. Both arrays may contain strings that are pertinent to the row and the attribute (e.g., use an actual first name for C_FIRST) instead of strings of random 

characters, as long as this does not bring any improvement to the reported metrics.  

 
2
 The warehouse zip code (W_ZIP), the district zip code (D_ZIP) and the customer zip code (C_ZIP) must be generated by the concatenation of:  

1. A random n-string of 4 numbers, and  

2. The constant string '11111'.  

Given a random n-string between 0 and 9999, the zip codes are determined by concatenating the n-string and the constant '11111'. This will create 10,000 

unique zip codes. For example, the n-string 0503 concatenated with 11111, will make the zip code 050311111.  

Comment: With 30,000 customers per warehouse and 10,000 zip codes available, there will be an average of 3 customers per warehouse with the same 

zip code.  
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d_id int4 20 unique IDs - 10 

are populated per 

warehouse 

unique within [10] 

d_w_id int4 2*W unique IDs = W_ID 

d_name varchar(10)  random a-string [6 .. 10]  

d_street_1 varchar(20)  random a-string [10 .. 20]  

d_street_2 varchar(20)  random a-string [10 .. 20] 

d_city varchar(20)  random a-string [10 .. 20] 

d_state char(2)  random a-string of 2 letters 

d_zip char(9)  generated according to 
2
 

d_tax float4  random within [0.0000 .. 0.2000]  

d_ytd float8  30,000.00 

DISTRICT 

d_next_o_id int4 10,000,000 unique 

IDs 

3,001  

dist1 PRIMARY 

KEY 

(d_w_id,d_id), 

 

 

 

populated 

sequentially sorted 

by d_id, w_id 

c_id int4 96,000 unique IDs 

- 3,000 are 

populated per 

district 

unique within [3,000]  

c_d_id int4 20 unique IDs = D_ID 

c_w_id int4 2*W unique IDs D_W_ID 

c_first varchar(16)  random a-string [8 .. 16]  

CUSTOMER 

c_middle char(2)  "OE"  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

custom1 

PRIMARY KEY 

(c_w_id, c_d_id, 

c_id), 

 

populated 

sequentially sorted 

by c_id, c_d_id, 

c_w_id: 

 

All customers of 1
st
 

dist, 1
st
 ware, 

2
nd

 dist, 1
st
 ware, 

….. 

10
th

 dist, 1
st
 ware, 

….. 

 

10
th

 dist, nth ware 
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c_last varchar(16)  generated according to 
1
, iterating through the 

range of [0 .. 999] for the first 1,000 customers, 

and generating a non-uniform random number 

                                                 
1
 The customer last name (C_LAST) must be generated by the concatenation of three variable length syllables selected from the following list:  

                                        0                 1                  2             3              4             5           6             7               8              9  

                                     BAR        OUGHT       ABLE       PRI        PRES       ESE     ANTI     CALLY    ATION    EING  

Given a number between 0 and 999, each of the three syllables is determined by the corresponding digit in the three digit representation of the number.  

For example, the number 371 generates the name PRICALLYOUGHT, and the number 40 generates the name BARPRESBAR.  

 
2
 The term non-uniform random, used only for generating customer numbers, customer last names, and item numbers, means an independently selected 

and non-uniformly distributed random number over the specified range of values [x .. y]. This number must be generated by using the function NURand 

which produces positions within the range [x .. y]. The results of NURand might have to be converted to produce a name or a number valid for the 

implementation.  

NURand(A, x, y) = (((random(0, A) | random(x, y)) + C) % (y - x + 1)) + x 

where:  

• exp-1 | exp-2 stands for the bitwise logical OR operation between exp-1 and exp-2  

• exp-1 % exp-2 stands for exp-1 modulo exp-2  

• random(x, y) stands for randomly selected within [x .. y] 

•  A is a constant chosen according to the size of the range [x .. y]  

o for C_LAST, the range is [0 .. 999] and A = 255  

o for C_ID, the range is [1 .. 3000] and A = 1023  

o for OL_I_ID, the range is [1 .. 100000] and A = 8191  

• C is a run-time constant randomly chosen within [0 .. A] that can be varied without altering performance. The same C value, per field (C_LAST, 

C_ID, and OL_I_ID), must be used by all emulated terminals.  

In order that the value of C used for C_LAST does not alter performance the following must be true: 

• Let C-Load be the value of C used to generate C_LAST when populating the database. C-Load is a value in the range of [0..255] including 0 

and 255.  

• Let C-Run be the value of C used to generate C_LAST for the measurement run.  

• Let C-Delta be the absolute value of the difference between C-Load and C-Run. C-Delta must be a value in the range of [65..119] including 

the values of 65 and 119 and excluding the value of 96 and 112.  
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using the function NURand(255,0,999) for each 

of the remaining 2,000 customers. The run-time 

constant C 
2
 used for the database population must 

be randomly chosen independently from the test 

run(s).  

c_street_1 varchar(20)  random a-string [10 .. 20]  

 

c_street_2 varchar(20)  random a-string [10 .. 20] 

c_city varchar(20)  random a-string [10 .. 20]  

c_state char(2)  random a-string of 2 letters 

c_zip char(9)  generated according to 
2
 

c_phone char(16)  random n-string
1
 of 16 numbers  

c_since timestamp 

DEFAULT '1970-01-01' 

 date/time given by the operating system when the 

CUSTOMER table was populated.  

c_credit char(2) ‘GC’ or ‘BC’ "GC". For 10% of the rows, selected at random, 

C_CREDIT = "BC"  

c_credit_lim float8  50,000.00  

c_discount float4  random within [0.0000 .. 0.5000] 

c_balance float8  -10.00 

c_ytd_payment float8  10.00 

c_payment_cnt int2  1  

c_delivery_cnt int2  0 

c_data varchar(500)  random a-string [300 .. 500] 

h_c_id int4 96,000 unique IDs = C_ID  

 

h_c_d_id int4 20 unique IDs H_D_ID = D_ID  

h_c_w_id number 2*W unique IDs = H_W_ID = W_ID  

 

h_d_id int4 20 unique IDs H_D_ID = D_ID 

h_w_id int4 2*W unique IDs = H_W_ID = W_ID  

 

h_date timestamp 

DEFAULT '1970-01-01' 

 current date and time 

h_amount float4  10.00 

HISTORY 

h_data varchar(24)  random a-string [12 .. 24]  

populated 

sequentially sorted 

by h_c_id, 

h_c_d_id, 

h_c_w_id: 

 

All customers of 1
st
 

dist, 1
st
 ware, 

2
nd

 dist, 1
st
 ware, 

….. 

10
th

 dist, 1
st
 ware, 

….. 

10
th

 dist, nth ware  
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o_id int4 10,000,000 unique 

IDs 

unique within [3,000]  

 

o_w_id int4 2*W unique IDs = W_ID 

o_d_id int4 20 unique IDs = D_ID 

o_c_id int4 96,000 unique IDs selected sequentially from a random permutation 

of [1 .. 3,000]  

o_entry_d timestamp 

DEFAULT '1970-01-01’ 

 current date/time given by the operating system 

o_carrier_id int2 

DEFAULT 0 

10 unique IDs or 

null 

random within [1 .. 10] if O_ID < 2,101, null 

otherwise  

o_ol_cnt int2  random within [5 .. 15] 

ORDER 

o_all_local int2 

 

 

 

 

 

 1  

orderr1 PRIMARY 

KEY (o_w_id, 

o_d_id, o_id) 

 

 populated 

sequentially sorted 

by o_id, o_d_id, 

o_w_id: 

 

All orders of 1
st
 

dist, 1
st
 ware, 

2
nd

 dist, 1
st
 ware, 

….. 

10
th

 dist, 1
st
 ware, 

….. 

10
th

 dist, nth ware 

no_o_id int4 10,000,000 unique 

IDs 

= O_ID,  with O_ID between 2,101 and 3,000 

no_d_id int4 2*W unique IDs = W_ID  

 

NEW ORDER 

 

no_w_id int4 20 unique IDs = D_ID  

 

no1 PRIMARY 

KEY (no_w_id, 

no_d_id, no_o_id), 

 

populated 

sequentially sorted 

by no_o_id, 

no_d_id, no_w_id: 

 

All new-orders of 

1
st
 dist, 1

st
 ware, 

2
nd

 dist, 1
st
 ware, 

….. 

10
th

 dist, 1
st
 ware, 

..10
th

 dist, nth ware 
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ol_o_id int4 10,000,000 unique 

IDs 

= O_ID  

 

ol_d_id int4 20 unique IDs = D_ID  

 

ol_w_id int4 2*W unique IDs = W_ID  

ol_number int2 15 unique IDs unique within [O_OL_CNT] 

 

ol_i_id int4 200,000 unique IDs random within [1 .. 100,000] 

ol_supply_w_id int4 2*W unique IDs = W_ID  

 

ol_delivery_d 
timestamp DEFAULT 
'1970-01-01' 

 = O_ENTRY_D if OL_O_ID < 2,101, null 

otherwise 

ol_quantity int2  5  

ol_amount 
numeric(6,2) 

 = 0.00 if OL_O_ID < 2,101, random within [0.01 

.. 9,999.99] otherwise  

ORDER-LINE 

ol_dist_info char(24) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 random a-string of 24 letters 

ol1 PRIMARY 

KEY (ol_w_id, 

ol_d_id, ol_o_id, 

ol_number), 

 

populated 

sequentially sorted 

by ol_o_id, 

ol_d_id, ol_w_id, 

ol_number: 

 

All order-lines of 

1
st
 dist, 1

st
 ware, 

2
nd

 dist, 1
st
 ware, 

….. 

10
th

 dist, 1
st
 ware, 

….. 

 

10
th

 dist, nth ware 
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s_i_id int4 200,000 unique IDs 

– 100,000 

populated per 

warehouse 

unique within [100,000]  

 

s_w_id int4 2*W unique IDs = W_ID  

s_quantity int2  random within [10 .. 100]  

s_dist_01 char(24)  random a-string
1
 of 24 letters  

s_dist_02 char(24)  random a-string of 24 letters 

s_dist_03 char(24)  random a-string of 24 letters 

s_dist_04 char(24)  random a-string of 24 letters 

s_dist_05 char(24)  random a-string of 24 letters 

s_dist_06 char(24)  random a-string of 24 letters 

s_dist_07 char(24)  random a-string of 24 letters 

s_dist_08 char(24)  random a-string of 24 letters 

s_dist_09 char(24)  random a-string of 24 letters  

s_dist_10 char(24)  random a-string of 24 letters  

s_ytd numeric(8,2)  0  

s_order_cnt int2  0  

s_remote_cnt int2  0  

STOCK 

s_data varchar(50)  random a-string [26 .. 50]. For 10% of the rows, 

selected at random, the string "ORIGINAL" must 

be held by 8 consecutive characters starting at a 

random position within S_DATA  

stock1 PRIMARY 

KEY (s_w_id, 

s_i_id) 

 

populated 

sequentially sorted 

by s_i_id , s_w_id 

 

 

i_id int4 200,000 unique IDs 

– 100,000 items are 

populated 

unique within [100,000]  

i_im_id int4 200,000 unique IDs random within [1 .. 10,000]  

i_name varchar(24)  random a-string
1
 [14 .. 24]  

 

i_price float8  random within [1.00 .. 100.00]  

 

ITEM 

i_data varchar(50)  random a-string
1
 [26 .. 50]. For 10% of the rows, 

selected at random, the string "ORIGINAL" must 

be held by 8 consecutive characters starting at a 

random position within I_DATA  

item1 PRIMARY 

KEY (i_id) 

 

populated 

sequentially sorted 

by i_id  
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Appendix C: The TPCC-UVA 

Transaction SQL Source Code and 

Service Demand Calculation 

In this Appendix, the SQL source code of the TPCC-UVA system is detailed. Due to 

space considerations, we have removed all other code in the transactions. The 

calculation of the service demands for the SQL statements is based on Section 4.4.2 and 

the TPCC-UVA table designs in Appendix B. 

C.1 Calculation of TPCC-UVA Index I/O Cost 

To calculate tree index fan-out, we assume index pages are fully loaded and ignoring 

header size. The index fan-out is: 

 SizeIndexEntryPageSize  

where PageSize is the DB page size and IndexEntrySize is the size of the index key + 

index pointer. The PostgreSQL index pointer size is 6 bytes long [31]. PostgreSQL page 

size is 8192 bytes [102]. Table C.1 shows the fan-out values for the indexes of the 

TPCC-UVA database design. 
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Table C.2 shows a partial calculation of the I/O cost for the TPCC-UVA database 

design based on the cost model in Section. These values are used in the following 

sections.  
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Table C.1 Calculation of the TPCC-UVA index fan-out. 

 WAREHOUSE DISTRICT CUSTOMER HISTORY ORDER 
NEW-

ORDER 

ORDER-

LINE 
STOCK ITEM 

 1 10 30,000 30,000 30,000 9,000 300,000 100,000 100,000 

# of rows 100 1,000 3,000,000 3,000,000 3,000,000 900,000 30,000,000 
10,000,00

0 
100,000 

row length in 

bytes 
89 95 655 46 24 8 54 306 82 

          

key w_id d_w_id,d_id 
c_w_id, c_d_id, 

c_id 
 

o_w_id, 

o_d_id, o_id 

no_w_id, 

no_d_id, 

no_o_id 

ol_w_id, 

ol_d_id, 

ol_o_id, 

ol_number 

s_w_id, 

s_i_id 
i_id 

key size in bytes 2 4 8 0 8 8 10 6 4 

          

index entry size 

in bytes 
8 10 14 0 14 8 16 12 10 

          

fan-out (F) 1024 820 586 0 586 1024 512 683 820 
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Table C.2 Partial calculation of the TPCC-UVA index I/O cost. 

 WAREHOUSE DISTRICT CUSTOMER HISTORY ORDER 
NEW-

ORDER 

ORDER-

LINE 
STOCK ITEM 

 1 10 30,000 30,000 30,000 9,000 300,000 100,000 100,000 

# of rows 100 1,000 3,000,000 3,000,000 3,000,000 900,000 30,000,000 10,000,000 100,000 

row length in bytes 89 95 655 46 24 8 54 306 82 

table size in bytes 8,900 95,000 1,965,000,000 138,000,000 72,000,000 7,200,000 1,620,000,000 3,060,000,000 8,200,000 

rows per page ( 

PostgreSQL page 

size / row length) 

93 87 13 179 342 1,024 152 27 100 

          

total # of pages (B) 2 12 239,869 16,846 8,790 879 197,754 373,536 1,001 

          

index fan-out (F) 1024 820 586 0 586 1024 512 683 820 

          

log2B 1 3.58 17.87 14.04 13.1 9.78 17.59 18.51 9.97 

          

logFB 0.1 0.37 1.94 0 1.42 0.98 1.95 1.97 1.03 

          

(index:row) ratio (R) 0.09 0.11 0.02 0 0.58 1 0.3 0.04 0.12 

          

logF(index:row)*B -0.25 0.04 1.33 0 1.34 0.98 1.76 1.47 0.71 
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C.2 The New-Order Transaction 

Source SQL Statements Formulas for Service Demands 
 

SELECT w_tax, c_discount,  

c_last, c_credit   

INTO :w_tax, :c_discount, 

:c_last, :c_credit 

FROM warehouse, customer 

WHERE w_id=:w_id AND 

c_w_id=:w_id AND c_d_id=:d_id 

AND c_id=:c_id; 

 

The warehouse table is the smaller of the two tables, 

therefore the query optimizer will choose it first. 

 

WAREHOUSE: 

b-tree unclustered tree index: equality on index key 

cost = D(1+ logFRB) = D(1+ (-0.25)) = 0.75D 

 

CUSTOMER 

b-tree unclustered tree index: equality on index key 

cost = D(1+ logFRB) = D(1+1.33) = 2.33D 

 

 

SELECT d_next_o_id, d_tax  

INTO :d_next_o_id, :d_tax  

FROM district 

WHERE d_id=:d_id AND 

d_w_id=:w_id; 

 

b-tree unclustered tree index: equality on index key 

cost = D(1+ logFRB) = D(1+ (0.04)) = 1.04D 

 

 

UPDATE district SET  

d_next_o_id=:d_next_o_id+1 

WHERE d_id=:d_id AND 

d_w_id=:w_id; 

 

b-tree unclustered tree index: equality on index key 

search plus Update: 

cost = Search + 2D 

the initial DB pages arein the buffer, 

cost = 0 + 2D = 2D 

 

 

INSERT INTO new_order (no_o_id, 

no_d_id, no_w_id)  

VALUES (:o_id, :d_id, :w_id); 

Even though all the information in the rows are available 

in the index, PostgreSQL does a table look-up [102], 

therefore: 

Insert unclusterd tree index 

cost = D(3 + logFRB ) = D(3 + 0.98) = 3.98D 

 

 

while((i<15) && (new_order->item[i].flag==1)) here we assume an average 

of 10 items to an order 

 

 

SELECT i_price, i_name, 

i_data INTO :i_price, 

:i_name, :i_data  

FROM item 

WHERE i_id=:ol_i_id; 

 

b-tree unclustered tree index: equality on index key 

cost = 10x D(1+ logFRB) = 10xD(1+0.71) = 17.1D 

 

SELECT s_quantity, s_data, 

s_dist_01, s_dist_02, 

s_dist_03, s_dist_04, 

s_dist_05, s_dist_06, 

s_dist_07, s_dist_08, 

s_dist_09, s_dist_10 

INTO :s_quantity, :s_data, 

:s_dist_01, :s_dist_02, 

:s_dist_03, :s_dist_04, 

b-tree unclustered tree index: equality on index key 

cost = 10x D(1+ logFRB) = 10xD(1+1.47) = 24.7D 
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:s_dist_05, :s_dist_06, 

:s_dist_07, :s_dist_08, 

:s_dist_09, :s_dist_10  

FROM stock   

WHERE s_i_id = :ol_i_id  

AND s_w_id = 

:ol_supply_w_id; 

 

if 

s_quantity>=ol_quantity+10)

{   

  s_quantity=s_quantity-

ol_quantity; 

EXEC SQL  

UPDATE stock SET   

s_quantity=:s_quantity 

WHERE s_i_id = :ol_i_id AND  

s_w_id = :ol_supply_w_id; 

    } 

else{   

s_quantity=(s_quantity-

ol_quantity)+91; 

EXEC SQL  

UPDATE stock SET  

s_quantity=:s_quantity 

WHERE s_i_id = :ol_i_id AND  

s_w_id = :ol_supply_w_id; 

  }}/*end if*/ 

 

 

UPDATE stock SET 

s_ytd=:s_ytd+cast(:ol_quant

ity as real), 

s_order_cnt=:s_order_cnt+1 

WHERE s_i_id = :ol_i_id AND  

s_w_id = :ol_supply_w_id; 

 

if(ol_supply_w_id!=w_id){ 

EXEC SQL  

UPDATE stock SET 

s_remote_cnt=:s_remote_cnt+

1 

WHERE s_i_id = :ol_i_id AND  

s_w_id = :ol_supply_w_id; 

    

o_all_local=0; 

  }/*end if*/ 

 

The DB pages for the rows affected by these SQL 

statements will be in the buffer from the previous 

statement. Therefore, all the UPDATEs will be on the 

buffered pages and will only be written back once at the 

end of the transaction. 

 

cost = 10xcost of writing an update =10x( 2D ) = 20D 

EXEC SQL  

INSERT INTO order_line 

(ol_o_id, ol_d_id, ol_w_id, 

ol_number, ol_i_id, 

ol_supply_w_id, 

ol_quantity, ol_amount, 

ol_dist_info) 

VALUES (:o_id, :d_id, 

:w_id, :ol_number, 

:ol_i_id, :ol_supply_w_id, 

Insert unclustered tree index 

cost = 10xD(3 + logFRB ) = 10xD(3 + 1.76) = 47.6D 
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:ol_quantity, :ol_amount, 

:ol_dist_info); 

 

i++; /*increments the 

number of items*/ 

}/*end while*/ 

 

INSERT INTO orderr (o_id, 

o_d_id, o_w_id, o_c_id, 

o_entry_d, o_carrier_id, 

o_all_local)  

VALUES (:o_id, :d_id, :w_id, 

:c_id, :o_entry_d, 0, 

:o_all_local);  

 

Insert unclustered tree index 

cost = D(3 + logFRB ) = D(3 + 1.34) = 4.34D 

 

if (o_all_local==0){ 

EXEC SQL UPDATE orderr SET 

o_all_local=:o_all_local 

WHERE o_id=:o_id AND 

o_d_id=:d_id AND o_w_id=:w_id; 

}/*end if*/ 

 

The previous INSERT statement brings the DB page into 

the buffer. It will be UPDATED and written only ONE 

time to disk. This was already accounted for by the 

INSERT cost. 

C.3 The Payment Transaction 

Source SQL Statements Formulas for Service Demands 
EXEC SQL  

SELECT w_name, w_street_1, 

w_street_2, w_city, w_state, 

w_zip  

INTO :w_name, :w_street_1, 

:w_street_2, :w_city, :w_state, 

:w_zip 

FROM warehouse  

WHERE w_id = :w_id; 

 

b-tree unclustered tree index: equality on index key 

cost = D(1+ logFRB) = D(1+ (-0.25)) = 0.75D 

 

EXEC SQL  

UPDATE warehouse 

SET w_ytd = w_ytd + :h_amount 

WHERE w_id = :w_id; 

  

 

b-tree unclustered tree index: equality on index key 

search plus Update: 

cost = Search + 2D 

the initial DB pages are in the buffer, 

cost = 0 + 2D = 2D 

 

EXEC SQL  

SELECT d_name, d_street_1, 

d_street_2, d_city, d_state, 

d_zip  

INTO :d_name, :d_street_1, 

:d_street_2, :d_city, :d_state, 

:d_zip 

FROM district 

WHERE d_w_id = :w_id AND  

d_id = :d_id; 

 

b-tree unclustered tree index: equality on index key 

cost = D(1+ logFRB) = D(1+ 0.04) = 1.04D 

 

EXEC SQL  

UPDATE district 

b-tree unclustered tree index: equality on index key 

search plus Update: 



 174 

SET d_ytd = d_ytd + :h_amount 

WHERE d_id = :d_id AND  

d_w_id = :w_id; 

 

cost = Search + 2D 

the initial DB pages are in the buffer, 

cost = 0 + 2D = 2D 

if (c_id == 0) { /*Customer 

selects BY C_LAST*/ 

   

 

 

  

EXEC SQL  

SELECT count(c_id) 

INTO :cont 

FROM customer 

WHERE c_last = :c_last AND 

c_d_id = :c_d_id AND c_w_id = 

:c_w_id;  

 

EXEC SQL  

DECLARE  c_porlast CURSOR FOR 

SELECT c_id, c_first, 

c_middle, c_street_1, 

c_street_2, c_city, c_state, 

c_zip, c_phone, c_credit, 

c_credit_lim, c_discount, 

c_balance, c_since 

FROM customer 

WHERE c_w_id = :c_w_id AND 

c_d_id = :c_d_id AND c_last = 

:c_last 

ORDER BY c_first; 

 

EXEC SQL OPEN c_porlast; /*It 

initializes the cursor*/ 

 

 

for (i = 0; i < cont/2; i++){ 

EXEC SQL FETCH FROM c_porlast 

INTO :c_id, :c_first, 

:c_middle, :c_street_1, 

:c_street_2, :c_city, 

:c_state, :c_zip, :c_phone, 

:c_credit, :c_credit_lim, 

:c_discount, :c_balance,  

:c_since; 

 

EXEC SQL CLOSE c_porlast;  

 

} else {  /* Customer selects 

BY C_ID */ 

 

EXEC SQL  

SELECT c_first, c_middle, 

c_last, c_street_1, 

c_street_2, c_city, c_state, 

c_zip, c_phone, c_credit, 

c_discount, c_balance,c_since 

INTO :c_first, :c_middle, 

:c_last, :c_street_1, 

By customer last name 

b-tree unclustered index, partial match range search 

Given that the file is sorted on the key, it will be a range 

search, however the DB pages depend on the qualifying 

number of pages and not the number of records. 

 

Cost = D( logFRB + # of  matching pages)  

         = D(1.33 + 250 ) = 251.33D 

 

b-tree unclustered tree index: equality on index key 

search plus Update: 

cost = Search + 2D 

the initial DB pages are in the buffer, 

cost = 0 + 2D = 2D 

 

total = 253.33D 

 

By customer id 

b-tree unclustered tree index: equality on index key 

cost = D(1+ logFRB) =D(1+ 1.33) = 2.33D 

 

Average: 60% by customer last name, 40% by customer 

id 

total cost = [(.6)(253.33) + (.4)(2.33)]D = 152.93D 

 

The rest of the SQL statements , the rows affected by 

these SQL statements will be in the buffer from the 

previous statements. 
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:c_street_2, :c_city, 

:c_state, :c_zip, :c_phone, 

:c_credit, :c_discount, 

:c_balance,:c_since 

FROM customer 

WHERE c_w_id = :w_id AND 

c_d_id = :d_id AND  

c_id = :c_id; 

} /* if (c_id == 0) */ 

 

EXEC SQL  

UPDATE customer 

SET c_balance = c_balance - 

:h_amount, c_ytd_payment = 

c_ytd_payment + :h_amount, 

c_payment_cnt = c_payment_cnt 

+1 

WHERE c_w_id = :c_w_id AND 

c_d_id = :c_d_id AND c_id = 

:c_id; 

 

if (c_credit[0]=='B'){ 

 

EXEC SQL  

SELECT c_data  

INTO :c_data  

FROM customer  

WHERE c_id =:c_id AND 

c_w_id=:c_w_id  

AND c_d_id=:c_d_id; 

 

EXEC SQL  

UPDATE customer SET 

c_data=:c_new_data 

WHERE c_w_id=:c_w_id AND 

c_d_id = :c_d_id AND c_id = 

:c_id; 

} /*end if*/ 

EXEC SQL  

INSERT INTO  history (h_c_d_id, 

h_c_w_id, h_c_id, h_d_id, 

h_w_id, h_date, h_amount, 

h_data) 

VALUES (:c_d_id, :c_w_id, 

:c_id, :d_id,:w_id,:h_date, 

:h_amount, :h_data); 

 

INSERT into heap file 

Cost = 2D 
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C.4 The Order-Status Transaction 

Source SQL Statements Formulas for Service Demands 

if (c_id != 0){ /*Customer 

selects BY C_ID 

EXEC SQL  

SELECT c_balance, c_first, 

c_middle, c_last  

INTO :c_balance, :c_first, 

:c_middle, :c_last  

FROM customer 

WHERE c_w_id = :w_id AND 

c_d_id = :d_id AND  

c_id = :c_id; 

 

} else { /*Customer selects  

POR C_LAST*/ 

 

EXEC SQL  

SELECT count(c_id) 

INTO :cont 

FROM customer 

WHERE c_last = :c_last AND 

c_w_id = :w_id AND  

c_d_id = :d_id; 

 

EXEC SQL DECLARE  c_porlast2 

CURSOR FOR 

SELECT c_id, c_first, 

c_middle, c_balance 

FROM customer 

WHERE c_w_id = :w_id AND 

c_d_id = :d_id AND c_last = 

:c_last 

ORDER BY c_first; 

 

EXEC SQL OPEN c_porlast2; 

 

for (i = 0; i < cont/2; i++){ 

EXEC SQL FETCH FROM 

c_porlast2 

INTO :c_id, :c_first, 

:c_middle, :c_balance; 

} /*end for*/ 

} /* end if*/ 

 

By customer last name 

b-tree unclustered index, partial match range search 

Given that the file is sorted on the key, it will be a range 

search, however the DB pages depend on the qualifying 

number of pages and not the number of records. 

 

Cost = D( logFRB + # of  matching pages)  

         = D(1.33 + 250 ) = 251.33D 

 

 

By customer id 

b-tree unclustered tree index: equality on index key 

cost = D(1+ logFRB) =D(1+ 1.33) = 2.33D 

 

Average: 60% by customer last name, 40% by customer 

id 

total cost = [(.6)(251.33) + (.4)(2.33)]D = 151.93D 

 

EXEC SQL DECLARE cur_ordenes 

CURSOR FOR  

SELECT o_id, o_entry_d, 

o_carrier_id 

FROM orderr 

WHERE o_w_id = :w_id AND o_d_id 

= :d_id AND o_c_id = :c_id 

ORDER BY o_id DESC; /*in 

b-tree unclustered index, partial match range search 

Given that the file is sorted on the key, it will be a range 

search, however the DB pages depend on the qualifying 

number of pages and not the number of records. 

 

Cost = D( logFRB + # of  matching pages)  

         = D(1.34 + 9 ) = 10.34D 
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descending order of the serial 

number*/ 

 

EXEC SQL OPEN cur_ordenes; 

 

EXEC SQL DECLARE cur_ord_lines 

CURSOR FOR  

SELECT ol_i_id, ol_supply_w_id, 

ol_quantity, ol_amount, 

ol_delivery_d 

FROM order_line 

WHERE ol_w_id = :w_id AND 

ol_d_id = :d_id AND ol_o_id = 

:o_id; 

  

EXEC SQL OPEN cur_ord_lines; 

 

b-tree unclustered index, partial match range search 

Given that one transaction is running at a time, we 

assume that the order-lines of one order will be on one 

DB page. Hence, the cost will be by number of pages not 

number of matching records. 

 

Cost = D( logFRB + # of  matching pages)  

         = D(1.76 + 1 ) = 2.76D 

 

 

C.5 The Delivery Transaction 

Source SQL Statements Formulas for Service Demands 

for (no_d_id = 1; no_d_id <= 

10; no_d_id++){ 

 

 

EXEC SQL SELECT min(no_o_id) 

INTO :no_o_id 

FROM new_order 

WHERE no_w_id = :w_id AND  

no_d_id = :no_d_id; 

 

b-tree unclustered tree index: equality on index key 

cost = 10xD(1+ logFRB) = 10xD(1+ 0.98) = 19.8D 

 

EXEC SQL  

DELETE FROM new_order  

WHERE no_o_id = :no_o_id AND  

no_w_id = :w_id AND  

no_d_id = :no_d_id; 

 

b-tree unclustered tree index: equality on index key 

search plus DELETE: 

cost =10x[ Search + 2D] 

the initial DB pages are in the buffer, 

cost =10x[ 0 + 2D] = 20D 

EXEC SQL SELECT o_c_id  

INTO :o_c_id 

FROM orderr 

WHERE o_w_id = :w_id AND  

o_d_id = :no_d_id AND  

o_id = :no_o_id; 

 

b-tree unclustered tree index: equality on index key 

cost = 10xD(1+ logFRB) = 10xD(1+ 1.34) = 23.4D 

 

EXEC SQL UPDATE orderr 

SET o_carrier_id = 

:o_carrier_id 

WHERE o_w_id = :w_id AND  

o_d_id = :no_d_id AND  

o_id = :no_o_id; 

 

b-tree unclustered tree index: equality on index key 

search plus UPDATE: 

cost =10x[ Search + 2D] 

the initial DB pages are in the buffer, 

cost =10x[ 0 + 2D] = 20D 

EXEC SQL  

UPDATE order_line 

SET ol_delivery_d = 

:ol_delivery_d 

b-tree unclustered index, partial match range search 

Given that one transaction is running at a time, we 

assume that the order-lines of one order will be on one 

DB page. Hence, the cost will be by number of pages not 
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WHERE ol_o_id = :no_o_id AND  

ol_w_id = :w_id AND  

ol_d_id = :no_d_id; 

 

number of matching records. 

 

Cost = 10x [ Search + 2D] 

         = 10x [D( logFRB + # of  matching pages)  + 2D] 

         = 10x [D(1.76 + 1 ) + 2D ] = 47.6D 

 

EXEC SQL  

SELECT sum(ol_amount) 

INTO :c_balance 

FROM order_line 

WHERE ol_o_id = :no_o_id AND  

ol_w_id = :w_id AND  

ol_d_id = :no_d_id; 

 

b-tree unclustered tree index: equality on index key 

DB pages already in buffer from previous statement 

EXEC SQL  

UPDATE customer 

SET c_balance = c_balance + 

:c_balance, 

c_delivery_cnt = 

c_delivery_cnt + 1 

WHERE c_w_id = :w_id AND  

c_d_id = :no_d_id AND  

c_id = :o_c_id; 

b-tree unclustered tree index: equality on index key 

search plus UPDATE: 

cost = 10x[ Search + 2D] 

         = 10x [D(1+ logFRB)  + 2D] 

         = 10x [D(1 + 1.33 ) + 2D ] = 43.3D 

 

 

C.6 The Stock-Level Transaction 

Source SQL Statements Formulas for Service Demands 
EXEC SQL SELECT d_next_o_id  

INTO :d_next_o_id 

FROM district 

WHERE d_id = :d_id AND  

d_w_id = :w_id; 

 

b-tree unclustered tree index: equality on index key 

cost = D(1+ logFRB) = D(1+ 0.04) = 1.04D 

 

EXEC SQL  

SELECT COUNT(DISTINCT (s_i_id))  

INTO :lowstock 

FROM stock, order_line 

WHERE ol_w_id = :w_id AND 

ol_d_id = :d_id AND  

ol_o_id < :d_next_o_id AND  

ol_o_id >= :d_next_o_id -20 

AND s_w_id = :w_id AND  

s_i_id = ol_i_id AND  

s_quantity < :threshold; 

This will be an nested-index JOIN, with the ORDER-

LINE rows in the outer-loop and the inner loop  

 

ORDER-LINE: 

b-tree unclustered tree index: range search 

for 20 orders. Given that one transaction is running at a 

time, we assume that the order-lines of one order will be 

on one DB page. 

 

cost = D( logFB + # of  matching pages)   

        = D(1.76 + 20) = 21.76D 

 

STOCK 

Assuming 10 items per order, this gives 200 items 

b-tree unclustered tree index: range search 

cost = D( logFRB + # of  matching records) 

        = D(1.47 + 200) = 201.47D 
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Appendix D: QNAP2 Model 

QNAP2 is a software tool for describing and solving queueing networks. It provides a 

collection of solution methods for queueing network models, including exact and 

approximate methods and discrete event simulation. In addition, the tool has a Pascal-

like language for model description, analysis control and result representation. The 

model parameters are specified for the tool, i.e. number of customer classes, arrival 

rates, service demand for each server and routing probabilities. Models are solved by 

invoking QNAP2 on the command line with the model description as input to the tool. 

The tool solves the model based on the method specified in the description and produces 

the results. In this Appendix, an example of a QNAP2 model description for the TPCC-

UVA queueing network models is presented. 

D.1 Queueing Network Model Description 

The TPCC-UVA clients are described in QNAP2 in Figure D.1. Each client, up to the 

maximum number of clients, will choose a transaction using a weighted random 

function. The client waits a constant transaction keying time, then sends the transaction 

customer to the transaction monitor and waits until it receives a signal that the customer 

has completed (left the queueing network). After transaction completion, the client will 

wait an exponentially distributed think time and the process starts again. 
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/station/ name = clients(1 step 1 until maxcus);  

  type = source; 

  service = begin 

  

  if time=0 then  

   set(cust_out);  &initialize the flag 

             

  wait(cust_out); &wait for a customer to leave the network 

             

  reset(cust_out); &reset flag to prevent other customers from entering 

               

if time<> 0 then   &think time for previous customer class leaving the network 

   begin 

     cl:=c(curr_cl); 

     exp(cl.lamda);  

   end 

 else cst(0.0000001); &entered when time=0, so memory does not overflow 

             

                 

 wran := rint(1,100);  &random number between 1 and 100 

                                    

 if wran <=43 then 

       cl:=c(2) &Payment 

    else if wran <=47 then 

          cl:=c(3) &Order-Status 

       else if wran <=51 then 

                cl:=c(4) &Delivery 

            else if wran <=55 then 

                     cl:=c(5) &Stock_Level 

            else cl:=c(1); &new order  

               

 customer.cl_id:=cl.idcl;  

   customer.sender:=idq; &let current customer take the client id 

 curr_cl:=cl.idcl; &assign this client, the class of current customer 

      

 cst(cl.key_time); &min constant keying time of user, for chosen transaction 

   

 if server(cl.entrytab).nb >= server(cl.entrytab).N then 

  begin 

     ndrop:=ndrop+1; 

     transit(out); 

     set(cust_out); 

  end 

  else  

       begin 

         cl:=c(customer.cl_id); 

         customer.b_time:=time; 

 

         if cl.idcl=4 then  

              begin 

                  set(clients(customer.sender).cust_out);  
                         &set flag, only for delivery transaction when queued  

              end; 

               

         transit(server(cl.entrytab),c(cl.idcl)); 

          end; 

end; &client description 

Figure D.1 QNAP2 description of the TPCC-UVA clients. 
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Figure D.2 details the description of the queueing servers. Each server will service the 

current customer/transaction based on its specified service demand. The service 

demands for the Order-Status transaction are calculated based on the number of New-

Order transactions already executed. After the customer completes service, based on its 

routing probabilities it will move to the next server or leave the network. When a 

transaction leaves the network the transaction monitor and client are signalled.  

/station/ name = server(1 step 1 until maxq); 

 sched = fifo; 

 service = begin 

 L2:    

   if idq=5 then &count number of new-order transactions in order table 

      begin 

        if customer.cl_id=1 then 

              c_order:=c_order+1; 

       end; 

   if cl.entrytab=idq then  &if server is the transaction monitor  

       begin 

         q:=server(idq); 

         if q.nbin=1 then set(tm_out); 

                  &for server 10 which represents the transaction monitor 

         wait(tm_out); &wait for a customer to leave the network 

         reset(tm_out); &reset flag to prevent other customers from entering 

       end  

   else 

       begin  

         if idq=5 then &if server is the order table 

            begin 

              if customer.cl_id = 3 then  &order-status transaction 

                 begin 

                   prob:=c_order/maxcus; 

                   num_pg:=c_order/374; 

                   if prob>=num_pg then 

                      begin 

                         exp((miou(idq)+num_pg)*0.001199);   

                      end 

                    else 

                      begin 

                        exp((miou(idq)+prob)*0.001199);  

                      end; 

                  end 

               else  &other transactions in the order table 

                  begin 

                    exp(miou(idq)*0.001199);    

                  end; 

             end 
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          else  &other tables 

             begin 

               exp(miou(idq)*0.001199); 

             end; 

        end; 

  norm:=1.0; 

   

  if trans0(idq)>0.0 then 

        if draw(trans0(idq)) then  

              begin 

             if  customer.cl_id<>4 then    
                        &delivery already set the flag on first entry table 

                 begin 

                       set(clients(customer.sender).cust_out);  
                          &read current customer's sender id to set its flag 

                    end; 

                 set(tm_out);  
            &the tm waits for the network to become empty before allowing anyone in 

         customer.e_time:=time; 

         

    transit(out); 

                 goto L1; 

               end 

               else norm:=norm-trans0(idq); 

              

     for m:=1 step 1 until M do 

     begin 

        for j:=1 step 1 until R do 

        begin 

   if trans(idq,m,j)>0 then 

     if draw(trans(idq,m,j)/norm) then 

        begin 

          q:=server(m); 

     if q.nb=q.N then  

                      begin 

      goto L2; 

                      end 

     else transit(q,c(j)); 

                end 

                else norm:=norm-trans(idq,m,j); 

            end; 

         end; 

L1:  end;   & service ends 

Figure D.2 QNAP2 description of the TPCC-UVA queueing network servers. 
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