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Resumé
Denne afhandling presenterer en metode for behavioral syntese af asynkrone kred-sløb. Målet er at tilvejebringe et syntese �ow, som udnytter og overfører metoder frasynkrone kredsløb til asynkrone kredsløb. Ideen er at �ytte den synkrone behavioralsyntese abstration ind i det asynkrone handshake domæne ved hjælp af en beregn-ings model, som ligner den synkrone datavej og kontrolenheds struktur, men som erfuldstændig asynkron.Denne model indeholder muligheden for at isolerer enkelte eller alle beregningse-lementer ved at låse deres respektive inputs og outputs når beregningselementer erinaktivt. Dette redu
erer unødvendig skifteaktivitet i de enkelte beregningselementerog derved energiforbruget af hele kredsløbet. En samling af behavioral syntese algo-ritmer er blevet udviklet, som tillader designeren at foretage design spa
e explorationbestemt af både power- og udførelsestids-krav. Datavej og kontrol arkitekturen bliverderefter udtrykt i Balsa-sproget, og syntaks styret oversættelse anvendes til at kon-strurere det tilhørende asynkrone handshake kredsløb (og evt. endeligt et layout).
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Abstra
t
This thesis presents a method for behavioral synthesis of asyn
hronous 
ir
uits, whi
haims at providing a synthesis �ow whi
h uses and tranfers methods from syn
hronous
ir
uits to asyn
hronous 
ir
uits. We move the syn
hronous behavioral synthesisabstra
tion into the asyn
hronous handshake domain by introdu
ing a 
omputa-tion model, whi
h resembles the syn
hronous datapath and 
ontrol ar
hite
ture, butwhi
h is 
ompletely asyn
hronous. The model 
ontains the possibility for isolatingsome or all of the fun
tional units by lo
king their respe
tive inputs and outputswhile the fun
tional unit is idle. This redu
es unne
essary swit
hing a
tivity in theindividual fun
tional units and therefore the energy 
onsumption of the entire 
ir-
uit. A 
olle
tion of behavioral synthesis algoritms have been developed allowingthe designer to perform time and power 
onstrained design spa
e exploration. Thedatapath and 
ontrol ar
hite
ture is then expressed in the Balsa-language, and usingsyntax dire
ted 
ompilation a 
orresponding handshake 
ir
uit implementation (andeventually a layout) is produ
ed.
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C h a p t e r 1 Introdu
tion
Today, a wide range of dedi
ated real-time appli
ations are emerging. Examples ofthese are the next generation of mobile phones, smart-
ards and more futureristi
appli
ations as e-identi�
ation, e-payment, e-key systems et
. For su
h portablewire-less appli
ations power is a limited resour
e be
ause of restri
tions in batterysize or be
ause power is extra
ted from the environment (light, magneti
 �elds orheat et
.). Furthermore, to meet the extreme size and weight requirements the entiresystem (input/output transdu
ers, analog 
ir
uitry, futuristi
-
ir
uitry, power supplyand the digital system, 
onsisting of digital hardware and software) is implementedonto one single 
hip (�System on Chip�).The fo
us of this resear
h is the hardware part of the digital system, whi
h oper-ates under the following di�
ult 
hara
teristi
s:Data Pro
essing The appli
ations are rea
tive in nature with data arriving inbursts with long periods of waiting. In-between bursts ultra low-power op-eration is required, while during bursts heavy 
omputation, su
h as en
ryptionfor se
ure data transmission, is required.Response Time For some appli
ations the time to respond to an external eventis 
ru
ial as otherwise data will be irrevo
ably lost, requiring a 
lose to zerotransition time from sleep mode into full-speed operation.Power Supply For battery-less appli
ations external power is provided spuriouslyby the environment and stored internally on large storage 
apa
itors leading toa very limited power supply often of poor quality.Noise Level The presen
e of on-
hip analog and RF-
ir
uitry sets severe restri
tions



2 Introdu
tionfor the ele
tri
-noise and ele
tromagneti
-emission of the digital 
ir
uit su
h asnot to disrupt input/output-interfa
ing or RF-
ommuni
ation.Asyn
hronous design o�ers several advantages, 
ompared to syn
hronous design,for the design of these intelligent 
ir
uits. The asyn
hronous design methodologyspe
i�
ally targets low-power operation (power is only used when pro
essing) and theself-timed nature leads to an immediate response time. Furthermore asyn
hronous
ir
uits are inherently insensitive (and thus robust) to variations in temperature,pro
ess parameters and supply voltage. The latter 
an be used advantageously sin
e,if the 
ir
uit has a

ess to external power, the supply voltage 
an be de
reased allow-ing for ultra low-power operation. Finally, the asyn
hronous nature of the swit
hinga
tivity 
auses the ele
tromagneti
 and ele
tri
 noise 
ontributions to evenly dis-tribute a
ross the frequen
y spe
trum (equivalent to white noise). This redu
esspikes in the spe
trum down to a level whi
h allows 
o-existen
e with analog andRF-
ir
uitry. Typi
ally only 
riti
al subparts (with respe
t to operating 
hara
ter-isti
s) of the digital system will be implemented asyn
hronously and the remainingpart syn
hronously.Currently, the la
k of synthesis methods and tools whi
h are 
apable of dire
tlysynthesizing a working asyn
hronous 
ir
uit from a high-level spe
i�
ation makes thedesign of large systems a tedious e�ort involving more design work than designinga 
orresponding syn
hronous 
ir
uit. The majority of existing synthesis tools inthis area are low-level and dedi
ated to the generation of 
ontrol 
ir
uitry [24, 40,71, 86, 92℄. A few high-level synthesis tools exist, among those the Tangram sili
on
ompiler developed by Philips Resear
h Labs and the somewhat similar publi
 domainversion BALSA from Man
hester University. These tools use spe
ial asyn
hronoushardware des
ription languages dedi
ated to asyn
hronous design, that does not �twell into existing VHDL/SystemC based design �ows and CAD-tools. Furthermore,the supported synthesis pro
ess, syntax-dire
ted 
ompilation, is 
hara
terized by aone-to-one 
orresponden
e between spe
i�
ation and implementation.Let us begin by looking into the 
urrent status of synthesis �ows of syn
hronousand asyn
hronous 
ir
uits as illustrated by Figure 1.1. Synthesis of syn
hronous 
ir-
uits, whi
h is illustrated in the left 
olumn of Figure 1.1, has su

eeded in raisingthe level of abstra
tion to that of spe
ifying 
ir
uits at the behavioral level. Froma behavioral des
ription in a language like VHDL, Verilog or System-C some inter-mediate representation is extra
ted � often a 
ontrol data �ow graph (CDFG). Fromthe CDFG the 
lassi
 synthesis tasks [67℄ of s
heduling, allo
ation, and binding isperformed resulting in a RTL level 
ir
uit des
ription whi
h is then synthesized intogate-level 
ir
uits and eventually a layout.Synthesis of asyn
hronous 
ir
uits is illustrated in the right 
olumn of Figure 1.1.It is less mature and several somewhat di�erent approa
hes is being pursued. Themost in�uential of the available synthesis tools fall in two 
ategories: (i) synthesisof large-s
ale RTL level 
ir
uits based on syntax-dire
ted 
ompilation from CSP-likelanguages: Tangram [11, 100℄, OCCAM [17℄, Balsa [8℄, ACK [59℄ and TAST [85℄, and(ii) synthesis of small-s
ale sequential 
ontrol 
ir
uits [26, 41℄. The tools that per-form syntax dire
ted 
ompilation target a library of so-
alled handshake 
omponents.



1.1 From syn
hronous to asyn
hronous behavioral synthesis 3
= This thesis:

Synchronous Asynchronous
design
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���
���
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Abstraction level
(Representations)

Behavioral
       Synthesis

       − Computation model
       − Scheduling etc.
       − Implementation template

Design Flow:

Verilog

SystemC/
VHDL/

CDFG

  description
RTL

Netlist of
components

Layout Layout

Gate/ CellGate/ Cell

Handshake
components

CSP−type

Behaviour −> CDFG −> CSP−type program  −>  Circuit

   program

designFigure 1.1: Existing syn
hronous and asyn
hronous design �ows and the design �owaddressed in this thesis.The handshake 
omponents 
an be designed using in prin
iple any of the sequential
ontrol 
ir
uit synthesis tools. The syntax-dire
ted 
ompilation approa
h is radi
allydi�erent from the behavioral synthesis �ow used by designers of syn
hronous 
ir-
uits; the 
ompiler merely performs a one-to-one mapping of the program text intoa 
orresponding 
ir
uit stru
ture. Although syntax-dire
ted 
ompilation does allowthe designer to work at a relatively high level it does not provide any optimizations;�what you program is what you get�. In some situations this 
an be 
onsidered anadvantage but in general it puts more burden on the designer: exploring alternativeimplementations requires a
tually programming these, whereas in a traditional syn-
hronous synthesis �ow, the designer 
an qui
kly and easily experiment with di�erent
onstraints and goals and in this way 
reate alternative implementations from thesame program text.It is interesting to note that the internal representation of 
ir
uit behavior usedin syn
hronous behavioral synthesis is a
tually based on an asyn
hronous model ofa 
ontrol data�ow graph (CDFG), i.e., a dependen
y graph expressing the 
ontrol-and data-�ow of the appli
ation. This naturally raises the question: Is it possibleto apply the transformations and optimizations used in syn
hronous synthesis forasyn
hronous design as well?1.1 From syn
hronous to asyn
hronous behavioralsynthesisA 
entral idea in this thesis is to 
onstru
t a 
omputation model whi
h allows us touse the transformations and optimizations used in syn
hronous synthesis dire
tly in
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k

j

Relaxationi

j

i

t

k

Figure 1.2: Relaxing syn
hronous synthesis (left) into the asyn
hronous handshakedomain (right).
CLK

Registers

OUT

IN

ALU MUL

Control

FSM

Write selection logic

Read selection logic

Figure 1.3: The syn
hronous 
omputation model.asyn
hronous design, without introdu
ing any restri
tions and at the same time usethe transformations and optimizations developed for 
ontinuous time in one and thesame model.The target for syn
hronous behavioral synthesis is a hardware ar
hite
ture 
on-sisting of a datapath whi
h is able to perform a set of operations, and a 
ontrollerwhi
h 
ontrols the exe
ution sequen
e of these operations in order to perform a givenappli
ation, as shown in Figure 1.3 A key issue in behavioral synthesis is to reusehardware resour
es for the di�erent operations in order to minimize area, and toexplore possible parallelism by exe
uting several hardware resour
es 
on
urrently inorder to in
rease performan
e.All the traditional te
hniques of behavioral synthesis: S
heduling, Allo
ation andBinding are in syn
hronous 
ir
uits 
entered around a 
entral syn
hronization event,determined by the global 
lo
k. This syn
hronization event determines (i) the begin-ning for exe
uting an operation (ii) writing the result of an operation.If we make these syn
hronization events lo
al and 
ontrolled by the 
ontroller,we 
an 
reate a hardware ar
hite
ture 
onsisting of a datapath and a 
ontroller, as
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ALU

;

Write events

Read events

Function
control

Asynchronous

Controller

Distributed

L0 L1

IN

OUT

Operand selection

(Read synchronizers)

(Storage)

(Write synchronizers)

(Computation)

Variables

Write selection 

Functional unit(s)

; ;
||

||

"+"Figure 1.4: Computation model in the asyn
hronous handshake domain, where thelabeling refers to the role the handshake 
omponents play in our model.shown in Figure 1.4. It resembles the syn
hronous ar
hite
ture but it is 
ompletelyasyn
hronous. This 
omputation model relaxes the stri
t ordering of the syn
hronous
ir
uit and the syn
hronous s
hedule 1.2 (left) into the 
ontinuous time domain, thes
hedule for the asyn
hronous 
ir
uit 1.2 (right).This idea allows us to use any of, but not restri
ted to, the many syn
hronousbehavioral synthesis te
hniques to obtain a hardware ar
hite
ture (datapath and
ontroller) and then to implement this ar
hite
ture using asyn
hronous 
ir
uit te
h-niques.In our work we use Balsa as a ba
k-end. The datapath and 
ontrol parts obtainedfrom the front-end behavioral synthesis are des
ribed using a set of Balsa templatesand then synthesized into handshake 
omponents and ultimately into a layout. Inthis way we take advantage of the fa
t that Balsa performs a one-to-one mappingthus allowing us to express the intended implementation at a relatively high level.The parallism in CSP, and CSP-like languages, are 
entered around a paralleloperator, that allows the 
omputation to fork into parallel operations. However the
onstru
t also require all of these parallel operations to �nish at the same time orhave to wait until the slowest operation �nishes. Therefore no new operations 
anbegin, thus limiting the s
hedules that 
an be implemented. The implementationtemplates presented in this thesis is not restri
ted by this limitation. We utillize theCSP language 
onstru
ts in an un
onventional way, su
h that any 
ontinous s
hedule
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tion
an be implemented.Using this synthesis �ow we have produ
ed layouts for a 
ouple of ben
hmarks andwe report on the area, speed and power �gures for these 
ir
uits. By building on topof syntax-dire
ted 
ompilation, our synthesis approa
h works entirely in the domainof handshake 
hannels and handshake 
omponents. This has a number of signi�-
ant impli
ations: Firstly it enables the use of a synthesis �ow whi
h is surprisinglysimilar to that used in syn
hronous design tools, and se
ondly it avoids altogetherthe 
omplex problem of spe
ifying and synthesizing a 
ontroller. Our work is not inany way restri
ted to the use of Balsa or other syntax-dire
ted methods, the usedapproa
h serves as a pra
ti
al demonstration of how to use the developed methodsand te
hniques.For the behavioral synthesis part we have developed the following algorithm suite:(i) Power aware syn
hronous synthesis algorithm. This algorithm is a 
lique heuristi
algorithm operating with a time and maximum power per time 
onstraint. Thisis useful for appli
ations having a power limit e.g. given by the maximum powerdelivered by a solar panel.(ii) Evolutionary syn
hronous synthesis algorithm and a simulated annealing syn-
hronous synthesis algorithm. These are meta-heuristi
 algorithms operatingwith a maximum time 
onstraint.(iii) Simulated Annealing task level algorithm for handling the 
onditional parts ofthe CDFG. This last algorithm has not been implemented but the method isoutlined.These algorithms all operate in dis
rete time using time-slots. After the �nal s
hedulehas been obtained it is relaxed into an asyn
hronous s
hedule, keeping the order ofexe
ution events as a relative ordering.The 
ontribution of this thesis is the addition of behavioral synthesis to asyn-
hronous 
ir
uit design in the form of automati
 resour
e sharing and 
onstraintbased design spa
e exploration. In parti
ular our 
ontributions are: (1) an abstra
tevent based 
omputation model, (2) synthesis algorithms for s
heduling, allo
ationand binding and (3) target implementation spe
i�
ations. The thesis publi
ationsare [74, 75, 93℄.



1.2 Thesis outline and readers guide 71.2 Thesis outline and readers guideThis thesis is organized as follows:Chapter 1 Introdu
tion Introdu
es this work, presents our 
ontributions and showsthis outline of the thesis.Chapter 2 Ba
kground Brie�y introdu
es the ideas behind behavioral synthesis,CDFGs and asyn
hronous 
ir
uits.Chapter 3 Related Work Gives a survey of related work.Chapter 4 Behavioral Synthesis for Asyn
hronous Cir
uits Presents the 
on-
ept whi
h allows us to adapt the te
hniques from syn
hronous behavioral syn-thesis into behavioral synthesis of asyn
hronous design and des
ribes details ofdatapath design.Chapter 5 Implementation in Balsa The use of the Balsa-language to generateour 
ir
uits is presented in this 
hapter.Chapter 6 Algorithms for Behavioral Synthesis The algorithms developed forbehavioral synthesis used to generate the 
ir
uits are presented in this 
hapter.Chapter 7 Results The area, speed and power �gures for our layouts are presentedand dis
ussed.Chapter 8 Con
lusion 
ontains the 
on
lusion of the thesis and presents dire
-tions for future work.As a reading guide, the reader who is familiar with asyn
hronous 
ir
uit designand behavioral synthesis and not interested in related work 
an skip 
hapter 2 Ba
k-ground and 
hapter 3 Related Work, and pro
eed dire
tly to 
hapters 4 BehavioralSynthesis for Asyn
hronous Cir
uits, 5 Implementation in Balsa and 6 Algorithms forBehavioral Synthesis whi
h presents the main 
ontribution of this thesis. More spe
if-i
ally the underlying 
on
epts of this work are introdu
ed in 4 Behavioral Synthesisfor Asyn
hronous Cir
uits. The 
ir
uit implementation details and Balsa-templatesused to design the asyn
hronous 
ir
uits in the result se
tion are presented in 
hapter5 Implementation in Balsa. For the reader with an algorithmi
 interest 
hapter 6Algorithms for Behavioral Synthesis presents the behavioral synthesis algorithms de-veloped in this resear
h. Finally, the reader is en
ouraged to read 
hapter 7 Resultswhi
h explains and dis
usses the results.
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C h a p t e r 2 Ba
kground
This thesis brings together the domains of both behavioral synthesis and asyn-
hronous 
ir
uit design. In order to be able to better understand the work presentedin this thesis, this 
hapter will give an introdu
tion to some of the 
on
epts and ideasof these domains. The reader should not 
onsider this to be a 
omplete referen
e,nor to be a tutorial.2.1 Synthesis �ow and CDFG formatA CDFG 
aptures only the 
ontrol and data dependen
ies that are inherent in the
omputation. In this way it is not biased towards a 
ertain implementation.In this se
tion we introdu
e the CDFG format and an example CDFG whi
h willbe used throughout in this thesis to illustrate the synthesis �ow. The fo
us of thethesis is on the synthesis of asyn
hronous 
ir
uitry given a CDFG. The pro
ess ofextra
ting the CDFG from a behavioral spe
i�
ation in some hardware des
riptionlanguage is well understood. It is an integral part of existing syn
hronous synthesissystems, and it is not addressed in this thesis.To illustrate the sour
e 
ode for our running example we will use the Balsa-language [7, 8, 6℄, augmented with a multipli
ation operator, as the Balsa languagedoes not yet in
lude a multipli
ation operator. The aim in this thesis is not to advo-
ate the use of Balsa, it should merely be seen as an illustration and in prin
iple mosthardware des
ription languages 
ould be used. For asyn
hronous 
ir
uit design it is
onvenient if the language in
ludes 
hannel 
ommuni
ation primitives and statementlevel 
on
urren
y, and it is en
ouraging to see that su
h features are being in
luded,



10 Ba
kgroundimport [balsa.types.basi
℄type word is 16 bitspro
edure example(input X0,X1,X2:word;output Y0,Y1:word) isvariable x0,x1,x2,y1,y0:word
onstant a0= 255
onstant a1= 255
onstant a2= 255
onstant a3= 255beginloopX0->x0 || X1->x1 || X2->x2 ;y0 := (((a0+x0)+(x0*x1)) - a1 as word) ||if x1>a2 theny1 := (a3*(x1+x2) as word)elsey1:= (x1-x2 as word)end ;Y0<-y0 || Y1<-y1endendFigure 2.1: An example Balsa des
ription.or at least proposed for in
lusion in, su
h languages as System-C and System-Verilogand an additional pa
kage for adding su
h features to System-C is proposed in [13℄.The intended synthesis �ow involves the following steps: From the Balsa 
odethe CDFG is exa
ted. The CDFG is then subje
t to the synthesis steps explainedin this thesis and the resulting 
ir
uit stru
ture (datapath and 
ontrol) is expressedas a Balsa program. The �nal step of the synthesis �ow is then to 
ompile theBalsa program into a netlist of handshake 
omponents and to produ
e a standard
ell implementation.Figure 2.1 shows our example asyn
hronous 
omponent spe
i�ed in Balsa andFigure 2.2 shows the 
orresponding CDFG whi
h will serve as the running examplein this paper. The elements of the CDFG and the stru
ture are explained in thefollowing. The CDFG is a 1-bounded 
olored Petri net � the 
olors representingdata values. The edges in the CDFG 
ontain pla
es (like in a STG) and the nodesare Petri net transitions. A node 
an be an operator or 
an represent 
onditionalsequen
ing as the example CDFG shows. For a more formal de�nition the reader isreferred to [96, 33℄.The basi
 elements in our CDFG are shown in Figure 2.3 and are as follows:nodes Essential nodes represent atomi
 
omputations e.g. arithmeti
 operations as
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Figure 2.2: The Control Data Flow Graph for our example.addition. For �ring a node, all inputs ar
s need to have a data-token present.The i designates the operation the node performs and all nodes have a num-bering j. This operation 
ould also be the loading of data in and out of the
ir
uit, in whi
h 
ase the name of the input/output is written inside the node.These nodes are 
alled input/output nodes.ar
s Represents the essential data dependen
ies whi
h exist with in the 
omputationor algorithm. The dotted ar
 is used to signify 
ontrol ar
s. There is nosemanti
 di�eren
e between a data and 
ontrol ar
.There is a set of spe
ial nodes whi
h needs explanation:Control nodes The mux and demux nodes are used to route data-tokens aroundin the CDFG. The mux node need a data-token on the 
ontrol ar
 and thena data-token on the sele
ted input ar
 to �re. The demux node only �res adata-token on the sele
ted output.Body The body 
an be repla
ed by another CDFG and is not a fundamental 
om-ponent, rather it illustrates the hierar
hi
al nature of the CDFG format. Theinput and output ar
s of the CDFG are required to �t with the input andoutput ar
s to the Body node.Using these fundamental nodes a su�
ient set of algorithmi
 stru
tures 
an berepresented using the CDFGs. Figure 2.4 shows a set of basi
 algorithmi
 stru
turesfound in most languages and their 
orresponding CDFGs. Using these stru
tures,the de�nition of the CDFGs nodes and our Balsa example in Figure 2.1 it is straight-forward to arrive at the CDFG in Figure 2.2.2.2 Behavioral synthesisBehavioral synthesis is a re�nement pro
ess in whi
h a behavioral des
ription of analgorithm is 
onverted into a stru
tural des
ription, ful�lling a set of design 
on-straints, and preserving the behavior of the algorithm [87, 67℄. Ea
h 
omponent
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demux

i

Body

0 1 0 1

arc

node

CDFG

j

mux

Figure 2.3: A minimum and, for most 
ases, su�
ient set of Control Data FlowGraph elements.in the stru
tural des
ription is in turn de�ned by its own (lower-level) behavioraldes
ription, for whi
h a mapping to sili
on hardware exists. The purpose of behav-ioral synthesis is two-fold: (i) Automate tedious parts of the design pro
ess and thusimprove the turnaround time. (ii) To perform design spa
e exploration.Automating tedious parts of the design pro
ess is be
oming in
reasingly impor-tant as designs in
rease in size and 
omplexity, and the time alloted to 
onstru
t thedesign be
omes ever more tighter. Spe
ifying the des
ription of an algorithm at ahigher level of abstra
tion allows a designer to fo
us on implementing an improvedalgorithm. It is well-known, that work put to use at a high-level of abstra
tion has alarger impa
t on the resulting performan
e 
hara
teristi
s, than work put to use at alower-level of abstra
tion. Furthermore, the designer avoids spending time on detailsof the implementation e.g. transistor sizing, whi
h of 
ourse has an impa
t on theperforman
e but usually an order of magnitude less than improving the algorithm.Design spa
e exploration is also be
oming in
reasingly important as modern sys-tems are moving into System-on-Chip platforms where the design be
omes part of agreater whole and thus needs to �t into 
ertain spe
i�
ations. This might mean thatthe maximal speed of the 
ir
uit is required if our 
ir
uit is part of the 
riti
al pathof an entire system. But it might also be that requirements are low and thus thereis no need to develop a large high-speed 
ir
uit.The output from a high-level synthesis system usually 
onsists of a datapathstru
ture at the register-transfer level (RTL) or an equivalent des
ription language,and a spe
i�
ation of a �nite state ma
hine to 
ontrol the datapath. In our 
ase wewill use the Balsa language whi
h will translate into a set of asyn
hronous handshake
omponents for both the datapath and the ASFM. At the RT level or equivalent
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Figure 2.4: Algorithm statements and 
orresponding CDFG stru
tures.level, a datapath is 
omposed of a 
omputational part (fun
tional units e.g. ALUs,multipliers, and shifters et
.), storage units (registers, lat
hes and memories) andinter
onne
tion units (e.g. busses, multiplexors and demultiplexors).As previously dis
ussed the �rst step is to extra
t a CDFG from the behavioralalgorithm, part of this involves a series of 
ompiler-like optimizations as 
ode motion,dead 
ode elimination, 
onstant propagation, 
ommon subexpression elimination, andloop unrolling. Following this 
omes the 
ore synthesis re�nement pro
ess, of whi
hthere are two 
lasses:Resour
e 
onstrained behavioral synthesis Here the goal is to �nd the fastest
ir
uit given a set of resour
e 
onstraints either in the form of a maximumallowable area for the 
ir
uit or a detailed des
ription of the maximal number
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kgroundand types of fun
tional units and the maximum memory available to the 
ir
uit.Time 
onstrained behavioral synthesis Here the goal is to �nd the smallest 
ir-
uit (
omputational area and memory) given a maximum exe
ution time 
on-straint.In addition to these there is the power 
onstraint whi
h 
omes into play by addingto the two other 
onstraints, redu
ing the solution spa
e. In this thesis we will 
on-sider time and power 
onstrained behavioral synthesis. The appli
ations our resear
htargets are performan
e-intensive parts of an algorithm whi
h therefore require im-plementation in hardware, thus the 
onstraints are often in the form of a time re-quirement or a datapro
essing frequen
y to whi
h the smallest 
ir
uit needs to befound. However there is nothing preventing us from implementing resour
e and power
onstrained behavioral synthesis.In general we distinguish between behavioral synthesis in 
ontinuous time andbehavioral synthesis in dis
rete time, but in general both approa
hes involve thesame three basi
 elements:S
heduling The operations in the CDFG need a start time. For 
ontinuous timethis is an absolute time or a relative ordering of operations. In dis
rete timethis denotes the start time-slot.Allo
ation A set of fun
tional units needs to be allo
ated. The fun
tional units arethe ma
hines on whi
h the operations are exe
uted.Assignment The operations need to be bound to a spe
i�
 ma
hine to avoid 
on-�i
ts for parallel operations.These elements are believed to be NP-hard problems and thus in general requireheuristi
 approa
hes to �nd solutions. These three tasks are 
losely interrelated andshould be solved simultaneously to arrive at an optimal solution. All the behavioralsynthesis algorithms presented in this thesis do this. There are in prin
iple threeapproa
hes to solve these problems:Integer Linear Programming (ILP) formulations whi
h solve the problem foroptimality but is only appli
able for small problems.Heuristi
 methods that 
ome in two �avors: 
onstru
tive approa
hes and itera-tive re�nement. There are many approa
hes for 
onstru
tive s
heduling, dif-fering with regard to the sele
tion 
riteria used to s
hedule the next operation.Heuristi
 approa
hes run e�
iently for large designs, but does not produ
eoptimal 
ir
uits.Meta-heuristi
 Algorithms whi
h are 
apable of solving large ILP problems ef-fe
tively, although heuristi
ally.Besides these fundamental elements of behavioral synthesis there are elements thatinvolve �nding the minimum amount of memory for the spe
i�
 s
hedule, allo
ation
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Req

AckFigure 2.5: Four phase bundled data push handshake proto
ol.and assignment, as well as �nding the best routing (the minimal set of multiplexing)of data between the fun
tional units. All of these elements of behavioral synthesisand datapath synthesis will be elaborated further in their respe
tive 
hapters.2.2.1 ASAP and ALAPNow, before trying to minimize the sili
on area, we �rst want to know if, given theCDFG and the time 
onstraint T , a feasible s
hedule 
an be 
onstru
ted at all ?(using unlimited sili
on area). Fortunately, there is a polynomial algorithm, O(n2),whi
h 
an give us that answer:ASAP (As Soon As Possible) Augment the CDFG with a sour
e node whi
h hasdire
ted ar
s to all the input nodes. Set Ssource = 0 for the sour
e node. Then�nding the Si for all other nodes vi (σi) be
omes a matter of �nding the longestpath from the sour
e to that node. (Using the fastest FU for the job).If Starget ≤ T for the target node, it is possible to 
onstru
t a feasible s
hedule.Furthermore Si is the earliest time an operator σi 
an be s
heduled (again allowingfor unlimited sili
on area). The same algorithm 
an be applied �ba
kwards�:ALAP (As Late As Possible) Augment the CDFG with a sink node whi
h hasdire
ted ar
s from all the output nodes. Set Ltarget = T for the target node.Then �nding the Li for all other nodes vi (σi) be
omes a matter of �nding thelongest path from that node to the target. (Using the fastest FU for the job).And the time-interval Si . . . Li spe
i�es the s
heduling time interval in whi
h theoperator σi 
an be s
heduled, given the time 
onstraint T and thus bounds thesolution spa
e, in whi
h we are going to sear
h for the optimal solution.2.3 Asyn
hronous 
ir
uit designIn this se
tion we dis
uss some of the properties of the asyn
hronous 
ir
uit designstyle used in this thesis. As the word asyn
hronous indi
ates, an asyn
hronous 
ir
uitdoes not have a global syn
hronization event in the form of a 
lo
k, but ratheris lo
ally syn
hronized. In this thesis we use four-phase bundled data handshakeproto
ol as 
omponent syn
hronization proto
ol. This means a signal 
ontains a 1
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Figure 2.6: Two types of 
hannel 
ommuni
ations: push and pull. Data �ows fromleft to right on the 
hannels.bit request and a 1 bit a
knowledge wire additional to the data wires. One exampleof this the four-phase bundled data push early handshake proto
ol as illustrated byFigure 2.5. In this proto
ol the master 
ontrols the request and data signals and theslave 
ontrols the a
knowledge, this also means data is transmitted from the masterto the slave. The proto
ol operates by the master raising the request when the slaveis ready to pro
ess data, indi
ated by the a
knowledge being low, and the data signalsare valid. The slave sees this and reads the data. When data has been read the slavea
knowledges this by raising the a
knowledge signal. The master then lowers therequest signal, removes data and starts preparing for the next transmission. Whenthe slave is ready for the next data the a
knowledge signal is lowered. The 
hoi
eof the four-phase bundled data proto
ol is an arbitrary 
hoi
e, our method 
an beimplemented with use of any handshake proto
ol.There are two types of 
hannels: push and pull. In a push 
hannel data �owsfrom master to slave and in a pull 
hannel data �ows from slave to master. In generalthe terms master and slave are not used, instead the terms a
tive and passive areused to designate the 
ontrolling part of a 
hannel 
ommuni
ation and graphi
allythis is illustrated by either a �lled (a
tive) or non-�lled 
ir
le (passive) at the sour
eor destination of a 
hannel, as illustrated on Figure 2.6. The sour
e and destinationi.e. the dire
tion of the data�ow is illustrated by the arrow on the 
hannel line.The asyn
hronous 
ir
uits designed in this thesis are built from a set of asyn-
hronous building blo
ks 
alled handshake 
omponents. As the name implies these
omponents 
ommuni
ate using the handshake proto
ols. These 
omponents are in-dependent 
omponents, usually designed using input/output-mode or Muller-C style[92℄. All 
omponents operate using the same proto
ol, in this way one 
ould 
onsiderthis type of asyn
hronous 
ir
uit design as obje
t oriented hardware design. Asyn-
hronous 
ir
uits and the 
ir
uits presented in this thesis are built from handshake
omponents whi
h implements the equivalent RTL operations as lat
hing data, mul-tiplexing data, addition et
. Ea
h of these handshake 
omponents has its own lo
alasyn
hronous 
ontrol to ensure proper asyn
hronous fun
tionality and to handle theasyn
hronous handshake 
ommuni
ation proto
ol [92℄. Besides these asyn
hronoushandshake 
omponents whi
h have their equivalent RTL 
ounter parts, there are thedemerge/demux 
omponents whi
h handle �datawire-forks�.Asyn
hronous handshake 
omponents where all outputs are a
tive and all inputsare passive are push-style; 
omponents where all outputs are passive and all inputs
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Figure 2.7: A minimum and, for most 
ases, su�
ient set of handshake 
omponents.are a
tive are of pull-type; if all ports are passive the 
omponent is of passive-type;if all inputs are a
tive the 
omponent is of a
tive-type; others are of �mixed�-type.The basi
 set of building blo
ks are illustrated in Figure 2.7 in their push-form,where appli
able, and 
an be divided into four groups:Lat
hes Data is stored in lat
hes and 
ould be 
onsidered the variables of the 
ir
uit.Furthermore with one a
tive input or output they implement the handshakingand support the token �ow. In their push form a data write and data readalways alternate. In their passive form they operate as the variables of the
ir
uit where the surroundings 
an write and read data independently andto/from multiple sour
es and destinations.Fun
tional Units These are the asyn
hronous equivalents of 
ombinatorial 
ir
uits.We will primarily use the symbol on the left, but some tools will generate theright symbol. In their push form the operation is as follows: First all inputshave to be ready, then 
ompute the fun
tions and distribute the results on therespe
tive outputs. The fun
tional units should be 
onsidered transparent froma handshaking point of view, but also versions with input/output lat
hes willbe 
onsidered.
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omponent extension.Un
onditional �ow 
ontrol These 
omponents are used to handle parallelism andto merge/split data streams, whi
h are mutually ex
lusive. The key here is thatthere is no external 
ontrol of the data �ow. For data streams whi
h are notmutually ex
lusive either the following group of 
omponents have to be used oran arbiter needs to be inserted in front of the 
omponent. The merge in shownin the push-form and the demerge is shown in pull-form, whi
h are their onlyform.Conditional �ow 
ontrol The MUX and DEMUX 
omponents are used to sele
tamong several inputs or routing the input to one of several outputs and thus
onditionally 
ontrol the data�ow in the asyn
hronous 
ir
uits.The fun
tional units in their memory form 
ould by them selves be a networkof asyn
hronous handshake 
omponents implementing the fun
tion, thus introdu
inghierar
hy into the 
ir
uit.We will need an additional set of asyn
hronous building blo
ks to build the asyn-
hronous 
ir
uit we desire, these are shown in Figure 2.8 and are all used to buildmore advan
ed 
ontrol 
ir
uitry. The groups of handshake 
omponents are:Transfer The transfer 
omponent is an a
tive 
omponent used to 
ontrol 
omputa-
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uit design 19tion. When a
tivated on input 
hannel a the transfer 
omponent moves datafrom 
hannel b to 
hannel c.Un
onditional 
ontrol Here there are two 
omponents: The sequen
er whi
h forea
h a
tivation exe
utes a sequen
e, in order, of sub-operations, before 
omplet-ing the input handshake. The parallel exe
utes all sub-operations in paralleland all have to 
omplete before 
ompleting the input handshake.Repetition In�nite repetition is handled by the repeater, whi
h sends an in�nitenumber of a
tivations to its outputs and never 
ompletes its input handshake.The while 
omponent implements 
onditional repetition and operates in thefollowing way: Upon a
tivation on input a, the while 
omponent inputs 
ondi-tion cond and if true output b is a
tivated and the while 
omponents repeatsthis behavior by inputing the next 
ondition cond. This 
ontinues until condis false then the while 
omponent 
ompletes its handshake with a.Conditional 
ontrol The 
hoi
e 
omponent implements a binary 
hoi
e by sele
t-ing on the input �
ond� if equal to zero the �0� 
hannel is a
tivated otherwisethe �1� 
hannel is a
tivated. The Guard 
omponents is used for implementingmultiple sele
tions or guards. Here the 
omponent have two sele
tions andoperates as follows: when a is a
tivated the Guard 
omponent inputs all its
onditions, here cond1 and cond2. The 
onditions have to be mutually ex
lu-sive. If any of the 
onditions where true the number is returned on a otherwisezero is returned. When b is a
tivated with a positive data value, it is used toa
tivate the operations, here either 1 or 2. The Guard 
omponent 
an have asmany sele
tions as required.Of these 
omponents the transfer plays is most important for this resear
h, as itplays the role of event syn
hronizer; 
ontrolling the 
omputation and is the 
ompo-nent 
onne
ting the 
ontrol dominant part of the asyn
hronous handshake networkwith the data dominant part of the asyn
hronous handshake network. Transfer 
om-ponents degenerate to simple wire 
onne
tions 
ontaining no logi
.As mentioned in the introdu
tion, there is an apparent resemblan
e between a
ir
uit designed by a network of handshake proto
ols and the CDFG des
ribing thebehavior of the same 
ir
uit. This suggests a simple one-to-one synthesis approa
hwhere the CDFG is dire
tly mapped into an asyn
hronous 
ir
uit, as shown in Figure2.9. Su
h an approa
h was more extensively pursued in [73℄ and is further dis
ussedin the following 
hapter.
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C h a p t e r 3 Related Work
This 
hapter has two purposes: (i) To present an overview of re
ent advan
es inresear
h in behavioral synthesis of low-power syn
hronous 
ir
uits and (ii) to presentand 
ompare related work with respe
t to behavioral synthesis of asyn
hronous 
ir-
uits. In doing so, the desirable abilities and requirements for an asyn
hronousbehavioral synthesis approa
h are un
overed.3.1 Low power behavioral synthesis, an overviewIn CMOS 
ir
uits, there are two primary sour
es of power dissipation [72℄: (i) Stati
dissipation originating from leakage 
urrent. (ii) Dynami
 dissipation originatingfrom swit
hing transient (short-
ir
uit) 
urrent and from 
harging of load 
apa
i-tan
e. The total power dissipation be
omes:

Pavg = Pswitching + Pshort−circuit + Pleakage (3.1)Of these 
omponents the �rst is the most dominant and is given by:
Pswitching = 〈α0→1〉tClV

2
dd (3.2)Where Vdd is the supply voltage and 〈α0→1〉t is the average number of swit
hing pertime unit, that a node with 
apa
itan
e Cl will make a power 
onsuming transition(0 → 1). For a syn
hronous 
ir
uit 〈α0→1〉t = α0→1fclk, where α0→1 is the averagenumber of times the node swit
hes per 
lo
k 
y
le and fclk is the 
lo
k frequen
y.



22 Related WorkIt is well-known that resour
e sharing destroys 
orrelation between inputs and the
omputation and therefore in
reases the power 
onsumption of the 
ir
uit. Further-more, there is usually an overhead asso
iated with resour
e sharing whi
h will lead toa larger power dissipation. On the other-hand redu
ing the area of the 
ir
uit leadsto a redu
tion of Cl whi
h redu
es the power 
onsumption. For future deep submi-
ron te
hnologies leakage power will be
ome more dominant. Therefore as leakage
urrent is proportional to area, resour
e sharing has the potential to redu
e leakagepower dissipation. But as resour
e sharing also have an impa
t on on-o� times forfun
tional units and therefore leads to longer a
tivation times whi
h 
ounters thise�e
t.There are three dominant approa
hes for behavioral synthesis targeting redu
eddynami
 power dissipation:
• Low-power behavioral synthesis [44, 19, 57, 61, 94, 69, 70, 84, 45, 89℄ througharranging the 
omputation su
h that the internal swit
hing a
tivity is mini-mized: P ∼ 〈α0→1〉t. The design goal is to �nd min(〈α0→1〉t).
• Low power behavioral synthesis through voltage s
aling [55, 27, 10, 80℄. Usuallylow-power designs operate at voltage-levels just above 2|Vt|, thus the bene�tfrom voltage s
aling lies in speeding up a few 
riti
al 
omputations at a powerpenalty, whi
h is then more than 
an
eled by 
hoosing slower low power fun
-tional units at non-
riti
al pla
es in the 
ir
uit.
• Power aware behavioral synthesis [102, 5, 1℄ 
hara
terizes methods whi
h tar-gets the generation of a spe
i�
 power pro�le of the 
ir
uit. The goal is usuallya uniform �at power pro�le below a 
ertain power maximum whi
h 
orrespondsto a hard 
onstraint (e.g. maximum power delivered by a solar-panel). Themajority of these algorithms are either based on meta-heuristi
 algorithms, ortwo-step algorithms, where in step one a traditional time 
onstrained s
heduleis 
onstru
ted and in step two the s
hedule is made �power-aware�.Usually there is an area penalty asso
iated with these low-power te
hniques 
om-pared to non-low-power te
hniques and the di�erent methods have di�erent tradeo�sbetween area and power.In the following se
tions we fo
us on the �rst of these approa
hes. There are manyways to minimize 〈α0→1〉t, but the most dominant are those methods whi
h exploit
orrelations in input-data as well as in the 
omputation. This body of work 
an bedivided into �ve groups whi
h we will present in the following. The �rst group fo
useson providing a

urate lower bounds on power 
onsumption for use in synthesis. These
ond group fo
uses on s
heduling, allo
ation and assignment redu
ing the swit
hinga
tivity of the fun
tional units, whi
h is the largest 
ontributor to power dissipation.The third group fo
uses on redu
ing swit
hing a
tivity at the CDFG level. Thefourth group fo
uses on proper register allo
ation for low power. And �nally thelast group of papers fo
uses on redu
ing the power 
onsumption of the inter
onne
tbinding fun
tional units and registers together and the impa
t this has on s
heduling,
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ation and assignment. In the following we will present a non-exhaustive list ofsynthesis methods.3.1.1 Lower bounds on swit
hing a
tivityIn order to �nd optimal solutions through exhaustive sear
h based methods as bran
hand bound, it is ne
essary to bound the solution spa
e using a polynomial approa
h.This is also useful for measuring optimality of heuristi
 approa
hes as the optimalsolution is bounded by the heuristi
 solution and the lower bound. A bran
h andbound algorithm tra
es a de
ision tree whose leafs represent all possible solutions.Given a best solution found during exe
ution of the bran
h and bound algorithm, asubtree 
an be pruned if a lower bound estimate of the best solution from the sub-treeyields a larger 
ost.In [57, 94℄ the swit
hing a
tivity metri
 is de�ned as the Hamming distan
e of
onse
utive input ve
tors to fun
tional units. Let wij de�ne the power 
ost for thevariables i and for ea
h operation type j present in the DFG. This is 
omputedbased on a representative set of input ve
tors to the 
ir
uit. The 
entral idea isto formulate the low power binding problem with resour
e 
onstraints as a graphproblem by de�ning an ar
-labeled dire
ted graph. The optimization problem isthen to 
over all nodes with exa
tly m (node disjoint) 
y
les with minimum total
ost under the 
onstraint that ea
h 
y
le 
ontains exa
tly one ba
kward ar
. Thetotal 
ost is the sum of the ar
 weights of all 
y
les. Ea
h 
y
le of a solution to thisproblem represents one resour
e, while the nodes of a 
y
le are the operations boundto it. The authors prove that the following ILP problem provides a lower bound onthe low power binding problem with m resour
es:
z = min

n∑

i,j=1

wijxij (3.3)subje
t to
∑n

j=1 xij = 1 i = 1, ..., n∑n

i=1 xij = 1 j = 1, ..., n∑
i≥j xij = m

(3.4)with xij integer. In this formulation it is not guaranteed that pre
eden
e 
onstraints,spe
ifying operation a has to start after operation b, are ful�lled, hen
e a solution ofthe ILP problem delivers only a lower bound on the swit
hing a
tivity. Furthermore,the problem is a relaxation of the optimization problem as there are no 
onstraintsfor
ing ea
h 
y
le to have exa
tly one ba
kward ar
. Instead of solving the ILPproblem, a polynomial time bounded approa
h is proposed whi
h approximates theILP problem based on Lagrangian relaxation.
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hedule (from left to right) for reuse of input variables andredu
tion of swit
hed 
apa
itan
e. Operation 3 and 5 uses the same result from 2 insu

essive steps.3.1.2 Redu
ing swit
hing a
tivity of fun
tional unitsThe redu
tion of swit
hing a
tivity of fun
tional units 
an be a

omplished bys
heduling operations su
h as to in
rease the 
orrelation of the data presented to thefun
tional unit. The �rst step in this dire
tion is to observe that the average swit
hinga
tivity of any fun
tional unit is signi�
antly redu
ed if one of the operands remainsun
hanged [69, 70℄. As operands are usually reused more than on
e in 
omputationson the same type of fun
tional unit, there is a basis for grouping operands together inthe s
heduling and binding pro
ess. The 
entral idea is to group reusable operandstogether on the same parti
ular fun
tional unit and to exe
ute these in su

essivetime-slots/operation-groups. The idea is shown in Figure 3.1. In [69, 70℄ this is a
-
omplished by extending the List-s
heduling [67℄ to a Low Power List-s
heduling byadding more heuristi
s. The traditional List-s
heduling operates by having a priorityqueue of all ready operations determined by urgen
y, more pre
isely the di�eren
ethe ASAP-ALAP interval. In the Low Power List-s
heduling operation that shareoperands are grouped into operand-sharing sets. On
e an operation has been s
hed-uled, the other operations in the group are moved up to top priority and are s
heduledsu

essively, until an operation outside the set gets urgen
y zero, whi
h is then setfor immediate exe
ution.The next step is to generalize this observation into s
heduling operations su
h asto in
rease the 
orrelation between 
onse
utive inputs to a fun
tional unit [89, 45℄.Again the list-s
heduling heuristi
 
an be modi�ed to in
lude this data 
orrela-tion [89℄ and to operate by, besides the set of operations Ukwhere all prede
essorshave been s
heduled, maintaining the set of most lately s
heduled operations for ea
hfun
tional unit Lk. At any point the algorithm tries to s
hedule the operations that
onsume less power. By s
heduling operations in this way there are more 
andidatesin the ready set when power hungry operations are s
heduled. For evaluation of thepriority for the s
heduling a power metri
 is used. Multiplexer power is no 
onsideredin this s
heme. Let cj be the swit
hed 
apa
itan
e from s
heduling operation j onfun
tional unit k where operation i was exe
uted previously i ∈ Lk. If the operationis 
ommutative, then operand swapping is tried to �nd the smallest swit
hed 
apa
-
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e. This information is stored for register binding. cj is normalized with respe
tto the total swit
hed 
apa
itan
e of all operators in Uk of same type. The 
ost ofthe 
andidates are set to:
priority = ωcj + (1 − ω)tLj (3.5)where tLj is the ALAP time of operation j relative to the average ALAP time of
andidates in Uk of the same type. Parameter ω is the weight given to relate powerimportan
e to meet time-deadline importan
e.The For
e-Dire
ted s
heduling method 
an also be modi�ed for low power syn-thesis [45℄. The algorithm models the swit
hed 
apa
itan
e of an sequen
e of two
onse
utive operands to a fun
tional unit as the spring 
onstant k and the probabil-ity of sele
ting the 
orresponding sequen
e is modeled as the displa
ement x, in thefor
e equation F = kx. Thus, a for
e is asso
iated with ea
h feasible 
ombination offor
es whi
h is used to make a power-optimal s
heduling de
ision. This metri
 is thenused in the For
e-Dire
ted s
heduling method [77℄ to solve the behavioral synthesisproblem for low power digital 
ir
uits.The low power binding problem for a �nite set of fun
tional units having a singleinstan
e type/single-ar
hite
ture 
an be formulated as a min-
ost �ow problem [31℄.This problem is solvable, unlike the generalized low power binding problem fun
tionalunits having multiple ar
hite
tures whi
h is an ILP problem. In [31℄ two polynomialalgorithms are presented to heuristi
ly solve the ILP problem. The �rst graph-basedmethod iteratively utilizes the single-ar
hite
ture �ow formulation for ar
hite
tureand then 
hooses the least power 
onsuming assignment from the set of 
andidates.Afterwards, the possible unassigned operations are assigned through a node 
overagealgorithms that follows another �ow formulation. The node 
overage algorithm runsiteratively until all operations are 
overed. The se
ond te
hnique assigns the opera-tions to the fun
tional units of multiple ar
hite
tures in in
remental steps similar tothe left-edge algorithm.There are many other methods for addressing the low power synthesis problem[84, 61, 44℄ these methods involve spe
ifying the problem as au
tion based non-
ooperative �nite game, iterative optimizations and 
onstraint logi
 programming.3.1.3 Redu
ing swit
hing a
tivity at CDFG levelA di�erent more radi
al approa
h is to design 
omplex 
ustom low-power fun
tionalunits su
h as FFTs and �lters and use these as buildings blo
ks for the 
ir
uit in ad-dition to simple fun
tional units as adders and multipliers [60℄. This requires for thesynthesis approa
h to be able to map groups of operators on these 
ustom fun
tionalunits, as shown in Figure 3.2. The method also provides te
hniques for resynthesisof the fun
tional units to mat
h the 
onstraints and te
hniques for mapping multiplebehaviors onto the same 
omplex fun
tional unit. The meta-heuristi
 approa
h usedfor the design spa
e exploration is based on �nding a sequen
e of in
remental moveswhere only the last move has to generate an improvement in the 
ost fun
tion (theintermediate steps are allowed to move to unoptimal state-spa
e solutions). The sets
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high cost arcsFigure 3.3: Generating the 
ompatibility graph and performing a minimum 
ost
lique-partitioning, asumming the shown ar
s have a high swit
hing 
apa
itan
e 
ost.of moves are: i) Simple and 
omplex fun
tional units are repla
ed by new modulesfrom the library. ii) Complex modules are resynthesized. iii) Simple operations are
ombined into 
omplex operations. vi) operations are split in to two separate opera-tions. A Tabu-sear
h [43℄ me
hanism ensures solutions are not repeatedly traversed,this method is know as the variable depth sear
h.Addressing the low power synthesis problem dire
tly at the CDFG level has thepotential for large power savings [81, 82℄. The proposed CDFG-transformation te
h-niques involve: i) Redu
ing the total number of operations to be performed by 
om-mon sub-expressions elimination, loop merging and distributivity. ii) Redu
tion ofspurious swit
hing transitions due to �nite propagation delays from one logi
 blo
kto the next (dynami
 hazards). These extra transitions are a 
omplex fun
tion oflogi
 depth, input pattern and skew. To minimize these unwanted transitions, signalpath balan
ing and logi
 depth redu
tion is handled. The sequen
e of optimizationmoves are handled by the use of a heuristi
/probabilisti
 sear
h algorithm.3.1.4 Memory allo
ation for low-powerThe goal here is to �nd the appropriate number of registers and the asso
iated bindingto minimize power 
onsumption in the registers.



3.1 Low power behavioral synthesis, an overview 27The register binding problem 
an be formulated as a minimum 
ost 
lique 
overingproblem [19℄. The power 
onsumption is 
omputed based on statisti
al informationderived from assumptions on probabilisti
 input distributions. The power dissipa-tion model is based on the Hamming distan
e and the 
apa
itan
e of the registersare modeled as a �xed load for a given library. The paper [19℄ de�nes the 
ompat-ibility graph G(V,A) as the graph where the nodes are variable intervals and thedire
ted ar
s A between two variables if their variable life times are non-overlappingand end-life-time of the sour
e variable is less than the start-life-time of the tar-get. Ea
h ar
 represents a possible assignment and 
arries the swit
hed 
apa
itan
edi�eren
e between the two variables. The register assignment problem is then for-mulated as a minimum 
ost 
lique partitioning problem of that graph. They showthat the unoriented 
ompatibility graph for the data values in a s
heduled data�owgraph without 
y
les and bran
hes (a DFG fragment) is a 
omparability graph (ortransitively orientable graph) whi
h is a perfe
t graph. This is a useful property as
lique partitioning problems 
an be solved in polynomial time for perfe
t graphs,through a max-
ost �ow reformulation of the problem, giving the minimum totalpower 
onsumption on the registers in the 
ir
uit.The memory allo
ation for low-power problem 
an also be formulated as a network�ow problem [18℄. This work fo
uses on solving the problem of rapidly resolving theproblem to optimality for an in
remental 
hange of the s
hedule for use in low powers
heduling methods. This is a two-step pro
ess: i) A max-�ow 
omputation involvinga valid �ow solution while retaining the previous solution as mu
h as possible andii) a min-
ost 
omputation whi
h in
rementally re�nes the found �ow solution, usingthe 
on
ept of �nding a negative 
ost 
y
le in the residual graph for the �ow.3.1.5 Inter
onne
t design for low-powerOne way to redu
e the swit
hing a
tivity in the inter
onne
t 
onne
ting registers tothe fun
tional units is to isolate/signal guard parts of the inter
onne
t [110℄. Forinter
onne
t, in this 
ase built by a multiplexing network, it is not justi�able to in-sert lat
hes through-out the routing network, when 
ompared to the power overheadintrodu
ed by su
h a method. In addition to make use of data-
orrelations, it is pro-posed to freeze the inputs of the multiplexors to a �xed (hardwired) value, denotedthe �ller value. The probabilities for the di�erent swit
hing 
hara
teristi
s are 
om-puted by simulating the CDFG in whi
h the binding and s
heduling information isba
k-annotated. The algorithm for 
omputing the �ller values is a simple polynomialalgorithm running through 
omputing the most probable value. The power redu
tionof the inter
onne
t is then built into an iterative behavioral synthesis algorithm fors
heduling and binding to �nd the optimal low-power 
ir
uit. The meta-heuristi
approa
h used for this is based on �nding a sequen
e of moves where only the lastmove has to generate an improvement in the 
ost fun
tion (the intermediate stepsare allowed to move to unoptimal state-spa
e solutions), a tabu-sear
h me
hanismensures solutions are not repeatedly traversed.For bus-based mi
ro ar
hite
tures, redu
tion of swit
hing a
tivity 
an be a

om-



28 Related Workplished in two ways [29, 30, 28℄: (i) Through multiplexing the signals onto the busesin the 
orre
t order. (ii) And 
hoosing the optimal set of busses and their 
onne
tionbetween fun
tional units and registers. For design of the buses, the average signalswit
hing a
tivity for all nodes in, and inputs to, the CDFG are 
omputed by repeatedsimulation using a representative set of input ve
tors. Using this data the swit
hinga
tivity matrix SAk
ij , for su

essive data transmissions i → j for bus k, for a givenbus 
on�guration is 
omputed and the lowest energy is sele
ted. Simulated annealingis used to handle the 
omplete synthesis pro
ess in
luding bus 
on�guration design.3.2 Asyn
hronous behavioral synthesis, an overviewSynthesis of asyn
hronous 
ir
uits falls mainly in two 
ategories: (i) synthesis ofsmall-s
ale sequential 
ontrol 
ir
uits [26, 41, 106℄ and, (ii) synthesis of large-s
ale
ir
uits based on syntax-dire
ted 
ompilation from CSP-like languages: Tangram[11, 100℄, OCCAM [17℄, Balsa [8, 36℄ and ACK [59℄. Several tools exist (in the publi
domain) in these areas, and these tools have been used to design industrial s
ale
ir
uits.Synthesis methods for generating small-s
ale sequential 
ontrol 
ir
uits are low-level logi
 synthesis methods for the design of asyn
hronous logi
, the asyn
hronousequivalent to syn
hronous 
ontrol logi
 synthesis. syntax-dire
ted synthesis is a lineof high-level synthesis where there is a one-to-one 
orresponden
e between the high-level programming language spe
ifying the 
ir
uit and the 
ir
uit itself.Besides those two main lines of resear
h there are a number of other attempts.One of the most promising is desyn
hronization [14, 25℄ whi
h relies on syn
hronousbehavioral synthesis and then in the low-level logi
 synthesis phase substitutes the
lo
k and the syn
hronization with asyn
hronous handshaking and 
ontrol.We illustrate the design �ows of the di�erent synthesis methods 
urrently devel-oped for asyn
hronous 
ir
uit design and indi
ate the di�erent levels of abstra
tionin the synthesis pro
ess. The position inside ea
h level is unimportant and does notsignify any further degree of abstra
tion. The levels of abstra
tion are:Abstra
t This is the level where the behavior is expressed only by essential opera-tions and their essential dependen
ies.Behavior The level where the behavior is spe
i�ed in the form of a programminglanguage and as su
h may 
ontain restri
tions in expression form, whi
h may
orrespond to non-essential behavior.Ar
hite
ture In this level the behavior is spe
i�ed by ar
hite
tural information
onsisting of larger-s
ale 
omponents implementing a prede�ned behavior.Gate/Logi
 At this level the behavior is expressed in the form of an ar
hite
turaldesign built by logi
 gates.Physi
al This level represents behavior in physi
al form either as a layout or as aphysi
al model of a layout.



3.3 Asyn
hronous logi
 synthesis 29Not all details will be indi
ated in the �gures des
ribing the di�erent synthesis �ows,only those whi
h are of spe
ial nature or original to the method in question.In the following we present a non-exhaustive list of synthesis methods, groupedtogether as to how their synthesis �ows relates to ea
h other.3.3 Asyn
hronous logi
 synthesisAsyn
hronous logi
 synthesis is the building method behind asyn
hronous synthesisas these methods are used to generate the asyn
hronous logi
. This area has beenand still is, the fo
us of a majority of the resear
h in asyn
hronous 
ir
uit synthesis.Asyn
hronous logi
 synthesis 
an largely be divided into two groups: (i) Synthesis ofsmall-s
ale sequential input/output-mode 
ontrol 
ir
uits or handshake 
omponents[26, 41, 107, 108℄. This is usually done through tools like Petrify [24, 26℄. Thebehavior of the asyn
hronous 
ir
uit together with its environment is spe
i�ed usinga 1-bounded 1 
olor petri-net 
alled a Signal Transition Graph (STG). The approa
his limed by the NP-hardness of the synthesis problem with several improvementsimplemented through: Redu
ing the sear
h spa
e using heuristi
s [76℄. Series oflo
al graph transformations [91℄. Furthermore the problem 
ontains the importantsubproblem of 
onsistent state 
oding (CSC), whi
h is also the subje
t for extensiveresear
h [63, 65℄. The design of GasP 
ir
uits [35, 97℄ fall under the same 
ategoryof logi
 synthesis but employ a di�erent handshake proto
ol.The other group is synthesis of larger-s
ale 
ontrollers operating in fundamentalmode/Burst mode [40, 41, 107, 108, 109℄. These are ra
e-free asyn
hronous 
ombi-natorial 
ir
uits with restri
tions on both type of operation and the timing of howthe environment intera
ts with the 
ir
uit. This synthesis problem is likewise anNP-hard problem whi
h limits the size of the 
ontrollers possible to synthesize, butusually larger 
ir
uits than for the input/output-mode 
ir
uits 
an be synthesized.Again heuristi
s are employed to improve on the method [9, 98℄.Theseus logi
 has developed a Synopsys ba
k-end. Here the low-level logi
 syn-thesis of 
ontrol and datapath is implemented using a NCL logi
-synthesis leadingto an asyn
hronous 
ir
uit. The tool is integrated into Synopsys through the use ofspe
ial libraries and 
ompile 
ommands [38, 90℄.3.4 Asyn
hronous behavioral synthesisA number of papers have presented work on behavioral synthesis of asyn
hronous
ir
uits from DFG or CDFG representations, but they are surprisingly few and theyhave a di�erent and/or more limited s
ope [3, 4, 22, 23, 54℄. The �rst paper limitsitself to DFGs and fo
us mostly on a synthesis algorithm and its runtime. Theremaining papers address synthesis from a CDFG representation and they targetsolutions where a 
entralized 
ontroller or a distributed stru
ture of 
ontrollers arespe
i�ed at the level of individual signal transitions (in the form of signal transitiongraphs or burst-mode state graphs).
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Figure 3.4: Synthesis �ow for A
hilles, the Ba
hman approa
h, ACK andBalsa/TangramThe synthesis tool A
hilles [4, 22, 23℄ and the synthesis tool by Ba
hman et al.[3℄ both represent �pure� asyn
hronous behavioral synthesis.A
hilles starts from a 
ontrol data �ow graph and uses a modi�ed list-s
hedulingto generate a s
hedule in 
ontinuous time. The target ar
hite
ture is a set of in-dependent ma
hines 
orresponding to ea
h of the fun
tional units in the 
ir
uit, asillustrated on Figure 3.5. Ea
h independent FU then implements the appropriatepart of the s
hedule, has its own memory and handles 
ommuni
ation with the otherFUs. Using this method, there is a possible 
ommuni
ation overhead and memoryoverhead when 
omparing to a method using a single 
ontroller and datapath. The
ontroller of ea
h FU is spe
i�ed as a Petri-net and synthesized using Petrify. The
omplete synthesis �ow is illustrated in Figure 3.4 (a).The synthesis tool by Ba
hman, utilizes a method designated as resour
e-edges
heduling, whi
h is a form of s
heduling where the additional ordering imposed bys
heduling is represented as additional graph-dependen
ies added to the data �owgraph, as illustrated in Figure 3.6. It is un
lear from their work whether the startingpoint is a DFG or if they have in
luded DFG extra
tion from VHDL/Verilog. Thesynthesis �ow is illustrated in Figure 3.4 (b). The fo
us in their work is on ar
hite
-tural s
heduling and series of algorithms have been developed, in
luding s
hedulingand a 
ontinuous left-edge algorithm with the target ar
hite
ture being a 
entral
ontroller and datapath. They primarily address the runtime and 
omplexity of thedeveloped algorithms.
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FU4Figure 3.5: Conne
tion between the 
ontinuous s
hedule and the assignment to theasyn
hronous ar
hite
ture for A
hilles.3.4.1 Partitioned 
ontrollersAsyn
hronous Cir
uit Kompiler (ACK) [48, 59℄ is a high-level synthesis system, whi
his based upon a traditional 
ir
uit design style; 
onsisting of a datapath and a 
en-tralized 
ontroller. The starting point is a CDFG from whi
h a datapath (fun
tionalunit allo
ation) and a Petri-net des
ribing the 
ontrol of the datapath is extra
ted.No behavioral synthesis is involved in this extra
tion, ex
ept the sour
e 
ode 
ould
ontain pragmas for e.g. sharing a 
ommon subexpression. The synthesis pro
ess
ould therefor be 
hara
terized as syntax-dire
ted.The size of the Petri-net prevents dire
t synthesis of the 
ontroller, as this is anNP-hard problem. Instead, it is proposed to divide the 
ontroller into a small set of
ontrollers and methods are des
ribed for letting multiple 
ontrollers jointly 
ontrola single fun
tional unit in the datapath, through a boundary layer, also responsiblefor sending data from the datapath to appropriate 
ontroller, as illustrated in Figure3.7. Unlike A
hilles, there is not a one-to-one 
orresponden
e between the FU andthe 
ontroller partitioning. The partitioning of the Petri-net is left to the designerand no automated methods are presented in the work.The set of manually partitioned Petri-nets are then automati
ally 
onverted intoa set of burst-mode spe
i�
ations, whi
h is then synthesized into burst-mode 
on-trollers. The synthesis of the datapath is handled through Synopsys. The 
ompletesynthesis �ow is illustrated on Figure 3.4 (
).Several other approa
hes employ similar te
hniques with shared 
ontrollers andlook into automated methods for partitioning 
ontroller into manageable sizes [54,104, 105℄.
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Figure 3.7: Control and Datapath ar
hite
ture for ACK.3.4.2 syntax-dire
ted synthesisBalsa [7, 8, 36℄, Tangram [11, 12, 100, 101℄ and OCCAM [17℄ are CSP type lan-guages spe
i�
ally designed for synthesis of large s
ale asyn
hronous 
ir
uits. Theyemploy syntax-dire
ted synthesis into a set of prede�ned asyn
hronous handshake
omponents. Both tools are well developed, supported and have been used to de-sign industry s
ale 
ir
uits. The 
ontroller 
onsists of a distributed net of handshake
omponents and likewise for the datapath. The �ow is illustrated in Figure 3.4 (d).The syntax-dire
ted 
ompilation approa
h is radi
ally di�erent from the behav-ioral synthesis �ow used by designers of syn
hronous 
ir
uits. Firstly, syntax-dire
ted
ompilation is based on a non-standard language, and se
ondly, and more important,the 
ompiler merely performs a one-to-one mapping of the program text into a 
or-responding 
ir
uit. Although syntax-dire
ted 
ompilation does allow the designerto work at a relatively high level it does not provide any optimizations; �what youprogram is what you get�. In some situations this 
an be 
onsidered an advantagebut it also puts more burden on the designer: exploring alternative implementationsrequires a
tually programming these, whereas in a traditional syn
hronous synthesis�ow, the designer 
an qui
kly and easily experiment with di�erent 
onstraints and
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Figure 3.8: Synthesis �ow for Resynthesis, SAC, Desyn
hronization and the MOODStool.goals and in this way 
reate alternative implementations from the same program text.The tools support logi
 optimization to some degree i.e. in the form of Peep-holeoptimizations. These are optimizations where groups of handshake 
omponents whenpla
ed together in a 
ertain way are repla
ed by one larger handshake 
omponentthus redu
ing the 
ontrol logi
.To further improve on this, the resynthesis [20℄ approa
h is pushing this evenfurther by grouping parts of the 
omponents related to operators in the datapath andre-synthesize the 
ontrol logi
 using burst-mode 
ir
uits. The �ow follows the balsa-�ow until the point where the 
ir
uit is des
ribed by a set of handshake 
omponents,these are then resynthesized. The �ow is illustrated in Figure 3.8 (a).The TAST tool [85℄ is pursuing the same dire
tion but is instead synthesizing the
ontroller from the spe
i�
ation, avoiding the handshake 
omponents 
ompletely andusing a traditional 
ontrol/datapath ar
hite
ture. Advan
es in STG to asyn
hronous
ir
uit synthesis has allowed this to be used for larger 
ir
uits and thus be
omesmore attra
tive. The starting point is a VHDL des
ription, from whi
h the Petri-net-spe
i�
ation and datapath is derived. The TAST tool is 
urrently not availablein the publi
 domain.Blunno [15℄ targets the generation of mi
ro-pipelines dire
tly from a Verilog spe
-i�
ation and [62℄ generates delay insensitive 
ir
uits from graph-theoreti
 spe
i�
a-



34 Related Worktions, but again there is a one-to-one 
orresponden
e between a spe
i�
ation and theresulting 
ir
uit.3.4.3 Synthesis of Asyn
hronous Cir
uits
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Figure 3.10: Graph theoreti
 transformations supported by SAC: Deterministi
.In SAC [46, 50, 73℄ behavioral synthesis is handled at the CDFG level. The tool
an synthesize a single VHDL pro
ess (assuming inputs and outputs to be handshake
hannels) into a standard 
ell 
ir
uit implementation. Two types of synthesis meth-ods are supported: Non-performan
e degrading resour
e sharing and performan
edegrading resour
e sharing. The synthesis �ow begins by extra
ting a 
ontrol data�ow graph from the spe
i�
ation (a single VHDL pro
ess).The CDFG is analyzed and resour
e sharing and operation s
heduling, in theform of graph transformations, are performed. Two types of graph transformationsare supported:
• Disjun
tive resour
e sharing. Operators that have a disjun
tive relation, i.e.from a graph theoreti
al perspe
tive never 
an exe
ute at the same time, 
ouldbe resour
e-shared to the same operator. The order of exe
ution is handled bya dete
t 
omponent whi
h dete
ts whi
h operation is ready to exe
ute. Themethod is illustrated in Figure 3.9.
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• Deterministi
 resour
e sharing. Operators that have a deterministi
 relationi.e. a �xed order of exe
ution 
an be established, 
an be resour
e-shared tothe same operator. The exe
ution order is then 
ontrolled by a sequen
er
omponent. The method is illustrated on Figure 3.10.After these optimizations a 
orresponding 
ir
uit implementation is generated.The method utilizes the fa
t that there is a 
lose 
orresponden
e between a CDFG[33, 67, 96℄ and an asyn
hronous 
ir
uit: The edges in a CDFG 
an be seen ashandshake 
hannels and the nodes in a CDFG 
an be seen as handshake 
omponents� 
omponents that are quite similar to the handshake 
omponents used in syntax-dire
ted 
ompilation. In this way a simple one-to-one mapping of the CDFG to anetwork of asyn
hronous handshake 
omponents is performed.The graph transformations makes this di�erent from the syntax-dire
ted 
ompi-lation of large-s
ale asyn
hronous 
ir
uits from non-standard languages. The �ow isillustrated in Figure 3.8 (b).This work represents our initial e�ort to implement asyn
hronous behavioral syn-thesis. The method was dis
ontinued as we found there was a power overhead asso-
iated with this method of synthesis. Resear
h into a non-one-to-one 
orresponden
ebetween a CDFG and a handshake 
ir
uit might alleviate this.3.4.4 Desyn
hronizationCommon for these methods is the use of existing syn
hronous methods and toolsas part of the pro
ess for generating an asyn
hronous 
ir
uit. In some way thesemethods represent the opposite of the �pure� asyn
hronous behavioral synthesis, asall these methods use syn
hronous behavioral synthesis to perform ar
hite
tural syn-thesis before employing asyn
hronous logi
 synthesis to generate the �nal 
ir
uit.Desyn
hronization [14, 16, 25℄ makes use of existing syn
hronous methods andtools to synthesize a syn
hronous 
ir
uit down to gate-level and then repla
e the syn-
hronous 
ontrol logi
 and the 
lo
k by asyn
hronous 
ontrol logi
 and asyn
hronoushandshaking. The synthesis �ow is illustrated on Figure 3.8 (
). Two dire
tions existfor generating the asyn
hronous 
ontrol logi
:Synthesis [25℄ Infer the overall behavior from the syn
hronous behavior, this in-volves 
onstru
tion of a STG des
ription or a burst-mode des
ription and thensynthesizing the 
entral 
ontroller. This approa
h is limited to smaller-size
ontrol 
ir
uits, limited by logi
 synthesis 
apabilities.Substitution [14℄ Systemati
ally repla
e syn
hronous 
omponents by lo
al hand-shake 
omponents through a transparent one-to-one 
orresponden
e. This ap-proa
h generates less optimal solutions than the former, but 
an be used forlarger-s
ale synthesis.
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Figure 3.11: The behavioral synthesis me
hanism of the MOODS synthesis tool.3.4.5 Variable length time-slot behavioral synthesisSa
ker [88℄ proposes a method whi
h resembles the syn
hronous behavioral synthesis�ow but where the target operation group time-slots are of variable length. Borrowingfrom 
ompiler te
hnology and syn
hronous synthesis the group has extended theirexisting syn
hronous behavioral synthesis MOODS to handle asyn
hronous 
ir
uits.The target is a single 
ontrol sequen
e of operation-groups, where ea
h operation-groups 
an 
onsist of several operations in parallel and have the exe
ution time ofthe slowest operation in the group. Multi-
y
le operations are not supported, but
haining is. However 
haining implies data is fed dire
tly between two FUs with-outbeing stored in registers and therefore no resour
e sharing of the FUs involved in
haining is allowed. There has to be a su�
ient number of FUs su
h that for alloperations-groups, all the operations in an operation-group have a dire
t mapping toa FU.The starting point is a VHDL behavioral model. From this an intermediate for-mat, they 
all ICODE is extra
ted, whi
h is a representation equivalent to a CDFG.Then s
heduling allo
ation and binding is performed, with the �syn
hronous� s
hedulerepresented by a 
ontrol-step graph. The asyn
hronous 
ontrol is handled by mappingthe elements of the 
ontrol-step graph via prede�ned asyn
hronous 
ontroller-
ellsto an asyn
hronous 
ir
uit. The datapath is synthesized through a set of templates.The used asyn
hronous signaling is based on 4-phase handshake-proto
ols. The �owis illustrated in Figure 3.8 (d).



3.5 Summary 373.5 SummaryCurrently resear
h in behavioral synthesis of asyn
hronous 
ir
uits is primarily fo-
used on syntax-dire
ted synthesis and desyn
hronization. Besides there is a multi-tude of more or less su

essful attempts for high-level synthesis.There are three aspe
ts we would like our asyn
hronous behavioral synthesis to
ontain:
• Ability to 
onstru
t systems operating in 
ontinuous time and using methodsfrom behavioral synthesis and Operations Resear
h in 
ontinuous time. Desyn-
hronization methods are limited by their use of a dis
rete time-evolution to�nd the optimal s
hedule.
• Ability to use existing behavioral synthesis methods developed for syn
hronoussynthesis, su
h as the methods for low-power behavioral synthesis reviewed inthe beginning of this 
hapter. Leveraging on existing te
hniques that are wellproven both in theory and pra
ti
e will prove very bene�
ial.
• Use of handshake 
omponents both for 
ontroller synthesis and datapath syn-thesis to fa
ilitate 
onstru
tions of large s
ale designs. For an asyn
hronousbehavioral synthesis to be e�e
tive it has to be able to synthesize industry-s
ale designs.The resear
h presented in this thesis tries to implement these aspe
ts by introdu
-ing a 
omputation model allowing the use of both synthesis methods of syn
hronousdis
rete time and methods for 
ontinuous time and targets asyn
hronous handshake
omponents both for datapath and 
ontroller synthesis. As an implementation we
urrently build upon the balsa language, but this is not a restri
tion our work 
ouldeasily be extended to target other languages or design approa
hes.
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C h a p t e r 4Behavioral Synthesis forAsyn
hronous Cir
uits
Syn
hronous 
ir
uit synthesis utilizes a simple model for implementing syn
hronous
omputation and this method has proven to be highly su

essful. Therefore, ratherthan to invent a di�erent 
omputation model, we adapt the existing 
omputationmodel for asyn
hronous 
ir
uit synthesis. This has the added advantage of openingup for the use of many of the existing methods from syn
hronous behavioral synthesisin asyn
hronous 
ir
uit synthesis. In this 
hapter we address this in detail.4.1 From syn
hronous to asyn
hronous behavioralsynthesisLet us �rst review and analyze the elements of syn
hronous behavioral synthesis.Based on the CDFG, syn
hronous behavioral synthesis involves three sets of trans-formations in order to 
reate a suitable hardware ar
hite
ture;

• S
heduling, in whi
h operator nodes of the CDFG are grouped into operation-groups or time-slots, and where the exe
ution of the next operation-group ishandled by a syn
hronization event, Ei, where i stri
tly orders the events intime. In the 
ase of syn
hronous behavioral synthesis Ei is 
ontrolled by thesystem 
lo
k.
• Allo
ation, in whi
h the minimum hardware resour
es/ fun
tional units (FUs),required for exe
ution of the operation-groups are determined.
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hronous 
omputation model into the asyn-
hronous domain.
• Binding (or assignment), where individual operator nodes are tied to spe
i�
hardware resour
es.The syn
hronization events determine (i) the beginning of exe
uting an operation(ii) writing the result of an operation.The CDFG extra
ted in the syn
hronous behavioral synthesis is a 1-bounded 
ol-ored Petri net, where 
olors represent data values, edges represent pla
es, and nodesrepresent transitions. Interestingly, the Petri net model is based on an asyn
hronousexe
ution semanti
s whi
h should make it an obvious model for asyn
hronous syn-thesis as well. In the syn
hronous synthesis, Figure 4.1 (left), operations are ordereda

ording to a global syn
hronization event, Ei, i.e., read events (Er,j) for operator

j happens at the same point in time as the write events (Ew,i) for operator i in theprevious operation-group: E0
w,i = E0

r,j = E0, and furthermore all operations in anoperation-group are exe
uted simultaneously: E0
r,j = E0

r,k = E0.
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FUFigure 4.3: Rearranging 
omponents to get the initial 
omputation model.If we relax these assumptions: Ew,i 6= Er,j and Er,j 6= Er,k as shown in Figure 4.1(right), and if we make these syn
hronization events 
ontrolled by the 
ontroller, we
an 
reate a hardware ar
hite
ture 
onsisting of a datapath and a 
ontroller whi
hoperates in 
ontinuous time.We start with the syn
hronous 
omputation model as shown in Figure 4.2 (left).This is a standard Moore ma
hine datapath with memory (register) 
ontroller by a
lo
k and some fun
tional units (
ombinatorial 
ir
uitry) to operate on the data. Tomove data ba
k and forth between the memory and the fun
tional units two layersof muxes 
ontrol the data �ow, 
ontrolled by signals MI and MII . The �rst step inadopting this 
omputation model is to move the 
omponents into the asyn
hronoushandshake domain. We will use this to model the asyn
hronous timing assumptions.Then we expand the registers by splitting the syn
hronizations events: Ew,i 6= Er,j .The next step is to let the syn
hronization events 
ompletely 
ontrol the 
ompu-tation (datapath). This is done by rearranging the lat
hes and transfer 
omponentssu
h as redu
ing the muxes to merge 
omponents. From this we get the initial 
om-putation model shown in Figure 4.3. In this model the individual syn
hronizationevents Ew,i, Er,i 
ontrol the 
omputation. From the model it shows that Ew,i is a
-tive during the a
tual 
omputation and Er,i is a
tive only for the transfer from lat
hto lat
h. This model is suboptimal as we are using a lat
h for temporary data andthe FU 
an only have one target.To 
ontinue from here we have two options whi
h re�e
t the properties of ourdatapath, and lead to two datapath topologies: The �rst we designate alpha andhere the fun
tional units are purely 
ombinatorial without lat
hes on input and out-put ports. The se
ond we designate beta and here the fun
tional units have normally
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Figure 4.5: Final 
omputation model without normally opaque lat
hes on input andoutput ports of the fun
tional units.opaque lat
hes both on input and output ports. The use of input and output lat
hestends to in
rease speed and to redu
e power 
onsumption by preventing spurioussignal transitions to propagate beyond lat
h boundaries. If input and output lat
hesare not used, more variable lat
hes may be needed in the datapath in order to a
-
ommodate the longer lifetime requirements and in order to avoid auto assignments.In the following we pursue both dire
tions, starting with alpha, no lat
hes on inputand output ports:
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Figure 4.6: Computation model with input and output lat
hes.Rearranging the temporary lat
h after the FU as shown Figure 4.4 (left),next we move the temporary data into the memory be
oming Lw bysubstituting Ew,i → Er,j getting Figure 4.4 (right). We still have therestri
tion that the FU always writes to Lw, but Lw 
an be used byothers. By reinserting write syn
hronization events we get a 
omputationmodel whi
h allows all lat
hes to be used as sour
e and target for allfun
tional units. This is shown in Figure 4.5. Er,i||Ew,j moves data fromLv to Lw through the FU doing 
omputation. Restri
tion: Lv 
annot beused as both sour
e and target and while Lv and Lw are being used in
omputation, there 
an be: (i) no other write to Lv and (ii) no-other reador write to Lw.Next we will pursue the datapath (beta) with lat
hes on input and output ports:We already have input lat
hes so we insert output lat
hes and are thusfor
ed to get an extra syn
hronization event 
ontrolling the 
omputation.The exe
ution of a 
omputation takes the following form: {Er,i};Ecompute;
{Ew,j}, as shown in Figure 4.6. Then we remove the 
ontrol of this 
om-putation event by de
oupling the 
ontrol of the FU making it an indepen-dent pro
ess as shown on Figure 4.7 (left). This model 
an operate witharbitrary syn
hronization events. The �nal 
omputation model is shown
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Figure 4.7: Final 
omputation model with normally opaque lat
hes on input andoutput ports of the fun
tional units.in Figure 4.7 (right), it resembles the syn
hronous ar
hite
ture but it is
ompletely asyn
hronous.Both models have the same ar
hite
ture; the only di�eren
e is the time the data needsto be held in the sour
e lat
h and restri
tions on the target lat
h. Both methods
an therefore be used heterogeneously in the same datapath, using the most suitablemethod for the spe
i�
 FU, we will denote su
h a mixed model gamma.This idea allows us to use any of, but not restri
ted to, the many syn
hronousbehavioral synthesis te
hniques to obtain a hardware ar
hite
ture (datapath and
ontroller) and then to implement this ar
hite
ture using asyn
hronous 
ir
uit te
h-niques. At the same time, this idea allows the use of behavioral synthesis te
hniquesoperating in 
ontinuous time.
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Figure 4.8: (Top) One-to-one 
orresponden
e between CDFG and asyn
hronous 
ir-
uit. (Bottom) s
heduled CDFG using a non-essential pre
eden
e-
onstraint (thi
ksolid line) and mapping to asyn
hronous 
ir
uit.Having approa
hed our target 
omputation model from the syn
hronous side wewill now approa
h our model from the asyn
hronous side. The starting point is theone-to-one 
orresponden
e between the CDFG representing the 
omputation andthe asyn
hronous handshake 
omponent network, as shown in Figure 4.8 (left) witha small example. For this CDFG there is a single essential pre
eden
e 
onstraint:
f1 < g. The delay of the 
ir
uit is given by T = max (Tf2

, Tf1
+ Tg) and the totalarea is given by A = Af1

+Af2
+Ag.The basi
 idea behind 
onstraint based synthesis and resour
e sharing is to per-form time-multiplexed mapping of several operators onto a smaller set of fun
tionalunits. As only one operation 
an be performed per FU, this requires memory. Inthis setting the time-multiplexing 
orresponds to the s
heduling. The mapping ofoperators to FUs, 
orrespond to the assignment, and the set of FUs themselves 
or-respond to the allo
ation. The s
heduling 
an be represented by a minimal set ofnon-essential pre
eden
e 
onstraints [95℄ or resour
e-ar
s [2℄, spe
ifying the time-ordering. This is illustrated on Figure 4.8 (right) with the non-essential pre
eden
e
onstraint: f1 < f2 represented by the thi
k arrow from f1 to f2, whi
h are mappedonto the same fun
tional unit F . In this 
ase the delay of the 
ir
uit is given by

T = max (Tf1
+ Tf2

, Tf1
+ Tg) = Tf1

+ max (Tf2
, Tg) and the total area is given by

A = Af1,f2
+Ag.
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Figure 4.10: The 
ontrol handshake 
omponent and the transfer handshake 
ompo-nent.To pro
eed from here we need the mapping of a single operator σ with sour
e data
a, b in lat
h Li and Lj respe
tively, and target data c assigned to Lk whi
h is given inFigure 4.9, as the simplest 
onstru
tion of su
h a mapping. To 
onstru
t the 
ontrol
ir
uits for this mapping we introdu
e the dual 
omponent to the transfer handshake
omponent, the 
ontrol 
omponent 
.f. Figure 4.10. The behavior of the 
ontrol
omponent is a follows: First the 
omponent waits for a request from all input ports
a0, a1, ... then a request is pla
ed on output port b. When an a
knowledge arrivesfrom b the handshake with input ports a0, a1, ... are 
ompleted and the handshakewith output ports c0, c1, .. are 
ommen
ed and 
ompleted. The STG for a four phaseimplementation of the 
omponent is shown in Figure 4.11.Together with the transfer 
omponent the 
ontrol 
omponent maps the CDFGonto a 
ontrol part and a data part. This depends whether our fun
tional units haveinput/output lat
hes or not. Both solutions to this problem are shown in Figure4.12. We now see there is a dire
t 
orresponden
e between the CDFG node andthe 
ontrol node of our asyn
hronous 
ir
uit and the fun
tional unit mapping. Forthe alpha model there is a dire
t 
orresponden
e between the CDFG node and the
ontrol 
omponent. For the beta model there is a dire
t 
orresponden
e between theCDFG input ar
s and the 
ontrol node responsible for the loading of the data to thefun
tional unit and the dire
t 
orresponden
e between the CDFG output ar
 and the
ontrol node responsible for the reading of the result of the fun
tional unit. We will
ontinue with the alpha model.
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c.r−Figure 4.11: Four phase STG for the 
ontrol handshake 
omponent with only one aand c 
hannel. For multiple a0, a1, ... and multiple c0, c1, ... the a and c have to berepla
ed by 
on
urrent handshaking on all these 
hannels.Performing a one-to-one mapping of the 
ontrol nodes in the CDFG and thealpha model generates the 
ir
uit shown in Figure 4.13. Using this approa
h we havemoved from the one-to-one 
orresponden
e between CDFG and fun
tional units tomodel with a one-to-one 
orresponden
e between the CDFG and the 
ontrol part ofthe handshake 
ir
uit only. The fun
tional units now follow the behavioral synthesisallo
ation. The 
ontrol part of the handshake 
ir
uit 
ould be implemented usingany methodology for asyn
hronous state-ma
hine design: Burst-mode [109℄, Petrify[26℄, set of handshake 
omponents [92℄ and Balsa/Tangram [7, 11℄ style 
ontroller.We will implement the 
ontrol part of the 
ir
uit using a di�erent method to gen-erate the events, whi
h uses handshake 
omponents su
h as sequen
ers and parallelet
. These are better suited for our behavioral synthesis algorithms operating witha sequen
e of dis
rete events.The same datapath and 
ontrol 
ir
uit 
an be built for the beta model, using thesame approa
h. To build a 
ompa
t e�
ient 
omputation unit (datapath) we willlook at how to generate this in general in the following se
tion.4.3 Datapath synthesisAssume we are given a CDFG, and that s
heduling, allo
ation and assignment hasbeen performed as shown in Figure 4.14, using the FU library shown in table 4.1 (tobegin with, the s
hedule will not in
lude the load of input data to the 
ir
uit andstoring of the results). The FU library has been normalized with respe
t to the ALU
omponent. We will 
onsider the s
hedule to operate in 
ontinuous time. However itis of no importan
e whether the s
hedule has been obtained using an asyn
hronouss
heduling method or through a syn
hronous method whi
h has been relaxed into
ontinuous time, as dis
ussed in the previous se
tion. Note that the operator nodeshave been labeled: 1,2,..,8 and temporary data: w0,w1,...,w7. The bran
h part of the
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Figure 4.12: Corresponden
e between CDFG node and asyn
hronous 
ir
uit styles.FU σ t A EALU {+,−, >} 1 1 1mult {∗} 2.6 10 13Table 4.1: Simple example normalized FU library.CDFG, nodes {6, 7, 8}, gives rise to two paths in the s
hedule. Determined by theexe
ution of node 4, either 6 and then 8, or 7.The s
heduling in Figure 4.14 results in the fastest exe
ution of the CDFG on adatapath 
ontaining only one mult and one ALU 
omponent.4.3.1 Datapath with out input/output FU lat
hes (alpha)The general stru
ture of the asyn
hronous datapath is shown in Figure 4.15 and itfollows the 
omputation model (alpha) presented in the previous se
tion. The internalvariables (L0...Ln) in our datapath are implemented as lat
hes.The life time of a variable in this datapath (alpha) spans from when the 
ompu-tation produ
ing the variable starts until the variable has been used for the last timein
luding the duration of the last 
omputation.For our example, the variable lifetime is shown in Figure 4.16 and is generatedby the following algorithm: Let Ω be the set of operators {σi} , σi,sour
e = {wj} be



4.3 Datapath synthesis 49
||x x

1

0
y

y
1

a
0

0
w

F

x
0

||

x
1

x
2

y
1

w
0

a
0

y
0

G

x
2

||
g

f f1
2

Control Part

0

Figure 4.13: Resour
e-shared asyn
hronous 
ir
uit.
ALU

* 2

x
1

a
1

a
3

0
x

a
0

a
2

0 1 0 1

0 1

x
2

0
y y

1

1

+ 3

+

− *

+ 6 −
> 4

5

1

2

3

4

5

6

7

7

8

0

w

w
w

w

w

w

w
w

8
5

7

2

3

6

4

1

t=T

t=0

t

mult

Figure 4.14: (Left) Our example CDFG with labels on temporary data. (Right)S
heduling of our CDFG.the set of sour
e variables to operator i and let σi,target = wk be the target variable.Furthermore let σi,start be the s
heduled start time of operator i and dFU(i) the delayof the FU σi is assigned to. T is the length of the s
hedule.Alpha:Initialization ∀wi,end = 0 and ∀wi,start = TAlg For elements σi ∈ Ω {for elements wj ∈ σi,sour
eif wj,end < σi,start + dFU(i) then wj,end = σi,start + dFU(i)if wk,start > σi,start then wk,start = σi,start }
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Figure 4.16: Variable lifetime (alpha) for our s
heduled CDFG.After we have found the variable time, we need to �nd the minimum numberof lat
hes required and their assignment for the s
hedule. For this we 
an use theleft-edge algorithm for dis
rete time [67℄, if the s
hedule has been generated througha syn
hronous method or the left-edge algorithm for 
ontinuous time [3℄, to �ndthe minimum number of lat
hes required in the datapath, whi
h in this 
ase is sevenlat
hes. The left-edge algorithm also gives us the variable to lat
h assignment, shownin Figure 4.17. The 
onditional part in the variable lifetime algorithms are handledby keeping tra
k of whi
h variables ex
lude ea
h other, those 
an be assigned tothe same lat
h. The 
hoi
e of variable to lat
h assignment algorithm depends onseveral fa
tors: a) one might 
hoose an algorithm that 
onsiders both the lat
h areaand the multiplexing area [21, 67, 87, 58, 49, 99℄. Rearranging the variable to lat
hassignment 
ould minimize the multiplexing area more than a possible in
rease inlat
h area leading to an overall area minimization. b) Another 
onsideration is power
onsumption. Variables with high data 
orrelation 
ould be grouped together on thesame lat
h leading to a smaller power 
onsumption of the 
omputation [28, 31, 19,57, 39, 83℄.
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heduled CDFG.
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FU0 FU1Figure 4.18: Final datapath (alpha) for our s
heduled CDFG.With the FU allo
ation, operator to FU assignment and variable lat
h assignmentthe datapath 
an be 
onstru
ted by 
onne
ting the 
omponents through multiplexors.The datapath for our example is shown in Figure 4.18. The 
ontroller to this 
ir
uitimplements the s
hedule and 
ontrols the FUs with the right data at their designatedtimes.4.3.2 Datapath with input/output FU lat
hes (beta)The general stru
ture of the datapath with output FU lat
hes is shown in Figure4.19 and it follows the 
omputation model (beta) presented in the previous se
tion.The internal variables (L0...Ln) in our datapath are implemented as lat
hes. Thefun
tional units (FU0...FUm) are implemented as independent pro
essing units, withlo
al 
ontrol, wrapping the 
omputation part with lat
hes on both input and outputports.
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Figure 4.19: General stru
ture of datapath with input/output FU lat
hes (beta).
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Figure 4.20: Variable lifetime (beta) for our s
heduled CDFG.All the lat
hes are implemented as normally opaque lat
hes whi
h gives us anumber of advantages:1. Normally opaque lat
hes on the input ports of the FUs ensures that 
hangingdata in the variables does not lead to unne
essary swit
hing a
tivity and power
onsumption inside FUs whi
h are supposed to be idle.2. Normally opaque lat
hes on the output port of the FUs ensures that beforepresenting the result to the rest of the 
ir
uit, we let the 
ombinatorial 
ir
uitsettle (assuming single-rail).3. Normally opaque lat
hes to hold variables, e�
iently redu
es the 
ombinatorialdepth in the data routing part redu
ing swit
hing a
tivity and power 
onsump-tion.To 
ompute the variable life times we have to look at how long a variable needsto be held in an internal variable. Sin
e our FUs have input lat
hes we only needto hold the variable until it has been read for the last time, at the start of the last
omputation. This redu
es the variable life time requirements, leading to a possible
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h assignments (beta) for our s
heduled CDFG.redu
tion in the number of variables needed. We set the overhead for reading andwriting a result to a variable lat
h to be t∆, whi
h is added to the variable lifetime.For our example, the variable lifetime using this approa
h is shown in Figure 4.20and is generated by the following algorithm: Let Ω be the set of operators {σi} ,
σi,sour
e = {wj} be the set of sour
e variables to operator i and let σi,target = wk bethe target variable. Furthermore let σi,start be the s
heduled start time of operator iand dFU(i) the delay of the FU σi is assigned to. T is the length of the s
hedule and
∆T is the time overhead of loading and storing data to the lat
hes.Beta:Initialization ∀wi,end = 0 and ∀wi,start = TAlg For elements σi ∈ Ω {for elements wj ∈ σi,sour
eif wj,end < σi,start + ∆T then wj,end = σi,start + ∆Tif wk,start > σi,start + dFU(i) then wk,start = σi,start + dFU(i) }The minimum number of lat
hes required in the datapath, given by the left-edgealgorithm is in this 
ase is four lat
hes and the variable-to-lat
h assignment is shownin Figure 4.21. Also here several lat
h assignment algorithms 
an be used.With the FU allo
ation, operator to FU assignment and variable lat
h assignment,the datapath 
an be 
onstru
ted by 
onne
ting the 
omponents through multiplexors.The datapath for our example is shown in Figure 4.22.
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Figure 4.22: Final datapath (beta) for our s
heduled CDFG.4.3.3 Datapath with mixed input/output FU lat
hes (gamma)The general stru
ture for the datapath with mixed input/output fun
tional unitlat
hes is a mix of the two previous models. The internal variables (L0...Ln) inour datapath are implemented as lat
hes. The fun
tional units (FU0...FUm) areimplemented as a mixed of independent pro
essing units and as regular fun
tionalunits.Computing the variable life times is a mix of the two previous approa
hes; thestart time follows the model 
orresponding to the type (alpha or beta) fun
tional unitit is produ
ed by and the end-time follows the model 
orresponding to the type offun
tional unit it is used by lastly.For our example, the low-power solution is to en
lose the multiplier with in-put/output FU lat
hes and letting the ALU operate as a standard FU without in-put/output FU lat
hes. In this way we shield the unit with the largest 
ombinatorialdepth. The variable lifetime using this mixed approa
h is shown in Figure 4.23and is generated by the following algorithm: Let Ω be the set of operators {σi},
σi,sour
e = {wj} be the set of sour
e variables to operator i and let σi,target = wk bethe target variable. Furthermore let σi,start be the s
heduled start time of operator
i, dFU(i) the delay of the FU σi is assigned to and τFU(i) be the type of FU: α (without) or β (with FU lat
hes).Parameter T is the length of the s
hedule and ∆T is thetime overhead of loading and storing data to the lat
hes.Gamma:Initialization ∀wi,end = 0 and ∀wi,start = TAlg For elements σi ∈ Ω
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Figure 4.24: Lat
h assignments (gamma) for our s
heduled CDFG.if τFU(i) = beta then {for elements wj ∈ σi,sour
eif wj,end < σi,start + ∆T then wj,end = σi,start + ∆Tif wk,start > σi,start + dFU(i) then wk,start = σi,start + dFU(i) }else {for elements wj ∈ σi,sour
eif wj,end < σi,start + dFU(i) then wj,end = σi,start + dFU(i)if wk,start > σi,start then wk,start = σi,start }The minimum number of lat
hes required in the datapath given by the left-edgealgorithm is in this 
ase is six lat
hes and the variable to lat
h assignment is shownin Figure 4.24. Also here several lat
h assignment algorithms 
an be used.With the FU allo
ation, operator to FU assignment and variable lat
h assignment,the datapath 
an be 
onstru
ted by 
onne
ting the 
omponents through multiplexors.The datapath for our example using the mixed approa
h is shown in Figure 4.25.
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Y0Y1Figure 4.25: Final datapath (gamma) for our s
heduled CDFG.4.4 SummaryIn this 
hapter we have looked at two 
omputation models whi
h have di�erent power
hara
teristi
s but have the same fundamental type of operation and thus 
an bemixed. The models are 
apable of implementing any type of s
hedule, both dis
reteand 
ontinuous and their resemblan
e to syn
hronous 
omputation models allows forthe used of methods from that domain to be utilized for asyn
hronous 
ir
uit design.Finally, we have looked at the details of datapath synthesis i.e. variable and lat
hallo
ation and assignment for all of the 
omputation models.



C h a p t e r 5Implementation in Balsa
This 
hapter presents the Balsa implementation templates for generating our asyn-
hronous 
ir
uits for all of the 
omputation models. In the previous 
hapter we have
onne
ted traditional behavioral synthesis with asyn
hronous 
ir
uits using our 
om-putation model. This 
hapter deals with the pra
ti
al implementation of this model,the ba
k-end of our synthesis tool. Figure 5.2 shows the Balsa handshake 
ir
uitequivalent to our datapath from Figure 4.22.5.1 Program stru
tureThe Balsa handshake 
ir
uit stru
ture 
orresponding to our general datapath stru
-ture is shown in Figure 5.1. Su
h a Balsa handshake 
ir
uit is built from handshake
omponents whi
h implement the equivalent RTL operations as lat
hing data, mul-tiplexing data, addition et
. Ea
h of these handshake 
omponents has its own lo
alasyn
hronous 
ontrol to ensure proper asyn
hronous fun
tionality and to handle theasyn
hronous handshake 
ommuni
ation proto
ol [92℄.Besides these asyn
hronous handshake 
omponents whi
h have their equivalentRTL 
ounter parts, there are the demux 
omponents whi
h handles �wire-forks�, andmore importantly the transfer handshake 
omponents 
onne
ting the asyn
hronous
ontroller with the datapath; the latter play the role of event syn
hronizers, refer toFigure 1.4, 
ontrolling the 
omputation. These extra 
omponents augments the muxlayers with sublayers of demux and transfer 
omponents. Noti
e the mux 
omponentsimplement a merge fun
tionality and is not dire
tly 
onne
ted to the 
ontroller, nei-ther are the lat
hes, demuxes or FUs (ex
ept the opr 
ontrol signal), only the transfer
omponents are 
onne
ted to the 
ontroller. The FUs are autonomous 
omponents
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ALUFigure 5.1: Datapath (beta) for our s
heduled CDFG using Balsa/Tangram hand-shake 
omponents using de
oupled fun
tional units.whi
h start 
omputing when all their input data is present. Using these 
ompo-nents and our 
omputation model, there is a one-to-one 
orresponden
e between thedatapath of Figure 4.22 and Figure 5.1.In our design we use a bundled data 4-phase proto
ol where signals 
ontain a 1bit request and a 1 bit a
knowledge wire additional to the data wires. Furthermore,the transfer 
omponents degenerate to simple wire 
onne
tions 
ontaining no logi
.The Balsa programs spe
ifying the asyn
hronous 
ir
uit 
onsists of:FUs Instantiation of the di�erent Balsa FUs used in the design. Ea
h of thesedes
riptions are taken from a FU library of Balsa 
omponent des
riptions, wehave designed for this purpose. The delay, area and power 
onsumptions �guresof this library are used by the synthesis algorithm to generate the s
hedule.Ar
hite
ture Balsa implementation of the 
ir
uit 
ontaining the spe
i�
ation forthe 
ontrol-handshake 
omponents, the lat
h instantiations, and the spe
i�
a-tion of the routing of data between the variables and the FUs.
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Figure 5.2: Cir
uit stru
ture using Balsa/Tangram handshake 
omponents, 
orre-sponding to our datapath (beta) stru
ture.The FUs are implemented using the following Balsa-program stru
tures:pro
edure FUalpha(inputs a,b,..;output z) isbeginloopsele
t a,b,.... thenz<-F(a,b,...)endendendpro
edure FUbeta(inputs a,b,..;output z) isvariable A,B,Z,...beginloopa->A || b->B || ...;Z:=F(A,B,...) ;z<-Zendendwhere F implements the 
omputation.



60 Implementation in BalsaThe design of the 
ir
uits follows the following Balsa-program stru
ture:input [FU_library℄pro
edure Cir
uit(inputs X0,X1,...;output Y0,Y1,...) isvariable L0,L1,..,Ln
hannel FU0_a,FU0_b,....,FUm_zbeginFUj(FUj_a,FUj_b,FUj_z) ||... ||[Ar
hite
ture(X0,X1,..,FUj_a,FUj_b,FUj_z,..,Y0,Y1,...)℄end5.2 Events: using fun
tional unitsAs an example of how the datapath is 
onstru
ted using the Balsa-language 
onsiderthe assignment of a subtra
tion operator to an ALU designated FU1. This subtra
-tion operator has inputs w0 w1 and output w2 (w2 = w0 −w1), assigned to variablesL0 L1 and L2 respe
tively. Starting the 
omputation is performed by exe
uting thefollowing parallel Balsa-statement:FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1This set of parallel 
hannel assignment statements tells FU1 to perform a subtra
tion,and to use the data of L0 and L1. The result w2 of the 
omputation is written to L2using the following Balsa-statement:FU1_z->L2Both statements will syn
hronize the 
ontroller with the ALU using the transfer
omponents and implements the pro
ess illustrated on Figure 4.9. For the alphatype FU, the read and write events need to happen in the same statement:FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1 || FU1_z->L2meaning parallel events need to happen in parallel threads. For the beta type FU,the read and write events does not need to happen in the same statement, but 
anhappen at separate time-positions:FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1 ;...;FU1_z->L2in fa
t parallelism 
an be implemented in a single thread.The reading of input X0 to internal variables L0 and pla
ing of results in internalvariables L3 on output 
hannels Y0 is exe
uted in a similar way:
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if L0=0 thenFigure 5.3: S
hedule showing all the di�erent types of relative syn
hronization events.X0->L0 || Y0<-L3These Balsa-statements: i) starting a 
omputation, ii) writing the result of 
ompu-tation or iii) 
ommuni
ating with the outside world, implement the events des
ribedin se
tion 4.1.5.3 Implementing a s
heduleA s
hedule 
onsists of a series of su
h time ordered events and the ar
hite
ture partis a series of 
orresponding Balsa-statements. Consider the example s
hedule inFigure 5.3, whi
h is di�erent from the running CDFG example. It is illustratingall the di�erent types of relative syn
hronization events required to implement anys
hedule. For the 
onstru
tion of the s
hedule we need to distinguish between theFU types:alpha The handshakes are a
tive for the duration of the 
omputation on the fun
-tional units.beta The handshakes are a
tive only for the points in time where data is moved toand from the fun
tional units.Let us begin with the beta type, as it is the simplest. Consider events E0..E7, inFigure 5.3 the non-
onditional part. These form a sequen
e of events with E0 and E1in parallel and the rest ordered E2,..,E7, whi
h 
an be implemented by the followingprogram fragment:loopE0 || E1 ; E2 ; E3 ; E4 ; E5 ; E6 ; E7endThis program fragment is a repetitive exe
ution of the s
hedule. When we in
ludethe 
onditional exe
ution of the operator on FU2 represented by events: E8 and E9,the Balsa-program fragment be
omes:



62 Implementation in BalsaloopE0 || E1 ; E2 ; E3 ; if L0=0 then E8 end ;E4 ; E5 ; E6 ; if L0=0 then E9 end ; E7endNoti
e the single thread of event statements implement the parallel s
hedule of Figure5.3.Next, we will 
ontinue with the alpha type. As the handshakes now 
over dura-tions the single sequen
e of ordered events only apply to a single thread on a singlefun
tional unit. In prin
iple this means there need to be as many parallel threadsas there are fun
tional units, 
ommuni
ating to ea
h other using 
hannels. Howeverusually, and so is the 
ase for our example, it is possible to merge some threads,elliminating 
ommuni
ation overhead. Here the threads of FU0 and FU1 
an bemerged, leaving only a separate thread for FU2, the 
onditional part. Lets start withthe un
onditional part:loop[ E0 || E2 ; E3 || E4 ℄ || [E1 || E5℄ ; E6 ; E7endThe parallel operator is here used to merge the �rst part of the thread for FU0: [ E0|| E2 ; E3 || E4 ℄ with the thread for FU1: [E1 || E5℄ , after these the thread for FU0is 
ontinued.To in
lude the 
onditional part, in the form of a separate thread, we also need toimplement the transfer of the intermediate data in Li over a 
hannel w to Lj, where
Li is used ex
lusively in the thread 
orresponding to FU0 and Lj is used ex
lusivelyin the thread 
orresponding to FU2. The 
omplete s
hedule be
omes:loop[[ E0 || E2 ; Li->w || E3 || E4 ℄ || [E1 || E5℄ ; E6 ; E7 ℄ ||[ w->Lj ; if L0=0 then E8 || E9℄endChannel 
ommuni
ation represents an area- and time-overhead and as the merging ofthreads saves 
hannel 
ommuni
ations between them, this overhead is redu
ed. Theparallel nature also requires the ex
lusiveness for variables, if this 
annot be guaran-teed by the variable to lat
h assignment, syn
hronizer 
hannels between threads arerequired to introdu
e this ex
lusiveness.The 
ondition for parts of two threads to be merged, is if the one part (thesequen
e of events) is fully in
losed by or exe
uted in serial by the read and writeevents of the other part. We will denote the read and write events of exe
utingan operation on a FU for an exe
ute interval: IFU,number . In Figure 5.4 is shownthe threads of the FUs and below the intervals are labelled: I0,0, I0,1 . . . I2,0. If wegenerate a thread graph (I, S,D) where the nodes are the exe
ute intervals IFU,numberand where the dire
ted ar
s (X → Y between two nodes are: (i) if interval X 
an befully in
losed in interval Y . These ar
s are shown as solid ar
s and (ii) if two intervals
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Figure 5.4: Generation of threads: (Left) sequen
e of events for all FUs and labellingof intervalls. (Right) Clique-partitioning of thread-graph. Ea
h 
lique be
omes athread.are fully disjoint and Y is exe
uted after X . These ar
s are shown as dotted ar
s.Then the optimal merging of all the threads is a 
lique partitioning of this graph.The thread graphs and the 
lique partitioning of this graph is shown in Figure 5.4.We use a simple greedy approa
h for 
lique partitioning of the thread graph. Theresulting partitioning 
orresponds to our example.The gamma model is treated �rst as the alpha model for the fun
tional unitsfollowing that model. Then the events for the fun
tional units following the betamodel are inserted into the appropriate positions.5.4 Implementing the ar
hite
tureLet us look at the datapath being generated by this approa
h. Consider the followingsequen
e:L0->FU0_a; -- E0...;L1->FU0_a -- E1giving rise to the 
ir
uit shown in Figure 5.5. Ea
h of these events will lead to atransfer 
omponent a
tivated by E0 and E1 respe
tively, followed by a merge 
om-ponent on the input of FU0_a, i.e., implementing a multiplexing of the wires fromL0 and L1 to FU0_a, the same goes in the reverse dire
tion.The ar
hite
ture part of the program 
onsists of two parts: (i) shared fun
tions (ii)s
hedule. The shared fun
tions implements the event of the s
hedule whi
h appearin the s
hedule more than on
e. In the s
hedule below:pro
edure Ar
hite
ture(..) isbegin -- s
heduleloop...;
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FU0_aFigure 5.5: Handshake implementation of routing and 
orresponding datapath.
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E2Figure 5.6: Repeated use of hardware with out shared 
onstru
t (left) and withshared 
onstru
t (right).FU1_opr<-ALU_add || FU1_a<-L0 || FU1_b<-L2 || FU1_z->L1 ;FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1 || FU1_z->L2 ;FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1 || FU1_z->L3 ;...endendThere are several events whi
h reappear e.g.. the FU1_a<-L0 event whi
h ap-pears three times. In the following s
hedule:pro
edure Ar
hite
ture(..) isshared S0 isbeginFU1_a<-L0endshared S1 isbeginFU1_b<-L1endshared S2 isbegin



5.4 Implementing the ar
hite
ture 65FU1_opr<-ALU_sub || S0() || S1()endbegin -- s
heduleloop...;FU1_opr<-ALU_add || S0() || FU1_b<-L2 || FU1_z->L1 ;S2() || FU1_z->L2 ;S2() || FU1_z->L3 ;...endendit only appears on
e and the same for every other assignment. Shown in the formof the S0,S1,S2 
onstru
ts. The one-to-one syntax dire
ted 
ompilation approa
hemployed by balsa means that in the �rst 
ir
uit there are three assignments fromthe same lat
h to the same port of FU1, as shown on Figure 5.6 (left) but by usingthe shared 
onstru
t we 
an �reuse� the hardware and implement the 
ir
uit shownon Figure 5.6(right). This saves hardware as the 
ontrol handshakes are one bit wide,where as the datapath handshake 
omponents are N bit wide. This 
an be extendedto in
lude redu
ing the 
ontrol 
ir
uit, as shown in the program as the S2 shared
onstru
t whi
h implements a group of events, whi
h are used several times.The stru
ture of balsa 
ir
uit implementing the s
hedule with these shared 
on-stru
ts represents a three, with the loop-body 
omponent as the root and the events/transfer
omponents as leafs and with some of the leafs merged together [51℄.The full Balsa program (beta) of our running example, is shown here:import [balsa.types.basi
℄import [FU_types℄import [FU_lib℄pro
edure EX(input X0,X1,X2:word;output Y0,Y1:word) isvariable L0,L1,L2,L3:word
hannel FU0_a,FU0_b,FU0_z:word
hannel FU1_a,FU1_b,FU1_z:word
hannel FU1_opr:ALU_operation
onstant a0= 255
onstant a1= 255
onstant a2= 255
onstant a3= 255pro
edure Ex_ar
hite
ture(input X0,X1,X2:word;input FU0_z,FU1_z:word;output FU0_a,FU0_b,FU1_a,FU1_b:word;output FU1_opr:ALU_operation;



66 Implementation in Balsaoutput Y0,Y1:word) isshared S0 isbeginFU0_b<-L1endshared S1 isbeginFU1_a<-L0endshared S2 isbeginFU1_opr<-ALU_addendshared S3 isbeginFU1_z->L0endshared S4 isbeginFU1_a<-L1endshared S5 isbeginFU1_b<-L2endshared S6 isbeginFU1_opr<-ALU_subendshared S7 isbeginS1() || S2()endshared S8 isbeginS4() || S5()endbegin -- s
hedule



5.5 Optimizations 67loopX0->L0 || X1->L1 || X2->L2 ;FU0_a<-L0 || S0() || S7() || FU1_b<-a0 ;S3() || S4() || FU1_b<-a2 || FU1_opr<-ALU_les ;FU1_z->L3 ;if L3=0 then S8() || S2()else S8() || S6() end ;FU0_z->L2 || FU1_z->L1 ;if L3=0 then FU0_a<-a3 || S0()end || S5() || S7() ;S3() ;S1() || FU1_b<-a1 || S6() ;if L3=0 then FU0_z->L1end || S3() ;Y0<-L0 || Y1<-L1endendbeginmult(FU0_a,FU0_b,FU0_z) ||ALU(FU1_opr,FU1_a,FU1_b,FU1_z) ||EX_ar
hite
ture(X0,X1,X2,FU0_z,FU1_z,FU0_a,FU0_b,FU1_a,FU1_b,FU1_opr,Y0,Y1)endThe balsa-
ir
uit generates the datapath shown in Figure 5.1 and the 
ontrollershown in Figure 5.7.5.5 OptimizationsFor the alpha model it is possible to take advantage of the memory in the fun
tionalunits to optimize the 
omputation. In the situation where a temporary variable,
ti, in a CDFG, is used dire
tly after it is produ
ed and not required to be storedfor later use, we 
an implement a dire
t feed-forward from FUi to {FUj...FUk}, asshown in Figure 5.8. If FUi has to start another 
omputation immediately afterprodu
ing ti then this optimization should only be implemented if all the target FUs{FUj...FUk} are ready to start when ti is produ
ed, otherwise FUi will be stalled.Similar feed-forward 
an be implemented from inputs and/or to outputs of the 
ir
uit.The purpose of this optimization is to a
hieve a redu
tion in the number of variablelat
hes and 
ir
uit speed-up.In the datapath synthesis algorithm these assignments are identi�ed in the vari-able lifetime 
omputation and separated from the variable lat
h assignment. In ourexample 
omputation no lat
h redu
tion is possible using this method. Implementingthis optimization in Balsa is straightforward. If the value is used by one FU or toone output only, we get:FU to FU: FUi_z->FUj_a
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Figure 5.7: Controller to the datapath (beta) for our s
heduled CDFG usingBalsa/Tangram handshake 
omponents.Input to FU: Xi->FUj_aFU to Output: Yi<-FUj_zand assigning a value dire
tly from one FU to multiple FUs are handled using thefollowing Balsa statement:sele
t FUi_z thenFUj_a<-FUi_z || FUk_a<-FUi_z || ...endSimilar 
onstru
ts are used for the inputs and outputs. One should note that theimplementation of the FUs now require the ability to handle handshakes on both itsinputs and outputs simultaneously.



5.5 Optimizations 69
ALU*

FU0_z

FU0_a FU1_a

FU0

FU1_z

FU1

FU0_b FU1_b

L0 L1 L2 Ln

FU1_opr
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Figure 5.9: De
oupling 
omputation B from 
omputation C to take advantage of thesla
k time in the s
hedule.We 
an also optimize on the 
ontrol part, this applies to both models. Considerthe s
hedule of operators: A,B,C,D part of an arbitrary 
omputation, shown in Figure5.9. In the stri
t 
ontroller/datapath implementation we have:loopE0 ; E1 ; E2 ; E3 ; E4 ; E5 ; E6 ; E7endHowever we 
ould take advantage of the inherent parallelism of B and C in the CDFGand implement the 
ontroller/datapath in the following way:
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Figure 5.10: Datapath (alpha) for our s
heduled CDFG using Balsa/Tangram hand-shake 
omponents. loopE0 ; E1 ;[ E2 ; E3 ℄ ||[ E4 ; E5 ℄;E6 ; E7endThis would still implement the s
hedule but we have in
reased the �exibility of the
ir
uit, making the 
ir
uit more robust to variable 
omputations times, of e.g.. B,taking advantages of the sla
k of the non 
riti
al paths in the s
hedule.5.6 SummaryIn this 
hapter we have presented Balsa program language templates for implement-ing our asyn
hronous 
omputation model in the Balsa CAD framework.The CDFGs used as input to our behavioral synthesis tools 
ould be derivedfrom Balsa it self. In this form of Balsa-to-Balsa 
ompilation one 
ould 
onsiderour tools as a way of optimizing a 
ir
uit or parts of a 
ir
uit at the spe
i�
ationlevel. This makes it possible to manipulate and manually optimize 
riti
al parts ofa 
ir
uit further than what the tool automati
ally produ
es, by manually modifyingthe output Balsa 
ode.



5.6 Summary 71The Balsa language 
an be 
onsidered a general high-level boundary to the asyn-
hronous world. There is nothing preventing the implementation of other styles ofasyn
hronous 
ir
uits, i.e. Burstmode 
ir
uits, using the Balsa-language as des
rip-tion language. In fa
t resear
h of this nature is 
urrently underway. This means theuse of the Balsa-language as a ba
k-end represents a variety of implementation styles.However as our templates targets the 
urrent one-to-one 
ompilation to handshake-
omponent implementation of Balsa, the �weights� and possibly parts of the imple-mentation templates should be modi�ed to ensure optimal 
ir
uit implementationfor other implementation styles.
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C h a p t e r 6Algorithms for BehavioralSynthesis
This 
hapter deals with the fundamental parts of high-level behavioral synthesis:operator s
heduling, fun
tional unit allo
ation and operator to fun
tional unit as-signment. We are given a Control Data Flow Graph (CDFG) spe
ifying the behav-ior/
omputation whi
h we want to implement onto an Integrated Cir
uit and weare given a maximum time frame T within whi
h the Integrated Cir
uit has to per-form this 
omputation (e.g.. 
aused by new data arriving at a frequen
y of 1/T , ex.sampled from a sound sour
e).We will 
onsider behavioral synthesis algorithms targeting a dis
rete time evolu-tion, for whi
h solutions are relaxed into 
ontinuous time. The following algorithmsuite have been developed:

• Power aware syn
hronous synthesis algorithm. This algorithm is a 
lique heuris-ti
 algorithm operating with a time and maximum power per time 
onstraint.This is useful for appli
ations having a power limit e.g. generated by a solarpanel. This s
heduling algorithm handles CDFG's without repetitive stru
-tures.
• Evolutionary syn
hronous synthesis algorithm and a simulated annealing syn-
hronous synthesis algorithm. These are meta-heuristi
 algorithms operatingwith a maximum time 
onstraint. These algorithms only handle DFG graphs.
• Simulated annealing task synthesis algorithm. This algorithm is used to s
hed-ule the CDFG where the DFG fragments are s
heduled using one of the two
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3

System Power ProfileFigure 6.1: Task s
hedule and the system power pro�le.previously mentioned algorithms. This algorithm has not been implementedbut the method is outlined.6.1 Power-aware s
hedulingPortable embedded systems fa
e in
reasing performan
e demands while running onless power. Therefore, to e�
iently use the power available from the power sour
e,task s
heduling me
hanisms have to take the system power pro�le into a

ount.Figure 6.1 illustrates a set of s
heduled tasks and the resulting system power pro�le.In low-power or power-aware task s
heduling one usually assumes a uniform powerpro�le of the individual tasks, however in reality these individual tasks might havea very irregular power pro�le. So using the average task power �gure in the tasks
heduling only leads to average system power pro�le, and the system might have ana

umulation of power peaks whi
h would severely violate system power 
onstraints.On the other-hand using the peak power �gure would lead to an over-
onservatives
hedule whi
h would 
omply to the system 
onstraints but would be an ine�
ientuse of system resour
es.Another related issue is the non-linear 
hemi
al to ele
tri
al energy e�
ien
y ratioof batteries whi
h depends strongly on the 
urrent pro�le of the appli
ation [102, 5℄.Here there are two 
ontributing fa
tors: (1) If the peak-
urrent ex
eeds a maximum-threshold the life-time starts dropping dramati
ally. (2) A large 
urrent variationalso leads to redu
tion in battery life-time. These fa
tors are more dominant onbatteries of low quality. Furthermore there might be a maximum power available tothe task restri
ted by e.g. a solar panel providing the power to the 
ir
uit.Altogether our goal is to synthesize these 
riti
al tasks as digital 
ir
uits, witha stati
 s
hedule having an uniform power pro�le. In this se
tion we present aheuristi
 synthesis algorithm whi
h solves: (i) s
heduling, (ii) allo
ation and (iii)assignment simultaneously under both a time and power 
onstraint. These 3 tasksare traditionally solved separately whi
h is suboptimal as these typi
ally interferewith ea
h-other.
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heduling 75
6.1.1 Problem formulationThe hardware behavioral (time-
onstrained and power-
onstrained) synthesis prob-lem, given a non-repetitive CDFG, time 
onstraint T and a maximum energy pertime-slot 
onstraint E<, 
onsists of the following subproblems:S
heduling Determine the s
hedule φ spe
ifying the start time ki for ea
h operation

vi (ki = φ(vi)) su
h that: (i) no pre
eden
e 
onstraint is violated: ki ≥ tr +
dr, tr = φ(vr), ∀i, r : (vi, vr), whi
h are 
onne
ted in the CDFG, su
h that alloperations are 
ompleted within the time frame T . (ii) no power 
onstraint isviolated: Ek ≤ E<, ∀k = [0..T ], where Ek =

∑
ei, ∀i : (vi) whi
h are exe
utingin 
ontrol-step k.Allo
ation Spe
ify whi
h j and how many Nj fun
tional unit instan
es are requiredsele
ting from the provided hardware library R.Assignment (Operator Binding) Provide a mapping α : V → R, from ea
h oper-ation vi to a spe
i�
 fun
tional unit α(vi) = j ∈ R. The assignment spe
i�esthe exe
ution delay of the operator δ(vi) = di and the energy 
onsumption pertime-slot of the operator ǫ(vi) = ei.We will solve these subproblems simultaneously targeting minimimal the area
ost (6.1):

costφ =
∑

j∈R

[ω(j) ×Nj(σ)] , (6.1)where ω(j) is the area 
ost of FU j, Nj(σ) the required number of these for thes
hedule.6.1.2 Power heuristi
 s
hedulingIn traditional time 
onstrained synthesis the two heuristi
 low 
omplexity algorithms;ASAP and ALAP are used to bound the solution spa
e. In Figure 6.2 is shownan example CDFG and its 
orresponding ASAP s
hedule, where we have assumedall operations, without loss of generality, are exe
uted in one time-slot. In thisse
tion we use a di�erent example CDFG, than our running example 2.2, as thisnew simpler CDFG exempli�es the power variation we want to emphasize for thissynthesis method, unlike our familiar CDFG used elsewhere in this thesis.In the following we present a heuristi
 algorithm, PASAP, whi
h given a power
onstraint generates a s
hedule. This algorithm plays the same role as ASAP and isbeing used in our main algorithm to heuristi
ally bound the minimum time separa-tion between two operators, ensuring all CDFG pre
eden
e 
onstraints are satis�ed



76 Algorithms for Behavioral SynthesisFU σ Delay Area Energy/time-slotadd {+} 1 1 1ALU {+,−, >} 1 1.5 1mul {∗} 1 4 3Table 6.1: Simple example FU library, used for the example only.
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Figure 6.2: Example CDFG and its ASAP s
heduletogether with the power 
onstraint. The PASAP s
hedule is a�stret
hed� ASAPs
hedule. �Stret
hed� to �t the power 
onstraint i.e. the operators are s
heduled asfast as possible, but only if there is power available meaning some operators will bedelayed additional time-slots.PASAP (E<):Initialize: S
hedule sour
e start-time to zero and initialize the exe
ution o�set oi(time-steps) to zero for all operators.step 1: Pi
k an uns
heduled operator vistep 2: If vi has uns
heduled prede
essors, goto 4.step 3: If there is power available in the exe
ution time interval [(ti + oi)..(ti + oi +
di)], where di is the exe
ution delay of vi and ti = max{tj + dj} ∀vj → vi, isthe earliest start time, otherwise in
rease oi by one.step 4: If uns
heduled operators, goto step 1.For 
onstru
tion of our PASAP s
hedule we use the simplisti
 fun
tional unit(FU) library shown in table 6.1. In Figure 6.3 is shown the PASAP s
hedule for ourexample CDFG, here we have set a power limit of E< = 3, whi
h we keep for thisexample. The algorithm starts in time-slot one and tries to �ll it up with operations:
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Figure 6.3: The PASAP and PALAP s
hedules of our example CDFG, both withE<=3.we start by s
heduling v1, whi
h prevents us from s
heduling v2 as this would violatethe power 
onstraint. But we 
an 
ontinue to s
hedule v3 and v4. In the next time-slot we have v2 ready, whi
h is the only one for whi
h there is power available andthe algorithm 
ontinues. The total PASAP s
hedule takes 5 time-slots to 
ompleteas opposed to only 3 time-slots of the ASAP s
hedule. The same algorithm 
an runba
kwards whi
h we denote PALAP.Obviously there are many ways of sele
ting whi
h operators to �pa
k� into time-slots and it is a hard problem to �nd the optimal 
ombination i.e.. the solutionthat results in the s
hedule using the least amount of time. Here we have simply
hosen the order of whi
h they appear in the CDFG. In this way PASAP 
annot be
ompared to ASAP.6.1.3 Power and time 
onstrained synthesisIn Figure 6.4 we have re-shown our example CDFG as well as a non-power 
onstraineds
hedule with a time 
onstraint of T=5 time-slots. Here the partial 
lique partitioningalgorithm in [58℄ is 
apable of 
onstru
ting a s
hedule and an FU allo
ation using onlyone ALU and one mul (the minimal FU-allo
ation to exe
ute this CDFG no-matterhow mu
h time we have available) using a total area 
ost of 5.5 units. Besides thes
hedules is shown the total energy 
onsumption for the respe
tive time-slots. Herewe note two things: (i) This s
hedule violates the energy 
onstraint of E< = 3 andfurthermore (ii) it is very spiky (time-slots 1 and 3). For a power 
onstrained s
hedulewe wish to stay under our 
onstraint and �smoothen-out� the s
hedule.As mentioned, our power 
onstrained synthesis algorithm builds upon this algo-rithm and as in [58℄ we 
onstru
t the time-extended 
ompatibility graph, V 1: Ea
hvertex Aijk represents a possible s
heduling, allo
ation and assignment of operation
i on FU type j starting in time-steps k. Ea
h edge < Aijk, Arjt > represents thesimultaneously s
heduling, allo
ation and assignment of operator i and r on the sameFU instan
e of type j at times k and t, respe
tively. We have extended the formu-lation of a valid V 1 graph to in
lude power 
onstraints. Thus our allowed verti
es(Aijk) are:



78 Algorithms for Behavioral Synthesisi: All operators in the CDFG.j: The set of FUs where operator i 
an be exe
uted.k: The time interval given by {tPASAP, tPALAP}, when operator i is exe
uted onFU j and all other operators are s
heduled using delay information from thefastest FU type and power information from the most power hungry FU type.And the allowed edges,< Aijk, Arjt >, are those where there is a dependen
y in theCDFG, vi → vr, and the exe
ution time of the two operators does not overlap whens
heduled on FUj, as well as it is possible to �nd a valid PASAP s
hedule with viand vr s
heduled on FUj at times k and t respe
tively.A subgraph of V 1 whi
h is 
ompletely 
onne
ted by 
ompatibility edges in V 1(
lique) 
an be mapped to one FU instan
e. Then the solution to the synthesisproblem with the minimum area and using least inter
onne
t is the problem of �ndingthe Partial minimal 
ost 
lique partitioning of V 1 whi
h does not violatethe power 
onstraint, where partial refers to a 
over 
ontaining one-and-only-onevertex for ea
h operator i.
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Figure 6.4: CDFG and a non-power s
hedule with T=5, using only one ALU andone mul with a total area of 5.5.As in [58℄ we heuristi
ally solve the 
lique partitioning problem, through a greedyapproa
h i.e.. evaluate the V 1 graph and pi
k a �best� de
ision whi
h is thens
heduled, allo
ated and assigned. Then this pro
ess is repeated until no oper-ators are left. To this end we 
onstru
t the Mixed-vertex Compatibility Graph(MCG = (V 1, V 2, E)): The V 1 graph, extended with super-verti
es Sj,n ∈ V 2.The super-vertexes Sj,n 
ontain the s
heduled, allo
ated and assigned operators onFU of type j instan
e n. Initially |V 2| = 0.In prin
iple, our algorithm starts with a power and time valid region then aggres-sively redu
es area ensuring the s
heduling region stays valid. Our algorithm is asfollows:Initial Build the MCG. Here PASAP and PALAP are used to build the set ofallowed verti
es and allowed edges, under the power and time 
onstraint.Step 1 Pi
k the best de
ision. We sele
t a

ording to maximum 
lique i.e. �ndthe largest 
lique Aijk is 
ontained in (a double sear
h of the entire graph) and
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613603Figure 6.5: Partial-Clique partitioning. Shown are a set of V1 verti
es, grouped (bythe dotted lines) in operators. The only edges shown are those whi
h are in themaximal 
lique not violating the power 
onstraint .
ompute costAi,j,k
= sum of FU area for maximum 
lique(Ai,j,k). The sele
tedvertex is merged into an existing super-vertex if it is 
onne
ted to a super-vertex, otherwise it is made into a new super-vertex.Step 2 Transform the MCG in a

ordan
e with the de
ision. The de
ision of theprevious step has e�e
ts on both time and power, again PASAP and PALAPare used to maintain validity i.e.. ensure the V 1 graph only 
ontains the set ofallowed verti
es and allowed edges re�e
ting the 
urrent situation. Furthermorewe need to preserve the 
liques and dis
onne
t those whi
h no longer form one,refer to [58℄ for a detailed des
ription.Step 3 Ensuring feasibility. As PASAP and PALAP are heuristi
 algorithms theydepend on what operators have been s
heduled, therefore a sequen
e of assign-ments might 
ause the of deletion uns
heduled operators, 
ausing an invalids
hedule. The solution is to ba
ktra
k one step and lo
k the start time of alluns
heduled operators to the PASAP s
hedule (whi
h was valid) and then 
on-tinue, redu
ing our algorithm to a pure assignment and allo
ation algorithmfrom that point on.Step 4 If any verti
es left in V 1, goto step 1.A 
omment to step 3, in most 
ases step 3 will not take e�e
t and the algorithmwill 
ontinue to the end, however it is possible to 
onstru
t CDFGs whi
h togetherwith spe
i�
 
onstraints 
auses the algorithm to exe
ute this step. But even if itdoes, the algorithm has been allowed to operate for some time, during whi
h it hassigni�
antly redu
ed area in 
omparison with the starting PASAP s
hedule.In Figure 6.6 we illustrate the 
onstru
tion of a power-
onstrained s
hedule usingour algorithm and the example CDFG. We use the same time 
onstraint T=5 andpower 
onstraint E< = 3 as in Figure 6.3. The onset of the algorithm is the 
onstru
-tion of the PASAP and PALAP s
hedules, shown in Figure 6.3 and requiring atleast 5 time-steps for our power 
onstraint, whi
h generates the s
heduling intervals



80 Algorithms for Behavioral Synthesis
404

403
402
401

400

603

100
101

ALU MultAdd

ALU MultAdd

220

522
404

401

603 403

101

411

413
414

311

613

714

111

714

310 311

110

111

410
411
412

413
414613

V1:

220

522

221

V1’:

Figure 6.6: CDFG and the 
onstru
tion of the power 
onstrained solution (T=5,E<=3).for our operators. Using the s
heduling intervals and our FU-library, shown in table6.1, we generate the V 1 graph, shown in Figure 6.6. Initially the algorithms 
reatesa super-vertex of the multiplier operation v2 s
heduled on Mul in time-slot 0, then itmerges v5 s
heduled on Mul in time-slot 2 in to it, these are shown en
losed in thedotted ellipse.The sele
tion of v2 s
heduled on Mul in time-step 0 has 
onsequen
es in the formof the PASAP and PALAP algorithms deleting the nodes:{100, 400, 110, 310, 410}to maintain the V1 graph in a feasible state. Operation {221} is deleted as v2 nowhas been s
heduled. Merging v5 s
heduled on Mul in time-slot 2, similarly removesoperations {402, 412} and we arrive at the V 1′ graph shown in Figure 6.6, with thesuper-vertex en
losed in the solid ellipse.As it turns out the V 1′ graph no-longer 
ontains verti
es (i.e.. 
liques) whi
htogether with the super-verti
es 
an violate the power 
onstraint. Meaning the sub-sequent exe
ution of the PASAP and PALAP algorithms in prin
iple redu
es toexe
ution of the ASAP and ALAP algorithms i.e.. the remaining part of the algo-rithms exe
utes as the original algorithm in [58℄.The �nal s
hedule, allo
ation and assignment 
orresponding is shown in Figure6.7, requiring one add, one ALU and one mul, using a total area 
ost of 6.5 units.Alongside the s
hedule is shown the power 
onsumption in ea
h time-slot, where wenow no-longer have a power violation as well as less spikes. We noti
e the pri
e forthe power 
onstrained s
hedule 
ompared with the non-power 
onstrained s
hedule(using the same time-frame) is an extra adder, a relative area in
rease of 18 per
ent.
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Figure 6.7: Solution (T=5, E<=3) using one add, one ALU and one mul, using atotal area of 6.5 .
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Figure 6.8: Creating multi-
y
le operations from single-
y
le operations maintainingthe global time-line, whi
h prohibits operation �sliding�.6.2 Implementing syn
hronous power aware s
hed-ules in asyn
hronous 
ir
uitsThere is a potential danger of violating the power 
onstraint when relaxing a syn-
hronous power aware s
hedule to 
ontinous time and implementing it in an asyn-
hronous 
ir
uit, as the syn
hronous syn
hronization is removed.If we restri
t our selves to 
ir
uits generated by the beta model without the opti-mizations. Or restri
t our selves to the 
ir
uits generated by the alpha model whosethreads 
an be merged into a single main thread. Then we will show there is no power
onstraint violation relaxing syn
hronous power aware s
hedules in asyn
hronous 
ir-
uits using our templates.Let us assume a s
hedule 
onsisting of single-
y
le operations. Then in ea
h
ontrol-step there is a set of parallel read events for all operations starting in this
y
le, sequen
ed by, a set of parallel write events for the same operations. Thisis sequen
ed by the next 
y
le. Therefore if the syn
hronous s
hedule upholds thepower 
onstraint in ea
h 
y
le, so does this asyn
hronous 
ir
uit.For multi-
y
le operations the pi
ture is a little more 
ompli
ated, however the
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iple applies. First 
onsider the multi
y
le operation as a sequen
e of single-
y
le operations, as shown in Figure 6.8 (left), the �rst 
ase. In this pi
ture thereis no power 
onstraint violation. Removing the middle syn
hronization events doesnot 
hange anything as the start and end of the multi-
y
le operation, in the se
ond
ase, is sequen
ed now by a series of single 
y
le operations in between. And in the�nal 
ase the start and end of all operations is lo
ked on to the global time-line. Ifwe assume a operation has �slided� into violating the power 
onstraint it would haveviolated the global time-line-sequen
ing of operations. With respe
t to the globaltime-line-sequen
ing, the alpha model, whose threads 
an be merged into a singlemain thread, behaves identi
ally as the beta model.6.3 Simulated annealing and evolutionary algorithmIn this se
tion we investigate two meta-heuristi
 algorithms for solving the behavioralsynthesis problem: (i) Simulated annealing and (ii) evolutionary algorithms [78, 42,79, 66, 43, 32, 52℄. Meta-heuristi
 algorithms are interesting in this 
ontext as largeDFGs 
an be s
heduled with fast run-times. Furthermore they are easily be stoppedif the optimal solution is not required to be found, but just a solution whi
h fallswithin the area requirement. The power-
onstraint has not yet been implementedinto these algorithms.For these algorithms we target DFG fragments to be s
heduled and a time-
onstraint whi
h spe
i�es the maximum amount of 
ontrol steps allowed for theexe
ution of the DFG fragment. The DFGs 
onsidered here are a
y
li
 dire
tedgraph with verti
es σi, representing the operators to be exe
uted, and edges σi → σl,spe
ifying the order in whi
h they have to be exe
uted for the 
omputation to be
orre
t (σi has to be exe
uted before σl). The DFG is augmented with a sour
e (
on-ne
ting to inputs, I) and a target vertex (
onne
ting from outputs, O). To exe
uteoperations we use the same resour
e library of fun
tional units, de�ned in table 6.2.With the hard time frame 
onstraint we need to �nd s
hedule in whi
h to exe
utethe operations in the DFG onto some FUs su
h that we �nish all operators before thetime frame T (without violating their dependen
ies) and at the same time minimizethe area. This involves trade-o�s between s
heduling e.g. many {+,−, >} operationsin parallel (requiring more �
heap� ALUs), to serialize more {∗} operations (requiringfewer �expensive� mul1), as well as tradeo�s between di�erent �subtypes� of FUs (fastor slow). All this depends strongly on the spe
i�
 DFG and the time frame T wehave available.6.3.1 Problem formulationFirst, we formulate the behavioral synthesis problem as an ILP problem. We havea DFG with operators σi i = 1 . . . n and dependen
ies σi → σl, a resour
e librarywith fun
tional units of type FUj j = 1 . . .m having a sili
on area wj . And atime interval k = 1 . . . T giving for ea
h operator σi a time interval where it 
an be



6.3 Simulated annealing and evolutionary algorithm 83s
heduled: Si . . . Li. We want to minimize the used sili
on area. Let us start byintrodu
ing the variables in our formulation:x : Let xi,j,k be a 0, 1 integer variable asso
iated with the operator σi: xi,j,k = 1 if
σi is s
heduled to start in time-step k assigned to exe
ute on FUj and xi,j,k = 0otherwise.N : Let Nj be an integer variable whi
h denotes the number of fun
tional units oftype FUj we will allo
ate on our IC.The obje
tive fun
tion is:minimize A =

m∑

j=1

wj ∗Nj (6.2)Subje
t to
Li∑

k=Si

m∑

j=1

xi,j,k = 1, for all i (6.3)
Ll∑

k=Sl

m∑

j=1

k × xl,j,k −

Li∑

k=Si

m∑

j=1

(k − dj) × xi,j,k ≥ 0, for all σi → σl (6.4)
Nj −

n∑

i=1

dj−1∑

p=0

xi,j,k−p ≥ 0, for all j, k (6.5)
E< −

n∑

i=1

m∑

j=1

dj−1∑

p=0

ejxi,j,k−p ≥ 0, for all k (6.6)The obje
tive fun
tion (equ. 6.2) states we want to minimize the total usedsili
on area and sums over all fun
tional unit types and for ea
h multiplies its areaby the number required for the s
hedule. The �rst 
onstraint (equ. 6.3) simply statesthat all operators must be s
heduled to start in some time step and on some FUj.The se
ond 
onstraint (equ. 6.4) spe
i�es that for ea
h DFG dependen
y σi → σloperator l 
an only start after operator i �nishes tl ≥ dj + ti (whi
h depends onwhi
h FU i is s
heduled on). The thierd 
onstraint (equ. 6.5) states a FU 
an onlyexe
ute one operation at a time. The �nal 
onstraint (equ. 6.6) ensures that therenowhere is used more power than availeble. This last 
onstraint will be ignored inthe following.
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Figure 6.9: Crossing from one island of the solution spa
e to another by keeping theinfeasible solutions, when the perturbation is smaller than the minimum requireddistan
e. The sequen
e of φj 's indi
ated by the dots are the a
tual solutions and thesequen
e of F(φj) = Aj indi
ated by the 
rosses, 
orrespond to the feasible solutionsthe 
ost area fun
tion is 
omputed from.6.3.2 Representation and feasibilityWe use a solution ve
tor 
ontaining n tuples (one for ea
h operator), 
onsisting ofthe pair (ki, ji) where ki is the time step, where operator i starts and ji is the FUtype to exe
ute it on (ki ∈ Si . . . Li and j : σi ∈ FUj). Let the s
hedule be de�nedby:
φ = [(k1, j1), (k2, j2), . . . , (kn, jn)]In both simulated annealing and evolutionary algorithms we will likely produ
e(and start with) solutions whi
h are infeasible. Where infeasible means we are vio-lating DFG dependen
ies, therefore we need to make the solution feasible φ→ φ′.We also use this feasibility algorithm to allow for easy 
rossing over regions ofinfeasible solutions, as illustrated on Figure 6.9. We keep the infeasible solutionbut 
ompute the 
ost of this infeasible solution by making the solution feasible andthen 
ompute the 
ost of this solution. This requires however that the feasibilityalgorithm is deterministi
, su
h that the best solution (feasible) 
an be regeneratedfrom a possible infeasible best solution. This is a better solution than working witha penalty fun
tion or removing the infeasible solutions.First, let us revisit the ASAP algorithm. Before the algorithm starts assume weassign an operator σi to time step within ti ∈ Si . . . Li and with ji equal to the fastest

FUj. The output is the earliest time S′
l the other operators σl 
an be s
heduled with

σi is s
heduled in time step ki. Only su

essors to σi are a�e
ted Sl ≤ S′
l .Criti
al for this to be of any use is S′

l ≤ Ll ∀ l : Assume we at some point get
S′

l > Ll after assigning operator r to time step tr (∈ Sr . . . Lr, Sr ≤ Lr). Let pbe the longest path σr → σl and q the longest path σl → σr (going 'ba
kwards'):
S′

l ≥ tr + |p| and Lr ≤ Ll − |q|. Sin
e the DFG is a
y
li
 |p| = |q|, so S′
l ≥ tr + |p|
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l > Ll ⇔ tr + |p| > Lr + |p| or tr > Lr, whi
h is a
ontradi
tion.The same applies to the ALAP algorithm and by running both algorithms insu

ession, we redu
e the time intervals for all other operators σl: kl ∈ S′

l . . . L
′
l,

Sl ≤ S′
l , S

′
l ≤ L′

l, L
′
l ≤ Ll.Up until now we have assumed ji was assigned onto the fastest FU. The availabledelay is the minimal L′

l time for its su

essors σl minus the start time: delayi =
min{L′

l} − ki. So any FUj with dj ≤ delayi 
an be 
hosen.The algorithm for feasibility is as follows:Initial set φ′ empty.Step 1 Pi
k an uns
heduled operator σr in φ.Step 2 S
hedule σr in time step: φ′.kr = φ.kr.Step 3 Compute delayr = min{L′
l} − krStep 4 If φ.jr ≤ delayr: φ′.jr = φ.jr else assign : φ′.jr = j (j is the one with theslowest allowable exe
ution) where σr ∈ FUj and dj ≤ delayr.Step 5 ASAP (update Sl → S′

l)Step 6 ALAP (update Ll → L′
l)Step 7 For all uns
heduled operators σl in φ: if φ.kl < S′

l set φ.kl = S′
l and if

φ.kl > L′
l set φ.kl = L′

l.Step 8 If any uns
heduled operators in φ goto step 1.The algorithm works by iteratively s
heduling operators one at a time and ea
htime running ASAP and ALAP redu
ing the valid time intervals for uns
heduledoperators and a feasible s
hedule 
an be obtained. The algorithm is deterministi
and has 
omplexity O(n2).6.3.3 Simulated annealingThe simulated annealing algorithm is a meta-heuristi
 algorithm for solving ILPproblems whi
h borrows from the physi
al model of near adiabati
 
rystallization i.e.the formation of a perfe
t 
rystal latti
e.Simulated annealing algorithm:Initial Generate initial feasible solution ve
tor → φ and 
ompute its area 
ost AStep 1 Perturb φ, by randomly moving an operator in time and 
hanging its FUassignment → φ′.Step 2 Generate a feasible solution from the perturbed solution ve
tor F(φ′) →
φ′feasible
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ost of φ′feasible → A′.Step 3 If the new 
ost is smaller than the existing solution (A′ < A) a

ept thenew solution φ′, otherwise 
onditionally a

ept φ′ depending if exp(−(A′ −
A)/Temp) > random(1) is true.Step 4 Update the solution spa
e (φ′, A′, T emp′) → (φ,A, T emp) and while notthermal equilibrium goto step 1.Step 5 Redu
e the temperature exponentially Temp′ = αTemp, with 0 < α < 1.Step 6 If the temperature Temp′ is larger than Tempcrystal (the stopping temper-ature) and A′ is larger than Aaccept goto step 1.In the iteration step a random operator σi is 
hosen and random (a

eptable)values are inserted for both ki and ji. Then the s
hedule is made feasible starting withs
heduling σi and then s
heduling the rest. In this way we ensure the perturbationsurvives the feasibility pro
ess. Then depending on the 
ost and the temperaturewe a

ept this new s
hedule or not. The fundamental di�eren
e between simulatedannealing and lo
al sear
h lies in the ability at �high� temperatures to move �uphill�i.e. a

ept solutions whi
h are less optimal (as well as always move �downhill� i.e.a

ept more optimal solutions). This is handled by the a

ept fun
tion maintainingthe Boltzmann distribution from statisti
al me
hani
s. Initially the algorithm isstarted with an random solution whi
h is made feasible. The thermal equilibrium
ondition repeats the inner-loop a 
ertain amount, this is determined in the following
hapter. Tempcrystal stops the algorithm if the temperature 
omes down to 1. It 
anbe shown mathemati
ally that by sele
ting the 
orre
t temperature fun
tion spe
i�
to the problem, the simulated annealing algorithm will �nd the optimal solution.However the time spent on �nding the optimal solution 
an be shown to be equal toor larger than the time to perform an exhaustive sear
h. We set the start temperatureto 10000 and it 
an be shown that a adiabati
 
ool-o� in temperature 
orresponds toan exponential temperature de
ay i.e. the new temperature is generated by Temp′ =

αTemp with 0 < α < 1. We determine the appropriate value for α in the following
hapter.6.3.4 Evolutionary algorithmThe evolutionary algorithm approa
h is a meta-heuristi
 algorithm for solving ILPproblems whi
h is biologi
ally inspired and implements the 
on
ept of �survival ofthe �ttest�.Evolutionary algorithm:Initial Generate initial set of feasible solution ve
tors → Φ = {φ}, the population,and 
ompute their respe
tive area 
osts A = {A} and set the generation 
ountto zero G = 0.



6.3 Simulated annealing and evolutionary algorithm 87Step 1 Remove the half part of the population Φ with the lowest area 
ost → Φ 1

2and set Φ′ = ∅.Step 2 Sele
t two elements from Φ 1

2

→ {φa, φb}, the parent solution ve
tors, andremove the elements from the set Φ 1

2

\{φa, φb} → Φ′
1

2

.Step 3 Sele
t a random 
rossover position and form two new solution ve
tors
{φa, φb} → {ψ, ϕ}, the 
hild solution ve
tors.Step 4 Mutate {ψ, ϕ}, by randomly moving an operator in time and 
hanging itsFU assignment → {ψ′, ϕ′} using a low probability χ for mutating the solutionve
tors.Step 5 Add the parent and the the 
hild solution ve
tors to the new population
Φ′ + {φa, φb, ψ

′, ϕ′} → Φ′′.Step 6 Update the solution sets(Φ′
1

2

,Φ′′) → (Φ 1

2

,Φ′) and if Φ 1

2

is non-empty gotostep 2.Step 7 Generate feasible solutions from the perturbed solution ve
tors in
Φ′:F(Φ′

perturbed) → Φ′
feasible.Step 8 Compute the area 
ost of Φ′

feasible → A′
feasible.Step 9 In
rement the generation 
ount G and update the solution spa
e (Φ′, A′) →

(Φ, A).Step 10 If the best solution Abest is larger than Aaccept and the generation G is lessthan Gstop goto Step 1.The algorithm works by �rst deleting the most un�t half of the population. Thenfor two survivor pairs we sele
t a random 
rosspoint and perform the 
rossoverthereby produ
ing two new 
hildren. Then we randomly sometimes add a muta-tion to the 
hildren. Then the 
hildren are made feasible (in the same way as forthe simulated annealing) and the 
ost fun
tions are evaluated and they are put intothe new population. The fundamental di�eren
e between the lo
al sear
h/simulatedannealing and the evolutionary algorithm is the use of a population of solutions inthe latter. The deletion of the most un�t half in prin
iple works as the �downhill�moving part and with the 
ross-over and mutation as the potential �downhill/uphill�moving part. Initially the algorithm is started with set of random solutions, madefeasible and evaluated. The mutation rate is in
luded in the evolutionary algorithmsto prevent the entire population from 
onverging to a single 
olle
tion of similar so-lutions. The mutation rate should not be the prin
ipal solution spa
e explorationmethod of the algorithm and should be very low; we 
hose χ = 0.01. The generation
ount terminates the main loop if more than Gstop generations has passed. In thefollowing 
hapter we determine both the population size and the Gstop parameter.



88 Algorithms for Behavioral SynthesisModule Oprs Area Time-slots E/time-slot [nJ℄add {+} 2032.75 1 0.0266sub {−} 2032.75 1 0.0266
omp {>} 2032.75 1 0.0266ALU {+,−, >} 2965.00 1 0.0266mul1 {∗} 41978, 50 3 0.1046mul2 {∗} 28414.50 6 0.0523mul3 {∗} 14638.75 17 0.0319input i 43.00 1 0.0output o 43.00 1 0.0Table 6.2: 16 bit fun
tional unit library based on balsa-
ost numbers, available tothe synthesis algorithm.
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Figure 6.10: (Left) Partition of our CDFG into DFG fragments. (Right) The 
orre-sponding task graph to the partition of the CDFG.6.4 Control data �ow graph synthesisFor synthesis of 
ontrol data �ow graphs a basi
 blo
k synthesis pro
edure is used.Thus repetitive and 
onditional segments of the CDFG are s
heduled as independentparts or independent tasks i.e. the synthesis problem of the CDFG is redu
ed to asynthesis problem of a set of DFG's [64, 103℄, as we have presented in the previousse
tions i.e. this algorithm builds on top of these algorithm.The partition of the CDFG into basi
s blo
ks follows a hierar
hi
al de
ent into theCDFG where the DFG-fragments are identi�ed as the largest sets of deterministi
allyrelated operators in the CDFG. The largest set of deterministi
ally related operatorsis de�ned as the largest group of operators for whi
h a stati
 exe
ution order 
an befound.Having partitioned the CDFG into basi
 blo
ks a hierar
hi
al task graph 
on-
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Figure 6.11: S
heduling of the DFG fragments: DFG0, DFG1, DFG2.taining the relationships between the di�erent DFG fragments is generated. This isillustrated on Figure 6.10 for our example CDFG. For our example the largest groupof deterministi
ly related operators in CDFG0 are operators:{1, 2, 3, 4, 5} , whi
h isdenoted DFG0. Besides that there exists a bran
h-se
tion whi
h we denote CDFG1.The pro
edure is then repeated for CDFG1, whi
h 
ontains two sets of determinis-ti
ly related operators DFG1={6, 8} and DFG2={7}. Ea
h of these DFG fragmentsare nodes in the 
orresponding task graph. The task graph has a single dependen
ybetween DFG0 and CDFG1, whi
h originates from the exe
ution of the 
onditional
hoi
e, operator {4} whi
h is 
omputed in DFG0 and used in CDFG1.To keep tra
k of the 
urrent solution the algorithm is working on, we introdu
ea solution ve
tor φ 
ontaining n tuples (one for ea
h DFGi fragment), 
onsistingof the pair (ti, di) where ti is the start time-step for DFGi and di is the synthesisdelay 
onstraint for this DFGi fragment i.e. the maximally allowed exe
ution timefor DFGi. Let the s
hedule be de�ned by:
φ = [(t1, d1), (t2, d2), . . . , (tn, dn)]The time-steps ti are bound by the ASAP and ALAP times for the task graph,where it is assumed all the DFGi fragments are exe
uted using their ASAP s
hed-ules. The individual synthesis delay 
onstraints range from the ASAP time of theDFGi fragment to the ALAP time of the DFGi fragment 
omputed where all otherDFG fragments are exe
uted using their ASAP times and all prede
essor DFGi ares
heduled at ASAP start-time intervals and all su

essors are s
heduled using theirALAP time intervals. This spe
i�es the maximally allowed time interval for thatDFG fragment.The main synthesis algorithm operates in �two-levels�: The prin
ipal level s
hed-ules the DFG fragments (task-s
heduling) using the {ti} start-times and the sublevelor innerloop res
hedules a single DFGi fragment using its di synthesis delay 
on-straint.CDFG s
heduling:



90 Algorithms for Behavioral SynthesisInitial Generate the task-graph by des
ending hierar
hi
ally into the CDFG dividingdeterministi
 sets into DFGi whi
h are nodes in the task graph. Generate theinitial solution ve
tor by setting the set of start times {ti} to the ASAP start-time for the task-graph. And set the set of synthesis time-
onstraints {di} tothe length of the ASAP s
hedules for the {DFGi}.Step 1 Perturb φ, by randomly sele
ting a tuple i and randomly move the start time
ti and 
hange the synthesis 
onstraint di → φ′. All has to be sele
ted withintheir respe
tive ASAP-ALAP intervals.Step 2 [Innerloop:℄ Res
hedule the sele
ted DFGi using one of the methods pre-sented in the previous se
tions, using the 
orresponding 
onstraint di.Step 3 S
hedule the task graph using the task solution ve
tor and allo
ate usinggroups of FUs from the DFG fragments. For CDFG fragments 
ontaining
hoi
es between several DFG's use the worst-
ase time-delay and area usage.For 
onditional repetitive CDFG fragments assume a single exe
ution. Theresulting fun
tional unit allo
ation is the maximal 
on
urrent use of ea
h typeof FU.Step 4 Lo
ally optimize the resulting 
ombined s
hedule, by taking advantage ofthe sla
k but without allo
ation more fun
tional units than allo
ated in the
urrent iteration. Compute the area 
ost of φ′ → A′ from the fun
tional unitallo
ation.Step 5 If the resulting s
hedule violates the system time 
onstraint T add a largepenalty area to the area 
ost: A′ + P → A′.Step 6 If the new 
ost is smaller than the existing solution (A′ < A) a

ept thenew solution φ′, otherwise 
onditionally a

ept φ′ depending if exp(−(A′ −
A)/Temp) > random(1) is true.Step 7 Update the solution spa
e (φ′, A′, T emp′) → (φ,A, T emp) and while notthermal equilibrium goto step 1.Step 8 Redu
e the temperature exponentially Temp′ = αTemp, with 0 < α < 1.Step 9 If the temperature Temp′ is larger than Tempcrystal (the stopping temper-ature) and A′ is larger than Aaccept goto step 1.The algorithm operates similar to the simulated annealing synthesis algorithm insubse
tion 6.3.3, the prin
ipal di�eren
e is in step 2, the innerloop, where a DFGfragment is s
heduled. Here a penalty 
ost is used for infeasible solutions as no goodfeasibility algorithm has been found yet.The s
heduling of the di�erent DFG fragments are shown in Figure 6.11. For oursimple example task-graph there is, be
ause of the dependen
y between DFG0 andCDFG1, only one possible task s
hedule, whi
h is shown in Figure 6.12 (left). The
orresponding s
hedule at operator level is shown following thereafter, this s
hedule
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Figure 6.12: Syn
hronous task-s
heduling and the 
orresponding s
hedule of opera-tors. Sla
k exploitation leads to the optimized s
hedule, whi
h is �nally relaxed intoan asyn
hronous s
hedule.
ontains a lot of sla
k stemming from the individual s
heduling of the DFGS andnot the CDFG as a hole. In this and other 
ases the s
hedule 
an be 
ompressedfollowing a ��rst 
ome �rst serve� prin
iple where operators are moved upwards intime to empty time slots, preserving the relative s
heduling of the operators in DFGand their relative dependen
e between the DFGs. The resulting s
hedule for ex-ample is shown on the same �gure. Finally the time-slot restri
tions are removed,shortening the exe
ution time of the multiply operation and relaxing the s
heduleinto an asyn
hronous s
hedule. The resulting s
hedule has been used through-outin this thesis. This s
hedule is not optimal when 
ompared to the optimal s
hedulegenerated through a 
ontinuous time exhaustive-sear
h method, but the di�eren
e ismarginal.For the power aware s
heduling algorithm 
onsidered in the �rst se
tion, thebasi
 blo
k is extended to in
lude the 
onditional se
tions of the CDFG, but notrepetitive stru
tures. This means our entire example is one basi
 blo
k for thatalgorithm. The power aware s
heduling is a 
lique based algorithm whi
h operatesusing operator disjun
tiveness. There are two types of disjun
tiveness to 
hara
terizethe relationship between two operators. The operators 
an be:Path disjun
tive For operators to be path disjun
tive, there should exist a de-penden
e relation between them i.e. there should exist a path in the CDFG
onne
ting the two operators together and preventing the operators from hav-ing overlapped exe
ution times.Bran
h disjun
tive For operators to be bran
h disjun
tive ea
h operator shouldsemanti
ally ex
lude the exe
ution of the other i.e. if ea
h operator belong to
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hes in a bran
h 
onstru
tion only one of the operators 
an beexe
uted and therefore no overlapping exe
ution 
an o

ur.Operators that are disjun
tive will only take up one exe
ution slot on a fun
tionalunit and thus 
an be advantageously s
heduled onto the same fun
tional unit.A power-
onstraint 
ould be in
luded alongside the task exe
ution-time 
onstraint
di and thus be used to power 
onstraint the s
heduling of the DFGs. The systempower 
onstraint 
ould then be handled by a penalty fun
tion, similar to the penaltyintrodu
ed by violating the system time 
onstraint T .6.5 SummaryIn this 
hapter we have presented a set of behavioral synthesis algorithms: A power-aware synthesis algorithm for CDFGs without repetative stru
tures, whi
h we haveimplemented. A simulated annealing algorithm and an evolutionary algorithm forsynthesis of DFG fragments and we have developed a feasibility algorithm whi
henables the possibility of easy 
rossing between areas of feasible solutions in thesolution spa
e for these meta-heuristi
 algorithms. All of whi
h we have implemented.Finally we have outlined a behavioral synthesis algorithm for synthesis of CDFGs.In the following 
hapter we 
ompare the implemented algorithms.



C h a p t e r 7
Results

This 
hapter presents an evaluation of the e�
ien
y of the 
omputation model andour methods. The purpose here is not to 
ompare asyn
hronous vs. syn
hronous,as ea
h have their own appli
ation domains and a
ts as supplements. Neither isdire
t 
omparison with other asyn
hronous synthesis methods attempted, as thisinvolves 
omparing di�erent te
hnologies and implementation styles whi
h rendersany 
omparisons debatable/in
on
lusive.We ben
hmark our algorithms on a representative set of problems from the 
las-si
al set of synthesis ben
hmark CDFGs: FIR is a eight-tap FIR �lter. HAL is aniterative Euler integration of a di�erential equation. ELLIPTIC is a �fth order ellip-ti
 wave �lter. COSINE is a part of the DCT algorithm. Throughout in this 
hapterwe will use the FU library shown in Figure 6.2. This FU library 
onsist of �balsa-
ost� numbers of 
orresponding balsa-programs that implement the fun
tionality ofthe fun
tional units.We begin with presenting the results of the behavioral synthesis algorithms wherewe are interested in their run-time. For these we only 
onsider the area of fun
tionalunits. Then we pro
eed by investigating the 
ir
uit implementation method presentedin this thesis; we use our method on the GCD algorithm, whi
h we 
ompare againsta manually optimized design. For these results we use the full 
ir
uit area. Then weimplement the ben
hmark set and investigate the overhead of implementing resour
e-sharing using this method. Finally we look at the 
ir
uit 
hara
teristi
s at layoutlevel.



94 ResultsModule Oprs Area Time-slots E/time-slot [nJ℄add {+} 2032.75 1 0.0266sub {−} 2032.75 1 0.0266
omp {>} 2032.75 1 0.0266ALU {+,−, >} 2965.00 1 0.0266mul1 {∗} 41978, 50 3 0.1046mul2 {∗} 28414.50 6 0.0523mul3 {∗} 14638.75 17 0.0319input i 43.00 1 0.0output o 43.00 1 0.0Table 7.1: 16 bit fun
tional unit library based on balsa-
ost numbers, available tothe synthesis algorithm.
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Figure 7.1: CDFG for the HAL 
omputation, where I and O are the input and outputnodes.7.1 Results for power aware s
hedulingWe have ben
hmarked the algorithm on a set of CDFGs, using our FU library shownin table 7.1, all performed on a 200MHz Pentium II, with 96 MB memory. We do nottake an eventual 
orrelation among input data in to a

ount and assume worst-
asepower measures for 
omputations in the di�erent FU 
omponents. The �rst test is ofthe PASAP algorithm where we investigate the required time delay of the CDFGs,as a fun
tion of the power 
onstraint. The results are shown in table 7.2. The se
ondtest is of the main 
lique-partitioning algorithm where we investigate the area of theresulting 
ir
uits as a fun
tion of the power 
onstraint, with a 
onstant time frame.We perform this test for a few di�erent time-frames. The results are shown in Figure7.2. Finally some di�erent power and time 
onstraints and the 
ir
uit area and theCPU time to �nd the solutions is shown in table 7.3.As shown in Figure 7.2 (eg. ELLIPTIC with T=30 and COSINE with T=15)using a global synthesis algorithm we 
an trade in area to obtain a solution whi
h�ts our power requirements. The average area penalty ranges in the region of 20



7.2 Results for simulated annealing and evolutionary algorithm 95HAL, verti
es=21, edges=25
E<[nJ ] inf 0.500 0.400 0.300 0.250 0.200 0.150 0.125
TPASAP 9 9 11 12 12 20 20 22FIR, verti
es=24, edges=24
E<[nJ ] inf 1.00 0.600 0.400 0.300 0.200 0.150 0.125
TPASAP 8 8 10 13 16 28 27 29ELLIPTIC, verti
es=49, edges=43
E<[nJ ] inf 0.500 0.400 0.300 0.250 0.200 0.150 0.125
TPASAP 21 21 23 23 24 31 32 38COSINE, verti
es=57, edges=77
E<[nJ ] inf 1.00 0.800 0.500 0.300 0.200 0.150 0.125
TPASAP 11 11 14 17 27 51 54 56Table 7.2: Time vs. power using the PASAP s
heduling for the set of ben
hmarks.

E<[nJ ] T A TCPU [s]

inf 11 440,499 15.82
0.500 17 314,485 46.75
0.400 26 138,310 118.29
0.300 32 96,289 160.22
0.300 37 95,289 297.03
0.200 56 96,289 442.36
0.125 66 56,386 193.79
0.125 71 56,386 357.58Table 7.3: Di�erent power and time 
onstraints generated by the main synthesisalgorithm, the resulting area and the CPU synthesis time for COSINE.

per
ent whi
h is an a

eptable penalty, as power is the 
riti
al parameter here.An interesting aspe
t is that with a large time and power 
onstraint, the algorithmmight �nd a worse solution with respe
t to area, than when the power 
onstraintis tight. The reason for this lies in the greedy approa
h whi
h might make a badde
ision early on. With the tight power 
onstraint this is prevented (no need toallo
ate many FUs in parallel if only one or two is used at a time), an example ofthis is COSINE T=25 and T=20.
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onstraints for HAL, COSINE andELLIPTIC.
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Figure 7.3: Tightly 
onstrained power-aware s
hedule for the HAL 
omputation,T=13, E=0.210nJ . Requiring 2 inputs, 2 mults (fast), 1 add, 1 sub, 1 les and 4outputs, with a total area of 90311.7.2 Results for simulated annealing and evolution-ary algorithmFor the meta-heuristi
 algorithm we �rst need to adjust the meta heuristi
 parametersfor the algorithms. This is in many 
ases more of an art, than a s
ien
e. In thefollowing we will experimentally �nd the best parameter setting. The test 
ase weuse to adjust the parameters from, is the HAL 
omputation with a time frame of
T = 20. This is an arbitrary 
ase, and there is no guarantee this will lead to the
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Figure 7.5: Solution (HAL T = 20) from evolutionary algorithm as a fun
tion of the
Gstop generation 
ount and the population size (N).optimal set of parameters for all other 
ases. In parti
ular one should beware of�ne-tuning the algorithm pre
isely to this 
ase as it might mean the meta-heuristi
algorithms is really good at �nding this solution, but terrible for all other 
ases andproblems. On the other hand we need to adjust the parameters for something and a
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Figure 7.6: S
hedule, FU allo
ation and operator assignment generated by simulatedannealing for HAL with T = 20 
onstraint, giving a total �balsa-
ost� area of 59700.small example where to the exa
t optimum is known is good test for narrowing downthe parameter setting.We begin with simulated annealing, where we need to �nd the temperature 
hange
oe�
ient α and the �thermal equilibrium� number N . In Figure 7.4 we have shownseveral runs of the algorithm for various parameter settings and plotted the solutionthe algorithm �nds. Ea
h point represents an entirely new run. As 
an be seen thesimulated algorithm is rather unstable 
apable of getting stu
k at a lo
al minimum.However for N = 500 and larger, the algorithm tends to be
ome more stable andprodu
e good solutions (a
tually the optimal solution) at every run. The best pa-rameter setting for α seems to be α = 1.250 for larger α the algorithm does notprodu
e better solutions, only taking exponentially more time to 
omplete. Thesesetting also seem to produ
e good solutions for the other problems in the ben
hmarkset.Next is the evolutionary algorithm, where we need to �nd the Gstop generation
ount and the N population 
ount. In Figure 7.5 we have shown several runs ofthe algorithm for various parameter settings and plotted the solution the algorithm�nds. Again ea
h point represents an entirely new run. As 
an be seen the simulatedalgorithm is rather stable 
apable of produ
ing reliable results. Another fa
tor isthe high-dependen
y on the population size. With a population around 512 thealgorithm starts 
onverging towards the global optimum with the fast 
onvergen
eand 
hoosing a large population size does not in
rease the 
onvergen
e. The bestvalue for the maximum generation 
ount Gstop seems to be around in the rangefrom 320 to 640. To be on the safe side we 
hose 640 generations. Again theseparameters settings seems to produ
e good solutions for the other algorithms in theben
hmark set ex
ept for COSINE, for whi
h the algorithm have problems �nding



7.3 Results for asyn
hronous behavioral synthesis 99some parti
ular solutions.We have ben
hmarked the algorithms on two DFGs: HAL (TASAP = 10) andCOSINE (TASAP = 11). We are interested in the CPU-time i.e.. the amount of timeit takes running the algorithms to get a solution satisfying our area requirements. Forthe two DFGs we apply the two meta-heuristi
 algorithms, giving us four primarytest 
ases (shown in table 7.4). For ea
h test 
ase we set �ve sili
on area requirementsand six time frame requirements T = dt + TASAP , (the blanks are where the meta-heuristi
-algorithms fail to �nd a solution either be
ause there is no optimal solutionsatisfying the requirement or in border 
ases be
ause the algorithms are heuristi
).Again, all tests are performed on a 200MHz Pentium II, with 96 MB memory andall numbers re�e
t a statisti
al average of running the algorithms 500 times on ea
hproblem instan
e.In general the simulated annealing out-performs the evolutionary algorithm interms of CPU time required to �nd a solution for large problems (i.e. COSINE). Theprimary reason stems from the evolutionary algorithm working on a large popula-tion, whi
h in every iteration has to be made feasible and 
ost evaluated, whereas thesimulated annealing only works with one problem instan
e. On the other-hand theevolutionary algorithm seems to perform more �stable�, unlike simulated annealingwhi
h is 
apable of getting �stu
k� in lo
al-minimums for some runs. Comparingthe evolutionary algorithm with the simulated annealing the evolutionary algorithmtakes signi�
antly longer time to run and does �nd just as good solutions as simu-lated annealing. In parti
ular in the COSINE 
ase the evolutionary algorithm hasproblems. This does not mean the evolutionary algorithm 
annot �nd the solutionseg. if run free the evolutionary algorithm is 
apable of �nding a solution for CO-SINE, T = 107, below the area requirement of 49200, however it took 25857.4s orapproximately 7.18 hours. The evolutionary algorithm does not however have similarproblems for FIR or ELLIPTIC.A property of the proposed CDFG synthesis algorithm is that one of these al-gorithms will be run for the DFG fragments, until the main synthesis algorithm
onverges, it is therefore important that these algorithms generate the solutions fast.This favours the simulated annealing over the two other algorithms.Finally in Figure 7.6 is shown the optimal s
hedule generated by the meta-heuristi
 algorithms in the parameter investigation.7.3 Results for asyn
hronous behavioral synthesisIn order to demonstrate the feasibility of the proposed approa
h and in order toevaluate the e�
ien
y of the proposed implementation template. We begin in sub-se
tion 7.3.1 with applying our approa
h on the GCD algorithm and then 
ontinuein subse
tion 7.3.2 to our ben
hmark 
ir
uits and �nally for FIR and HAL we haveprodu
ed layouts and in subse
tion 7.3.3 we report on the area, speed and power�gures.But �rst we report on the area 
ost of our running example. The original Balsa-



100 ResultsSimulated Annealing (HAL)
T Area requirement

140, 000 120, 000 90, 000 75, 000 60, 000 46, 000
10 0.165
13 0.012 0.270 2.418
16 0.000 0.092 0.220
18 0.000 0.056 0.165 4.505
20 0.000 0.010 0.07 3.576 23.91
22 0.000 0.000 0.35 1.202 11.43 18.86Simulated Annealing (COSINE)
T Area requirement

350, 000 160, 000 110, 000 92, 000 78, 000 49, 200
13 189.9
21 0.165 195.6
32 0.070 1.593 202.6
35 0.110 0.659 42.03 205.6
86 0.0505 0.440 3.077 8.846 55.54

107 0.210 0.385 2.418 10.33 39.23 259.1Evolutionary Algorithm (HAL)
T Area requirement

140, 000 120, 000 90, 000 75, 000 60, 000 46, 000
10 0.275
13 0.210 0.330 0.934
16 0.000 0.270 0.275
18 0.000 0.165 0.261 10.934
20 0.000 0.015 0.031 2.582 40.01
22 0.000 0.002 0.011 2.637 6.593 30.49Evolutionary Algorithm (COSINE)
T Area requirement

350, 000 160, 000 110, 000 92, 000 78, 000 68, 000
13 22.253
21 0.031 369.0
32 0.00 1.923
35 0.000 1.978 302.2
86 0.0201 0.771 2.253 167.5 271.8

107 0.000 0.010 2.410 2.363 204.0 804.1Table 7.4: Run-times (TCPU [s]) for two CDFGs (HAL and COSINE) by simulatedannealing and evolutionary algorithm.
ode in Figure 2.1 would have a Balsa-
ost of 96, 787.5 (using the numbers from ourmultiplier), whereas the resulting synthesized Balsa-
ode shown on pages 65-67 have



7.3 Results for asyn
hronous behavioral synthesis 101import [balsa.types.basi
℄type word is 16 bitspro
edure g
d(input a,b: word ; output 
: word) isvariable ai,bi : wordbeginloopa -> ai || b -> bi ;while ai/=bi thenif ai>bi thenai:=(ai-bi as word)elsebi:=(bi-ai as word)endend ;
<-aiendend Figure 7.7: The GCD-algorithm.a balsa-
ost of 60, 037.5. Representing an area redu
tion of 38%.7.3.1 GCDIn [53, se
tion 13.2.3℄ the pro
ess of syntax dire
ted and optimizations at the sour
e
ode level (using Tangram) is illustrated using GCD as an example. Figure 7.7shows the well known algorithm expressed in Balsa 
ode. The problem is that thesour
e 
ode 
ontains 4 operator symbols, and that the 
orresponding 
ir
uit have 4fun
tional units as well. In order to optimize the area the designer has to rewritethe 
ode. Figure 7.8 shows one su
h optimized design. It is slightly di�erent fromthe Tangram 
ode in [92℄ as Balsa does not support exa
tly the same 
onstru
ts asTangram, but the ideas underlying the optimization are the same. Even this simpleexample hints that the pro
ess of optimizing the 
ir
uit and exploring alternatives
an be tedious. In behavioral synthesis one would take the basi
 
ode in Figure 7.7and synthesize it with area minimization as the 
onstraint. The work presented heredoes exa
tly this, i.e. from a CDFG extra
ted from the basi
 
ode in Figure 7.7we automati
ally synthesize a 
ir
uit 
ontaining two 
ompares and one subtra
tionoperator. Table 7.5 shows the area estimates (�balsa-
ost�) reported by Balsa for thedi�erent versions of the 
ir
uit. It is seen that behavioral synthesis in this examplea
tually outperforms the manually optimized design.The important message here is that the overhead introdu
ed by our method is sosmall the resulting area 
ost is in the same region as a manually optimized 
ir
uit.



102 ResultsProgram balsa-
ostg
d_basi
 7435.25g
d_opt 7161.75g
d_synt 6846.00Table 7.5: Comparison of the plain GCD, the optimized GCD and the synthesizedGCD. �balsa-
ost� is an area measure reported by the Balsa tool.import [balsa.types.basi
℄type word is 16 bitstype twoword is re
orda,b:wordendpro
edure g
d(input ab: twoword ; output 
: word) isvariable data : twowordbeginloopab->data ;while data.a/=data.b thenif data.a>data.b thendata:=(twoword {((data.a-data.b) as word),data.b as word)})elsedata:=(twoword {data.b,data.a})endend ;
<-data.aendend Figure 7.8: An optimized version of GCD.7.3.2 Ben
hmarksUsing our behavioral synthesis methods, more pre
isely simulated annealing, togetherwith our 
omputation model and our implementation templates, we have synthesizedthe range of ben
hmarks as shown in table 7.6. Again the area is expressed in termsof the �
ost� reported by Balsa. As seen, it is possible to automati
ally synthesize im-plementations with a range of 
onstraints. The table is divided into six groups: The�rst group shows the balsa implementation as a designer would implement them with-out resour
e sharing. The se
ond group shows the area of the synthesized versionsas produ
ed dire
tly from the simulated annealing algorithm before lat
h assignment



7.3 Results for asyn
hronous behavioral synthesis 103import [balsa.types.basi
℄type word is 16 bitspro
edure g
d(input a,b: word ; output 
: word) is
hannel FU0_a,FU0_b,FU0_z:wordpro
edure FU0_sub(intput FU0_a,FU0_b:word;output FU0_z:word) isbeginloopsele
t FU0_a,FU0_b thenFU0_z<-(FU0_a-FU0_b as word)endendendpro
edure g
d_ar
hite
ture(input a,b,FU0_z:word;output FU0_a,FU0_b,
:word)variable L0,L1,L2 : word
hannel 
L2:wordbeginloopa -> L0 || b -> L1 ;while L0/=L1 thenif L0>L1 thenFU0_a<-L0 || FU0_b<-L1;
L2->L0elseFU0_a<-L1 || FU0_b<-L0;
L2->L1end ||[ FU0_z->L2 ; 
L2<-L2 ℄end ;
<-L0endendbeginFU0_sub(FU0_a,FU0_b,FU0_z) ||g
d_ar
hite
ture(a,b,FU0_z,FU0_a,FU0_b,
)endFigure 7.9: The synthesized version based on the basi
 algorithm in Figure 7.7.i.e. only the pure FU area is reported. The third (3a) and fourth (3b) group showsto the se
ond group 
orresponding balsa-implementation using the alpha and betatemplates respe
tively, but without using the 
ontrol and mux-optimizing algorithm.



104 ResultsFor the �fth (4a) and sixth (4b) groups these optimizations have been in
luded.Thus the di�eren
e between items of the se
ond group and the third or fourth groupis the implementation overhead of using these approa
hes and the overhead of theimplementation templates proposed by this thesis.The �rst observation is that again there is a large area saving when applyingresour
e-sharing. Se
ondly, the overhead of implementing the 
ir
uits, 
onsisting of
ontroller area, lat
h area and multiplexor/-demultiplexor area is around 40% of thetotal area of the 
ir
uits and the fun
tional units make up around 60%. This is not-unexpe
ted as these additional area 
ontributions are signi�
ant also in syn
hronousbehavioral synthesis, and for digital 
ir
uit design in general. Finally, there is the
omparison between the two 
omputation models, should there be power guardinginput/output-lat
hes around fun
tional units or not with respe
t to area? The areadi�eren
e between the two is very little and for the four ben
hmarks here there is two
ases where the input/output lat
h is smaller than the input/output-lat
h 
ir
uit, one
ase where there is almost equality and one 
ase the non-input/output-lat
h 
ir
uit issmaller than the input/output-lat
h 
ir
uit. In general the non-input/output-lat
h
ir
uits have a smaller total lat
h 
ount, however there is usually a larger mux-depth asso
iated with these 
ir
uits, whi
h 
ounters this e�e
t. Based on the 
urrentobservations, we believe it to be appli
ation dependent whi
h type of 
omputationmodel that have the smallest area.The next question is how e�
ient these implementations are. To answer thisquestion we have produ
ed and simulated layouts for FIR and HAL.7.3.3 Layout resultsFor the ben
hmarks FIR and HAL in beta-style, we have used the ba
k-end part ofthe Balsa tools and a
tually produ
ed a layout targeting handshake 
omponents usingthe single-rail 4-phase early proto
ol. We have used the existing synthesis �ow atMan
hester University, whi
h is based upon a 0.18µm STM standard-
ell te
hnology,whi
h have been augmented with standard 
ell 
omponents for implementing variousspe
ial asyn
hronous 
omponents su
h as Muller C-elements.Simulation results are obtained by simulating the post pla
e-and-route Verilognetlist together with extra
ted layout information in NanoSim. We simulate 200
omputations, using random numbers with out any 
orrelation. All the 
ir
uits areimplemented using 16-bit variables and are simulated at 1.8V and at a temperatureof 25oC.It is important to stress the results do not represent an attempt to evaluate theasyn
hronous implementations against 
orresponding syn
hronous ones; our fo
us ison the e�
ien
y of the automated resour
e sharing within the asyn
hronous domain.The ben
hmark results are shown in table 7.7, where t is the average time todo one 
omputation, A is the layout area and E is the average energy 
onsumptionper 
omputation. In a similar way we have 
hara
terized the ALU and multiplieroperators, see table 7.8. The speed �gures in table 7.8 have been used in 
al
ulatingthe s
hedules.



7.4 Summary 105Implementations 1 and 3 in table 7.7 are the dire
t non-resour
e-shared 
ir
uitimplementations of the 
omputations. These have also been designed using lat
hes onthe input and output of the multipliers. Although this gives an extra area overheadit is insigni�
ant 
ompared to the area of the multiplier. The important fa
t isthat it redu
es the 
ombinatorial depth of the 
ir
uit and thus redu
es the power
onsumption, whi
h leads to a more fair 
omparison. The speed �gures in table 7.7in
ludes a 20ns handshake delay in the testben
h used to simulate the layouts.The results in table 7.7 shows that resour
e sharing saves area at the expense ofredu
ed speed. This is as 
ould be expe
ted. Con
erning energy 
onsumption it isinteresting to note that it remains 
onstant. Given that resour
e sharing leads tomore 
ontrol 
ir
uitry for the same 
omputation, an in
rease in energy 
onsumption
ould be expe
ted. It seems that the smaller size of the layout and the redu
edwire length, whi
h results from this leads to a power saving whi
h 
orresponds to thein
rease 
aused by the added 
ontrol.A visual 
omparison of the layouts for implementation 3 and 4 is shown in Figure7.10, illustrating the area redu
tion a
hieved by resour
e sharing.

Figure 7.10: Visual layout 
omparison of the non-resour
e shared HAL 
omputation(left) and the maximally resour
e shared HAL 
omputation (right).7.4 SummaryIn this 
hapter we have presented results for our behavioral synthesis algorithms.We have applied the power aware synthesis algorithm on several examples and in-vestigated di�erent regions in the time-power-
onstraint spa
e. The algorithm is
apable of �nding low area solutions ful�lling the 
onstraints and for the 
hosen sili-
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on library we �nd the power 
onstraint in the worst 
ase adds an in
rease in sili
onarea of roughly 20 per
ent. Furthermore we have implemented two meta-heuristi
algorithms for solving high-level behavioral synthesis: Simulated Annealing and Evo-lutionary Algorithm. In general the Simulated Annealing performs faster and �ndsbetter solutions to the problem, however the Evolutionary Algorithm is more stable.Both methods �nd better solutions than the power-aware synthesis algorithm within�nite power 
onstraint. As the CDFG synthesis algorithm will require several it-erations for ea
h individual task (DFG problem) it is important the DFG synthesisalgorithm is fast. Therefore based on the e�e
tiveness of the simulated annealing were
ommend that solution.Then we have demonstrated that for a small design with few opportunities forresour
e sharing (i.e. where the overhead of an automated method is high) ourapproa
h is doing very well. Finally, for a ben
hmark suite we have implemented andshown the resour
e sharing behaves as we predi
t and that there is no unexpe
tedpenalty, like ex
ess power 
onsumption.



7.4 Summary 107(1) Original 
odeProgram T add sub les ALU mul1 mul2 mul3 lt 
ostFIR - 7 0 0 0 8 0 0 0 459,749.25HAL - 2 2 1 0 6 0 0 0 348,093.75ELLIPTIC - 26 0 0 0 8 0 0 7 518,017.75COSINE - 13 13 0 0 16 0 0 0 964,470.25(2) Synthesized fun
tional units onlyProgram T add sub les ALU mul1 mul2 mul3 lt 
ostFIR 11 1 0 0 0 2 0 0 - 85,989.75HAL 7 0 0 0 1 2 0 0 - 86,922.75ELLIPTIC 18 2 0 0 0 2 0 0 - 88,022.50COSINE 18 2 2 0 0 2 0 0 - 92,088.00(3a) Synthesized 
ode in/output lat
h no 
trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt 
ostFIR 11 1 0 0 0 2 0 0 21 142,539.25HAL 7 0 0 0 1 2 0 0 16 135,218.50ELLIPTIC 18 2 0 0 0 2 0 0 23 163,014.75COSINE 18 2 2 0 0 2 0 0 32 170,984.00(3b) Synthesized 
ode no in/output lat
h no 
trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt 
ostFIR 11 1 0 0 0 2 0 0 12 140,535.00HAL 7 0 0 0 1 2 0 0 9 135,214.50ELLIPTIC 18 2 0 0 0 2 0 0 19 168,873.50COSINE 18 2 2 0 0 2 0 0 17 161,792.25(4a) Synthesized 
ode in/output lat
h with 
trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt 
ostFIR 11 1 0 0 0 2 0 0 21 128,893.25HAL 7 0 0 0 1 2 0 0 16 133,586.50ELLIPTIC 18 2 0 0 0 2 0 0 23 143,248.75COSINE 18 2 2 0 0 2 0 0 32 160,889.50(4b) Synthesized 
ode no in/output lat
h with 
trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt 
ostFIR 11 1 0 0 0 2 0 0 12 131,598.25HAL 7 0 0 0 1 2 0 0 9 133,664.25ELLIPTIC 18 2 0 0 0 2 0 0 19 150,256.00COSINE 18 2 2 0 0 2 0 0 17 155,626.75Table 7.6: Ben
hmark results generated by simulated annealing. Column T is thetime-
onstraint given to the synthesis tool. Columns add, sub, les, ALU, mul.. andlt lists the number of adders, subtra
tors et
. in the 
ir
uits. Cost is �balsa-
ost�, anarea measure reported by the Balsa tool.
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id Alg. ∗ ALU t [ns] A [mm2] E [nJ ]1 FIR 8 7 124.7 0.877 2.952 FIR 2 1 284.8 0.282 2.803 HAL 5 5 171.2 0.667 2.034 HAL 2 1 309.6 0.260 1.895 HAL 1 1 397.4 0.151 2.01Table 7.7: Layout results (beta-style).

FU σ t[ns] A [mm2] E [nJ ]ALU {+,−, >} 25.5 0.0112 0.0266Mult {∗} 56.3 0.105 0.314Table 7.8: FU library (16-bit) based on layout in 0.18µm te
hnology, used by oursynthesis algorithm.



C h a p t e r 8 Con
lusion
This thesis presented a novel approa
h for behavioral synthesis of asyn
hronous 
ir-
uits. The proposed approa
h seeks to merge the domains of traditional behavioralsynthesis and asyn
hronous 
ir
uits. This is a

omplished by providing a 
ompu-tation model, that is based upon asyn
hronous handshake 
omponents and whi
hallows us to use the transformations and optimizations used in syn
hronous synthe-sis dire
tly in asyn
hronous 
ir
uits. Furthermore the same model allows the use ofthe transformations and optimizations developed for 
ontinuous time.The 
entral elements in this thesis evolves around the 
onne
tion between thesyn
hronization events used in traditional te
hniques of behavioral synthesis and thetransition handshake 
omponent lo
ally 
ontrolling the beginning of an operationand writing the result of an operation. This is bound together by our hardwarear
hite
ture 
onsisting of a datapath with the transition handshake 
omponent anda 
ontroller determining these events. This 
omputation model relaxes the stri
tordering of the syn
hronous 
ir
uit and the syn
hronous s
hedule into the 
ontinuoustime domain, the s
hedule for the asyn
hronous 
ir
uit.We have a

omplished the following: (i) a method for synthesizing a CDFG to aBalsa-des
ription has been developed using a methodology 
losely related to, but notrestri
ted to, traditional syn
hronous behavioral synthesis. This allows us to use ex-isting te
hniques for design spa
e exploration and resour
e sharing by adding physi
al
onstraints to the 
ir
uit. (ii) A series of behavioral synthesis algorithms has beendeveloped for this purpose. The �rst is a power-aware synthesis algorithm, whi
htargets a power pro�le below a 
ertain threshold. Here we have shown it is possibleto trade-in area to obtain this power pro�le. We have also shown that even thoughthe power pro�le dire
tly leads to a restri
tion on the number of multipliers in the
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ir
uit, the other smaller 
ontributor operations still have a signi�
ant impa
t and arevery important for �nding the optimal s
hedule. Then we have implemented a more
onventional resour
e sharing synthesis algorithm based on the meta-heuristi
 algo-rithms; simulated annealing and evolutionary algorithm. For these we have shownthe simulated annealing algorithm outperforms the evolutionary algorithm with re-spe
t to run-time. We have also shown the meta-heuristi
 algorithms outperform the�rst power-aware algorithm with respe
t to run-time. (iii) We have developed dif-ferent 
omputation models depending on the requirement to isolate fun
tional unitswhen they are idle and developed the asso
iated variable-lifetime algorithms. (iv) Wehave shown our approa
h to be e�
ient even for small 
ir
uits and that the overheadof implementing our approa
h is small 
ompared to the area saving a
hieved usingour method. (v) Using this method and the Balsa and Caden
e design tools severallayouts have been designed and simulated. The results show that it is possible to dotradeo�s between area and 
ir
uit delay and to do so without any in
rease in power
onsumption for asyn
hronous 
ir
uits. This gives us proof of 
on
ept. Furthermorewe have an indi
ation that signi�
ant resour
e sharing leads to a redu
tion of theaverage load 
apa
itan
e and thus a redu
tion of the power 
onsumption.The rest of this 
hapter will present the advantages of the proposed approa
h,put the method in perspe
tive and dis
uss future dire
tions.8.1 Advantages of the approa
hThere are several advantages of our approa
h to behavioral synthesis of asyn
hronous
ir
uits:Traditional datapath and 
ontroller The fa
t that our target 
omputation modelis the asyn
hronous equivalent to the syn
hronous 
omputation model allowsus the use of existing traditional behavioral synthesis approa
hes. This enablesan entire range of behavioral synthesis algorithms to be
ome available.Continuous time Our 
omputation model dire
tly targets s
hedules generated thro-ugh the use of 
ontinuous time synthesis methods, this in
ludes methods fromoperations resear
h.Only handshake 
omponents Our approa
h builds entirely on asyn
hronous 
han-nels and handshake 
omponents, in
luding the 
ontroller part. This avoids theoften 
omplex task of synthesizing an asyn
hronous 
ontroller and allows forasyn
hronous 
ir
uits of any size to be easily 
onstru
ted.Building upon syntax dire
ted synthesis Our approa
h targets a high-level syn-tax dire
ted hardware des
ription language whi
h spe
i�
ally targets asyn-
hronous 
ir
uits. This has the advantage that we do not need to keep upwith te
hnology 
hange and maintaining a working sili
on ba
k-end.One 
an also 
onsider su
h a high-level language as an interfa
e to the asyn-
hronous world. Therefore several ba
k-ends are available as target, ranging



8.2 Perspe
tive on the approa
h 111from simple variations in handshake proto
ols and 
ir
uit implementation stylesto entirely di�erent operations 
hara
teristi
s as Burstmode 
ir
uits.The fa
t that we target a high-level hardware des
ription language built fordesign of asyn
hronous 
ir
uits, means that the designer, if unhappy with partsof the design generated by the behavioral synthesis tool, 
an either repla
ethese parts with his own designs or dire
tly modify these parts to improve the
hara
teristi
s of the resulting 
ir
uit.Low power datapaths Our approa
h targets the generation of low-power datap-aths, where 
omputational intensive fun
tional units with large 
ombinatorialdepths or that have a large load 
apa
itan
e through a large number of output
onne
tion, 
an be isolated by the use of non-transparent lat
hes.8.2 Perspe
tive on the approa
hOver the last de
ade asyn
hronous design has slowly but surely moved into industrys
ale designs and has found its way into 
ommer
ial appli
ations by two primarydriving for
es:Appli
ation domain There are a number of appli
ations for whi
h one or more ofthe properties of asyn
hronous design is a requirement. Examples are; 
ontrol
ir
uits on analog 
ir
uitry, where the 
lo
k would introdu
e noise to the analog
ir
uitry, and smart
ards where the 
ir
uit only has a

ess to power when usedand often in very unreliable form. Most of these 
ir
uits are 
urrently smalland are manageable for the designer to optimize manually. However as wehave seen our synthesized 
ir
uits either outperforms or performs equally wellto small 
ustomized 
ir
uits i.e. the GCD algorithm. Furthermore for theseappli
ation domains the 
ir
uit delay 
onstraint is usually easy to meet, leavinga large room for resour
e sharing. As the size and 
omputational demandsof these 
ir
uits in
rease beyond what 
an be handled by small 
ustomizedasyn
hronous hardware and asyn
hronous pro
essors, there will be a strongappli
ation for our approa
h here.The 
lo
king problem Large digital 
ir
uits designed using the System on Chipparadigm fa
e large problems when it 
omes to managing the 
lo
k in the �nallayout generation phase. A solution to this problem is the Globally Asyn-
hronous Lo
ally Syn
hronous (GALS) approa
h [56, 34℄, where the inter
on-ne
tion stru
ture is asyn
hronous and the 
omputation takes pla
e on smallsyn
hronous islands. For the inter
onne
tion itself there is usually little 
om-putation taking pla
e and a 
ustom designed datapa
ket routing network willprobably outperform a synthesized version, unless the routing-proto
ol and -algorithm have a su�
iently high 
omplexity. However in the future, it willnot be unlikely that some of these syn
hronous islands will be repla
ed by fullyasyn
hronous 
ir
uit variants. These asyn
hronous 
ir
uits will be
ome thetarget for the work presented in this thesis.
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lusion8.3 Future dire
tionsThe ben
hmark set, upon whi
h we have applied our methods, is a small set ofsynthesis problems. The next step is to apply our method to a larger �real� 
ir
uitand 
ompare with a manually designed asyn
hronous 
ir
uit. A possibility 
ould bea low-power 3D-graphi
s render engine appli
ation for portable devi
es. The renderpro
ess is a rather inhomogeneous appli
ation inwhi
h 
hara
teristi
s depend highlyon the triangle set upon whi
h it operates [47℄.As we have seen the meta-heuristi
 algorithms are very e�e
tive, therefore aninteresting dire
tion would be the implementation of a power-aware meta-heuristi
simulated annealing algorithm. In parti
ular, this only involves �nding a new fea-sibility algorithm, whi
h fast 
an generate a power- and time-
onstrained s
hedulefrom a infeasible solution [78, 32℄ If this is impossible one 
ould simply use the exist-ing feasibility algorithm and add a heuristi
 
ost penalty for those s
hedules whi
hviolate the power 
onstraint. This heuristi
 
ould simply be based on �nding themaximal violation and look at how many operations violate the 
onstraint and then
onvert these into the area required to implement these, 
orresponding to exe
utingthem at another point in time.The next improvement 
on
erns the 
ost fun
tion, whi
h we use to 
ompute thearea 
ost during design spa
e exploration. Currently only the FU area is a

ounted forand we need to make a better modeling of the target 
ir
uit in
luding the lat
h area,inter
onne
t (multiplexor, demultiplexor) area and the area required to implementthe 
ontroller [68, 37℄.Asyn
hronous 
ir
uits operate in 
ontinuous time and it would be natural to applysome of the 
ontinuous time s
heduling algorithms, and 
ompare with the s
hedulesfrom dis
rete time. This will investigate if there is a need to in
lude su
h algorithmsand whi
h are the most appropriate for asyn
hronous 
ir
uit design [4, 3℄.For 
ertain 
riti
al sub-algorithms a spe
i�
 manual design e�ort will lead to asigni�
ant performan
e advantage. If su
h a sub-algorithm is su�
iently 
ommon towarrant the design e�ort it 
ould be made available to the target resour
e library.These more �
omplex� operators will be able to enter into our task-level CDFGsynthesis algorithm as a DFG fragment. It would be ne
essary to be able to identifythese spe
ial fragments in the CDFG [60℄.Many of the algorithms, whi
h with advantage 
an be implemented as asyn-
hronous 
ir
uits, are very dynami
 in nature. The one-to-one mapping of theCDFG to an asyn
hronous 
ir
uit resembles this as it is a very �elasti
� 
omputation.Whereas the s
hedules produ
es by the behavioral synthesis algorithms 
onsideredin this thesis are stati
. These algorithm operate by �nding the near global optimumby the information available at 
ompile time. However a lot of information is notavailable at 
ompile time; the path through the 
onditional parts of the algorithmand 
onditionally repetitive parts. One approa
h would be to take advantage of theasyn
hronous nature and look into methods for making the 
ontrol of the 
ir
uitmore dynami
, perhaps even a primitive form of dynami
 s
heduling.
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