
Behavioral Synthesis of Asyn
hronous Cir
uits
Ph.D. thesisbySune Fallgaard NielsenComputer S
ien
e and Te
hnologyInformati
s and Mathemati
al ModellingTe
hni
al University of Denmark

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/13706355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This dissertation is submitted to Informati
s and Mathemati
al Modeling at theTe
hni
al University of Denmark in partial ful�llment of the requirements for thedegree of Do
tor of Philosophy.The work has been supervised by Asso
iate Professor Jens Sparsø and Professor JanMadsen.
Kgs. Lyngby, De
ember 31, 2004Sune Fallgaard Nielsen

ii

Resumé
Denne afhandling presenterer en metode for behavioral syntese af asynkrone kred-sløb. Målet er at tilvejebringe et syntese �ow, som udnytter og overfører metoder frasynkrone kredsløb til asynkrone kredsløb. Ideen er at �ytte den synkrone behavioralsyntese abstration ind i det asynkrone handshake domæne ved hjælp af en beregn-ings model, som ligner den synkrone datavej og kontrolenheds struktur, men som erfuldstændig asynkron.Denne model indeholder muligheden for at isolerer enkelte eller alle beregningse-lementer ved at låse deres respektive inputs og outputs når beregningselementer erinaktivt. Dette redu
erer unødvendig skifteaktivitet i de enkelte beregningselementerog derved energiforbruget af hele kredsløbet. En samling af behavioral syntese algo-ritmer er blevet udviklet, som tillader designeren at foretage design spa
e explorationbestemt af både power- og udførelsestids-krav. Datavej og kontrol arkitekturen bliverderefter udtrykt i Balsa-sproget, og syntaks styret oversættelse anvendes til at kon-strurere det tilhørende asynkrone handshake kredsløb (og evt. endeligt et layout).

iv Resumé

Abstra
t
This thesis presents a method for behavioral synthesis of asyn
hronous
ir
uits, whi
haims at providing a synthesis �ow whi
h uses and tranfers methods from syn
hronous
ir
uits to asyn
hronous
ir
uits. We move the syn
hronous behavioral synthesisabstra
tion into the asyn
hronous handshake domain by introdu
ing a
omputa-tion model, whi
h resembles the syn
hronous datapath and
ontrol ar
hite
ture, butwhi
h is
ompletely asyn
hronous. The model
ontains the possibility for isolatingsome or all of the fun
tional units by lo
king their respe
tive inputs and outputswhile the fun
tional unit is idle. This redu
es unne
essary swit
hing a
tivity in theindividual fun
tional units and therefore the energy
onsumption of the entire
ir-
uit. A
olle
tion of behavioral synthesis algoritms have been developed allowingthe designer to perform time and power
onstrained design spa
e exploration. Thedatapath and
ontrol ar
hite
ture is then expressed in the Balsa-language, and usingsyntax dire
ted
ompilation a
orresponding handshake
ir
uit implementation (andeventually a layout) is produ
ed.

vi Abstra
t

A
knowledgments
Many people have helped me to arrive at this point, all of whom I am grateful to.

viii A
knowledgments

Contents
1 Introdu
tion 11.1 From syn
hronous to asyn
hronous behavioral synthesis 31.2 Thesis outline and readers guide . 72 Ba
kground 92.1 Synthesis �ow and CDFG format . 92.2 Behavioral synthesis . 112.2.1 ASAP and ALAP . 152.3 Asyn
hronous
ir
uit design . 153 Related Work 213.1 Low power behavioral synthesis, an overview 213.1.1 Lower bounds on swit
hing a
tivity 233.1.2 Redu
ing swit
hing a
tivity of fun
tional units 243.1.3 Redu
ing swit
hing a
tivity at CDFG level 253.1.4 Memory allo
ation for low-power 263.1.5 Inter
onne
t design for low-power 273.2 Asyn
hronous behavioral synthesis, an overview 283.3 Asyn
hronous logi
 synthesis . 293.4 Asyn
hronous behavioral synthesis . 293.4.1 Partitioned
ontrollers . 313.4.2 syntax-dire
ted synthesis . 323.4.3 Synthesis of Asyn
hronous Cir
uits 343.4.4 Desyn
hronization . 353.4.5 Variable length time-slot behavioral synthesis 363.5 Summary . 37

x Contents4 Behavioral Synthesis for Asyn
hronous Cir
uits 394.1 From syn
hronous to asyn
hronous behavioral synthesis 394.2 Asyn
hronous behavioral synthesis . 454.3 Datapath synthesis . 474.3.1 Datapath with out input/output FU lat
hes (alpha) 484.3.2 Datapath with input/output FU lat
hes (beta) 514.3.3 Datapath with mixed input/output FU lat
hes (gamma) 544.4 Summary . 565 Implementation in Balsa 575.1 Program stru
ture . 575.2 Events: using fun
tional units . 605.3 Implementing a s
hedule . 615.4 Implementing the ar
hite
ture . 635.5 Optimizations . 675.6 Summary . 706 Algorithms for Behavioral Synthesis 736.1 Power-aware s
heduling . 746.1.1 Problem formulation . 756.1.2 Power heuristi
 s
heduling . 756.1.3 Power and time
onstrained synthesis 776.2 Implementing syn
hronous power aware s
hedules in asyn
hronous
ir-
uits . 816.3 Simulated annealing and evolutionary algorithm 826.3.1 Problem formulation . 826.3.2 Representation and feasibility 846.3.3 Simulated annealing . 856.3.4 Evolutionary algorithm . 866.4 Control data �ow graph synthesis . 886.5 Summary . 927 Results 937.1 Results for power aware s
heduling . 947.2 Results for simulated annealing and evolutionary algorithm 967.3 Results for asyn
hronous behavioral synthesis 997.3.1 GCD . 1017.3.2 Ben
hmarks . 1027.3.3 Layout results . 1047.4 Summary . 1058 Con
lusion 1098.1 Advantages of the approa
h . 1108.2 Perspe
tive on the approa
h . 1118.3 Future dire
tions . 112

Contents xiBibliography 113

xii Contents

C h a p t e r 1 Introdu
tion
Today, a wide range of dedi
ated real-time appli
ations are emerging. Examples ofthese are the next generation of mobile phones, smart-
ards and more futureristi
appli
ations as e-identi�
ation, e-payment, e-key systems et
. For su
h portablewire-less appli
ations power is a limited resour
e be
ause of restri
tions in batterysize or be
ause power is extra
ted from the environment (light, magneti
 �elds orheat et
.). Furthermore, to meet the extreme size and weight requirements the entiresystem (input/output transdu
ers, analog
ir
uitry, futuristi
-
ir
uitry, power supplyand the digital system,
onsisting of digital hardware and software) is implementedonto one single
hip (�System on Chip�).The fo
us of this resear
h is the hardware part of the digital system, whi
h oper-ates under the following di�
ult
hara
teristi
s:Data Pro
essing The appli
ations are rea
tive in nature with data arriving inbursts with long periods of waiting. In-between bursts ultra low-power op-eration is required, while during bursts heavy
omputation, su
h as en
ryptionfor se
ure data transmission, is required.Response Time For some appli
ations the time to respond to an external eventis
ru
ial as otherwise data will be irrevo
ably lost, requiring a
lose to zerotransition time from sleep mode into full-speed operation.Power Supply For battery-less appli
ations external power is provided spuriouslyby the environment and stored internally on large storage
apa
itors leading toa very limited power supply often of poor quality.Noise Level The presen
e of on-
hip analog and RF-
ir
uitry sets severe restri
tions

2 Introdu
tionfor the ele
tri
-noise and ele
tromagneti
-emission of the digital
ir
uit su
h asnot to disrupt input/output-interfa
ing or RF-
ommuni
ation.Asyn
hronous design o�ers several advantages,
ompared to syn
hronous design,for the design of these intelligent
ir
uits. The asyn
hronous design methodologyspe
i�
ally targets low-power operation (power is only used when pro
essing) and theself-timed nature leads to an immediate response time. Furthermore asyn
hronous
ir
uits are inherently insensitive (and thus robust) to variations in temperature,pro
ess parameters and supply voltage. The latter
an be used advantageously sin
e,if the
ir
uit has a

ess to external power, the supply voltage
an be de
reased allow-ing for ultra low-power operation. Finally, the asyn
hronous nature of the swit
hinga
tivity
auses the ele
tromagneti
 and ele
tri
 noise
ontributions to evenly dis-tribute a
ross the frequen
y spe
trum (equivalent to white noise). This redu
esspikes in the spe
trum down to a level whi
h allows
o-existen
e with analog andRF-
ir
uitry. Typi
ally only
riti
al subparts (with respe
t to operating
hara
ter-isti
s) of the digital system will be implemented asyn
hronously and the remainingpart syn
hronously.Currently, the la
k of synthesis methods and tools whi
h are
apable of dire
tlysynthesizing a working asyn
hronous
ir
uit from a high-level spe
i�
ation makes thedesign of large systems a tedious e�ort involving more design work than designinga
orresponding syn
hronous
ir
uit. The majority of existing synthesis tools inthis area are low-level and dedi
ated to the generation of
ontrol
ir
uitry [24, 40,71, 86, 92℄. A few high-level synthesis tools exist, among those the Tangram sili
on
ompiler developed by Philips Resear
h Labs and the somewhat similar publi
 domainversion BALSA from Man
hester University. These tools use spe
ial asyn
hronoushardware des
ription languages dedi
ated to asyn
hronous design, that does not �twell into existing VHDL/SystemC based design �ows and CAD-tools. Furthermore,the supported synthesis pro
ess, syntax-dire
ted
ompilation, is
hara
terized by aone-to-one
orresponden
e between spe
i�
ation and implementation.Let us begin by looking into the
urrent status of synthesis �ows of syn
hronousand asyn
hronous
ir
uits as illustrated by Figure 1.1. Synthesis of syn
hronous
ir-
uits, whi
h is illustrated in the left
olumn of Figure 1.1, has su

eeded in raisingthe level of abstra
tion to that of spe
ifying
ir
uits at the behavioral level. Froma behavioral des
ription in a language like VHDL, Verilog or System-C some inter-mediate representation is extra
ted � often a
ontrol data �ow graph (CDFG). Fromthe CDFG the
lassi
 synthesis tasks [67℄ of s
heduling, allo
ation, and binding isperformed resulting in a RTL level
ir
uit des
ription whi
h is then synthesized intogate-level
ir
uits and eventually a layout.Synthesis of asyn
hronous
ir
uits is illustrated in the right
olumn of Figure 1.1.It is less mature and several somewhat di�erent approa
hes is being pursued. Themost in�uential of the available synthesis tools fall in two
ategories: (i) synthesisof large-s
ale RTL level
ir
uits based on syntax-dire
ted
ompilation from CSP-likelanguages: Tangram [11, 100℄, OCCAM [17℄, Balsa [8℄, ACK [59℄ and TAST [85℄, and(ii) synthesis of small-s
ale sequential
ontrol
ir
uits [26, 41℄. The tools that per-form syntax dire
ted
ompilation target a library of so-
alled handshake
omponents.

1.1 From syn
hronous to asyn
hronous behavioral synthesis 3
= This thesis:

Synchronous Asynchronous
design

���
���
���

���
���
���

��
��
��
��

Abstraction level
(Representations)

Behavioral
 Synthesis

 − Computation model
 − Scheduling etc.
 − Implementation template

Design Flow:

Verilog

SystemC/
VHDL/

CDFG

 description
RTL

Netlist of
components

Layout Layout

Gate/ CellGate/ Cell

Handshake
components

CSP−type

Behaviour −> CDFG −> CSP−type program −> Circuit

 program

designFigure 1.1: Existing syn
hronous and asyn
hronous design �ows and the design �owaddressed in this thesis.The handshake
omponents
an be designed using in prin
iple any of the sequential
ontrol
ir
uit synthesis tools. The syntax-dire
ted
ompilation approa
h is radi
allydi�erent from the behavioral synthesis �ow used by designers of syn
hronous
ir-
uits; the
ompiler merely performs a one-to-one mapping of the program text intoa
orresponding
ir
uit stru
ture. Although syntax-dire
ted
ompilation does allowthe designer to work at a relatively high level it does not provide any optimizations;�what you program is what you get�. In some situations this
an be
onsidered anadvantage but in general it puts more burden on the designer: exploring alternativeimplementations requires a
tually programming these, whereas in a traditional syn-
hronous synthesis �ow, the designer
an qui
kly and easily experiment with di�erent
onstraints and goals and in this way
reate alternative implementations from thesame program text.It is interesting to note that the internal representation of
ir
uit behavior usedin syn
hronous behavioral synthesis is a
tually based on an asyn
hronous model ofa
ontrol data�ow graph (CDFG), i.e., a dependen
y graph expressing the
ontrol-and data-�ow of the appli
ation. This naturally raises the question: Is it possibleto apply the transformations and optimizations used in syn
hronous synthesis forasyn
hronous design as well?1.1 From syn
hronous to asyn
hronous behavioralsynthesisA
entral idea in this thesis is to
onstru
t a
omputation model whi
h allows us touse the transformations and optimizations used in syn
hronous synthesis dire
tly in

4 Introdu
tion
k

j

Relaxationi

j

i

t

k

Figure 1.2: Relaxing syn
hronous synthesis (left) into the asyn
hronous handshakedomain (right).
CLK

Registers

OUT

IN

ALU MUL

Control

FSM

Write selection logic

Read selection logic

Figure 1.3: The syn
hronous
omputation model.asyn
hronous design, without introdu
ing any restri
tions and at the same time usethe transformations and optimizations developed for
ontinuous time in one and thesame model.The target for syn
hronous behavioral synthesis is a hardware ar
hite
ture
on-sisting of a datapath whi
h is able to perform a set of operations, and a
ontrollerwhi
h
ontrols the exe
ution sequen
e of these operations in order to perform a givenappli
ation, as shown in Figure 1.3 A key issue in behavioral synthesis is to reusehardware resour
es for the di�erent operations in order to minimize area, and toexplore possible parallelism by exe
uting several hardware resour
es
on
urrently inorder to in
rease performan
e.All the traditional te
hniques of behavioral synthesis: S
heduling, Allo
ation andBinding are in syn
hronous
ir
uits
entered around a
entral syn
hronization event,determined by the global
lo
k. This syn
hronization event determines (i) the begin-ning for exe
uting an operation (ii) writing the result of an operation.If we make these syn
hronization events lo
al and
ontrolled by the
ontroller,we
an
reate a hardware ar
hite
ture
onsisting of a datapath and a
ontroller, as

1.1 From syn
hronous to asyn
hronous behavioral synthesis 5

ALU

;

Write events

Read events

Function
control

Asynchronous

Controller

Distributed

L0 L1

IN

OUT

Operand selection

(Read synchronizers)

(Storage)

(Write synchronizers)

(Computation)

Variables

Write selection

Functional unit(s)

; ;
||

||

"+"Figure 1.4: Computation model in the asyn
hronous handshake domain, where thelabeling refers to the role the handshake
omponents play in our model.shown in Figure 1.4. It resembles the syn
hronous ar
hite
ture but it is
ompletelyasyn
hronous. This
omputation model relaxes the stri
t ordering of the syn
hronous
ir
uit and the syn
hronous s
hedule 1.2 (left) into the
ontinuous time domain, thes
hedule for the asyn
hronous
ir
uit 1.2 (right).This idea allows us to use any of, but not restri
ted to, the many syn
hronousbehavioral synthesis te
hniques to obtain a hardware ar
hite
ture (datapath and
ontroller) and then to implement this ar
hite
ture using asyn
hronous
ir
uit te
h-niques.In our work we use Balsa as a ba
k-end. The datapath and
ontrol parts obtainedfrom the front-end behavioral synthesis are des
ribed using a set of Balsa templatesand then synthesized into handshake
omponents and ultimately into a layout. Inthis way we take advantage of the fa
t that Balsa performs a one-to-one mappingthus allowing us to express the intended implementation at a relatively high level.The parallism in CSP, and CSP-like languages, are
entered around a paralleloperator, that allows the
omputation to fork into parallel operations. However the
onstru
t also require all of these parallel operations to �nish at the same time orhave to wait until the slowest operation �nishes. Therefore no new operations
anbegin, thus limiting the s
hedules that
an be implemented. The implementationtemplates presented in this thesis is not restri
ted by this limitation. We utillize theCSP language
onstru
ts in an un
onventional way, su
h that any
ontinous s
hedule

6 Introdu
tion
an be implemented.Using this synthesis �ow we have produ
ed layouts for a
ouple of ben
hmarks andwe report on the area, speed and power �gures for these
ir
uits. By building on topof syntax-dire
ted
ompilation, our synthesis approa
h works entirely in the domainof handshake
hannels and handshake
omponents. This has a number of signi�-
ant impli
ations: Firstly it enables the use of a synthesis �ow whi
h is surprisinglysimilar to that used in syn
hronous design tools, and se
ondly it avoids altogetherthe
omplex problem of spe
ifying and synthesizing a
ontroller. Our work is not inany way restri
ted to the use of Balsa or other syntax-dire
ted methods, the usedapproa
h serves as a pra
ti
al demonstration of how to use the developed methodsand te
hniques.For the behavioral synthesis part we have developed the following algorithm suite:(i) Power aware syn
hronous synthesis algorithm. This algorithm is a
lique heuristi
algorithm operating with a time and maximum power per time
onstraint. Thisis useful for appli
ations having a power limit e.g. given by the maximum powerdelivered by a solar panel.(ii) Evolutionary syn
hronous synthesis algorithm and a simulated annealing syn-
hronous synthesis algorithm. These are meta-heuristi
 algorithms operatingwith a maximum time
onstraint.(iii) Simulated Annealing task level algorithm for handling the
onditional parts ofthe CDFG. This last algorithm has not been implemented but the method isoutlined.These algorithms all operate in dis
rete time using time-slots. After the �nal s
hedulehas been obtained it is relaxed into an asyn
hronous s
hedule, keeping the order ofexe
ution events as a relative ordering.The
ontribution of this thesis is the addition of behavioral synthesis to asyn-
hronous
ir
uit design in the form of automati
 resour
e sharing and
onstraintbased design spa
e exploration. In parti
ular our
ontributions are: (1) an abstra
tevent based
omputation model, (2) synthesis algorithms for s
heduling, allo
ationand binding and (3) target implementation spe
i�
ations. The thesis publi
ationsare [74, 75, 93℄.

1.2 Thesis outline and readers guide 71.2 Thesis outline and readers guideThis thesis is organized as follows:Chapter 1 Introdu
tion Introdu
es this work, presents our
ontributions and showsthis outline of the thesis.Chapter 2 Ba
kground Brie�y introdu
es the ideas behind behavioral synthesis,CDFGs and asyn
hronous
ir
uits.Chapter 3 Related Work Gives a survey of related work.Chapter 4 Behavioral Synthesis for Asyn
hronous Cir
uits Presents the
on-
ept whi
h allows us to adapt the te
hniques from syn
hronous behavioral syn-thesis into behavioral synthesis of asyn
hronous design and des
ribes details ofdatapath design.Chapter 5 Implementation in Balsa The use of the Balsa-language to generateour
ir
uits is presented in this
hapter.Chapter 6 Algorithms for Behavioral Synthesis The algorithms developed forbehavioral synthesis used to generate the
ir
uits are presented in this
hapter.Chapter 7 Results The area, speed and power �gures for our layouts are presentedand dis
ussed.Chapter 8 Con
lusion
ontains the
on
lusion of the thesis and presents dire
-tions for future work.As a reading guide, the reader who is familiar with asyn
hronous
ir
uit designand behavioral synthesis and not interested in related work
an skip
hapter 2 Ba
k-ground and
hapter 3 Related Work, and pro
eed dire
tly to
hapters 4 BehavioralSynthesis for Asyn
hronous Cir
uits, 5 Implementation in Balsa and 6 Algorithms forBehavioral Synthesis whi
h presents the main
ontribution of this thesis. More spe
if-i
ally the underlying
on
epts of this work are introdu
ed in 4 Behavioral Synthesisfor Asyn
hronous Cir
uits. The
ir
uit implementation details and Balsa-templatesused to design the asyn
hronous
ir
uits in the result se
tion are presented in
hapter5 Implementation in Balsa. For the reader with an algorithmi
 interest
hapter 6Algorithms for Behavioral Synthesis presents the behavioral synthesis algorithms de-veloped in this resear
h. Finally, the reader is en
ouraged to read
hapter 7 Resultswhi
h explains and dis
usses the results.

8 Introdu
tion

C h a p t e r 2 Ba
kground
This thesis brings together the domains of both behavioral synthesis and asyn-
hronous
ir
uit design. In order to be able to better understand the work presentedin this thesis, this
hapter will give an introdu
tion to some of the
on
epts and ideasof these domains. The reader should not
onsider this to be a
omplete referen
e,nor to be a tutorial.2.1 Synthesis �ow and CDFG formatA CDFG
aptures only the
ontrol and data dependen
ies that are inherent in the
omputation. In this way it is not biased towards a
ertain implementation.In this se
tion we introdu
e the CDFG format and an example CDFG whi
h willbe used throughout in this thesis to illustrate the synthesis �ow. The fo
us of thethesis is on the synthesis of asyn
hronous
ir
uitry given a CDFG. The pro
ess ofextra
ting the CDFG from a behavioral spe
i�
ation in some hardware des
riptionlanguage is well understood. It is an integral part of existing syn
hronous synthesissystems, and it is not addressed in this thesis.To illustrate the sour
e
ode for our running example we will use the Balsa-language [7, 8, 6℄, augmented with a multipli
ation operator, as the Balsa languagedoes not yet in
lude a multipli
ation operator. The aim in this thesis is not to advo-
ate the use of Balsa, it should merely be seen as an illustration and in prin
iple mosthardware des
ription languages
ould be used. For asyn
hronous
ir
uit design it is
onvenient if the language in
ludes
hannel
ommuni
ation primitives and statementlevel
on
urren
y, and it is en
ouraging to see that su
h features are being in
luded,

10 Ba
kgroundimport [balsa.types.basi
℄type word is 16 bitspro
edure example(input X0,X1,X2:word;output Y0,Y1:word) isvariable x0,x1,x2,y1,y0:word
onstant a0= 255
onstant a1= 255
onstant a2= 255
onstant a3= 255beginloopX0->x0 || X1->x1 || X2->x2 ;y0 := (((a0+x0)+(x0*x1)) - a1 as word) ||if x1>a2 theny1 := (a3*(x1+x2) as word)elsey1:= (x1-x2 as word)end ;Y0<-y0 || Y1<-y1endendFigure 2.1: An example Balsa des
ription.or at least proposed for in
lusion in, su
h languages as System-C and System-Verilogand an additional pa
kage for adding su
h features to System-C is proposed in [13℄.The intended synthesis �ow involves the following steps: From the Balsa
odethe CDFG is exa
ted. The CDFG is then subje
t to the synthesis steps explainedin this thesis and the resulting
ir
uit stru
ture (datapath and
ontrol) is expressedas a Balsa program. The �nal step of the synthesis �ow is then to
ompile theBalsa program into a netlist of handshake
omponents and to produ
e a standard
ell implementation.Figure 2.1 shows our example asyn
hronous
omponent spe
i�ed in Balsa andFigure 2.2 shows the
orresponding CDFG whi
h will serve as the running examplein this paper. The elements of the CDFG and the stru
ture are explained in thefollowing. The CDFG is a 1-bounded
olored Petri net � the
olors representingdata values. The edges in the CDFG
ontain pla
es (like in a STG) and the nodesare Petri net transitions. A node
an be an operator or
an represent
onditionalsequen
ing as the example CDFG shows. For a more formal de�nition the reader isreferred to [96, 33℄.The basi
 elements in our CDFG are shown in Figure 2.3 and are as follows:nodes Essential nodes represent atomi

omputations e.g. arithmeti
 operations as

2.2 Behavioral synthesis 11
8

* 2

a
1

a
3

a
0

a
2

0 1 0 1

0 1

0
y y

1

x
2

x
10

x

1

+ 3

+

− *

+ 6 −
> 4

5

7

Figure 2.2: The Control Data Flow Graph for our example.addition. For �ring a node, all inputs ar
s need to have a data-token present.The i designates the operation the node performs and all nodes have a num-bering j. This operation
ould also be the loading of data in and out of the
ir
uit, in whi
h
ase the name of the input/output is written inside the node.These nodes are
alled input/output nodes.ar
s Represents the essential data dependen
ies whi
h exist with in the
omputationor algorithm. The dotted ar
 is used to signify
ontrol ar
s. There is nosemanti
 di�eren
e between a data and
ontrol ar
.There is a set of spe
ial nodes whi
h needs explanation:Control nodes The mux and demux nodes are used to route data-tokens aroundin the CDFG. The mux node need a data-token on the
ontrol ar
 and thena data-token on the sele
ted input ar
 to �re. The demux node only �res adata-token on the sele
ted output.Body The body
an be repla
ed by another CDFG and is not a fundamental
om-ponent, rather it illustrates the hierar
hi
al nature of the CDFG format. Theinput and output ar
s of the CDFG are required to �t with the input andoutput ar
s to the Body node.Using these fundamental nodes a su�
ient set of algorithmi
 stru
tures
an berepresented using the CDFGs. Figure 2.4 shows a set of basi
 algorithmi
 stru
turesfound in most languages and their
orresponding CDFGs. Using these stru
tures,the de�nition of the CDFGs nodes and our Balsa example in Figure 2.1 it is straight-forward to arrive at the CDFG in Figure 2.2.2.2 Behavioral synthesisBehavioral synthesis is a re�nement pro
ess in whi
h a behavioral des
ription of analgorithm is
onverted into a stru
tural des
ription, ful�lling a set of design
on-straints, and preserving the behavior of the algorithm [87, 67℄. Ea
h
omponent

12 Ba
kground
demux

i

Body

0 1 0 1

arc

node

CDFG

j

mux

Figure 2.3: A minimum and, for most
ases, su�
ient set of Control Data FlowGraph elements.in the stru
tural des
ription is in turn de�ned by its own (lower-level) behavioraldes
ription, for whi
h a mapping to sili
on hardware exists. The purpose of behav-ioral synthesis is two-fold: (i) Automate tedious parts of the design pro
ess and thusimprove the turnaround time. (ii) To perform design spa
e exploration.Automating tedious parts of the design pro
ess is be
oming in
reasingly impor-tant as designs in
rease in size and
omplexity, and the time alloted to
onstru
t thedesign be
omes ever more tighter. Spe
ifying the des
ription of an algorithm at ahigher level of abstra
tion allows a designer to fo
us on implementing an improvedalgorithm. It is well-known, that work put to use at a high-level of abstra
tion has alarger impa
t on the resulting performan
e
hara
teristi
s, than work put to use at alower-level of abstra
tion. Furthermore, the designer avoids spending time on detailsof the implementation e.g. transistor sizing, whi
h of
ourse has an impa
t on theperforman
e but usually an order of magnitude less than improving the algorithm.Design spa
e exploration is also be
oming in
reasingly important as modern sys-tems are moving into System-on-Chip platforms where the design be
omes part of agreater whole and thus needs to �t into
ertain spe
i�
ations. This might mean thatthe maximal speed of the
ir
uit is required if our
ir
uit is part of the
riti
al pathof an entire system. But it might also be that requirements are low and thus thereis no need to develop a large high-speed
ir
uit.The output from a high-level synthesis system usually
onsists of a datapathstru
ture at the register-transfer level (RTL) or an equivalent des
ription language,and a spe
i�
ation of a �nite state ma
hine to
ontrol the datapath. In our
ase wewill use the Balsa language whi
h will translate into a set of asyn
hronous handshake
omponents for both the datapath and the ASFM. At the RT level or equivalent

2.2 Behavioral synthesis 13

N

 Body1
else
 Body2
end if

 Body
for i=1 to N do

end for

 Body
while cond do

end while

0 1

0 1

Body1

0 1

0 1

0 1

Body

cond Body

0 1

0

cond

Body2

For

if cond then

Figure 2.4: Algorithm statements and
orresponding CDFG stru
tures.level, a datapath is
omposed of a
omputational part (fun
tional units e.g. ALUs,multipliers, and shifters et
.), storage units (registers, lat
hes and memories) andinter
onne
tion units (e.g. busses, multiplexors and demultiplexors).As previously dis
ussed the �rst step is to extra
t a CDFG from the behavioralalgorithm, part of this involves a series of
ompiler-like optimizations as
ode motion,dead
ode elimination,
onstant propagation,
ommon subexpression elimination, andloop unrolling. Following this
omes the
ore synthesis re�nement pro
ess, of whi
hthere are two
lasses:Resour
e
onstrained behavioral synthesis Here the goal is to �nd the fastest
ir
uit given a set of resour
e
onstraints either in the form of a maximumallowable area for the
ir
uit or a detailed des
ription of the maximal number

14 Ba
kgroundand types of fun
tional units and the maximum memory available to the
ir
uit.Time
onstrained behavioral synthesis Here the goal is to �nd the smallest
ir-
uit (
omputational area and memory) given a maximum exe
ution time
on-straint.In addition to these there is the power
onstraint whi
h
omes into play by addingto the two other
onstraints, redu
ing the solution spa
e. In this thesis we will
on-sider time and power
onstrained behavioral synthesis. The appli
ations our resear
htargets are performan
e-intensive parts of an algorithm whi
h therefore require im-plementation in hardware, thus the
onstraints are often in the form of a time re-quirement or a datapro
essing frequen
y to whi
h the smallest
ir
uit needs to befound. However there is nothing preventing us from implementing resour
e and power
onstrained behavioral synthesis.In general we distinguish between behavioral synthesis in
ontinuous time andbehavioral synthesis in dis
rete time, but in general both approa
hes involve thesame three basi
 elements:S
heduling The operations in the CDFG need a start time. For
ontinuous timethis is an absolute time or a relative ordering of operations. In dis
rete timethis denotes the start time-slot.Allo
ation A set of fun
tional units needs to be allo
ated. The fun
tional units arethe ma
hines on whi
h the operations are exe
uted.Assignment The operations need to be bound to a spe
i�
 ma
hine to avoid
on-�i
ts for parallel operations.These elements are believed to be NP-hard problems and thus in general requireheuristi
 approa
hes to �nd solutions. These three tasks are
losely interrelated andshould be solved simultaneously to arrive at an optimal solution. All the behavioralsynthesis algorithms presented in this thesis do this. There are in prin
iple threeapproa
hes to solve these problems:Integer Linear Programming (ILP) formulations whi
h solve the problem foroptimality but is only appli
able for small problems.Heuristi
 methods that
ome in two �avors:
onstru
tive approa
hes and itera-tive re�nement. There are many approa
hes for
onstru
tive s
heduling, dif-fering with regard to the sele
tion
riteria used to s
hedule the next operation.Heuristi
 approa
hes run e�
iently for large designs, but does not produ
eoptimal
ir
uits.Meta-heuristi
 Algorithms whi
h are
apable of solving large ILP problems ef-fe
tively, although heuristi
ally.Besides these fundamental elements of behavioral synthesis there are elements thatinvolve �nding the minimum amount of memory for the spe
i�
 s
hedule, allo
ation

2.3 Asyn
hronous
ir
uit design 15
Data

Req

AckFigure 2.5: Four phase bundled data push handshake proto
ol.and assignment, as well as �nding the best routing (the minimal set of multiplexing)of data between the fun
tional units. All of these elements of behavioral synthesisand datapath synthesis will be elaborated further in their respe
tive
hapters.2.2.1 ASAP and ALAPNow, before trying to minimize the sili
on area, we �rst want to know if, given theCDFG and the time
onstraint T , a feasible s
hedule
an be
onstru
ted at all ?(using unlimited sili
on area). Fortunately, there is a polynomial algorithm, O(n2),whi
h
an give us that answer:ASAP (As Soon As Possible) Augment the CDFG with a sour
e node whi
h hasdire
ted ar
s to all the input nodes. Set Ssource = 0 for the sour
e node. Then�nding the Si for all other nodes vi (σi) be
omes a matter of �nding the longestpath from the sour
e to that node. (Using the fastest FU for the job).If Starget ≤ T for the target node, it is possible to
onstru
t a feasible s
hedule.Furthermore Si is the earliest time an operator σi
an be s
heduled (again allowingfor unlimited sili
on area). The same algorithm
an be applied �ba
kwards�:ALAP (As Late As Possible) Augment the CDFG with a sink node whi
h hasdire
ted ar
s from all the output nodes. Set Ltarget = T for the target node.Then �nding the Li for all other nodes vi (σi) be
omes a matter of �nding thelongest path from that node to the target. (Using the fastest FU for the job).And the time-interval Si . . . Li spe
i�es the s
heduling time interval in whi
h theoperator σi
an be s
heduled, given the time
onstraint T and thus bounds thesolution spa
e, in whi
h we are going to sear
h for the optimal solution.2.3 Asyn
hronous
ir
uit designIn this se
tion we dis
uss some of the properties of the asyn
hronous
ir
uit designstyle used in this thesis. As the word asyn
hronous indi
ates, an asyn
hronous
ir
uitdoes not have a global syn
hronization event in the form of a
lo
k, but ratheris lo
ally syn
hronized. In this thesis we use four-phase bundled data handshakeproto
ol as
omponent syn
hronization proto
ol. This means a signal
ontains a 1

16 Ba
kground
Active

Push:

Pull:

Passive Active

Passive

Figure 2.6: Two types of
hannel
ommuni
ations: push and pull. Data �ows fromleft to right on the
hannels.bit request and a 1 bit a
knowledge wire additional to the data wires. One exampleof this the four-phase bundled data push early handshake proto
ol as illustrated byFigure 2.5. In this proto
ol the master
ontrols the request and data signals and theslave
ontrols the a
knowledge, this also means data is transmitted from the masterto the slave. The proto
ol operates by the master raising the request when the slaveis ready to pro
ess data, indi
ated by the a
knowledge being low, and the data signalsare valid. The slave sees this and reads the data. When data has been read the slavea
knowledges this by raising the a
knowledge signal. The master then lowers therequest signal, removes data and starts preparing for the next transmission. Whenthe slave is ready for the next data the a
knowledge signal is lowered. The
hoi
eof the four-phase bundled data proto
ol is an arbitrary
hoi
e, our method
an beimplemented with use of any handshake proto
ol.There are two types of
hannels: push and pull. In a push
hannel data �owsfrom master to slave and in a pull
hannel data �ows from slave to master. In generalthe terms master and slave are not used, instead the terms a
tive and passive areused to designate the
ontrolling part of a
hannel
ommuni
ation and graphi
allythis is illustrated by either a �lled (a
tive) or non-�lled
ir
le (passive) at the sour
eor destination of a
hannel, as illustrated on Figure 2.6. The sour
e and destinationi.e. the dire
tion of the data�ow is illustrated by the arrow on the
hannel line.The asyn
hronous
ir
uits designed in this thesis are built from a set of asyn-
hronous building blo
ks
alled handshake
omponents. As the name implies these
omponents
ommuni
ate using the handshake proto
ols. These
omponents are in-dependent
omponents, usually designed using input/output-mode or Muller-C style[92℄. All
omponents operate using the same proto
ol, in this way one
ould
onsiderthis type of asyn
hronous
ir
uit design as obje
t oriented hardware design. Asyn-
hronous
ir
uits and the
ir
uits presented in this thesis are built from handshake
omponents whi
h implements the equivalent RTL operations as lat
hing data, mul-tiplexing data, addition et
. Ea
h of these handshake
omponents has its own lo
alasyn
hronous
ontrol to ensure proper asyn
hronous fun
tionality and to handle theasyn
hronous handshake
ommuni
ation proto
ol [92℄. Besides these asyn
hronoushandshake
omponents whi
h have their equivalent RTL
ounter parts, there are thedemerge/demux
omponents whi
h handle �datawire-forks�.Asyn
hronous handshake
omponents where all outputs are a
tive and all inputsare passive are push-style;
omponents where all outputs are passive and all inputs

2.3 Asyn
hronous
ir
uit design 17
or

L

FUFU

Mux Demux

Merge Demerge

0 1 0 1

JoinFork

Latch

Functional Unit

Figure 2.7: A minimum and, for most
ases, su�
ient set of handshake
omponents.are a
tive are of pull-type; if all ports are passive the
omponent is of passive-type;if all inputs are a
tive the
omponent is of a
tive-type; others are of �mixed�-type.The basi
 set of building blo
ks are illustrated in Figure 2.7 in their push-form,where appli
able, and
an be divided into four groups:Lat
hes Data is stored in lat
hes and
ould be
onsidered the variables of the
ir
uit.Furthermore with one a
tive input or output they implement the handshakingand support the token �ow. In their push form a data write and data readalways alternate. In their passive form they operate as the variables of the
ir
uit where the surroundings
an write and read data independently andto/from multiple sour
es and destinations.Fun
tional Units These are the asyn
hronous equivalents of
ombinatorial
ir
uits.We will primarily use the symbol on the left, but some tools will generate theright symbol. In their push form the operation is as follows: First all inputshave to be ready, then
ompute the fun
tions and distribute the results on therespe
tive outputs. The fun
tional units should be
onsidered transparent froma handshaking point of view, but also versions with input/output lat
hes willbe
onsidered.

18 Ba
kground

cond2

;1
2

3

Transfer

c

a

b

Sequencer Parallel

Repeater do

cond

While

0 1@

cond

1
[]

2

ab

a

b

||

Choice Guard

cond1Figure 2.8: Handshake
omponent extension.Un
onditional �ow
ontrol These
omponents are used to handle parallelism andto merge/split data streams, whi
h are mutually ex
lusive. The key here is thatthere is no external
ontrol of the data �ow. For data streams whi
h are notmutually ex
lusive either the following group of
omponents have to be used oran arbiter needs to be inserted in front of the
omponent. The merge in shownin the push-form and the demerge is shown in pull-form, whi
h are their onlyform.Conditional �ow
ontrol The MUX and DEMUX
omponents are used to sele
tamong several inputs or routing the input to one of several outputs and thus
onditionally
ontrol the data�ow in the asyn
hronous
ir
uits.The fun
tional units in their memory form
ould by them selves be a networkof asyn
hronous handshake
omponents implementing the fun
tion, thus introdu
inghierar
hy into the
ir
uit.We will need an additional set of asyn
hronous building blo
ks to build the asyn-
hronous
ir
uit we desire, these are shown in Figure 2.8 and are all used to buildmore advan
ed
ontrol
ir
uitry. The groups of handshake
omponents are:Transfer The transfer
omponent is an a
tive
omponent used to
ontrol
omputa-

2.3 Asyn
hronous
ir
uit design 19tion. When a
tivated on input
hannel a the transfer
omponent moves datafrom
hannel b to
hannel c.Un
onditional
ontrol Here there are two
omponents: The sequen
er whi
h forea
h a
tivation exe
utes a sequen
e, in order, of sub-operations, before
omplet-ing the input handshake. The parallel exe
utes all sub-operations in paralleland all have to
omplete before
ompleting the input handshake.Repetition In�nite repetition is handled by the repeater, whi
h sends an in�nitenumber of a
tivations to its outputs and never
ompletes its input handshake.The while
omponent implements
onditional repetition and operates in thefollowing way: Upon a
tivation on input a, the while
omponent inputs
ondi-tion cond and if true output b is a
tivated and the while
omponents repeatsthis behavior by inputing the next
ondition cond. This
ontinues until condis false then the while
omponent
ompletes its handshake with a.Conditional
ontrol The
hoi
e
omponent implements a binary
hoi
e by sele
t-ing on the input �
ond� if equal to zero the �0�
hannel is a
tivated otherwisethe �1�
hannel is a
tivated. The Guard
omponents is used for implementingmultiple sele
tions or guards. Here the
omponent have two sele
tions andoperates as follows: when a is a
tivated the Guard
omponent inputs all its
onditions, here cond1 and cond2. The
onditions have to be mutually ex
lu-sive. If any of the
onditions where true the number is returned on a otherwisezero is returned. When b is a
tivated with a positive data value, it is used toa
tivate the operations, here either 1 or 2. The Guard
omponent
an have asmany sele
tions as required.Of these
omponents the transfer plays is most important for this resear
h, as itplays the role of event syn
hronizer;
ontrolling the
omputation and is the
ompo-nent
onne
ting the
ontrol dominant part of the asyn
hronous handshake networkwith the data dominant part of the asyn
hronous handshake network. Transfer
om-ponents degenerate to simple wire
onne
tions
ontaining no logi
.As mentioned in the introdu
tion, there is an apparent resemblan
e between a
ir
uit designed by a network of handshake proto
ols and the CDFG des
ribing thebehavior of the same
ir
uit. This suggests a simple one-to-one synthesis approa
hwhere the CDFG is dire
tly mapped into an asyn
hronous
ir
uit, as shown in Figure2.9. Su
h an approa
h was more extensively pursued in [73℄ and is further dis
ussedin the following
hapter.

20 Ba
kground

>

y y
1

0 1 0 1

0 1

+

x
2

x
10

x

a
1

a
2

a
3

a
0

−

−+

+

+

*

0Figure 2.9: Our example designed as an asyn
hronous
ir
uit using handshake
om-ponents.

C h a p t e r 3 Related Work
This
hapter has two purposes: (i) To present an overview of re
ent advan
es inresear
h in behavioral synthesis of low-power syn
hronous
ir
uits and (ii) to presentand
ompare related work with respe
t to behavioral synthesis of asyn
hronous
ir-
uits. In doing so, the desirable abilities and requirements for an asyn
hronousbehavioral synthesis approa
h are un
overed.3.1 Low power behavioral synthesis, an overviewIn CMOS
ir
uits, there are two primary sour
es of power dissipation [72℄: (i) Stati
dissipation originating from leakage
urrent. (ii) Dynami
 dissipation originatingfrom swit
hing transient (short-
ir
uit)
urrent and from
harging of load
apa
i-tan
e. The total power dissipation be
omes:

Pavg = Pswitching + Pshort−circuit + Pleakage (3.1)Of these
omponents the �rst is the most dominant and is given by:
Pswitching = 〈α0→1〉tClV

2
dd (3.2)Where Vdd is the supply voltage and 〈α0→1〉t is the average number of swit
hing pertime unit, that a node with
apa
itan
e Cl will make a power
onsuming transition(0 → 1). For a syn
hronous
ir
uit 〈α0→1〉t = α0→1fclk, where α0→1 is the averagenumber of times the node swit
hes per
lo
k
y
le and fclk is the
lo
k frequen
y.

22 Related WorkIt is well-known that resour
e sharing destroys
orrelation between inputs and the
omputation and therefore in
reases the power
onsumption of the
ir
uit. Further-more, there is usually an overhead asso
iated with resour
e sharing whi
h will lead toa larger power dissipation. On the other-hand redu
ing the area of the
ir
uit leadsto a redu
tion of Cl whi
h redu
es the power
onsumption. For future deep submi-
ron te
hnologies leakage power will be
ome more dominant. Therefore as leakage
urrent is proportional to area, resour
e sharing has the potential to redu
e leakagepower dissipation. But as resour
e sharing also have an impa
t on on-o� times forfun
tional units and therefore leads to longer a
tivation times whi
h
ounters thise�e
t.There are three dominant approa
hes for behavioral synthesis targeting redu
eddynami
 power dissipation:
• Low-power behavioral synthesis [44, 19, 57, 61, 94, 69, 70, 84, 45, 89℄ througharranging the
omputation su
h that the internal swit
hing a
tivity is mini-mized: P ∼ 〈α0→1〉t. The design goal is to �nd min(〈α0→1〉t).
• Low power behavioral synthesis through voltage s
aling [55, 27, 10, 80℄. Usuallylow-power designs operate at voltage-levels just above 2|Vt|, thus the bene�tfrom voltage s
aling lies in speeding up a few
riti
al
omputations at a powerpenalty, whi
h is then more than
an
eled by
hoosing slower low power fun
-tional units at non-
riti
al pla
es in the
ir
uit.
• Power aware behavioral synthesis [102, 5, 1℄
hara
terizes methods whi
h tar-gets the generation of a spe
i�
 power pro�le of the
ir
uit. The goal is usuallya uniform �at power pro�le below a
ertain power maximum whi
h
orrespondsto a hard
onstraint (e.g. maximum power delivered by a solar-panel). Themajority of these algorithms are either based on meta-heuristi
 algorithms, ortwo-step algorithms, where in step one a traditional time
onstrained s
heduleis
onstru
ted and in step two the s
hedule is made �power-aware�.Usually there is an area penalty asso
iated with these low-power te
hniques
om-pared to non-low-power te
hniques and the di�erent methods have di�erent tradeo�sbetween area and power.In the following se
tions we fo
us on the �rst of these approa
hes. There are manyways to minimize 〈α0→1〉t, but the most dominant are those methods whi
h exploit
orrelations in input-data as well as in the
omputation. This body of work
an bedivided into �ve groups whi
h we will present in the following. The �rst group fo
useson providing a

urate lower bounds on power
onsumption for use in synthesis. These
ond group fo
uses on s
heduling, allo
ation and assignment redu
ing the swit
hinga
tivity of the fun
tional units, whi
h is the largest
ontributor to power dissipation.The third group fo
uses on redu
ing swit
hing a
tivity at the CDFG level. Thefourth group fo
uses on proper register allo
ation for low power. And �nally thelast group of papers fo
uses on redu
ing the power
onsumption of the inter
onne
tbinding fun
tional units and registers together and the impa
t this has on s
heduling,

3.1 Low power behavioral synthesis, an overview 23allo
ation and assignment. In the following we will present a non-exhaustive list ofsynthesis methods.3.1.1 Lower bounds on swit
hing a
tivityIn order to �nd optimal solutions through exhaustive sear
h based methods as bran
hand bound, it is ne
essary to bound the solution spa
e using a polynomial approa
h.This is also useful for measuring optimality of heuristi
 approa
hes as the optimalsolution is bounded by the heuristi
 solution and the lower bound. A bran
h andbound algorithm tra
es a de
ision tree whose leafs represent all possible solutions.Given a best solution found during exe
ution of the bran
h and bound algorithm, asubtree
an be pruned if a lower bound estimate of the best solution from the sub-treeyields a larger
ost.In [57, 94℄ the swit
hing a
tivity metri
 is de�ned as the Hamming distan
e of
onse
utive input ve
tors to fun
tional units. Let wij de�ne the power
ost for thevariables i and for ea
h operation type j present in the DFG. This is
omputedbased on a representative set of input ve
tors to the
ir
uit. The
entral idea isto formulate the low power binding problem with resour
e
onstraints as a graphproblem by de�ning an ar
-labeled dire
ted graph. The optimization problem isthen to
over all nodes with exa
tly m (node disjoint)
y
les with minimum total
ost under the
onstraint that ea
h
y
le
ontains exa
tly one ba
kward ar
. Thetotal
ost is the sum of the ar
 weights of all
y
les. Ea
h
y
le of a solution to thisproblem represents one resour
e, while the nodes of a
y
le are the operations boundto it. The authors prove that the following ILP problem provides a lower bound onthe low power binding problem with m resour
es:
z = min

n∑

i,j=1

wijxij (3.3)subje
t to
∑n

j=1 xij = 1 i = 1, ..., n∑n

i=1 xij = 1 j = 1, ..., n∑
i≥j xij = m

(3.4)with xij integer. In this formulation it is not guaranteed that pre
eden
e
onstraints,spe
ifying operation a has to start after operation b, are ful�lled, hen
e a solution ofthe ILP problem delivers only a lower bound on the swit
hing a
tivity. Furthermore,the problem is a relaxation of the optimization problem as there are no
onstraintsfor
ing ea
h
y
le to have exa
tly one ba
kward ar
. Instead of solving the ILPproblem, a polynomial time bounded approa
h is proposed whi
h approximates theILP problem based on Lagrangian relaxation.

24 Related Work
t

1

3

45

2

1

5

4

3

2

add1 add2add1 add2

1

2

3

4Figure 3.1: Optimizing s
hedule (from left to right) for reuse of input variables andredu
tion of swit
hed
apa
itan
e. Operation 3 and 5 uses the same result from 2 insu

essive steps.3.1.2 Redu
ing swit
hing a
tivity of fun
tional unitsThe redu
tion of swit
hing a
tivity of fun
tional units
an be a

omplished bys
heduling operations su
h as to in
rease the
orrelation of the data presented to thefun
tional unit. The �rst step in this dire
tion is to observe that the average swit
hinga
tivity of any fun
tional unit is signi�
antly redu
ed if one of the operands remainsun
hanged [69, 70℄. As operands are usually reused more than on
e in
omputationson the same type of fun
tional unit, there is a basis for grouping operands together inthe s
heduling and binding pro
ess. The
entral idea is to group reusable operandstogether on the same parti
ular fun
tional unit and to exe
ute these in su

essivetime-slots/operation-groups. The idea is shown in Figure 3.1. In [69, 70℄ this is a
-
omplished by extending the List-s
heduling [67℄ to a Low Power List-s
heduling byadding more heuristi
s. The traditional List-s
heduling operates by having a priorityqueue of all ready operations determined by urgen
y, more pre
isely the di�eren
ethe ASAP-ALAP interval. In the Low Power List-s
heduling operation that shareoperands are grouped into operand-sharing sets. On
e an operation has been s
hed-uled, the other operations in the group are moved up to top priority and are s
heduledsu

essively, until an operation outside the set gets urgen
y zero, whi
h is then setfor immediate exe
ution.The next step is to generalize this observation into s
heduling operations su
h asto in
rease the
orrelation between
onse
utive inputs to a fun
tional unit [89, 45℄.Again the list-s
heduling heuristi

an be modi�ed to in
lude this data
orrela-tion [89℄ and to operate by, besides the set of operations Ukwhere all prede
essorshave been s
heduled, maintaining the set of most lately s
heduled operations for ea
hfun
tional unit Lk. At any point the algorithm tries to s
hedule the operations that
onsume less power. By s
heduling operations in this way there are more
andidatesin the ready set when power hungry operations are s
heduled. For evaluation of thepriority for the s
heduling a power metri
 is used. Multiplexer power is no
onsideredin this s
heme. Let cj be the swit
hed
apa
itan
e from s
heduling operation j onfun
tional unit k where operation i was exe
uted previously i ∈ Lk. If the operationis
ommutative, then operand swapping is tried to �nd the smallest swit
hed
apa
-

3.1 Low power behavioral synthesis, an overview 25itan
e. This information is stored for register binding. cj is normalized with respe
tto the total swit
hed
apa
itan
e of all operators in Uk of same type. The
ost ofthe
andidates are set to:
priority = ωcj + (1 − ω)tLj (3.5)where tLj is the ALAP time of operation j relative to the average ALAP time of
andidates in Uk of the same type. Parameter ω is the weight given to relate powerimportan
e to meet time-deadline importan
e.The For
e-Dire
ted s
heduling method
an also be modi�ed for low power syn-thesis [45℄. The algorithm models the swit
hed
apa
itan
e of an sequen
e of two
onse
utive operands to a fun
tional unit as the spring
onstant k and the probabil-ity of sele
ting the
orresponding sequen
e is modeled as the displa
ement x, in thefor
e equation F = kx. Thus, a for
e is asso
iated with ea
h feasible
ombination offor
es whi
h is used to make a power-optimal s
heduling de
ision. This metri
 is thenused in the For
e-Dire
ted s
heduling method [77℄ to solve the behavioral synthesisproblem for low power digital
ir
uits.The low power binding problem for a �nite set of fun
tional units having a singleinstan
e type/single-ar
hite
ture
an be formulated as a min-
ost �ow problem [31℄.This problem is solvable, unlike the generalized low power binding problem fun
tionalunits having multiple ar
hite
tures whi
h is an ILP problem. In [31℄ two polynomialalgorithms are presented to heuristi
ly solve the ILP problem. The �rst graph-basedmethod iteratively utilizes the single-ar
hite
ture �ow formulation for ar
hite
tureand then
hooses the least power
onsuming assignment from the set of
andidates.Afterwards, the possible unassigned operations are assigned through a node
overagealgorithms that follows another �ow formulation. The node
overage algorithm runsiteratively until all operations are
overed. The se
ond te
hnique assigns the opera-tions to the fun
tional units of multiple ar
hite
tures in in
remental steps similar tothe left-edge algorithm.There are many other methods for addressing the low power synthesis problem[84, 61, 44℄ these methods involve spe
ifying the problem as au
tion based non-
ooperative �nite game, iterative optimizations and
onstraint logi
 programming.3.1.3 Redu
ing swit
hing a
tivity at CDFG levelA di�erent more radi
al approa
h is to design
omplex
ustom low-power fun
tionalunits su
h as FFTs and �lters and use these as buildings blo
ks for the
ir
uit in ad-dition to simple fun
tional units as adders and multipliers [60℄. This requires for thesynthesis approa
h to be able to map groups of operators on these
ustom fun
tionalunits, as shown in Figure 3.2. The method also provides te
hniques for resynthesisof the fun
tional units to mat
h the
onstraints and te
hniques for mapping multiplebehaviors onto the same
omplex fun
tional unit. The meta-heuristi
 approa
h usedfor the design spa
e exploration is based on �nding a sequen
e of in
remental moveswhere only the last move has to generate an improvement in the
ost fun
tion (theintermediate steps are allowed to move to unoptimal state-spa
e solutions). The sets

26 Related Work
FU library+

+
*

+ − +

*
+ ++ −

+

+
*

−* +

CDFG

Figure 3.2: Finding groups of operations in the CDFG to mat
h the low-powerfun
tional units in the library.
Compatability graph

a g

b

c

d

e

f

a b c

d

g

f

e
−+

*

+

CDFG

high cost arcsFigure 3.3: Generating the
ompatibility graph and performing a minimum
ost
lique-partitioning, asumming the shown ar
s have a high swit
hing
apa
itan
e
ost.of moves are: i) Simple and
omplex fun
tional units are repla
ed by new modulesfrom the library. ii) Complex modules are resynthesized. iii) Simple operations are
ombined into
omplex operations. vi) operations are split in to two separate opera-tions. A Tabu-sear
h [43℄ me
hanism ensures solutions are not repeatedly traversed,this method is know as the variable depth sear
h.Addressing the low power synthesis problem dire
tly at the CDFG level has thepotential for large power savings [81, 82℄. The proposed CDFG-transformation te
h-niques involve: i) Redu
ing the total number of operations to be performed by
om-mon sub-expressions elimination, loop merging and distributivity. ii) Redu
tion ofspurious swit
hing transitions due to �nite propagation delays from one logi
 blo
kto the next (dynami
 hazards). These extra transitions are a
omplex fun
tion oflogi
 depth, input pattern and skew. To minimize these unwanted transitions, signalpath balan
ing and logi
 depth redu
tion is handled. The sequen
e of optimizationmoves are handled by the use of a heuristi
/probabilisti
 sear
h algorithm.3.1.4 Memory allo
ation for low-powerThe goal here is to �nd the appropriate number of registers and the asso
iated bindingto minimize power
onsumption in the registers.

3.1 Low power behavioral synthesis, an overview 27The register binding problem
an be formulated as a minimum
ost
lique
overingproblem [19℄. The power
onsumption is
omputed based on statisti
al informationderived from assumptions on probabilisti
 input distributions. The power dissipa-tion model is based on the Hamming distan
e and the
apa
itan
e of the registersare modeled as a �xed load for a given library. The paper [19℄ de�nes the
ompat-ibility graph G(V,A) as the graph where the nodes are variable intervals and thedire
ted ar
s A between two variables if their variable life times are non-overlappingand end-life-time of the sour
e variable is less than the start-life-time of the tar-get. Ea
h ar
 represents a possible assignment and
arries the swit
hed
apa
itan
edi�eren
e between the two variables. The register assignment problem is then for-mulated as a minimum
ost
lique partitioning problem of that graph. They showthat the unoriented
ompatibility graph for the data values in a s
heduled data�owgraph without
y
les and bran
hes (a DFG fragment) is a
omparability graph (ortransitively orientable graph) whi
h is a perfe
t graph. This is a useful property as
lique partitioning problems
an be solved in polynomial time for perfe
t graphs,through a max-
ost �ow reformulation of the problem, giving the minimum totalpower
onsumption on the registers in the
ir
uit.The memory allo
ation for low-power problem
an also be formulated as a network�ow problem [18℄. This work fo
uses on solving the problem of rapidly resolving theproblem to optimality for an in
remental
hange of the s
hedule for use in low powers
heduling methods. This is a two-step pro
ess: i) A max-�ow
omputation involvinga valid �ow solution while retaining the previous solution as mu
h as possible andii) a min-
ost
omputation whi
h in
rementally re�nes the found �ow solution, usingthe
on
ept of �nding a negative
ost
y
le in the residual graph for the �ow.3.1.5 Inter
onne
t design for low-powerOne way to redu
e the swit
hing a
tivity in the inter
onne
t
onne
ting registers tothe fun
tional units is to isolate/signal guard parts of the inter
onne
t [110℄. Forinter
onne
t, in this
ase built by a multiplexing network, it is not justi�able to in-sert lat
hes through-out the routing network, when
ompared to the power overheadintrodu
ed by su
h a method. In addition to make use of data-
orrelations, it is pro-posed to freeze the inputs of the multiplexors to a �xed (hardwired) value, denotedthe �ller value. The probabilities for the di�erent swit
hing
hara
teristi
s are
om-puted by simulating the CDFG in whi
h the binding and s
heduling information isba
k-annotated. The algorithm for
omputing the �ller values is a simple polynomialalgorithm running through
omputing the most probable value. The power redu
tionof the inter
onne
t is then built into an iterative behavioral synthesis algorithm fors
heduling and binding to �nd the optimal low-power
ir
uit. The meta-heuristi
approa
h used for this is based on �nding a sequen
e of moves where only the lastmove has to generate an improvement in the
ost fun
tion (the intermediate stepsare allowed to move to unoptimal state-spa
e solutions), a tabu-sear
h me
hanismensures solutions are not repeatedly traversed.For bus-based mi
ro ar
hite
tures, redu
tion of swit
hing a
tivity
an be a

om-

28 Related Workplished in two ways [29, 30, 28℄: (i) Through multiplexing the signals onto the busesin the
orre
t order. (ii) And
hoosing the optimal set of busses and their
onne
tionbetween fun
tional units and registers. For design of the buses, the average signalswit
hing a
tivity for all nodes in, and inputs to, the CDFG are
omputed by repeatedsimulation using a representative set of input ve
tors. Using this data the swit
hinga
tivity matrix SAk
ij , for su

essive data transmissions i → j for bus k, for a givenbus
on�guration is
omputed and the lowest energy is sele
ted. Simulated annealingis used to handle the
omplete synthesis pro
ess in
luding bus
on�guration design.3.2 Asyn
hronous behavioral synthesis, an overviewSynthesis of asyn
hronous
ir
uits falls mainly in two
ategories: (i) synthesis ofsmall-s
ale sequential
ontrol
ir
uits [26, 41, 106℄ and, (ii) synthesis of large-s
ale
ir
uits based on syntax-dire
ted
ompilation from CSP-like languages: Tangram[11, 100℄, OCCAM [17℄, Balsa [8, 36℄ and ACK [59℄. Several tools exist (in the publi
domain) in these areas, and these tools have been used to design industrial s
ale
ir
uits.Synthesis methods for generating small-s
ale sequential
ontrol
ir
uits are low-level logi
 synthesis methods for the design of asyn
hronous logi
, the asyn
hronousequivalent to syn
hronous
ontrol logi
 synthesis. syntax-dire
ted synthesis is a lineof high-level synthesis where there is a one-to-one
orresponden
e between the high-level programming language spe
ifying the
ir
uit and the
ir
uit itself.Besides those two main lines of resear
h there are a number of other attempts.One of the most promising is desyn
hronization [14, 25℄ whi
h relies on syn
hronousbehavioral synthesis and then in the low-level logi
 synthesis phase substitutes the
lo
k and the syn
hronization with asyn
hronous handshaking and
ontrol.We illustrate the design �ows of the di�erent synthesis methods
urrently devel-oped for asyn
hronous
ir
uit design and indi
ate the di�erent levels of abstra
tionin the synthesis pro
ess. The position inside ea
h level is unimportant and does notsignify any further degree of abstra
tion. The levels of abstra
tion are:Abstra
t This is the level where the behavior is expressed only by essential opera-tions and their essential dependen
ies.Behavior The level where the behavior is spe
i�ed in the form of a programminglanguage and as su
h may
ontain restri
tions in expression form, whi
h may
orrespond to non-essential behavior.Ar
hite
ture In this level the behavior is spe
i�ed by ar
hite
tural information
onsisting of larger-s
ale
omponents implementing a prede�ned behavior.Gate/Logi
 At this level the behavior is expressed in the form of an ar
hite
turaldesign built by logi
 gates.Physi
al This level represents behavior in physi
al form either as a layout or as aphysi
al model of a layout.

3.3 Asyn
hronous logi
 synthesis 29Not all details will be indi
ated in the �gures des
ribing the di�erent synthesis �ows,only those whi
h are of spe
ial nature or original to the method in question.In the following we present a non-exhaustive list of synthesis methods, groupedtogether as to how their synthesis �ows relates to ea
h other.3.3 Asyn
hronous logi
 synthesisAsyn
hronous logi
 synthesis is the building method behind asyn
hronous synthesisas these methods are used to generate the asyn
hronous logi
. This area has beenand still is, the fo
us of a majority of the resear
h in asyn
hronous
ir
uit synthesis.Asyn
hronous logi
 synthesis
an largely be divided into two groups: (i) Synthesis ofsmall-s
ale sequential input/output-mode
ontrol
ir
uits or handshake
omponents[26, 41, 107, 108℄. This is usually done through tools like Petrify [24, 26℄. Thebehavior of the asyn
hronous
ir
uit together with its environment is spe
i�ed usinga 1-bounded 1
olor petri-net
alled a Signal Transition Graph (STG). The approa
his limed by the NP-hardness of the synthesis problem with several improvementsimplemented through: Redu
ing the sear
h spa
e using heuristi
s [76℄. Series oflo
al graph transformations [91℄. Furthermore the problem
ontains the importantsubproblem of
onsistent state
oding (CSC), whi
h is also the subje
t for extensiveresear
h [63, 65℄. The design of GasP
ir
uits [35, 97℄ fall under the same
ategoryof logi
 synthesis but employ a di�erent handshake proto
ol.The other group is synthesis of larger-s
ale
ontrollers operating in fundamentalmode/Burst mode [40, 41, 107, 108, 109℄. These are ra
e-free asyn
hronous
ombi-natorial
ir
uits with restri
tions on both type of operation and the timing of howthe environment intera
ts with the
ir
uit. This synthesis problem is likewise anNP-hard problem whi
h limits the size of the
ontrollers possible to synthesize, butusually larger
ir
uits than for the input/output-mode
ir
uits
an be synthesized.Again heuristi
s are employed to improve on the method [9, 98℄.Theseus logi
 has developed a Synopsys ba
k-end. Here the low-level logi
 syn-thesis of
ontrol and datapath is implemented using a NCL logi
-synthesis leadingto an asyn
hronous
ir
uit. The tool is integrated into Synopsys through the use ofspe
ial libraries and
ompile
ommands [38, 90℄.3.4 Asyn
hronous behavioral synthesisA number of papers have presented work on behavioral synthesis of asyn
hronous
ir
uits from DFG or CDFG representations, but they are surprisingly few and theyhave a di�erent and/or more limited s
ope [3, 4, 22, 23, 54℄. The �rst paper limitsitself to DFGs and fo
us mostly on a synthesis algorithm and its runtime. Theremaining papers address synthesis from a CDFG representation and they targetsolutions where a
entralized
ontroller or a distributed stru
ture of
ontrollers arespe
i�ed at the level of individual signal transitions (in the form of signal transitiongraphs or burst-mode state graphs).

30 Related Work
Bachman

Abstract

Architecture

Behaviour

Gate

Abstract

Behaviour

Architecture

Behaviour

Architecture

Gate

ACK

Verilog Petri−net
Manual partitioning

{Petri−nets}{Burstmode spec.}

{Burstmode controllers}+datapath

Burstmode synthesis

(c)

Syntax directed
synthesis

Behaviour

Architecture

Gate

Balsa/Tangram

Handshake circuit

Library substitution

Asynchronous circuit

(d) Balsa/Tangram

CDFG

{FUs with local control}

synthesis

List scheduling
Continous time

{PUs}

Petrify−logic

Achilles(a)

DFG

scheduling
Resource−arc

Burstmode controller spec. +
Datapath spec.

(b)

Figure 3.4: Synthesis �ow for A
hilles, the Ba
hman approa
h, ACK andBalsa/TangramThe synthesis tool A
hilles [4, 22, 23℄ and the synthesis tool by Ba
hman et al.[3℄ both represent �pure� asyn
hronous behavioral synthesis.A
hilles starts from a
ontrol data �ow graph and uses a modi�ed list-s
hedulingto generate a s
hedule in
ontinuous time. The target ar
hite
ture is a set of in-dependent ma
hines
orresponding to ea
h of the fun
tional units in the
ir
uit, asillustrated on Figure 3.5. Ea
h independent FU then implements the appropriatepart of the s
hedule, has its own memory and handles
ommuni
ation with the otherFUs. Using this method, there is a possible
ommuni
ation overhead and memoryoverhead when
omparing to a method using a single
ontroller and datapath. The
ontroller of ea
h FU is spe
i�ed as a Petri-net and synthesized using Petrify. The
omplete synthesis �ow is illustrated in Figure 3.4 (a).The synthesis tool by Ba
hman, utilizes a method designated as resour
e-edges
heduling, whi
h is a form of s
heduling where the additional ordering imposed bys
heduling is represented as additional graph-dependen
ies added to the data �owgraph, as illustrated in Figure 3.6. It is un
lear from their work whether the startingpoint is a DFG or if they have in
luded DFG extra
tion from VHDL/Verilog. Thesynthesis �ow is illustrated in Figure 3.4 (b). The fo
us in their work is on ar
hite
-tural s
heduling and series of algorithms have been developed, in
luding s
hedulingand a
ontinuous left-edge algorithm with the target ar
hite
ture being a
entral
ontroller and datapath. They primarily address the runtime and
omplexity of thedeveloped algorithms.

3.4 Asyn
hronous behavioral synthesis 31

Output

FU0 FU1 FU2 FU3 FU4

t

FU0
Input

FU1

FU2

FU3

FU4Figure 3.5: Conne
tion between the
ontinuous s
hedule and the assignment to theasyn
hronous ar
hite
ture for A
hilles.3.4.1 Partitioned
ontrollersAsyn
hronous Cir
uit Kompiler (ACK) [48, 59℄ is a high-level synthesis system, whi
his based upon a traditional
ir
uit design style;
onsisting of a datapath and a
en-tralized
ontroller. The starting point is a CDFG from whi
h a datapath (fun
tionalunit allo
ation) and a Petri-net des
ribing the
ontrol of the datapath is extra
ted.No behavioral synthesis is involved in this extra
tion, ex
ept the sour
e
ode
ould
ontain pragmas for e.g. sharing a
ommon subexpression. The synthesis pro
ess
ould therefor be
hara
terized as syntax-dire
ted.The size of the Petri-net prevents dire
t synthesis of the
ontroller, as this is anNP-hard problem. Instead, it is proposed to divide the
ontroller into a small set of
ontrollers and methods are des
ribed for letting multiple
ontrollers jointly
ontrola single fun
tional unit in the datapath, through a boundary layer, also responsiblefor sending data from the datapath to appropriate
ontroller, as illustrated in Figure3.7. Unlike A
hilles, there is not a one-to-one
orresponden
e between the FU andthe
ontroller partitioning. The partitioning of the Petri-net is left to the designerand no automated methods are presented in the work.The set of manually partitioned Petri-nets are then automati
ally
onverted intoa set of burst-mode spe
i�
ations, whi
h is then synthesized into burst-mode
on-trollers. The synthesis of the datapath is handled through Synopsys. The
ompletesynthesis �ow is illustrated on Figure 3.4 (
).Several other approa
hes employ similar te
hniques with shared
ontrollers andlook into automated methods for partitioning
ontroller into manageable sizes [54,104, 105℄.

32 Related Work
CDFG

a a

d

c

d

c

a

a

Resource arc

Scheduled
CDFG

Figure 3.6: Behavioral synthesis me
hanism for the synthesis tool developed devel-oped by Ba
hman.
B

ou
nd

ar
y

la
ye

r

C2
FU1

FU3

FU2

FU5

Datapath

FU0

FU4

Partitioned controller

C3

C1

Figure 3.7: Control and Datapath ar
hite
ture for ACK.3.4.2 syntax-dire
ted synthesisBalsa [7, 8, 36℄, Tangram [11, 12, 100, 101℄ and OCCAM [17℄ are CSP type lan-guages spe
i�
ally designed for synthesis of large s
ale asyn
hronous
ir
uits. Theyemploy syntax-dire
ted synthesis into a set of prede�ned asyn
hronous handshake
omponents. Both tools are well developed, supported and have been used to de-sign industry s
ale
ir
uits. The
ontroller
onsists of a distributed net of handshake
omponents and likewise for the datapath. The �ow is illustrated in Figure 3.4 (d).The syntax-dire
ted
ompilation approa
h is radi
ally di�erent from the behav-ioral synthesis �ow used by designers of syn
hronous
ir
uits. Firstly, syntax-dire
ted
ompilation is based on a non-standard language, and se
ondly, and more important,the
ompiler merely performs a one-to-one mapping of the program text into a
or-responding
ir
uit. Although syntax-dire
ted
ompilation does allow the designerto work at a relatively high level it does not provide any optimizations; �what youprogram is what you get�. In some situations this
an be
onsidered an advantagebut it also puts more burden on the designer: exploring alternative implementationsrequires a
tually programming these, whereas in a traditional syn
hronous synthesis�ow, the designer
an qui
kly and easily experiment with di�erent
onstraints and

3.4 Asyn
hronous behavioral synthesis 33
(a)

Resynthesis
Abstract CDFG CDFG’

Graph transformation

Behaviour VHDL++

Architecture

One−to−one
mapping

Gate

Handshake circuit

Asynchronous circuit
substitution
Library

SAC

Abstract

Behaviour

Architecture

VHDL

CDFG

MOODS synthesis tool

RTL with time−slots

synthesis to
variable
length time−
slots

Behavioral

addition of
asynchronous
control

circuit
AsynchronousGate

(d)

(b)

Behaviour

Architecture

Gate

Balsa/Tangram

Handshake circuit Burstmode spec.

Asynchronous circuit

Burstmode synthesis

Resynthesis

Abstract

Behaviour

Architecture

Gate

VHDL

CDFG
Synchronous
behavioral
synthesis

RTL with clock

Asynchronous
circuit

SYNCASYNC

desynchronization

Desynchronization(c)

Figure 3.8: Synthesis �ow for Resynthesis, SAC, Desyn
hronization and the MOODStool.goals and in this way
reate alternative implementations from the same program text.The tools support logi
 optimization to some degree i.e. in the form of Peep-holeoptimizations. These are optimizations where groups of handshake
omponents whenpla
ed together in a
ertain way are repla
ed by one larger handshake
omponentthus redu
ing the
ontrol logi
.To further improve on this, the resynthesis [20℄ approa
h is pushing this evenfurther by grouping parts of the
omponents related to operators in the datapath andre-synthesize the
ontrol logi
 using burst-mode
ir
uits. The �ow follows the balsa-�ow until the point where the
ir
uit is des
ribed by a set of handshake
omponents,these are then resynthesized. The �ow is illustrated in Figure 3.8 (a).The TAST tool [85℄ is pursuing the same dire
tion but is instead synthesizing the
ontroller from the spe
i�
ation, avoiding the handshake
omponents
ompletely andusing a traditional
ontrol/datapath ar
hite
ture. Advan
es in STG to asyn
hronous
ir
uit synthesis has allowed this to be used for larger
ir
uits and thus be
omesmore attra
tive. The starting point is a VHDL des
ription, from whi
h the Petri-net-spe
i�
ation and datapath is derived. The TAST tool is
urrently not availablein the publi
 domain.Blunno [15℄ targets the generation of mi
ro-pipelines dire
tly from a Verilog spe
-i�
ation and [62℄ generates delay insensitive
ir
uits from graph-theoreti
 spe
i�
a-

34 Related Worktions, but again there is a one-to-one
orresponden
e between a spe
i�
ation and theresulting
ir
uit.3.4.3 Synthesis of Asyn
hronous Cir
uits
CDFG’

b

b

c
3d

4

a
0

a
0

d
4

c
3

1

I1a

I1z
2

I2a

I2z

I2b

I1b

b

I1z I2z

I1aI2a I1b I2b

detect

CDFG

Figure 3.9: Graph theoreti
 transformations supported by SAC: Disjun
tive.
CDFG’

b

b

c
3d

4

a
0

d
4

c
3

a
01

I1a

I1z
2

I2a

I2z

I2b

I1b

b

I1z I2z

I1aI2a I1b I2b

Sequencer

CDFG

Figure 3.10: Graph theoreti
 transformations supported by SAC: Deterministi
.In SAC [46, 50, 73℄ behavioral synthesis is handled at the CDFG level. The tool
an synthesize a single VHDL pro
ess (assuming inputs and outputs to be handshake
hannels) into a standard
ell
ir
uit implementation. Two types of synthesis meth-ods are supported: Non-performan
e degrading resour
e sharing and performan
edegrading resour
e sharing. The synthesis �ow begins by extra
ting a
ontrol data�ow graph from the spe
i�
ation (a single VHDL pro
ess).The CDFG is analyzed and resour
e sharing and operation s
heduling, in theform of graph transformations, are performed. Two types of graph transformationsare supported:
• Disjun
tive resour
e sharing. Operators that have a disjun
tive relation, i.e.from a graph theoreti
al perspe
tive never
an exe
ute at the same time,
ouldbe resour
e-shared to the same operator. The order of exe
ution is handled bya dete
t
omponent whi
h dete
ts whi
h operation is ready to exe
ute. Themethod is illustrated in Figure 3.9.

3.4 Asyn
hronous behavioral synthesis 35
• Deterministi
 resour
e sharing. Operators that have a deterministi
 relationi.e. a �xed order of exe
ution
an be established,
an be resour
e-shared tothe same operator. The exe
ution order is then
ontrolled by a sequen
er
omponent. The method is illustrated on Figure 3.10.After these optimizations a
orresponding
ir
uit implementation is generated.The method utilizes the fa
t that there is a
lose
orresponden
e between a CDFG[33, 67, 96℄ and an asyn
hronous
ir
uit: The edges in a CDFG
an be seen ashandshake
hannels and the nodes in a CDFG
an be seen as handshake
omponents�
omponents that are quite similar to the handshake
omponents used in syntax-dire
ted
ompilation. In this way a simple one-to-one mapping of the CDFG to anetwork of asyn
hronous handshake
omponents is performed.The graph transformations makes this di�erent from the syntax-dire
ted
ompi-lation of large-s
ale asyn
hronous
ir
uits from non-standard languages. The �ow isillustrated in Figure 3.8 (b).This work represents our initial e�ort to implement asyn
hronous behavioral syn-thesis. The method was dis
ontinued as we found there was a power overhead asso-
iated with this method of synthesis. Resear
h into a non-one-to-one
orresponden
ebetween a CDFG and a handshake
ir
uit might alleviate this.3.4.4 Desyn
hronizationCommon for these methods is the use of existing syn
hronous methods and toolsas part of the pro
ess for generating an asyn
hronous
ir
uit. In some way thesemethods represent the opposite of the �pure� asyn
hronous behavioral synthesis, asall these methods use syn
hronous behavioral synthesis to perform ar
hite
tural syn-thesis before employing asyn
hronous logi
 synthesis to generate the �nal
ir
uit.Desyn
hronization [14, 16, 25℄ makes use of existing syn
hronous methods andtools to synthesize a syn
hronous
ir
uit down to gate-level and then repla
e the syn-
hronous
ontrol logi
 and the
lo
k by asyn
hronous
ontrol logi
 and asyn
hronoushandshaking. The synthesis �ow is illustrated on Figure 3.8 (
). Two dire
tions existfor generating the asyn
hronous
ontrol logi
:Synthesis [25℄ Infer the overall behavior from the syn
hronous behavior, this in-volves
onstru
tion of a STG des
ription or a burst-mode des
ription and thensynthesizing the
entral
ontroller. This approa
h is limited to smaller-size
ontrol
ir
uits, limited by logi
 synthesis
apabilities.Substitution [14℄ Systemati
ally repla
e syn
hronous
omponents by lo
al hand-shake
omponents through a transparent one-to-one
orresponden
e. This ap-proa
h generates less optimal solutions than the former, but
an be used forlarger-s
ale synthesis.

36 Related Work
b

b

b

a b

c

a

c

.01

.02

.03

Execution
time−slots

ControlgraphCDFG

Figure 3.11: The behavioral synthesis me
hanism of the MOODS synthesis tool.3.4.5 Variable length time-slot behavioral synthesisSa
ker [88℄ proposes a method whi
h resembles the syn
hronous behavioral synthesis�ow but where the target operation group time-slots are of variable length. Borrowingfrom
ompiler te
hnology and syn
hronous synthesis the group has extended theirexisting syn
hronous behavioral synthesis MOODS to handle asyn
hronous
ir
uits.The target is a single
ontrol sequen
e of operation-groups, where ea
h operation-groups
an
onsist of several operations in parallel and have the exe
ution time ofthe slowest operation in the group. Multi-
y
le operations are not supported, but
haining is. However
haining implies data is fed dire
tly between two FUs with-outbeing stored in registers and therefore no resour
e sharing of the FUs involved in
haining is allowed. There has to be a su�
ient number of FUs su
h that for alloperations-groups, all the operations in an operation-group have a dire
t mapping toa FU.The starting point is a VHDL behavioral model. From this an intermediate for-mat, they
all ICODE is extra
ted, whi
h is a representation equivalent to a CDFG.Then s
heduling allo
ation and binding is performed, with the �syn
hronous� s
hedulerepresented by a
ontrol-step graph. The asyn
hronous
ontrol is handled by mappingthe elements of the
ontrol-step graph via prede�ned asyn
hronous
ontroller-
ellsto an asyn
hronous
ir
uit. The datapath is synthesized through a set of templates.The used asyn
hronous signaling is based on 4-phase handshake-proto
ols. The �owis illustrated in Figure 3.8 (d).

3.5 Summary 373.5 SummaryCurrently resear
h in behavioral synthesis of asyn
hronous
ir
uits is primarily fo-
used on syntax-dire
ted synthesis and desyn
hronization. Besides there is a multi-tude of more or less su

essful attempts for high-level synthesis.There are three aspe
ts we would like our asyn
hronous behavioral synthesis to
ontain:
• Ability to
onstru
t systems operating in
ontinuous time and using methodsfrom behavioral synthesis and Operations Resear
h in
ontinuous time. Desyn-
hronization methods are limited by their use of a dis
rete time-evolution to�nd the optimal s
hedule.
• Ability to use existing behavioral synthesis methods developed for syn
hronoussynthesis, su
h as the methods for low-power behavioral synthesis reviewed inthe beginning of this
hapter. Leveraging on existing te
hniques that are wellproven both in theory and pra
ti
e will prove very bene�
ial.
• Use of handshake
omponents both for
ontroller synthesis and datapath syn-thesis to fa
ilitate
onstru
tions of large s
ale designs. For an asyn
hronousbehavioral synthesis to be e�e
tive it has to be able to synthesize industry-s
ale designs.The resear
h presented in this thesis tries to implement these aspe
ts by introdu
-ing a
omputation model allowing the use of both synthesis methods of syn
hronousdis
rete time and methods for
ontinuous time and targets asyn
hronous handshake
omponents both for datapath and
ontroller synthesis. As an implementation we
urrently build upon the balsa language, but this is not a restri
tion our work
ouldeasily be extended to target other languages or design approa
hes.

38 Related Work

C h a p t e r 4Behavioral Synthesis forAsyn
hronous Cir
uits
Syn
hronous
ir
uit synthesis utilizes a simple model for implementing syn
hronous
omputation and this method has proven to be highly su

essful. Therefore, ratherthan to invent a di�erent
omputation model, we adapt the existing
omputationmodel for asyn
hronous
ir
uit synthesis. This has the added advantage of openingup for the use of many of the existing methods from syn
hronous behavioral synthesisin asyn
hronous
ir
uit synthesis. In this
hapter we address this in detail.4.1 From syn
hronous to asyn
hronous behavioralsynthesisLet us �rst review and analyze the elements of syn
hronous behavioral synthesis.Based on the CDFG, syn
hronous behavioral synthesis involves three sets of trans-formations in order to
reate a suitable hardware ar
hite
ture;

• S
heduling, in whi
h operator nodes of the CDFG are grouped into operation-groups or time-slots, and where the exe
ution of the next operation-group ishandled by a syn
hronization event, Ei, where i stri
tly orders the events intime. In the
ase of syn
hronous behavioral synthesis Ei is
ontrolled by thesystem
lo
k.
• Allo
ation, in whi
h the minimum hardware resour
es/ fun
tional units (FUs),required for exe
ution of the operation-groups are determined.

40 Behavioral Synthesis for Asyn
hronous Cir
uits
k

r,j

Ew,j

E

1

0

0
w,i

Ew,k

Er,k

k

0

2

j

Ew,i

Er,j

Ew,j

Relaxation

E2

E1

E0

−1E

Er,k

Ew,k

i

j

i

t

E

Figure 4.1: Adapting syn
hronous synthesis (left) into the asyn
hronous handshakedomain (right).
MUX

M
I

FU

L

M
I

FU

M
II

E w,i

Er,i

R0 R1

M II

clk

MUX

INPUT

MUX

OUTPUT

FU

REG LATCH

LATCH

TRANSFER

TRANSFER

Master

SlaveL

FU

MUXFigure 4.2: First step in adapting the syn
hronous
omputation model into the asyn-
hronous domain.
• Binding (or assignment), where individual operator nodes are tied to spe
i�
hardware resour
es.The syn
hronization events determine (i) the beginning of exe
uting an operation(ii) writing the result of an operation.The CDFG extra
ted in the syn
hronous behavioral synthesis is a 1-bounded
ol-ored Petri net, where
olors represent data values, edges represent pla
es, and nodesrepresent transitions. Interestingly, the Petri net model is based on an asyn
hronousexe
ution semanti
s whi
h should make it an obvious model for asyn
hronous syn-thesis as well. In the syn
hronous synthesis, Figure 4.1 (left), operations are ordereda

ording to a global syn
hronization event, Ei, i.e., read events (Er,j) for operator

j happens at the same point in time as the write events (Ew,i) for operator i in theprevious operation-group: E0
w,i = E0

r,j = E0, and furthermore all operations in anoperation-group are exe
uted simultaneously: E0
r,j = E0

r,k = E0.

4.1 From syn
hronous to asyn
hronous behavioral synthesis 41

LATCH

FU

L

L

Er,i

E w,i

v

Transfer

Merge

Transfer

Merge

MUX

LATCH

MUX

FUFigure 4.3: Rearranging
omponents to get the initial
omputation model.If we relax these assumptions: Ew,i 6= Er,j and Er,j 6= Er,k as shown in Figure 4.1(right), and if we make these syn
hronization events
ontrolled by the
ontroller, we
an
reate a hardware ar
hite
ture
onsisting of a datapath and a
ontroller whi
hoperates in
ontinuous time.We start with the syn
hronous
omputation model as shown in Figure 4.2 (left).This is a standard Moore ma
hine datapath with memory (register)
ontroller by a
lo
k and some fun
tional units (
ombinatorial
ir
uitry) to operate on the data. Tomove data ba
k and forth between the memory and the fun
tional units two layersof muxes
ontrol the data �ow,
ontrolled by signals MI and MII . The �rst step inadopting this
omputation model is to move the
omponents into the asyn
hronoushandshake domain. We will use this to model the asyn
hronous timing assumptions.Then we expand the registers by splitting the syn
hronizations events: Ew,i 6= Er,j .The next step is to let the syn
hronization events
ompletely
ontrol the
ompu-tation (datapath). This is done by rearranging the lat
hes and transfer
omponentssu
h as redu
ing the muxes to merge
omponents. From this we get the initial
om-putation model shown in Figure 4.3. In this model the individual syn
hronizationevents Ew,i, Er,i
ontrol the
omputation. From the model it shows that Ew,i is a
-tive during the a
tual
omputation and Er,i is a
tive only for the transfer from lat
hto lat
h. This model is suboptimal as we are using a lat
h for temporary data andthe FU
an only have one target.To
ontinue from here we have two options whi
h re�e
t the properties of ourdatapath, and lead to two datapath topologies: The �rst we designate alpha andhere the fun
tional units are purely
ombinatorial without lat
hes on input and out-put ports. The se
ond we designate beta and here the fun
tional units have normally

42 Behavioral Synthesis for Asyn
hronous Cir
uits
w

L

Er,i

L

E w,i

FU

L

Er,i

L

FU

E r,j

v

Transfer

Merge

Transfer

Merge

MUX

LATCH

MUX

FU

v

MUX

LATCH

MUX

FUFigure 4.4: Rearranging to get the temporary variable into the memory.
w

L

Er,i

L

FU

E w,j

L

Er,i

FU

L

E w,i

E w,j

E w,k

MUX

LATCH

MUX

FU

v

MUX

LATCH

MUX

FU

vw

Figure 4.5: Final
omputation model without normally opaque lat
hes on input andoutput ports of the fun
tional units.opaque lat
hes both on input and output ports. The use of input and output lat
hestends to in
rease speed and to redu
e power
onsumption by preventing spurioussignal transitions to propagate beyond lat
h boundaries. If input and output lat
hesare not used, more variable lat
hes may be needed in the datapath in order to a
-
ommodate the longer lifetime requirements and in order to avoid auto assignments.In the following we pursue both dire
tions, starting with alpha, no lat
hes on inputand output ports:

4.1 From syn
hronous to asyn
hronous behavioral synthesis 43

FU

L

E w,i

L

FU

Er,i

Ecompute

L

v

Transfer

Merge

Transfer

Merge

MUX

LATCH

MUX

Figure 4.6: Computation model with input and output lat
hes.Rearranging the temporary lat
h after the FU as shown Figure 4.4 (left),next we move the temporary data into the memory be
oming Lw bysubstituting Ew,i → Er,j getting Figure 4.4 (right). We still have therestri
tion that the FU always writes to Lw, but Lw
an be used byothers. By reinserting write syn
hronization events we get a
omputationmodel whi
h allows all lat
hes to be used as sour
e and target for allfun
tional units. This is shown in Figure 4.5. Er,i||Ew,j moves data fromLv to Lw through the FU doing
omputation. Restri
tion: Lv
annot beused as both sour
e and target and while Lv and Lw are being used in
omputation, there
an be: (i) no other write to Lv and (ii) no-other reador write to Lw.Next we will pursue the datapath (beta) with lat
hes on input and output ports:We already have input lat
hes so we insert output lat
hes and are thusfor
ed to get an extra syn
hronization event
ontrolling the
omputation.The exe
ution of a
omputation takes the following form: {Er,i};Ecompute;
{Ew,j}, as shown in Figure 4.6. Then we remove the
ontrol of this
om-putation event by de
oupling the
ontrol of the FU making it an indepen-dent pro
ess as shown on Figure 4.7 (left). This model
an operate witharbitrary syn
hronization events. The �nal
omputation model is shown

44 Behavioral Synthesis for Asyn
hronous Cir
uits
MUX

L

E w,i

Er,i

L

FU

L

Einput

Ecompute

Eoutput

L

Er,i

L

E w,j

E w,i E w,k

v

Transfer

Merge

Transfer

Merge

MUX

LATCH

MUX

FU

LATCH

MUX

FU

v

FU

Figure 4.7: Final
omputation model with normally opaque lat
hes on input andoutput ports of the fun
tional units.in Figure 4.7 (right), it resembles the syn
hronous ar
hite
ture but it is
ompletely asyn
hronous.Both models have the same ar
hite
ture; the only di�eren
e is the time the data needsto be held in the sour
e lat
h and restri
tions on the target lat
h. Both methods
an therefore be used heterogeneously in the same datapath, using the most suitablemethod for the spe
i�
 FU, we will denote su
h a mixed model gamma.This idea allows us to use any of, but not restri
ted to, the many syn
hronousbehavioral synthesis te
hniques to obtain a hardware ar
hite
ture (datapath and
ontroller) and then to implement this ar
hite
ture using asyn
hronous
ir
uit te
h-niques. At the same time, this idea allows the use of behavioral synthesis te
hniquesoperating in
ontinuous time.

4.2 Asyn
hronous behavioral synthesis 454.2 Asyn
hronous behavioral synthesis

F

0

0
x x

1

0
y

y
1

0
x x

2
x

1

0
y

y
1

x
20

x

0
y

y
1

a
0

x
1

x
2

1 2

g

f f

0
x

0
y

y
1

a
0

x
1

x
2

1 2

g

f f

G

F

G

Fa

Figure 4.8: (Top) One-to-one
orresponden
e between CDFG and asyn
hronous
ir-
uit. (Bottom) s
heduled CDFG using a non-essential pre
eden
e-
onstraint (thi
ksolid line) and mapping to asyn
hronous
ir
uit.Having approa
hed our target
omputation model from the syn
hronous side wewill now approa
h our model from the asyn
hronous side. The starting point is theone-to-one
orresponden
e between the CDFG representing the
omputation andthe asyn
hronous handshake
omponent network, as shown in Figure 4.8 (left) witha small example. For this CDFG there is a single essential pre
eden
e
onstraint:
f1 < g. The delay of the
ir
uit is given by T = max (Tf2

, Tf1
+ Tg) and the totalarea is given by A = Af1

+Af2
+Ag.The basi
 idea behind
onstraint based synthesis and resour
e sharing is to per-form time-multiplexed mapping of several operators onto a smaller set of fun
tionalunits. As only one operation
an be performed per FU, this requires memory. Inthis setting the time-multiplexing
orresponds to the s
heduling. The mapping ofoperators to FUs,
orrespond to the assignment, and the set of FUs themselves
or-respond to the allo
ation. The s
heduling
an be represented by a minimal set ofnon-essential pre
eden
e
onstraints [95℄ or resour
e-ar
s [2℄, spe
ifying the time-ordering. This is illustrated on Figure 4.8 (right) with the non-essential pre
eden
e
onstraint: f1 < f2 represented by the thi
k arrow from f1 to f2, whi
h are mappedonto the same fun
tional unit F . In this
ase the delay of the
ir
uit is given by

T = max (Tf1
+ Tf2

, Tf1
+ Tg) = Tf1

+ max (Tf2
, Tg) and the total area is given by

A = Af1,f2
+Ag.

46 Behavioral Synthesis for Asyn
hronous Cir
uits
Li

FU

Er,a Er,b

E w,c

a b

c

a b

c

Lj

LkFigure 4.9: Mapping operator σ to a FU.
f

b

a2a1
a0

c1c0

Control Transferd

e

Figure 4.10: The
ontrol handshake
omponent and the transfer handshake
ompo-nent.To pro
eed from here we need the mapping of a single operator σ with sour
e data
a, b in lat
h Li and Lj respe
tively, and target data c assigned to Lk whi
h is given inFigure 4.9, as the simplest
onstru
tion of su
h a mapping. To
onstru
t the
ontrol
ir
uits for this mapping we introdu
e the dual
omponent to the transfer handshake
omponent, the
ontrol
omponent
.f. Figure 4.10. The behavior of the
ontrol
omponent is a follows: First the
omponent waits for a request from all input ports
a0, a1, ... then a request is pla
ed on output port b. When an a
knowledge arrivesfrom b the handshake with input ports a0, a1, ... are
ompleted and the handshakewith output ports c0, c1, .. are
ommen
ed and
ompleted. The STG for a four phaseimplementation of the
omponent is shown in Figure 4.11.Together with the transfer
omponent the
ontrol
omponent maps the CDFGonto a
ontrol part and a data part. This depends whether our fun
tional units haveinput/output lat
hes or not. Both solutions to this problem are shown in Figure4.12. We now see there is a dire
t
orresponden
e between the CDFG node andthe
ontrol node of our asyn
hronous
ir
uit and the fun
tional unit mapping. Forthe alpha model there is a dire
t
orresponden
e between the CDFG node and the
ontrol
omponent. For the beta model there is a dire
t
orresponden
e between theCDFG input ar
s and the
ontrol node responsible for the loading of the data to thefun
tional unit and the dire
t
orresponden
e between the CDFG output ar
 and the
ontrol node responsible for the reading of the result of the fun
tional unit. We will
ontinue with the alpha model.

4.3 Datapath synthesis 47
c.a−

a.r+
b.r+

a.a+

a.r−

a.a−

c.r+

c.a+

b.a+

b.a−

b.r−
c.r−Figure 4.11: Four phase STG for the
ontrol handshake
omponent with only one aand c
hannel. For multiple a0, a1, ... and multiple c0, c1, ... the a and c have to berepla
ed by
on
urrent handshaking on all these
hannels.Performing a one-to-one mapping of the
ontrol nodes in the CDFG and thealpha model generates the
ir
uit shown in Figure 4.13. Using this approa
h we havemoved from the one-to-one
orresponden
e between CDFG and fun
tional units tomodel with a one-to-one
orresponden
e between the CDFG and the
ontrol part ofthe handshake
ir
uit only. The fun
tional units now follow the behavioral synthesisallo
ation. The
ontrol part of the handshake
ir
uit
ould be implemented usingany methodology for asyn
hronous state-ma
hine design: Burst-mode [109℄, Petrify[26℄, set of handshake
omponents [92℄ and Balsa/Tangram [7, 11℄ style
ontroller.We will implement the
ontrol part of the
ir
uit using a di�erent method to gen-erate the events, whi
h uses handshake
omponents su
h as sequen
ers and parallelet
. These are better suited for our behavioral synthesis algorithms operating witha sequen
e of dis
rete events.The same datapath and
ontrol
ir
uit
an be built for the beta model, using thesame approa
h. To build a
ompa
t e�
ient
omputation unit (datapath) we willlook at how to generate this in general in the following se
tion.4.3 Datapath synthesisAssume we are given a CDFG, and that s
heduling, allo
ation and assignment hasbeen performed as shown in Figure 4.14, using the FU library shown in table 4.1 (tobegin with, the s
hedule will not in
lude the load of input data to the
ir
uit andstoring of the results). The FU library has been normalized with respe
t to the ALU
omponent. We will
onsider the s
hedule to operate in
ontinuous time. However itis of no importan
e whether the s
hedule has been obtained using an asyn
hronouss
heduling method or through a syn
hronous method whi
h has been relaxed into
ontinuous time, as dis
ussed in the previous se
tion. Note that the operator nodeshave been labeled: 1,2,..,8 and temporary data: w0,w1,...,w7. The bran
h part of the

48 Behavioral Synthesis for Asyn
hronous Cir
uits
Alpha:

FU

Er,a

Er,b

E w,c

FU

Er,a

Er,b

E w,c

a b

c

Lj

Lk

Li

a b

c

a b

c

Lj

Lk

Li

a b

c

||

||

Beta:

Figure 4.12: Corresponden
e between CDFG node and asyn
hronous
ir
uit styles.FU σ t A EALU {+,−, >} 1 1 1mult {∗} 2.6 10 13Table 4.1: Simple example normalized FU library.CDFG, nodes {6, 7, 8}, gives rise to two paths in the s
hedule. Determined by theexe
ution of node 4, either 6 and then 8, or 7.The s
heduling in Figure 4.14 results in the fastest exe
ution of the CDFG on adatapath
ontaining only one mult and one ALU
omponent.4.3.1 Datapath with out input/output FU lat
hes (alpha)The general stru
ture of the asyn
hronous datapath is shown in Figure 4.15 and itfollows the
omputation model (alpha) presented in the previous se
tion. The internalvariables (L0...Ln) in our datapath are implemented as lat
hes.The life time of a variable in this datapath (alpha) spans from when the
ompu-tation produ
ing the variable starts until the variable has been used for the last timein
luding the duration of the last
omputation.For our example, the variable lifetime is shown in Figure 4.16 and is generatedby the following algorithm: Let Ω be the set of operators {σi} , σi,sour
e = {wj} be

4.3 Datapath synthesis 49
||x x

1

0
y

y
1

a
0

0
w

F

x
0

||

x
1

x
2

y
1

w
0

a
0

y
0

G

x
2

||
g

f f1
2

Control Part

0

Figure 4.13: Resour
e-shared asyn
hronous
ir
uit.
ALU

* 2

x
1

a
1

a
3

0
x

a
0

a
2

0 1 0 1

0 1

x
2

0
y y

1

1

+ 3

+

− *

+ 6 −
> 4

5

1

2

3

4

5

6

7

7

8

0

w

w
w

w

w

w

w
w

8
5

7

2

3

6

4

1

t=T

t=0

t

mult

Figure 4.14: (Left) Our example CDFG with labels on temporary data. (Right)S
heduling of our CDFG.the set of sour
e variables to operator i and let σi,target = wk be the target variable.Furthermore let σi,start be the s
heduled start time of operator i and dFU(i) the delayof the FU σi is assigned to. T is the length of the s
hedule.Alpha:Initialization ∀wi,end = 0 and ∀wi,start = TAlg For elements σi ∈ Ω {for elements wj ∈ σi,sour
eif wj,end < σi,start + dFU(i) then wj,end = σi,start + dFU(i)if wk,start > σi,start then wk,start = σi,start }

50 Behavioral Synthesis for Asyn
hronous Cir
uits
ALU

L3 LnL0 L1 L2

FU0_a FU0_b FU1_bFU1_a

X0

....

....

FU1_opr*

FU1_zFU0_z

FU0
FU1

Y0

MUX

FU

LATCH

MUX

INPUT

Figure 4.15: General stru
ture of the datapaths without input/output FU lat
hes (alpha).
t

1
x

2

y
1

0
x

y
1 0

y

0
w

1
w

3
w

5
w

6
w

7
w

2
w

4
w

t=0

t=T

x

Figure 4.16: Variable lifetime (alpha) for our s
heduled CDFG.After we have found the variable time, we need to �nd the minimum numberof lat
hes required and their assignment for the s
hedule. For this we
an use theleft-edge algorithm for dis
rete time [67℄, if the s
hedule has been generated througha syn
hronous method or the left-edge algorithm for
ontinuous time [3℄, to �ndthe minimum number of lat
hes required in the datapath, whi
h in this
ase is sevenlat
hes. The left-edge algorithm also gives us the variable to lat
h assignment, shownin Figure 4.17. The
onditional part in the variable lifetime algorithms are handledby keeping tra
k of whi
h variables ex
lude ea
h other, those
an be assigned tothe same lat
h. The
hoi
e of variable to lat
h assignment algorithm depends onseveral fa
tors: a) one might
hoose an algorithm that
onsiders both the lat
h areaand the multiplexing area [21, 67, 87, 58, 49, 99℄. Rearranging the variable to lat
hassignment
ould minimize the multiplexing area more than a possible in
rease inlat
h area leading to an overall area minimization. b) Another
onsideration is power
onsumption. Variables with high data
orrelation
ould be grouped together on thesame lat
h leading to a smaller power
onsumption of the
omputation [28, 31, 19,57, 39, 83℄.

4.3 Datapath synthesis 51
L6

1
y

1 0
y

0
wx

2
x

10
x

4
w

2
w

7
w

1
w

3
w

5
w

6
w

t=0

t=T

t

L0 L1 L2 L3 L4 L5

yFigure 4.17: Lat
h assignments (alpha) for our s
heduled CDFG.
ALU

L1 L2 L3 L4 L5 L6

a2a0

LATCH

MUX

INPUT

OUTPUT

FU

MUX

L0

*

FU0_a FU0_b FU1_a

FU1_zFU0_z

FU1_opr

a3

FU1_b

a1

c

Y1Y0

X2X1X0

FU0 FU1Figure 4.18: Final datapath (alpha) for our s
heduled CDFG.With the FU allo
ation, operator to FU assignment and variable lat
h assignmentthe datapath
an be
onstru
ted by
onne
ting the
omponents through multiplexors.The datapath for our example is shown in Figure 4.18. The
ontroller to this
ir
uitimplements the s
hedule and
ontrols the FUs with the right data at their designatedtimes.4.3.2 Datapath with input/output FU lat
hes (beta)The general stru
ture of the datapath with output FU lat
hes is shown in Figure4.19 and it follows the
omputation model (beta) presented in the previous se
tion.The internal variables (L0...Ln) in our datapath are implemented as lat
hes. Thefun
tional units (FU0...FUm) are implemented as independent pro
essing units, withlo
al
ontrol, wrapping the
omputation part with lat
hes on both input and outputports.

52 Behavioral Synthesis for Asyn
hronous Cir
uits
ALU

MUX

LATCH

MUX

FU

OUTPUT

INPUT

LnLn

FU1

Y0Y1

X0

FU1_a FU1_b

FU1_opr

L0 L1

FU1_z

... Yn

X1 Xn...

*

FUm_bFUm_a

FUm

FUm_z

Li

*

FU0

FU0_a FU0_b

FU0_z

...

.........

Figure 4.19: General stru
ture of datapath with input/output FU lat
hes (beta).
w

1
x

2

y
1

y
10

y

0
x

t=t
t=0

t=T

t

0

3

1
5 6

2

4

7
w

w

w

ww
w

w

x

Figure 4.20: Variable lifetime (beta) for our s
heduled CDFG.All the lat
hes are implemented as normally opaque lat
hes whi
h gives us anumber of advantages:1. Normally opaque lat
hes on the input ports of the FUs ensures that
hangingdata in the variables does not lead to unne
essary swit
hing a
tivity and power
onsumption inside FUs whi
h are supposed to be idle.2. Normally opaque lat
hes on the output port of the FUs ensures that beforepresenting the result to the rest of the
ir
uit, we let the
ombinatorial
ir
uitsettle (assuming single-rail).3. Normally opaque lat
hes to hold variables, e�
iently redu
es the
ombinatorialdepth in the data routing part redu
ing swit
hing a
tivity and power
onsump-tion.To
ompute the variable life times we have to look at how long a variable needsto be held in an internal variable. Sin
e our FUs have input lat
hes we only needto hold the variable until it has been read for the last time, at the start of the last
omputation. This redu
es the variable life time requirements, leading to a possible

4.3 Datapath synthesis 53
L1

y

x
10

x x
2

y
1

6
5

7

w

w

w

L0

t

t=0

t=T

t=t

L2 L3

0

2

4

1

3

w

w

w

w
w

0Figure 4.21: Lat
h assignments (beta) for our s
heduled CDFG.redu
tion in the number of variables needed. We set the overhead for reading andwriting a result to a variable lat
h to be t∆, whi
h is added to the variable lifetime.For our example, the variable lifetime using this approa
h is shown in Figure 4.20and is generated by the following algorithm: Let Ω be the set of operators {σi} ,
σi,sour
e = {wj} be the set of sour
e variables to operator i and let σi,target = wk bethe target variable. Furthermore let σi,start be the s
heduled start time of operator iand dFU(i) the delay of the FU σi is assigned to. T is the length of the s
hedule and
∆T is the time overhead of loading and storing data to the lat
hes.Beta:Initialization ∀wi,end = 0 and ∀wi,start = TAlg For elements σi ∈ Ω {for elements wj ∈ σi,sour
eif wj,end < σi,start + ∆T then wj,end = σi,start + ∆Tif wk,start > σi,start + dFU(i) then wk,start = σi,start + dFU(i) }The minimum number of lat
hes required in the datapath, given by the left-edgealgorithm is in this
ase is four lat
hes and the variable-to-lat
h assignment is shownin Figure 4.21. Also here several lat
h assignment algorithms
an be used.With the FU allo
ation, operator to FU assignment and variable lat
h assignment,the datapath
an be
onstru
ted by
onne
ting the
omponents through multiplexors.The datapath for our example is shown in Figure 4.22.

54 Behavioral Synthesis for Asyn
hronous Cir
uits
ALU*

FU0 FU1

MUX

LATCH

MUX

FU

OUTPUT

INPUT

c

Y0Y1

X0

a1a2a0

FU0_a FU0_b FU1_a FU1_b

FU1_opr

L0 L1 L2 L3

FU0_z FU1_z

a3

X1 X2

Figure 4.22: Final datapath (beta) for our s
heduled CDFG.4.3.3 Datapath with mixed input/output FU lat
hes (gamma)The general stru
ture for the datapath with mixed input/output fun
tional unitlat
hes is a mix of the two previous models. The internal variables (L0...Ln) inour datapath are implemented as lat
hes. The fun
tional units (FU0...FUm) areimplemented as a mixed of independent pro
essing units and as regular fun
tionalunits.Computing the variable life times is a mix of the two previous approa
hes; thestart time follows the model
orresponding to the type (alpha or beta) fun
tional unitit is produ
ed by and the end-time follows the model
orresponding to the type offun
tional unit it is used by lastly.For our example, the low-power solution is to en
lose the multiplier with in-put/output FU lat
hes and letting the ALU operate as a standard FU without in-put/output FU lat
hes. In this way we shield the unit with the largest
ombinatorialdepth. The variable lifetime using this mixed approa
h is shown in Figure 4.23and is generated by the following algorithm: Let Ω be the set of operators {σi},
σi,sour
e = {wj} be the set of sour
e variables to operator i and let σi,target = wk bethe target variable. Furthermore let σi,start be the s
heduled start time of operator
i, dFU(i) the delay of the FU σi is assigned to and τFU(i) be the type of FU: α (without) or β (with FU lat
hes).Parameter T is the length of the s
hedule and ∆T is thetime overhead of loading and storing data to the lat
hes.Gamma:Initialization ∀wi,end = 0 and ∀wi,start = TAlg For elements σi ∈ Ω

4.3 Datapath synthesis 55
w

1
x

2

y
10

y

0
x

y
1

0
w

3
w

5
w

6
w

4
w

2
w

7
w

t=0

t=T

t

1

x

Figure 4.23: Variable lifetime (gamma) for our s
heduled CDFG.
L3

w

0
wx

20
x x

1

2
w

0
y

4
w

5
w 6

w
w

1

y
1

L4

7
w

L5
t=0

t=T

t

L0 L1 L2

3

Figure 4.24: Lat
h assignments (gamma) for our s
heduled CDFG.if τFU(i) = beta then {for elements wj ∈ σi,sour
eif wj,end < σi,start + ∆T then wj,end = σi,start + ∆Tif wk,start > σi,start + dFU(i) then wk,start = σi,start + dFU(i) }else {for elements wj ∈ σi,sour
eif wj,end < σi,start + dFU(i) then wj,end = σi,start + dFU(i)if wk,start > σi,start then wk,start = σi,start }The minimum number of lat
hes required in the datapath given by the left-edgealgorithm is in this
ase is six lat
hes and the variable to lat
h assignment is shownin Figure 4.24. Also here several lat
h assignment algorithms
an be used.With the FU allo
ation, operator to FU assignment and variable lat
h assignment,the datapath
an be
onstru
ted by
onne
ting the
omponents through multiplexors.The datapath for our example using the mixed approa
h is shown in Figure 4.25.

56 Behavioral Synthesis for Asyn
hronous Cir
uits
ALU

L1 L2 L3

a2a0

LATCH

MUX

INPUT

FU

MUX

OUTPUT

L0

FU1_a

FU1_z

FU1_opr

a3

FU1_b

a1

X2X1X0

FU1

*

FU0

FU0_a FU0_b

FU0_z

L4 L5

c

Y0Y1Figure 4.25: Final datapath (gamma) for our s
heduled CDFG.4.4 SummaryIn this
hapter we have looked at two
omputation models whi
h have di�erent power
hara
teristi
s but have the same fundamental type of operation and thus
an bemixed. The models are
apable of implementing any type of s
hedule, both dis
reteand
ontinuous and their resemblan
e to syn
hronous
omputation models allows forthe used of methods from that domain to be utilized for asyn
hronous
ir
uit design.Finally, we have looked at the details of datapath synthesis i.e. variable and lat
hallo
ation and assignment for all of the
omputation models.

C h a p t e r 5Implementation in Balsa
This
hapter presents the Balsa implementation templates for generating our asyn-
hronous
ir
uits for all of the
omputation models. In the previous
hapter we have
onne
ted traditional behavioral synthesis with asyn
hronous
ir
uits using our
om-putation model. This
hapter deals with the pra
ti
al implementation of this model,the ba
k-end of our synthesis tool. Figure 5.2 shows the Balsa handshake
ir
uitequivalent to our datapath from Figure 4.22.5.1 Program stru
tureThe Balsa handshake
ir
uit stru
ture
orresponding to our general datapath stru
-ture is shown in Figure 5.1. Su
h a Balsa handshake
ir
uit is built from handshake
omponents whi
h implement the equivalent RTL operations as lat
hing data, mul-tiplexing data, addition et
. Ea
h of these handshake
omponents has its own lo
alasyn
hronous
ontrol to ensure proper asyn
hronous fun
tionality and to handle theasyn
hronous handshake
ommuni
ation proto
ol [92℄.Besides these asyn
hronous handshake
omponents whi
h have their equivalentRTL
ounter parts, there are the demux
omponents whi
h handles �wire-forks�, andmore importantly the transfer handshake
omponents
onne
ting the asyn
hronous
ontroller with the datapath; the latter play the role of event syn
hronizers, refer toFigure 1.4,
ontrolling the
omputation. These extra
omponents augments the muxlayers with sublayers of demux and transfer
omponents. Noti
e the mux
omponentsimplement a merge fun
tionality and is not dire
tly
onne
ted to the
ontroller, nei-ther are the lat
hes, demuxes or FUs (ex
ept the opr
ontrol signal), only the transfer
omponents are
onne
ted to the
ontroller. The FUs are autonomous
omponents

58 Implementation in Balsa

*

L0

r,i

w,i{E }

{E }

c

opr

L1 L2

a3 a0 a2 a1

L3

FU0_a

FU1_z

FU1_a FU1_bFU0_b

FU0_z

FU1_opr

Y1Y0

(TRANSFER)

(TRANSFER)

(DEMUX)

MUX

LATCH

MUX

FU

X0 X1 X2

OUTPUT

INPUT

ALUFigure 5.1: Datapath (beta) for our s
heduled CDFG using Balsa/Tangram hand-shake
omponents using de
oupled fun
tional units.whi
h start
omputing when all their input data is present. Using these
ompo-nents and our
omputation model, there is a one-to-one
orresponden
e between thedatapath of Figure 4.22 and Figure 5.1.In our design we use a bundled data 4-phase proto
ol where signals
ontain a 1bit request and a 1 bit a
knowledge wire additional to the data wires. Furthermore,the transfer
omponents degenerate to simple wire
onne
tions
ontaining no logi
.The Balsa programs spe
ifying the asyn
hronous
ir
uit
onsists of:FUs Instantiation of the di�erent Balsa FUs used in the design. Ea
h of thesedes
riptions are taken from a FU library of Balsa
omponent des
riptions, wehave designed for this purpose. The delay, area and power
onsumptions �guresof this library are used by the synthesis algorithm to generate the s
hedule.Ar
hite
ture Balsa implementation of the
ir
uit
ontaining the spe
i�
ation forthe
ontrol-handshake
omponents, the lat
h instantiations, and the spe
i�
a-tion of the routing of data between the variables and the FUs.

5.1 Program stru
ture 59

FU1_z

FU0 FU1

LiL1L0 Ln... ...

...

X0 ...

Y0 ...

Controller

FU0_a FU0_b

FU0_z

FU1_a FU1_b

Figure 5.2: Cir
uit stru
ture using Balsa/Tangram handshake
omponents,
orre-sponding to our datapath (beta) stru
ture.The FUs are implemented using the following Balsa-program stru
tures:pro
edure FUalpha(inputs a,b,..;output z) isbeginloopsele
t a,b,.... thenz<-F(a,b,...)endendendpro
edure FUbeta(inputs a,b,..;output z) isvariable A,B,Z,...beginloopa->A || b->B || ...;Z:=F(A,B,...) ;z<-Zendendwhere F implements the
omputation.

60 Implementation in BalsaThe design of the
ir
uits follows the following Balsa-program stru
ture:input [FU_library℄pro
edure Cir
uit(inputs X0,X1,...;output Y0,Y1,...) isvariable L0,L1,..,Ln
hannel FU0_a,FU0_b,....,FUm_zbeginFUj(FUj_a,FUj_b,FUj_z) ||... ||[Ar
hite
ture(X0,X1,..,FUj_a,FUj_b,FUj_z,..,Y0,Y1,...)℄end5.2 Events: using fun
tional unitsAs an example of how the datapath is
onstru
ted using the Balsa-language
onsiderthe assignment of a subtra
tion operator to an ALU designated FU1. This subtra
-tion operator has inputs w0 w1 and output w2 (w2 = w0 −w1), assigned to variablesL0 L1 and L2 respe
tively. Starting the
omputation is performed by exe
uting thefollowing parallel Balsa-statement:FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1This set of parallel
hannel assignment statements tells FU1 to perform a subtra
tion,and to use the data of L0 and L1. The result w2 of the
omputation is written to L2using the following Balsa-statement:FU1_z->L2Both statements will syn
hronize the
ontroller with the ALU using the transfer
omponents and implements the pro
ess illustrated on Figure 4.9. For the alphatype FU, the read and write events need to happen in the same statement:FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1 || FU1_z->L2meaning parallel events need to happen in parallel threads. For the beta type FU,the read and write events does not need to happen in the same statement, but
anhappen at separate time-positions:FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1 ;...;FU1_z->L2in fa
t parallelism
an be implemented in a single thread.The reading of input X0 to internal variables L0 and pla
ing of results in internalvariables L3 on output
hannels Y0 is exe
uted in a similar way:

5.3 Implementing a s
hedule 61
wi

FU0 FU1 FU2

E4

E2

E3

E5
E6

E7

E8

E9

E0 || E1

if L0=0 thenFigure 5.3: S
hedule showing all the di�erent types of relative syn
hronization events.X0->L0 || Y0<-L3These Balsa-statements: i) starting a
omputation, ii) writing the result of
ompu-tation or iii)
ommuni
ating with the outside world, implement the events des
ribedin se
tion 4.1.5.3 Implementing a s
heduleA s
hedule
onsists of a series of su
h time ordered events and the ar
hite
ture partis a series of
orresponding Balsa-statements. Consider the example s
hedule inFigure 5.3, whi
h is di�erent from the running CDFG example. It is illustratingall the di�erent types of relative syn
hronization events required to implement anys
hedule. For the
onstru
tion of the s
hedule we need to distinguish between theFU types:alpha The handshakes are a
tive for the duration of the
omputation on the fun
-tional units.beta The handshakes are a
tive only for the points in time where data is moved toand from the fun
tional units.Let us begin with the beta type, as it is the simplest. Consider events E0..E7, inFigure 5.3 the non-
onditional part. These form a sequen
e of events with E0 and E1in parallel and the rest ordered E2,..,E7, whi
h
an be implemented by the followingprogram fragment:loopE0 || E1 ; E2 ; E3 ; E4 ; E5 ; E6 ; E7endThis program fragment is a repetitive exe
ution of the s
hedule. When we in
ludethe
onditional exe
ution of the operator on FU2 represented by events: E8 and E9,the Balsa-program fragment be
omes:

62 Implementation in BalsaloopE0 || E1 ; E2 ; E3 ; if L0=0 then E8 end ;E4 ; E5 ; E6 ; if L0=0 then E9 end ; E7endNoti
e the single thread of event statements implement the parallel s
hedule of Figure5.3.Next, we will
ontinue with the alpha type. As the handshakes now
over dura-tions the single sequen
e of ordered events only apply to a single thread on a singlefun
tional unit. In prin
iple this means there need to be as many parallel threadsas there are fun
tional units,
ommuni
ating to ea
h other using
hannels. Howeverusually, and so is the
ase for our example, it is possible to merge some threads,elliminating
ommuni
ation overhead. Here the threads of FU0 and FU1
an bemerged, leaving only a separate thread for FU2, the
onditional part. Lets start withthe un
onditional part:loop[E0 || E2 ; E3 || E4 ℄ || [E1 || E5℄ ; E6 ; E7endThe parallel operator is here used to merge the �rst part of the thread for FU0: [E0|| E2 ; E3 || E4 ℄ with the thread for FU1: [E1 || E5℄ , after these the thread for FU0is
ontinued.To in
lude the
onditional part, in the form of a separate thread, we also need toimplement the transfer of the intermediate data in Li over a
hannel w to Lj, where
Li is used ex
lusively in the thread
orresponding to FU0 and Lj is used ex
lusivelyin the thread
orresponding to FU2. The
omplete s
hedule be
omes:loop[[E0 || E2 ; Li->w || E3 || E4 ℄ || [E1 || E5℄ ; E6 ; E7 ℄ ||[w->Lj ; if L0=0 then E8 || E9℄endChannel
ommuni
ation represents an area- and time-overhead and as the merging ofthreads saves
hannel
ommuni
ations between them, this overhead is redu
ed. Theparallel nature also requires the ex
lusiveness for variables, if this
annot be guaran-teed by the variable to lat
h assignment, syn
hronizer
hannels between threads arerequired to introdu
e this ex
lusiveness.The
ondition for parts of two threads to be merged, is if the one part (thesequen
e of events) is fully in
losed by or exe
uted in serial by the read and writeevents of the other part. We will denote the read and write events of exe
utingan operation on a FU for an exe
ute interval: IFU,number . In Figure 5.4 is shownthe threads of the FUs and below the intervals are labelled: I0,0, I0,1 . . . I2,0. If wegenerate a thread graph (I, S,D) where the nodes are the exe
ute intervals IFU,numberand where the dire
ted ar
s (X → Y between two nodes are: (i) if interval X
an befully in
losed in interval Y . These ar
s are shown as solid ar
s and (ii) if two intervals

5.4 Implementing the ar
hite
ture 63
FU2: if L0=0 then E8||E9

0,0
I

0,1
I

0,2

I
1,0

I
2,0

I
0,0

I
0,1

I
0,2

I
1,0

I
2,0

FU0: E0||E2 ; E3||E4 ; E6||E7

FU1: E1||E5

I

Figure 5.4: Generation of threads: (Left) sequen
e of events for all FUs and labellingof intervalls. (Right) Clique-partitioning of thread-graph. Ea
h
lique be
omes athread.are fully disjoint and Y is exe
uted after X . These ar
s are shown as dotted ar
s.Then the optimal merging of all the threads is a
lique partitioning of this graph.The thread graphs and the
lique partitioning of this graph is shown in Figure 5.4.We use a simple greedy approa
h for
lique partitioning of the thread graph. Theresulting partitioning
orresponds to our example.The gamma model is treated �rst as the alpha model for the fun
tional unitsfollowing that model. Then the events for the fun
tional units following the betamodel are inserted into the appropriate positions.5.4 Implementing the ar
hite
tureLet us look at the datapath being generated by this approa
h. Consider the followingsequen
e:L0->FU0_a; -- E0...;L1->FU0_a -- E1giving rise to the
ir
uit shown in Figure 5.5. Ea
h of these events will lead to atransfer
omponent a
tivated by E0 and E1 respe
tively, followed by a merge
om-ponent on the input of FU0_a, i.e., implementing a multiplexing of the wires fromL0 and L1 to FU0_a, the same goes in the reverse dire
tion.The ar
hite
ture part of the program
onsists of two parts: (i) shared fun
tions (ii)s
hedule. The shared fun
tions implements the event of the s
hedule whi
h appearin the s
hedule more than on
e. In the s
hedule below:pro
edure Ar
hite
ture(..) isbegin -- s
heduleloop...;

64 Implementation in Balsa
=

L0 L1

L0 L1

FU0_a

a

a

E0

E1

FU0_aFigure 5.5: Handshake implementation of routing and
orresponding datapath.
E2

FU0_a

a

L0

FU0_a

a

L0

E0

E1
E1

E0

E2Figure 5.6: Repeated use of hardware with out shared
onstru
t (left) and withshared
onstru
t (right).FU1_opr<-ALU_add || FU1_a<-L0 || FU1_b<-L2 || FU1_z->L1 ;FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1 || FU1_z->L2 ;FU1_opr<-ALU_sub || FU1_a<-L0 || FU1_b<-L1 || FU1_z->L3 ;...endendThere are several events whi
h reappear e.g.. the FU1_a<-L0 event whi
h ap-pears three times. In the following s
hedule:pro
edure Ar
hite
ture(..) isshared S0 isbeginFU1_a<-L0endshared S1 isbeginFU1_b<-L1endshared S2 isbegin

5.4 Implementing the ar
hite
ture 65FU1_opr<-ALU_sub || S0() || S1()endbegin -- s
heduleloop...;FU1_opr<-ALU_add || S0() || FU1_b<-L2 || FU1_z->L1 ;S2() || FU1_z->L2 ;S2() || FU1_z->L3 ;...endendit only appears on
e and the same for every other assignment. Shown in the formof the S0,S1,S2
onstru
ts. The one-to-one syntax dire
ted
ompilation approa
hemployed by balsa means that in the �rst
ir
uit there are three assignments fromthe same lat
h to the same port of FU1, as shown on Figure 5.6 (left) but by usingthe shared
onstru
t we
an �reuse� the hardware and implement the
ir
uit shownon Figure 5.6(right). This saves hardware as the
ontrol handshakes are one bit wide,where as the datapath handshake
omponents are N bit wide. This
an be extendedto in
lude redu
ing the
ontrol
ir
uit, as shown in the program as the S2 shared
onstru
t whi
h implements a group of events, whi
h are used several times.The stru
ture of balsa
ir
uit implementing the s
hedule with these shared
on-stru
ts represents a three, with the loop-body
omponent as the root and the events/transfer
omponents as leafs and with some of the leafs merged together [51℄.The full Balsa program (beta) of our running example, is shown here:import [balsa.types.basi
℄import [FU_types℄import [FU_lib℄pro
edure EX(input X0,X1,X2:word;output Y0,Y1:word) isvariable L0,L1,L2,L3:word
hannel FU0_a,FU0_b,FU0_z:word
hannel FU1_a,FU1_b,FU1_z:word
hannel FU1_opr:ALU_operation
onstant a0= 255
onstant a1= 255
onstant a2= 255
onstant a3= 255pro
edure Ex_ar
hite
ture(input X0,X1,X2:word;input FU0_z,FU1_z:word;output FU0_a,FU0_b,FU1_a,FU1_b:word;output FU1_opr:ALU_operation;

66 Implementation in Balsaoutput Y0,Y1:word) isshared S0 isbeginFU0_b<-L1endshared S1 isbeginFU1_a<-L0endshared S2 isbeginFU1_opr<-ALU_addendshared S3 isbeginFU1_z->L0endshared S4 isbeginFU1_a<-L1endshared S5 isbeginFU1_b<-L2endshared S6 isbeginFU1_opr<-ALU_subendshared S7 isbeginS1() || S2()endshared S8 isbeginS4() || S5()endbegin -- s
hedule

5.5 Optimizations 67loopX0->L0 || X1->L1 || X2->L2 ;FU0_a<-L0 || S0() || S7() || FU1_b<-a0 ;S3() || S4() || FU1_b<-a2 || FU1_opr<-ALU_les ;FU1_z->L3 ;if L3=0 then S8() || S2()else S8() || S6() end ;FU0_z->L2 || FU1_z->L1 ;if L3=0 then FU0_a<-a3 || S0()end || S5() || S7() ;S3() ;S1() || FU1_b<-a1 || S6() ;if L3=0 then FU0_z->L1end || S3() ;Y0<-L0 || Y1<-L1endendbeginmult(FU0_a,FU0_b,FU0_z) ||ALU(FU1_opr,FU1_a,FU1_b,FU1_z) ||EX_ar
hite
ture(X0,X1,X2,FU0_z,FU1_z,FU0_a,FU0_b,FU1_a,FU1_b,FU1_opr,Y0,Y1)endThe balsa-
ir
uit generates the datapath shown in Figure 5.1 and the
ontrollershown in Figure 5.7.5.5 OptimizationsFor the alpha model it is possible to take advantage of the memory in the fun
tionalunits to optimize the
omputation. In the situation where a temporary variable,
ti, in a CDFG, is used dire
tly after it is produ
ed and not required to be storedfor later use, we
an implement a dire
t feed-forward from FUi to {FUj...FUk}, asshown in Figure 5.8. If FUi has to start another
omputation immediately afterprodu
ing ti then this optimization should only be implemented if all the target FUs{FUj...FUk} are ready to start when ti is produ
ed, otherwise FUi will be stalled.Similar feed-forward
an be implemented from inputs and/or to outputs of the
ir
uit.The purpose of this optimization is to a
hieve a redu
tion in the number of variablelat
hes and
ir
uit speed-up.In the datapath synthesis algorithm these assignments are identi�ed in the vari-able lifetime
omputation and separated from the variable lat
h assignment. In ourexample
omputation no lat
h redu
tion is possible using this method. Implementingthis optimization in Balsa is straightforward. If the value is used by one FU or toone output only, we get:FU to FU: FUi_z->FUj_a

68 Implementation in Balsa
1

||

||

||

E2

FU1_a <− L0

FU1_z −> L0

FU1_opr <− alu_add

||

Guard

@0

||

||

||

||

@0,1

0

1

Guard

||

|| Guard

@0 ||

||

||

#

||

FU0_b <− L1

FU1_b <− a0
FU0_a <− L0

L0 <− X0

L2 <− X2
L1 <− X1 ||

FU1_opr <− alu_les
FU1_b <− a2
FU1_z −> L3

4

c <− L3

c

FU1_a <− L1

FU1_b <− L2

FU1_opr <− alu_sub

FU0_z −> L1
FU1_b <− a1
FU0_a<−a3

FU0_z −> L2

FU1_z −> L1

Y0 <− L0

Y1 <− L1

;

10

11

9

8

7

6

5

3

2

Figure 5.7: Controller to the datapath (beta) for our s
heduled CDFG usingBalsa/Tangram handshake
omponents.Input to FU: Xi->FUj_aFU to Output: Yi<-FUj_zand assigning a value dire
tly from one FU to multiple FUs are handled using thefollowing Balsa statement:sele
t FUi_z thenFUj_a<-FUi_z || FUk_a<-FUi_z || ...endSimilar
onstru
ts are used for the inputs and outputs. One should note that theimplementation of the FUs now require the ability to handle handshakes on both itsinputs and outputs simultaneously.

5.5 Optimizations 69
ALU*

FU0_z

FU0_a FU1_a

FU0

FU1_z

FU1

FU0_b FU1_b

L0 L1 L2 Ln

FU1_opr

Figure 5.8: General stru
ture of datapaths with speedup/lat
h redu
tion paths.
B

y2

y2

y2

FU0 FU1

t

FU0 FU1

E0

E1
E2

E3

E4

E5
E6

E7

E0

E1
E2

E0

E1
E2

E4

E5
E6

t
E7

E4

E5
E3E3
E6

E7

t

FU0 FU1

A

B

C

D

A A

C

C

D

D

B

Figure 5.9: De
oupling
omputation B from
omputation C to take advantage of thesla
k time in the s
hedule.We
an also optimize on the
ontrol part, this applies to both models. Considerthe s
hedule of operators: A,B,C,D part of an arbitrary
omputation, shown in Figure5.9. In the stri
t
ontroller/datapath implementation we have:loopE0 ; E1 ; E2 ; E3 ; E4 ; E5 ; E6 ; E7endHowever we
ould take advantage of the inherent parallelism of B and C in the CDFGand implement the
ontroller/datapath in the following way:

70 Implementation in Balsa

ALU

L0 L1 L2 L3 L4 L6L5

Y1Y0

r,i{E }

{E }w,i

a3 a2a0 a1

*

FU0_z

FU0_a FU0_b

FU0

c

X0 X1 X2

MUX

LATCH

MUX

FU

OUTPUT

opr

FU1_z

FU1

FU1_bFU1_a

FU1_opr

INPUT

Figure 5.10: Datapath (alpha) for our s
heduled CDFG using Balsa/Tangram hand-shake
omponents. loopE0 ; E1 ;[E2 ; E3 ℄ ||[E4 ; E5 ℄;E6 ; E7endThis would still implement the s
hedule but we have in
reased the �exibility of the
ir
uit, making the
ir
uit more robust to variable
omputations times, of e.g.. B,taking advantages of the sla
k of the non
riti
al paths in the s
hedule.5.6 SummaryIn this
hapter we have presented Balsa program language templates for implement-ing our asyn
hronous
omputation model in the Balsa CAD framework.The CDFGs used as input to our behavioral synthesis tools
ould be derivedfrom Balsa it self. In this form of Balsa-to-Balsa
ompilation one
ould
onsiderour tools as a way of optimizing a
ir
uit or parts of a
ir
uit at the spe
i�
ationlevel. This makes it possible to manipulate and manually optimize
riti
al parts ofa
ir
uit further than what the tool automati
ally produ
es, by manually modifyingthe output Balsa
ode.

5.6 Summary 71The Balsa language
an be
onsidered a general high-level boundary to the asyn-
hronous world. There is nothing preventing the implementation of other styles ofasyn
hronous
ir
uits, i.e. Burstmode
ir
uits, using the Balsa-language as des
rip-tion language. In fa
t resear
h of this nature is
urrently underway. This means theuse of the Balsa-language as a ba
k-end represents a variety of implementation styles.However as our templates targets the
urrent one-to-one
ompilation to handshake-
omponent implementation of Balsa, the �weights� and possibly parts of the imple-mentation templates should be modi�ed to ensure optimal
ir
uit implementationfor other implementation styles.

72 Implementation in Balsa

C h a p t e r 6Algorithms for BehavioralSynthesis
This
hapter deals with the fundamental parts of high-level behavioral synthesis:operator s
heduling, fun
tional unit allo
ation and operator to fun
tional unit as-signment. We are given a Control Data Flow Graph (CDFG) spe
ifying the behav-ior/
omputation whi
h we want to implement onto an Integrated Cir
uit and weare given a maximum time frame T within whi
h the Integrated Cir
uit has to per-form this
omputation (e.g..
aused by new data arriving at a frequen
y of 1/T , ex.sampled from a sound sour
e).We will
onsider behavioral synthesis algorithms targeting a dis
rete time evolu-tion, for whi
h solutions are relaxed into
ontinuous time. The following algorithmsuite have been developed:

• Power aware syn
hronous synthesis algorithm. This algorithm is a
lique heuris-ti
 algorithm operating with a time and maximum power per time
onstraint.This is useful for appli
ations having a power limit e.g. generated by a solarpanel. This s
heduling algorithm handles CDFG's without repetitive stru
-tures.
• Evolutionary syn
hronous synthesis algorithm and a simulated annealing syn-
hronous synthesis algorithm. These are meta-heuristi
 algorithms operatingwith a maximum time
onstraint. These algorithms only handle DFG graphs.
• Simulated annealing task synthesis algorithm. This algorithm is used to s
hed-ule the CDFG where the DFG fragments are s
heduled using one of the two

74 Algorithms for Behavioral Synthesis
Tasks

Power

Time

PU

PU

PU

1

2

3

System Power ProfileFigure 6.1: Task s
hedule and the system power pro�le.previously mentioned algorithms. This algorithm has not been implementedbut the method is outlined.6.1 Power-aware s
hedulingPortable embedded systems fa
e in
reasing performan
e demands while running onless power. Therefore, to e�
iently use the power available from the power sour
e,task s
heduling me
hanisms have to take the system power pro�le into a

ount.Figure 6.1 illustrates a set of s
heduled tasks and the resulting system power pro�le.In low-power or power-aware task s
heduling one usually assumes a uniform powerpro�le of the individual tasks, however in reality these individual tasks might havea very irregular power pro�le. So using the average task power �gure in the tasks
heduling only leads to average system power pro�le, and the system might have ana

umulation of power peaks whi
h would severely violate system power
onstraints.On the other-hand using the peak power �gure would lead to an over-
onservatives
hedule whi
h would
omply to the system
onstraints but would be an ine�
ientuse of system resour
es.Another related issue is the non-linear
hemi
al to ele
tri
al energy e�
ien
y ratioof batteries whi
h depends strongly on the
urrent pro�le of the appli
ation [102, 5℄.Here there are two
ontributing fa
tors: (1) If the peak-
urrent ex
eeds a maximum-threshold the life-time starts dropping dramati
ally. (2) A large
urrent variationalso leads to redu
tion in battery life-time. These fa
tors are more dominant onbatteries of low quality. Furthermore there might be a maximum power available tothe task restri
ted by e.g. a solar panel providing the power to the
ir
uit.Altogether our goal is to synthesize these
riti
al tasks as digital
ir
uits, witha stati
 s
hedule having an uniform power pro�le. In this se
tion we present aheuristi
 synthesis algorithm whi
h solves: (i) s
heduling, (ii) allo
ation and (iii)assignment simultaneously under both a time and power
onstraint. These 3 tasksare traditionally solved separately whi
h is suboptimal as these typi
ally interferewith ea
h-other.

6.1 Power-aware s
heduling 75
6.1.1 Problem formulationThe hardware behavioral (time-
onstrained and power-
onstrained) synthesis prob-lem, given a non-repetitive CDFG, time
onstraint T and a maximum energy pertime-slot
onstraint E<,
onsists of the following subproblems:S
heduling Determine the s
hedule φ spe
ifying the start time ki for ea
h operation

vi (ki = φ(vi)) su
h that: (i) no pre
eden
e
onstraint is violated: ki ≥ tr +
dr, tr = φ(vr), ∀i, r : (vi, vr), whi
h are
onne
ted in the CDFG, su
h that alloperations are
ompleted within the time frame T . (ii) no power
onstraint isviolated: Ek ≤ E<, ∀k = [0..T], where Ek =

∑
ei, ∀i : (vi) whi
h are exe
utingin
ontrol-step k.Allo
ation Spe
ify whi
h j and how many Nj fun
tional unit instan
es are requiredsele
ting from the provided hardware library R.Assignment (Operator Binding) Provide a mapping α : V → R, from ea
h oper-ation vi to a spe
i�
 fun
tional unit α(vi) = j ∈ R. The assignment spe
i�esthe exe
ution delay of the operator δ(vi) = di and the energy
onsumption pertime-slot of the operator ǫ(vi) = ei.We will solve these subproblems simultaneously targeting minimimal the area
ost (6.1):

costφ =
∑

j∈R

[ω(j) ×Nj(σ)] , (6.1)where ω(j) is the area
ost of FU j, Nj(σ) the required number of these for thes
hedule.6.1.2 Power heuristi
 s
hedulingIn traditional time
onstrained synthesis the two heuristi
 low
omplexity algorithms;ASAP and ALAP are used to bound the solution spa
e. In Figure 6.2 is shownan example CDFG and its
orresponding ASAP s
hedule, where we have assumedall operations, without loss of generality, are exe
uted in one time-slot. In thisse
tion we use a di�erent example CDFG, than our running example 2.2, as thisnew simpler CDFG exempli�es the power variation we want to emphasize for thissynthesis method, unlike our familiar CDFG used elsewhere in this thesis.In the following we present a heuristi
 algorithm, PASAP, whi
h given a power
onstraint generates a s
hedule. This algorithm plays the same role as ASAP and isbeing used in our main algorithm to heuristi
ally bound the minimum time separa-tion between two operators, ensuring all CDFG pre
eden
e
onstraints are satis�ed

76 Algorithms for Behavioral SynthesisFU σ Delay Area Energy/time-slotadd {+} 1 1 1ALU {+,−, >} 1 1.5 1mul {∗} 1 4 3Table 6.1: Simple example FU library, used for the example only.
E

+ * −

* +

* +

+ −*
2

5 6

7

31 4
+

>

0

1

2 1

4

61 32 4

5 6

7

ASAP

>

+

CDFG:

t

Figure 6.2: Example CDFG and its ASAP s
heduletogether with the power
onstraint. The PASAP s
hedule is a�stret
hed� ASAPs
hedule. �Stret
hed� to �t the power
onstraint i.e. the operators are s
heduled asfast as possible, but only if there is power available meaning some operators will bedelayed additional time-slots.PASAP (E<):Initialize: S
hedule sour
e start-time to zero and initialize the exe
ution o�set oi(time-steps) to zero for all operators.step 1: Pi
k an uns
heduled operator vistep 2: If vi has uns
heduled prede
essors, goto 4.step 3: If there is power available in the exe
ution time interval [(ti + oi)..(ti + oi +
di)], where di is the exe
ution delay of vi and ti = max{tj + dj} ∀vj → vi, isthe earliest start time, otherwise in
rease oi by one.step 4: If uns
heduled operators, goto step 1.For
onstru
tion of our PASAP s
hedule we use the simplisti
 fun
tional unit(FU) library shown in table 6.1. In Figure 6.3 is shown the PASAP s
hedule for ourexample CDFG, here we have set a power limit of E< = 3, whi
h we keep for thisexample. The algorithm starts in time-slot one and tries to �ll it up with operations:

6.1 Power-aware s
heduling 77
E

+

*

>

− +

>+

+
*

− +
*

+6
*5

3

2

3

1

2

E
1

2

7

0

1

2
3

4

43

PASAP

4 7

6

5

3 1

2

PALAP

3

3

1

1

3

t

Figure 6.3: The PASAP and PALAP s
hedules of our example CDFG, both withE<=3.we start by s
heduling v1, whi
h prevents us from s
heduling v2 as this would violatethe power
onstraint. But we
an
ontinue to s
hedule v3 and v4. In the next time-slot we have v2 ready, whi
h is the only one for whi
h there is power available andthe algorithm
ontinues. The total PASAP s
hedule takes 5 time-slots to
ompleteas opposed to only 3 time-slots of the ASAP s
hedule. The same algorithm
an runba
kwards whi
h we denote PALAP.Obviously there are many ways of sele
ting whi
h operators to �pa
k� into time-slots and it is a hard problem to �nd the optimal
ombination i.e.. the solutionthat results in the s
hedule using the least amount of time. Here we have simply
hosen the order of whi
h they appear in the CDFG. In this way PASAP
annot be
ompared to ASAP.6.1.3 Power and time
onstrained synthesisIn Figure 6.4 we have re-shown our example CDFG as well as a non-power
onstraineds
hedule with a time
onstraint of T=5 time-slots. Here the partial
lique partitioningalgorithm in [58℄ is
apable of
onstru
ting a s
hedule and an FU allo
ation using onlyone ALU and one mul (the minimal FU-allo
ation to exe
ute this CDFG no-matterhow mu
h time we have available) using a total area
ost of 5.5 units. Besides thes
hedules is shown the total energy
onsumption for the respe
tive time-slots. Herewe note two things: (i) This s
hedule violates the energy
onstraint of E< = 3 andfurthermore (ii) it is very spiky (time-slots 1 and 3). For a power
onstrained s
hedulewe wish to stay under our
onstraint and �smoothen-out� the s
hedule.As mentioned, our power
onstrained synthesis algorithm builds upon this algo-rithm and as in [58℄ we
onstru
t the time-extended
ompatibility graph, V 1: Ea
hvertex Aijk represents a possible s
heduling, allo
ation and assignment of operation
i on FU type j starting in time-steps k. Ea
h edge < Aijk, Arjt > represents thesimultaneously s
heduling, allo
ation and assignment of operator i and r on the sameFU instan
e of type j at times k and t, respe
tively. We have extended the formu-lation of a valid V 1 graph to in
lude power
onstraints. Thus our allowed verti
es(Aijk) are:

78 Algorithms for Behavioral Synthesisi: All operators in the CDFG.j: The set of FUs where operator i
an be exe
uted.k: The time interval given by {tPASAP, tPALAP}, when operator i is exe
uted onFU j and all other operators are s
heduled using delay information from thefastest FU type and power information from the most power hungry FU type.And the allowed edges,< Aijk, Arjt >, are those where there is a dependen
y in theCDFG, vi → vr, and the exe
ution time of the two operators does not overlap whens
heduled on FUj, as well as it is possible to �nd a valid PASAP s
hedule with viand vr s
heduled on FUj at times k and t respe
tively.A subgraph of V 1 whi
h is
ompletely
onne
ted by
ompatibility edges in V 1(
lique)
an be mapped to one FU instan
e. Then the solution to the synthesisproblem with the minimum area and using least inter
onne
t is the problem of �ndingthe Partial minimal
ost
lique partitioning of V 1 whi
h does not violatethe power
onstraint, where partial refers to a
over
ontaining one-and-only-onevertex for ea
h operator i.
ALU

*

−

+

>
*

+0

1

2
3

4

2

5

3

6

7

4

1+
4
1

1

4

1

mult E

Figure 6.4: CDFG and a non-power s
hedule with T=5, using only one ALU andone mul with a total area of 5.5.As in [58℄ we heuristi
ally solve the
lique partitioning problem, through a greedyapproa
h i.e.. evaluate the V 1 graph and pi
k a �best� de
ision whi
h is thens
heduled, allo
ated and assigned. Then this pro
ess is repeated until no oper-ators are left. To this end we
onstru
t the Mixed-vertex Compatibility Graph(MCG = (V 1, V 2, E)): The V 1 graph, extended with super-verti
es Sj,n ∈ V 2.The super-vertexes Sj,n
ontain the s
heduled, allo
ated and assigned operators onFU of type j instan
e n. Initially |V 2| = 0.In prin
iple, our algorithm starts with a power and time valid region then aggres-sively redu
es area ensuring the s
heduling region stays valid. Our algorithm is asfollows:Initial Build the MCG. Here PASAP and PALAP are used to build the set ofallowed verti
es and allowed edges, under the power and time
onstraint.Step 1 Pi
k the best de
ision. We sele
t a

ording to maximum
lique i.e. �ndthe largest
lique Aijk is
ontained in (a double sear
h of the entire graph) and

6.1 Power-aware s
heduling 79
111

110

100

101
220 221

311

310

404

403

400401

402
410

411
412

413
414522

714

613603Figure 6.5: Partial-Clique partitioning. Shown are a set of V1 verti
es, grouped (bythe dotted lines) in operators. The only edges shown are those whi
h are in themaximal
lique not violating the power
onstraint .
ompute costAi,j,k
= sum of FU area for maximum
lique(Ai,j,k). The sele
tedvertex is merged into an existing super-vertex if it is
onne
ted to a super-vertex, otherwise it is made into a new super-vertex.Step 2 Transform the MCG in a

ordan
e with the de
ision. The de
ision of theprevious step has e�e
ts on both time and power, again PASAP and PALAPare used to maintain validity i.e.. ensure the V 1 graph only
ontains the set ofallowed verti
es and allowed edges re�e
ting the
urrent situation. Furthermorewe need to preserve the
liques and dis
onne
t those whi
h no longer form one,refer to [58℄ for a detailed des
ription.Step 3 Ensuring feasibility. As PASAP and PALAP are heuristi
 algorithms theydepend on what operators have been s
heduled, therefore a sequen
e of assign-ments might
ause the of deletion uns
heduled operators,
ausing an invalids
hedule. The solution is to ba
ktra
k one step and lo
k the start time of alluns
heduled operators to the PASAP s
hedule (whi
h was valid) and then
on-tinue, redu
ing our algorithm to a pure assignment and allo
ation algorithmfrom that point on.Step 4 If any verti
es left in V 1, goto step 1.A
omment to step 3, in most
ases step 3 will not take e�e
t and the algorithmwill
ontinue to the end, however it is possible to
onstru
t CDFGs whi
h togetherwith spe
i�

onstraints
auses the algorithm to exe
ute this step. But even if itdoes, the algorithm has been allowed to operate for some time, during whi
h it hassigni�
antly redu
ed area in
omparison with the starting PASAP s
hedule.In Figure 6.6 we illustrate the
onstru
tion of a power-
onstrained s
hedule usingour algorithm and the example CDFG. We use the same time
onstraint T=5 andpower
onstraint E< = 3 as in Figure 6.3. The onset of the algorithm is the
onstru
-tion of the PASAP and PALAP s
hedules, shown in Figure 6.3 and requiring atleast 5 time-steps for our power
onstraint, whi
h generates the s
heduling intervals

80 Algorithms for Behavioral Synthesis
404

403
402
401

400

603

100
101

ALU MultAdd

ALU MultAdd

220

522
404

401

603 403

101

411

413
414

311

613

714

111

714

310 311

110

111

410
411
412

413
414613

V1:

220

522

221

V1’:

Figure 6.6: CDFG and the
onstru
tion of the power
onstrained solution (T=5,E<=3).for our operators. Using the s
heduling intervals and our FU-library, shown in table6.1, we generate the V 1 graph, shown in Figure 6.6. Initially the algorithms
reatesa super-vertex of the multiplier operation v2 s
heduled on Mul in time-slot 0, then itmerges v5 s
heduled on Mul in time-slot 2 in to it, these are shown en
losed in thedotted ellipse.The sele
tion of v2 s
heduled on Mul in time-step 0 has
onsequen
es in the formof the PASAP and PALAP algorithms deleting the nodes:{100, 400, 110, 310, 410}to maintain the V1 graph in a feasible state. Operation {221} is deleted as v2 nowhas been s
heduled. Merging v5 s
heduled on Mul in time-slot 2, similarly removesoperations {402, 412} and we arrive at the V 1′ graph shown in Figure 6.6, with thesuper-vertex en
losed in the solid ellipse.As it turns out the V 1′ graph no-longer
ontains verti
es (i.e..
liques) whi
htogether with the super-verti
es
an violate the power
onstraint. Meaning the sub-sequent exe
ution of the PASAP and PALAP algorithms in prin
iple redu
es toexe
ution of the ASAP and ALAP algorithms i.e.. the remaining part of the algo-rithms exe
utes as the original algorithm in [58℄.The �nal s
hedule, allo
ation and assignment
orresponding is shown in Figure6.7, requiring one add, one ALU and one mul, using a total area
ost of 6.5 units.Alongside the s
hedule is shown the power
onsumption in ea
h time-slot, where wenow no-longer have a power violation as well as less spikes. We noti
e the pri
e forthe power
onstrained s
hedule
ompared with the non-power
onstrained s
hedule(using the same time-frame) is an extra adder, a relative area in
rease of 18 per
ent.

6.2 Implementing syn
hronous power aware s
hedules in asyn
hronous
ir
uits81
ALU

>

*
−+

*
++

0

1

2
3

4 7 1

3

6

2

5

3

2

3

2

1

4

muladdt E

Figure 6.7: Solution (T=5, E<=3) using one add, one ALU and one mul, using atotal area of 6.5 .
c

E2
E3

E4
E5

E6
E7

E8

E1

E2
E3

E4
E5

E6
E7

E8

E1

E3

E6
E7

E8

FU0 FU1 FU2 FU0 FU1 FU2FU0 FU1 FU2

a1

a2

a3

b1

b3

b2

b1

b2

b3a a

b

c c

E1

Figure 6.8: Creating multi-
y
le operations from single-
y
le operations maintainingthe global time-line, whi
h prohibits operation �sliding�.6.2 Implementing syn
hronous power aware s
hed-ules in asyn
hronous
ir
uitsThere is a potential danger of violating the power
onstraint when relaxing a syn-
hronous power aware s
hedule to
ontinous time and implementing it in an asyn-
hronous
ir
uit, as the syn
hronous syn
hronization is removed.If we restri
t our selves to
ir
uits generated by the beta model without the opti-mizations. Or restri
t our selves to the
ir
uits generated by the alpha model whosethreads
an be merged into a single main thread. Then we will show there is no power
onstraint violation relaxing syn
hronous power aware s
hedules in asyn
hronous
ir-
uits using our templates.Let us assume a s
hedule
onsisting of single-
y
le operations. Then in ea
h
ontrol-step there is a set of parallel read events for all operations starting in this
y
le, sequen
ed by, a set of parallel write events for the same operations. Thisis sequen
ed by the next
y
le. Therefore if the syn
hronous s
hedule upholds thepower
onstraint in ea
h
y
le, so does this asyn
hronous
ir
uit.For multi-
y
le operations the pi
ture is a little more
ompli
ated, however the

82 Algorithms for Behavioral Synthesissame prin
iple applies. First
onsider the multi
y
le operation as a sequen
e of single-
y
le operations, as shown in Figure 6.8 (left), the �rst
ase. In this pi
ture thereis no power
onstraint violation. Removing the middle syn
hronization events doesnot
hange anything as the start and end of the multi-
y
le operation, in the se
ond
ase, is sequen
ed now by a series of single
y
le operations in between. And in the�nal
ase the start and end of all operations is lo
ked on to the global time-line. Ifwe assume a operation has �slided� into violating the power
onstraint it would haveviolated the global time-line-sequen
ing of operations. With respe
t to the globaltime-line-sequen
ing, the alpha model, whose threads
an be merged into a singlemain thread, behaves identi
ally as the beta model.6.3 Simulated annealing and evolutionary algorithmIn this se
tion we investigate two meta-heuristi
 algorithms for solving the behavioralsynthesis problem: (i) Simulated annealing and (ii) evolutionary algorithms [78, 42,79, 66, 43, 32, 52℄. Meta-heuristi
 algorithms are interesting in this
ontext as largeDFGs
an be s
heduled with fast run-times. Furthermore they are easily be stoppedif the optimal solution is not required to be found, but just a solution whi
h fallswithin the area requirement. The power-
onstraint has not yet been implementedinto these algorithms.For these algorithms we target DFG fragments to be s
heduled and a time-
onstraint whi
h spe
i�es the maximum amount of
ontrol steps allowed for theexe
ution of the DFG fragment. The DFGs
onsidered here are a
y
li
 dire
tedgraph with verti
es σi, representing the operators to be exe
uted, and edges σi → σl,spe
ifying the order in whi
h they have to be exe
uted for the
omputation to be
orre
t (σi has to be exe
uted before σl). The DFG is augmented with a sour
e (
on-ne
ting to inputs, I) and a target vertex (
onne
ting from outputs, O). To exe
uteoperations we use the same resour
e library of fun
tional units, de�ned in table 6.2.With the hard time frame
onstraint we need to �nd s
hedule in whi
h to exe
utethe operations in the DFG onto some FUs su
h that we �nish all operators before thetime frame T (without violating their dependen
ies) and at the same time minimizethe area. This involves trade-o�s between s
heduling e.g. many {+,−, >} operationsin parallel (requiring more �
heap� ALUs), to serialize more {∗} operations (requiringfewer �expensive� mul1), as well as tradeo�s between di�erent �subtypes� of FUs (fastor slow). All this depends strongly on the spe
i�
 DFG and the time frame T wehave available.6.3.1 Problem formulationFirst, we formulate the behavioral synthesis problem as an ILP problem. We havea DFG with operators σi i = 1 . . . n and dependen
ies σi → σl, a resour
e librarywith fun
tional units of type FUj j = 1 . . .m having a sili
on area wj . And atime interval k = 1 . . . T giving for ea
h operator σi a time interval where it
an be

6.3 Simulated annealing and evolutionary algorithm 83s
heduled: Si . . . Li. We want to minimize the used sili
on area. Let us start byintrodu
ing the variables in our formulation:x : Let xi,j,k be a 0, 1 integer variable asso
iated with the operator σi: xi,j,k = 1 if
σi is s
heduled to start in time-step k assigned to exe
ute on FUj and xi,j,k = 0otherwise.N : Let Nj be an integer variable whi
h denotes the number of fun
tional units oftype FUj we will allo
ate on our IC.The obje
tive fun
tion is:minimize A =

m∑

j=1

wj ∗Nj (6.2)Subje
t to
Li∑

k=Si

m∑

j=1

xi,j,k = 1, for all i (6.3)
Ll∑

k=Sl

m∑

j=1

k × xl,j,k −

Li∑

k=Si

m∑

j=1

(k − dj) × xi,j,k ≥ 0, for all σi → σl (6.4)
Nj −

n∑

i=1

dj−1∑

p=0

xi,j,k−p ≥ 0, for all j, k (6.5)
E< −

n∑

i=1

m∑

j=1

dj−1∑

p=0

ejxi,j,k−p ≥ 0, for all k (6.6)The obje
tive fun
tion (equ. 6.2) states we want to minimize the total usedsili
on area and sums over all fun
tional unit types and for ea
h multiplies its areaby the number required for the s
hedule. The �rst
onstraint (equ. 6.3) simply statesthat all operators must be s
heduled to start in some time step and on some FUj.The se
ond
onstraint (equ. 6.4) spe
i�es that for ea
h DFG dependen
y σi → σloperator l
an only start after operator i �nishes tl ≥ dj + ti (whi
h depends onwhi
h FU i is s
heduled on). The thierd
onstraint (equ. 6.5) states a FU
an onlyexe
ute one operation at a time. The �nal
onstraint (equ. 6.6) ensures that therenowhere is used more power than availeble. This last
onstraint will be ignored inthe following.

84 Algorithms for Behavioral Synthesis
i+3A

i

i+1

i+2Ai+1

i+2
i+3

cost gradient

Feasible

Infeasible

Feasible

Perturbation

A i

A

Figure 6.9: Crossing from one island of the solution spa
e to another by keeping theinfeasible solutions, when the perturbation is smaller than the minimum requireddistan
e. The sequen
e of φj 's indi
ated by the dots are the a
tual solutions and thesequen
e of F(φj) = Aj indi
ated by the
rosses,
orrespond to the feasible solutionsthe
ost area fun
tion is
omputed from.6.3.2 Representation and feasibilityWe use a solution ve
tor
ontaining n tuples (one for ea
h operator),
onsisting ofthe pair (ki, ji) where ki is the time step, where operator i starts and ji is the FUtype to exe
ute it on (ki ∈ Si . . . Li and j : σi ∈ FUj). Let the s
hedule be de�nedby:
φ = [(k1, j1), (k2, j2), . . . , (kn, jn)]In both simulated annealing and evolutionary algorithms we will likely produ
e(and start with) solutions whi
h are infeasible. Where infeasible means we are vio-lating DFG dependen
ies, therefore we need to make the solution feasible φ→ φ′.We also use this feasibility algorithm to allow for easy
rossing over regions ofinfeasible solutions, as illustrated on Figure 6.9. We keep the infeasible solutionbut
ompute the
ost of this infeasible solution by making the solution feasible andthen
ompute the
ost of this solution. This requires however that the feasibilityalgorithm is deterministi
, su
h that the best solution (feasible)
an be regeneratedfrom a possible infeasible best solution. This is a better solution than working witha penalty fun
tion or removing the infeasible solutions.First, let us revisit the ASAP algorithm. Before the algorithm starts assume weassign an operator σi to time step within ti ∈ Si . . . Li and with ji equal to the fastest

FUj. The output is the earliest time S′
l the other operators σl
an be s
heduled with

σi is s
heduled in time step ki. Only su

essors to σi are a�e
ted Sl ≤ S′
l .Criti
al for this to be of any use is S′

l ≤ Ll ∀ l : Assume we at some point get
S′

l > Ll after assigning operator r to time step tr (∈ Sr . . . Lr, Sr ≤ Lr). Let pbe the longest path σr → σl and q the longest path σl → σr (going 'ba
kwards'):
S′

l ≥ tr + |p| and Lr ≤ Ll − |q|. Sin
e the DFG is a
y
li
 |p| = |q|, so S′
l ≥ tr + |p|

6.3 Simulated annealing and evolutionary algorithm 85and Lr + |p| ≤ Ll, therefore if S′
l > Ll ⇔ tr + |p| > Lr + |p| or tr > Lr, whi
h is a
ontradi
tion.The same applies to the ALAP algorithm and by running both algorithms insu

ession, we redu
e the time intervals for all other operators σl: kl ∈ S′

l . . . L
′
l,

Sl ≤ S′
l , S

′
l ≤ L′

l, L
′
l ≤ Ll.Up until now we have assumed ji was assigned onto the fastest FU. The availabledelay is the minimal L′

l time for its su

essors σl minus the start time: delayi =
min{L′

l} − ki. So any FUj with dj ≤ delayi
an be
hosen.The algorithm for feasibility is as follows:Initial set φ′ empty.Step 1 Pi
k an uns
heduled operator σr in φ.Step 2 S
hedule σr in time step: φ′.kr = φ.kr.Step 3 Compute delayr = min{L′
l} − krStep 4 If φ.jr ≤ delayr: φ′.jr = φ.jr else assign : φ′.jr = j (j is the one with theslowest allowable exe
ution) where σr ∈ FUj and dj ≤ delayr.Step 5 ASAP (update Sl → S′

l)Step 6 ALAP (update Ll → L′
l)Step 7 For all uns
heduled operators σl in φ: if φ.kl < S′

l set φ.kl = S′
l and if

φ.kl > L′
l set φ.kl = L′

l.Step 8 If any uns
heduled operators in φ goto step 1.The algorithm works by iteratively s
heduling operators one at a time and ea
htime running ASAP and ALAP redu
ing the valid time intervals for uns
heduledoperators and a feasible s
hedule
an be obtained. The algorithm is deterministi
and has
omplexity O(n2).6.3.3 Simulated annealingThe simulated annealing algorithm is a meta-heuristi
 algorithm for solving ILPproblems whi
h borrows from the physi
al model of near adiabati

rystallization i.e.the formation of a perfe
t
rystal latti
e.Simulated annealing algorithm:Initial Generate initial feasible solution ve
tor → φ and
ompute its area
ost AStep 1 Perturb φ, by randomly moving an operator in time and
hanging its FUassignment → φ′.Step 2 Generate a feasible solution from the perturbed solution ve
tor F(φ′) →
φ′feasible

86 Algorithms for Behavioral SynthesisStep 3 Compute the area
ost of φ′feasible → A′.Step 3 If the new
ost is smaller than the existing solution (A′ < A) a

ept thenew solution φ′, otherwise
onditionally a

ept φ′ depending if exp(−(A′ −
A)/Temp) > random(1) is true.Step 4 Update the solution spa
e (φ′, A′, T emp′) → (φ,A, T emp) and while notthermal equilibrium goto step 1.Step 5 Redu
e the temperature exponentially Temp′ = αTemp, with 0 < α < 1.Step 6 If the temperature Temp′ is larger than Tempcrystal (the stopping temper-ature) and A′ is larger than Aaccept goto step 1.In the iteration step a random operator σi is
hosen and random (a

eptable)values are inserted for both ki and ji. Then the s
hedule is made feasible starting withs
heduling σi and then s
heduling the rest. In this way we ensure the perturbationsurvives the feasibility pro
ess. Then depending on the
ost and the temperaturewe a

ept this new s
hedule or not. The fundamental di�eren
e between simulatedannealing and lo
al sear
h lies in the ability at �high� temperatures to move �uphill�i.e. a

ept solutions whi
h are less optimal (as well as always move �downhill� i.e.a

ept more optimal solutions). This is handled by the a

ept fun
tion maintainingthe Boltzmann distribution from statisti
al me
hani
s. Initially the algorithm isstarted with an random solution whi
h is made feasible. The thermal equilibrium
ondition repeats the inner-loop a
ertain amount, this is determined in the following
hapter. Tempcrystal stops the algorithm if the temperature
omes down to 1. It
anbe shown mathemati
ally that by sele
ting the
orre
t temperature fun
tion spe
i�
to the problem, the simulated annealing algorithm will �nd the optimal solution.However the time spent on �nding the optimal solution
an be shown to be equal toor larger than the time to perform an exhaustive sear
h. We set the start temperatureto 10000 and it
an be shown that a adiabati

ool-o� in temperature
orresponds toan exponential temperature de
ay i.e. the new temperature is generated by Temp′ =

αTemp with 0 < α < 1. We determine the appropriate value for α in the following
hapter.6.3.4 Evolutionary algorithmThe evolutionary algorithm approa
h is a meta-heuristi
 algorithm for solving ILPproblems whi
h is biologi
ally inspired and implements the
on
ept of �survival ofthe �ttest�.Evolutionary algorithm:Initial Generate initial set of feasible solution ve
tors → Φ = {φ}, the population,and
ompute their respe
tive area
osts A = {A} and set the generation
ountto zero G = 0.

6.3 Simulated annealing and evolutionary algorithm 87Step 1 Remove the half part of the population Φ with the lowest area
ost → Φ 1

2and set Φ′ = ∅.Step 2 Sele
t two elements from Φ 1

2

→ {φa, φb}, the parent solution ve
tors, andremove the elements from the set Φ 1

2

\{φa, φb} → Φ′
1

2

.Step 3 Sele
t a random
rossover position and form two new solution ve
tors
{φa, φb} → {ψ, ϕ}, the
hild solution ve
tors.Step 4 Mutate {ψ, ϕ}, by randomly moving an operator in time and
hanging itsFU assignment → {ψ′, ϕ′} using a low probability χ for mutating the solutionve
tors.Step 5 Add the parent and the the
hild solution ve
tors to the new population
Φ′ + {φa, φb, ψ

′, ϕ′} → Φ′′.Step 6 Update the solution sets(Φ′
1

2

,Φ′′) → (Φ 1

2

,Φ′) and if Φ 1

2

is non-empty gotostep 2.Step 7 Generate feasible solutions from the perturbed solution ve
tors in
Φ′:F(Φ′

perturbed) → Φ′
feasible.Step 8 Compute the area
ost of Φ′

feasible → A′
feasible.Step 9 In
rement the generation
ount G and update the solution spa
e (Φ′, A′) →

(Φ, A).Step 10 If the best solution Abest is larger than Aaccept and the generation G is lessthan Gstop goto Step 1.The algorithm works by �rst deleting the most un�t half of the population. Thenfor two survivor pairs we sele
t a random
rosspoint and perform the
rossoverthereby produ
ing two new
hildren. Then we randomly sometimes add a muta-tion to the
hildren. Then the
hildren are made feasible (in the same way as forthe simulated annealing) and the
ost fun
tions are evaluated and they are put intothe new population. The fundamental di�eren
e between the lo
al sear
h/simulatedannealing and the evolutionary algorithm is the use of a population of solutions inthe latter. The deletion of the most un�t half in prin
iple works as the �downhill�moving part and with the
ross-over and mutation as the potential �downhill/uphill�moving part. Initially the algorithm is started with set of random solutions, madefeasible and evaluated. The mutation rate is in
luded in the evolutionary algorithmsto prevent the entire population from
onverging to a single
olle
tion of similar so-lutions. The mutation rate should not be the prin
ipal solution spa
e explorationmethod of the algorithm and should be very low; we
hose χ = 0.01. The generation
ount terminates the main loop if more than Gstop generations has passed. In thefollowing
hapter we determine both the population size and the Gstop parameter.

88 Algorithms for Behavioral SynthesisModule Oprs Area Time-slots E/time-slot [nJ℄add {+} 2032.75 1 0.0266sub {−} 2032.75 1 0.0266
omp {>} 2032.75 1 0.0266ALU {+,−, >} 2965.00 1 0.0266mul1 {∗} 41978, 50 3 0.1046mul2 {∗} 28414.50 6 0.0523mul3 {∗} 14638.75 17 0.0319input i 43.00 1 0.0output o 43.00 1 0.0Table 6.2: 16 bit fun
tional unit library based on balsa-
ost numbers, available tothe synthesis algorithm.
CDFG1

* 2

a
1

0
y

a
2

a
0

0
x x

1
x

2

3
w

0 1

−7

0 1 0 1

a
3

y
1

7
w

5
w

6
w

DFG1 DFG2

CDFG1

DFG0

CDFG0

1

+ 3

+

−
> 4

5

1

2

4

0

w

w

w
w

DFG0

CDFG0

DFG2

*

+ 6

8

DFG1

Figure 6.10: (Left) Partition of our CDFG into DFG fragments. (Right) The
orre-sponding task graph to the partition of the CDFG.6.4 Control data �ow graph synthesisFor synthesis of
ontrol data �ow graphs a basi
 blo
k synthesis pro
edure is used.Thus repetitive and
onditional segments of the CDFG are s
heduled as independentparts or independent tasks i.e. the synthesis problem of the CDFG is redu
ed to asynthesis problem of a set of DFG's [64, 103℄, as we have presented in the previousse
tions i.e. this algorithm builds on top of these algorithm.The partition of the CDFG into basi
s blo
ks follows a hierar
hi
al de
ent into theCDFG where the DFG-fragments are identi�ed as the largest sets of deterministi
allyrelated operators in the CDFG. The largest set of deterministi
ally related operatorsis de�ned as the largest group of operators for whi
h a stati
 exe
ution order
an befound.Having partitioned the CDFG into basi
 blo
ks a hierar
hi
al task graph
on-

6.4 Control data �ow graph synthesis 89
mul1

8
5

2

3

4

1

t=T

t=0

t

ALU

DFG0

t=T

t=0

t

ALU

7

DFG2

mul1

t=T

t=0

t

ALU

DFG1

8

6

mul1

Figure 6.11: S
heduling of the DFG fragments: DFG0, DFG1, DFG2.taining the relationships between the di�erent DFG fragments is generated. This isillustrated on Figure 6.10 for our example CDFG. For our example the largest groupof deterministi
ly related operators in CDFG0 are operators:{1, 2, 3, 4, 5} , whi
h isdenoted DFG0. Besides that there exists a bran
h-se
tion whi
h we denote CDFG1.The pro
edure is then repeated for CDFG1, whi
h
ontains two sets of determinis-ti
ly related operators DFG1={6, 8} and DFG2={7}. Ea
h of these DFG fragmentsare nodes in the
orresponding task graph. The task graph has a single dependen
ybetween DFG0 and CDFG1, whi
h originates from the exe
ution of the
onditional
hoi
e, operator {4} whi
h is
omputed in DFG0 and used in CDFG1.To keep tra
k of the
urrent solution the algorithm is working on, we introdu
ea solution ve
tor φ
ontaining n tuples (one for ea
h DFGi fragment),
onsistingof the pair (ti, di) where ti is the start time-step for DFGi and di is the synthesisdelay
onstraint for this DFGi fragment i.e. the maximally allowed exe
ution timefor DFGi. Let the s
hedule be de�ned by:
φ = [(t1, d1), (t2, d2), . . . , (tn, dn)]The time-steps ti are bound by the ASAP and ALAP times for the task graph,where it is assumed all the DFGi fragments are exe
uted using their ASAP s
hed-ules. The individual synthesis delay
onstraints range from the ASAP time of theDFGi fragment to the ALAP time of the DFGi fragment
omputed where all otherDFG fragments are exe
uted using their ASAP times and all prede
essor DFGi ares
heduled at ASAP start-time intervals and all su

essors are s
heduled using theirALAP time intervals. This spe
i�es the maximally allowed time interval for thatDFG fragment.The main synthesis algorithm operates in �two-levels�: The prin
ipal level s
hed-ules the DFG fragments (task-s
heduling) using the {ti} start-times and the sublevelor innerloop res
hedules a single DFGi fragment using its di synthesis delay
on-straint.CDFG s
heduling:

90 Algorithms for Behavioral SynthesisInitial Generate the task-graph by des
ending hierar
hi
ally into the CDFG dividingdeterministi
 sets into DFGi whi
h are nodes in the task graph. Generate theinitial solution ve
tor by setting the set of start times {ti} to the ASAP start-time for the task-graph. And set the set of synthesis time-
onstraints {di} tothe length of the ASAP s
hedules for the {DFGi}.Step 1 Perturb φ, by randomly sele
ting a tuple i and randomly move the start time
ti and
hange the synthesis
onstraint di → φ′. All has to be sele
ted withintheir respe
tive ASAP-ALAP intervals.Step 2 [Innerloop:℄ Res
hedule the sele
ted DFGi using one of the methods pre-sented in the previous se
tions, using the
orresponding
onstraint di.Step 3 S
hedule the task graph using the task solution ve
tor and allo
ate usinggroups of FUs from the DFG fragments. For CDFG fragments
ontaining
hoi
es between several DFG's use the worst-
ase time-delay and area usage.For
onditional repetitive CDFG fragments assume a single exe
ution. Theresulting fun
tional unit allo
ation is the maximal
on
urrent use of ea
h typeof FU.Step 4 Lo
ally optimize the resulting
ombined s
hedule, by taking advantage ofthe sla
k but without allo
ation more fun
tional units than allo
ated in the
urrent iteration. Compute the area
ost of φ′ → A′ from the fun
tional unitallo
ation.Step 5 If the resulting s
hedule violates the system time
onstraint T add a largepenalty area to the area
ost: A′ + P → A′.Step 6 If the new
ost is smaller than the existing solution (A′ < A) a

ept thenew solution φ′, otherwise
onditionally a

ept φ′ depending if exp(−(A′ −
A)/Temp) > random(1) is true.Step 7 Update the solution spa
e (φ′, A′, T emp′) → (φ,A, T emp) and while notthermal equilibrium goto step 1.Step 8 Redu
e the temperature exponentially Temp′ = αTemp, with 0 < α < 1.Step 9 If the temperature Temp′ is larger than Tempcrystal (the stopping temper-ature) and A′ is larger than Aaccept goto step 1.The algorithm operates similar to the simulated annealing synthesis algorithm insubse
tion 6.3.3, the prin
ipal di�eren
e is in step 2, the innerloop, where a DFGfragment is s
heduled. Here a penalty
ost is used for infeasible solutions as no goodfeasibility algorithm has been found yet.The s
heduling of the di�erent DFG fragments are shown in Figure 6.11. For oursimple example task-graph there is, be
ause of the dependen
y between DFG0 andCDFG1, only one possible task s
hedule, whi
h is shown in Figure 6.12 (left). The
orresponding s
hedule at operator level is shown following thereafter, this s
hedule

6.4 Control data �ow graph synthesis 91
mul1

7

8

DFG0

8

6 7

8
5

7

2

3

6

4

1

t=T

t=0

t

ALU

8
5

2

3

4

1
t=0

ALU

6

t

DFG1 DFG2

CDFG0

CDFG1

Optimized scheduleTask scheduling Relaxed scheduleCorresponding schedule

5

2

3

4

1
t=0

ALU

t

DFG1/

DFG2

DFG0"0"

"1"

mul1 mul1

Figure 6.12: Syn
hronous task-s
heduling and the
orresponding s
hedule of opera-tors. Sla
k exploitation leads to the optimized s
hedule, whi
h is �nally relaxed intoan asyn
hronous s
hedule.
ontains a lot of sla
k stemming from the individual s
heduling of the DFGS andnot the CDFG as a hole. In this and other
ases the s
hedule
an be
ompressedfollowing a ��rst
ome �rst serve� prin
iple where operators are moved upwards intime to empty time slots, preserving the relative s
heduling of the operators in DFGand their relative dependen
e between the DFGs. The resulting s
hedule for ex-ample is shown on the same �gure. Finally the time-slot restri
tions are removed,shortening the exe
ution time of the multiply operation and relaxing the s
heduleinto an asyn
hronous s
hedule. The resulting s
hedule has been used through-outin this thesis. This s
hedule is not optimal when
ompared to the optimal s
hedulegenerated through a
ontinuous time exhaustive-sear
h method, but the di�eren
e ismarginal.For the power aware s
heduling algorithm
onsidered in the �rst se
tion, thebasi
 blo
k is extended to in
lude the
onditional se
tions of the CDFG, but notrepetitive stru
tures. This means our entire example is one basi
 blo
k for thatalgorithm. The power aware s
heduling is a
lique based algorithm whi
h operatesusing operator disjun
tiveness. There are two types of disjun
tiveness to
hara
terizethe relationship between two operators. The operators
an be:Path disjun
tive For operators to be path disjun
tive, there should exist a de-penden
e relation between them i.e. there should exist a path in the CDFG
onne
ting the two operators together and preventing the operators from hav-ing overlapped exe
ution times.Bran
h disjun
tive For operators to be bran
h disjun
tive ea
h operator shouldsemanti
ally ex
lude the exe
ution of the other i.e. if ea
h operator belong to

92 Algorithms for Behavioral Synthesisdi�erent bran
hes in a bran
h
onstru
tion only one of the operators
an beexe
uted and therefore no overlapping exe
ution
an o

ur.Operators that are disjun
tive will only take up one exe
ution slot on a fun
tionalunit and thus
an be advantageously s
heduled onto the same fun
tional unit.A power-
onstraint
ould be in
luded alongside the task exe
ution-time
onstraint
di and thus be used to power
onstraint the s
heduling of the DFGs. The systempower
onstraint
ould then be handled by a penalty fun
tion, similar to the penaltyintrodu
ed by violating the system time
onstraint T .6.5 SummaryIn this
hapter we have presented a set of behavioral synthesis algorithms: A power-aware synthesis algorithm for CDFGs without repetative stru
tures, whi
h we haveimplemented. A simulated annealing algorithm and an evolutionary algorithm forsynthesis of DFG fragments and we have developed a feasibility algorithm whi
henables the possibility of easy
rossing between areas of feasible solutions in thesolution spa
e for these meta-heuristi
 algorithms. All of whi
h we have implemented.Finally we have outlined a behavioral synthesis algorithm for synthesis of CDFGs.In the following
hapter we
ompare the implemented algorithms.

C h a p t e r 7
Results

This
hapter presents an evaluation of the e�
ien
y of the
omputation model andour methods. The purpose here is not to
ompare asyn
hronous vs. syn
hronous,as ea
h have their own appli
ation domains and a
ts as supplements. Neither isdire
t
omparison with other asyn
hronous synthesis methods attempted, as thisinvolves
omparing di�erent te
hnologies and implementation styles whi
h rendersany
omparisons debatable/in
on
lusive.We ben
hmark our algorithms on a representative set of problems from the
las-si
al set of synthesis ben
hmark CDFGs: FIR is a eight-tap FIR �lter. HAL is aniterative Euler integration of a di�erential equation. ELLIPTIC is a �fth order ellip-ti
 wave �lter. COSINE is a part of the DCT algorithm. Throughout in this
hapterwe will use the FU library shown in Figure 6.2. This FU library
onsist of �balsa-
ost� numbers of
orresponding balsa-programs that implement the fun
tionality ofthe fun
tional units.We begin with presenting the results of the behavioral synthesis algorithms wherewe are interested in their run-time. For these we only
onsider the area of fun
tionalunits. Then we pro
eed by investigating the
ir
uit implementation method presentedin this thesis; we use our method on the GCD algorithm, whi
h we
ompare againsta manually optimized design. For these results we use the full
ir
uit area. Then weimplement the ben
hmark set and investigate the overhead of implementing resour
e-sharing using this method. Finally we look at the
ir
uit
hara
teristi
s at layoutlevel.

94 ResultsModule Oprs Area Time-slots E/time-slot [nJ℄add {+} 2032.75 1 0.0266sub {−} 2032.75 1 0.0266
omp {>} 2032.75 1 0.0266ALU {+,−, >} 2965.00 1 0.0266mul1 {∗} 41978, 50 3 0.1046mul2 {∗} 28414.50 6 0.0523mul3 {∗} 14638.75 17 0.0319input i 43.00 1 0.0output o 43.00 1 0.0Table 7.1: 16 bit fun
tional unit library based on balsa-
ost numbers, available tothe synthesis algorithm.
I I I I I

* *

*

* * I +

O>

O

*+

O

−

−

O

1 2 3

8 7

13 12

19

18

17

16

14

10 9

5 4

11

15

6

20

21

Figure 7.1: CDFG for the HAL
omputation, where I and O are the input and outputnodes.7.1 Results for power aware s
hedulingWe have ben
hmarked the algorithm on a set of CDFGs, using our FU library shownin table 7.1, all performed on a 200MHz Pentium II, with 96 MB memory. We do nottake an eventual
orrelation among input data in to a

ount and assume worst-
asepower measures for
omputations in the di�erent FU
omponents. The �rst test is ofthe PASAP algorithm where we investigate the required time delay of the CDFGs,as a fun
tion of the power
onstraint. The results are shown in table 7.2. The se
ondtest is of the main
lique-partitioning algorithm where we investigate the area of theresulting
ir
uits as a fun
tion of the power
onstraint, with a
onstant time frame.We perform this test for a few di�erent time-frames. The results are shown in Figure7.2. Finally some di�erent power and time
onstraints and the
ir
uit area and theCPU time to �nd the solutions is shown in table 7.3.As shown in Figure 7.2 (eg. ELLIPTIC with T=30 and COSINE with T=15)using a global synthesis algorithm we
an trade in area to obtain a solution whi
h�ts our power requirements. The average area penalty ranges in the region of 20

7.2 Results for simulated annealing and evolutionary algorithm 95HAL, verti
es=21, edges=25
E<[nJ] inf 0.500 0.400 0.300 0.250 0.200 0.150 0.125
TPASAP 9 9 11 12 12 20 20 22FIR, verti
es=24, edges=24
E<[nJ] inf 1.00 0.600 0.400 0.300 0.200 0.150 0.125
TPASAP 8 8 10 13 16 28 27 29ELLIPTIC, verti
es=49, edges=43
E<[nJ] inf 0.500 0.400 0.300 0.250 0.200 0.150 0.125
TPASAP 21 21 23 23 24 31 32 38COSINE, verti
es=57, edges=77
E<[nJ] inf 1.00 0.800 0.500 0.300 0.200 0.150 0.125
TPASAP 11 11 14 17 27 51 54 56Table 7.2: Time vs. power using the PASAP s
heduling for the set of ben
hmarks.

E<[nJ] T A TCPU [s]

inf 11 440,499 15.82
0.500 17 314,485 46.75
0.400 26 138,310 118.29
0.300 32 96,289 160.22
0.300 37 95,289 297.03
0.200 56 96,289 442.36
0.125 66 56,386 193.79
0.125 71 56,386 357.58Table 7.3: Di�erent power and time
onstraints generated by the main synthesisalgorithm, the resulting area and the CPU synthesis time for COSINE.

per
ent whi
h is an a

eptable penalty, as power is the
riti
al parameter here.An interesting aspe
t is that with a large time and power
onstraint, the algorithmmight �nd a worse solution with respe
t to area, than when the power
onstraintis tight. The reason for this lies in the greedy approa
h whi
h might make a badde
ision early on. With the tight power
onstraint this is prevented (no need toallo
ate many FUs in parallel if only one or two is used at a time), an example ofthis is COSINE T=25 and T=20.

96 Results

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
5

E
<
 [nJ]

A
re

a

HAL (T=15)

COSINE (T=15)

COSINE (T=20)

COSINE (T=25)

ELLIPTIC (T=30)

Figure 7.2: Power vs. area under di�erent time
onstraints for HAL, COSINE andELLIPTIC.
E [nJ]

1
2
3
4
5
6
7
8
9

10
11
12

8

10

14

out

18

out

19

out

20

out

21

7

9

12

1

3
5

6

2

4

in n mul1 mul1t

11
13

16
17

add sub

15

less

0.0
0.0790
0.1578
0.2092
0.2092
0.2092
0.2092
0.2092
0.2092
0.2092

0.0
0.1046
0.2092

0

Figure 7.3: Tightly
onstrained power-aware s
hedule for the HAL
omputation,T=13, E=0.210nJ . Requiring 2 inputs, 2 mults (fast), 1 add, 1 sub, 1 les and 4outputs, with a total area of 90311.7.2 Results for simulated annealing and evolution-ary algorithmFor the meta-heuristi
 algorithm we �rst need to adjust the meta heuristi
 parametersfor the algorithms. This is in many
ases more of an art, than a s
ien
e. In thefollowing we will experimentally �nd the best parameter setting. The test
ase weuse to adjust the parameters from, is the HAL
omputation with a time frame of
T = 20. This is an arbitrary
ase, and there is no guarantee this will lead to the

7.2 Results for simulated annealing and evolutionary algorithm 97

−1 0 1 2 3 4 5 6 7
5.5

6

6.5

7

7.5

8

8.5

9

9.5
x 10

4

log(1/(α−1))

A
re

a

N=2
N=10
N=100
N=500
N=1000
N=5000

Figure 7.4: Solution (HAL T = 20) from simulated annealing as a fun
tion of the
α temperature
hange
oe�
ient and the number N of iterations to rea
h �thermalequilibrium�.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5
x 10

4

log(G
stop

)

A
re

a

N=32
N=64
N=128
N=256
N=512
N=1024
N=2048

Figure 7.5: Solution (HAL T = 20) from evolutionary algorithm as a fun
tion of the
Gstop generation
ount and the population size (N).optimal set of parameters for all other
ases. In parti
ular one should beware of�ne-tuning the algorithm pre
isely to this
ase as it might mean the meta-heuristi
algorithms is really good at �nding this solution, but terrible for all other
ases andproblems. On the other hand we need to adjust the parameters for something and a

98 Results
ALU

3 4
6

9

7

12

10

14

5 15

11

16

17
13

21

20

19
18

0.0319
0.1365

1

In

2

In

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

mul1

8

mul3t out

0.0

0.0585

0.0

0.1365
0.1365

0.1365

0.1365
0.1365

0.1365

0.1365
0.1365

0.1365

0.1365
0.1365
0.1631

0.1631

0.1631

0.0319

E [nJ]

Figure 7.6: S
hedule, FU allo
ation and operator assignment generated by simulatedannealing for HAL with T = 20
onstraint, giving a total �balsa-
ost� area of 59700.small example where to the exa
t optimum is known is good test for narrowing downthe parameter setting.We begin with simulated annealing, where we need to �nd the temperature
hange
oe�
ient α and the �thermal equilibrium� number N . In Figure 7.4 we have shownseveral runs of the algorithm for various parameter settings and plotted the solutionthe algorithm �nds. Ea
h point represents an entirely new run. As
an be seen thesimulated algorithm is rather unstable
apable of getting stu
k at a lo
al minimum.However for N = 500 and larger, the algorithm tends to be
ome more stable andprodu
e good solutions (a
tually the optimal solution) at every run. The best pa-rameter setting for α seems to be α = 1.250 for larger α the algorithm does notprodu
e better solutions, only taking exponentially more time to
omplete. Thesesetting also seem to produ
e good solutions for the other problems in the ben
hmarkset.Next is the evolutionary algorithm, where we need to �nd the Gstop generation
ount and the N population
ount. In Figure 7.5 we have shown several runs ofthe algorithm for various parameter settings and plotted the solution the algorithm�nds. Again ea
h point represents an entirely new run. As
an be seen the simulatedalgorithm is rather stable
apable of produ
ing reliable results. Another fa
tor isthe high-dependen
y on the population size. With a population around 512 thealgorithm starts
onverging towards the global optimum with the fast
onvergen
eand
hoosing a large population size does not in
rease the
onvergen
e. The bestvalue for the maximum generation
ount Gstop seems to be around in the rangefrom 320 to 640. To be on the safe side we
hose 640 generations. Again theseparameters settings seems to produ
e good solutions for the other algorithms in theben
hmark set ex
ept for COSINE, for whi
h the algorithm have problems �nding

7.3 Results for asyn
hronous behavioral synthesis 99some parti
ular solutions.We have ben
hmarked the algorithms on two DFGs: HAL (TASAP = 10) andCOSINE (TASAP = 11). We are interested in the CPU-time i.e.. the amount of timeit takes running the algorithms to get a solution satisfying our area requirements. Forthe two DFGs we apply the two meta-heuristi
 algorithms, giving us four primarytest
ases (shown in table 7.4). For ea
h test
ase we set �ve sili
on area requirementsand six time frame requirements T = dt + TASAP , (the blanks are where the meta-heuristi
-algorithms fail to �nd a solution either be
ause there is no optimal solutionsatisfying the requirement or in border
ases be
ause the algorithms are heuristi
).Again, all tests are performed on a 200MHz Pentium II, with 96 MB memory andall numbers re�e
t a statisti
al average of running the algorithms 500 times on ea
hproblem instan
e.In general the simulated annealing out-performs the evolutionary algorithm interms of CPU time required to �nd a solution for large problems (i.e. COSINE). Theprimary reason stems from the evolutionary algorithm working on a large popula-tion, whi
h in every iteration has to be made feasible and
ost evaluated, whereas thesimulated annealing only works with one problem instan
e. On the other-hand theevolutionary algorithm seems to perform more �stable�, unlike simulated annealingwhi
h is
apable of getting �stu
k� in lo
al-minimums for some runs. Comparingthe evolutionary algorithm with the simulated annealing the evolutionary algorithmtakes signi�
antly longer time to run and does �nd just as good solutions as simu-lated annealing. In parti
ular in the COSINE
ase the evolutionary algorithm hasproblems. This does not mean the evolutionary algorithm
annot �nd the solutionseg. if run free the evolutionary algorithm is
apable of �nding a solution for CO-SINE, T = 107, below the area requirement of 49200, however it took 25857.4s orapproximately 7.18 hours. The evolutionary algorithm does not however have similarproblems for FIR or ELLIPTIC.A property of the proposed CDFG synthesis algorithm is that one of these al-gorithms will be run for the DFG fragments, until the main synthesis algorithm
onverges, it is therefore important that these algorithms generate the solutions fast.This favours the simulated annealing over the two other algorithms.Finally in Figure 7.6 is shown the optimal s
hedule generated by the meta-heuristi
 algorithms in the parameter investigation.7.3 Results for asyn
hronous behavioral synthesisIn order to demonstrate the feasibility of the proposed approa
h and in order toevaluate the e�
ien
y of the proposed implementation template. We begin in sub-se
tion 7.3.1 with applying our approa
h on the GCD algorithm and then
ontinuein subse
tion 7.3.2 to our ben
hmark
ir
uits and �nally for FIR and HAL we haveprodu
ed layouts and in subse
tion 7.3.3 we report on the area, speed and power�gures.But �rst we report on the area
ost of our running example. The original Balsa-

100 ResultsSimulated Annealing (HAL)
T Area requirement

140, 000 120, 000 90, 000 75, 000 60, 000 46, 000
10 0.165
13 0.012 0.270 2.418
16 0.000 0.092 0.220
18 0.000 0.056 0.165 4.505
20 0.000 0.010 0.07 3.576 23.91
22 0.000 0.000 0.35 1.202 11.43 18.86Simulated Annealing (COSINE)
T Area requirement

350, 000 160, 000 110, 000 92, 000 78, 000 49, 200
13 189.9
21 0.165 195.6
32 0.070 1.593 202.6
35 0.110 0.659 42.03 205.6
86 0.0505 0.440 3.077 8.846 55.54

107 0.210 0.385 2.418 10.33 39.23 259.1Evolutionary Algorithm (HAL)
T Area requirement

140, 000 120, 000 90, 000 75, 000 60, 000 46, 000
10 0.275
13 0.210 0.330 0.934
16 0.000 0.270 0.275
18 0.000 0.165 0.261 10.934
20 0.000 0.015 0.031 2.582 40.01
22 0.000 0.002 0.011 2.637 6.593 30.49Evolutionary Algorithm (COSINE)
T Area requirement

350, 000 160, 000 110, 000 92, 000 78, 000 68, 000
13 22.253
21 0.031 369.0
32 0.00 1.923
35 0.000 1.978 302.2
86 0.0201 0.771 2.253 167.5 271.8

107 0.000 0.010 2.410 2.363 204.0 804.1Table 7.4: Run-times (TCPU [s]) for two CDFGs (HAL and COSINE) by simulatedannealing and evolutionary algorithm.
ode in Figure 2.1 would have a Balsa-
ost of 96, 787.5 (using the numbers from ourmultiplier), whereas the resulting synthesized Balsa-
ode shown on pages 65-67 have

7.3 Results for asyn
hronous behavioral synthesis 101import [balsa.types.basi
℄type word is 16 bitspro
edure g
d(input a,b: word ; output
: word) isvariable ai,bi : wordbeginloopa -> ai || b -> bi ;while ai/=bi thenif ai>bi thenai:=(ai-bi as word)elsebi:=(bi-ai as word)endend ;
<-aiendend Figure 7.7: The GCD-algorithm.a balsa-
ost of 60, 037.5. Representing an area redu
tion of 38%.7.3.1 GCDIn [53, se
tion 13.2.3℄ the pro
ess of syntax dire
ted and optimizations at the sour
e
ode level (using Tangram) is illustrated using GCD as an example. Figure 7.7shows the well known algorithm expressed in Balsa
ode. The problem is that thesour
e
ode
ontains 4 operator symbols, and that the
orresponding
ir
uit have 4fun
tional units as well. In order to optimize the area the designer has to rewritethe
ode. Figure 7.8 shows one su
h optimized design. It is slightly di�erent fromthe Tangram
ode in [92℄ as Balsa does not support exa
tly the same
onstru
ts asTangram, but the ideas underlying the optimization are the same. Even this simpleexample hints that the pro
ess of optimizing the
ir
uit and exploring alternatives
an be tedious. In behavioral synthesis one would take the basi

ode in Figure 7.7and synthesize it with area minimization as the
onstraint. The work presented heredoes exa
tly this, i.e. from a CDFG extra
ted from the basi

ode in Figure 7.7we automati
ally synthesize a
ir
uit
ontaining two
ompares and one subtra
tionoperator. Table 7.5 shows the area estimates (�balsa-
ost�) reported by Balsa for thedi�erent versions of the
ir
uit. It is seen that behavioral synthesis in this examplea
tually outperforms the manually optimized design.The important message here is that the overhead introdu
ed by our method is sosmall the resulting area
ost is in the same region as a manually optimized
ir
uit.

102 ResultsProgram balsa-
ostg
d_basi
 7435.25g
d_opt 7161.75g
d_synt 6846.00Table 7.5: Comparison of the plain GCD, the optimized GCD and the synthesizedGCD. �balsa-
ost� is an area measure reported by the Balsa tool.import [balsa.types.basi
℄type word is 16 bitstype twoword is re
orda,b:wordendpro
edure g
d(input ab: twoword ; output
: word) isvariable data : twowordbeginloopab->data ;while data.a/=data.b thenif data.a>data.b thendata:=(twoword {((data.a-data.b) as word),data.b as word)})elsedata:=(twoword {data.b,data.a})endend ;
<-data.aendend Figure 7.8: An optimized version of GCD.7.3.2 Ben
hmarksUsing our behavioral synthesis methods, more pre
isely simulated annealing, togetherwith our
omputation model and our implementation templates, we have synthesizedthe range of ben
hmarks as shown in table 7.6. Again the area is expressed in termsof the �
ost� reported by Balsa. As seen, it is possible to automati
ally synthesize im-plementations with a range of
onstraints. The table is divided into six groups: The�rst group shows the balsa implementation as a designer would implement them with-out resour
e sharing. The se
ond group shows the area of the synthesized versionsas produ
ed dire
tly from the simulated annealing algorithm before lat
h assignment

7.3 Results for asyn
hronous behavioral synthesis 103import [balsa.types.basi
℄type word is 16 bitspro
edure g
d(input a,b: word ; output
: word) is
hannel FU0_a,FU0_b,FU0_z:wordpro
edure FU0_sub(intput FU0_a,FU0_b:word;output FU0_z:word) isbeginloopsele
t FU0_a,FU0_b thenFU0_z<-(FU0_a-FU0_b as word)endendendpro
edure g
d_ar
hite
ture(input a,b,FU0_z:word;output FU0_a,FU0_b,
:word)variable L0,L1,L2 : word
hannel
L2:wordbeginloopa -> L0 || b -> L1 ;while L0/=L1 thenif L0>L1 thenFU0_a<-L0 || FU0_b<-L1;
L2->L0elseFU0_a<-L1 || FU0_b<-L0;
L2->L1end ||[FU0_z->L2 ;
L2<-L2 ℄end ;
<-L0endendbeginFU0_sub(FU0_a,FU0_b,FU0_z) ||g
d_ar
hite
ture(a,b,FU0_z,FU0_a,FU0_b,
)endFigure 7.9: The synthesized version based on the basi
 algorithm in Figure 7.7.i.e. only the pure FU area is reported. The third (3a) and fourth (3b) group showsto the se
ond group
orresponding balsa-implementation using the alpha and betatemplates respe
tively, but without using the
ontrol and mux-optimizing algorithm.

104 ResultsFor the �fth (4a) and sixth (4b) groups these optimizations have been in
luded.Thus the di�eren
e between items of the se
ond group and the third or fourth groupis the implementation overhead of using these approa
hes and the overhead of theimplementation templates proposed by this thesis.The �rst observation is that again there is a large area saving when applyingresour
e-sharing. Se
ondly, the overhead of implementing the
ir
uits,
onsisting of
ontroller area, lat
h area and multiplexor/-demultiplexor area is around 40% of thetotal area of the
ir
uits and the fun
tional units make up around 60%. This is not-unexpe
ted as these additional area
ontributions are signi�
ant also in syn
hronousbehavioral synthesis, and for digital
ir
uit design in general. Finally, there is the
omparison between the two
omputation models, should there be power guardinginput/output-lat
hes around fun
tional units or not with respe
t to area? The areadi�eren
e between the two is very little and for the four ben
hmarks here there is two
ases where the input/output lat
h is smaller than the input/output-lat
h
ir
uit, one
ase where there is almost equality and one
ase the non-input/output-lat
h
ir
uit issmaller than the input/output-lat
h
ir
uit. In general the non-input/output-lat
h
ir
uits have a smaller total lat
h
ount, however there is usually a larger mux-depth asso
iated with these
ir
uits, whi
h
ounters this e�e
t. Based on the
urrentobservations, we believe it to be appli
ation dependent whi
h type of
omputationmodel that have the smallest area.The next question is how e�
ient these implementations are. To answer thisquestion we have produ
ed and simulated layouts for FIR and HAL.7.3.3 Layout resultsFor the ben
hmarks FIR and HAL in beta-style, we have used the ba
k-end part ofthe Balsa tools and a
tually produ
ed a layout targeting handshake
omponents usingthe single-rail 4-phase early proto
ol. We have used the existing synthesis �ow atMan
hester University, whi
h is based upon a 0.18µm STM standard-
ell te
hnology,whi
h have been augmented with standard
ell
omponents for implementing variousspe
ial asyn
hronous
omponents su
h as Muller C-elements.Simulation results are obtained by simulating the post pla
e-and-route Verilognetlist together with extra
ted layout information in NanoSim. We simulate 200
omputations, using random numbers with out any
orrelation. All the
ir
uits areimplemented using 16-bit variables and are simulated at 1.8V and at a temperatureof 25oC.It is important to stress the results do not represent an attempt to evaluate theasyn
hronous implementations against
orresponding syn
hronous ones; our fo
us ison the e�
ien
y of the automated resour
e sharing within the asyn
hronous domain.The ben
hmark results are shown in table 7.7, where t is the average time todo one
omputation, A is the layout area and E is the average energy
onsumptionper
omputation. In a similar way we have
hara
terized the ALU and multiplieroperators, see table 7.8. The speed �gures in table 7.8 have been used in
al
ulatingthe s
hedules.

7.4 Summary 105Implementations 1 and 3 in table 7.7 are the dire
t non-resour
e-shared
ir
uitimplementations of the
omputations. These have also been designed using lat
hes onthe input and output of the multipliers. Although this gives an extra area overheadit is insigni�
ant
ompared to the area of the multiplier. The important fa
t isthat it redu
es the
ombinatorial depth of the
ir
uit and thus redu
es the power
onsumption, whi
h leads to a more fair
omparison. The speed �gures in table 7.7in
ludes a 20ns handshake delay in the testben
h used to simulate the layouts.The results in table 7.7 shows that resour
e sharing saves area at the expense ofredu
ed speed. This is as
ould be expe
ted. Con
erning energy
onsumption it isinteresting to note that it remains
onstant. Given that resour
e sharing leads tomore
ontrol
ir
uitry for the same
omputation, an in
rease in energy
onsumption
ould be expe
ted. It seems that the smaller size of the layout and the redu
edwire length, whi
h results from this leads to a power saving whi
h
orresponds to thein
rease
aused by the added
ontrol.A visual
omparison of the layouts for implementation 3 and 4 is shown in Figure7.10, illustrating the area redu
tion a
hieved by resour
e sharing.

Figure 7.10: Visual layout
omparison of the non-resour
e shared HAL
omputation(left) and the maximally resour
e shared HAL
omputation (right).7.4 SummaryIn this
hapter we have presented results for our behavioral synthesis algorithms.We have applied the power aware synthesis algorithm on several examples and in-vestigated di�erent regions in the time-power-
onstraint spa
e. The algorithm is
apable of �nding low area solutions ful�lling the
onstraints and for the
hosen sili-

106 Results
on library we �nd the power
onstraint in the worst
ase adds an in
rease in sili
onarea of roughly 20 per
ent. Furthermore we have implemented two meta-heuristi
algorithms for solving high-level behavioral synthesis: Simulated Annealing and Evo-lutionary Algorithm. In general the Simulated Annealing performs faster and �ndsbetter solutions to the problem, however the Evolutionary Algorithm is more stable.Both methods �nd better solutions than the power-aware synthesis algorithm within�nite power
onstraint. As the CDFG synthesis algorithm will require several it-erations for ea
h individual task (DFG problem) it is important the DFG synthesisalgorithm is fast. Therefore based on the e�e
tiveness of the simulated annealing were
ommend that solution.Then we have demonstrated that for a small design with few opportunities forresour
e sharing (i.e. where the overhead of an automated method is high) ourapproa
h is doing very well. Finally, for a ben
hmark suite we have implemented andshown the resour
e sharing behaves as we predi
t and that there is no unexpe
tedpenalty, like ex
ess power
onsumption.

7.4 Summary 107(1) Original
odeProgram T add sub les ALU mul1 mul2 mul3 lt
ostFIR - 7 0 0 0 8 0 0 0 459,749.25HAL - 2 2 1 0 6 0 0 0 348,093.75ELLIPTIC - 26 0 0 0 8 0 0 7 518,017.75COSINE - 13 13 0 0 16 0 0 0 964,470.25(2) Synthesized fun
tional units onlyProgram T add sub les ALU mul1 mul2 mul3 lt
ostFIR 11 1 0 0 0 2 0 0 - 85,989.75HAL 7 0 0 0 1 2 0 0 - 86,922.75ELLIPTIC 18 2 0 0 0 2 0 0 - 88,022.50COSINE 18 2 2 0 0 2 0 0 - 92,088.00(3a) Synthesized
ode in/output lat
h no
trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt
ostFIR 11 1 0 0 0 2 0 0 21 142,539.25HAL 7 0 0 0 1 2 0 0 16 135,218.50ELLIPTIC 18 2 0 0 0 2 0 0 23 163,014.75COSINE 18 2 2 0 0 2 0 0 32 170,984.00(3b) Synthesized
ode no in/output lat
h no
trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt
ostFIR 11 1 0 0 0 2 0 0 12 140,535.00HAL 7 0 0 0 1 2 0 0 9 135,214.50ELLIPTIC 18 2 0 0 0 2 0 0 19 168,873.50COSINE 18 2 2 0 0 2 0 0 17 161,792.25(4a) Synthesized
ode in/output lat
h with
trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt
ostFIR 11 1 0 0 0 2 0 0 21 128,893.25HAL 7 0 0 0 1 2 0 0 16 133,586.50ELLIPTIC 18 2 0 0 0 2 0 0 23 143,248.75COSINE 18 2 2 0 0 2 0 0 32 160,889.50(4b) Synthesized
ode no in/output lat
h with
trl. optimizationProgram T add sub les ALU mul1 mul2 mul3 lt
ostFIR 11 1 0 0 0 2 0 0 12 131,598.25HAL 7 0 0 0 1 2 0 0 9 133,664.25ELLIPTIC 18 2 0 0 0 2 0 0 19 150,256.00COSINE 18 2 2 0 0 2 0 0 17 155,626.75Table 7.6: Ben
hmark results generated by simulated annealing. Column T is thetime-
onstraint given to the synthesis tool. Columns add, sub, les, ALU, mul.. andlt lists the number of adders, subtra
tors et
. in the
ir
uits. Cost is �balsa-
ost�, anarea measure reported by the Balsa tool.

108 Results
id Alg. ∗ ALU t [ns] A [mm2] E [nJ]1 FIR 8 7 124.7 0.877 2.952 FIR 2 1 284.8 0.282 2.803 HAL 5 5 171.2 0.667 2.034 HAL 2 1 309.6 0.260 1.895 HAL 1 1 397.4 0.151 2.01Table 7.7: Layout results (beta-style).

FU σ t[ns] A [mm2] E [nJ]ALU {+,−, >} 25.5 0.0112 0.0266Mult {∗} 56.3 0.105 0.314Table 7.8: FU library (16-bit) based on layout in 0.18µm te
hnology, used by oursynthesis algorithm.

C h a p t e r 8 Con
lusion
This thesis presented a novel approa
h for behavioral synthesis of asyn
hronous
ir-
uits. The proposed approa
h seeks to merge the domains of traditional behavioralsynthesis and asyn
hronous
ir
uits. This is a

omplished by providing a
ompu-tation model, that is based upon asyn
hronous handshake
omponents and whi
hallows us to use the transformations and optimizations used in syn
hronous synthe-sis dire
tly in asyn
hronous
ir
uits. Furthermore the same model allows the use ofthe transformations and optimizations developed for
ontinuous time.The
entral elements in this thesis evolves around the
onne
tion between thesyn
hronization events used in traditional te
hniques of behavioral synthesis and thetransition handshake
omponent lo
ally
ontrolling the beginning of an operationand writing the result of an operation. This is bound together by our hardwarear
hite
ture
onsisting of a datapath with the transition handshake
omponent anda
ontroller determining these events. This
omputation model relaxes the stri
tordering of the syn
hronous
ir
uit and the syn
hronous s
hedule into the
ontinuoustime domain, the s
hedule for the asyn
hronous
ir
uit.We have a

omplished the following: (i) a method for synthesizing a CDFG to aBalsa-des
ription has been developed using a methodology
losely related to, but notrestri
ted to, traditional syn
hronous behavioral synthesis. This allows us to use ex-isting te
hniques for design spa
e exploration and resour
e sharing by adding physi
al
onstraints to the
ir
uit. (ii) A series of behavioral synthesis algorithms has beendeveloped for this purpose. The �rst is a power-aware synthesis algorithm, whi
htargets a power pro�le below a
ertain threshold. Here we have shown it is possibleto trade-in area to obtain this power pro�le. We have also shown that even thoughthe power pro�le dire
tly leads to a restri
tion on the number of multipliers in the

110 Con
lusion
ir
uit, the other smaller
ontributor operations still have a signi�
ant impa
t and arevery important for �nding the optimal s
hedule. Then we have implemented a more
onventional resour
e sharing synthesis algorithm based on the meta-heuristi
 algo-rithms; simulated annealing and evolutionary algorithm. For these we have shownthe simulated annealing algorithm outperforms the evolutionary algorithm with re-spe
t to run-time. We have also shown the meta-heuristi
 algorithms outperform the�rst power-aware algorithm with respe
t to run-time. (iii) We have developed dif-ferent
omputation models depending on the requirement to isolate fun
tional unitswhen they are idle and developed the asso
iated variable-lifetime algorithms. (iv) Wehave shown our approa
h to be e�
ient even for small
ir
uits and that the overheadof implementing our approa
h is small
ompared to the area saving a
hieved usingour method. (v) Using this method and the Balsa and Caden
e design tools severallayouts have been designed and simulated. The results show that it is possible to dotradeo�s between area and
ir
uit delay and to do so without any in
rease in power
onsumption for asyn
hronous
ir
uits. This gives us proof of
on
ept. Furthermorewe have an indi
ation that signi�
ant resour
e sharing leads to a redu
tion of theaverage load
apa
itan
e and thus a redu
tion of the power
onsumption.The rest of this
hapter will present the advantages of the proposed approa
h,put the method in perspe
tive and dis
uss future dire
tions.8.1 Advantages of the approa
hThere are several advantages of our approa
h to behavioral synthesis of asyn
hronous
ir
uits:Traditional datapath and
ontroller The fa
t that our target
omputation modelis the asyn
hronous equivalent to the syn
hronous
omputation model allowsus the use of existing traditional behavioral synthesis approa
hes. This enablesan entire range of behavioral synthesis algorithms to be
ome available.Continuous time Our
omputation model dire
tly targets s
hedules generated thro-ugh the use of
ontinuous time synthesis methods, this in
ludes methods fromoperations resear
h.Only handshake
omponents Our approa
h builds entirely on asyn
hronous
han-nels and handshake
omponents, in
luding the
ontroller part. This avoids theoften
omplex task of synthesizing an asyn
hronous
ontroller and allows forasyn
hronous
ir
uits of any size to be easily
onstru
ted.Building upon syntax dire
ted synthesis Our approa
h targets a high-level syn-tax dire
ted hardware des
ription language whi
h spe
i�
ally targets asyn-
hronous
ir
uits. This has the advantage that we do not need to keep upwith te
hnology
hange and maintaining a working sili
on ba
k-end.One
an also
onsider su
h a high-level language as an interfa
e to the asyn-
hronous world. Therefore several ba
k-ends are available as target, ranging

8.2 Perspe
tive on the approa
h 111from simple variations in handshake proto
ols and
ir
uit implementation stylesto entirely di�erent operations
hara
teristi
s as Burstmode
ir
uits.The fa
t that we target a high-level hardware des
ription language built fordesign of asyn
hronous
ir
uits, means that the designer, if unhappy with partsof the design generated by the behavioral synthesis tool,
an either repla
ethese parts with his own designs or dire
tly modify these parts to improve the
hara
teristi
s of the resulting
ir
uit.Low power datapaths Our approa
h targets the generation of low-power datap-aths, where
omputational intensive fun
tional units with large
ombinatorialdepths or that have a large load
apa
itan
e through a large number of output
onne
tion,
an be isolated by the use of non-transparent lat
hes.8.2 Perspe
tive on the approa
hOver the last de
ade asyn
hronous design has slowly but surely moved into industrys
ale designs and has found its way into
ommer
ial appli
ations by two primarydriving for
es:Appli
ation domain There are a number of appli
ations for whi
h one or more ofthe properties of asyn
hronous design is a requirement. Examples are;
ontrol
ir
uits on analog
ir
uitry, where the
lo
k would introdu
e noise to the analog
ir
uitry, and smart
ards where the
ir
uit only has a

ess to power when usedand often in very unreliable form. Most of these
ir
uits are
urrently smalland are manageable for the designer to optimize manually. However as wehave seen our synthesized
ir
uits either outperforms or performs equally wellto small
ustomized
ir
uits i.e. the GCD algorithm. Furthermore for theseappli
ation domains the
ir
uit delay
onstraint is usually easy to meet, leavinga large room for resour
e sharing. As the size and
omputational demandsof these
ir
uits in
rease beyond what
an be handled by small
ustomizedasyn
hronous hardware and asyn
hronous pro
essors, there will be a strongappli
ation for our approa
h here.The
lo
king problem Large digital
ir
uits designed using the System on Chipparadigm fa
e large problems when it
omes to managing the
lo
k in the �nallayout generation phase. A solution to this problem is the Globally Asyn-
hronous Lo
ally Syn
hronous (GALS) approa
h [56, 34℄, where the inter
on-ne
tion stru
ture is asyn
hronous and the
omputation takes pla
e on smallsyn
hronous islands. For the inter
onne
tion itself there is usually little
om-putation taking pla
e and a
ustom designed datapa
ket routing network willprobably outperform a synthesized version, unless the routing-proto
ol and -algorithm have a su�
iently high
omplexity. However in the future, it willnot be unlikely that some of these syn
hronous islands will be repla
ed by fullyasyn
hronous
ir
uit variants. These asyn
hronous
ir
uits will be
ome thetarget for the work presented in this thesis.

112 Con
lusion8.3 Future dire
tionsThe ben
hmark set, upon whi
h we have applied our methods, is a small set ofsynthesis problems. The next step is to apply our method to a larger �real�
ir
uitand
ompare with a manually designed asyn
hronous
ir
uit. A possibility
ould bea low-power 3D-graphi
s render engine appli
ation for portable devi
es. The renderpro
ess is a rather inhomogeneous appli
ation inwhi
h
hara
teristi
s depend highlyon the triangle set upon whi
h it operates [47℄.As we have seen the meta-heuristi
 algorithms are very e�e
tive, therefore aninteresting dire
tion would be the implementation of a power-aware meta-heuristi
simulated annealing algorithm. In parti
ular, this only involves �nding a new fea-sibility algorithm, whi
h fast
an generate a power- and time-
onstrained s
hedulefrom a infeasible solution [78, 32℄ If this is impossible one
ould simply use the exist-ing feasibility algorithm and add a heuristi

ost penalty for those s
hedules whi
hviolate the power
onstraint. This heuristi

ould simply be based on �nding themaximal violation and look at how many operations violate the
onstraint and then
onvert these into the area required to implement these,
orresponding to exe
utingthem at another point in time.The next improvement
on
erns the
ost fun
tion, whi
h we use to
ompute thearea
ost during design spa
e exploration. Currently only the FU area is a

ounted forand we need to make a better modeling of the target
ir
uit in
luding the lat
h area,inter
onne
t (multiplexor, demultiplexor) area and the area required to implementthe
ontroller [68, 37℄.Asyn
hronous
ir
uits operate in
ontinuous time and it would be natural to applysome of the
ontinuous time s
heduling algorithms, and
ompare with the s
hedulesfrom dis
rete time. This will investigate if there is a need to in
lude su
h algorithmsand whi
h are the most appropriate for asyn
hronous
ir
uit design [4, 3℄.For
ertain
riti
al sub-algorithms a spe
i�
 manual design e�ort will lead to asigni�
ant performan
e advantage. If su
h a sub-algorithm is su�
iently
ommon towarrant the design e�ort it
ould be made available to the target resour
e library.These more �
omplex� operators will be able to enter into our task-level CDFGsynthesis algorithm as a DFG fragment. It would be ne
essary to be able to identifythese spe
ial fragments in the CDFG [60℄.Many of the algorithms, whi
h with advantage
an be implemented as asyn-
hronous
ir
uits, are very dynami
 in nature. The one-to-one mapping of theCDFG to an asyn
hronous
ir
uit resembles this as it is a very �elasti
�
omputation.Whereas the s
hedules produ
es by the behavioral synthesis algorithms
onsideredin this thesis are stati
. These algorithm operate by �nding the near global optimumby the information available at
ompile time. However a lot of information is notavailable at
ompile time; the path through the
onditional parts of the algorithmand
onditionally repetitive parts. One approa
h would be to take advantage of theasyn
hronous nature and look into methods for making the
ontrol of the
ir
uitmore dynami
, perhaps even a primitive form of dynami
 s
heduling.

Bibliography
[1℄ J. Monteiro, S. Devadas, P. Ashar and A. Mauskar. S
heduling te
hniques toenable power management. In Pro
eedings of the 33rd
onferen
e on Designautomation, 1996.[2℄ H. Zheng, B. Ba
hman and C. Myers. Ar
hite
tural synthesis of timed asyn-
hronous systems. In International Conferen
e on Computer Design (ICCD'99), pages 354�363, Washington - Brussels - Tokyo, O
tober 1999. IEEE.[3℄ B. M. Ba
hman, H. Zheng, and C. J. Myers. Ar
hite
tural synthesis of timedasyn
hronous systems. In Pro
. ICCD'99 (IEEE International Conferen
e onComputer Design: VLSI in Computers and Pro
essors), pages 354�363, O
to-ber 1999.[4℄ Rosa M. Badia and Jordi Cortadella. High-level synthesis of asyn
hronous sys-tems: S
heduling and pro
ess syn
hronization. In Pro
. European Conferen
eon Design Automation (EDAC), pages 70�74. IEEE Computer So
iety Press,February 1993.[5℄ J. Liu, P.H. Chou, N. Bagherzadeh and F. Kurdahi. A
onstraint-based appli
a-tion model and s
heduling te
hniques for power-aware systems. In Pro
eedingsof the ninth international symposium on Hardware/software
odesign, 2001.[6℄ A. Bardsley. Implementing Balsa Handshake Cir
uits. PhD thesis, Departmentof Computer S
ien
e, University of Man
hester, 2000.[7℄ A. Bardsley and D. Edwards. Compiling the language Balsa to delay-insensitivehardware. In C. D. Kloos and E. Cerny, editors, Hardware Des
ription Lan-guages and their Appli
ations (CHDL), pages 89�91, April 1997.[8℄ A. Bardsley and D. Edwards. The Balsa asyn
hronous
ir
uit synthesis system.In Forum on Design Languages, September 2000.

114 BIBLIOGRAPHY[9℄ Peter A. Beerel, Wei
hun Chou, and Kenneth Y. Yun. A heuristi

over-ing te
hnique for optimizing average-
ase delay in the te
hnology mapping ofasyn
hronous burst-mode
ir
uits. In Pro
. European Design Automation Con-feren
e (EURO-DAC), September 1996.[10℄ E.Y. Chung, L. Benini and G.de Mi
heli. Dynami
 power management usingadaptive learning tree. In Pro
eedings of the IEEE/ACM international
onfer-en
e on Computer-aided design, p.274-279, 1999.[11℄ C. H. (Kees) van Berkel, Cees Niessen, Martin Rem, and Ronald W. J. J.Saeijs. VLSI programming and sili
on
ompilation. In Pro
. International Conf.Computer Design (ICCD), pages 150�166. IEEE Computer So
iety Press, 1988.[12℄ Kees van Berkel, Joep Kessels, Marly Ron
ken, Ronald Saeijs, and Frits S
halij.The VLSI-programming language Tangram and its translation into handshake
ir
uits. In Pro
. European Conferen
e on Design Automation (EDAC), pages384�389, 1991.[13℄ Tobias Bjerregaard, Shankar Mahadevan, and Jens Sparsø. A
hannel libraryfor asyn
hronous
ir
uit design supporting mixed-mode modeling. In Pro
eed-ings of the Fourteenth International Workshop on Power and Timing Modeling,Optimization and Simulation, PATMOS2004, 2004.[14℄ I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou.Handshake proto
ols for de-syn
hronization. In Pro
. International Symposiumon Advan
ed Resear
h in Asyn
hronous Cir
uits and Systems, pages 149�158.IEEE Computer So
iety Press, April 2004.[15℄ Ivan Blunno and Lu
iano Lavagno. Automated synthesis of mi
ro-pipelinesfrom behavioral Verilog HDL. In Pro
. International Symposium on Advan
edResear
h in Asyn
hronous Cir
uits and Systems, pages 84�92. IEEE ComputerSo
iety Press, April 2000.[16℄ Alex Branover, Rakefet Kol, and Ran Ginosar. Asyn
hronous design by
onver-sion: Converting syn
hronous
ir
uits into asyn
hronous ones. In Pro
. Design,Automation and Test in Europe (DATE), pages 870�875, February 2004.[17℄ Erik Brunvand. Translating Con
urrent Communi
ating Programs into Asyn-
hronous Cir
uits. PhD thesis, Carnegie Mellon University, 1991.[18℄ C. Gi, Lyuh, Tewhan and Kim. High-reliability, low energy mi
roar
hite
turesynthesis. IEEE Transa
tions on Very Large S
ale Integration (VLSI) Systems,11(3):364�375, 2003.[19℄ J.M. Chang and M. Pedram. Register allo
ation and binding for low power. InIEEE
onferen
e on Design Automation Conferen
e, DAC95, 1995.

BIBLIOGRAPHY 115[20℄ Tiberiu Chel
ea and Steven M. Nowi
k. Resynthesis and peephole transfor-mations for the optimization of large-s
ale asyn
hronous systems. In Pro
.ACM/IEEE Design Automation Conferen
e, June 2002.[21℄ D. Chen and J. Cong. Register binding and port assignment for multiplexer op-timization. In Pro
eedings of the Asia Pa
i�
 Design Automation Conferen
e,2004.[22℄ J. Cortadella and R. M. Badia. An asyn
hronous ar
hite
ture model for behav-ioral synthesis. In Pro
. European Conferen
e on Design Automation (EDAC),pages 307�311. IEEE Computer So
iety Press, 1992.[23℄ J. Cortadella, R. M. Badia, E. Pastor, and a: Pardo. A
hilles: a high-levelsynthesis system for asyn
hronous
ir
uits. In D. D. Gajski, editor, Pro
. 6thInternational Workshop on High-Level Synthesis, pages 87�94. Univ. California,1992.[24℄ J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.Logi
 Synthesis of Asyn
hronous Controllers and Interfa
es. Springer-Verlag,2002.[25℄ J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou. Fromsyn
hronous to asyn
hronous: an automati
 approa
h. In Pro
. Design, Au-tomation and Test in Europe (DATE), pages 1368�1369, February 2004.[26℄ Jordi Cortadella, Mi
hael Kishinevsky, Alex Kondratyev, Lu
iano Lavagno, andAlexandre Yakovlev. Petrify: a tool for manipulating
on
urrent spe
i�
ationsand synthesis of asyn
hronous
ontrollers. In XI Conferen
e on Design ofIntegrated Cir
uits and Systems, Bar
elona, November 1996.[27℄ D. Kang, S. Crago and J. Suh. Power-aware design synthesis te
hniques fordistributed real-time systems. In Pro
eedings of ACM SIGPLAN workshop onOptimization of middleware and distributed systems, 2001.[28℄ Jim Crenshaw and Majid Sarrafzadeh. Low power driven s
heduling and bind-ing. In Great Lakes Symposium on VLSI '98, 1998.[29℄ A. Dasgupta. High-reliability, low energy mi
roar
hite
ture synthesis. IEEETransa
tions on Computer-Aided Design, 17:1273�1280, 1998.[30℄ A. Dasgupta and R. Karri. Simultaneusly s
heduling and binding for powerminimization during mi
roar
hite
ture synthesis. In Pro
eedings of the 1995international symposium on Low Power Design, 1995.[31℄ A. Davoodi and A. Srivastav. E�e
tive graph theoreti
 te
hniques for thegeneralized low power binding problem. In International Symposium on LowPower Ele
troni
s and Design, ISLPED03, 2003.

116 BIBLIOGRAPHY[32℄ D.E. Goldberg, editor. Geneti
 Algorithms in Sear
h, Optimization and Ma-
hine Learning. Addison-Wesley, 1989.[33℄ Ja
k B. Dennis. Data Flow Computation. In Control Flow and Data Flow� Con
epts of Distributed Programming, International Summer S
hool, pages343�398, Marktoberdorf, West Germany, July 31 � August 12, 1984. Springer,Berlin.[34℄ R. Dobkin, R. Ginosar, and C. P. Sotiriou. Data syn
hronization issues inGALS SoCs. In Pro
. International Symposium on Advan
ed Resear
h in Asyn-
hronous Cir
uits and Systems, pages 170�179. IEEE Computer So
iety Press,April 2004.[35℄ Jo Ebergen. Squaring the FIFO in GasP. In Pro
. International Symposiumon Advan
ed Resear
h in Asyn
hronous Cir
uits and Systems, pages 194�205.IEEE Computer So
iety Press, Mar
h 2001.[36℄ D. Edwards and A. Bardsley. Balsa � an asyn
hronous hardware synthesissystem. In J. Sparsø and S. Furber, editors, Prin
iples of asyn
hronous
ir
uitdesign � A systems perspe
tive,
hapter 9�12, pages 155�218. Kluwer A
ademi
Publishers, 2001.[37℄ Y.M. Fang and D.F. Wong. Simultaneous-fun
tional unit binding and �oorplan-ning. In In Digest of Te
hni
al Papers, International Conferen
e on Computer-Aided Design (ICCAD)), 1994.[38℄ Karl M. Fant and S
ott A. Brandt. NULL
onventional logi
: A
omplete and
onsistent logi
 for asyn
hronous digital
ir
uit synthesis. In International Con-feren
e on Appli
ation-spe
i�
 Systems, Ar
hite
tures, and Pro
essors, pages261�273, 1996.[39℄ Jiong Luo, Lin Zhong, Yunsi Fei and Niraj K. Jha. Register binding based rtlpower management for
ontrol- �ow intensive designs. Te
hni
al report, Dept.of Ele
tri
al Engineering Prin
eton University, Prin
eton., 1999.[40℄ R. M. Fuhrer and S. M. Nowi
k. Sequential Optimization of Asyn
hronous andSyn
hronous Finite-State Ma
hines Algorithms and Tools. Kluwer A
ademi
Publishers, June 2001. ISBN 0-7923-7425-8.[41℄ R. M. Fuhrer, S. M. Nowi
k, M. Theobald, N. K. Jha, B. Lin, and L. Plana.Minimalist: An environment for the synthesis, veri�
ation and testabilityof burst-mode asyn
hronous ma
hines. Te
hni
al Report TR CUCS-020-99,Columbia University, NY, July 1999.[42℄ S. Kirkpatri
k, C.D. Gelatt and M.P. Ve

hi. Optimization by simulated an-nealing. S
ien
e, pages 671�680, 1983.[43℄ Fred Glover. Tabu sear
h. ORSA Journal on Computing, pages 190�206, 1989.

BIBLIOGRAPHY 117[44℄ F. Gruian and K. Ku
h
inski. Operation binding and s
heduling for low powerusing
onstraint logi
 programming. In IEEE EUROMICRO 98, 1998.[45℄ S. Gupta and S.Katkoori. For
e-dire
ted s
heduling for dynami
 power opti-mization. In IEEE/ISVLSI Pro
eedings of the IEEE Computer So
iety AnnualSymposium on VLSI, 2002.[46℄ J. P. Hammerstoft. High-level synthesis of asyn
hronous
ir
uits from
ontroldata �ow graphs. Master's thesis, IMM-thesis-2001-44, Te
hni
al University ofDenmark, Dept. of Informati
s and Mathemati
al Modelling, August 2001. (InDanish).[47℄ H. Holten-Lund. Design for s
alability in 3D
omputer graphi
s ar
hite
tures.PhD thesis, Informati
s and Mathemati
al Modelling, Te
hni
al University ofDenmark, DTU, Ri
hard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby,2002.[48℄ Hans Ja
obson, Erik Brunvand, Ganesh Gopalakrishnan, and PrabhakarKudva. High-level asyn
hronous system design using the ACK framework. InPro
. International Symposium on Advan
ed Resear
h in Asyn
hronous Cir-
uits and Systems, pages 93�103. IEEE Computer So
iety Press, April 2000.[49℄ R. Rim, M. Mujumdar, A. Jain and R. de Leone. Optimal and heuristi
 al-gorithms for solving the binding problem. IEEE Transa
tions on Very LargeS
ale Integration (VLSI) Systems, 2(2):211�225, 1994.[50℄ J. S. Jensen. High-level synthesis of asyn
hronous
ir
uits. Master's thesis,IT-E-840, Te
hni
al University of Denmark, Dept. of Information Te
hnology,June 2000. (In Danish).[51℄ J.F. Sowa, editor. Knowledge Representation: Logi
al, Philosophi
al, and Com-putational Foundations. Brooks
ole Publishin Co, 1999.[52℄ David S. Johnson. Approximation algorithms for
ombinatorial problems. Jour-nal of Computer and System S
ien
es, pages 256�278, 1974.[53℄ Joep Kessels, Ad Peeters, Torsten Kramer, Markus Feuser, and Klaus Ully.Designing an asyn
hronous bus interfa
e. In Pro
. International Symposiumon Advan
ed Resear
h in Asyn
hronous Cir
uits and Systems, pages 108�117.IEEE Computer So
iety Press, Mar
h 2001.[54℄ Euiseok Kim, Jeong-Gun Lee, and Dong-Ik Lee. Automati
 pro
ess-oriented
ontrol
ir
uit generation for asyn
hronous high-level synthesis. In Pro
. In-ternational Symposium on Advan
ed Resear
h in Asyn
hronous Cir
uits andSystems, pages 104�113. IEEE Computer So
iety Press, April 2000.[55℄ C.M. Krishna and Y.H. Lee. Voltage-
lo
k-s
aling adaptive s
heduling te
h-niques for low power in hard real-time systems. In Pro
eedings of the SixthIEEE Real Time Te
hnology and Appli
ations Symposium (RTAS 2000), 2000.

118 BIBLIOGRAPHY[56℄ Milo² Krsti¢ and E
khard Grass. New GALS te
hnique for datapath ar
hi-te
tures. In Jorge Juan Chi
o and Enri
o Ma
ii, editors, Power and TimingModeling, Optimization and Simulation (PATMOS), volume 2799 of Le
tureNotes in Computer S
ien
e, pages 161�170, September 2003.[57℄ Lars Kruse, Eike S
hmidt, Gerd Jo
hens, Ansgar Stammermann, Arne S
hulz,Enri
o Ma
ii, and Wolfgang Nebel. Estimation of lower and upper bounds onthe power
onsumption from s
heduled data �ow graphs. IEEE Trans. on VeryLarge S
ale Integration (VLSI) Systems, 9(1):3�15, 2001.[58℄ Jer-Min Jou, Shiann-Rong Kuang and Ren-Der Chen. Clique partitioning basedintegrated ar
hite
ture synthesis for vlsi
hips. In Pro
eedings of InternationalSymposium on VLSI Te
hnology, Systems, and Appli
ations, pages 58-62, 1993.[59℄ P. Kudva, G. Gopalakrishnan, and V. Akella. High level synthesis of asyn-
hronous
ir
uit targeting state ma
hine
ontrollers. In Asia-Pa
i�
 Conferen
eon Hardware Des
ription Languages (APCHDL), pages 605�610, 1995.[60℄ G. Lakshminarayana and N. K. Jha. Synthesis of power-optimized and area-optimizaed
ir
uits from hierar
hi
al behavoiral des
riptions. In In pro
eedingsof 35th annual ACM IEEE
onferen
e on Design aytomation, 1998.[61℄ K.S. Khouri, G. Lakshminarayana and N.K. Jha. Impa
t: A high-level synthesissystem for low power
ontrol-�ow intensive
ir
uits. In In pro
eedings DesignAutomation and Test in Europe DATE'98, 1998.[62℄ S.C. Leung and H.F. Li. A syntax-dire
ted translation for the synthesis ofdelay-insensitive
ir
uits. IEEE Trans. on Very Large S
ale Integration (VLSI)Systems, 2(2):196�210, 1994.[63℄ K.-J. Lin and C.-S. Lin. Removing CSC violations in asyn
hronous
ir-
uits by delay padding. IEE Pro
eedings, Computers and Digital Te
hniques,143(6):413�420, November 1996.[64℄ T.Kim, N. Yonezawa, J.W.S. Liu and C.L. Liu. A s
heduling algorithm for
onditional resour
e sharing - a hiera
hi
al redu
tion approa
h. IEEE Trans.Computer Aided Design Integrated Cir
uits Syst, 13(4):425�437, 1994.[65℄ A. Madalinski, A. Bystrov, V. Khomenko, and A. Yakovlev. Visualization andresolution of
oding
on�i
ts in asyn
hronous
ir
uit design. In Pro
. Design,Automation and Test in Europe (DATE). IEEE Computer So
iety Press, Mar
h2003.[66℄ Mi
hael R. Garey and David S. Johnson, editor. Computers and Intra
tability:A Guide to the Theory of NP-Completeness. W.H Freeman, 1979.[67℄ G. De Mi
heli. Synthesis and optimization of digital
ir
uits. M
Graw-Hill,1994.

BIBLIOGRAPHY 119[68℄ H. Me
ha, M. Fernandes, F. Tirade, J. Septien, D. Motes and K. Ol
oz. Amethod for are estimation of datapath in high level synthesis. IEEE Trans.Comput. Aided Des. Integ. Cir
uits Syst, 15(2):258�265, 1996.[69℄ E. Musoll and J. Cortadella. High-level synthesis te
hniques for redu
ing thea
tivity of fun
tional units. In Pro
eedings of ISLPD95, 1995.[70℄ E. Musoll and J. Cortadella. S
heduling and resour
e binding for low power.In Pro
eedings of the 8th international symposium on System synthesis, 1995.[71℄ Chris J. Myers. Asyn
hronous Cir
uit Design. John Wiley & Sons, July 2001.ISBN: 0-471-41543-X.[72℄ N.H.E. Weste and K. Eshraghian, editor. Prin
iples of CMOS VLSI Design,A systems perspe
tive. aw, 1993.[73℄ S. F. Nielsen, J. Sparsø, J. Madsen, J. Hammerstoft, and J. S. Hansen. High-level synthesis of asyn
hronous
ir
uits from
ontrol data �ow graph represen-tations. In Se
ond ACiD-WG Workshop (of the European Commission's �fthFramework Programme), January 2002.[74℄ Sune F. Nielsen and Jan Madsen. Power
onstrained high-level synthesis of bat-tery powered digital systems. In Pro
. International Symposium on Advan
edResear
h in Asyn
hronous Cir
uits and Systems, Mar
h 2003.[75℄ Sune F. Nielsen, Jens Sparsø, and Jan Madsen. High-level synthesis of asyn-
hronous
ir
uits from
ontrol data �ow graph representations. In Pro
. In-ternational Symposium on Advan
ed Resear
h in Asyn
hronous Cir
uits andSystems, January 2002.[76℄ Enri
 Pastor, Jordi Cortadella, Alex Kondratyev, and Oriol Roig. Stru
turalmethods for the synthesis of speed-independent
ir
uits. IEEE Transa
tionson Computer-Aided Design, 17(11):1108�1129, November 1998.[77℄ P.G. Paulin and J.P. Knight. S
heduling and binding algorithms for high-level synthesis. In Pro
eedings of the 26�th ACM/IEEE Design AutomationConferen
e (DAC),p.1-6, 1989.[78℄ P.J.M. Van Laarhoven and E.H.L. Aarts, editor. Simulated Annealing: Theoryand Pra
ti
e. Kluwer A
ademi
 Publishers, 1987.[79℄ P.J.M Van Laarhoven and E.H.L. Aarts, editor. Simulated Annealing andBoltzmann Ma
hines. John Wiley and Sons, 1989.[80℄ I. Hong, M. Potkonjak and M.B. Srivastava. On-line s
heduling of hard real-time tasks on variable voltage pro
essor. In Pro
eedings of the 1998 IEEE/ACMinternational
onferen
e on Computer-aided design, 1998.

120 BIBLIOGRAPHY[81℄ A. Chandrakasan, M. Potkonjak, J. Rabaey and R. W. Brodersen. Hyper-lp:a system for power minimization using ar
hite
tural transformations. InInternational Conferen
e on Computer-Aided Design, pp.300-303, 1992.[82℄ A. Chandrakasan, R. Mehra, M. Potkonjak, J. Rabaey and R. W. Brodersen.Optimizing power using transformations. In IEEE Transa
tions on CAD, Vol.14, No. 1, pages 12�31, 1995.[83℄ A. Raghunathan and N. Jha. An ilp formulation for low power based on mini-mizing swit
hed
apa
itan
e during datapath allo
ation. In IEEE Symposiumon Cir
uits and Systems, 1995.[84℄ N. Ranganathan and A.K. Murugavel. Advan
es in embedded software s
hedul-ing te
hniques: A low power s
heduler using game theory. In IEEE/ACM/IFIPinternational
onferen
e on Hardware/Software
odesing and system synthesis,2003.[85℄ M. Renaudin, P. Vivet, and F. Robin. A design framework for asyn-
hronous/syn
hronous
ir
uits based on CHP to HDL translation. In Pro
.International Symposium on Advan
ed Resear
h in Asyn
hronous Cir
uits andSystems, pages 135�144, April 1999.[86℄ S. M. Nowi
k and M. B Josephs and C. H. (Kees) van Berkel (editors). Spe
ialIssue on Asyn
hronous Cir
uits and Systems. Pro
eedings of the IEEE, 87(2),February 1999.[87℄ Sabih G. Gerez, editor. Algorithms for VLSI Design. Kluwer A
ademi
 Pub-lishers, 1999.[88℄ M. Sa
ker, A. Brown, P. Wilson, and A. Rushton. A general purpose be-havioural asyn
hronous synthesis system. In Pro
. International Symposiumon Advan
ed Resear
h in Asyn
hronous Cir
uits and Systems, pages 125�134.IEEE Computer So
iety Press, April 2004.[89℄ D. Shin and K. Choi. Low power high level synthesis by in
reasing data
or-relation. In IEEE/ACM/IFIP international
onferen
e on Hardware/Software
odesing and system synthesis, 1997.[90℄ Gerald E. Sobelman and Karl Fant. CMOS
ir
uit design of threshold gateswith hysteresis. In Pro
. International Symposium on Cir
uits and Systems,pages 61�64, June 1998.[91℄ D. Sokolov, A. Bystrov, and A. Yakovlev. STG optimisation in the dire
tmapping of asyn
hronous
ir
uits. In Pro
. Design, Automation and Test inEurope (DATE). IEEE Computer So
iety Press, Mar
h 2003.[92℄ J. Sparsø and S. Furber, editors. Prin
iples of asyn
hronous
ir
uit design �A systems perspe
tive. Kluwer A
ademi
 Publishers, 2001.

BIBLIOGRAPHY 121[93℄ Sune F. Nielsen, Jens Sparsø and Jan Madsen. Towards behavioral synthesis ofasyn
hronous
ir
uits - an implementation template targeting syntax dire
ted
ompilation. In Pro
. EUROMICRO DSC, Aug 2004.[94℄ L. Kruse, E. S
hmidt, G. Jo
hens, A. Stammermann and W. Nebel. Lowerbound estimate for low power high-level synthesis. In Pro
eedings of ISSS2000, 2000.[95℄ Stephen A. Ward and Robert H. Halstead, editor. Computation stru
tures.MIT Press, 1990.[96℄ Leon Stok. Ar
hite
tural Synthesis and Optimization of Digital Systems. PhDthesis, Eindhoven University of Te
hnology, 1991.[97℄ Ivan Sutherland and S
ott Fairbanks. GasP: A minimal FIFO
ontrol. In Pro
.International Symposium on Advan
ed Resear
h in Asyn
hronous Cir
uits andSystems, pages 46�53. IEEE Computer So
iety Press, Mar
h 2001.[98℄ Mi
hael Theobald and Steven M. Nowi
k. Fast heuristi
 and exa
t algorithmsfor two-level hazard-free logi
 minimization. IEEE Transa
tions on Computer-Aided Design, 17(11):1130�1147, November 1998.[99℄ Tseng and D.P. Siewiorek. Automated synthesis of data paths in digital sys-tems. IEEE Transa
tions on Computer-Aided Design of Integrated Cir
uitsand Systems, CAD, 5(3):379�395, 1986.[100℄ Kees van Berkel. Handshake Cir
uits: an Asyn
hronous Ar
hite
ture for VLSIProgramming, volume 5 of International Series on Parallel Computation. Cam-bridge University Press, 1993.[101℄ M. van der Korst, A. Peeters, and H. S
hols, editors. Design and Implementa-tion of Asyn
hronous Cir
uits. Koninklijke Nederlandse Akademie van Weten-s
happen, North-Holland, June 1992. Pro
eedings of workshop Amsterdam,10�14 November 1991.[102℄ D. Rakhmatov, S. Vrudhula and C. Chakrabarti. Battery-
ons
ious task se-quen
ing for portable devi
es in
luding voltage/
lo
k s
aling. In Pro
eedingsof the 39th
onferen
e on Design automation, 2002.[103℄ K. Wakabayashi and T. Yoshimura. A resour
e sharing
ontrol synthesismethod for
onditional bran
hes. In In Digest of Te
hni
al Papers, Interna-tional Conferen
e on Computer-Aided Design (ICCAD)), 1989.[104℄ Catherine G. Wong and Alain J. Martin. High-level synthesis of asyn
hronoussystems by data-driven de
omposition. In Pro
. ACM/IEEE Design Automa-tion Conferen
e, pages 508�513, June 2003.

122 BIBLIOGRAPHY[105℄ T. Yoneda, H. Onda, and C. Myers. Synthesis of speed independent
ir
uitsbased on de
omposition. In Pro
. International Symposium on Advan
ed Re-sear
h in Asyn
hronous Cir
uits and Systems, pages 135�145. IEEE ComputerSo
iety Press, April 2004.[106℄ Kenneth Y. Yun and David L. Dill. Automati
 synthesis of extended burst-mode
ir
uits: Part I and II. IEEE Transa
tions on Computer-Aided Design,18(2):101�117, 118�132, February 1999.[107℄ Kenneth Y. Yun and David L. Dill. Automati
 synthesis of extended burst-mode
ir
uits: Part I (spe
i�
ation and hazard-free implementation). IEEETransa
tions on Computer-Aided Design, 18(2):101�117, February 1999.[108℄ Kenneth Y. Yun and David L. Dill. Automati
 synthesis of extended burst-mode
ir
uits: Part II (automati
 synthesis). IEEE Transa
tions on Computer-Aided Design, 18(2):118�132, February 1999.[109℄ Kenneth Y. Yun, David L. Dill, and Steven M. Nowi
k. Synthesis of 3Dasyn
hronous state ma
hines. In Pro
. International Conf. Computer Design(ICCD), pages 346�350. IEEE Computer So
iety Press, O
tober 1992.[110℄ L. Zhong and N.K. Jha. Inter
onne
t-aware high-level synthesis for low power.In IEEE ICCAD p.110-117, 2002.

