ﬁ CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

Behavioral Synthesis of Asynchronous Circuits

Ph.D. thesis
by
Sune Fallgaard Nielsen

Computer Science and Technology
Informatics and Mathematical Modelling
Technical University of Denmark

https://core.ac.uk/display/13706355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This dissertation is submitted to Informatics and Mathematical Modeling at the
Technical University of Denmark in partial fulfillment of the requirements for the
degree of Doctor of Philosophy.

The work has been supervised by Associate Professor Jens Sparsg and Professor Jan
Madsen.

Kgs. Lyngby, December 31, 2004

Sune Fallgaard Nielsen

Resumeé

Denne athandling presenterer en metode for behavioral syntese af asynkrone kred-
slgb. Malet er at tilvejebringe et syntese flow, som udnytter og overfgrer metoder fra
synkrone kredslgb til asynkrone kredslgb. Ideen er at flytte den synkrone behavioral
syntese abstration ind i det asynkrone handshake domane ved hjxlp af en beregn-
ings model, som ligner den synkrone datavej og kontrolenheds struktur, men som er
fuldstaendig asynkron.

Denne model indeholder muligheden for at isolerer enkelte eller alle beregningse-
lementer ved at lase deres respektive inputs og outputs nar beregningselementer er
inaktivt. Dette reducerer ungdvendig skifteaktivitet i de enkelte beregningselementer
og derved energiforbruget af hele kredslgbet. En samling af behavioral syntese algo-
ritmer er blevet udviklet, som tillader designeren at foretage design space exploration
bestemt af bade power- og udfgrelsestids-krav. Datavej og kontrol arkitekturen bliver
derefter udtrykt i Balsa-sproget, og syntaks styret oversattelse anvendes til at kon-
strurere det tilhgrende asynkrone handshake kredslgb (og evt. endeligt et layout).

Resumeé

Abstract

This thesis presents a method for behavioral synthesis of asynchronous circuits, which
aims at providing a synthesis flow which uses and tranfers methods from synchronous
circuits to asynchronous circuits. We move the synchronous behavioral synthesis
abstraction into the asynchronous handshake domain by introducing a computa-
tion model, which resembles the synchronous datapath and control architecture, but
which is completely asynchronous. The model contains the possibility for isolating
some or all of the functional units by locking their respective inputs and outputs
while the functional unit is idle. This reduces unnecessary switching activity in the
individual functional units and therefore the energy consumption of the entire cir-
cuit. A collection of behavioral synthesis algoritms have been developed allowing
the designer to perform time and power constrained design space exploration. The
datapath and control architecture is then expressed in the Balsa-language, and using
syntax directed compilation a corresponding handshake circuit implementation (and
eventually a layout) is produced.

vi

Abstract

Acknowledgments

Many people have helped me to arrive at this point, all of whom I am grateful to.

viii Acknowledgments

Contents

1 Introduction

1.1
1.2

From synchronous to asynchronous behavioral synthesis
Thesis outline and readers guide

2 Background

2.1
2.2

2.3

3.1

3.2
3.3
3.4

3.5

Synthesis flow and CDFG format
Behavioral synthesis oo Lo
2.2.1 ASAP and ALAPo
Asynchronous circuit design L

Related Work

Low power behavioral synthesis, an overview
3.1.1 Lower bounds on switching activity
3.1.2 Reducing switching activity of functional units
3.1.3 Reducing switching activity at CDFG level
3.1.4 Memory allocation for low-power
3.1.5 Interconnect design for low-power.
Asynchronous behavioral synthesis, an overview
Asynchronous logic synthesis 0L
Asynchronous behavioral synthesis
3.4.1 Partitioned controllers oL
3.4.2 syntax-directed synthesis
3.4.3 Synthesis of Asynchronous Circuits
3.4.4 Desynchronization L.
3.4.5 Variable length time-slot behavioral synthesis
Summary L

Contents

Behavioral Synthesis for Asynchronous Circuits 39
4.1 From synchronous to asynchronous behavioral synthesis 39
4.2 Asynchronous behavioral synthesis 45
4.3 Datapath synthesis o000 o 47
4.3.1 Datapath with out input/output FU latches (alpha) 48
4.3.2 Datapath with input/output FU latches (beta) 51
4.3.3 Datapath with mixed input/output FU latches (gamma) 54
4.4 SUMMAryo e 56
Implementation in Balsa 57
5.1 Program structure oL a7
5.2 Events: using functional unitso 60
5.3 Implementing a schedule 61
5.4 TImplementing the architecture. 63
5.5 Optimizations 67
5.6 Summary e 70
Algorithms for Behavioral Synthesis 73
6.1 Power-aware scheduling 0. 74
6.1.1 Problem formulation 0L 75
6.1.2 Power heuristic scheduling 75
6.1.3 Power and time constrained synthesis 77
6.2 Implementing synchronous power aware schedules in asynchronous cir-
CUItS . . . o o e 81
6.3 Simulated annealing and evolutionary algorithm 82
6.3.1 Problem formulation 000 82
6.3.2 Representation and feasibility 84
6.3.3 Simulated annealing 0oL 85
6.3.4 Evolutionary algorithm 86
6.4 Control data flow graph synthesis 88
6.5 Summary 92
Results 93
7.1 Results for power aware scheduling 94
7.2 Results for simulated annealing and evolutionary algorithm 96
7.3 Results for asynchronous behavioral synthesis 99
731 GCD 101
7.3.2 Benchmarks 0 L 102
7.3.3 Layoutresults. 104
T4 Summary 105
Conclusion 109
8.1 Advantages of the approach 110
8.2 Perspective on the approach 0oL 111

8.3 Future directions 112

Contents xi

Bibliography 113

xii Contents

CHAPTER 1

Introduction

Today, a wide range of dedicated real-time applications are emerging. Examples of
these are the next generation of mobile phones, smart-cards and more futureristic
applications as e-identification, e-payment, e-key systems etc. For such portable
wire-less applications power is a limited resource because of restrictions in battery
size or because power is extracted from the environment (light, magnetic fields or
heat etc.). Furthermore, to meet the extreme size and weight requirements the entire
system (input/output transducers, analog circuitry, futuristic-circuitry, power supply
and the digital system, consisting of digital hardware and software) is implemented
onto one single chip (“System on Chip”).

The focus of this research is the hardware part of the digital system, which oper-
ates under the following difficult characteristics:

Data Processing The applications are reactive in nature with data arriving in
bursts with long periods of waiting. In-between bursts ultra low-power op-
eration is required, while during bursts heavy computation, such as encryption
for secure data transmission, is required.

Response Time For some applications the time to respond to an external event
is crucial as otherwise data will be irrevocably lost, requiring a close to zero
transition time from sleep mode into full-speed operation.

Power Supply For battery-less applications external power is provided spuriously
by the environment and stored internally on large storage capacitors leading to
a very limited power supply often of poor quality.

Noise Level The presence of on-chip analog and RF-circuitry sets severe restrictions

2 Introduction

for the electric-noise and electromagnetic-emission of the digital circuit such as
not to disrupt input/output-interfacing or RF-communication.

Asynchronous design offers several advantages, compared to synchronous design,
for the design of these intelligent circuits. The asynchronous design methodology
specifically targets low-power operation (power is only used when processing) and the
self-timed nature leads to an immediate response time. Furthermore asynchronous
circuits are inherently insensitive (and thus robust) to variations in temperature,
process parameters and supply voltage. The latter can be used advantageously since,
if the circuit has access to external power, the supply voltage can be decreased allow-
ing for ultra low-power operation. Finally, the asynchronous nature of the switching
activity causes the electromagnetic and electric noise contributions to evenly dis-
tribute across the frequency spectrum (equivalent to white noise). This reduces
spikes in the spectrum down to a level which allows co-existence with analog and
RF-circuitry. Typically only critical subparts (with respect to operating character-
istics) of the digital system will be implemented asynchronously and the remaining
part synchronously.

Currently, the lack of synthesis methods and tools which are capable of directly
synthesizing a working asynchronous circuit from a high-level specification makes the
design of large systems a tedious effort involving more design work than designing
a corresponding synchronous circuit. The majority of existing synthesis tools in
this area are low-level and dedicated to the generation of control circuitry [24, 40,
71, 86, 92]. A few high-level synthesis tools exist, among those the Tangram silicon
compiler developed by Philips Research Labs and the somewhat similar public domain
version BALSA from Manchester University. These tools use special asynchronous
hardware description languages dedicated to asynchronous design, that does not fit
well into existing VHDL /SystemC based design flows and CAD-tools. Furthermore,
the supported synthesis process, syntax-directed compilation, is characterized by a
one-to-one correspondence between specification and implementation.

Let us begin by looking into the current status of synthesis flows of synchronous
and asynchronous circuits as illustrated by Figure 1.1. Synthesis of synchronous cir-
cuits, which is illustrated in the left column of Figure 1.1, has succeeded in raising
the level of abstraction to that of specifying circuits at the behavioral level. From
a behavioral description in a language like VHDL, Verilog or System-C some inter-
mediate representation is extracted — often a control data flow graph (CDFQG). From
the CDFG the classic synthesis tasks [67] of scheduling, allocation, and binding is
performed resulting in a RTL level circuit description which is then synthesized into
gate-level circuits and eventually a layout.

Synthesis of asynchronous circuits is illustrated in the right column of Figure 1.1.
It is less mature and several somewhat different approaches is being pursued. The
most influential of the available synthesis tools fall in two categories: (i) synthesis
of large-scale RTL level circuits based on syntax-directed compilation from CSP-like
languages: Tangram [11, 100], OCCAM [17], Balsa [8], ACK [59] and TAST [85], and
(ii) synthesis of small-scale sequential control circuits [26, 41]. The tools that per-
form syntax directed compilation target a library of so-called handshake components.

1.1 From synchronous to asynchronous behavioral synthesis 3

Abstraction level
(Representations)

Design Flow:
Behaviour —> CDFG —> CSP-type program —> Cir

SystemC/ = This thesis:

VHPL/ - Computation model
Verilog - Scheduling etc.

CDFG - Implementation template

Behavioral _ 7
Synthesig
RTL CSP-type
description| program

Netlist of Handshake

components components

Gate/ Cell Gate/ Cell

Layout Layout
Synchronous Asynchronous
design design

Figure 1.1: Existing synchronous and asynchronous design flows and the design flow
addressed in this thesis.

The handshake components can be designed using in principle any of the sequential
control circuit synthesis tools. The syntax-directed compilation approach is radically
different from the behavioral synthesis flow used by designers of synchronous cir-
cuits; the compiler merely performs a one-to-one mapping of the program text into
a corresponding circuit structure. Although syntax-directed compilation does allow
the designer to work at a relatively high level it does not provide any optimizations;
“what you program is what you get”. In some situations this can be considered an
advantage but in general it puts more burden on the designer: exploring alternative
implementations requires actually programming these, whereas in a traditional syn-
chronous synthesis flow, the designer can quickly and easily experiment with different
constraints and goals and in this way create alternative implementations from the
same program text.

It is interesting to note that the internal representation of circuit behavior used
in synchronous behavioral synthesis is actually based on an asynchronous model of
a control dataflow graph (CDFG), i.e., a dependency graph expressing the control-
and data-flow of the application. This naturally raises the question: Is it possible
to apply the transformations and optimizations used in synchronous synthesis for
asynchronous design as well?

1.1 From synchronous to asynchronous behavioral
synthesis

A central idea in this thesis is to construct a computation model which allows us to
use the transformations and optimizations used in synchronous synthesis directly in

4 Introduction

Relaxation

OO

J

Figure 1.2: Relaxing synchronous synthesis (left) into the asynchronous handshake
domain (right).

CLK IN
Write selection logic

Registers
Control

FSM (XX

Read selection logic

ouT

Figure 1.3: The synchronous computation model.

asynchronous design, without introducing any restrictions and at the same time use
the transformations and optimizations developed for continuous time in one and the
same model.

The target for synchronous behavioral synthesis is a hardware architecture con-
sisting of a datapath which is able to perform a set of operations, and a controller
which controls the execution sequence of these operations in order to perform a given
application, as shown in Figure 1.3 A key issue in behavioral synthesis is to reuse
hardware resources for the different operations in order to minimize area, and to
explore possible parallelism by executing several hardware resources concurrently in
order to increase performance.

All the traditional techniques of behavioral synthesis: Scheduling, Allocation and
Binding are in synchronous circuits centered around a central synchronization event,
determined by the global clock. This synchronization event determines (i) the begin-
ning for executing an operation (ii) writing the result of an operation.

If we make these synchronization events local and controlled by the controller,
we can create a hardware architecture consisting of a datapath and a controller, as

1.1 From synchronous to asynchronous behavioral synthesis 5

Write selection

—: Write events

(Write synchronizers)

Variables

(Storage)

Operand selection

— Read events
| .
T (Read synchronizers)

Distributed
Asynchronous
Controller

Functional unit(s)

yn é 3 Function
+
! control

(Computation)

Figure 1.4: Computation model in the asynchronous handshake domain, where the
labeling refers to the role the handshake components play in our model.

shown in Figure 1.4. It resembles the synchronous architecture but it is completely
asynchronous. This computation model relaxes the strict ordering of the synchronous
circuit and the synchronous schedule 1.2 (left) into the continuous time domain, the
schedule for the asynchronous circuit 1.2 (right).

This idea allows us to use any of, but not restricted to, the many synchronous
behavioral synthesis techniques to obtain a hardware architecture (datapath and
controller) and then to implement this architecture using asynchronous circuit tech-
niques.

In our work we use Balsa as a back-end. The datapath and control parts obtained
from the front-end behavioral synthesis are described using a set of Balsa templates
and then synthesized into handshake components and ultimately into a layout. In
this way we take advantage of the fact that Balsa performs a one-to-one mapping
thus allowing us to express the intended implementation at a relatively high level.

The parallism in CSP, and CSP-like languages, are centered around a parallel
operator, that allows the computation to fork into parallel operations. However the
construct also require all of these parallel operations to finish at the same time or
have to wait until the slowest operation finishes. Therefore no new operations can
begin, thus limiting the schedules that can be implemented. The implementation
templates presented in this thesis is not restricted by this limitation. We utillize the
CSP language constructs in an unconventional way, such that any continous schedule

6 Introduction

can be implemented.

Using this synthesis flow we have produced layouts for a couple of benchmarks and
we report on the area, speed and power figures for these circuits. By building on top
of syntax-directed compilation, our synthesis approach works entirely in the domain
of handshake channels and handshake components. This has a number of signifi-
cant implications: Firstly it enables the use of a synthesis flow which is surprisingly
similar to that used in synchronous design tools, and secondly it avoids altogether
the complex problem of specifying and synthesizing a controller. Qur work is not in
any way restricted to the use of Balsa or other syntax-directed methods, the used
approach serves as a practical demonstration of how to use the developed methods
and techniques.

For the behavioral synthesis part we have developed the following algorithm suite:

(i) Power aware synchronous synthesis algorithm. This algorithm is a clique heuristic
algorithm operating with a time and maximum power per time constraint. This
is useful for applications having a power limit e.g. given by the maximum power
delivered by a solar panel.

(ii) Evolutionary synchronous synthesis algorithm and a simulated annealing syn-
chronous synthesis algorithm. These are meta-heuristic algorithms operating
with a maximum time constraint.

(iii) Simulated Annealing task level algorithm for handling the conditional parts of
the CDFG. This last algorithm has not been implemented but the method is
outlined.

These algorithms all operate in discrete time using time-slots. After the final schedule
has been obtained it is relaxed into an asynchronous schedule, keeping the order of
execution events as a relative ordering.

The contribution of this thesis is the addition of behavioral synthesis to asyn-
chronous circuit design in the form of automatic resource sharing and constraint
based design space exploration. In particular our contributions are: (1) an abstract
event based computation model, (2) synthesis algorithms for scheduling, allocation
and binding and (3) target implementation specifications. The thesis publications
are [74, 75, 93].

1.2 Thesis outline and readers guide 7

1.2 Thesis outline and readers guide

This thesis is organized as follows:

Chapter 1 Introduction Introduces this work, presents our contributions and shows
this outline of the thesis.

Chapter 2 Background Briefly introduces the ideas behind behavioral synthesis,
CDFGs and asynchronous circuits.

Chapter 3 Related Work Gives a survey of related work.

Chapter 4 Behavioral Synthesis for Asynchronous Circuits Presents the con-
cept which allows us to adapt the techniques from synchronous behavioral syn-
thesis into behavioral synthesis of asynchronous design and describes details of
datapath design.

Chapter 5 Implementation in Balsa The use of the Balsa-language to generate
our circuits is presented in this chapter.

Chapter 6 Algorithms for Behavioral Synthesis The algorithms developed for
behavioral synthesis used to generate the circuits are presented in this chapter.

Chapter 7 Results The area, speed and power figures for our layouts are presented
and discussed.

Chapter 8 Conclusion contains the conclusion of the thesis and presents direc-
tions for future work.

As a reading guide, the reader who is familiar with asynchronous circuit design
and behavioral synthesis and not interested in related work can skip chapter 2 Back-
ground and chapter 3 Related Work, and proceed directly to chapters 4 Behavioral
Synthesis for Asynchronous Circuits, 5 Implementation in Balsa and 6 Algorithms for
Behavioral Synthesis which presents the main contribution of this thesis. More specif-
ically the underlying concepts of this work are introduced in 4 Behavioral Synthesis
for Asynchronous Circuits. The circuit implementation details and Balsa-templates
used to design the asynchronous circuits in the result section are presented in chapter
5 Implementation in Balsa. For the reader with an algorithmic interest chapter 6
Algorithms for Behavioral Synthesis presents the behavioral synthesis algorithms de-
veloped in this research. Finally, the reader is encouraged to read chapter 7 Results
which explains and discusses the results.

Introduction

CHAPTER 2

Background

This thesis brings together the domains of both behavioral synthesis and asyn-
chronous circuit design. In order to be able to better understand the work presented
in this thesis, this chapter will give an introduction to some of the concepts and ideas
of these domains. The reader should not consider this to be a complete reference,
nor to be a tutorial.

2.1 Synthesis flow and CDFG format

A CDFG captures only the control and data dependencies that are inherent in the
computation. In this way it is not biased towards a certain implementation.

In this section we introduce the CDFG format and an example CDFG which will
be used throughout in this thesis to illustrate the synthesis flow. The focus of the
thesis is on the synthesis of asynchronous circuitry given a CDFG. The process of
extracting the CDFG from a behavioral specification in some hardware description
language is well understood. It is an integral part of existing synchronous synthesis
systems, and it is not addressed in this thesis.

To illustrate the source code for our running example we will use the Balsa-
language [7, 8, 6], augmented with a multiplication operator, as the Balsa language
does not yet include a multiplication operator. The aim in this thesis is not to advo-
cate the use of Balsa, it should merely be seen as an illustration and in principle most
hardware description languages could be used. For asynchronous circuit design it is
convenient if the language includes channel communication primitives and statement
level concurrency, and it is encouraging to see that such features are being included,

10 Background

import [balsa.types.basic]
type word is 16 bits

procedure example(input X0,X1,X2:word;
output Y0,Y1:word) is
variable x0,x1,x2,y1,y0:word
constant a0= 255
constant al= 255
constant a2= 255
constant a3= 255
begin
loop
X0->x0 || X1->x1 || X2->x2 ;
yO := (((a0+x0)+(x0*x1)) - al as word) ||
if x1>a2 then
yl := (a3*(x1+x2) as word)
else
yl:= (x1-x2 as word)
end ;
Y0<-y0 || Yi<-y1
end

end

Figure 2.1: An example Balsa description.

or at least proposed for inclusion in, such languages as System-C and System-Verilog
and an additional package for adding such features to System-C is proposed in [13].

The intended synthesis flow involves the following steps: From the Balsa code
the CDFG is exacted. The CDFG is then subject to the synthesis steps explained
in this thesis and the resulting circuit structure (datapath and control) is expressed
as a Balsa program. The final step of the synthesis flow is then to compile the
Balsa program into a netlist of handshake components and to produce a standard
cell implementation.

Figure 2.1 shows our example asynchronous component specified in Balsa and
Figure 2.2 shows the corresponding CDFG which will serve as the running example
in this paper. The elements of the CDFG and the structure are explained in the
following. The CDFG is a 1-bounded colored Petri net — the colors representing
data values. The edges in the CDFG contain places (like in a STG) and the nodes
are Petri net transitions. A node can be an operator or can represent conditional
sequencing as the example CDFG shows. For a more formal definition the reader is
referred to [96, 33].

The basic elements in our CDFG are shown in Figure 2.3 and are as follows:

nodes Essential nodes represent atomic computations e.g. arithmetic operations as

2.2 Behavioral synthesis 11

Figure 2.2: The Control Data Flow Graph for our example.

addition. For firing a node, all inputs arcs need to have a data-token present.
The ¢ designates the operation the node performs and all nodes have a num-
bering j. This operation could also be the loading of data in and out of the
circuit, in which case the name of the input/output is written inside the node.
These nodes are called input/output nodes.

arcs Represents the essential data dependencies which exist with in the computation
or algorithm. The dotted arc is used to signify control arcs. There is no
semantic difference between a data and control arc.

There is a set of special nodes which needs explanation:

Control nodes The mux and demux nodes are used to route data-tokens around
in the CDFG. The mux node need a data-token on the control arc and then
a data-token on the selected input arc to fire. The demux node only fires a
data-token on the selected output.

Body The body can be replaced by another CDFG and is not a fundamental com-
ponent, rather it illustrates the hierarchical nature of the CDFG format. The
input and output arcs of the CDFG are required to fit with the input and
output arcs to the Body node.

Using these fundamental nodes a sufficient set of algorithmic structures can be
represented using the CDFGs. Figure 2.4 shows a set of basic algorithmic structures
found in most languages and their corresponding CDFGs. Using these structures,
the definition of the CDFGs nodes and our Balsa example in Figure 2.1 it is straight-
forward to arrive at the CDFG in Figure 2.2.

2.2 Behavioral synthesis
Behavioral synthesis is a refinement process in which a behavioral description of an

algorithm is converted into a structural description, fulfilling a set of design con-
straints, and preserving the behavior of the algorithm [87, 67]. Each component

12 Background

G)J. node

\ e arc
,_ mux ;@\ demux

+
CDFG

Figure 2.3: A minimum and, for most cases, sufficient set of Control Data Flow
Graph elements.

in the structural description is in turn defined by its own (lower-level) behavioral
description, for which a mapping to silicon hardware exists. The purpose of behav-
ioral synthesis is two-fold: (i) Automate tedious parts of the design process and thus
improve the turnaround time. (ii) To perform design space exploration.

Automating tedious parts of the design process is becoming increasingly impor-
tant as designs increase in size and complexity, and the time alloted to construct the
design becomes ever more tighter. Specifying the description of an algorithm at a
higher level of abstraction allows a designer to focus on implementing an improved
algorithm. It is well-known, that work put to use at a high-level of abstraction has a
larger impact on the resulting performance characteristics, than work put to use at a
lower-level of abstraction. Furthermore, the designer avoids spending time on details
of the implementation e.g. transistor sizing, which of course has an impact on the
performance but usually an order of magnitude less than improving the algorithm.

Design space exploration is also becoming increasingly important as modern sys-
tems are moving into System-on-Chip platforms where the design becomes part of a
greater whole and thus needs to fit into certain specifications. This might mean that
the maximal speed of the circuit is required if our circuit is part of the critical path
of an entire system. But it might also be that requirements are low and thus there
is no need to develop a large high-speed circuit.

The output from a high-level synthesis system usually consists of a datapath
structure at the register-transfer level (RTL) or an equivalent description language,
and a specification of a finite state machine to control the datapath. In our case we
will use the Balsa language which will translate into a set of asynchronous handshake
components for both the datapath and the ASFM. At the RT level or equivalent

2.2 Behavioral synthesis 13

if cond then
Body1l

else
Body?2

end if

fori=1to N do --.v

Body Body
end for

while cond do
Body
end while

Figure 2.4: Algorithm statements and corresponding CDFG structures.

level, a datapath is composed of a computational part (functional units e.g. ALUs,
multipliers, and shifters etc.), storage units (registers, latches and memories) and
interconnection units (e.g. busses, multiplexors and demultiplexors).

As previously discussed the first step is to extract a CDFG from the behavioral
algorithm, part of this involves a series of compiler-like optimizations as code motion,
dead code elimination, constant propagation, common subexpression elimination, and
loop unrolling. Following this comes the core synthesis refinement process, of which
there are two classes:

Resource constrained behavioral synthesis Here the goal is to find the fastest
circuit given a set of resource constraints either in the form of a maximum
allowable area for the circuit or a detailed description of the maximal number

14 Background

and types of functional units and the maximum memory available to the circuit.

Time constrained behavioral synthesis Here the goal is to find the smallest cir-
cuit (computational area and memory) given a maximum execution time con-
straint.

In addition to these there is the power constraint which comes into play by adding
to the two other constraints, reducing the solution space. In this thesis we will con-
sider time and power constrained behavioral synthesis. The applications our research
targets are performance-intensive parts of an algorithm which therefore require im-
plementation in hardware, thus the constraints are often in the form of a time re-
quirement or a dataprocessing frequency to which the smallest circuit needs to be
found. However there is nothing preventing us from implementing resource and power
constrained behavioral synthesis.

In general we distinguish between behavioral synthesis in continuous time and
behavioral synthesis in discrete time, but in general both approaches involve the
same three basic elements:

Scheduling The operations in the CDFG need a start time. For continuous time
this is an absolute time or a relative ordering of operations. In discrete time
this denotes the start time-slot.

Allocation A set of functional units needs to be allocated. The functional units are
the machines on which the operations are executed.

Assignment The operations need to be bound to a specific machine to avoid con-
flicts for parallel operations.

These elements are believed to be NP-hard problems and thus in general require
heuristic approaches to find solutions. These three tasks are closely interrelated and
should be solved simultaneously to arrive at an optimal solution. All the behavioral
synthesis algorithms presented in this thesis do this. There are in principle three
approaches to solve these problems:

Integer Linear Programming (ILP) formulations which solve the problem for
optimality but is only applicable for small problems.

Heuristic methods that come in two flavors: constructive approaches and itera-
tive refinement. There are many approaches for constructive scheduling, dif-
fering with regard to the selection criteria used to schedule the next operation.
Heuristic approaches run efficiently for large designs, but does not produce
optimal circuits.

Meta-heuristic Algorithms which are capable of solving large ILP problems ef-
fectively, although heuristically.

Besides these fundamental elements of behavioral synthesis there are elements that
involve finding the minimum amount of memory for the specific schedule, allocation

2.3 Asynchronous circuit design 15

Req j NI
S
T ' "_ﬁ/ r
Ack \ RN
/
I

i
1

Figure 2.5: Four phase bundled data push handshake protocol.

and assignment, as well as finding the best routing (the minimal set of multiplexing)
of data between the functional units. All of these elements of behavioral synthesis
and datapath synthesis will be elaborated further in their respective chapters.

2.2.1 ASAP and ALAP

Now, before trying to minimize the silicon area, we first want to know if, given the
CDFG and the time constraint T', a feasible schedule can be constructed at all ?
(using unlimited silicon area). Fortunately, there is a polynomial algorithm, O(n?),
which can give us that answer:

ASAP (As Soon As Possible) Augment the CDFG with a source node which has
directed arcs to all the input nodes. Set Ssource = 0 for the source node. Then
finding the S; for all other nodes v; (0;) becomes a matter of finding the longest
path from the source to that node. (Using the fastest FU for the job).

If Starget < T for the target node, it is possible to construct a feasible schedule.
Furthermore S; is the earliest time an operator o; can be scheduled (again allowing
for unlimited silicon area). The same algorithm can be applied “backwards”:

ALAP (As Late As Possible) Augment the CDFG with a sink node which has
directed arcs from all the output nodes. Set Ligrger = T' for the target node.
Then finding the L; for all other nodes v; (0;) becomes a matter of finding the
longest path from that node to the target. (Using the fastest FU for the job).

And the time-interval .S; ... L; specifies the scheduling time interval in which the
operator o; can be scheduled, given the time constraint T and thus bounds the
solution space, in which we are going to search for the optimal solution.

2.3 Asynchronous circuit design

In this section we discuss some of the properties of the asynchronous circuit design
style used in this thesis. As the word asynchronous indicates, an asynchronous circuit
does not have a global synchronization event in the form of a clock, but rather
is locally synchronized. In this thesis we use four-phase bundled data handshake
protocol as component synchronization protocol. This means a signal contains a 1

16 Background

Active Passive
Push: O’—’OO

Passive Active

Pull: QD—*'Q

Figure 2.6: Two types of channel communications: push and pull. Data flows from
left to right on the channels.

bit request and a 1 bit acknowledge wire additional to the data wires. One example
of this the four-phase bundled data push early handshake protocol as illustrated by
Figure 2.5. In this protocol the master controls the request and data signals and the
slave controls the acknowledge, this also means data is transmitted from the master
to the slave. The protocol operates by the master raising the request when the slave
is ready to process data, indicated by the acknowledge being low, and the data signals
are valid. The slave sees this and reads the data. When data has been read the slave
acknowledges this by raising the acknowledge signal. The master then lowers the
request signal, removes data and starts preparing for the next transmission. When
the slave is ready for the next data the acknowledge signal is lowered. The choice
of the four-phase bundled data protocol is an arbitrary choice, our method can be
implemented with use of any handshake protocol.

There are two types of channels: push and pull. In a push channel data flows
from master to slave and in a pull channel data flows from slave to master. In general
the terms master and slave are not used, instead the terms active and passive are
used to designate the controlling part of a channel communication and graphically
this is illustrated by either a filled (active) or non-filled circle (passive) at the source
or destination of a channel, as illustrated on Figure 2.6. The source and destination
i.e. the direction of the dataflow is illustrated by the arrow on the channel line.

The asynchronous circuits designed in this thesis are built from a set of asyn-
chronous building blocks called handshake components. As the name implies these
components communicate using the handshake protocols. These components are in-
dependent components, usually designed using input/output-mode or Muller-C style
[92]. All components operate using the same protocol, in this way one could consider
this type of asynchronous circuit design as object oriented hardware design. Asyn-
chronous circuits and the circuits presented in this thesis are built from handshake
components which implements the equivalent RTL operations as latching data, mul-
tiplexing data, addition etc. Each of these handshake components has its own local
asynchronous control to ensure proper asynchronous functionality and to handle the
asynchronous handshake communication protocol [92]. Besides these asynchronous
handshake components which have their equivalent RTL counter parts, there are the
demerge/demux components which handle “datawire-forks”.

Asynchronous handshake components where all outputs are active and all inputs
are passive are push-style; components where all outputs are passive and all inputs

2.3 Asynchronous circuit design 17

Latch

L]

@S Functional Unit
or

Fork Join

K?) Merge % Demerge
Q o] O
Mux — 0 D\ Demux

Figure 2.7: A minimum and, for most cases, sufficient set of handshake components.

are active are of pull-type; if all ports are passive the component is of passive-type;
if all inputs are active the component is of active-type; others are of “mixed”-type.

The basic set of building blocks are illustrated in Figure 2.7 in their push-form,
where applicable, and can be divided into four groups:

Latches Data is stored in latches and could be considered the variables of the circuit.
Furthermore with one active input or output they implement the handshaking
and support the token flow. In their push form a data write and data read
always alternate. In their passive form they operate as the variables of the
circuit where the surroundings can write and read data independently and
to/from multiple sources and destinations.

Functional Units These are the asynchronous equivalents of combinatorial circuits.
We will primarily use the symbol on the left, but some tools will generate the
right symbol. In their push form the operation is as follows: First all inputs
have to be ready, then compute the functions and distribute the results on the
respective outputs. The functional units should be considered transparent from
a handshaking point of view, but also versions with input/output latches will
be considered.

18 Background

b
a Transfer
c
é Sequencer A Parallel
1 3
a
Q
é Repeater While
cond b
cond T a
Choice Guard
0 1 1
3 cond2
condl

Figure 2.8: Handshake component extension.

Unconditional flow control These components are used to handle parallelism and
to merge/split data streams, which are mutually exclusive. The key here is that
there is no external control of the data flow. For data streams which are not
mutually exclusive either the following group of components have to be used or
an arbiter needs to be inserted in front of the component. The merge in shown
in the push-form and the demerge is shown in pull-form, which are their only
form.

Conditional flow control The MUX and DEMUX components are used to select
among several inputs or routing the input to one of several outputs and thus
conditionally control the dataflow in the asynchronous circuits.

The functional units in their memory form could by them selves be a network
of asynchronous handshake components implementing the function, thus introducing
hierarchy into the circuit.

We will need an additional set of asynchronous building blocks to build the asyn-
chronous circuit we desire, these are shown in Figure 2.8 and are all used to build
more advanced control circuitry. The groups of handshake components are:

Transfer The transfer component is an active component used to control computa-

2.3 Asynchronous circuit design 19

tion. When activated on input channel a the transfer component moves data
from channel b to channel c.

Unconditional control Here there are two components: The sequencer which for
each activation executes a sequence, in order, of sub-operations, before complet-
ing the input handshake. The parallel executes all sub-operations in parallel
and all have to complete before completing the input handshake.

Repetition Infinite repetition is handled by the repeater, which sends an infinite
number of activations to its outputs and never completes its input handshake.
The while component implements conditional repetition and operates in the
following way: Upon activation on input a, the while component inputs condi-
tion cond and if true output b is activated and the while components repeats
this behavior by inputing the next condition cond. This continues until cond
is false then the while component completes its handshake with a.

Conditional control The choice component implements a binary choice by select-
ing on the input “cond” if equal to zero the “0” channel is activated otherwise
the “1” channel is activated. The Guard components is used for implementing
multiple selections or guards. Here the component have two selections and
operates as follows: when a is activated the Guard component inputs all its
conditions, here condl and cond2. The conditions have to be mutually exclu-
sive. If any of the conditions where true the number is returned on a otherwise
zero is returned. When b is activated with a positive data value, it is used to
activate the operations, here either 1 or 2. The Guard component can have as
many selections as required.

Of these components the transfer plays is most important for this research, as it
plays the role of event synchronizer; controlling the computation and is the compo-
nent connecting the control dominant part of the asynchronous handshake network
with the data dominant part of the asynchronous handshake network. Transfer com-
ponents degenerate to simple wire connections containing no logic.

As mentioned in the introduction, there is an apparent resemblance between a
circuit designed by a network of handshake protocols and the CDFG describing the
behavior of the same circuit. This suggests a simple one-to-one synthesis approach
where the CDFG is directly mapped into an asynchronous circuit, as shown in Figure
2.9. Such an approach was more extensively pursued in [73]| and is further discussed
in the following chapter.

20 Background

Figure 2.9: Our example designed as an asynchronous circuit using handshake com-
ponents.

CHAPTER 3

Related Work

This chapter has two purposes: (i) To present an overview of recent advances in
research in behavioral synthesis of low-power synchronous circuits and (ii) to present
and compare related work with respect to behavioral synthesis of asynchronous cir-
cuits. In doing so, the desirable abilities and requirements for an asynchronous
behavioral synthesis approach are uncovered.

3.1 Low power behavioral synthesis, an overview

In CMOS circuits, there are two primary sources of power dissipation [72]: (i) Static
dissipation originating from leakage current. (ii) Dynamic dissipation originating
from switching transient (short-circuit) current and from charging of load capaci-
tance. The total power dissipation becomes:

Pa'ug = Lswitching + Pshort—circuit + Heakage (31)

Of these components the first is the most dominant and is given by:

Pswitching = <a0—>1>tClVde (32)

Where Vg4 is the supply voltage and {ag_,1): is the average number of switching per
time unit, that a node with capacitance C; will make a power consuming transition
(0 — 1). For a synchronous circuit (wg—1): = @o—1 fer, where cp—1 is the average
number of times the node switches per clock cycle and f;; is the clock frequency.

22 Related Work

It is well-known that resource sharing destroys correlation between inputs and the
computation and therefore increases the power consumption of the circuit. Further-
more, there is usually an overhead associated with resource sharing which will lead to
a larger power dissipation. On the other-hand reducing the area of the circuit leads
to a reduction of C; which reduces the power consumption. For future deep submi-
cron technologies leakage power will become more dominant. Therefore as leakage
current is proportional to area, resource sharing has the potential to reduce leakage
power dissipation. But as resource sharing also have an impact on on-off times for
functional units and therefore leads to longer activation times which counters this
effect.

There are three dominant approaches for behavioral synthesis targeting reduced
dynamic power dissipation:

e Low-power behavioral synthesis [44, 19, 57, 61, 94, 69, 70, 84, 45, 89] through
arranging the computation such that the internal switching activity is mini-
mized: P ~ {(ao—1);- The design goal is to find min({cg—1)¢)-

e Low power behavioral synthesis through voltage scaling [55, 27, 10, 80]. Usually
low-power designs operate at voltage-levels just above 2|V;|, thus the benefit
from voltage scaling lies in speeding up a few critical computations at a power
penalty, which is then more than canceled by choosing slower low power func-
tional units at non-critical places in the circuit.

e Power aware behavioral synthesis [102, 5, 1] characterizes methods which tar-
gets the generation of a specific power profile of the circuit. The goal is usually
a uniform flat power profile below a certain power maximum which corresponds
to a hard constraint (e.g. maximum power delivered by a solar-panel). The
majority of these algorithms are either based on meta-heuristic algorithms, or
two-step algorithms, where in step one a traditional time constrained schedule
is constructed and in step two the schedule is made “power-aware”.

Usually there is an area penalty associated with these low-power techniques com-
pared to non-low-power techniques and the different methods have different tradeoffs
between area and power.

In the following sections we focus on the first of these approaches. There are many
ways to minimize (ag_1)¢, but the most dominant are those methods which exploit
correlations in input-data as well as in the computation. This body of work can be
divided into five groups which we will present in the following. The first group focuses
on providing accurate lower bounds on power consumption for use in synthesis. The
second group focuses on scheduling, allocation and assignment reducing the switching
activity of the functional units, which is the largest contributor to power dissipation.
The third group focuses on reducing switching activity at the CDFG level. The
fourth group focuses on proper register allocation for low power. And finally the
last group of papers focuses on reducing the power consumption of the interconnect
binding functional units and registers together and the impact this has on scheduling,

3.1 Low power behavioral synthesis, an overview 23

allocation and assignment. In the following we will present a non-exhaustive list of
synthesis methods.

3.1.1 Lower bounds on switching activity

In order to find optimal solutions through exhaustive search based methods as branch
and bound, it is necessary to bound the solution space using a polynomial approach.
This is also useful for measuring optimality of heuristic approaches as the optimal
solution is bounded by the heuristic solution and the lower bound. A branch and
bound algorithm traces a decision tree whose leafs represent all possible solutions.
Given a best solution found during execution of the branch and bound algorithm, a
subtree can be pruned if a lower bound estimate of the best solution from the sub-tree
yields a larger cost.

In [57, 94] the switching activity metric is defined as the Hamming distance of
consecutive input vectors to functional units. Let w;; define the power cost for the
variables ¢ and for each operation type j present in the DFG. This is computed
based on a representative set of input vectors to the circuit. The central idea is
to formulate the low power binding problem with resource constraints as a graph
problem by defining an arc-labeled directed graph. The optimization problem is
then to cover all nodes with exactly m (node disjoint) cycles with minimum total
cost, under the constraint that each cycle contains exactly one backward arc. The
total cost is the sum of the arc weights of all cycles. Each cycle of a solution to this
problem represents one resource, while the nodes of a cycle are the operations bound
to it. The authors prove that the following ILP problem provides a lower bound on
the low power binding problem with m resources:

z = min Z WijTij (3.3)

i,j=1
subject to

Z?leijzl i=1,..,n
Z?:l :Eij =1 .7 = 17 ey (34)
ZiZj Tij =m

with x;7 integer. In this formulation it is not guaranteed that precedence constraints,
specifying operation a has to start after operation b, are fulfilled, hence a solution of
the ILP problem delivers only a lower bound on the switching activity. Furthermore,
the problem is a relaxation of the optimization problem as there are no constraints
forcing each cycle to have exactly one backward arc. Instead of solving the ILP
problem, a polynomial time bounded approach is proposed which approximates the
ILP problem based on Lagrangian relaxation.

24 Related Work

t addl add2 __, addl add2

& o

RO O
> © G
© ONRO

v

[

w

D

Figure 3.1: Optimizing schedule (from left to right) for reuse of input variables and
reduction of switched capacitance. Operation 3 and 5 uses the same result from 2 in
successive steps.

3.1.2 Reducing switching activity of functional units

The reduction of switching activity of functional units can be accomplished by
scheduling operations such as to increase the correlation of the data presented to the
functional unit. The first step in this direction is to observe that the average switching
activity of any functional unit is significantly reduced if one of the operands remains
unchanged [69, 70]. As operands are usually reused more than once in computations
on the same type of functional unit, there is a basis for grouping operands together in
the scheduling and binding process. The central idea is to group reusable operands
together on the same particular functional unit and to execute these in successive
time-slots/operation-groups. The idea is shown in Figure 3.1. In [69, 70] this is ac-
complished by extending the List-scheduling [67] to a Low Power List-scheduling by
adding more heuristics. The traditional List-scheduling operates by having a priority
queue of all ready operations determined by urgency, more precisely the difference
the ASAP-ALAP interval. In the Low Power List-scheduling operation that share
operands are grouped into operand-sharing sets. Once an operation has been sched-
uled, the other operations in the group are moved up to top priority and are scheduled
successively, until an operation outside the set gets urgency zero, which is then set
for immediate execution.

The next step is to generalize this observation into scheduling operations such as
to increase the correlation between consecutive inputs to a functional unit [89, 45].

Again the list-scheduling heuristic can be modified to include this data correla-
tion [89] and to operate by, besides the set of operations Upwhere all predecessors
have been scheduled, maintaining the set of most lately scheduled operations for each
functional unit L. At any point the algorithm tries to schedule the operations that
consume less power. By scheduling operations in this way there are more candidates
in the ready set when power hungry operations are scheduled. For evaluation of the
priority for the scheduling a power metric is used. Multiplexer power is no considered
in this scheme. Let c; be the switched capacitance from scheduling operation j on
functional unit & where operation ¢ was executed previously 7 € L. If the operation
is commutative, then operand swapping is tried to find the smallest switched capac-

3.1 Low power behavioral synthesis, an overview 25

itance. This information is stored for register binding. c; is normalized with respect
to the total switched capacitance of all operators in Uy of same type. The cost of
the candidates are set to:

priority = we; + (1 — w)ty (3.5)
where tJL is the ALAP time of operation j relative to the average ALAP time of
candidates in Uy of the same type. Parameter w is the weight given to relate power
importance to meet time-deadline importance.

The Force-Directed scheduling method can also be modified for low power syn-
thesis [45]. The algorithm models the switched capacitance of an sequence of two
consecutive operands to a functional unit as the spring constant k and the probabil-
ity of selecting the corresponding sequence is modeled as the displacement x, in the
force equation F' = kx. Thus, a force is associated with each feasible combination of
forces which is used to make a power-optimal scheduling decision. This metric is then
used in the Force-Directed scheduling method [77] to solve the behavioral synthesis
problem for low power digital circuits.

The low power binding problem for a finite set of functional units having a single
instance type/single-architecture can be formulated as a min-cost flow problem [31].
This problem is solvable, unlike the generalized low power binding problem functional
units having multiple architectures which is an ILP problem. In [31] two polynomial
algorithms are presented to heuristicly solve the ILP problem. The first graph-based
method iteratively utilizes the single-architecture flow formulation for architecture
and then chooses the least power consuming assignment from the set of candidates.
Afterwards, the possible unassigned operations are assigned through a node coverage
algorithms that follows another flow formulation. The node coverage algorithm runs
iteratively until all operations are covered. The second technique assigns the opera-
tions to the functional units of multiple architectures in incremental steps similar to
the left-edge algorithm.

There are many other methods for addressing the low power synthesis problem
[84, 61, 44] these methods involve specifying the problem as auction based non-
cooperative finite game, iterative optimizations and constraint logic programming.

3.1.3 Reducing switching activity at CDFG level

A different more radical approach is to design complex custom low-power functional
units such as FFTs and filters and use these as buildings blocks for the circuit in ad-
dition to simple functional units as adders and multipliers [60]. This requires for the
synthesis approach to be able to map groups of operators on these custom functional
units, as shown in Figure 3.2. The method also provides techniques for resynthesis
of the functional units to match the constraints and techniques for mapping multiple
behaviors onto the same complex functional unit. The meta-heuristic approach used
for the design space exploration is based on finding a sequence of incremental moves
where only the last move has to generate an improvement in the cost function (the
intermediate steps are allowed to move to unoptimal state-space solutions). The sets

26 Related Work

FU library

LAY

K‘
w
|

Figure 3.2: Finding groups of operations in the CDFG to match the low-power
functional units in the library.

CDFG Compatability graph
a b c
aws
GG
f
T

high cost arcs

Figure 3.3: Generating the compatibility graph and performing a minimum cost
clique-partitioning, asumming the shown arcs have a high switching capacitance cost.

of moves are: i) Simple and complex functional units are replaced by new modules
from the library. ii) Complex modules are resynthesized. iii) Simple operations are
combined into complex operations. vi) operations are split in to two separate opera-
tions. A Tabu-search [43] mechanism ensures solutions are not repeatedly traversed,
this method is know as the variable depth search.

Addressing the low power synthesis problem directly at the CDFG level has the
potential for large power savings [81, 82]. The proposed CDFG-transformation tech-
niques involve: i) Reducing the total number of operations to be performed by com-
mon sub-expressions elimination, loop merging and distributivity. ii) Reduction of
spurious switching transitions due to finite propagation delays from one logic block
to the next (dynamic hazards). These extra transitions are a complex function of
logic depth, input pattern and skew. To minimize these unwanted transitions, signal
path balancing and logic depth reduction is handled. The sequence of optimization
moves are handled by the use of a heuristic/probabilistic search algorithm.

3.1.4 Memory allocation for low-power

The goal here is to find the appropriate number of registers and the associated binding
to minimize power consumption in the registers.

3.1 Low power behavioral synthesis, an overview 27

The register binding problem can be formulated as a minimum cost clique covering
problem [19]. The power consumption is computed based on statistical information
derived from assumptions on probabilistic input distributions. The power dissipa-
tion model is based on the Hamming distance and the capacitance of the registers
are modeled as a fixed load for a given library. The paper [19] defines the compat-
ibility graph G(V, A) as the graph where the nodes are variable intervals and the
directed arcs A between two variables if their variable life times are non-overlapping
and end-life-time of the source variable is less than the start-life-time of the tar-
get. Each arc represents a possible assignment and carries the switched capacitance
difference between the two variables. The register assignment problem is then for-
mulated as a minimum cost clique partitioning problem of that graph. They show
that the unoriented compatibility graph for the data values in a scheduled dataflow
graph without cycles and branches (a DFG fragment) is a comparability graph (or
transitively orientable graph) which is a perfect graph. This is a useful property as
clique partitioning problems can be solved in polynomial time for perfect graphs,
through a max-cost flow reformulation of the problem, giving the minimum total
power consumption on the registers in the circuit.

The memory allocation for low-power problem can also be formulated as a network
flow problem [18]. This work focuses on solving the problem of rapidly resolving the
problem to optimality for an incremental change of the schedule for use in low power
scheduling methods. This is a two-step process: i) A max-flow computation involving
a valid flow solution while retaining the previous solution as much as possible and
ii) a min-cost computation which incrementally refines the found flow solution, using
the concept of finding a negative cost cycle in the residual graph for the flow.

3.1.5 Interconnect design for low-power

One way to reduce the switching activity in the interconnect connecting registers to
the functional units is to isolate/signal guard parts of the interconnect [110]. For
interconnect, in this case built by a multiplexing network, it is not justifiable to in-
sert latches through-out the routing network, when compared to the power overhead
introduced by such a method. In addition to make use of data-correlations, it is pro-
posed to freeze the inputs of the multiplexors to a fixed (hardwired) value, denoted
the filler value. The probabilities for the different switching characteristics are com-
puted by simulating the CDFG in which the binding and scheduling information is
back-annotated. The algorithm for computing the filler values is a simple polynomial
algorithm running through computing the most probable value. The power reduction
of the interconnect is then built into an iterative behavioral synthesis algorithm for
scheduling and binding to find the optimal low-power circuit. The meta-heuristic
approach used for this is based on finding a sequence of moves where only the last
move has to generate an improvement in the cost function (the intermediate steps
are allowed to move to unoptimal state-space solutions), a tabu-search mechanism
ensures solutions are not repeatedly traversed.

For bus-based micro architectures, reduction of switching activity can be accom-

28 Related Work

plished in two ways [29, 30, 28]: (i) Through multiplexing the signals onto the buses
in the correct order. (ii) And choosing the optimal set of busses and their connection
between functional units and registers. For design of the buses, the average signal
switching activity for all nodes in, and inputs to, the CDFG are computed by repeated
simulation using a representative set of input vectors. Using this data the switching
activity matrix SAfj, for successive data transmissions ¢ — j for bus k, for a given
bus configuration is computed and the lowest energy is selected. Simulated annealing
is used to handle the complete synthesis process including bus configuration design.

3.2 Asynchronous behavioral synthesis, an overview

Synthesis of asynchronous circuits falls mainly in two categories: (i) synthesis of
small-scale sequential control circuits [26, 41, 106] and, (ii) synthesis of large-scale
circuits based on syntax-directed compilation from CSP-like languages: Tangram
[11, 100], OCCAM [17], Balsa [8, 36] and ACK [59]. Several tools exist (in the public
domain) in these areas, and these tools have been used to design industrial scale
circuits.

Synthesis methods for generating small-scale sequential control circuits are low-
level logic synthesis methods for the design of asynchronous logic, the asynchronous
equivalent to synchronous control logic synthesis. syntax-directed synthesis is a line
of high-level synthesis where there is a one-to-one correspondence between the high-
level programming language specifying the circuit and the circuit itself.

Besides those two main lines of research there are a number of other attempts.
One of the most promising is desynchronization [14, 25] which relies on synchronous
behavioral synthesis and then in the low-level logic synthesis phase substitutes the
clock and the synchronization with asynchronous handshaking and control.

We illustrate the design flows of the different synthesis methods currently devel-
oped for asynchronous circuit design and indicate the different levels of abstraction
in the synthesis process. The position inside each level is unimportant and does not
signify any further degree of abstraction. The levels of abstraction are:

Abstract This is the level where the behavior is expressed only by essential opera-
tions and their essential dependencies.

Behavior The level where the behavior is specified in the form of a programming
language and as such may contain restrictions in expression form, which may
correspond to non-essential behavior.

Architecture In this level the behavior is specified by architectural information
consisting of larger-scale components implementing a predefined behavior.

Gate/Logic At this level the behavior is expressed in the form of an architectural
design built by logic gates.

Physical This level represents behavior in physical form either as a layout or as a
physical model of a layout.

3.3 Asynchronous logic synthesis 29

Not all details will be indicated in the figures describing the different synthesis flows,
only those which are of special nature or original to the method in question.

In the following we present a non-exhaustive list of synthesis methods, grouped
together as to how their synthesis flows relates to each other.

3.3 Asynchronous logic synthesis

Asynchronous logic synthesis is the building method behind asynchronous synthesis
as these methods are used to generate the asynchronous logic. This area has been
and still is, the focus of a majority of the research in asynchronous circuit synthesis.
Asynchronous logic synthesis can largely be divided into two groups: (i) Synthesis of
small-scale sequential input/output-mode control circuits or handshake components
[26, 41, 107, 108]. This is usually done through tools like Petrify [24, 26]. The
behavior of the asynchronous circuit together with its environment is specified using
a 1-bounded 1 color petri-net called a Signal Transition Graph (STG). The approach
is limed by the NP-hardness of the synthesis problem with several improvements
implemented through: Reducing the search space using heuristics [76]. Series of
local graph transformations [91]. Furthermore the problem contains the important
subproblem of consistent state coding (CSC), which is also the subject for extensive
research [63, 65]. The design of GasP circuits [35, 97] fall under the same category
of logic synthesis but employ a different handshake protocol.

The other group is synthesis of larger-scale controllers operating in fundamental
mode/Burst mode [40, 41, 107, 108, 109]. These are race-free asynchronous combi-
natorial circuits with restrictions on both type of operation and the timing of how
the environment interacts with the circuit. This synthesis problem is likewise an
NP-hard problem which limits the size of the controllers possible to synthesize, but
usually larger circuits than for the input/output-mode circuits can be synthesized.
Again heuristics are employed to improve on the method [9, 98].

Theseus logic has developed a Synopsys back-end. Here the low-level logic syn-
thesis of control and datapath is implemented using a NCL logic-synthesis leading
to an asynchronous circuit. The tool is integrated into Synopsys through the use of
special libraries and compile commands [38, 90].

3.4 Asynchronous behavioral synthesis

A number of papers have presented work on behavioral synthesis of asynchronous
circuits from DFG or CDFG representations, but they are surprisingly few and they
have a different and/or more limited scope [3, 4, 22, 23, 54]. The first paper limits
itself to DFGs and focus mostly on a synthesis algorithm and its runtime. The
remaining papers address synthesis from a CDFG representation and they target
solutions where a centralized controller or a distributed structure of controllers are
specified at the level of individual signal transitions (in the form of signal transition
graphs or burst-mode state graphs).

30 Related Work

(@) Achilles (b) Bachman
Abstract CDFG Abstract DFG
Behaviour Continous time Behaviour Resource-arc

List scheduling scheduling

Architecture {FUs with local control} Burstmode controller spec. +

Architecture Datapath spec.

ﬁ Petrify-logic
Gate {PUs} synthesis

(© ACK (d) Balsa/Tangram

Behaviour Verilog —— > Petri-net Behaviour Balsa/Tangram

itioni Syntax directed
Manual partltloan T— s;}lnthesis
Architecture {Burstmode spec.y— {Petri-nets} Architecture Handshake circuit

f; Burstmode synthesis f; Library substitution

Gate {Burstmode controllers}+datapath Gate Asynchronous circuit

Figure 3.4: Synthesis flow for Achilles, the Bachman approach, ACK and
Balsa/Tangram

The synthesis tool Achilles [4, 22, 23] and the synthesis tool by Bachman et al.
[3] both represent “pure” asynchronous behavioral synthesis.

Achilles starts from a control data flow graph and uses a modified list-scheduling
to generate a schedule in continuous time. The target architecture is a set of in-
dependent machines corresponding to each of the functional units in the circuit, as
illustrated on Figure 3.5. Each independent FU then implements the appropriate
part of the schedule, has its own memory and handles communication with the other
FUs. Using this method, there is a possible communication overhead and memory
overhead when comparing to a method using a single controller and datapath. The
controller of each FU is specified as a Petri-net and synthesized using Petrify. The
complete synthesis flow is illustrated in Figure 3.4 (a).

The synthesis tool by Bachman, utilizes a method designated as resource-edge
scheduling, which is a form of scheduling where the additional ordering imposed by
scheduling is represented as additional graph-dependencies added to the data flow
graph, as illustrated in Figure 3.6. It is unclear from their work whether the starting
point is a DFG or if they have included DFG extraction from VHDL/Verilog. The
synthesis flow is illustrated in Figure 3.4 (b). The focus in their work is on architec-
tural scheduling and series of algorithms have been developed, including scheduling
and a continuous left-edge algorithm with the target architecture being a central
controller and datapath. They primarily address the runtime and complexity of the
developed algorithms.

3.4 Asynchronous behavioral synthesis 31

FUO FUl1 FU2 FU3 FU4

.o

Figure 3.5: Connection between the continuous schedule and the assignment to the
asynchronous architecture for Achilles.

3.4.1 Partitioned controllers

Asynchronous Circuit Kompiler (ACK) [48, 59] is a high-level synthesis system, which
is based upon a traditional circuit design style; consisting of a datapath and a cen-
tralized controller. The starting point is a CDFG from which a datapath (functional
unit allocation) and a Petri-net describing the control of the datapath is extracted.
No behavioral synthesis is involved in this extraction, except the source code could
contain pragmas for e.g. sharing a common subexpression. The synthesis process
could therefor be characterized as syntax-directed.

The size of the Petri-net prevents direct synthesis of the controller, as this is an
NP-hard problem. Instead, it is proposed to divide the controller into a small set of
controllers and methods are described for letting multiple controllers jointly control
a single functional unit in the datapath, through a boundary layer, also responsible
for sending data from the datapath to appropriate controller, as illustrated in Figure
3.7. Unlike Achilles, there is not a one-to-one correspondence between the FU and
the controller partitioning. The partitioning of the Petri-net is left to the designer
and no automated methods are presented in the work.

The set of manually partitioned Petri-nets are then automatically converted into
a set of burst-mode specifications, which is then synthesized into burst-mode con-
trollers. The synthesis of the datapath is handled through Synopsys. The complete
synthesis flow is illustrated on Figure 3.4 (c).

Several other approaches employ similar techniques with shared controllers and
look into automated methods for partitioning controller into manageable sizes [54,
104, 105].

32 Related Work

CDFG Scheduled
CDFG

e Resource arc
o)
©
e &
@ @

Figure 3.6: Behavioral synthesis mechanism for the synthesis tool developed devel-
oped by Bachman.

Partitioned controller

NCE
O

Figure 3.7: Control and Datapath architecture for ACK.

Datapath

| Fud) (ruil [rue
Fu3) [Fud (75

Boundary layer

|

3.4.2 syntax-directed synthesis

Balsa [7, 8, 36], Tangram [11, 12, 100, 101] and OCCAM [17] are CSP type lan-
guages specifically designed for synthesis of large scale asynchronous circuits. They
employ syntax-directed synthesis into a set of predefined asynchronous handshake
components. Both tools are well developed, supported and have been used to de-
sign industry scale circuits. The controller consists of a distributed net of handshake
components and likewise for the datapath. The flow is illustrated in Figure 3.4 (d).

The syntax-directed compilation approach is radically different from the behav-
ioral synthesis flow used by designers of synchronous circuits. Firstly, syntax-directed
compilation is based on a non-standard language, and secondly, and more important,
the compiler merely performs a one-to-one mapping of the program text into a cor-
responding circuit. Although syntax-directed compilation does allow the designer
to work at a relatively high level it does not provide any optimizations; “what you
program is what you get”. In some situations this can be considered an advantage
but it also puts more burden on the designer: exploring alternative implementations
requires actually programming these, whereas in a traditional synchronous synthesis
flow, the designer can quickly and easily experiment with different constraints and

3.4 Asynchronous behavioral synthesis 33

(@) Resynthesis (b) SAC
Graph transformation
Behaviour Balsa/Tangram Abstract CDFG #» CDFG’

i One-to—one
Resynthesis T mapping
Architecture Handshake circuipg» Burstmode spedBehaviour VHDL++

Burstmode synthesi

Gate Asynchronous circuit Architecture Handshalﬁb(;gfwt
f substitution
Gate Asynchronous circuit
(c) Desynchronization (d) MOODS synthesis tool
Abstract CDFG Abstract CDFG Behavioral
Synchronous ehaviora
/ bght?]vio_ral / Syn_thk?lS'S to
i synthesis i variable
Behaviour VHDL Yy Behaviour VHDL lonath fme—
slofs
Architecture RTL with clock Architecture RTL with time-slots
' o addition of
A/fé desynchronization asyncrlmronou:
Gate Asynchronousf Gate As nchro:':\zrl]tsro
circuit Cirguit

ASYNC | SYNC

Figure 3.8: Synthesis flow for Resynthesis, SAC, Desynchronization and the MOODS
tool.

goals and in this way create alternative implementations from the same program text.

The tools support logic optimization to some degree i.e. in the form of Peep-hole
optimizations. These are optimizations where groups of handshake components when
placed together in a certain way are replaced by one larger handshake component
thus reducing the control logic.

To further improve on this, the resynthesis [20] approach is pushing this even
further by grouping parts of the components related to operators in the datapath and
re-synthesize the control logic using burst-mode circuits. The flow follows the balsa-
flow until the point where the circuit is described by a set of handshake components,
these are then resynthesized. The flow is illustrated in Figure 3.8 (a).

The TAST tool [85] is pursuing the same direction but is instead synthesizing the
controller from the specification, avoiding the handshake components completely and
using a traditional control/datapath architecture. Advances in STG to asynchronous
circuit synthesis has allowed this to be used for larger circuits and thus becomes
more attractive. The starting point is a VHDL description, from which the Petri-
net-specification and datapath is derived. The TAST tool is currently not available
in the public domain.

Blunno [15] targets the generation of micro-pipelines directly from a Verilog spec-
ification and [62] generates delay insensitive circuits from graph-theoretic specifica-

34 Related Work

tions, but again there is a one-to-one correspondence between a specification and the
resulting circuit.

3.4.3 Synthesis of Asynchronous Circuits

CDFG —_— CDFG’

11al2a 11b12b

11a I1b

o3

0

Figure 3.9: Graph theoretic transformations supported by SAC: Disjunctive.

CDFG —_— CDFG’
11a I1b 11al2a I1b12b
@ 12a IZb@
o 1
11z
2
12z
© (©),)
71 11z 12z

Figure 3.10: Graph theoretic transformations supported by SAC: Deterministic.

In SAC [46, 50, 73] behavioral synthesis is handled at the CDFG level. The tool
can synthesize a single VHDL process (assuming inputs and outputs to be handshake
channels) into a standard cell circuit implementation. Two types of synthesis meth-
ods are supported: Non-performance degrading resource sharing and performance
degrading resource sharing. The synthesis flow begins by extracting a control data
flow graph from the specification (a single VHDL process).

The CDFG is analyzed and resource sharing and operation scheduling, in the
form of graph transformations, are performed. Two types of graph transformations
are supported:

e Disjunctive resource sharing. Operators that have a disjunctive relation, i.e.
from a graph theoretical perspective never can execute at the same time, could
be resource-shared to the same operator. The order of execution is handled by
a detect component which detects which operation is ready to execute. The
method is illustrated in Figure 3.9.

3.4 Asynchronous behavioral synthesis 35

e Deterministic resource sharing. Operators that have a deterministic relation
i.e. a fixed order of execution can be established, can be resource-shared to
the same operator. The execution order is then controlled by a sequencer
component. The method is illustrated on Figure 3.10.

After these optimizations a corresponding circuit implementation is generated.
The method utilizes the fact that there is a close correspondence between a CDFG
[33, 67, 96] and an asynchronous circuit: The edges in a CDFG can be seen as
handshake channels and the nodes in a CDFG can be seen as handshake components

components that are quite similar to the handshake components used in syntax-
directed compilation. In this way a simple one-to-one mapping of the CDFG to a
network of asynchronous handshake components is performed.

The graph transformations makes this different from the syntax-directed compi-
lation of large-scale asynchronous circuits from non-standard languages. The flow is
illustrated in Figure 3.8 (b).

This work represents our initial effort to implement asynchronous behavioral syn-
thesis. The method was discontinued as we found there was a power overhead asso-
ciated with this method of synthesis. Research into a non-one-to-one correspondence
between a CDFG and a handshake circuit might alleviate this.

3.4.4 Desynchronization

Common for these methods is the use of existing synchronous methods and tools
as part of the process for generating an asynchronous circuit. In some way these
methods represent the opposite of the “pure” asynchronous behavioral synthesis, as
all these methods use synchronous behavioral synthesis to perform architectural syn-
thesis before employing asynchronous logic synthesis to generate the final circuit.

Desynchronization [14, 16, 25] makes use of existing synchronous methods and
tools to synthesize a synchronous circuit down to gate-level and then replace the syn-
chronous control logic and the clock by asynchronous control logic and asynchronous
handshaking. The synthesis flow is illustrated on Figure 3.8 (c¢). Two directions exist
for generating the asynchronous control logic:

Synthesis [25] Infer the overall behavior from the synchronous behavior, this in-
volves construction of a STG description or a burst-mode description and then
synthesizing the central controller. This approach is limited to smaller-size
control circuits, limited by logic synthesis capabilities.

Substitution [14] Systematically replace synchronous components by local hand-
shake components through a transparent one-to-one correspondence. This ap-
proach generates less optimal solutions than the former, but can be used for
larger-scale synthesis.

36 Related Work

CDFG Controlgraph Execution
time-slots

Figure 3.11: The behavioral synthesis mechanism of the MOODS synthesis tool.

3.4.5 Variable length time-slot behavioral synthesis

Sacker [88] proposes a method which resembles the synchronous behavioral synthesis
flow but where the target operation group time-slots are of variable length. Borrowing
from compiler technology and synchronous synthesis the group has extended their
existing synchronous behavioral synthesis MOODS to handle asynchronous circuits.
The target is a single control sequence of operation-groups, where each operation-
groups can consist of several operations in parallel and have the execution time of
the slowest operation in the group. Multi-cycle operations are not supported, but
chaining is. However chaining implies data is fed directly between two FUs with-out
being stored in registers and therefore no resource sharing of the FUs involved in
chaining is allowed. There has to be a sufficient number of FUs such that for all
operations-groups, all the operations in an operation-group have a direct mapping to
a FU.

The starting point is a VHDL behavioral model. From this an intermediate for-
mat, they call ICODE is extracted, which is a representation equivalent to a CDFG.
Then scheduling allocation and binding is performed, with the “synchronous” schedule
represented by a control-step graph. The asynchronous control is handled by mapping
the elements of the control-step graph via predefined asynchronous controller-cells
to an asynchronous circuit. The datapath is synthesized through a set of templates.
The used asynchronous signaling is based on 4-phase handshake-protocols. The flow
is illustrated in Figure 3.8 (d).

3.5 Summary 37

3.5 Summary

Currently research in behavioral synthesis of asynchronous circuits is primarily fo-
cused on syntax-directed synthesis and desynchronization. Besides there is a multi-
tude of more or less successful attempts for high-level synthesis.

There are three aspects we would like our asynchronous behavioral synthesis to
contain:

e Ability to construct systems operating in continuous time and using methods
from behavioral synthesis and Operations Research in continuous time. Desyn-
chronization methods are limited by their use of a discrete time-evolution to
find the optimal schedule.

e Ability to use existing behavioral synthesis methods developed for synchronous
synthesis, such as the methods for low-power behavioral synthesis reviewed in
the beginning of this chapter. Leveraging on existing techniques that are well
proven both in theory and practice will prove very beneficial.

e Use of handshake components both for controller synthesis and datapath syn-
thesis to facilitate constructions of large scale designs. For an asynchronous
behavioral synthesis to be effective it has to be able to synthesize industry-
scale designs.

The research presented in this thesis tries to implement these aspects by introduc-
ing a computation model allowing the use of both synthesis methods of synchronous
discrete time and methods for continuous time and targets asynchronous handshake
components both for datapath and controller synthesis. As an implementation we
currently build upon the balsa language, but this is not a restriction our work could
easily be extended to target other languages or design approaches.

38

Related Work

CHAPTER 4

Behavioral Synthesis for
Asynchronous Circuits

Synchronous circuit synthesis utilizes a simple model for implementing synchronous
computation and this method has proven to be highly successful. Therefore, rather
than to invent a different computation model, we adapt the existing computation
model for asynchronous circuit synthesis. This has the added advantage of opening
up for the use of many of the existing methods from synchronous behavioral synthesis
in asynchronous circuit synthesis. In this chapter we address this in detail.

4.1 From synchronous to asynchronous behavioral
synthesis

Let us first review and analyze the elements of synchronous behavioral synthesis.
Based on the CDFG, synchronous behavioral synthesis involves three sets of trans-
formations in order to create a suitable hardware architecture;

e Scheduling, in which operator nodes of the CDFG are grouped into operation-
groups or time-slots, and where the execution of the next operation-group is
handled by a synchronization event, E?, where i strictly orders the events in
time. In the case of synchronous behavioral synthesis E’ is controlled by the
system clock.

e Allocation, in which the minimum hardware resources/ functional units (FUs),
required for execution of the operation-groups are determined.

40 Behavioral Synthesis for Asynchronous Circuits

Efl

Relaxation
E° Ev(\’/,i

Er?j Er(,)k C
= Ev%,y j k

E2 Ev%/,k

Figure 4.1: Adapting synchronous synthesis (left) into the asynchronous handshake
domain (right).

INPUT
MUX
MUX .-
TRANSFER
REG LATCH
TRANSFER
MUX
—————— LATCH
FU ----
,,,,,,,,,,,,,,,,,,,,,,, MUX
ouTPUT ----
FU

Figure 4.2: First step in adapting the synchronous computation model into the asyn-
chronous domain.

e Binding (or assignment), where individual operator nodes are tied to specific
hardware resources.

The synchronization events determine (i) the beginning of executing an operation
(i) writing the result of an operation.

The CDFG extracted in the synchronous behavioral synthesis is a 1-bounded col-
ored Petri net, where colors represent data values, edges represent places, and nodes
represent transitions. Interestingly, the Petri net model is based on an asynchronous
execution semantics which should make it an obvious model for asynchronous syn-
thesis as well. In the synchronous synthesis, Figure 4.1 (left), operations are ordered
according to a global synchronization event, E', i.e., read events (E, ;) for operator
J happens at the same point in time as the write events (E,, ;) for operator 4 in the
previous operation-group: EBM- = ESJ- = E°, and furthermore all operations in an
operation-group are executed simultaneously: Ero)j = Egk = E°.

4.1 From synchronous to asynchronous behavioral synthesis 41

Transfer
MUX
Merge
LATCH
Transfer
MUX
Merge
LATCH
FU

Figure 4.3: Rearranging components to get the initial computation model.

If we relax these assumptions: E,, ; # E, ; and E, ; # E, as shown in Figure 4.1
(right), and if we make these synchronization events controlled by the controller, we
can create a hardware architecture consisting of a datapath and a controller which
operates in continuous time.

We start with the synchronous computation model as shown in Figure 4.2 (left).
This is a standard Moore machine datapath with memory (register) controller by a
clock and some functional units (combinatorial circuitry) to operate on the data. To
move data back and forth between the memory and the functional units two layers
of muxes control the data flow, controlled by signals M; and Mjy;. The first step in
adopting this computation model is to move the components into the asynchronous
handshake domain. We will use this to model the asynchronous timing assumptions.
Then we expand the registers by splitting the synchronizations events: E,, ; # E, ;.

The next step is to let the synchronization events completely control the compu-
tation (datapath). This is done by rearranging the latches and transfer components
such as reducing the muxes to merge components. From this we get the initial com-
putation model shown in Figure 4.3. In this model the individual synchronization
events E,, ;, . ; control the computation. From the model it shows that E,, ; is ac-
tive during the actual computation and E, ; is active only for the transfer from latch
to latch. This model is suboptimal as we are using a latch for temporary data and
the FU can only have one target.

To continue from here we have two options which reflect the properties of our
datapath, and lead to two datapath topologies: The first we designate alpha and
here the functional units are purely combinatorial without latches on input and out-
put ports. The second we designate beta and here the functional units have normally

42 Behavioral Synthesis for Asynchronous Circuits

L

Ew,i Transfer

MUX

LATCH

MUX

FU

MUX

MUX

FU

Figure 4.5: Final computation model without normally opaque latches on input and
output ports of the functional units.

opaque latches both on input and output ports. The use of input and output latches
tends to increase speed and to reduce power consumption by preventing spurious
signal transitions to propagate beyond latch boundaries. If input and output latches
are not used, more variable latches may be needed in the datapath in order to ac-
commodate the longer lifetime requirements and in order to avoid auto assignments.
In the following we pursue both directions, starting with alpha, no latches on input
and output ports:

4.1 From synchronous to asynchronous behavioral synthesis

Transfer

MUX

Merge
LATCH

Transfer

MUX
Merge

FU

Figure 4.6: Computation model with input and output latches.

Rearranging the temporary latch after the FU as shown Figure 4.4 (left),
next we move the temporary data into the memory becoming Lw by
substituting E,,; — E,; getting Figure 4.4 (right). We still have the
restriction that the FU always writes to Lw, but Lw can be used by
others. By reinserting write synchronization events we get a computation
model which allows all latches to be used as source and target for all
functional units. This is shown in Figure 4.5. E, ;||E,, ; moves data from
Lv to Lw through the FU doing computation. Restriction: Lv cannot be
used as both source and target and while Lv and Lw are being used in
computation, there can be: (i) no other write to Lv and (ii) no-other read
or write to Lw.

Next we will pursue the datapath (beta) with latches on input and output ports:

We already have input latches so we insert output latches and are thus
forced to get an extra synchronization event controlling the computation.
The execution of a computation takes the following form: {Em'}? Ecompute;
{Ew,;}, as shown in Figure 4.6. Then we remove the control of this com-
putation event by decoupling the control of the FU making it an indepen-
dent process as shown on Figure 4.7 (left). This model can operate with
arbitrary synchronization events. The final computation model is shown

44 Behavioral Synthesis for Asynchronous Circuits

MUX MUX

MUX MUX

FU

FU

Figure 4.7: Final computation model with normally opaque latches on input and
output ports of the functional units.

in Figure 4.7 (right), it resembles the synchronous architecture but it is

completely asynchronous.

Both models have the same architecture; the only difference is the time the data needs
to be held in the source latch and restrictions on the target latch. Both methods
can therefore be used heterogeneously in the same datapath, using the most suitable
method for the specific FU, we will denote such a mixed model gamma.

This idea allows us to use any of, but not restricted to, the many synchronous
behavioral synthesis techniques to obtain a hardware architecture (datapath and
controller) and then to implement this architecture using asynchronous circuit tech-
niques. At the same time, this idea allows the use of behavioral synthesis techniques
operating in continuous time.

4.2 Asynchronous behavioral synthesis 45

4.2 Asynchronous behavioral synthesis

Figure 4.8: (Top) One-to-one correspondence between CDFG and asynchronous cir-
cuit. (Bottom) scheduled CDFG using a non-essential precedence-constraint (thick
solid line) and mapping to asynchronous circuit.

Having approached our target computation model from the synchronous side we
will now approach our model from the asynchronous side. The starting point is the
one-to-one correspondence between the CDFG representing the computation and
the asynchronous handshake component network, as shown in Figure 4.8 (left) with
a small example. For this CDFG there is a single essential precedence constraint:
fi < g. The delay of the circuit is given by T' = max (T%,, Ty, +T,) and the total
area is given by A = Ay, + Ay, + Ay.

The basic idea behind constraint based synthesis and resource sharing is to per-
form time-multiplexed mapping of several operators onto a smaller set of functional
units. As only one operation can be performed per FU, this requires memory. In
this setting the time-multiplexing corresponds to the scheduling. The mapping of
operators to FUs, correspond to the assignment, and the set of FUs themselves cor-
respond to the allocation. The scheduling can be represented by a minimal set of
non-essential precedence constraints [95] or resource-arcs [2], specifying the time-
ordering. This is illustrated on Figure 4.8 (right) with the non-essential precedence
constraint: fi; < fo represented by the thick arrow from f; to fs, which are mapped
onto the same functional unit F'. In this case the delay of the circuit is given by
T =max(Ty, +Ty,, Ty, +Ty) = Ty, +max (Ty,,T,) and the total area is given by
A=Ap 5+ Ay

46 Behavioral Synthesis for Asynchronous Circuits

()

Figure 4.9: Mapping operator o to a FU.

Control d Transfer

Figure 4.10: The control handshake component and the transfer handshake compo-
nent.

To proceed from here we need the mapping of a single operator o with source data
a,bin latch Li and Lj respectively, and target data c assigned to Lk which is given in
Figure 4.9, as the simplest construction of such a mapping. To construct the control
circuits for this mapping we introduce the dual component to the transfer handshake
component, the control component c.f. Figure 4.10. The behavior of the control
component is a follows: First the component waits for a request from all input ports
a0,al, ... then a request is placed on output port 5. When an acknowledge arrives
from b the handshake with input ports a0, al, ... are completed and the handshake
with output ports c0, cl, .. are commenced and completed. The STG for a four phase
implementation of the component is shown in Figure 4.11.

Together with the transfer component the control component maps the CDFG
onto a control part and a data part. This depends whether our functional units have
input/output latches or not. Both solutions to this problem are shown in Figure
4.12. We now see there is a direct correspondence between the CDFG node and
the control node of our asynchronous circuit and the functional unit mapping. For
the alpha model there is a direct correspondence between the CDFG node and the
control component. For the beta model there is a direct correspondence between the
CDFG input arcs and the control node responsible for the loading of the data to the
functional unit and the direct correspondence between the CDFG output arc and the
control node responsible for the reading of the result of the functional unit. We will
continue with the alpha model.

4.3 Datapath synthesis 47

Figure 4.11: Four phase STG for the control handshake component with only one a
and ¢ channel. For multiple a0, al, ... and multiple c0,cl, ... the a and ¢ have to be
replaced by concurrent handshaking on all these channels.

Performing a one-to-one mapping of the control nodes in the CDFG and the
alpha model generates the circuit shown in Figure 4.13. Using this approach we have
moved from the one-to-one correspondence between CDFG and functional units to
model with a one-to-one correspondence between the CDFG and the control part of
the handshake circuit only. The functional units now follow the behavioral synthesis
allocation. The control part of the handshake circuit could be implemented using
any methodology for asynchronous state-machine design: Burst-mode [109], Petrify
[26], set of handshake components [92] and Balsa/Tangram |7, 11] style controller.

We will implement the control part of the circuit using a different method to gen-
erate the events, which uses handshake components such as sequencers and parallel
etc. These are better suited for our behavioral synthesis algorithms operating with
a sequence of discrete events.

The same datapath and control circuit can be built for the beta model, using the
same approach. To build a compact efficient computation unit (datapath) we will
look at how to generate this in general in the following section.

4.3 Datapath synthesis

Assume we are given a CDFG, and that scheduling, allocation and assignment has
been performed as shown in Figure 4.14, using the FU library shown in table 4.1 (to
begin with, the schedule will not include the load of input data to the circuit and
storing of the results). The FU library has been normalized with respect to the ALU
component. We will consider the schedule to operate in continuous time. However it
is of no importance whether the schedule has been obtained using an asynchronous
scheduling method or through a synchronous method which has been relaxed into
continuous time, as discussed in the previous section. Note that the operator nodes
have been labeled: 1,2,..,8 and temporary data: wg,ws,...,w7. The branch part of the

3 3

48 Behavioral Synthesis for Asynchronous Circuits

Alpha:

Figure 4.12: Correspondence between CDFG node and asynchronous circuit styles.

[FUJ o [t [A]E]
ATU [{+.—>} | 1 [1] 1
mult {x} 26|10 | 13

Table 4.1: Simple example normalized FU library.

CDFG, nodes {6,7,8}, gives rise to two paths in the schedule. Determined by the
execution of node 4, either 6 and then 8, or 7.

The scheduling in Figure 4.14 results in the fastest execution of the CDFG on a
datapath containing only one mult and one ALU component.

4.3.1 Datapath with out input/output FU latches (alpha)

The general structure of the asynchronous datapath is shown in Figure 4.15 and it
follows the computation model (alpha) presented in the previous section. The internal
variables (LO...Ln) in our datapath are implemented as latches.

The life time of a variable in this datapath (alpha) spans from when the compu-
tation producing the variable starts until the variable has been used for the last time
including the duration of the last computation.

For our example, the variable lifetime is shown in Figure 4.16 and is generated
by the following algorithm: Let {2 be the set of operators {o;} , 0 source = {w;} be

4.3 Datapath synthesis 49

().

Control Part

Figure 4.13: Resource-shared asynchronous circuit.

mult ALU
t=0
1
2
4
6
3
8
5
P O ;

Figure 4.14: (Left) Our example CDFG with labels on temporary data. (Right)
Scheduling of our CDFG.

the set of source variables to operator ¢ and let 0y arget = Wi be the target variable.
Furthermore let o sgare be the scheduled start time of operator ¢ and dpy ;) the delay
of the FU o, is assigned to. T is the length of the schedule.

Alpha:
Initialization Yw; ¢ng = 0 and Vw; stqre =T
Alg For elements o; € Q {
for elements w; € 0; source
if wjend < Tistart + dpu(s) then wjend = 04 start + dru (i)

i Wk, start > 0 start then Wk, start = Oj,start }

50 Behavioral Synthesis for Asynchronous Circuits

INPUT

FU

Figure 4.15: General structure of the datapaths without input/output FU latches (
alpha).

aall[I

Figure 4.16: Variable lifetime (alpha) for our scheduled CDFG.

After we have found the variable time, we need to find the minimum number
of latches required and their assignment for the schedule. For this we can use the
left-edge algorithm for discrete time [67], if the schedule has been generated through
a synchronous method or the left-edge algorithm for continuous time [3], to find
the minimum number of latches required in the datapath, which in this case is seven
latches. The left-edge algorithm also gives us the variable to latch assignment, shown
in Figure 4.17. The conditional part in the variable lifetime algorithms are handled
by keeping track of which variables exclude each other, those can be assigned to
the same latch. The choice of variable to latch assignment algorithm depends on
several factors: a) one might choose an algorithm that considers both the latch area
and the multiplexing area [21, 67, 87, 58, 49, 99|. Rearranging the variable to latch
assignment, could minimize the multiplexing area more than a possible increase in
latch area leading to an overall area minimization. b) Another consideration is power
consumption. Variables with high data correlation could be grouped together on the
same latch leading to a smaller power consumption of the computation [28, 31, 19,
57, 39, 83].

4.3 Datapath synthesis

51

LO L1 L2 L3 L4 L5 L6
t=0
XO Xl XZ V\{) V\i
v
V1|
T T I
W
el N
Y, Yo A

OUTPUT

Figure 4.18: Final datapath (alpha) for our scheduled CDFG.

With the FU allocation, operator to FU assignment and variable latch assignment
the datapath can be constructed by connecting the components through multiplexors.
The datapath for our example is shown in Figure 4.18. The controller to this circuit
implements the schedule and controls the FUs with the right data at their designated

times.

4.3.2 Datapath with input/output FU latches (beta)

The general structure of the datapath with output FU latches is shown in Figure
4.19 and it follows the computation model (beta) presented in the previous section.
The internal variables (LO...Ln) in our datapath are implemented as latches. The
functional units (FUQ...FUm) are implemented as independent processing units, with
local control, wrapping the computation part with latches on both input and output

ports.

52 Behavioral Synthesis for Asynchronous Circuits

INPUT

FU

=T

t

Figure 4.20: Variable lifetime (beta) for our scheduled CDFG.

All the latches are implemented as normally opaque latches which gives us a
number of advantages:

1. Normally opaque latches on the input ports of the FUs ensures that changing
data in the variables does not lead to unnecessary switching activity and power
consumption inside FUs which are supposed to be idle.

2. Normally opaque latches on the output port of the FUs ensures that before
presenting the result to the rest of the circuit, we let the combinatorial circuit
settle (assuming single-rail).

3. Normally opaque latches to hold variables, efficiently reduces the combinatorial
depth in the data routing part reducing switching activity and power consump-
tion.

To compute the variable life times we have to look at how long a variable needs
to be held in an internal variable. Since our FUs have input latches we only need
to hold the variable until it has been read for the last time, at the start of the last
computation. This reduces the variable life time requirements, leading to a possible

4.3 Datapath synthesis 53

LO L1 L2 L3

t=T ,,,,4‘ "\’/\é”

t

Figure 4.21: Latch assignments (beta) for our scheduled CDFG.

reduction in the number of variables needed. We set the overhead for reading and
writing a result to a variable latch to be ta, which is added to the variable lifetime.

For our example, the variable lifetime using this approach is shown in Figure 4.20
and is generated by the following algorithm: Let Q be the set of operators {o;} ,
Oisource = {W; } be the set of source variables to operator i and let o; target = Wi be
the target variable. Furthermore let o; gart, be the scheduled start time of operator 4
and dpy(;) the delay of the FU o; is assigned to. T' is the length of the schedule and
AT is the time overhead of loading and storing data to the latches.

Beta:
Initialization Yw; ¢ng =0 and Vw; stqre =T
Alg For elements o; € Q {

for elements w; € 0; source

if Wj end < 0 start + AT then Wjend = OTi,start + AT

i Wk start > 04 start + dFU(z) then WE,start = Oi,start + dFU(i) }
The minimum number of latches required in the datapath, given by the left-edge
algorithm is in this case is four latches and the variable-to-latch assignment is shown
in Figure 4.21. Also here several latch assignment algorithms can be used.

With the FU allocation, operator to FU assignment and variable latch assignment,

the datapath can be constructed by connecting the components through multiplexors.
The datapath for our example is shown in Figure 4.22.

54 Behavioral Synthesis for Asynchronous Circuits

FU

OUTPUT

Figure 4.22: Final datapath (beta) for our scheduled CDFG.

4.3.3 Datapath with mixed input/output FU latches (gamma)

The general structure for the datapath with mixed input/output functional unit
latches is a mix of the two previous models. The internal variables (LO...Ln) in
our datapath are implemented as latches. The functional units (FUO..FUm) are
implemented as a mixed of independent processing units and as regular functional
units.

Computing the variable life times is a mix of the two previous approaches; the
start time follows the model corresponding to the type (alpha or beta) functional unit
it is produced by and the end-time follows the model corresponding to the type of
functional unit it is used by lastly.

For our example, the low-power solution is to enclose the multiplier with in-
put/output FU latches and letting the ALU operate as a standard FU without in-
put/output FU latches. In this way we shield the unit with the largest combinatorial
depth. The variable lifetime using this mixed approach is shown in Figure 4.23
and is generated by the following algorithm: Let 2 be the set of operators {o;},
Tisource = {W; } be the set of source variables to operator ¢ and let ¢; target = Wi be
the target variable. Furthermore let o; ¢tart be the scheduled start time of operator
i, dpy(;) the delay of the FU o; is assigned to and 7gy(;) be the type of FU: a (with
out) or 3 (with FU latches).Parameter T is the length of the schedule and AT is the
time overhead of loading and storing data to the latches.

Gamma:
Initialization Vw; ¢ng = 0 and Yw; stqre =T

Alg For elements o; €

4.3 Datapath synthesis 55

=0 X% W
L] "
\'7\,7\& 77777 %7-v
L e
| DD .
=T ,,,,,,,,,,,, ; ﬂ'%
Y1 Yo N1

Figure 4.23: Variable lifetime (gamma) for our scheduled CDFG.

LO L1 L2 L3 L4 L5
t=0 o
Xy Xy % Y
4
wo|| Y%
W
Y%
W
=T Ll *.:Y.\é, ,,,,,,,,,
Yo Y1

t

Figure 4.24: Latch assignments (gamma) for our scheduled CDFG.

if Tru(s) = beta then {
for elements w; € 0; source
if Wjend < Ojstart T+ AT then Wjend = O start T AT
if Wi start > Tistart + dru(s) then wy start = 04 start + drugs) }
else {
for elements w; € 0; source
if Wjend < Ojstart + dFU(z) then Wj.end = Ojstart T dFU(i)

if Wk start > 04 start then WE,start = Oj,start }

The minimum number of latches required in the datapath given by the left-edge
algorithm is in this case is six latches and the variable to latch assignment is shown
in Figure 4.24. Also here several latch assignment algorithms can be used.

With the FU allocation, operator to FU assignment and variable latch assignment,
the datapath can be constructed by connecting the components through multiplexors.
The datapath for our example using the mixed approach is shown in Figure 4.25.

56 Behavioral Synthesis for Asynchronous Circuits

YOoY1 OUTPUT

Figure 4.25: Final datapath (gamma) for our scheduled CDFG.

4.4 Summary

In this chapter we have looked at two computation models which have different power
characteristics but have the same fundamental type of operation and thus can be
mixed. The models are capable of implementing any type of schedule, both discrete
and continuous and their resemblance to synchronous computation models allows for
the used of methods from that domain to be utilized for asynchronous circuit design.
Finally, we have looked at the details of datapath synthesis i.e. variable and latch
allocation and assignment for all of the computation models.

CHAPTER 5

Implementation in Balsa

This chapter presents the Balsa implementation templates for generating our asyn-
chronous circuits for all of the computation models. In the previous chapter we have
connected traditional behavioral synthesis with asynchronous circuits using our com-
putation model. This chapter deals with the practical implementation of this model,
the back-end of our synthesis tool. Figure 5.2 shows the Balsa handshake circuit
equivalent to our datapath from Figure 4.22.

5.1 Program structure

The Balsa handshake circuit structure corresponding to our general datapath struc-
ture is shown in Figure 5.1. Such a Balsa handshake circuit is built from handshake
components which implement the equivalent RTL operations as latching data, mul-
tiplexing data, addition etc. Each of these handshake components has its own local
asynchronous control to ensure proper asynchronous functionality and to handle the
asynchronous handshake communication protocol [92].

Besides these asynchronous handshake components which have their equivalent
RTL counter parts, there are the demux components which handles “wire-forks”, and
more importantly the transfer handshake components connecting the asynchronous
controller with the datapath; the latter play the role of event synchronizers, refer to
Figure 1.4, controlling the computation. These extra components augments the mux
layers with sublayers of demux and transfer components. Notice the mux components
implement a merge functionality and is not directly connected to the controller, nei-
ther are the latches, demuxes or FUs (except the opr control signal), only the transfer
components are connected to the controller. The FUs are autonomous components

58 Implementation in Balsa

(DEMUX)

(TRANSFER)

FU

YO Y1 OUTPUT

Figure 5.1: Datapath (beta) for our scheduled CDFG using Balsa/Tangram hand-
shake components using decoupled functional units.

which start computing when all their input data is present. Using these compo-
nents and our computation model, there is a one-to-one correspondence between the
datapath of Figure 4.22 and Figure 5.1.

In our design we use a bundled data 4-phase protocol where signals contain a 1
bit request and a 1 bit acknowledge wire additional to the data wires. Furthermore,
the transfer components degenerate to simple wire connections containing no logic.

The Balsa programs specifying the asynchronous circuit consists of:

FUs Instantiation of the different Balsa FUs used in the design. Each of these
descriptions are taken from a FU library of Balsa component descriptions, we
have designed for this purpose. The delay, area and power consumptions figures
of this library are used by the synthesis algorithm to generate the schedule.

Architecture Balsa implementation of the circuit containing the specification for
the control-handshake components, the latch instantiations, and the specifica-
tion of the routing of data between the variables and the FUs.

5.1 Program structure

59

Controller

The FUs are implemented using the following Balsa-program structures:

procedure FUalpha(inputs a,b,..;
output z) is
begin
loop
select a,b,.... then
z<-F(a,b,...)
end
end
end

procedure FUbeta(inputs a,b,..
output z) is
variable A,B,Z,...
begin
loop
a->A || b->B ||
Z:=F(A,B,...) ;
z<-Z
end
end

where F implements the computation.

Figure 5.2: Circuit structure using Balsa/Tangram handshake components, corre-
sponding to our datapath (beta) structure.

60 Implementation in Balsa

The design of the circuits follows the following Balsa-program structure:

input [FU_library]
procedure Circuit(inputs X0,X1,...;
output Y0,Y1,...) is
variable LO,L1,..,Ln
channel FUO_a,FUO_b,....,FUm_z

begin
FUj (FUj_a,FUj_b,FUj_z) [l... ||
[Architecture(X0,X1,..,FUj_a,FUj_b,FUj_z,..,Y0,Y1,...)]
end

5.2 Events: using functional units

As an example of how the datapath is constructed using the Balsa-language consider
the assignment of a subtraction operator to an ALU designated FU1. This subtrac-
tion operator has inputs wg wy and output we (we = wy — w1), assigned to variables
LO L1 and L2 respectively. Starting the computation is performed by executing the
following parallel Balsa-statement:

FU1_opr<-ALU_sub || FU1_a<-LO0 || FU1_b<-L1

This set of parallel channel assignment statements tells FU1 to perform a subtraction,
and to use the data of LO and L1. The result ws of the computation is written to L2
using the following Balsa-statement:

FU1_z->L2

Both statements will synchronize the controller with the ALU using the transfer
components and implements the process illustrated on Figure 4.9. For the alpha
type FU, the read and write events need to happen in the same statement:

FU1l_opr<-ALU_sub || FU1_a<-LO || FU1_b<-L1 || FU1_z->L2

meaning parallel events need to happen in parallel threads. For the beta type FU,
the read and write events does not need to happen in the same statement, but can
happen at separate time-positions:

FU1l_opr<-ALU_sub || FU1_a<-LO || FU1_b<-L1 ;
e

FU1_z->L2

in fact parallelism can be implemented in a single thread.

The reading of input X0 to internal variables L0 and placing of results in internal
variables L3 on output channels YO0 is executed in a similar way:

5.3 Implementing a schedule 61

EO||E1 |... N
S
E3 =Sl R N W| ,,,,,,,,,,,

E8|..|...... N f”}f},
E4 [A N -
E5 || o !
E6E9”' """"" [o

I 1 Ll
E7 .. ”””””;iiifif

if LO=0 then

Figure 5.3: Schedule showing all the different types of relative synchronization events.

X0->LO || YO<-L3

These Balsa-statements: i) starting a computation, ii) writing the result of compu-
tation or iii) communicating with the outside world, implement the events described
in section 4.1.

5.3 Implementing a schedule

A schedule consists of a series of such time ordered events and the architecture part
is a series of corresponding Balsa-statements. Consider the example schedule in
Figure 5.3, which is different from the running CDFG example. It is illustrating
all the different types of relative synchronization events required to implement any
schedule. For the construction of the schedule we need to distinguish between the
FU types:

alpha The handshakes are active for the duration of the computation on the func-
tional units.

beta The handshakes are active only for the points in time where data is moved to
and from the functional units.

Let us begin with the beta type, as it is the simplest. Consider events E0..E7, in
Figure 5.3 the non-conditional part. These form a sequence of events with EQ and E1
in parallel and the rest ordered E2,..,E7, which can be implemented by the following
program fragment:

loop
EO || E1 ; E2 ; E3 ; E4 ; E5 ; E6 ; ET7
end

This program fragment is a repetitive execution of the schedule. When we include
the conditional execution of the operator on FU2 represented by events: E8 and E9,
the Balsa-program fragment becomes:

62 Implementation in Balsa

loop
EO || E1 ; E2 ; E3 ; if LO=0 then E8 end ;
E4 ; Eb ; E6 ; if LO=0 then E9 end ; E7
end

Notice the single thread of event statements implement the parallel schedule of Figure
5.3.

Next, we will continue with the alpha type. As the handshakes now cover dura-
tions the single sequence of ordered events only apply to a single thread on a single
functional unit. In principle this means there need to be as many parallel threads
as there are functional units, communicating to each other using channels. However
usually, and so is the case for our example, it is possible to merge some threads,
elliminating communication overhead. Here the threads of FUO and FU1 can be
merged, leaving only a separate thread for FU2, the conditional part. Lets start with
the unconditional part:

loop
[EO || E2 ; E3 || E4 1 || [E1 || EB] ; E6 ; E7
end

The parallel operator is here used to merge the first part of the thread for FUO: [EQ
|| E2 ; E3 || E4 | with the thread for FUI: [E1 || E5] , after these the thread for FUO
is continued.

To include the conditional part, in the form of a separate thread, we also need to
implement the transfer of the intermediate data in Li over a channel w to Lj, where
Li is used exclusively in the thread corresponding to FUO and Lj is used exclusively
in the thread corresponding to FU2. The complete schedule becomes:

loop
[l EO || E2 ; Li->w || E3 || E4] || [E1 || EB] ; E6 ; ET 1 ||
[w->Lj ; if LO=0 then E8 || E9]

end

Channel communication represents an area- and time-overhead and as the merging of
threads saves channel communications between them, this overhead is reduced. The
parallel nature also requires the exclusiveness for variables, if this cannot be guaran-
teed by the variable to latch assignment, synchronizer channels between threads are
required to introduce this exclusiveness.

The condition for parts of two threads to be merged, is if the one part (the
sequence of events) is fully inclosed by or executed in serial by the read and write
events of the other part. We will denote the read and write events of executing
an operation on a FU for an execute interval: Iry numper- In Figure 5.4 is shown
the threads of the FUs and below the intervals are labelled: Iy, Io,1...1I20. If we
generate a thread graph (I, S, D) where the nodes are the execute intervals Iry number
and where the directed arcs (X — Y between two nodes are: (i) if interval X can be
fully inclosed in interval Y. These arcs are shown as solid arcs and (ii) if two intervals

5.4 Implementing the architecture 63

FUO: EO||E2 ; E3||E4 ; E6||E7
I0,0 I0,1 I0,2

FUl: E1J|E5
' 1,0
FU2: if LO=0 then EB8J||E9
|
2,0

Figure 5.4: Generation of threads: (Left) sequence of events for all FUs and labelling
of intervalls. (Right) Clique-partitioning of thread-graph. Each clique becomes a
thread.

are fully disjoint and Y is executed after X. These arcs are shown as dotted arcs.
Then the optimal merging of all the threads is a clique partitioning of this graph.
The thread graphs and the clique partitioning of this graph is shown in Figure 5.4.
We use a simple greedy approach for clique partitioning of the thread graph. The
resulting partitioning corresponds to our example.

The gamma model is treated first as the alpha model for the functional units
following that model. Then the events for the functional units following the beta
model are inserted into the appropriate positions.

5.4 Implementing the architecture

Let us look at the datapath being generated by this approach. Consider the following
sequence:

LO->FUO_a; -- EO

L1->FU0_a -- E1

giving rise to the circuit shown in Figure 5.5. Each of these events will lead to a
transfer component activated by EO and E1 respectively, followed by a merge com-
ponent on the input of FUQ a, i.e., implementing a multiplexing of the wires from
LO and L1 to FUO _a, the same goes in the reverse direction.

The architecture part of the program consists of two parts: (i) shared functions (ii)
schedule. The shared functions implements the event of the schedule which appear
in the schedule more than once. In the schedule below:

procedure Architecture(..) is

begin -- schedule
loop

64

Implementation in Balsa

Figure 5.6: Repeated use of hardware with out shared construct (left) and with

shared construct (right).

FU1l_opr<-ALU_add || FU1l_a<-LO ||
FU1l_opr<-ALU_sub || FU1l_a<-LO ||
FUl_opr<-ALU_sub || FU1l_a<-L0O ||

end
end

FU1_b<-L2 || FU1l_z->L1 ;
FU1_b<-L1 || FU1l_z->L2 ;
FU1_b<-L1 || FU1_z->L3 ;

There are several events which reappear e.g.. the FUl1 a<-L0 event which ap-

pears three times. In the following schedule:

procedure Architecture(..) is

shared SO is
begin

FU1_a<-LO
end

shared S1 is
begin

FU1_b<-L1
end

shared S2 is
begin

5.4 Implementing the architecture 65

FU1_opr<-ALU_sub || SO0 || S1(Q)

end
begin -- schedule
loop
FU1_opr<-ALU_add || SO() || FU1_b<-L2 || FU1l_z->L1 ;
S2(0) || FUl_z->L2 ;
S2() || FU1_z->L3 ;
end
end

it only appears once and the same for every other assignment. Shown in the form
of the S0,51,S2 constructs. The one-to-one syntax directed compilation approach
employed by balsa means that in the first circuit there are three assignments from
the same latch to the same port of FU1, as shown on Figure 5.6 (left) but by using
the shared construct we can “reuse” the hardware and implement the circuit shown
on Figure 5.6(right). This saves hardware as the control handshakes are one bit wide,
where as the datapath handshake components are N bit wide. This can be extended
to include reducing the control circuit, as shown in the program as the S2 shared
construct which implements a group of events, which are used several times.

The structure of balsa circuit implementing the schedule with these shared con-
structs represents a three, with the loop-body component as the root and the events/transfer
components as leafs and with some of the leafs merged together [51].

The full Balsa program (beta) of our running example, is shown here:

import [balsa.types.basic]
import [FU_types]
import [FU_lib]

procedure EX(input X0,X1,X2:word;
output Y0,Y1:word) is

variable LO,L1,L2,L3:word
channel FUO_a,FUO_b,FUO0_z:word
channel FU1_a,FU1_b,FUl_z:word
channel FU1l_opr:ALU_operation
constant a0= 255
constant al= 255
constant a2= 255
constant a3= 255

procedure Ex_architecture(input X0,X1,X2:word;
input FUO_z,FUl_z:word;
output FUO_a,FUO_b,FUl_a,FUl_b:word;
output FUl_opr:ALU_operation;

66

Implementation in Balsa

output Y0,Y1:word) is

shared SO is
begin

FUO_b<-L1
end

shared S1 is
begin

FU1_a<-LO
end

shared S2 is
begin

FU1_opr<-ALU_add
end

shared S3 is
begin

FU1_z->L0
end

shared S4 is
begin

FU1_a<-L1
end

shared S5 is
begin

FU1_b<-L2
end

shared S6 is
begin

FU1_opr<-ALU_sub
end

shared S7 is
begin

S10) Il 820
end

shared S8 is
begin
S40) 11 850

end

begin -- schedule

5.5 Optimizations 67

loop
X0->LO || X1->L1 || X2->L2 ;
FUO_a<-LO || SOO) Il S7() || FUi_b<-a0 ;
S3() |l S4(0) || FU1_b<-a2 || FUl_opr<-ALU_les ;
FU1_z->L3 ;
if L3=0 then S8() || 820
else S8() || S6() end ;
FUO_z->L2 || FU1_z->L1 ;
if L3=0 then FUO_a<-a3 || S0()
end || S50 |l S70 ;
S30)
S1() || FUl_b<-al || S6(0) ;
if L3=0 then FUO_z->L1

end || S30) ;
YO<-LO || Yi1<-L1
end
end
begin

mult (FUO_a,FUO_b,FU0_z) ||
ALU(FU1_opr,FU1_a,FU1_b,FU1_z) ||
EX_architecture(X0,X1,X2,FU0_z,FU1_z,FU0_a,
FUO_b,FU1_a,FU1_b,FUl_opr,Y0,Y1)
end

The balsa-circuit generates the datapath shown in Figure 5.1 and the controller
shown in Figure 5.7.

5.5 Optimizations

For the alpha model it is possible to take advantage of the memory in the functional
units to optimize the computation. In the situation where a temporary variable,
t;, in a CDFG@G, is used directly after it is produced and not required to be stored
for later use, we can implement a direct feed-forward from FUi to {FUj..FUk}, as
shown in Figure 5.8. If FUi has to start another computation immediately after
producing ¢; then this optimization should only be implemented if all the target FUs
{FUj...FUk} are ready to start when ¢; is produced, otherwise FUi will be stalled.
Similar feed-forward can be implemented from inputs and/or to outputs of the circuit.
The purpose of this optimization is to achieve a reduction in the number of variable
latches and circuit speed-up.

In the datapath synthesis algorithm these assignments are identified in the vari-
able lifetime computation and separated from the variable latch assignment. In our
example computation no latch reduction is possible using this method. Implementing
this optimization in Balsa is straightforward. If the value is used by one FU or to
one output only, we get:

FU to FU: FUi_z->FUj_a

68 Implementation in Balsa

— LO <- X0
L1<-X1

L2 <= X2

FUO_a<-LO
FU1_b <- a0

1
D
%
X}— FUO_b <~ L1
3 iﬁ i: FU1_opr <- alu_les
4

FU1_b <-a2

[Fulz->Ls

FU1_a<- L0

FU1_opr <- alu_add

X}— FUL z-> L0

FUO_z -> L2

FULz->L1

FUl_a<-L1

10
2O G FUO_a<-a3
O FUL b <-al
FUO_z -> L1
Y0 < L0

11 :Z
— Y1l<-L1

Figure 5.7: Controller to the datapath (beta) for our scheduled CDFG using
Balsa/Tangram handshake components.

Input to FU: Xi->FUj_a
FU to Output: Yi<-FUj_z

and assigning a value directly from one FU to multiple FUs are handled using the
following Balsa statement:

select FUi_z then
FUj_a<-FUi_z || FUk_a<-FUi_z ||
end

Similar constructs are used for the inputs and outputs. One should note that the
implementation of the FUs now require the ability to handle handshakes on both its
inputs and outputs simultaneously.

5.5 Optimizations 69

FUO Fu1 FUO FU1 FUo Ful
EO E0 [e s B
L L L
E1 El El
E2 E2 E2
B
3 B B
E4 e
H
) E3)
I A =
c
D EB5--nnmmmmmmmme N
E7 | s E6f - Ry
: y o]
E7 4

Figure 5.9: Decoupling computation B from computation C to take advantage of the
slack time in the schedule.

We can also optimize on the control part, this applies to both models. Consider
the schedule of operators: A,B,C,D part of an arbitrary computation, shown in Figure
5.9. In the strict controller/datapath implementation we have:

loop
EO ; E1 ; E2 ; E3 ; E4 ; E5 ; E6 ; E7
end

However we could take advantage of the inherent parallelism of B and C in the CDFG
and implement the controller/datapath in the following way:

70 Implementation in Balsa

OUTPUT

Figure 5.10: Datapath (alpha) for our scheduled CDFG using Balsa/Tangram hand-
shake components.

loop

EO ; E1 ;

[E2 ; E3 1] ||
[E4 ; E5 1;
E6 ; E7
end

This would still implement the schedule but we have increased the flexibility of the
circuit, making the circuit more robust to variable computations times, of e.g.. B,
taking advantages of the slack of the non critical paths in the schedule.

5.6 Summary

In this chapter we have presented Balsa program language templates for implement-
ing our asynchronous computation model in the Balsa CAD framework.

The CDFGs used as input to our behavioral synthesis tools could be derived
from Balsa it self. In this form of Balsa-to-Balsa compilation one could consider
our tools as a way of optimizing a circuit or parts of a circuit at the specification
level. This makes it possible to manipulate and manually optimize critical parts of
a circuit further than what the tool automatically produces, by manually modifying
the output Balsa code.

5.6 Summary 71

The Balsa language can be considered a general high-level boundary to the asyn-
chronous world. There is nothing preventing the implementation of other styles of
asynchronous circuits, i.e. Burstmode circuits, using the Balsa-language as descrip-
tion language. In fact research of this nature is currently underway. This means the
use of the Balsa-language as a back-end represents a variety of implementation styles.
However as our templates targets the current one-to-one compilation to handshake-
component implementation of Balsa, the “weights” and possibly parts of the imple-
mentation templates should be modified to ensure optimal circuit implementation
for other implementation styles.

72

Implementation in Balsa

CHAPTER 6

Algorithms for Behavioral
Synthesis

This chapter deals with the fundamental parts of high-level behavioral synthesis:
operator scheduling, functional unit allocation and operator to functional unit as-
signment. We are given a Control Data Flow Graph (CDFG) specifying the behav-
ior/computation which we want to implement onto an Integrated Circuit and we
are given a maximum time frame 7" within which the Integrated Circuit has to per-
form this computation (e.g.. caused by new data arriving at a frequency of 1/7', ex.
sampled from a sound source).

We will consider behavioral synthesis algorithms targeting a discrete time evolu-
tion, for which solutions are relaxed into continuous time. The following algorithm
suite have been developed:

e Power aware synchronous synthesis algorithm. This algorithm is a clique heuris-
tic algorithm operating with a time and maximum power per time constraint.
This is useful for applications having a power limit e.g. generated by a solar
panel. This scheduling algorithm handles CDFG’s without repetitive struc-
tures.

e Evolutionary synchronous synthesis algorithm and a simulated annealing syn-
chronous synthesis algorithm. These are meta-heuristic algorithms operating
with a maximum time constraint. These algorithms only handle DFG graphs.

e Simulated annealing task synthesis algorithm. This algorithm is used to sched-
ule the CDFG where the DFG fragments are scheduled using one of the two

74 Algorithms for Behavioral Synthesis

Power
A
POl -_—
Tasks
P []] D

PUl L

System Power Profile

Time

Figure 6.1: Task schedule and the system power profile.

previously mentioned algorithms. This algorithm has not been implemented
but the method is outlined.

6.1 Power-aware scheduling

Portable embedded systems face increasing performance demands while running on
less power. Therefore, to efficiently use the power available from the power source,
task scheduling mechanisms have to take the system power profile into account.
Figure 6.1 illustrates a set of scheduled tasks and the resulting system power profile.
In low-power or power-aware task scheduling one usually assumes a uniform power
profile of the individual tasks, however in reality these individual tasks might have
a very irregular power profile. So using the average task power figure in the task
scheduling only leads to average system power profile, and the system might have an
accumulation of power peaks which would severely violate system power constraints.
On the other-hand using the peak power figure would lead to an over-conservative
schedule which would comply to the system constraints but would be an inefficient
use of system resources.

Another related issue is the non-linear chemical to electrical energy efficiency ratio
of batteries which depends strongly on the current profile of the application [102, 5].
Here there are two contributing factors: (1) If the peak-current exceeds a maximum-
threshold the life-time starts dropping dramatically. (2) A large current variation
also leads to reduction in battery life-time. These factors are more dominant on
batteries of low quality. Furthermore there might be a maximum power available to
the task restricted by e.g. a solar panel providing the power to the circuit.

Altogether our goal is to synthesize these critical tasks as digital circuits, with
a static schedule having an uniform power profile. In this section we present a
heuristic synthesis algorithm which solves: (i) scheduling, (ii) allocation and (iii)
assignment, simultaneously under both a time and power constraint. These 3 tasks
are traditionally solved separately which is suboptimal as these typically interfere
with each-other.

6.1 Power-aware scheduling 75

6.1.1 Problem formulation

The hardware behavioral (time-constrained and power-constrained) synthesis prob-
lem, given a non-repetitive CDFG, time constraint 7" and a maximum energy per
time-slot constraint F., consists of the following subproblems:

Scheduling Determine the schedule ¢ specifying the start time k; for each operation
v; (k; = ¢(v;)) such that: (i) no precedence constraint is violated: k; > t, +
dy,tr = ¢(vy), Vi, r : (vi,v,), which are connected in the CDFG, such that all
operations are completed within the time frame T'. (%) no power constraint is
violated: Ey < E.,Vk = [0..T], where E, = > e;,Vi : (v;) which are executing
in control-step k.

Allocation Specify which j and how many /N; functional unit instances are required
selecting from the provided hardware library R.

Assignment (Operator Binding) Provide a mapping « : V' — R, from each oper-
ation v; to a specific functional unit a(v;) = j € R. The assignment specifies
the execution delay of the operator 6(v;) = d; and the energy consumption per
time-slot of the operator e(v;) = e;.

We will solve these subproblems simultaneously targeting minimimal the area
cost (6.1):

costy =y [w(j) x Nj(o)], (6.1)

JER

where w(j) is the area cost of FU j, N;(o) the required number of these for the
schedule.

6.1.2 Power heuristic scheduling

In traditional time constrained synthesis the two heuristic low complexity algorithms;
ASAP and ALAP are used to bound the solution space. In Figure 6.2 is shown
an example CDFG and its corresponding ASAP schedule, where we have assumed
all operations, without loss of generality, are executed in one time-slot. In this
section we use a different example CDFG, than our running example 2.2, as this
new simpler CDFG exemplifies the power variation we want to emphasize for this
synthesis method, unlike our familiar CDFG used elsewhere in this thesis.

In the following we present a heuristic algorithm, PASAP, which given a power
constraint generates a schedule. This algorithm plays the same role as ASAP and is
being used in our main algorithm to heuristically bound the minimum time separa-
tion between two operators, ensuring all CDFG precedence constraints are satisfied

76 Algorithms for Behavioral Synthesis

FU o Delay | Area | Energy/time-slot
add {+} 1 1 1
ALU | {+,—,>} 1 1.5 1

mul {x} 1 4 3

Table 6.1: Simple example FU library, used for the example only.

CDFG: 1 2 3 4
5 67
>
t ASAP E
0 '® X O D] 6
1|5) 4
2 |73 1

Figure 6.2: Example CDFG and its ASAP schedule

together with the power constraint. The PASAP schedule is a“stretched” ASAP
schedule. “Stretched” to fit the power constraint i.e. the operators are scheduled as
fast as possible, but only if there is power available meaning some operators will be
delayed additional time-slots.

PASAP (E.):

Initialize: Schedule source start-time to zero and initialize the execution offset o;
(time-steps) to zero for all operators.

step 1: Pick an unscheduled operator v;
step 2: If v; has unscheduled predecessors, goto 4.

step 3: If there is power available in the execution time interval [(¢; + 0;)..(t; + 0; +
d;)], where d; is the execution delay of v; and ¢; = max{t; + d;} Yv; — v;, is
the earliest start time, otherwise increase o; by one.

step 4: If unscheduled operators, goto step 1.

For construction of our PASAP schedule we use the simplistic functional unit
(FU) library shown in table 6.1. In Figure 6.3 is shown the PASAP schedule for our
example CDFG, here we have set a power limit of £ = 3, which we keep for this
example. The algorithm starts in time-slot one and tries to fill it up with operations:

6.1 Power-aware scheduling 77

PASAP
'® 0 ‘@
®
®

PALAP E
2@ 3
CCRCIE

3
1
2

3®
® ®

> ‘® G
Figure 6.3: The PASAP and PALAP schedules of our example CDFG, both with
E<:3.

NN w|N |k o]~
RlrR|lw|w|lw|lm

we start by scheduling vy, which prevents us from scheduling v as this would violate
the power constraint. But we can continue to schedule v3 and v4. In the next time-
slot we have vo ready, which is the only one for which there is power available and
the algorithm continues. The total PASAP schedule takes 5 time-slots to complete
as opposed to only 3 time-slots of the ASAP schedule. The same algorithm can run
backwards which we denote PALAP.

Obviously there are many ways of selecting which operators to “pack” into time-
slots and it is a hard problem to find the optimal combination i.e.. the solution
that results in the schedule using the least amount of time. Here we have simply
chosen the order of which they appear in the CDFG. In this way PASAP cannot be
compared to ASAP.

6.1.3 Power and time constrained synthesis

In Figure 6.4 we have re-shown our example CDFG as well as a non-power constrained
schedule with a time constraint of T—5 time-slots. Here the partial clique partitioning
algorithm in [58] is capable of constructing a schedule and an FU allocation using only
one ALU and one mul (the minimal FU-allocation to execute this CDFG no-matter
how much time we have available) using a total area cost of 5.5 units. Besides the
schedules is shown the total energy consumption for the respective time-slots. Here
we note two things: (i) This schedule violates the energy constraint of E. = 3 and
furthermore (ii) it is very spiky (time-slots 1 and 3). For a power constrained schedule
we wish to stay under our constraint and “smoothen-out” the schedule.

As mentioned, our power constrained synthesis algorithm builds upon this algo-
rithm and as in [58] we construct the time-extended compatibility graph, V1: Each
vertex A;ji represents a possible scheduling, allocation and assignment of operation
i on FU type j starting in time-steps k. Each edge < A;j;x, Ay;+ > represents the
simultaneously scheduling, allocation and assignment of operator ¢ and r on the same
FU instance of type j at times k and ¢, respectively. We have extended the formu-
lation of a valid V1 graph to include power constraints. Thus our allowed vertices
(Aijk) are:

78 Algorithms for Behavioral Synthesis

i: All operators in the CDFG.
J: The set of FUs where operator i can be executed.

k: The time interval given by {tpasap,tparLap}, when operator ¢ is executed on
FU j and all other operators are scheduled using delay information from the
fastest FU type and power information from the most power hungry FU type.

And the allowed edges,< A;j;i, Ar;+ >, are those where there is a dependency in the
CDFG, v; — v,, and the execution time of the two operators does not overlap when
scheduled on FUj;, as well as it is possible to find a valid PASAP schedule with v;
and v, scheduled on FUj at times k and t respectively.

A subgraph of V1 which is completely connected by compatibility edges in V'1
(clique) can be mapped to one FU instance. Then the solution to the synthesis
problem with the minimum area and using least interconnect is the problem of finding
the Partial minimal cost clique partitioning of V1 which does not violate
the power constraint, where partial refers to a cover containing one-and-only-one
vertex for each operator 7.

t | ALU mul E

o0 |4+ ZL*—_I 4

1 || 1

2 3 1

3 [Fe o] || 4

4 7 1
\

Figure 6.4: CDFG and a non-power schedule with T—5, using only one ALU and
one mul with a total area of 5.5.

As in [58] we heuristically solve the clique partitioning problem, through a greedy
approach i.e.. evaluate the V1 graph and pick a “best” decision which is then
scheduled, allocated and assigned. Then this process is repeated until no oper-
ators are left. To this end we construct the Mixed-vertex Compatibility Graph
(MCG = (V1,V2,E)): The V1 graph, extended with super-vertices S;, € V2.
The super-vertexes Sj, contain the scheduled, allocated and assigned operators on
FU of type j instance n. Initially |[V2| = 0.

In principle, our algorithm starts with a power and time valid region then aggres-
sively reduces area ensuring the scheduling region stays valid. Our algorithm is as
follows:

Initial Build the MCG. Here PASAP and PALAP are used to build the set of
allowed vertices and allowed edges, under the power and time constraint.

Step 1 Pick the best decision. We select according to maximum clique i.e. find
the largest clique A;j is contained in (a double search of the entire graph) and

6.1 Power-aware scheduling 79

Figure 6.5: Partial-Clique partitioning. Shown are a set of V1 vertices, grouped (by
the dotted lines) in operators. The only edges shown are those which are in the
maximal clique not violating the power constraint .

compute cost 4, ;, = sum of FU area for maximum clique(A; ;). The selected
vertex is merged into an existing super-vertex if it is connected to a super-
vertex, otherwise it is made into a new super-vertex.

Step 2 Transform the MCG in accordance with the decision. The decision of the
previous step has effects on both time and power, again PASAP and PALAP
are used to maintain validity i.e.. ensure the V1 graph only contains the set of
allowed vertices and allowed edges reflecting the current situation. Furthermore
we need to preserve the cliques and disconnect those which no longer form one,
refer to [58] for a detailed description.

Step 3 Ensuring feasibility. As PASAP and PALAP are heuristic algorithms they
depend on what operators have been scheduled, therefore a sequence of assign-
ments might cause the of deletion unscheduled operators, causing an invalid
schedule. The solution is to backtrack one step and lock the start time of all
unscheduled operators to the PASAP schedule (which was valid) and then con-
tinue, reducing our algorithm to a pure assignment and allocation algorithm
from that point on.

Step 4 If any vertices left in V1, goto step 1.

A comment to step 3, in most cases step 3 will not take effect and the algorithm
will continue to the end, however it is possible to construct CDFGs which together
with specific constraints causes the algorithm to execute this step. But even if it
does, the algorithm has been allowed to operate for some time, during which it has
significantly reduced area in comparison with the starting PASAP schedule.

In Figure 6.6 we illustrate the construction of a power-constrained schedule using
our algorithm and the example CDFG. We use the same time constraint T=>5 and
power constraint E. = 3 as in Figure 6.3. The onset of the algorithm is the construc-
tion of the PASAP and PALAP schedules, shown in Figure 6.3 and requiring at
least 5 time-steps for our power constraint, which generates the scheduling intervals

80 Algorithms for Behavioral Synthesis

Figure 6.6: CDFG and the construction of the power constrained solution (T=5,
E<:3)

for our operators. Using the scheduling intervals and our FU-library, shown in table
6.1, we generate the V1 graph, shown in Figure 6.6. Initially the algorithms creates
a super-vertex of the multiplier operation vy scheduled on Mul in time-slot 0, then it
merges vs scheduled on Mul in time-slot 2 in to it, these are shown enclosed in the
dotted ellipse.

The selection of vy scheduled on Mul in time-step 0 has consequences in the form
of the PASAP and PALAP algorithms deleting the nodes:{100,400, 110, 310,410}
to maintain the V1 graph in a feasible state. Operation {221} is deleted as vy now
has been scheduled. Merging vs scheduled on Mul in time-slot 2, similarly removes
operations {402,412} and we arrive at the V1’ graph shown in Figure 6.6, with the
super-vertex enclosed in the solid ellipse.

As it turns out the V1’ graph no-longer contains vertices (i.e.. cliques) which
together with the super-vertices can violate the power constraint. Meaning the sub-
sequent execution of the PASAP and PALAP algorithms in principle reduces to
execution of the ASAP and ALAP algorithms i.e.. the remaining part of the algo-
rithms executes as the original algorithm in [58].

The final schedule, allocation and assignment corresponding is shown in Figure
6.7, requiring one add, one ALU and one mul, using a total area cost of 6.5 units.
Alongside the schedule is shown the power consumption in each time-slot, where we
now no-longer have a power violation as well as less spikes. We notice the price for
the power constrained schedule compared with the non-power constrained schedule
(using the same time-frame) is an extra adder, a relative area increase of 18 percent.

6.2 Implementing synchronous power aware schedules in asynchronous circuit81

add ALU mul

]
T
s
4LT_| 6[.1-]
T

v

AlWIN (P |O|
RIN[WIN|IWM

Figure 6.7: Solution (T—5, E-—3) using one add, one ALU and one mul, using a
total area of 6.5 .

FUO FUl1 FU2 FUO FU1 FU2 FUO FU1 FU2
bl bl

E3 |- R E3 |- R E3 | 1 R

al b2 — b2 — b
E4 |- R E4 [R
E5 |- T E5 [~ a

a

a2 b3 b3
E6 |- D E6 | | D E6 | | D
E7 |- Tt - E7 [~ Tt - E7 [~ Tt

a3 c c [«
ES |- s - ES |- s - E8 |-

Figure 6.8: Creating multi-cycle operations from single-cycle operations maintaining
the global time-line, which prohibits operation “sliding”.

6.2 Implementing synchronous power aware sched-
ules in asynchronous circuits

There is a potential danger of violating the power constraint when relaxing a syn-
chronous power aware schedule to continous time and implementing it in an asyn-
chronous circuit, as the synchronous synchronization is removed.

If we restrict our selves to circuits generated by the beta model without the opti-
mizations. Or restrict our selves to the circuits generated by the alpha model whose
threads can be merged into a single main thread. Then we will show there is no power
constraint violation relaxing synchronous power aware schedules in asynchronous cir-
cuits using our templates.

Let us assume a schedule consisting of single-cycle operations. Then in each
control-step there is a set of parallel read events for all operations starting in this
cycle, sequenced by, a set of parallel write events for the same operations. This
is sequenced by the next cycle. Therefore if the synchronous schedule upholds the
power constraint in each cycle, so does this asynchronous circuit.

For multi-cycle operations the picture is a little more complicated, however the

82 Algorithms for Behavioral Synthesis

same principle applies. First consider the multicycle operation as a sequence of single-
cycle operations, as shown in Figure 6.8 (left), the first case. In this picture there
is no power constraint violation. Removing the middle synchronization events does
not change anything as the start and end of the multi-cycle operation, in the second
case, is sequenced now by a series of single cycle operations in between. And in the
final case the start and end of all operations is locked on to the global time-line. If
we assume a operation has “slided” into violating the power constraint it would have
violated the global time-line-sequencing of operations. With respect to the global
time-line-sequencing, the alpha model, whose threads can be merged into a single
main thread, behaves identically as the beta model.

6.3 Simulated annealing and evolutionary algorithm

In this section we investigate two meta-heuristic algorithms for solving the behavioral
synthesis problem: (i) Simulated annealing and (ii) evolutionary algorithms [78, 42,
79, 66, 43, 32, 52]. Meta-heuristic algorithms are interesting in this context as large
DFGs can be scheduled with fast run-times. Furthermore they are easily be stopped
if the optimal solution is not required to be found, but just a solution which falls
within the area requirement. The power-constraint has not yet been implemented
into these algorithims.

For these algorithms we target DFG fragments to be scheduled and a time-
constraint which specifies the maximum amount of control steps allowed for the
execution of the DFG fragment. The DFGs considered here are acyclic directed
graph with vertices o;, representing the operators to be executed, and edges o; — oy,
specifying the order in which they have to be executed for the computation to be
correct (o; has to be executed before o;). The DFG is augmented with a source (con-
necting to inputs, I) and a target vertex (connecting from outputs, O). To execute
operations we use the same resource library of functional units, defined in table 6.2.

With the hard time frame constraint we need to find schedule in which to execute
the operations in the DFG onto some FUs such that we finish all operators before the
time frame 7' (without violating their dependencies) and at the same time minimize
the area. This involves trade-offs between scheduling e.g. many {4+, —, >} operations
in parallel (requiring more “cheap” ALUs), to serialize more {x} operations (requiring
fewer “expensive” mull), as well as tradeoffs between different “subtypes” of FUs (fast
or slow). All this depends strongly on the specific DFG and the time frame T we
have available.

6.3.1 Problem formulation

First, we formulate the behavioral synthesis problem as an ILP problem. We have
a DFG with operators o; ¢ = 1...n and dependencies o; — 07, a resource library
with functional units of type FU; j = 1...m having a silicon area w;. And a
time interval £ = 1...T giving for each operator ¢; a time interval where it can be

6.3 Simulated annealing and evolutionary algorithm 83

scheduled: S;...L;. We want to minimize the used silicon area. Let us start by
introducing the variables in our formulation:

x : Let x; j , be a 0,1 integer variable associated with the operator o;: x; ;5 = 1 if
0; is scheduled to start in time-step k assigned to execute on F'U; and x; ;1 =0

otherwise.

N : Let N; be an integer variable which denotes the number of functional units of
type F'U; we will allocate on our IC.

The objective function is:

minimize A = Z wj * N; (6.2)
j=1
Subject to
L; m
SN wije = Lforalli (6.3)
k=S, j=1
L; m
Z Z k x T4,k —
k=5; j=1
L; m
Z Z(k —dj)xzi; > 0, forall oy — o (6.4)
k=S; j=1
n dj—1
Ni=> > mijnyp = 0 foralljk (6.5)
i=1 p=0
n om dj—1
E. — ZZ ejxijk—p > 0, forallk (6.6)
i=1 j=1 p=0

The objective function (equ. 6.2) states we want to minimize the total used
silicon area and sums over all functional unit types and for each multiplies its area
by the number required for the schedule. The first constraint (equ. 6.3) simply states
that all operators must be scheduled to start in some time step and on some FUj.
The second constraint (equ. 6.4) specifies that for each DFG dependency o; — oy
operator [can only start after operator ¢ finishes ¢; > d; + ¢; (which depends on
which FU ¢ is scheduled on). The thierd constraint (equ. 6.5) states a FU can only
execute one operation at a time. The final constraint (equ. 6.6) ensures that there
nowhere is used more power than availeble. This last constraint will be ignored in
the following.

84 Algorithms for Behavioral Synthesis

Feasible

cost gradient

Infeasible

Perturbation

Figure 6.9: Crossing from one island of the solution space to another by keeping the
infeasible solutions, when the perturbation is smaller than the minimum required
distance. The sequence of ¢;’s indicated by the dots are the actual solutions and the
sequence of F(¢;) = A; indicated by the crosses, correspond to the feasible solutions
the cost area function is computed from.

6.3.2 Representation and feasibility

We use a solution vector containing n tuples (one for each operator), consisting of
the pair (k;, j;) where k; is the time step, where operator ¢ starts and j; is the FU
type to execute it on (k; € S;...L; and j : 0; € FUj). Let the schedule be defined
by:

¢ = [(kl’jl)a (kQ,jQ)a SRR (kn,jn)]

In both simulated annealing and evolutionary algorithms we will likely produce
(and start with) solutions which are infeasible. Where infeasible means we are vio-
lating DFG dependencies, therefore we need to make the solution feasible ¢ — ¢'.

We also use this feasibility algorithm to allow for easy crossing over regions of
infeasible solutions, as illustrated on Figure 6.9. We keep the infeasible solution
but compute the cost of this infeasible solution by making the solution feasible and
then compute the cost of this solution. This requires however that the feasibility
algorithm is deterministic, such that the best solution (feasible) can be regenerated
from a possible infeasible best solution. This is a better solution than working with
a penalty function or removing the infeasible solutions.

First, let us revisit the ASAP algorithm. Before the algorithm starts assume we
assign an operator o; to time step within ¢; € S; ... L; and with j; equal to the fastest
FU;. The output is the earliest time 5] the other operators o; can be scheduled with
o; is scheduled in time step k;. Only successors to o; are affected S; < 5.

Critical for this to be of any use is 5] < L; VI : Assume we at some point get
S, > L; after assigning operator r to time step ¢, (¢ S,...L,,S, < L;). Let p
be the longest path o, — o0, and ¢ the longest path o, — o, (going "backwards’):
S; >ty + |p| and L, < L; — |q|. Since the DFG is acyclic |p| = |q|, so S] > t, + |p|

6.3 Simulated annealing and evolutionary algorithm 85

and L, + [p| < Ly, therefore if S} > L; < ¢, + |p| > L, + |p| or ¢, > L,, which is a
contradiction.

The same applies to the ALAP algorithm and by running both algorithms in
succession, we reduce the time intervals for all other operators o;: k; € S]...Lj,
S < 81,8 <L), L) < L.

Up until now we have assumed j; was assigned onto the fastest FU. The available
delay is the minimal L] time for its successors o; minus the start time: delay; =
min{L;} — k;. So any FU; with d; < delay; can be chosen.

The algorithm for feasibility is as follows:

Initial set ¢’ empty.

Step 1 Pick an unscheduled operator o, in ¢.
Step 2 Schedule o, in time step: ¢'.k, = ¢.k,.
Step 3 Compute delay, = min{L;} — k.,

Step 4 If ¢.5,. < delay,: ¢'.j. = ¢.j. else assign : ¢'.j,. = j (j is the one with the
slowest allowable execution) where o, € FU; and d; < delay;.

Step 5 ASAP (update S; — 5))
Step 6 ALAP (update L; — Lj)

Step 7 For all unscheduled operators o; in ¢: if ¢.k; < S] set ¢.k; = S| and if
¢.ky > L set ¢.k; = Lj.

Step 8 If any unscheduled operators in ¢ goto step 1.

The algorithm works by iteratively scheduling operators one at a time and each
time running ASAP and ALAP reducing the valid time intervals for unscheduled
operators and a feasible schedule can be obtained. The algorithm is deterministic
and has complexity O(n?).

6.3.3 Simulated annealing

The simulated annealing algorithm is a meta-heuristic algorithm for solving ILP
problems which borrows from the physical model of near adiabatic crystallization i.e.
the formation of a perfect crystal lattice.

Simulated annealing algorithm:

Initial Generate initial feasible solution vector — ¢ and compute its area cost A

Step 1 Perturb ¢, by randomly moving an operator in time and changing its FU
assignment — ¢'.

Step 2 Generate a feasible solution from the perturbed solution vector F(¢') —

/
feasible

86 Algorithms for Behavioral Synthesis

Step 3 Compute the area cost of qﬁ}easible — Al

Step 3 If the new cost is smaller than the existing solution (A’ < A) accept the
new solution ¢’, otherwise conditionally accept ¢’ depending if exp(—(A" —
A)/Temp) > random(1) is true.

Step 4 Update the solution space (¢', A", Temp') — (¢, A, Temp) and while not
thermal equilibrium goto step 1.

Step 5 Reduce the temperature exponentially Temp’ = aTemp, with 0 < o < 1.

Step 6 If the temperature Temp’ is larger than Tempcrysiar (the stopping temper-
ature) and A’ is larger than Agccept gOto step 1.

In the iteration step a random operator o; is chosen and random (acceptable)
values are inserted for both k; and j;. Then the schedule is made feasible starting with
scheduling o; and then scheduling the rest. In this way we ensure the perturbation
survives the feasibility process. Then depending on the cost and the temperature
we accept this new schedule or not. The fundamental difference between simulated
annealing and local search lies in the ability at “high” temperatures to move “uphill”
i.e. accept solutions which are less optimal (as well as always move “downhill” i.e.
accept more optimal solutions). This is handled by the accept function maintaining
the Boltzmann distribution from statistical mechanics. Initially the algorithm is
started with an random solution which is made feasible. The thermal equilibrium
condition repeats the inner-loop a certain amount, this is determined in the following
chapter. T'empcrystal stops the algorithm if the temperature comes down to 1. It can
be shown mathematically that by selecting the correct temperature function specific
to the problem, the simulated annealing algorithm will find the optimal solution.
However the time spent on finding the optimal solution can be shown to be equal to
or larger than the time to perform an exhaustive search. We set the start temperature
to 10000 and it can be shown that a adiabatic cool-off in temperature corresponds to
an exponential temperature decay i.e. the new temperature is generated by Temp’ =
aTemp with 0 < o < 1. We determine the appropriate value for « in the following
chapter.

6.3.4 Evolutionary algorithm

The evolutionary algorithm approach is a meta-heuristic algorithm for solving ILP
problems which is biologically inspired and implements the concept of “survival of
the fittest”.

Evolutionary algorithm:

Initial Generate initial set of feasible solution vectors — ® = {¢}, the population,
and compute their respective area costs A = {A} and set the generation count
to zero G = 0.

6.3 Simulated annealing and evolutionary algorithm 87

Step 1 Remove the half part of the population ® with the lowest area cost — <I>%
and set ' = ().

Step 2 Select two elements from <I>% — {¢a, P}, the parent solution vectors, and
remove the elements from the set ©1\{¢q, ¢} — @;.
2

Step 3 Select a random crossover position and form two new solution vectors
{¢a, oo} — {0, ¢}, the child solution vectors.

Step 4 Mutate {9, ¢}, by randomly moving an operator in time and changing its
FU assignment — {¢’, ¢’} using a low probability x for mutating the solution
vectors.

Step 5 Add the parent and the the child solution vectors to the new population
P’ + {¢a7 ¢b7 1//7 50/} — o

Step 6 Update the solution sets(®’; , ") — (<I>%,<I>’) and if ®, is non-empty goto
2
step 2.

Step 7 Generate feasible solutions from the perturbed solution vectors in
(I)/:]:(;erturbed) - (I)/feasible‘

Step 8 Compute the area cost of @}easible — A’feasible.

Step 9 Increment the generation count G and update the solution space (®’, A") —
(D, A).

Step 10 If the best solution Apes; is larger than Ageceps and the generation G is less
than Ggtop goto Step 1.

The algorithm works by first deleting the most unfit half of the population. Then
for two survivor pairs we select a random crosspoint and perform the crossover
thereby producing two new children. Then we randomly sometimes add a muta-
tion to the children. Then the children are made feasible (in the same way as for
the simulated annealing) and the cost functions are evaluated and they are put into
the new population. The fundamental difference between the local search/simulated
annealing and the evolutionary algorithm is the use of a population of solutions in
the latter. The deletion of the most unfit half in principle works as the “downhill”
moving part and with the cross-over and mutation as the potential “downhill /uphill”
moving part. Initially the algorithm is started with set of random solutions, made
feasible and evaluated. The mutation rate is included in the evolutionary algorithms
to prevent the entire population from converging to a single collection of similar so-
lutions. The mutation rate should not be the principal solution space exploration
method of the algorithm and should be very low; we chose x = 0.01. The generation
count terminates the main loop if more than G, generations has passed. In the
following chapter we determine both the population size and the G0, parameter.

88 Algorithms for Behavioral Synthesis

| Module | Oprs | Area | Time-slots | E/time-slot [nJ] |
add) 2032.75 1 0.0266
sub =7 2032.75 1 0.0266
comp | {>} 2032.75 1 0.0266
ALU {+,—,>} 2965.00 1 0.0266
mull | {*] 41978, 50 3 0.1046
mul2 {x} 28414.50 6 0.0523
mul3 {*} 14638.75 17 0.0319
input i 43.00 1 0.0
output | o 43.00 1 0.0

Table 6.2: 16 bit functional unit library based on balsa-cost numbers, available to
the synthesis algorithm.

%) X X,
CDFGO /
DFGO / TN CDFG1 I
", | [l
1 V%*DZ | or CDFG1
% 3| ~ ON
) i owr® ! DFG1DFG2
WA Sl ey O O
Jsow L

yo yl

Figure 6.10: (Left) Partition of our CDFG into DFG fragments. (Right) The corre-
sponding task graph to the partition of the CDFG.

6.4 Control data flow graph synthesis

For synthesis of control data flow graphs a basic block synthesis procedure is used.
Thus repetitive and conditional segments of the CDFG are scheduled as independent
parts or independent tasks i.e. the synthesis problem of the CDFG is reduced to a
synthesis problem of a set of DFG’s [64, 103|, as we have presented in the previous
sections i.e. this algorithm builds on top of these algorithm.

The partition of the CDFG into basics blocks follows a hierarchical decent into the
CDFG where the DFG-fragments are identified as the largest sets of deterministically
related operators in the CDFG. The largest set of deterministically related operators
is defined as the largest group of operators for which a static execution order can be
found.

Having partitioned the CDFG into basic blocks a hierarchical task graph con-

6.4 Control data flow graph synthesis 89

DFGO DFG1
mull ALU mull ALU

I 15— L

Figure 6.11: Scheduling of the DFG fragments: DFG0, DFG1, DFG2.

taining the relationships between the different DFG fragments is generated. This is
illustrated on Figure 6.10 for our example CDFG. For our example the largest group
of deterministicly related operators in CDFGO are operators:{1,2,3,4,5} , which is
denoted DFGO. Besides that there exists a branch-section which we denote CDFG1.
The procedure is then repeated for CDFG1, which contains two sets of determinis-
ticly related operators DFG1={6, 8} and DFG2={7}. Each of these DFG fragments
are nodes in the corresponding task graph. The task graph has a single dependency
between DFGO and CDFG1, which originates from the execution of the conditional
choice, operator {4} which is computed in DFGO0 and used in CDFG1.

To keep track of the current solution the algorithm is working on, we introduce
a solution vector ¢ containing n tuples (one for each DFG; fragment), consisting
of the pair (¢;,d;) where t; is the start time-step for DFG; and d; is the synthesis
delay constraint for this DFG; fragment i.e. the maximally allowed execution time
for DFG;. Let the schedule be defined by:

¢ = [(tla dl)v (t2a d2)7 sy (tna dn)]

The time-steps t; are bound by the ASAP and ALAP times for the task graph,
where it is assumed all the DFG; fragments are executed using their ASAP sched-
ules. The individual synthesis delay constraints range from the ASAP time of the
DFG; fragment to the ALAP time of the DFG; fragment computed where all other
DFG fragments are executed using their ASAP times and all predecessor DFG; are
scheduled at ASAP start-time intervals and all successors are scheduled using their
ALAP time intervals. This specifies the maximally allowed time interval for that
DFG fragment.

The main synthesis algorithm operates in “two-levels”: The principal level sched-
ules the DFG fragments (task-scheduling) using the {¢;} start-times and the sublevel
or innerloop reschedules a single DFG; fragment using its d; synthesis delay con-
straint.

CDFG scheduling:

90 Algorithms for Behavioral Synthesis

Initial Generate the task-graph by descending hierarchically into the CDFG dividing
deterministic sets into DFG; which are nodes in the task graph. Generate the
initial solution vector by setting the set of start times {¢;} to the ASAP start-
time for the task-graph. And set the set of synthesis time-constraints {d;} to
the length of the ASAP schedules for the {DFG;}.

Step 1 Perturb ¢, by randomly selecting a tuple ¢ and randomly move the start time
t; and change the synthesis constraint d; — ¢’. All has to be selected within
their respective ASAP-ALAP intervals.

Step 2 [Innerloop:] Reschedule the selected DFG; using one of the methods pre-
sented in the previous sections, using the corresponding constraint d;.

Step 3 Schedule the task graph using the task solution vector and allocate using
groups of FUs from the DFG fragments. For CDFG fragments containing
choices between several DFG’s use the worst-case time-delay and area usage.
For conditional repetitive CDFG fragments assume a single execution. The
resulting functional unit allocation is the maximal concurrent use of each type
of FU.

Step 4 Locally optimize the resulting combined schedule, by taking advantage of
the slack but without allocation more functional units than allocated in the
current iteration. Compute the area cost of ¢’ — A’ from the functional unit
allocation.

Step 5 If the resulting schedule violates the system time constraint T add a large
penalty area to the area cost: A’ + P — A’

Step 6 If the new cost is smaller than the existing solution (A’ < A) accept the
new solution ¢, otherwise conditionally accept ¢’ depending if exp(—(A’ —
A)/Temp) > random(1) is true.

Step 7 Update the solution space (¢', A", Temp') — (¢, A, Temp) and while not
thermal equilibrium goto step 1.

Step 8 Reduce the temperature exponentially Temp’ = aTemp, with 0 < a < 1.

Step 9 If the temperature Temp’ is larger than Temperysiar (the stopping temper-
ature) and A’ is larger than A,ccepr goto step 1.

The algorithm operates similar to the simulated annealing synthesis algorithm in
subsection 6.3.3, the principal difference is in step 2, the innerloop, where a DFG
fragment is scheduled. Here a penalty cost is used for infeasible solutions as no good
feasibility algorithm has been found yet.

The scheduling of the different DFG fragments are shown in Figure 6.11. For our
simple example task-graph there is, because of the dependency between DFGO and
CDFG1, only one possible task schedule, which is shown in Figure 6.12 (left). The
corresponding schedule at operator level is shown following thereafter, this schedule

6.4 Control data flow graph synthesis 91

Task scheduling —— Corresponding schedule—— Optimized schedule —— Relaxed schedule

CDFGO mull ALU mull ALU mull ALU
0" DFGO t=0 t=0 t=0
DFGO 1 1 1
2 2 2

O 4 4 4
CDFG1 S il : ==
DFG1DFG2 |]® ‘ 7 ‘1 8
O O 3 } s } : 3
el 1e b 1
5 5 5
DFG1/ ! | ! i ! Lo

DFG2 | e 7 3 3 [—— '

Figure 6.12: Synchronous task-scheduling and the corresponding schedule of opera-
tors. Slack exploitation leads to the optimized schedule, which is finally relaxed into
an asynchronous schedule.

contains a lot of slack stemming from the individual scheduling of the DFGS and
not the CDFG as a hole. In this and other cases the schedule can be compressed
following a “first come first serve” principle where operators are moved upwards in
time to empty time slots, preserving the relative scheduling of the operators in DFG
and their relative dependence between the DFGs. The resulting schedule for ex-
ample is shown on the same figure. Finally the time-slot restrictions are removed,
shortening the execution time of the multiply operation and relaxing the schedule
into an asynchronous schedule. The resulting schedule has been used through-out
in this thesis. This schedule is not optimal when compared to the optimal schedule
generated through a continuous time exhaustive-search method, but the difference is
marginal.

For the power aware scheduling algorithm considered in the first section, the
basic block is extended to include the conditional sections of the CDFG, but not
repetitive structures. This means our entire example is one basic block for that
algorithm. The power aware scheduling is a clique based algorithm which operates
using operator disjunctiveness. There are two types of disjunctiveness to characterize
the relationship between two operators. The operators can be:

Path disjunctive For operators to be path disjunctive, there should exist a de-
pendence relation between them i.e. there should exist a path in the CDFG
connecting the two operators together and preventing the operators from hav-
ing overlapped execution times.

Branch disjunctive For operators to be branch disjunctive each operator should
semantically exclude the execution of the other i.e. if each operator belong to

92 Algorithms for Behavioral Synthesis

different branches in a branch construction only one of the operators can be
executed and therefore no overlapping execution can occur.

Operators that are disjunctive will only take up one execution slot on a functional
unit and thus can be advantageously scheduled onto the same functional unit.

A power-constraint could be included alongside the task execution-time constraint
d; and thus be used to power constraint the scheduling of the DFGs. The system
power constraint could then be handled by a penalty function, similar to the penalty
introduced by violating the system time constraint 7.

6.5 Summary

In this chapter we have presented a set of behavioral synthesis algorithms: A power-
aware synthesis algorithm for CDFGs without repetative structures, which we have
implemented. A simulated annealing algorithm and an evolutionary algorithm for
synthesis of DFG fragments and we have developed a feasibility algorithm which
enables the possibility of easy crossing between areas of feasible solutions in the
solution space for these meta-heuristic algorithms. All of which we have implemented.
Finally we have outlined a behavioral synthesis algorithm for synthesis of CDFGs.
In the following chapter we compare the implemented algorithms.

CHAPTER 7

Results

This chapter presents an evaluation of the efficiency of the computation model and
our methods. The purpose here is not to compare asynchronous vs. synchronous,
as each have their own application domains and acts as supplements. Neither is
direct comparison with other asynchronous synthesis methods attempted, as this
involves comparing different technologies and implementation styles which renders
any comparisons debatable/inconclusive.

We benchmark our algorithms on a representative set of problems from the clas-
sical set of synthesis benchmark CDFGs: FIR is a eight-tap FIR filter. HAL is an
iterative Euler integration of a differential equation. ELLIPTIC is a fifth order ellip-
tic wave filter. COSINE is a part of the DCT algorithm. Throughout in this chapter
we will use the FU library shown in Figure 6.2. This FU library consist of “balsa-
cost” numbers of corresponding balsa-programs that implement the functionality of
the functional units.

We begin with presenting the results of the behavioral synthesis algorithms where
we are interested in their run-time. For these we only consider the area of functional
units. Then we proceed by investigating the circuit implementation method presented
in this thesis; we use our method on the GCD algorithm, which we compare against
a manually optimized design. For these results we use the full circuit area. Then we
implement the benchmark set and investigate the overhead of implementing resource-
sharing using this method. Finally we look at the circuit characteristics at layout
level.

94 Results

| Module | Oprs | Area | Time-slots | E/time-slot [nJ] |
add) 2032.75 1 0.0266
sub =7 2032.75 1 0.0266
comp | {>} 2032.75 1 0.0266
ALU {+,—,>} 2965.00 1 0.0266
mull | {*] 1978, 50 3 0.1046
mul2 {x} 28414.50 6 0.0523
mul3 {*} 14638.75 17 0.0319
input i 43.00 1 0.0
output | o 43.00 1 0.0

Table 7.1: 16 bit functional unit library based on balsa-cost numbers, available to
the synthesis algorithm.

Figure 7.1: CDFG for the HAL computation, where I and O are the input and output
nodes.

7.1 Results for power aware scheduling

We have benchmarked the algorithm on a set of CDFGs, using our FU library shown
in table 7.1, all performed on a 200MHz Pentium II, with 96 MB memory. We do not
take an eventual correlation among input data in to account and assume worst-case
power measures for computations in the different FU components. The first test is of
the PASAP algorithm where we investigate the required time delay of the CDFGs,
as a function of the power constraint. The results are shown in table 7.2. The second
test is of the main clique-partitioning algorithm where we investigate the area of the
resulting circuits as a function of the power constraint, with a constant time frame.
We perform this test for a few different time-frames. The results are shown in Figure
7.2. Finally some different power and time constraints and the circuit area and the
CPU time to find the solutions is shown in table 7.3.

As shown in Figure 7.2 (eg. ELLIPTIC with T—=30 and COSINE with T—15)
using a global synthesis algorithm we can trade in area to obtain a solution which
fits our power requirements. The average area penalty ranges in the region of 20

7.2 Results for simulated annealing and evolutionary algorithm

95

HAL, vertices=21, edges=25
E_[nJ] || inf | 0.500 | 0.400 | 0.300 | 0.250 | 0.200 | 0.150 | 0.125
Tpasap 9 9 11 12 12 20 20 22
FIR, vertices=24, edges=24
E_[nJ] || inf | 1.00 | 0.600 | 0.400 | 0.300 | 0.200 | 0.150 | 0.125
Tpasap 8 8 10 13 16 28 27 29
ELLIPTIC, vertices—49, edges—43
E.[nJ] || inf | 0.500 | 0.400 | 0.300 | 0.250 | 0.200 | 0.150 | 0.125
Tpasap || 21 21 23 23 24 31 32 38
COSINE, vertices=57, edges=77
E.[nJ] || inf | 1.00 | 0.800 | 0.500 | 0.300 | 0.200 | 0.150 | 0.125
Tpasap || 11 11 14 17 27 51 54 56

Table 7.2: Time vs. power using the PASAP scheduling for the set of benchmarks.

(B[T A Torold |
inf | 11 || 440,499 15.82
0.500 | 17 || 314,485 46.75
0.400 | 26 || 138,310 118.29
0.300 | 32 96,289 160.22
0.300 | 37 95,289 297.03
0.200 | 56 96,289 442 .36
0.125 | 66 56,386 193.79
0.125 | 71 56,386 357.58

Table 7.3: Different power and time constraints generated by the main synthesis

algorithm, the resulting area and the CPU synthesis time for COSINE.

percent which is an acceptable penalty, as power is the critical parameter here.

An interesting aspect is that with a large time and power constraint, the algorithm
might find a worse solution with respect to area, than when the power constraint
is tight. The reason for this lies in the greedy approach which might make a bad
decision early on. With the tight power constraint this is prevented (no need to
allocate many FUs in parallel if only one or two is used at a time), an example of
this is COSINE T=25 and T—20.

3

96 Results

x 10°
T

COSINE (T=15)
35 q

COSINE (T=20)

COSINE (T=25)

Area
N
T
I

15 | ELLIPTIC (T=30)

HAL (T=15)

0.2 0.4 0.6 0.8 1 12 14
E_ [nJ]

Figure 7.2: Power vs. area under different time constraints for HAL, COSINE and
ELLIPTIC.

t in n mull mulladd sublessout out out out E [nJ]
0 0.0

1 0.1046
2 0.2092
3 0.2092
4 0.2092
5 0.2092
6 10 0.2092
7 0.2092
8 0.2092
9 14 0.2092
10 % 0.1578
11 13 1 9 0.0790
12 0.0

Figure 7.3: Tightly constrained power-aware schedule for the HAL computation,
T-13, E=0.210nJ. Requiring 2 inputs, 2 mults (fast), 1 add, 1 sub, 1 les and 4
outputs, with a total area of 90311.

7.2 Results for simulated annealing and evolution-
ary algorithm

For the meta-heuristic algorithm we first need to adjust the meta heuristic parameters
for the algorithms. This is in many cases more of an art, than a science. In the
following we will experimentally find the best parameter setting. The test case we
use to adjust the parameters from, is the HAL computation with a time frame of
T = 20. This is an arbitrary case, and there is no guarantee this will lead to the

7.2 Results for simulated annealing and

evolutionary algorithm

97

9.5

851

6.5

55 I I I

3
log(1/(a-1))

Figure 7.4: Solution (HAL T = 20) from simulated annealing as a function of the
« temperature change coefficient and the number N of iterations to reach “thermal

equilibrium”.

95 T

85

o- -0
* - =%
5—a
o= =9
v - -V
* +

N=32
N=64
N=128
N=256
N=512
N=1024
N=2048

Area

55

25 3 3.5 4 4.5

iog(G

Figure 7.5: Solution (HAL T = 20) from evolutionary algorithm as

5 5.5 6
)

stop’

Gstop generation count and the population size (V).

a function of the

optimal set of parameters for all other cases. In particular one should beware of
fine-tuning the algorithm precisely to this case as it might mean the meta-heuristic
algorithms is really good at finding this solution, but terrible for all other cases and
problems. On the other hand we need to adjust the parameters for something and a

98 Results

t In In mullmul3ALU out E [nJ]
0 o 0.0

1 _ 0.0319
2 | [0.1365
3 9 0.1365
4 || 0.1365
5 0.1365
6 7 0.1631
7 || 0.1365
8 0.1365
9 12 |8 0.1631
10 || 0.1365
11 0.1365
12 10 0.1365
13 || 0.1365
14 [ig 0.1631
15 14 0.1365
16] 0.1365
17 L] [2d 0.0585
18 g 0.0319
19 19 0.0

Figure 7.6: Schedule, FU allocation and operator assignment generated by simulated
annealing for HAL with 7" = 20 constraint, giving a total “balsa-cost” area of 59700.

small example where to the exact optimum is known is good test for narrowing down
the parameter setting.

We begin with simulated annealing, where we need to find the temperature change
coefficient o and the “thermal equilibrium” number N. In Figure 7.4 we have shown
several runs of the algorithm for various parameter settings and plotted the solution
the algorithm finds. Each point represents an entirely new run. As can be seen the
simulated algorithm is rather unstable capable of getting stuck at a local minimum.
However for N = 500 and larger, the algorithm tends to become more stable and
produce good solutions (actually the optimal solution) at every run. The best pa-
rameter setting for o seems to be a = 1.250 for larger « the algorithm does not
produce better solutions, only taking exponentially more time to complete. These
setting also seem to produce good solutions for the other problems in the benchmark
set.

Next is the evolutionary algorithm, where we need to find the G, generation
count and the N population count. In Figure 7.5 we have shown several runs of
the algorithm for various parameter settings and plotted the solution the algorithm
finds. Again each point represents an entirely new run. As can be seen the simulated
algorithm is rather stable capable of producing reliable results. Another factor is
the high-dependency on the population size. With a population around 512 the
algorithm starts converging towards the global optimum with the fast convergence
and choosing a large population size does not increase the convergence. The best
value for the maximum generation count G, seems to be around in the range
from 320 to 640. To be on the safe side we chose 640 generations. Again these
parameters settings seems to produce good solutions for the other algorithms in the
benchmark set except for COSINE, for which the algorithm have problems finding

7.3 Results for asynchronous behavioral synthesis 99

some particular solutions.

We have benchmarked the algorithms on two DFGs: HAL (Tasap = 10) and
COSINE (Tasap = 11). We are interested in the CPU-time i.e.. the amount of time
it takes running the algorithms to get a solution satisfying our area requirements. For
the two DFGs we apply the two meta-heuristic algorithms, giving us four primary
test cases (shown in table 7.4). For each test case we set five silicon area requirements
and six time frame requirements T' = dt + Tasap, (the blanks are where the meta-
heuristic-algorithms fail to find a solution either because there is no optimal solution
satisfying the requirement or in border cases because the algorithms are heuristic).

Again, all tests are performed on a 200MHz Pentium II, with 96 MB memory and
all numbers reflect a statistical average of running the algorithms 500 times on each
problem instance.

In general the simulated annealing out-performs the evolutionary algorithm in
terms of CPU time required to find a solution for large problems (i.e. COSINE). The
primary reason stems from the evolutionary algorithm working on a large popula-
tion, which in every iteration has to be made feasible and cost evaluated, whereas the
simulated annealing only works with one problem instance. On the other-hand the
evolutionary algorithm seems to perform more “stable”; unlike simulated annealing
which is capable of getting “stuck” in local-minimums for some runs. Comparing
the evolutionary algorithm with the simulated annealing the evolutionary algorithm
takes significantly longer time to run and does find just as good solutions as simu-
lated annealing. In particular in the COSINE case the evolutionary algorithm has
problems. This does not mean the evolutionary algorithm cannot find the solutions
eg. if run free the evolutionary algorithm is capable of finding a solution for CO-
SINE, T' = 107, below the area requirement of 49200, however it took 25857.4s or
approximately 7.18 hours. The evolutionary algorithm does not however have similar
problems for FIR or ELLIPTIC.

A property of the proposed CDFG synthesis algorithm is that one of these al-
gorithms will be run for the DFG fragments, until the main synthesis algorithm
converges, it is therefore important that these algorithms generate the solutions fast.
This favours the simulated annealing over the two other algorithms.

Finally in Figure 7.6 is shown the optimal schedule generated by the meta-
heuristic algorithms in the parameter investigation.

7.3 Results for asynchronous behavioral synthesis

In order to demonstrate the feasibility of the proposed approach and in order to
evaluate the efficiency of the proposed implementation template. We begin in sub-
section 7.3.1 with applying our approach on the GCD algorithm and then continue
in subsection 7.3.2 to our benchmark circuits and finally for FIR and HAL we have
produced layouts and in subsection 7.3.3 we report on the area, speed and power
figures.

But first we report on the area cost of our running example. The original Balsa-

100

Results

Simulated Annealing (HAL)
T Area requirement
140,000 | 120,000 | 90,000 | 75,000 | 60,000 | 46,000
10 || 0.165
13 || 0.012 0.270 2.418
16 || 0.000 0.092 0.220
18 || 0.000 0.056 0.165 4.505
20 || 0.000 0.010 0.07 3.576 23.91
22 || 0.000 0.000 0.35 1.202 11.43 18.86
Simulated Annealing (COSINE)
T Area requirement
350,000 | 160,000 | 110,000 | 92,000 | 78,000 | 49,200
13 || 189.9
21 || 0.165 195.6
32 | 0.070 1.593 202.6
35 || 0.110 0.659 42.03 205.6
86 || 0.0505 0.440 3.077 8.846 55.54
107 || 0.210 0.385 2418 10.33 39.23 259.1
Evolutionary Algorithm (HAL)
T Area requirement
140,000 | 120,000 | 90,000 | 75,000 | 60,000 | 46,000
10 || 0.275
13 || 0.210 0.330 0.934
16 || 0.000 0.270 0.275
18 || 0.000 0.165 0.261 10.934
20 || 0.000 0.015 0.031 2.582 | 40.01
22 || 0.000 0.002 0.011 2.637 | 6.593 30.49
Evolutionary Algorithm (COSINE)
T Area requirement
350,000 | 160,000 | 110,000 | 92,000 | 78,000 | 68,000
13 || 22.253
21 || 0.031 369.0
32 || 0.00 1.923
35 || 0.000 1.978 302.2
86 || 0.0201 0.771 2.253 167.5 271.8
107 || 0.000 0.010 2.410 2.363 204.0 804.1

Table 7.4: Run-times (Tepy[s]) for two CDFGs (HAL and COSINE) by simulated
annealing and evolutionary algorithm.

code in Figure 2.1 would have a Balsa-cost of 96, 787.5 (using the numbers from our
multiplier), whereas the resulting synthesized Balsa-code shown on pages 65-67 have

7.3 Results for asynchronous behavioral synthesis 101

import [balsa.types.basic]
type word is 16 bits

procedure gcd(input a,b: word ; output c: word) is
variable ai,bi : word
begin
loop
a->aill b->bi;
while ai/=bi then
if ai>bi then
ai:=(ai-bi as word)
else
bi:=(bi-ai as word)
end
end ;
c<-ai
end
end

Figure 7.7: The GCD-algorithm.

a balsa-cost of 60,037.5. Representing an area reduction of 38%.

7.3.1 GCD

In [53, section 13.2.3] the process of syntax directed and optimizations at the source
code level (using Tangram) is illustrated using GCD as an example. Figure 7.7
shows the well known algorithm expressed in Balsa code. The problem is that the
source code contains 4 operator symbols, and that the corresponding circuit have 4
functional units as well. In order to optimize the area the designer has to rewrite
the code. Figure 7.8 shows one such optimized design. It is slightly different from
the Tangram code in [92] as Balsa does not support exactly the same constructs as
Tangram, but the ideas underlying the optimization are the same. Even this simple
example hints that the process of optimizing the circuit and exploring alternatives
can be tedious. In behavioral synthesis one would take the basic code in Figure 7.7
and synthesize it with area minimization as the constraint. The work presented here
does exactly this, i.e. from a CDFG extracted from the basic code in Figure 7.7
we automatically synthesize a circuit containing two compares and one subtraction
operator. Table 7.5 shows the area estimates (“balsa-cost”) reported by Balsa for the
different versions of the circuit. It is seen that behavioral synthesis in this example
actually outperforms the manually optimized design.

The important message here is that the overhead introduced by our method is so
small the resulting area cost is in the same region as a manually optimized circuit.

102 Results

| Program | balsa-cost |

ged _basic 7435.25
ged opt 7161.75
ged synt 6846.00

Table 7.5: Comparison of the plain GCD, the optimized GCD and the synthesized
GCD. “balsa-cost” is an area measure reported by the Balsa tool.

import [balsa.types.basic]
type word is 16 bits

type twoword is record
a,b:word
end

procedure gcd(input ab: twoword ; output c: word) is
variable data : twoword
begin
loop
ab->data ;
while data.a/=data.b then
if data.a>data.b then
data:=(twoword {((data.a-data.b) as word),
data.b as word)})
else
data:=(twoword {data.b,data.a})
end
end ;
c<-data.a
end

end

Figure 7.8: An optimized version of GCD.

7.3.2 Benchmarks

Using our behavioral synthesis methods, more precisely simulated annealing, together
with our computation model and our implementation templates, we have synthesized
the range of benchmarks as shown in table 7.6. Again the area is expressed in terms
of the “cost” reported by Balsa. As seen, it is possible to automatically synthesize im-
plementations with a range of constraints. The table is divided into six groups: The
first group shows the balsa implementation as a designer would implement them with-
out resource sharing. The second group shows the area of the synthesized versions
as produced directly from the simulated annealing algorithm before latch assignment

7.3 Results for asynchronous behavioral synthesis 103

import [balsa.types.basic]
type word is 16 bits

procedure gcd(input a,b: word ; output c: word) is
channel FUO_a,FUO_b,FUO_z:word

procedure FUO_sub(intput FUO_a,FUO_b:word;output FUO_z:word) is
begin
loop
select FUO_a,FUO_b then
FUO_z<- (FUO_a-FUO_b as word)
end
end
end

procedure gcd_architecture(input a,b,FU0_z:word;
output FUO_a,FUO_b,c:word)
variable LO,L1,L2 : word
channel cL2:word
begin
loop
a->L0 || b->L1;
while LO/=L1 then
if LO>L1 then
FUO_a<-LO || FUO_b<-L1;
cL2->L0
else
FUO_a<-L1 || FUO_b<-LO;
cL2->L1
end ||
[FUO_z->L2 ; cL2<-L2]
end ;
c<-L0
end
end

begin
FUO_sub(FUO_a,FUO_b,FU0_z) ||
gcd_architecture(a,b,FU0_z,FU0_a,FUO_b,c)
end

Figure 7.9: The synthesized version based on the basic algorithm in Figure 7.7.

i.e. only the pure FU area is reported. The third (3a) and fourth (3b) group shows
to the second group corresponding balsa-implementation using the alpha and beta
templates respectively, but without using the control and mux-optimizing algorithm.

104 Results

For the fifth (4a) and sixth (4b) groups these optimizations have been included.
Thus the difference between items of the second group and the third or fourth group
is the implementation overhead of using these approaches and the overhead of the
implementation templates proposed by this thesis.

The first observation is that again there is a large area saving when applying
resource-sharing. Secondly, the overhead of implementing the circuits, consisting of
controller area, latch area and multiplexor/-demultiplexor area is around 40% of the
total area of the circuits and the functional units make up around 60%. This is not-
unexpected as these additional area contributions are significant also in synchronous
behavioral synthesis, and for digital circuit design in general. Finally, there is the
comparison between the two computation models, should there be power guarding
input/output-latches around functional units or not with respect to area? The area
difference between the two is very little and for the four benchmarks here there is two
cases where the input /output latch is smaller than the input/output-latch circuit, one
case where there is almost equality and one case the non-input/output-latch circuit is
smaller than the input/output-latch circuit. In general the non-input/output-latch
circuits have a smaller total latch count, however there is usually a larger mux-
depth associated with these circuits, which counters this effect. Based on the current
observations, we believe it to be application dependent which type of computation
model that have the smallest area.

The next question is how efficient these implementations are. To answer this
question we have produced and simulated layouts for FIR and HAL.

7.3.3 Layout results

For the benchmarks FIR and HAL in beta-style, we have used the back-end part of
the Balsa tools and actually produced a layout targeting handshake components using
the single-rail 4-phase early protocol. We have used the existing synthesis flow at
Manchester University, which is based upon a 0.18um STM standard-cell technology,
which have been augmented with standard cell components for implementing various
special asynchronous components such as Muller C-elements.

Simulation results are obtained by simulating the post place-and-route Verilog
netlist together with extracted layout information in NanoSim. We simulate 200
computations, using random numbers with out any correlation. All the circuits are
implemented using 16-bit variables and are simulated at 1.8V and at a temperature
of 25°C.

It is important to stress the results do not represent an attempt to evaluate the
asynchronous implementations against corresponding synchronous ones; our focus is
on the efficiency of the automated resource sharing within the asynchronous domain.

The benchmark results are shown in table 7.7, where t is the average time to
do one computation, A is the layout area and F is the average energy consumption
per computation. In a similar way we have characterized the ALU and multiplier
operators, see table 7.8. The speed figures in table 7.8 have been used in calculating
the schedules.

7.4 Summary 105

Implementations 1 and 3 in table 7.7 are the direct non-resource-shared circuit
implementations of the computations. These have also been designed using latches on
the input and output of the multipliers. Although this gives an extra area overhead
it is insignificant compared to the area of the multiplier. The important fact is
that it reduces the combinatorial depth of the circuit and thus reduces the power
consumption, which leads to a more fair comparison. The speed figures in table 7.7
includes a 20ns handshake delay in the testbench used to simulate the layouts.

The results in table 7.7 shows that resource sharing saves area at the expense of
reduced speed. This is as could be expected. Concerning energy consumption it is
interesting to note that it remains constant. Given that resource sharing leads to
more control circuitry for the same computation, an increase in energy consumption
could be expected. It seems that the smaller size of the layout and the reduced
wire length, which results from this leads to a power saving which corresponds to the
increase caused by the added control.

A visual comparison of the layouts for implementation 3 and 4 is shown in Figure
7.10, illustrating the area reduction achieved by resource sharing.

1 i J 0 o) B o I)

RS k) e [(i
i}{\\\\\‘?\\\\\\\\ﬁf\\‘.\\\\\\\\\\&\\\ix\\\lx\\\\\\y |

r i i SN T £ e N | LT e

Figure 7.10: Visual layout comparison of the non-resource shared HAL computation
(left) and the maximally resource shared HAL computation (right).

7.4 Summary

In this chapter we have presented results for our behavioral synthesis algorithms.
We have applied the power aware synthesis algorithm on several examples and in-
vestigated different regions in the time-power-constraint space. The algorithm is
capable of finding low area solutions fulfilling the constraints and for the chosen sili-

106 Results

con library we find the power constraint in the worst case adds an increase in silicon
area of roughly 20 percent. Furthermore we have implemented two meta-heuristic
algorithms for solving high-level behavioral synthesis: Simulated Annealing and Evo-
lutionary Algorithm. In general the Simulated Annealing performs faster and finds
better solutions to the problem, however the Evolutionary Algorithm is more stable.
Both methods find better solutions than the power-aware synthesis algorithm with
infinite power constraint. As the CDFG synthesis algorithm will require several it-
erations for each individual task (DFG problem) it is important the DFG synthesis
algorithm is fast. Therefore based on the effectiveness of the simulated annealing we
recommend that solution.

Then we have demonstrated that for a small design with few opportunities for
resource sharing (i.e. where the overhead of an automated method is high) our
approach is doing very well. Finally, for a benchmark suite we have implemented and
shown the resource sharing behaves as we predict and that there is no unexpected
penalty, like excess power consumption.

7.4 Summary 107
(1) Original code
Program T || add | sub | les | ALU | mull | mul2 | mul3 | It cost
FIR - 7 0 0 0 8 0 0 0 | 459,749.25
HAL - 2 2 1 0 6 0 0 0 | 348,093.75
ELLIPTIC - 26 0 0 0 8 0 0 7 | 518,017.75
COSINE - 13 13 0 0 16 0 0 0 | 964,470.25
(2) Synthesized functional units only
Program T || add | sub | les | ALU | mull | mul2 | mul3 | It cost
FIR 11 1 0 0 0 2 0 0 - 85,989.75
HAL 7 0 0 0 1 2 0 0 - 86,922.75
ELLIPTIC | 18 2 0 0 0 2 0 0 - 88,022.50
COSINE 18 2 2 0 0 2 0 0 - 92,088.00
(3a) Synthesized code in/output latch no ctrl. optimization
Program T || add | sub | les | ALU | mull | mul2 | mul3 | It cost
FIR 11 1 0 0 0 2 0 0] 21 | 142,539.25
HAL 7 0 0 0 1 2 0 0] 16 | 135,218.50
ELLIPTIC | 18 2 0 0 0 2 0 0] 23 | 163,014.75
COSINE 18 2 2 0 0 2 0 0| 32| 170,984.00
(3b) Synthesized code no in/output latch no ctrl. optimization
Program T || add | sub | les | ALU | mull | mul2 | mul3 | It cost
FIR 11 1 0 0 0 2 0 0] 12 | 140,535.00
HAL 7 0 0 0 1 2 0 0 9 | 135,214.50
ELLIPTIC | 18 2 0 0 0 2 0 0] 19 | 168,873.50
COSINE 18 2 2 0 0 2 0 0| 17 | 161,792.25
(4a) Synthesized code in/output latch with ctrl. optimization
Program T || add | sub | les | ALU | mull | mul2 | mul3 | It cost
FIR 11 1 0 0 0 2 0 0] 21 | 128,893.25
HAL 7 0 0 0 1 2 0 0] 16 | 133,586.50
ELLIPTIC | 18 2 0 0 0 2 0 0| 23 | 143,248.75
COSINE 18 2 2 0 0 2 0 0] 32 | 160,889.50
(4b) Synthesized code no in/output latch with ctrl. optimization
Program T || add | sub | les | ALU | mull | mul2 | mul3 | It cost
FIR 11 1 0 0 0 2 0 0] 12 | 131,598.25
HAL 7 0 0 0 1 2 0 0 9 | 133,664.25
ELLIPTIC | 18 2 0 0 0 2 0 0] 19 | 150,256.00
COSINE 18 2 2 0 0 2 0 0] 17 | 155,626.75

Table 7.6: Benchmark results generated by simulated annealing. Column 7 is the
time-constraint given to the synthesis tool. Columns add, sub, les; ALU, mul.. and
It lists the number of adders, subtractors etc. in the circuits. Cost is “balsa-cost”, an
area measure reported by the Balsa tool.

108

id | Alg. | x [ALU [t [ns] [A [mm?] [E [nJ]]

1 | FIR || 8 7 124.7 0.877 2.95

2 FIR | 2 1 284.8 0.282 2.80

3 | HAL || 5 b) 171.2 0.667 2.03

4 | HAL || 2 1 309.6 0.260 1.89

5 | HAL || 1 1 397.4 0.151 2.01

Table 7.7: Layout results (beta-style).

| FU | o | tns] | A [mm?] | E [nJ] |
ALU || {+,—,>} | 25,5 | 0.0112 | 0.0266
Mult I 563 | 0.105 | 0.314

Table 7.8: FU library (16-bit) based on layout in 0.18um technology, used by our

synthesis algorithm.

CHAPTER 8

Conclusion

This thesis presented a novel approach for behavioral synthesis of asynchronous cir-
cuits. The proposed approach seeks to merge the domains of traditional behavioral
synthesis and asynchronous circuits. This is accomplished by providing a compu-
tation model, that is based upon asynchronous handshake components and which
allows us to use the transformations and optimizations used in synchronous synthe-
sis directly in asynchronous circuits. Furthermore the same model allows the use of
the transformations and optimizations developed for continuous time.

The central elements in this thesis evolves around the connection between the
synchronization events used in traditional techniques of behavioral synthesis and the
transition handshake component locally controlling the beginning of an operation
and writing the result of an operation. This is bound together by our hardware
architecture consisting of a datapath with the transition handshake component and
a controller determining these events. This computation model relaxes the strict
ordering of the synchronous circuit and the synchronous schedule into the continuous
time domain, the schedule for the asynchronous circuit.

We have accomplished the following: (i) a method for synthesizing a CDFG to a
Balsa-description has been developed using a methodology closely related to, but not
restricted to, traditional synchronous behavioral synthesis. This allows us to use ex-
isting techniques for design space exploration and resource sharing by adding physical
constraints to the circuit. (ii) A series of behavioral synthesis algorithms has been
developed for this purpose. The first is a power-aware synthesis algorithm, which
targets a power profile below a certain threshold. Here we have shown it is possible
to trade-in area to obtain this power profile. We have also shown that even though
the power profile directly leads to a restriction on the number of multipliers in the

110 Conclusion

circuit, the other smaller contributor operations still have a significant impact and are
very important for finding the optimal schedule. Then we have implemented a more
conventional resource sharing synthesis algorithm based on the meta-heuristic algo-
rithms; simulated annealing and evolutionary algorithm. For these we have shown
the simulated annealing algorithm outperforms the evolutionary algorithm with re-
spect to run-time. We have also shown the meta-heuristic algorithms outperform the
first power-aware algorithm with respect to run-time. (iii) We have developed dif-
ferent computation models depending on the requirement to isolate functional units
when they are idle and developed the associated variable-lifetime algorithms. (iv) We
have shown our approach to be efficient even for small circuits and that the overhead
of implementing our approach is small compared to the area saving achieved using
our method. (v) Using this method and the Balsa and Cadence design tools several
layouts have been designed and simulated. The results show that it is possible to do
tradeoffs between area and circuit delay and to do so without any increase in power
consumption for asynchronous circuits. This gives us proof of concept. Furthermore
we have an indication that significant resource sharing leads to a reduction of the
average load capacitance and thus a reduction of the power consumption.

The rest of this chapter will present the advantages of the proposed approach,
put the method in perspective and discuss future directions.

8.1 Advantages of the approach

There are several advantages of our approach to behavioral synthesis of asynchronous
circuits:

Traditional datapath and controller The fact that our target computation model
is the asynchronous equivalent to the synchronous computation model allows
us the use of existing traditional behavioral synthesis approaches. This enables
an entire range of behavioral synthesis algorithms to become available.

Continuous time Our computation model directly targets schedules generated thro-
ugh the use of continuous time synthesis methods, this includes methods from
operations research.

Only handshake components Our approach builds entirely on asynchronous chan-
nels and handshake components, including the controller part. This avoids the
often complex task of synthesizing an asynchronous controller and allows for
asynchronous circuits of any size to be easily constructed.

Building upon syntax directed synthesis Our approach targets a high-level syn-
tax directed hardware description language which specifically targets asyn-
chronous circuits. This has the advantage that we do not need to keep up
with technology change and maintaining a working silicon back-end.

One can also consider such a high-level language as an interface to the asyn-
chronous world. Therefore several back-ends are available as target, ranging

8.2 Perspective on the approach 111

from simple variations in handshake protocols and circuit implementation styles
to entirely different operations characteristics as Burstmode circuits.

The fact that we target a high-level hardware description language built for
design of asynchronous circuits, means that the designer, if unhappy with parts
of the design generated by the behavioral synthesis tool, can either replace
these parts with his own designs or directly modify these parts to improve the
characteristics of the resulting circuit.

Low power datapaths Our approach targets the generation of low-power datap-
aths, where computational intensive functional units with large combinatorial
depths or that have a large load capacitance through a large number of output
connection, can be isolated by the use of non-transparent latches.

8.2 Perspective on the approach

Over the last decade asynchronous design has slowly but surely moved into industry
scale designs and has found its way into commercial applications by two primary
driving forces:

Application domain There are a number of applications for which one or more of
the properties of asynchronous design is a requirement. Examples are; control
circuits on analog circuitry, where the clock would introduce noise to the analog
circuitry, and smartcards where the circuit only has access to power when used
and often in very unreliable form. Most of these circuits are currently small
and are manageable for the designer to optimize manually. However as we
have seen our synthesized circuits either outperforms or performs equally well
to small customized circuits i.e. the GCD algorithm. Furthermore for these
application domains the circuit delay constraint is usually easy to meet, leaving
a large room for resource sharing. As the size and computational demands
of these circuits increase beyond what can be handled by small customized
asynchronous hardware and asynchronous processors, there will be a strong
application for our approach here.

The clocking problem Large digital circuits designed using the System on Chip
paradigm face large problems when it comes to managing the clock in the final
layout generation phase. A solution to this problem is the Globally Asyn-
chronous Locally Synchronous (GALS) approach [56, 34], where the intercon-
nection structure is asynchronous and the computation takes place on small
synchronous islands. For the interconnection itself there is usually little com-
putation taking place and a custom designed datapacket routing network will
probably outperform a synthesized version, unless the routing-protocol and -
algorithm have a sufficiently high complexity. However in the future, it will
not be unlikely that some of these synchronous islands will be replaced by fully
asynchronous circuit variants. These asynchronous circuits will become the
target for the work presented in this thesis.

112 Conclusion

8.3 Future directions

The benchmark set, upon which we have applied our methods, is a small set of
synthesis problems. The next step is to apply our method to a larger “real” circuit
and compare with a manually designed asynchronous circuit. A possibility could be
a low-power 3D-graphics render engine application for portable devices. The render
process is a rather inhomogeneous application inwhich characteristics depend highly
on the triangle set upon which it operates [47].

As we have seen the meta-heuristic algorithms are very effective, therefore an
interesting direction would be the implementation of a power-aware meta-heuristic
simulated annealing algorithm. In particular, this only involves finding a new fea-
sibility algorithm, which fast can generate a power- and time-constrained schedule
from a infeasible solution |78, 32| If this is impossible one could simply use the exist-
ing feasibility algorithm and add a heuristic cost penalty for those schedules which
violate the power constraint. This heuristic could simply be based on finding the
maximal violation and look at how many operations violate the constraint and then
convert these into the area required to implement these, corresponding to executing
them at another point in time.

The next improvement concerns the cost function, which we use to compute the
area cost during design space exploration. Currently only the FU area is accounted for
and we need to make a better modeling of the target circuit including the latch area,
interconnect (multiplexor, demultiplexor) area and the area required to implement
the controller [68, 37].

Asynchronous circuits operate in continuous time and it would be natural to apply
some of the continuous time scheduling algorithms, and compare with the schedules
from discrete time. This will investigate if there is a need to include such algorithms
and which are the most appropriate for asynchronous circuit design [4, 3].

For certain critical sub-algorithms a specific manual design effort will lead to a
significant performance advantage. If such a sub-algorithm is sufficiently common to
warrant the design effort it could be made available to the target resource library.
These more “complex” operators will be able to enter into our task-level CDFG
synthesis algorithm as a DFG fragment. It would be necessary to be able to identify
these special fragments in the CDFG [60].

Many of the algorithms, which with advantage can be implemented as asyn-
chronous circuits, are very dynamic in nature. The one-to-one mapping of the
CDFG to an asynchronous circuit resembles this as it is a very “elastic” computation.
Whereas the schedules produces by the behavioral synthesis algorithms considered
in this thesis are static. These algorithm operate by finding the near global optimum
by the information available at compile time. However a lot of information is not
available at compile time; the path through the conditional parts of the algorithm
and conditionally repetitive parts. One approach would be to take advantage of the
asynchronous nature and look into methods for making the control of the circuit
more dynamic, perhaps even a primitive form of dynamic scheduling.

Bibliography

1

2]

13l

[4]

5]

[6]

7]

18]

J. Monteiro, S. Devadas, P. Ashar and A. Mauskar. Scheduling techniques to
enable power management. In Proceedings of the 33rd conference on Design
automation, 1996.

H. Zheng, B. Bachman and C. Myers. Architectural synthesis of timed asyn-
chronous systems. In International Conference on Computer Design (ICCD
’99), pages 354 363, Washington - Brussels - Tokyo, October 1999. IEEE.

B. M. Bachman, H. Zheng, and C. J. Myers. Architectural synthesis of timed
asynchronous systems. In Proc. ICCD’99 (IEEE International Conference on
Computer Design: VLSI in Computers and Processors), pages 354-363, Octo-
ber 1999.

Rosa M. Badia and Jordi Cortadella. High-level synthesis of asynchronous sys-
tems: Scheduling and process synchronization. In Proc. European Conference
on Design Automation (EDAC), pages 70-74. IEEE Computer Society Press,
February 1993.

J. Liu, P.H. Chou, N. Bagherzadeh and F. Kurdahi. A constraint-based applica-
tion model and scheduling techniques for power-aware systems. In Proceedings
of the ninth international symposium on Hardware/software codesign, 2001.

A. Bardsley. Implementing Balsa Handshake Circuits. PhD thesis, Department
of Computer Science, University of Manchester, 2000.

A. Bardsley and D. Edwards. Compiling the language Balsa to delay-insensitive
hardware. In C. D. Kloos and E. Cerny, editors, Hardware Description Lan-
guages and their Applications (CHDL), pages 89 91, April 1997.

A. Bardsley and D. Edwards. The Balsa asynchronous circuit synthesis system.
In Forum on Design Languages, September 2000.

114

BIBLIOGRAPHY

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Peter A. Beerel, Wei chun Chou, and Kenneth Y. Yun. A heuristic cover-
ing technique for optimizing average-case delay in the technology mapping of
asynchronous burst-mode circuits. In Proc. European Design Automation Con-

ference (EURO-DAC), September 1996.

E.Y. Chung, L. Benini and G.de Micheli. Dynamic power management using
adaptive learning tree. In Proceedings of the IEEE/ACM international confer-
ence on Computer-aided design, p.274-279, 1999.

C. H. (Kees) van Berkel, Cees Niessen, Martin Rem, and Ronald W. J. J.
Saeijs. VLSI programming and silicon compilation. In Proc. International Conf.
Computer Design (ICCD), pages 150-166. IEEE Computer Society Press, 1988.

Kees van Berkel, Joep Kessels, Marly Roncken, Ronald Saeijs, and Frits Schalij.
The VLSI-programming language Tangram and its translation into handshake
circuits. In Proc. European Conference on Design Automation (EDAC), pages
384-389, 1991.

Tobias Bjerregaard, Shankar Mahadevan, and Jens Sparsg. A channel library
for asynchronous circuit design supporting mixed-mode modeling. In Proceed-
ings of the Fourteenth International Workshop on Power and Timing Modeling,
Optimization and Simulation, PATM0S52004, 2004.

I. Blunno, J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou.
Handshake protocols for de-synchronization. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages 149-158.
IEEE Computer Society Press, April 2004.

Ivan Blunno and Luciano Lavagno. Automated synthesis of micro-pipelines
from behavioral Verilog HDL. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 84-92. IEEE Computer
Society Press, April 2000.

Alex Branover, Rakefet Kol, and Ran Ginosar. Asynchronous design by conver-
sion: Converting synchronous circuits into asynchronous ones. In Proc. Design,
Automation and Test in Europe (DATE), pages 870 875, February 2004.

Erik Brunvand. Translating Concurrent Communicating Programs into Asyn-
chronous Circuits. PhD thesis, Carnegie Mellon University, 1991.

C. Gi, Lyuh, Tewhan and Kim. High-reliability, low energy microarchitecture
synthesis. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
11(3):364 375, 2003.

J.M. Chang and M. Pedram. Register allocation and binding for low power. In
IEEE conference on Design Automation Conference, DAC95, 1995.

BIBLIOGRAPHY 115

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Tiberiu Chelcea and Steven M. Nowick. Resynthesis and peephole transfor-
mations for the optimization of large-scale asynchronous systems. In Proc.
ACM/IEEE Design Automation Conference, June 2002.

D. Chen and J. Cong. Register binding and port assignment for multiplexer op-
timization. In Proceedings of the Asia Pacific Design Automation Conference,
2004.

J. Cortadella and R. M. Badia. An asynchronous architecture model for behav-
ioral synthesis. In Proc. European Conference on Design Automation (EDAC),
pages 307 311. IEEE Computer Society Press, 1992.

J. Cortadella, R. M. Badia, E. Pastor, and a: Pardo. Achilles: a high-level
synthesis system for asynchronous circuits. In D. D. Gajski, editor, Proc. 6th
International Workshop on High-Level Synthesis, pages 87 94. Univ. California,
1992.

J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
Logic Synthesis of Asynchronous Controllers and Interfaces. Springer-Verlag,
2002.

J. Cortadella, A. Kondratyev, L. Lavagno, K. Lwin, and C. Sotiriou. From
synchronous to asynchronous: an automatic approach. In Proc. Design, Au-
tomation and Test in Europe (DATE), pages 1368 1369, February 2004.

Jordi Cortadella, Michael Kishinevsky, Alex Kondratyev, Luciano Lavagno, and
Alexandre Yakovlev. Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers. In XI Conference on Design of
Integrated Circuits and Systems, Barcelona, November 1996.

D. Kang, S. Crago and J. Suh. Power-aware design synthesis techniques for
distributed real-time systems. In Proceedings of ACM SIGPLAN workshop on
Optimization of middleware and distributed systems, 2001.

Jim Crenshaw and Majid Sarrafzadeh. Low power driven scheduling and bind-
ing. In Great Lakes Symposium on VLSI '98, 1998.

A. Dasgupta. High-reliability, low energy microarchitecture synthesis. IEEE
Transactions on Computer-Aided Design, 17:1273 1280, 1998.

A. Dasgupta and R. Karri. Simultaneusly scheduling and binding for power
minimization during microarchitecture synthesis. In Proceedings of the 1995
international symposium on Low Power Design, 1995.

A. Davoodi and A. Srivastav. Effective graph theoretic techniques for the
generalized low power binding problem. In International Symposium on Low
Power Electronics and Design, ISLPED03, 2003.

116

BIBLIOGRAPHY

32|

[33]

134

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

D.E. Goldberg, editor. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, 1989.

Jack B. Dennis. Data Flow Computation. In Control Flow and Data Flow

Concepts of Distributed Programming, International Summer School, pages
343 398, Marktoberdorf, West Germany, July 31 August 12, 1984. Springer,
Berlin.

R. Dobkin, R. Ginosar, and C. P. Sotiriou. Data synchronization issues in
GALS SoCs. In Proc. International Symposium on Advanced Research in Asyn-
chronous Clircuits and Systems, pages 170 179. IEEE Computer Society Press,
April 2004.

Jo Ebergen. Squaring the FIFO in GasP. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages 194-205.
IEEE Computer Society Press, March 2001.

D. Edwards and A. Bardsley. Balsa an asynchronous hardware synthesis
system. In J. Sparsg and S. Furber, editors, Principles of asynchronous circuit
design A systems perspective, chapter 9 12, pages 155 218. Kluwer Academic
Publishers, 2001.

Y.M. Fang and D.F. Wong. Simultaneous-functional unit binding and floorplan-
ning. In In Digest of Technical Papers, International Conference on Computer-

Aided Design (ICCAD)), 1994.

Karl M. Fant and Scott A. Brandt. NULL conventional logic: A complete and
consistent logic for asynchronous digital circuit synthesis. In International Con-

ference on Application-specific Systems, Architectures, and Processors, pages
261 273, 1996.

Jiong Luo, Lin Zhong, Yunsi Fei and Niraj K. Jha. Register binding based rtl
power management for control- flow intensive designs. Technical report, Dept.
of Electrical Engineering Princeton University, Princeton., 1999.

R. M. Fuhrer and S. M. Nowick. Sequential Optimization of Asynchronous and
Synchronous Finite-State Machines Algorithms and Tools. Kluwer Academic
Publishers, June 2001. ISBN 0-7923-7425-8.

R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin, and L. Plana.
Minimalist: An environment for the synthesis, verification and testability
of burst-mode asynchronous machines. Technical Report TR CUCS-020-99,
Columbia University, NY, July 1999.

S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi. Optimization by simulated an-
nealing. Science, pages 671 680, 1983.

Fred Glover. Tabu search. ORSA Journal on Computing, pages 190 206, 1989.

BIBLIOGRAPHY 117

|44]

[45]

|46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

F. Gruian and K. Kuchcinski. Operation binding and scheduling for low power
using constraint logic programming. In IEEE EUROMICRO 98, 1998.

S. Gupta and S.Katkoori. Force-directed scheduling for dynamic power opti-
mization. In IEEE/ISVLSI Proceedings of the IEEE Computer Society Annual
Symposium on VLSI, 2002.

J. P. Hammerstoft. High-level synthesis of asynchronous circuits from control
data flow graphs. Master’s thesis, IMM-thesis-2001-44, Technical University of
Denmark, Dept. of Informatics and Mathematical Modelling, August 2001. (In
Danish).

H. Holten-Lund. Design for scalability in 3D computer graphics architectures.
PhD thesis, Informatics and Mathematical Modelling, Technical University of
Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800 Kgs. Lyngby,
2002.

Hans Jacobson, Erik Brunvand, Ganesh Gopalakrishnan, and Prabhakar
Kudva. High-level asynchronous system design using the ACK framework. In
Proc. International Symposium on Advanced Research in Asynchronous Cir-
cuits and Systems, pages 93—-103. IEEE Computer Society Press, April 2000.

R. Rim, M. Mujumdar, A. Jain and R. de Leone. Optimal and heuristic al-
gorithms for solving the binding problem. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 2(2):211-225, 1994.

J. S. Jensen. High-level synthesis of asynchronous circuits. Master’s thesis,
IT-E-840, Technical University of Denmark, Dept. of Information Technology,
June 2000. (In Danish).

J.F. Sowa, editor. Knowledge Representation: Logical, Philosophical, and Com-
putational Foundations. Brooks cole Publishin Co, 1999.

David S. Johnson. Approximation algorithms for combinatorial problems. Jour-
nal of Computer and System Sciences, pages 256-278, 1974.

Joep Kessels, Ad Peeters, Torsten Kramer, Markus Feuser, and Klaus Ully.
Designing an asynchronous bus interface. In Proc. International Symposium
on Advanced Research in Asynchronous Clircuits and Systems, pages 108-117.
IEEE Computer Society Press, March 2001.

Euiseok Kim, Jeong-Gun Lee, and Dong-Tk Lee. Automatic process-oriented
control circuit generation for asynchronous high-level synthesis. In Proc. In-
ternational Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 104 113. IEEE Computer Society Press, April 2000.

C.M. Krishna and Y.H. Lee. Voltage-clock-scaling adaptive scheduling tech-
niques for low power in hard real-time systems. In Proceedings of the Sizth
IEEFE Real Time Technology and Applications Symposium (RTAS 2000), 2000.

118

BIBLIOGRAPHY

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

|64]

[65]

|66]

[67]

Milos Krsti¢ and Eckhard Grass. New GALS technique for datapath archi-
tectures. In Jorge Juan Chico and Enrico Macii, editors, Power and Timing
Modeling, Optimization and Simulation (PATMOS), volume 2799 of Lecture
Notes in Computer Science, pages 161 170, September 2003.

Lars Kruse, Eike Schmidt, Gerd Jochens, Ansgar Stammermann, Arne Schulz,
Enrico Macii, and Wolfgang Nebel. Estimation of lower and upper bounds on
the power consumption from scheduled data flow graphs. IEEE Trans. on Very
Large Scale Integration (VLSI) Systems, 9(1):3-15, 2001.

Jer-Min Jou, Shiann-Rong Kuang and Ren-Der Chen. Clique partitioning based
integrated architecture synthesis for vlsi chips. In Proceedings of International
Symposium on VLSI Technology, Systems, and Applications, pages 58-62, 1993.

P. Kudva, G. Gopalakrishnan, and V. Akella. High level synthesis of asyn-
chronous circuit targeting state machine controllers. In Asia-Pacific Conference
on Hardware Description Languages (APCHDL), pages 605 610, 1995.

G. Lakshminarayana and N. K. Jha. Synthesis of power-optimized and area-
optimizaed circuits from hierarchical behavoiral descriptions. In In proceedings
of 85th annual ACM IEEE conference on Design aytomation, 1998.

K.S. Khouri, G. Lakshminarayana and N.K. Jha. Impact: A high-level synthesis
system for low power control-flow intensive circuits. In In proceedings Design
Automation and Test in Europe DATE’98, 1998.

S.C. Leung and H.F. Li. A syntax-directed translation for the synthesis of
delay-insensitive circuits. IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, 2(2):196-210, 1994.

K.-J. Lin and C.-S. Lin. Removing CSC violations in asynchronous cir-
cuits by delay padding. IEE Proceedings, Computers and Digital Techniques,
143(6):413 420, November 1996.

T.Kim, N. Yonezawa, J.W.S. Liu and C.L. Liu. A scheduling algorithm for
conditional resource sharing - a hierachical reduction approach. IEEE Trans.
Computer Aided Design Integrated Circuits Syst, 13(4):425-437, 1994.

A. Madalinski, A. Bystrov, V. Khomenko, and A. Yakovlev. Visualization and
resolution of coding conflicts in asynchronous circuit design. In Proc. Design,
Automation and Test in Furope (DATE). IEEE Computer Society Press, March
2003.

Michael R. Garey and David S. Johnson, editor. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W.H Freeman, 1979.

G. De Micheli. Synthesis and optimization of digital circuits. McGraw-Hill,
1994.

BIBLIOGRAPHY 119

|68]

|69]

[70]

[71]

[72]

[73]

|74

|75]

[76]

[77]

78]

[79]

[80]

H. Mecha, M. Fernandes, F. Tirade, J. Septien, D. Motes and K. Olcoz. A
method for are estimation of datapath in high level synthesis. IEEE Trans.
Comput. Aided Des. Integ. Circuits Syst, 15(2):258 265, 1996.

E. Musoll and J. Cortadella. High-level synthesis techniques for reducing the
activity of functional units. In Proceedings of ISLPD95, 1995.

E. Musoll and J. Cortadella. Scheduling and resource binding for low power.
In Proceedings of the 8th international symposium on System synthesis, 1995.

Chris J. Myers. Asynchronous Circuit Design. John Wiley & Sons, July 2001.
ISBN: 0-471-41543-X.

N.H.E. Weste and K. Eshraghian, editor. Principles of CMOS VLSI Design,
A systems perspective. aw, 1993.

S. F. Nielsen, J. Sparsg, J. Madsen, J. Hammerstoft, and J. S. Hansen. High-
level synthesis of asynchronous circuits from control data flow graph represen-
tations. In Second ACiD-WG Workshop (of the Furopean Commission’s fifth
Framework Programme), January 2002.

Sune F. Nielsen and Jan Madsen. Power constrained high-level synthesis of bat-
tery powered digital systems. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, March 2003.

Sune F. Nielsen, Jens Sparsg, and Jan Madsen. High-level synthesis of asyn-
chronous circuits from control data flow graph representations. In Proc. In-
ternational Symposium on Advanced Research in Asynchronous Circuits and
Systems, January 2002.

Enric Pastor, Jordi Cortadella, Alex Kondratyev, and Oriol Roig. Structural
methods for the synthesis of speed-independent circuits. IEEE Transactions
on Computer-Aided Design, 17(11):1108 1129, November 1998.

P.G. Paulin and J.P. Knight. Scheduling and binding algorithms for high-
level synthesis. In Proceedings of the 26Sth ACM/IEEE Design Automation
Conference (DAC),p.1-6, 1989.

P.J.M. Van Laarhoven and E.H.L. Aarts, editor. Simulated Annealing: Theory
and Practice. Kluwer Academic Publishers, 1987.

P.J.M Van Laarhoven and E.H.L. Aarts, editor. Simulated Annealing and
Boltzmann Machines. John Wiley and Sons, 1989.

I. Hong, M. Potkonjak and M.B. Srivastava. On-line scheduling of hard real-
time tasks on variable voltage processor. In Proceedings of the 1998 IEEE/ACM
international conference on Computer-aided design, 1998.

120

BIBLIOGRAPHY

[81]

[82]

[83]

[84]

[85]

|86]

[87]

[88]

[89]

[90]

91]

[92]

A. Chandrakasan, M. Potkonjak, J. Rabaey and R. W. Brodersen. Hyper-
Ip:a system for power minimization using architectural transformations. In
International Conference on Computer-Aided Design, pp.300-303, 1992.

A. Chandrakasan, R. Mehra, M. Potkonjak, J. Rabaey and R. W. Brodersen.
Optimizing power using transformations. In IEEE Transactions on CAD, Vol.
14, No. 1, pages 12-31, 1995.

A. Raghunathan and N. Jha. An ilp formulation for low power based on mini-
mizing switched capacitance during datapath allocation. In IEEE Symposium
on Clircuits and Systems, 1995.

N. Ranganathan and A.K. Murugavel. Advances in embedded software schedul-
ing techniques: A low power scheduler using game theory. In IEEE/ACM/IFIP
international conference on Hardware/Software codesing and system synthesis,
2003.

M. Renaudin, P. Vivet, and F. Robin. A design framework for asyn-
chronous/synchronous circuits based on CHP to HDL translation. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 135—144, April 1999.

S. M. Nowick and M. B Josephs and C. H. (Kees) van Berkel (editors). Special
Issue on Asynchronous Circuits and Systems. Proceedings of the IEEE, 87(2),
February 1999.

Sabih G. Gerez, editor. Algorithms for VLSI Design. Kluwer Academic Pub-
lishers, 1999.

M. Sacker, A. Brown, P. Wilson, and A. Rushton. A general purpose be-
havioural asynchronous synthesis system. In Proc. International Symposium
on Advanced Research in Asynchronous Circuits and Systems, pages 125 134.
IEEE Computer Society Press, April 2004.

D. Shin and K. Choi. Low power high level synthesis by increasing data cor-
relation. In IEEE/ACM/IFIP international conference on Hardware/Software
codesing and system synthesis, 1997.

Gerald E. Sobelman and Karl Fant. CMOS circuit design of threshold gates
with hysteresis. In Proc. International Symposium on Circuits and Systems,
pages 61-64, June 1998.

D. Sokolov, A. Bystrov, and A. Yakovlev. STG optimisation in the direct
mapping of asynchronous circuits. In Proc. Design, Automation and Test in
Europe (DATE). IEEE Computer Society Press, March 2003.

J. Sparsg and S. Furber, editors. Principles of asynchronous circuit design
A systems perspective. Kluwer Academic Publishers, 2001.

BIBLIOGRAPHY 121

193]

[94]

[95]

[96]

[97]

98]

[99]

[100]

[101]

[102]

[103]

[104]

Sune F. Nielsen, Jens Sparsg and Jan Madsen. Towards behavioral synthesis of
asynchronous circuits - an implementation template targeting syntax directed
compilation. In Proc. EUROMICRO DSC, Aug 2004.

L. Kruse, E. Schmidt, G. Jochens, A. Stammermann and W. Nebel. Lower
bound estimate for low power high-level synthesis. In Proceedings of 1SSS
2000, 2000.

Stephen A. Ward and Robert H. Halstead, editor. Computation structures.
MIT Press, 1990.

Leon Stok. Architectural Synthesis and Optimization of Digital Systems. PhD
thesis, Eindhoven University of Technology, 1991.

Ivan Sutherland and Scott Fairbanks. GasP: A minimal FIFO control. In Proc.
International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 46-53. IEEE Computer Society Press, March 2001.

Michael Theobald and Steven M. Nowick. Fast heuristic and exact algorithms
for two-level hazard-free logic minimization. IEEE Transactions on Computer-
Aided Design, 17(11):1130 1147, November 1998.

Tseng and D.P. Siewiorek. Automated synthesis of data paths in digital sys-
tems. IEEFE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, CAD, 5(3):379-395, 1986.

Kees van Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI
Programming, volume 5 of International Series on Parallel Computation. Cam-
bridge University Press, 1993.

M. van der Korst, A. Peeters, and H. Schols, editors. Design and Implementa-
tion of Asynchronous Circuits. Koninklijke Nederlandse Akademie van Weten-
schappen, North-Holland, June 1992. Proceedings of workshop Amsterdam,
10-14 November 1991.

D. Rakhmatov, S. Vrudhula and C. Chakrabarti. Battery-conscious task se-
quencing for portable devices including voltage/clock scaling. In Proceedings
of the 39th conference on Design automation, 2002.

K. Wakabayashi and T. Yoshimura. A resource sharing control synthesis
method for conditional branches. In In Digest of Technical Papers, Interna-
tional Conference on Computer-Aided Design (ICCAD)), 19809.

Catherine G. Wong and Alain J. Martin. High-level synthesis of asynchronous
systems by data-driven decomposition. In Proc. ACM/IEEE Design Automa-
tion Conference, pages 508 513, June 2003.

122

BIBLIOGRAPHY

[105]

[106]

[107]

[108]

[109]

[110]

T. Yoneda, H. Onda, and C. Myers. Synthesis of speed independent circuits
based on decomposition. In Proc. International Symposium on Advanced Re-
search in Asynchronous Circuits and Systems, pages 135 145. IEEE Computer
Society Press, April 2004.

Kenneth Y. Yun and David L. Dill. Automatic synthesis of extended burst-
mode circuits: Part I and II. IEEE Transactions on Computer-Aided Design,
18(2):101-117, 118-132, February 1999.

Kenneth Y. Yun and David L. Dill. Automatic synthesis of extended burst-
mode circuits: Part I (specification and hazard-free implementation). IEEE
Transactions on Computer-Aided Design, 18(2):101-117, February 1999.

Kenneth Y. Yun and David L. Dill. Automatic synthesis of extended burst-
mode circuits: Part IT (automatic synthesis). IEEE Transactions on Computer-
Aided Design, 18(2):118 132, February 1999.

Kenneth Y. Yun, David L. Dill, and Steven M. Nowick. Synthesis of 3D
asynchronous state machines. In Proc. International Conf. Computer Design
(ICCD), pages 346-350. IEEE Computer Society Press, October 1992.

L. Zhong and N.K. Jha. Interconnect-aware high-level synthesis for low power.
In IEEE ICCAD p.110-117, 2002.

