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(Abstract submitted to the 23nd IWWWFB, Korea, 2008)

Multigrid preconditioning for efficient solution of the

3D Laplace problem for wave-body interaction

Harry B. Bingham∗, Allan P. Engsig-Karup and Ole Lindberg†

Technical University of Denmark,
2800 Lyngby, Denmark

(hbb,apek)@mek.dtu.dk, lindberg.ole@gmail.com

At the 22nd workshop in Croatia, we presented some preliminary three-dimensional (3D)
results using a flexible-order finite difference based solution of the exact Laplace problem
for nonlinear water waves and their interaction with fixed and floating structures [1]. The
method is presented in detail in [2], including a stability and accuracy analysis and some
results in two-dimensions (2D). In this abstract we describe a special treatment of the
boundary conditions along solid boundaries which is necessary to obtain robust solutions,
particularly when using multigrid preconditioning. With multigrid preconditioning, we
demonstrate an optimal scaling of the overall solution effort, i.e. directly with n the total
number of grid points. Full details of this and other aspects of the 3D solution will appear
in [4].

To summarize the method, consider the exact potential flow problem in a Cartesian
coordinate system with origin on the still water plane and the z-axis pointing vertically
upwards; x = [x, y] is a horizontal vector and t is time. The fluid domain is bounded by
the sea bottom at z = −h(x), the free-surface at z = η(x, t), and a horizontal enclosing
boundary Sb which may include fixed and/or floating structures. The free surface boundary
conditions are expressed in terms of the velocity potential and the vertical velocity evaluated
directly on the free-surface: φ̃ = φ(x, η, t), and w̃ = ∂φ

∂z

∣

∣

z=η

ηt = −∇η · ∇φ̃ + w̃(1 + ∇η · ∇η) (1a)

φ̃t = −g η − 1

2
∇φ̃ · ∇φ̃ +

1

2
w̃2(1 + ∇η · ∇η). (1b)

Here ∇ = [∂/∂x, ∂/∂y] is the horizontal gradient operator, g the gravitational acceleration
and partial differentiation is indicated when the independent variables appear as subscripts.
These provide evolution equations for η and φ̃ to be integrated forward in time from initial
conditions, which is done using the classical explicit fourth-order Runge-Kutta method. To
obtain the vertical component of velocity w̃ from the known η and φ̃, requires satisfying the
Laplace equation throughout the fluid volume along with the solid boundary conditions:

∇2φ + φzz = 0, −h < z < η (2a)

φz + ∇h · ∇φ = 0, z = −h. (2b)

n · (∇φ, φz) = Vn on Sb (2c)

where Vn is the normal velocity of the horizontal fluid boundary Sb with normal vector n.
To solve this problem we apply a coordinate transformation which maps the irregularly

shaped physical domain to a cuboid computational domain. One arbitrarily spaced set
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of grid coordinates is then taken along each computational direction, and arbitrary-order
finite difference schemes are developed to express all first and second partial derivatives.
The Laplace problem in this boundary-fitted, non-orthogonal coordinate system is more
complicated, including both first- and cross-derivatives as well as derivatives of the trans-
formation, but the essential character is unchanged as is the basic structure of the resultant
linear system of equations

Ap = b. (3)

The application of this general idea is widespread, and it’s use for the simulation of
unsteady free-surface flows goes back at least to [5, 3]. The attraction of this approach lies
in the time invariance of the computational operators (no re-griding is required) and in the
relative ease of obtaining a high-order representation of the solution including complex fixed
and moving boundaries. The new aspects of the present work have to do with development
of robust discretization strategies (in particular along solid boundaries) and efficient solution
of (3) to obtain optimal scaling of both RAM memory use and CPU time. Our solution is
also quite flexible, allowing adaptation of both the grid and the order of accuracy of the
discrete derivative operators.

To solve (3) we employ the GMRES (Generalized Minimal RESidual) Krylov subspace
iterative method with a linear extrapolation from the two previous time solutions as the
initial guess. The performance of GMRES is sensitive to the preconditioning, and for this
purpose we use the linearized version of the matrix discretized to second-order accuracy
M. Preconditioning on the left, (3) becomes (symbolically) M−1(Ap) = M−1b. A precon-
ditioning operation thus requires solving a linear system of the form Mq = s. In practice,
the preconditioning operation is taken to be one multigrid V-cycle with an initial guess of
q = 0. Although we do not claim that this is the optimum strategy, it performs quite well
giving a reasonably even distribution of computational effort between the matrix-vector
product and the preconditioning operation.

Figure 1 plots with increasing n both the average CPU time per iteration and the total
RAM memory required to solve a mildly nonlinear standing wave test problem which has
been chosen to exercise all the features of the model. The plots compare the behavior of a
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Figure 1: Scaling of computational effort, and RAM memory use.

multigrid and a direct solution of the preconditioning problem. Using multigrid clearly pro-
vides optimal scaling of both memory use and computational effort while the direct strategy
scales super-linearly with increasing problem size. The code is written in FORTRAN90/95
and these calculations were made on one AMD Opteron node with two dual-core processors
running at 2.6 GHz.



The key to a robust numerical solution to the problem as described above lies in the
imposition of the boundary conditions along the solid boundaries. In the context of a
collocated finite difference scheme with both η and φ defined at the same set of grid points,
it is natural to define a grid which includes points directly on the solid wall boundaries.
The degrees of freedom associated with these boundary points are then used to impose the
no-flux boundary condition by writing off-centered finite difference schemes and replacing
the Laplace equation at those points with the boundary condition. We will refer to this
strategy as “BC”. An alternative strategy is to imagine a set of “ghost points” external to
the fluid boundary and write finite difference schemes which include these points to impose
the boundary condition. The resultant boundary equations can then be solved explicitly
to express the ghost point values in terms of the internal grid point values. Finally, the
ghost point contributions are eliminated from the discrete Laplace equation applied at the
boundary. We will refer to this strategy as “BC+LAPLACE”.

Figure 2 shows the result of a discrete linear stability analysis of the two strategies
applied to a particular discretization on a flat bottom (see [4] for the details). Here |λ|max
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Figure 2: Maximum eigenvalues of the Jacobian matrix for the method under the two
boundary discretization schemes plotted vs. relative water depth.

is the maximum absolute value of the eigenvalues of the Jacobian matrix for the linearized
system. This plot shows that the two strategies have the same stability requirements in
deep water but they are dramatically different in shallow water. The eigenvalues of the
discrete system are very nearly pure imaginary, so stability under R-K(4,4) time-stepping
is governed by ∆t |λ|max ≤ 2

√
2, (i.e. the extent of the imaginary axis included by the

R-K(4,4) stability region.) For example when h = L/100, strategy BC will require a time
step which is approximately ten times smaller than the one required for h = L. On the
other hand, for strategy BC+LAPLACE the stability requirements are largely independent
of relative water depth.

Only the treatment of the horizontal boundary conditions influences this stability anal-
ysis and the picture is the same whether the bottom boundary condition is implemented
using strategy BC or BC+LAPLACE. Gauss-Seidel iteration (and hence multigrid) on the
other hand, turns out to be sensitive to the treatment of the bottom boundary condition.
The essential difference between the two strategies here is in the diagonal dominance prop-
erties of the resultant matrix. For strategy BC+LAPLACE, the boundary point equations
are the Laplace equation with the boundary condition built in and hence of essentially the
same character as the interior point equations. In this case, the resultant matrix is mildly
diagonally dominant in the limit of a linear problem on a constant depth. Gauss-Seidel it-
eration is thus guaranteed to be convergent in this limit. Although a non-zero bottom slope



will work to reduce the diagonal dominance in the system, we have so far not found any
divergent examples regardless of the physical parameters and/or the grid anisotropy. On
the other hand, the exchange of the Laplace equation for the bottom boundary condition
inherent in strategy BC apparently reduces the diagonal dominance of the matrix to such
a degree that Gauss-Seidel iteration becomes divergent, even at relatively small values of
bottom slope and/or grid anisotropy.

Figure 3 shows a sample calculation for monochromatic waves shoaling on a circular
shoal and compares the result to experimental measurements of [6]. At this point we have
validated the accuracy and efficiency of the method on simple geometries, the next step will
be to apply transformations along the other coordinates to treat more interesting structures.

0 5 10 15 20 25 30 35
0

0.005

0.01

0.015

0.02

0.025

0.03

x [m]

A
m

pl
itu

de
 [m

]

Figure 3: Harmonic analysis of measured and computed results for the experiments of
Whalin at wave period T=1s. First, second and third harmonics shown.
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