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Abstract

Corpus callosum analysis is influenced by many
factors. The effort in controlling these has pre-
viously been incomplete and scattered. This paper
sketches a complete pipeline for automated corpus
callosum analysis from magnetic resonance images,
with focus on measurement standardisation. The
presented pipeline deals with i) estimation of the
mid-sagittal plane, ii) localisation and registration
of the corpus callosum, iii) parameterisation and
representation of its contour, and iv) means of
standardising the traditional reference area mea-
surements.

1 Introduction

Brain morphometry is an important tool for de-
tecting and monitoring brain pathologies such as
epilepsy, dementia and multiple sclerosis. A com-
mon method is to delineate some well-defined area
of the brain to yield a shape for inter- or intra-
subject studies. One such structure is the corpus
callosum (CC); a white-matter nervous tissue bun-
dle bridging the left and right cerebral hemisphere.
This structure is particularly interesting due to the
many neurological studies indicating relationships
between the size and shape of the CC, and gen-
der, age, handedness, neurodegenerative diseases
et cetera (e.g. [9, 2, 7]). Common to such studies
is that measurements are performed on the two-
dimensional cross-section of the CC defined by the
mid-sagittal plane (MSP), which separates the left
hemisphere from the right. Possibly the most com-
mon type of CC measurement consists of partition-
ing the CC body into a small set of reference parts
and calculating their areas. Such descriptors can
subsequently be used in e.g. group studies between
subjects with dementia and normal subjects.

The literature typically deals with each of these
topics separately: i) estimation of the mid-sagittal

plane (e.g. [1, 8, 15]), ii) corpus callosum locali-
sation (e.g. [9, 17, 13]), and iii) corpus callosum
partitioning (e.g. [16]). To bridge these, this pa-
per sketches a complete pipeline for automated
corpus callosum analysis from magnetic resonan-
ce images (MRI) taking all of the above elements
into consideration.

2 Methods

2.1 Mid-sagittal Plane Estimation

The human brain consists on a coarse level of the
cerebrum, the cerebellum and the brainstem. Most
prominent is the cerebrum which is divided into
hemispheres connected by a nervous fibre bundle;
the corpus callosum. The surface partitioning this
approximate bilateral symmetry of the cerebrum
is typically denoted the mid-sagittal plane (MSP)
referring to its relative alignment with the sagittal
plane of the human body. Determining the MSP
is thus an invariable prerequisite for measurements
on structures defined via this plane such as the
MSP cross-section of the corpus callosum.

Traditionally MSP estimation is based on global
symmetry which is heavily influenced by global
(i.e. head) symmetry. To avoid this, we proposed
an approach that optimises a local symmetry mea-
sure using the Nelder-Mead simplex method [15];
see Figure 1. The MSP is parameterized by az-
imuth/elevation angles and the orthogonal distance
to the origin. The objective function is based on
profiles normal to the plane. In addition, [15] in-
troduced the use of thin-plate spline fitting us-
ing robust statistics for estimating a curved mid-
sagittal surface (MSS), e.g. in pathological brains.

2.2 Corpus Callosum Localisation

Obtaining manual CC tracings is both time-consu-
ming, error-prone and operator dependent. In-
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Figure 1: Automatically estimated mid-sagittal
plane (MSP). (a) Initial (above) and optimal (below)
MSP. (b) Axial MSP intersection. (c) Coronal MSP in-
tersection. (d) Axial and coronal slice with estimated
MSP. (e) Axial and coronal slice with MSP intersec-
tion.

stead, medical image analysis should aim at re-
placing this task. In [13] we introduced the use of
the class of generative models; Active Appearance
Models (AAMs) [4], for fully automated localisa-
tion of the CC (see Figure 2). AAMs establish a
compact parameterisation of object variability, as
learned from a representative training set. Objects
are defined by marking up each training exam-
ple with points of correspondence, i.e. landmarks.
Subsequently, AAMs can be registered rapidly to
unseen images. Due to their general nature and
ability to deal with substantial variability, AAMs
have found much use in medical applications [14].

The shape models inherent to AAMs rely on
landmarks. Albeit the CC shows an apparent lack
of such, papers employing shape models (e.g. us-
ing Active Shape Models [5]) have not dealt with
this issue. Thus, we have based our AAMs in
[13] on the concept of minimum description length
(MDL) as introduced in [6] which led to compact
and unique shape descriptors.

2.3 Representation and Analysis

While the previous sections have dealt with obtain-
ing the CC outlines, this will touch upon an outline
representation suitable for extraction of high-level
features. Secondly, extraction of the traditional
CC reference area measurements will be treated.

Figure 2: Automated localisation of the corpus cal-
losum (cropped). Full MSP search slice (lower-right).

2.3.1 Fourier Representation

Closed, simple curves devoid of strong local curva-
ture, such as the CC outline, may be represented
by a Fourier series expansion. A 2D curve can be
represented either as a single complex function

f(t) =
k=∞∑

k=−∞
ckeikΩt, (1)

or as separate real functions for each axis [12],
[

x(t)
y(t)

]
=

∞∑

k=0

[
pk qk

rk sk

] [
cos kΩt
sin kΩt

]
. (2)

Here, t is the arc-length parameter, Ω = 2π/T is
the angular frequency and T is the period. The
coefficients ck are calculated using Fourier’s theo-
rem [3]: ck = 1

T

∫ T

0
e−ikΩtf(t)dt.

Usually, shapes come as delineated outlines or
annotated landmarks, in which case the input func-
tion f(t) is discrete. The coefficients are then
found using the discrete Fourier transform. The
N -point transform is ck = 1

N

∑N−1
j=0 e−2πijk/Nfj .

The Fourier representation has a number of
benefits. Looking at Equation 2, an intuitive geo-
metrical interpretation arises. k = 0 corresponds
to a translation in the x and y directions and k = 1
represents a general ellipse. Indices greater than
one correspond to other ellipses with increasing
frequency (all are T -periodic) that modulates the
main ellipse. As the elliptic components are added,
the resulting shape will approximate the original
data with increasing accuracy (see Figure 3).

Another benefit of the Fourier representation is
the analytical nature of the shape-generating equa-
tions 1 and 2. It can be shown that a Fourier
transform corresponds to a rotation in RN of the
N input landmarks. This means that if all Fourier
coefficients are used, no information is lost in the
transformation. However, to reduce dimensional-
ity and regularise the original data points, usually
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Figure 3: Fourier components of the callosal outline.

only the M first coefficients are used. Disregard-
ing this approximation, many geometric properties
and operations can be made in an exact fashion.
It is e.g. simple to calculate the curvature at any
position of the curve. Green’s theorem relates the
boundary function to the properties of the whole
enclosed area. This can be used to calculate, for
instance, the area analytically.

2.3.2 Partitioning Schemes

Since no gross anatomical landmarks exist that de-
limit anatomically or functionally distinct callosal
regions, several partitioning schemes have been de-
vised [16]. These can be roughly divided into three
categories: i) vertical partitioning (i.e. partitions
orthogonal to a line connecting the CC ”endpoints”;
the rostrum and the splenium), ii) radial parti-
tioning (radial sections emanating from a reference
points ”between” the rostrum and the splenium),
iii) curvilinear partitioning (partitions defined by
arc-length along a curvilinear reference line).

Due to the lack of landmarks, all approaches
need to be defined uniquely from the contour. The
first principal axis of a point-based contour repre-
sentation, as shown in Figure 4, can provide such
definition for category i). The centroid of the point-
based contour provides a reference point for cate-
gory ii). For category iii) the midpoints of chords
between an arc-length sampling of the inner and
outer part of the CC contour may be used [16].

Unfortunately, all of the above schemes intro-
duce a marked shape-dependent bias of the defined
callosal areas (typically five) [16]. Here we intro-
duce two schemes designed to lessen this bias.

One solution is to use the landmarks directly
from the AAM localisation due to their MDL prop-
erties. Figure 5 shows five reference areas deter-

Figure 4: Principal axes and one particular set of
corpus callosum reference areas.

Figure 5: Mean corpus callosum area changes for
varying mid-sagittal plane pertubations.

mined using this definition, as a function of MSP
rotation around the 2nd principal axis of the CC.
This figure also shows that accurate MSP estima-
tion can remove potentially substantial random
effects, which could be present using the typical
clinical approach of employing in-scanner subject
alignment only. This thereby increases the sen-
sitivity of morphometric analyses and allow for a
reduction of the number of subjects in a given pop-
ulation study.

Another approach is to further develop cate-
gory iii) by eliminating shape-bias using an alter-
native definition of the curvilinear reference line.
For this we employ the chordal axis transform [11]
as a stable and convenient alternative to the me-
dial axis transform. All branches of the CAT are
pruned away until one axis remains, which sub-
sequently parameterises the callosal regions. An
example showing five uniform partitions of 25 cor-
pora callosa is given in Figure 6.

3 Discussion

This paper has described the elements required to
establish a complete pipeline for automated corpus



Figure 6: Corpus callosum contours and their chordal axes (left). Corresponding partitions (right).

callosum analysis; from MRIs to descriptive fea-
tures. Ultimately, such a framework could be im-
plemented in-scanner to immediately provide the
required features, e.g. for large-scale data mining
of callosal geometry and patient record of every
scanned subject in a radiology department. Each
subpart of the pipeline aims at standardising the
final descriptors irrespective of the natural biolog-
ical variation.

To the best of our knowledge no such system
currently exists. However, based on the modules
summarised here, our future work will aim at a
unified system producing clinical results from the
large-scale LADIS study [10] (approx. 600 sub-
jects) in collaboration with the Danish Research
Centre for Magnetic Resonance, DRCMR.

Acknowledgments

Charlotte Ryberg and Egill Rostrup, DRCMR, are
gratefully acknowledged for providing MRIs. All
subjects originated from a subset of the LADIS
study [10]. M. B. Stegmann was supported by The
Danish Medical Research Council, grant no. 52-00-
0767, and The Danish Research Agency, grant no.
2059-03-0032. K. Skoglund was supported by The
Technical University of Denmark, DTU.

References
[1] B. A. Ardekani, J. Kershaw, M. Braun, and I. Kanuo.

Automatic detection of the mid-sagittal plane in 3-D
brain images. IEEE Transactions on Medical Imaging,
16(6):947–52, 1997.

[2] F. L. Bookstein. Landmark methods for forms without
landmarks: localizing group differences in outline shape.
Medical Image Analysis, 1(3):225–244, 1997.

[3] W. L. Briggs and Van E. Henson. The DFT: An Owner’s
Manual for the Discrete Fourier Transform. SIAM, 1995.

[4] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active
appearance models. In Proc. of European Conf. on Com-
puter Vision 1998, volume 1407 of Lecture Notes in Com-
puter Science, pages 484–498. Springer, 1998.

[5] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Gra-
ham. Active shape models – their training and application.

Computer Vision and Image Understanding, 61(1):38–
59, 1995.

[6] R. H. Davies, C. J. Twining, T. F. Cootes, J. C. Waterton,
and C. J. Taylor. A minimum description length approach
to statistical shape modeling. Medical Imaging, IEEE
Transactions on, 21(5):525–537, 2002.

[7] A. Dubb, B. Avants, R. Gur, and J. Gee. Shape charac-
terization of the corpus callosum in schizophrenia using
template deformation. In Medical Image Computing and
Computer-Assisted Intervention - MICCAI, volume 2,
pages 381–388, 2002.

[8] Y. Liu, R. T. Collins, and W. E. Rothfus. Robust mid-
sagittal plane extraction from normal and pathological 3-
D neuroradiology images. IEEE Transactions on Medical
Imaging, 20(3):175–192, 2001.

[9] A. Lundervold, N. Duta, T. Taxt, and A. K. Jain. Model-
guided segmentation of corpus callosum in MR images. In
Computer Vision and Pattern Recognition. IEEE Com-
put. Soc, 1999.

[10] L. Pantoni, A. M. Basile, G. Pracucci, K. Asplund, J. Bo-
gousslavsky, H. Chabriat, T. Erkinjuntti, F. Fazekas, J. M.
Ferro, M. Hennerici, J. O’brien, P. Scheltens, M. C. Visser,
L. O. Wahlund, G. Waldemar, A. Wallin, and D. Inzitari.
Impact of age-related cerebral white matter changes on
the transition to disability - the ladis study: Rationale,
design and methodology. Neuroepidemiology, 24(1-2):51–
62, 2005.

[11] L. Prasad. Morphological analysis of shapes. Center for
Nonlinear Studies – CNLS Newsletter, 139:1–18, July
1997.

[12] L. H. Staib and J. S. Duncan. Boundary finding with para-
metrically deformable models. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 14(11):1061–
1075, 1992.

[13] M. B. Stegmann, R. H. Davies, and C. Ryberg. Corpus
callosum analysis using MDL-based sequential models of
shape and appearance. In International Symposium on
Medical Imaging 2004, San Diego CA, SPIE, pages 612–
619. SPIE, feb 2004.

[14] M. B. Stegmann, B. K. Ersbøll, and R. Larsen. FAME – a
flexible appearance modelling environment. IEEE Trans.
on Medical Imaging, 22(10):1319–1331, 2003.

[15] M. B. Stegmann, K. Skoglund, and C. Ryberg. Mid-
sagittal plane and mid-sagittal surface optimization in
brain MRI using a local symmetry measure. In Interna-
tional Symposium on Medical Imaging 2005, San Diego,
CA, Proc. of SPIE vol. 5747. SPIE, feb 2005.

[16] P. M. Thompson, K. L. Narr, R. E. Blanton, and A. W.
Toga. Mapping structural alterations of the corpus cal-
losum during brain development and degeneration. In
Proceedings of the NATO ASI on the Corpus Callosum.
Kluwer Academic Press, 2001. Book Chapter in: Eran
Zaidel, Marco Iacoboni [eds.].

[17] B. van Ginneken, A. F. Frangi, J. J. Staal, B. M. Ter
Haar Romeny, and M. A. Viergever. Active shape model
segmentation with optimal features. IEEE Transactions
on Medical Imaging, 21(8):924–933, 2002.


